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RESPONSE OF TWO-LEVEL ATOMS TO INTENSE
AMPLITUDE MODULATED LASER BEAMS

1. INTRODUCTION

The spectral distribution of the light scattered by a two-Tevel
atom in an intense laser beam of constant amplitude has been termed the
dynamic Stark effect. It has been the subject of a number of theoreti-
cal papers, as well as experimental ones.

We treat the case of a two-level atom in an intense, resonant,
amplitude modulated Taser beam. We refer to our case as the modulated
amplitude dynamic Stark effect and to avoid confusion we name the dy-
namic Stark effect more specifically the constant amplitude dynamic
Stark effect.

In Chapter 2 we derive the equations of motion for the elements of
the density matrix of a two-level atom which interacts with a laser
beam of arbitrary time dependent amplitude and at the same time under-
goes spontaneous decay. We obtain these equations from the equations of
motion for a system consisting of the atom and a radiation field by
tracing over the field states. The laser-atom interaction is treated
classically from the start.

In Chapter 3 we rewrite the equations of motion of the previous
chapter in terms of a new set of variables, namely the atomic inversion
and the components of the atomic dipoie moment in phase and %E out of
phase with the electric field of the laser. The equations in the new

form are known as the optical Bloch equations. We solve them for the

particular case of a sinusoidally modulated laser amplitude.




In Chapter 4 we derive the relation between the atomic variables
and the light emitted by the atom. We subsequently calculate the co-
herently and incoherently scattered intensities as well as their
spectral distributions.

In Chapter 5 we graph our results, interpret them and compare them

to the constant amplitude dynamic Stark effect.




2. EQUATIONS OF MOTION FOR THE ELEMENTS OF THE
ATOMIC DENSITY MATRIX OF THE
TO-LEVEL ATOM

2.1 Two-Level Atom Undergoing Spontaneous Decay: Time Dependence of
the AmpTitude of the Excited State

Whenever a Hamiltonian can be written as H = Ho+ Hy , where H,
is the unperturbed part of the Hamiltonian and Ht is the perturba-

tion, we can go from the Schrédinger representation with

= if 2 -
H10> = (fi 10 (2-1)
to the interaction representation where
! ' o l ) -
Hp 109 = (i 107 (2-2)
with
Lt
10’y = e ° |0 (2-3)
and . .
LH,t -*Hot
Hy = e ° Hoe™ " (2-4)

We write [@') as a linear combination of states |n) , which are or-
thonormal eigenfunctions of H, . Thus

[d'> = 2 bylt)Iny (2-5)
and we obtain the following d;}ferential equations for the amplitudes

bn(t) .
Uh$F bn(t) = Z bylt) <mIHIIND (2-6)

We consider a two-level atom with an excited state [j> of energy

fw; and a ground state |K) of energy hw, . Ye write the vacuum

state of the radiation field as |0) and the one photon states as
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[Ae> where A, stands for all the quantities which describe a photon
in this mode, namely the frequency wle. , the polarization direction
él,_ and the propagation direction -‘b:lg .
The annihilation operator alo. and the creation operator (1,1: for
a photon in mode A-L obey the commutation relation for bosons,
[CL;M, 0.1:‘] = dym - MWe canwrite some basic relations for the

field states |0) and IRQ) in terms of these operators as

Q10> = 0 <olag, = 0 (2-7)
Az, 10> = {2 <0l Gy, = <A (2-8)
<OlAde> = <O0lAz 10> = 0 (2-9)
Aeldad =<0103,8,010> =<0l a3, Ay, + Sem!0> = dom (2-10)

The unperturbed Hamiltonian H, consists of an atomic part H,

and a radiation Hamiltonian Hg , such that

Hali> = Bw; 1> (2-11)
Halk> = Rlwglk> (2-12)
Hg 10> = 0 (2-13)
Helded> = fiug, lAe> (2-14)

The transition of the system of atom plus radiation field (from
now on simply called the system) from the initial state (L) =1j>10>
to the final states H:z) = [K>lAe) is called spontaneous decay. Spon-
taneous decay has been treated extensively in the Hterature]’2’3’4.
We review it here to present our notation, to demonstrate our method

of introducing the decay rate and to provide some means of comparison

between the approximations made here and in Tater sections of this




chapter.
The states |1> and |fe) are eigenstates of the unperturbed
Hamiltonian H, with
Holi> = (Ha+ He)Ii> = fiwjIt> = Awg 1L (2-15)
and
o 1feY = (Hat He)lF2> = Rlwe +Wa,) 1fe> = g, [fe>  (2-16)
The interaction Hamiltonian is

H =-% §~A' (2-17)

with the quantized vector potent1a1

g -

R, T A LRy, T
Z !zw 50{(‘3% a0 ¢ relay et} (28
Using Equations (2-4), (2-7)-(2-10) and (2-15)-(2-17) we find that
KULITH LY =0 (2-19)
<felH/fa> = 0 Y e m (2-20)

— Hot >
CLUHTFe> = Z <IKoOl e f (-&B-)

A ‘5\ 7oA _'LEAM. ‘LHot
ablmeo {eRm Qan N € Gy, € } K> 1A
S 7P Vet (2-21)
where
A LR T
WVige = - <1 \qmpg, & B-€a, 0 < 1K>  (222)
and .
<‘FQ!H(‘L> =<HH,]-FQ> T\thz L Wfe
(- g, )t (2-23)

DEf Ve €

where

- A -'R : .
i = - kg £ 3-8 €M e




Before making use of Equation (2-6) a peculiarity of bound state

problems has to be pointed out3:

In problems involving discrete bound
states the transition probability per unit time between states is fi-
nite, so that it is not possible to fix the initial conditions for

1 =-0 ; instead they have to be fixed for a finite time, say 1 =0 .
Then Equation (2-6) is physically meaningful only for £ >0 . We would
like these equations to hold for all times, however. If we assume
bi(t)=0 and b (t)= 0 for <O , these amplitudes will satisfy
Equation (2-6) for negative times.

It was pointed out earlier that in the case of spontaneous decay

initially only state | i) is populated. This implies that

b (0) = | ; bﬂ(o) = 0 ¥e (2-25)
There is a discontinuity in b;(t) at t=0 , so that the integral of
—(%T"(t—) over a small time interval around T =0 is

G+E

[ AR dt = bilove) - bilo-g) < |

0-¢&

We conclude that we have to add a delta function term in the differen-
tial equation for D;(t) to achieve this. Therefore, with the use of
Equations (2-6) and (2-19)-(2-24) we arrive at the following set of
differential equations, which are valid for all times:

(wl'wfg)t

Lby (1) %Vifgel b () +10(E)  (z26)

U'sﬂ(t) = Vi p LWL WRT b, ip) (2-27)

We solve these equations by Fourier transforming the amplitudes.

0 . .
We define bDp(t) = -57%'. f Bnlw) E‘Lwt E,met dw , SO that
oy




o0
Wit -lwt
bilt) = -z e [ 8w ™ dw (2-28)
-
b = - == Lw“°tf8 w) e dw
fe(t) Tooami e . folW (2-29)
We write the delta function as
e}
: (Wt -lwt
LS(t) = -5-%(—,-; etV [ omWT gy (2-30)
- 00

(Wit R
where the factor 8t *" is introduced in the definition of the delta
function since it is also present in the definition of D;(t) and can
be factored out of the equation which we obtain by substituting Equa-

tions (2-28)-(2-30) into Equation (2-26), namely

. w. 'h)tt -wt
Cltlw-wr e T e T B w) duw
-0
- w N )_t
- Z VL.{:L eL(wL-h)ﬂ)t j‘ eu(wﬂ-w Bﬂ(w) dw
¢ -0
r Wt -{wt
+ f CL e lw dw

-

or

w . . -.
feLth [(w—wl)Bl(w) -% Vie Bgy (W) - l] e LMd(,.) = 0
-0

which implies that

(W-w;) B (w) =%Vaﬂ Bfe () + | (2-31)

Similarly, Equation (2-27) becomes

(W-We=Wae) Beelw) = Vi Bilw) (2-32)
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We replace B{Q(u)) in Equation (2-31) by the expression obtained from

Equation (2-32) and get

Vife Vel
(w-wj-% w_ﬁ(ft)’u ) Bilw) = | (2-33)

For photons in a cavity the density of modes in the frequency range

Wy, - Wy, + dwy, is

L
-8
WA, dwh
T*c®

We can replace the sum over states |fe » in Equation (2-33) by an inte-

S{wy,) dwa, =

gral over frequencies, an integral over propagation directions and a

sum over polarizations if we introduce the following density of states:

Wa. dwa, AN

S (wy,) Ay, d2 ST T (2-34)
Then
v ) T WV ]1 2
Vige Veoi [ ifel Wae
% w'wK'b);u 8W3C3PZ°,_ dw&&. dQ w-wg—w;u (2-35)
0 ¢
where Vifl is given by Equation (2-22).
4R .‘
In the dipole approximation we can set EiL Ar | , so that
o _'.gi R 5. ¢
Vige = 8 v €,  <ilplk> (2-36)
The following relations between matrix elements can be derivedsz
CPIpIkY = im{wj-we) <JITIKY (2-37)
and
IKIIF-elky1* = LI<jIrIky? (2-38)

where the bar denotes an average over the polarization directions € .
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A
We calculate |VL{L] using Equations (2-36) and (2-37) and subsequent-

ly average over polarizations. We obtain
2

e
\V'Lfcla = W (W; - W )* 3 l<J|HK>|

We substitute this into Equation (2-35), sum over the polarization

directions and integrate over the propagation directions. Then

%w\/_‘fjf;; s S| il 59{};7‘“& (2-39)

o
In Equation (2-39) we can extend the limit of integration to - . This

introduces a negligible error since the integrand is stronaly peaked
at wa€= W; - Wk as we shall see later and thus is essentially zero

for negative values of W,, . Since

® P ®
flw dw _ f W) dw flw)dw _
.j;o W 8-‘0 hH'LE P.L W L]T;fg(W)'F(U) dw
where P denotes the Cauchy principal value, we can replace m
by the zeta function §(W-Wk-Wq,) = P(D—W) - LT (W-We-Wae)
so that Equation (2-39) becomes
| W-Wg-Wae
L
Wae dw : r
Z‘ % IKGITIKDI {ijaﬁ) (3; LWLwhd”(w-wK-uA,)dwh}
? = Nlw) - ;%_’b‘(w) (2-40)
where
-3 )
e (W - Wk) - 2 - - -
Tw = 55 IO -w 2 D(w-wy) (2-41)
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-3 2 -]
e (wi-wk) - 2 Wa, dw;y
W) = G ecay IKIITFIKO [T p [ Fhomie
-0
: 2 P Wae dWaie
2T S (.L)‘wK° w,h_ (2"‘42)
We substitute Equation (2-40) into Equation (2-33) and get
(W-w; - fw) + § Tw) B; (W) = | (2-43)

We obtain the amplitude b;(t) by evaluating the integral in Equation
(2-28). This integral can be replaced by a contour integral, where the
contour consists of the real axis and an infinite semi-circle in the

lower half-plane. There is no contribution from the semi-circle since
t is positive in Equation (2-28). We make use of the residue theorem

which states that

$ flz)dz = aTi &m (z-20) £(2)
< 2*Z,

where {-'(Z) is a function of the complex variable Z with a simple pole
at 2 =2, and § stands for an integral around the contour C in the
positive sense ?counterclockwise). The integral described above is such
an integral except for the direction of the integration which is clock-
wise. This introduces a negative sign. We need to know the pole of

15 Hz ) the order of mag-

10

B w) . For optical frequencies (W, = 10
nitude of the quantity D defined by Equation (2-41) is 10 ', which
means D<X! . The function q(w) is essentially independent of W
within a reasonable range of W-values and to a first approximation we
can replace the functions §(w) and Tl(w) in Equation (2-43) by T{w;)

and N{W;) , respectively. Then we find that

B;lw) = l

W=y = Mw) + 5 Tlw;)
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with a pole at (0= W; + N{w;)- j:,-_'(f(wj) and

cimlwpt - Ty

bi(t) = € e * (2-44)

The wave function is therefore

0y = & 7 [t 11> + I beylt) I£)]

-twyt _-iqlwyt e %“—’Jt Ly + %e-xwﬂt be, (t) [fe ot
The state |{> oscillates with a frequency W + Nw;) 5 we can inter-
pret N(W;) as an energy shift of the upper atomic level. It repre-

sents the so-called self energy of that level which arises because the

‘bound electron is accompanied by, and interacts with, a field of

virtual photons, We define

- Wa dwh }
S = Mlw) = 37 Pf W, - Wy - Wiy (2-46)
-0

In our representation of the system S % 0.

The correct representation is one in which the virtual photon
states are included in the unperturbed eigenstates and the self ener-
| gies are included in the eigenvalues of Ho . In such a representation
N{w) vanishesS.
‘ Let us drop q(w) in Equation (2-43). By using Equation (2-41)
we can write

Bi(w) - o
L W(l+£D)-w;j-£Dwx (2-47)

The pole of the function B;(w) is at

W (W + ‘}.Dwu)(l-&lgl

L+ (2)*
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or, approximately, at
W= W - D(w-Wk) (2-48)
where terms of the order of D% have been neglected, and Equation

(2-28) yields

by (1) = @ A0 Def. o 4Tt (2-49)
The decay rate T is defined by Equation (2-49) as
T = Dlwj-w) (2-50)

Incidentally, D{W;-Wk) = Tlw;) , which is another justification

for replacing T(w) in Equation (2-43) by T(w;) .

2.2 Two-Level Atom Undergoing Spontaneous Decay: Time Dependence
of the Probability of the Excited State

As before, we work in the interaction representation where
. D _ , .
SR & <O = <O'IH;
ot L

The definition of Q'Y and HI' are given by Equations (2-3) and

(2-51)

(2-4), respectively. The density operator S' = [®'><d'| obeys

the differential equation

. a ! . ; ' ' '
23 = 1R [(&109)<0 1 + 10 (& <o) -

= Hp 1050 - 19'><d'IH = [Hg, ']
which is equivalent to
A& [8'] = [HS] -8 11K ) (2-52)

where [3'] is the density matrix with elements [8'] ~=<mi8'in> = S,

and (H{' ] stands for a matrix with elements [Hi],, =<mlHz[n>
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The system under consideration has states IL> =1{j>10> and
He> = [k>1AyY , its density matrix is
i S Sif
[8'] = ;;: (2-54)

and its interaction Hamiltonian is given by Equation (2-17) so that

0 e WbE vy x
et Wity
. gt
[He] =% (& ™ Vi ¥ (2-55)
X
x

We substitute Equations (2-54) and (2-55) into Equation (2-53) and get

18, = Z e IR Y g -Z; Sige €T+ LMY (2-56)

e
C 8 Hwi -We,t Wi~ Wy,
L Sige = %EL f Viem Stmfe - Sit gt Wibpt Vige (2-57)
- -i{wyg- t -L{wy -
L&]:,L o p-twi-Wgy Vi S - %&Cefm e Hwg - Weplt mei (2-58)
:Q - Hwg- Hwi-wen)t
L3fefn = € Hwim et V{CL Siep - Sl e’ fn) VH:M (2-59)

where we added a term LJ(T) in Equation (2-56) for reasons similar
to the ones stated in Section 2.1. These eguations are valid for

all times and contain the initial conditions 9;1(0) =1,

SLfg(O) = &Fgl (0) = gﬂ{.m(O) = ( Ve m . Probability is put

into the system at t=0 and all matrix elements are set to zero

for negative times. We transform
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[74]
HWp =Wyt -{wt
gmn. (t) = '5%‘1 f@.L " ' e " Rmn(W) dw (2-60)
-0
so that
m .
Sult) = -z | €™ Ryl dw (2-61)
-0
r LWL~ Wee)T -lwt
Wi~ - i
Sigelt) = - 7 [T e TR gy (1) (2-62)
)
T Wi~ We)T - lwt )
Spift) = "51‘?? 5@_ AP Reei lw (2-63)

(o}
LWy~ Wen)T =i _
g{e-ﬁn{t) = —ZZ__L J‘e‘» fe wf ) e twt R_Mm(w) dw (2 64)

-
and Tet
-lwt
L8(t) = -7 f e™™" dw (2-65)
-
We substitute Equations (2-61)-(2-65) into Equations (2-56)-(2-59)
and get
W Ry (w) = %(V,;h Rt lw) = Rigelw) Voot )+ | (2-66)

(W-wi +Wee) Rig (W) = %VL{M R;mﬂ (W) = Riilw) Vigy (2-67)
(W+wi-Wee) Repi (W) = Veei Rii(w Z Reesn (W) Vini (2-68)
(W + Wep - Wie) R{e{m(w) = V{gi Rifmlw R{g thm, (2-69)

We replace RL{Q(L‘)) and ngt(w) in Equation (2-66) by the expressions

obtained from Equations (2-67) and (2-68), respectively, and get
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. Vige Voui . Ry Vife Veni Reefm (W)
W Ri(w) = %W-{f:-_m Rii (w) g‘_n D= Wperw;

(2-70)

Vigm Viei Repge (W) S Vige Vel .
-ezm W+ Wee- Wi +%“+wwwiR“(w) i

- The single sums become, in complete analogy with previous calcula-

tions,
Z Vife Vet =N, w) - & T, (w) (2-71)
7 W+ W; - W - Wy, - Tl’ PR
where
T{w) = D{w+w;-wg) (2-72)
= D [ thdwa )
and
Vige Ve = Na(w) - & Talw) (2-74)
Z Wt Wg-W;+Wa, 713' 2 Ve
where ¢
Talw) = D{w; -Wk-W) (2-75)

xn
- D wltdwlt
Nalw) = T Pj W W~ W + Wz,
-t

(2-76)

We assume for the moment that we can neglect the double sums in

Equation (2-70). We then get

W Rii (w) = [Q.(w)+na(w)-LD(wj-wK)]Ru(w) + 1 (2-77)

We can eliminate n,(w) and ’qg(w) from Equation (2-77) by noting

that to a very good approximation T\,(w) and Nalw) can be replaced

by ql(o) and Ma(0) and that
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N.(0) = - Malo) (2-78)

Thus Equation (2-77) becomes
S B
R (w) BEEEG (2-79)

and by using Equation (2-61) we finally get

-0t
Qult) = e ' (2-80)

We compare Equations (2-80) and (2-49) and find that
Qi (t) = bi*(t) by(t) (2-81)
From Equation (2-81) we conclude that the approximation made by
neglecting the double sums in Equation (2-70) is of the same order as
the approximation made by dropping the 13& terms.

2.3 Two-Level Atom Undergoing Spontaneous Decay: Differential Equa-
tions for the Elements of the Reduced {Atomic) Density Matrix

We derive a set of differential equations for the elements of the
atomic density matrix [3&] of a two-level atom undergoing spontaneous
decay. The atom has the two eigenstates lj > and KD Lgél conse-
quently has four matrix elements: gjj, SJK, ij, Skx . These are
not all independent. We have

gﬁ + Sk = | (2-82)
S«ij = Sik (2-83)

Calculations, which lead to the same result as the ones below are

done by Mollow and Mi]]ers. They consider a two-level atom coupled to

a zero-temperature bath of harmonic oscillators. Such a zero-tempera-

ture bath can be assumed to always be in the ground state as far as its
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effect on the atom is concerned (Markoff approximation). They derive a
time development operator W(At) , which is expanded to second order in
the coupling parameters which appear in the interaction Hamiltonian and

apply W(At) to R'(t) to get S'(t+At) . Then they take traces over

the states of the bath to obtain Sq (t) and S (t +At) and finally

Qalt+at) - 84 (t)
At
grained" time derivative of Sgq (t) , from which they are able to

arrive at an expression for , the "coarse-

extract the following differential equations:
8 = - T S (2-85)

Compared to this approach our method is straightforward and the

implications of the approximations we make are more transparent as well.
We use the very general Equation (2-53), which holds for any quantum
mechanical system and apply it to a suitable representation of the
system of atom plus radiation field. This results in a set of differ-
ential equations for the elements of the density matrix of that system.
We also derive the relations between the elements of the density matrix
of the system and the elements of the reduced density matrix. With the
help of these relations we arrive at the differential equations for the
elements of the reduced density matrix.

First we note that the solutions of Equations (2-84) and (2-85)

are

Q..

4

(t) (2-86)

i
o

.

A
=)
o

and

gjg (t) =

or, with the initial conditions S;(0)=1 and ng(O) = 0

i
Lo
rd
=)
RN—
o

(2-87)
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8;lt) = € (2-88)
and

Sjxlt) = 0 Yt (2-89)
This should caution us against representing the system by states
[LY> = 1j> 10> and [feY =Ik>A,> only, when trying to derive
Equations (2-84) and (2-85). Let us pick such a representation (which
implies that at some time T, all the probability is in state [L> and
we have conditions as in Equations (2-88) and (2-89) ). Then we
expect to:
a) get the equation éjj = 'U'Sﬁ and
b) get the information that S =0

We will now verify the claims made above. We write the most

general wavefunction of the system as
10'> = byl +2Q:b1ce [£o> (2-90)
and calculate the density operator:
' = 10'><¢'l = bybi 1iy<il 3 bibfy 1)< Fel
+Z beebr 140)<i1 + 2 bpy by 1fe> < (2-91)
We use the definition [$'Jpq = <MIS'INY = Spqa  to rewrite Equation
(2-91) as

8" = S lj>10¢]jI<ol +%glﬂ []Y109<KkI< Al

. . < (2-92)
+ 2 34t IO ICOL + 2 gy IRV <K I<An]

We "reduce" the density operator 3' by taking the trace over the field




19

states; 4  stands for the reduced (atomic) density operator. Then

Qa =1 8 =<0183810> + Z<Al 814D (2-93)
fietd ]
stata
and, with Equation (2-92)
8a = Su lj><jt + %9% [k><K] (2-94)
The matrix elements of [Sa] are defined as follows:
Sij = <ilSalj> (2-95)
Sik = <j!8alk> (2-96)
S8kj = <kl Sdlj> (2-97)
Skk = <KI| Salk> (2-98)

We therefore find that in the case of the reduced density operator of

Equation (2-94) we have

SJ-J- = gu (2-99)
Sjg = O (2-100)
8¢j = O (2-101)
Skx = ggﬂﬂ (2-102)

which proves the statement b) above.

In Section 2.2 we treat a system with states [{> and |f,> and
given initial conditions. Now we look at the same system without spe-
cifying the initial conditions, since we don't want a solution for
gu(t) but only a reduced differential equation. We therefore use
Equations (2-56)-(2-59), but drop the term "+id(t)" in Equation (2-56).
This leads to Equations (2-66)-(2-69) but without the term "+ 1 " in

Equation (2-66). 1In a calculation analogous to the one above we obtain
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WRi(w) = = LTR; (w) (2-103)

We multiply Equation (2-103) by - EZ-’FL- e'“‘"t and integrate over W .

x %
-twt . i
‘:‘z;'r'i:[nw Rulw) e " dw = é—%LRulw)e Wt dw

00
| . -iwt

='IﬁJLa%- Rilw)e dw (2-104)

-

We use Equation (2-61) and get
8, = -TSu (2-105)

or, because of Equation (2-99)
3_“' = ‘Wgﬁ (2-106)

thus proving the statement a) above.
We conclude that we have to pick the most general representation

of the system in order to derive Equations (2-84) and (2-85) and take

[0'> = bili> + bglg) +%bﬂ Ife> (2-107)
where
(LY =1;>10>
195 = IK>10> (2-108)
e = [K> [AeD

We use Equation (2-53) with

Sii 313 Rifi Sifa
v 34i (2-109)
[g ] = 3{',.

and
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V., oMot
L

0 0 , X
0
. Vi e tlwe-twa )t
[Hz] = & i
x 0l
X
(2-110)
where W, =W; - Wy is the atomic frequency and find
- i (W=, )t -ty t
L3y -2e Y Vig S ‘11:6 TRV S (2-111)
H{Wo~Wy,lt
L gtg Z e’ e V‘L.f,_ 34,@ (2-112)
. (Wo=Wap)t {wo-Wwy,)t
Lgiﬂ:%e‘L T Viga Simfe - S @ Vig, (2-113)
A wo W
L8gi = -2 Sgpe € Y (2-114)
ngg =0 (2-115)
L 3gfe = =341 € ife (2-116)
D5 . L potiwemindt W=t
LSt = Vi Su - ZSM,,. oA Vi (2-117)
- - {{Wo=Wy )t
Lgﬂg =™ Ae Vil gig (2-118)
e ~i o= Wyt L (Wo-Wam)t
L Sgefn = Hie Vioi Sigm - gfue oA Vign (2-119)

We Fourier transform the matrix elements using Equation (2-60) and

find
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wRy = Z Vige Regi - Z R ife Vel (2-120)
(W-Ww,) Rig = Z Vige Reg (2-121)
(0-Wo+ W) Rige = 2 Vign Renfe = Ry Vige (2-122)
(Wt Wo)Rygi = Z Rgfe Vel (2-123)
(W+wa) Ryge = = Rai Vige (2-124)
(W+ Wo-Wa) Rpit = Vi Rig -?n_: R fefm Veni (2-125)
(W-wz,) Reg = Vi Rig (2-126)
(W+Wan-Wa) Reem = Viei Rign = Repi Vigm (2-127)

We replace R (w) and Rgilw) in Equation (2-120) by the
expressions obtained from Equations (2-122) and (2-125), respectively,
and following the procedure outlined above we again derive

WR (w) = -1T Ry (w) (2-128)
and

i = - TS (2-129)
Next we replace R;e@(w) in Equation (2-121) by the expression ob-
tained from Equation (2-126) and find

(W-Wo) Riglw) = % lﬁ%’% Rig (w)

= (?{W) - %%‘(w)) Rig(w) (2-130)
where )
n D Wae dwa )
Tw) = ﬁPfW (2-131)

and
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T(w) = Dw (2-132)
The pole of Rgé(w) is approximately at W =W . We can therefore
replace ?{(w) in Equation (2- 130) by

~ Wi, dwy _
(v = NPf'—m: - S

This turns out to be the self energy S again, which can be added to
W, to give the renormalized W; . Similarly we can substitute T (W)

for T(w) where T(Wo) =DwWy=T . Thus Equation (2-130) becomes

[w-(w+s) + W] Riglw) = -§TRGW)  (2133)
W;
or
(W-Wo) Rig (w) = - 5T Rig(w) (2-134)

which Teads to
éig = - %3@, (2-135)
Similarly we get

(W+wo) Rgilw) = (T (w) - L?{ ) Rgi{w) (2-136)
The pole of Rgi(w) s at W=-w, and we can replace W by -, in

w) and T{w) . Then

N(-we) = - S (2-137)
and
Tl-wo) = Dwo =T (2-138)
and we find
[ W+ (Wj+S) ~we] Rgilw) = - 5T Ry (w) (2-139)
or W

(W+Wo) Rgilw) = -5 T Rgilw) (2-140)
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which gives

égt - - 13y (2-141)
The relations between the matrix elements of [Sq] and [8']
are
S;i = St (2-142)
$ik = Sig (2-143)
Skj = Sgi (2-144)
Sk< = Sgq +%9M¢ (2-145)

We use Equations (2-142), (2-143) and (2-144) to rewrite Equations
(2-129), (2-135) and (2-141), respectively, as

éﬁ = -7 gjj (2-146)
éjK = - g gJK (2-147)
8 = - I8 (2-148)

From Equations (2-145) and (2-142) together with Equations (2-111),
(2-1185) and (2-119) we get
Su + 933 + % Sgefe = S * Sk = 0 (2-149)

2.4 Two-Level Atom in a Laser Beam: Differential Equatjons for the
Elements of the Atomic Density Matrix

We are concerned with electric dipole transitions and describe the
interaction between the atom and the laser beam by the Hamiltonian
Hy=-d-E (2-150)
where Et = eF is the electric dipole moment of the atom. We write
the electric field as a classical quantity, namely

E(t) = E(t) Re[& e '*t] (2-151)

where E(t) is the (possibly time dependent) amplitude of the laser
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beam, W_ 1is its frequency and é its polarization vector.
In the case of a left circularly polarized wave propagating in the
z-direction we have
e = &= (Xx+ig) (2-152)
and Equation (2-150) becomes

‘('-th

E(t ,
HQ. ‘%{%{(FX‘FLQ’)E

E(t) ! - LWy - LW,
@ea_ {Hl(r)ewt-ﬁ,(r)ﬁLwt} (2-153)

+ (rx‘irg)eiw"t}

where

YN = & (-ir) = r YT (80) (2-154)
, 30 Z =Y (e (2-156)
an

ey = & re-ing) = rYI(8,0) (2-156)
are the components of the solid spherical harmonic of first rank and
YI'(6,0) and Y/ (8,9) are spherical harmonics.

We assume that the atomic states are states of good angular momen-
tum. The atomic state {j) has angular momentum quantum numbers Q_; s
m;, and IK} has angular momentum quantum numbers QK , Mg , respec-
tively.

The Wigner-Eckart theorem gives us some information about matrix
elements involving states of good angular momentum (definite e, s My

and £, , M, ) and tensor operators T—{m , namely

Klama Tl emy =<, emml 2,8 0,m><lllTll g,

where < 21 ? m,m l ﬂ‘ A P M2 > is a Clebsch-Gordan coefficient which

is zero unless m,+Mm = ma and | &,-2{$0,¢ ¢, +2 and <Lall T 110D
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is the reduced matrix element of the irreducible spherical tensor opera-
tor 'Té and does not depend on the magnetic quantum numbers. The set of
the 2R+ operators B: =rk )’: is an irreducible spherical tensor
operator of rank R . Thus the three operators H:‘ s Hf and H: form
an irreducible spherical tensor operator of rank 1. Using the

Wigner-Eckart theorem we find that

CjIYE Iy = (2.157)
<kPYT kY =
and if
GIY k> # 0 (2-158)
which implies mJ--mKsl then
<GIY' kY =0 (2-159)
Thus
<JHHS Y =0 (2-160)
KKIHIIKY = 0 (2-161)
CIIHAIKY = g1t 5 2l (2-162)
where
and
,y - U{Wo-Ww)T *(t)
CKIHALy =7 ﬁ% (2-164)
where _Q*(‘t) c
his— - er el(t) <kI=Y7G> (2-165)
We use Equation (2-53) with
(8'] = [8a] - (%" Sj«) (2-166)
gkj gKK
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and
0 ei(wo-wat%_)
: ' 2
(Hy ] =[H] = & . (2-167)
e"- 0 L _QQ‘(t) O
and find
- Lwo-Ww )t ~H{We- Wt
LSJ'J' = ie v nlt) ij = ‘;'z'_e ! ) g_,'K (2-168)
e ' -wl.)t
L85 = £ 01) [ S - Sl (2-169)
. et )t
LS = 572 [ 85 - Sl (2-170)
© 0 = Uwe N L o~ ,_)t
LS = g7 )t.Q*(t)ng - i—et(w Q) Sk (2-171)

Adding Equations (2-168) and (2-171) we get

Sii + Sk = 0
which implies that Sj; + Sex = |

2.5 Two-Level Atom Interacting with a Laser Beam and Undergoing
Spontaneous Decay: First Approximation

We consider a two-level atom interacting with a laser beam and with
the radiation field. The interaction Hamiltonian is therefore
H: = H, + H, (2-172)
where H, is defined by Equation (2-17) and H, by Equation (2-150).
To a first approximation we describe the system by the wave function of
Equation (2-107) and by the density matrix of Equation (2-109).

In Figure (2-1) we schematically show the states and interactions

of the system.




v

Ha

19> Ife?

Figure (2-1). The states and interactions of the
system in the first approximation.

We find

H{Wwe-W)T L{we-Wy,)t
%et o Vi, el. o

0

_(2* -1 (Uo'wu)t
ERE

-i{Wo-ly )t

) Vg

[Hf] = f Vf,i. e

and

135 = Q'3y + 2 Vige S -2 Sig - 2 Vet Sie
Léag = 234 1'-% Vie Sreg ~Q'Su

Léifz = 2344 T % V'hlcm Stmfe - Viél Si

Légi * 27" 3y - 2784 ‘% Vi Sgfe

[Sgs = 273 - Q234

Légﬂ = -Q'*SLPQ_ - Vi-ée ggl

x oo
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(2-173)

(2-174)

(2-175)

(2-176)

(2-177)

(2-178)

(2-179)




Lg.&l = Vﬂl Sii -ngﬂﬁ -%V{;L SMm

i,g.f,g = V{;‘L 315 - Q‘S-Fei.

L Sefm = Veet Sim = Vi S

In Equations (2-174)-(2-182) we used the abbreviations

[ t { w-bJ,.)‘t
_Q = QQ{) al( 0

V- i = Vf eL(wo'w;\_!)t
tfe Lte

V.\Cell, = V.&L e-l(wo'uﬂ,g)t

These equations reduce to

18y = -iTSu +0Q' Sy - Q" 3y
LSig -5 TS +0'(3g - 3u)
L Sg =5 TSq + 27 (35 - Syy)
L Sgg = Q" Sig - Q'S4

L;éf,ﬂ = 1T 8y

or, when using Equations (2-142)-(2-145), to

r_.
LO .
=N

0

(t

e}

- . (f) _ t{we-W)t
ngx"ngjK"'%‘)'eL (gkn‘g

. H{we-W)T ¥
‘LFSJ‘J- +‘Q"—)€ 8Kj‘Q(t)€

i~
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(2-180)
(2-181)

(2-182)

(2-183)

(2-184)
(2-185)
(2-186)
(2-187)

(2-188)

(2-189)

(2-190)
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These differential equations should reduce to Equations (2-146)-
(2-149) for 2= 0 , and Equations (2-168)-(2-171) for ¥ =0 . MWe
set £2= 0 in Equations (2-189)-(2-192) and get a set of differential
equations, which are identical with Equations (2-146)-(2-149). We set

T=0 in Equations (2-189)-(2-192) and get

c o o Q) ,i{We-wit 1) -ilwe-wt
L35 =5 ¢ 3 - L e S\

.o L( o'wg)t
LS = Q;,(_t) et [ Sk - S - % g{efe]
3 ) -i(we-w )T
L8 =2 e g - g + T G,

‘L(wo‘wu)‘t - Q(t) L(wo'wu)t .
SJK =€ gKJ

These equations differ from Equations (2-168)-(2-171) by the term
% 8&.& in the equations fof* the off-diagonal matrix elements.

To sum up, the spontaneous decay is described correctly by Equa-
tions (2-189)-(2-192), the interaction with the laser beam is described
incorrectly. The reason lies in our choice of states to represent the
system, which makes it impossible to take into account that the atom
can reach the excited state starting from states H-I) .

2.6 Two-Level Atom Interacting with a Laser Beam and Undergoing
Spontaneous Decay: Second Approximation

We describe the system by the "improved" wavefunction

[0'> = bili> + bglg> +2 by Ih> +2Z bg £ (2-193)
J L

where
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Fe> = 1j>100
lg> = Ik>10>

[fi> = K> 14>
and by Figure (2-2).

1> Th;»

Ha

2
Ig> Ifi>

Figure (2-2). The states and interactions of the
system in the second approximation.

The density matrix is

3, Sig 1 S 5. Sif 0
a0 e 3an L Sefi 1.
(3'] = Shi : Sng @ Shm, Safy (2-195)
‘ gfit gf'? i 003%';"0 ) . gofo'fo’ 0 Y

The interaction Hamiltonian is H; = H,+H, again and [iir'] js given
in Equation (2-196) on the next page. The sole purpose of the dotted
lines appearing in the matrices of Equations (2-195) and (2-196) is

to make their structure more apparent.




1 ! -
h [HI] - (2-196)

(Wo-W )t : (Wo-Wy T
0 g-.el ° O -« - e e e e e 0 : Vi.f. t At L.

fé -Uwe-W, )t 0 o *x¥ 0 ............ 0
n(wo—wt)t ...................
0 ze'
X o
X
b 3

o o
. b3
. O» x
0 X

A : Coor - o-W, )t
Vi e Lo~ Wyt 0 ; %8 W
- . x 0
X
x (bg

. X

) o x

0 x

Z¢
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The matrix elements appearing in slots ¥ and *¥% are

w,u - wK)t

. | LW + |
<hilHplgy = <jicagle’ ™ He [K>10)
o p tWetWT B s oA -iRT 2-197
=e <l-5lzuge Prén e 7 1K (2-197)
i Wyt
= ﬁ Vhig, el.(h)o A
and

- {Wet Wt

<glHIhyY = ﬁVh:‘@ e (2-198)
respectively. We set them to zero because they oscillate in time much
more rapidly than the other matrix elements. This approximation is
similar to the rotating wave approximation, which is covered extensive-
ly in the 11terature7.

The relation between the matrix elements of [3;] and [31 is

8i = Su *Z 3mn (2-199)
8ix = Sig * 2 Smp (2-200)
Ski = Sqi +2Z Sqimy (2-201)
Sk = Sgg +% Ssist (2-202)

We use the method outlined above and find

- Q) | Uwe-wy)t *t) -ifwe-w,)t :
1S =3¢ e SK*-QT_ e ik = 1T (8;; -%SMM) (2-203)

ji {
R %ﬂ euwwwat(SKK_ 8i) - £ T (3ix-Z Sns) (2-204)
- * -1 0~ L)t :
L 3x; -2 e (S5 = Sux) - 5T (Skj =2 Sgini) (2-205)

L§K,< = - {3y (2-206)
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To check these equations in the known 1imiting cases we set ¥=0
in Equations (2-203)-(2-206) and get a set of differential equations
which are identical with Equations (2-168)-(2-171). Then we set 2:=0
in Equations (2-203)-(2-206) and get

L3, “ T (85 - 2 Swne)
L Six RELITEPRINY
LS == 5T (8 - Z 3gind)
Léxx = LTS

"

These equations differ from Equations (2-146)-(2-149) by the term

2. Snn; 1n the equations for gjj and S,k , the term %gmﬂ in

t;e equation for gjx and the term %g{m in the equation for ng
This time the interaction with the laser beam is described

correctly and the spontaneous decay is described incorrectly. The

reason for this is that with our choice of states we cannot take the

spontaneous decay of states | hj> into account.

For the nth

approximation we expect the following:
For even n the spontaneous decay will be described incorrectly;
for odd n the interaction with the laser beam will be described in-
correctly.

The deficiencies of the two kinds of approximations are illustra-
ted by Figures (2-3) and (2-4). In Figure (2-3) the spontaneous decay

is cut off, which results in an inaccurate spontaneous decay term. In

Figure (2-4) the laser interaction is cut off, which results in an in-

correct description of the interaction with the laser beam.
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~L DN

Figure (2-3). Diagram of the states and interactions
for even n.

— —_—
Figure (2-4), Diagram of the states and interactions
for odd n.

From the above calculations it follows that

L .J.j = -7 Sﬁ + %‘l) euwo-wL)thj ) %@ e'“%-w”)t 3, (2-207)
LSk = - 5T Sy + Q;(zgé’-uw"‘wdt (Sie~ Sj) (2-208)
LSy = ~kT 8y + El ettt g ) (2-209)
LS = - LS'J-J- (2-210)

are the correct differential equations. Mollow and M111er6 derive
these equations for the special case of a resonant laser beam, where

the atomic frequency W, and the laser frequency W, are equal.
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3. THE OPTICAL BLOCH EQUATIONS AND THEIR SOLUTIONS

3.1 The Optical Bloch Equations for a Two-Level Atom Interacting with
a Laser Beam and Undergoing Spontaneous Decay

The optical Bloch .equations are a set of differential equations
which describe the time dependence of the expectation values of the

Pauli spin matrices

-0 (03] s 3) e

in a frame which rotates with the electric field vector of the laser
beam. In our case this frame is one which rotates with frequency w,
around the 2 -axis (see Equations (2-151) and (2-152)).

We can derive the Bloch equations from Equations (2-207)-(2-210)
after establishing the connections between the matrix elements of [S, ]
and the expectation values of Gy ,EYH , and 63 . We know that

[ga'_] = (g’f) g'::() is the atomic density matrix in the interaction
representation. Since expectation values are independent of the
representation we can write

<Bi> =W [Sa6, =tr[34]6¢ L=Xxy2z (3-2)
where [Sq] is the atomic density matrix in the Schrddinger representa-

tion and
5. - e#H"tG-L e Pt (3-3)

are the Pauli spin matrices in the interaction representation. Using

Equations (3-1) and (3-3) we find
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Lwot
5 o e o)
X e-LUot 0
o 0 -ig"et s
] e 't o

(o %)
0o -1 (3-6)

and using Equations (3-2) and (3-4)-(3-6) we get

)]
mo_
1

~(.Uot Lwot

w {S&]G‘x' = SJ'KC

{Bx>

[}

XO + gKJ e

W

Jo 2 <By> = W[8a]6y = LS -18ge™" (33)

Zo = <6-z>=m[9¢;.]63 = gJJ -SKK (3-9)
X
We want to observe the vector (g:\) in a frame which, in a time T,
2o
rotates around the 2Z-axis by an angle (b, =W_t . Our observations

are equivalent to the ones made in the lab frame of a vector being

rotated by an angle @, =-Ww,t around the same axis. This vector is

X oWt  Alnwt 0 Xo
Yy | =1{-snwt coowt 0 Yo
z 0 0 l 2o
Xo COOWT + Yo AlMW.t
= |- XoAMWT + Yo COOW,E (3-10)
Zo

We now calculate the replacements we have to make for gjj ) SJK s ggj ,

and 9,« in Equations (2-207)-(2-210) to obtain the corresponding equa-
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| tions for X , § and 2 . From Equations (3-7)-(3-9) we obtain

8y - e Xerlde (3-11)
-lWe Xo+ L

Sy = @Rt B (3-12)

SJJ - SKK e d ZO (3-]3)

and from Equation (3-10) we derive that

Xo = XCOOW.ET - YAmwt (3-14)
Yo = X AMWEL +YyCOWT (3-15)
Z, = Z (3-16)
so that
L(Uo'ws.)t X - LH
Sk = € 2 (3-17)
SK_] - e-L(Uo'wL)t ___H_X';L (3-18)
Sii- S = 2 (3-19)

We substitute Equations (3-17)-{3-19) into Equations (2-207)-(2-210)

and, after some manipulations, find that

- x
| ).< = '%X - (wo"w,_)H - QQLQ -3 (3-20)
g = -gg + (Wo-W)x - Q%Q Z (3-21)
’ é=-ﬁWz+H'+%%g%x)+%%g+u) (3-22)

The quantity Q(t) is defined by Equation (2-163). We can write

Low = -TF LB Gy -y ea
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since by Equation (2-159) <] {H:'IK) = 0 . The components of the
solid spherical harmonic of rank 1 are given by Equations (2-154)-

(2-156) and we find

o= T8 5 (¥ -Y0) (3-24)

ry < iTE & (47 + ) (3-25)

Mz = ‘{_‘!3__7! ER (3-26)

The quantity E(t) is the (real) amplitude of the electric field of
the laser beam and |j> and IK) are eigenstates of good angular momen-
tum. We can write these states in spherical polar coordinates as

> = e R0 Yo (6,0) (3-27)
and )

K> = e Ry elr) Yow (8,0) (3-28)
whére the Rm(r) are the (real) radial parts of the wave functions

and the spherical harmonics Yé"(@,tb) are eigenstates of the angular
-y

momentum operator L with
2e+1){(0-m)! {m¢
Ve 6,0) - JEGENENE (e " Pyl 6) (3-29)
and for 0¢ -Q
Ye (8,0) = ()" [¥:"6,0]" (3-30)

Lm;
The associated Legendre functions Pm(CO’.\G) are real and thus € ;0
im0
and € x are the only complex guantities in l_;) and |K> aside
from the arbitrary phase factors Etj‘. nd EL K . Using Equations

(3-24), (3-29) and (3-30) we find
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Tav

-3 ) ‘
fe - anej (r) [72.’ (6,0)}*roune cood e
(¢}

0
L1y
v Ry e ) Yor(6,0) rdram 8 d6 do (3-31)
The integrals over the vam’ab]es r and 8 are real numbers. Thus

B QM) = E(8) R je‘”““ "m0 dp et py

where R, is a real constant. From Equation (2-158) we know that
mj -M, = | . Thus the integral over ® is real and we can adjust the
arbitrary phases of the states so that 0 (t) becomes real.

We let 2%(t) = Q(t) in Equations (3-20)-(3-22) and obtain a

simplified set of equations, namely

X ='§->< - (Wo-wW) Y (3-33)
g "%H + (We-w)x -Q(t)2 (3-34)
z = =-T(z+1) +QIt)y (3-35)

These are the optical Bloch equations for a two-level atom in a laser
beam. The decay rate of the upper level is T , £2(t)is called the
Rabi frequency. At resonance (W, =W, ) Equations (3-33)-(3-35) sim-~

plify considerably. They become

X = - gx (3-36)
g = - g-g -Q(t) 2 (3-37)

z =-T(z+1) +Q2(t)Y (3-38)
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where the first equation is now uncoupled from the others.

3.2 Interpretation of the Quantities X , Y and Z

" g

The original Bloch equations were phenomenological differential
equations which describe the time dependence of the spin of a nucleus
which is under the influence of a magnetic field l-'i,(t) = H.o + Hn(t)
where I_-{.o is a strong, static field in the Z -direction and Fi,(t)
is a weak, transverse field of arbitrary time dependence. These equa-
tions were first proposed by B]och8. In Tater calculations, which are
reminiscent of the approach taken by Mollow and Miller in deriving the
optical Bloch equations, they were shown to be rigorously true for
spin % nuc]eig.

The original Bloch equations are very similar to the optical Bloch
equations, but instead of the factors T and %E they have two unrelated
constants %i and %i , where T, and T are called the longitudinal
(parallel to the static field) and transverse relaxation times respec-
tively. This similarity is not surprising since formally a spin %
system in a static magnetic field and a two-level atom can both be de-
scribed by operators which are Ax 2 matrices and wave functions which
are spinors.

In the case of a spin % system, the operators ny s 573 and 672
represent the three components of the spin of the system, so that the
vector (g) is the spin vector in the frame rotating with frequency Wy

around the Z -axis. The physical significance of X , § and Z in the

case of a two-level atom is less transparent.
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We use Equations (3-16) and (3-9) and find that
2 = 245 = SJJ' - Sux (3-39)
where S;; and 3y are the probabilities of states |j> and |K) re-
spectively. The quantity # 1is called the inversion; it is a measure
of the difference in population of the upper and lower atomic levels.
For an interpretation of X and g we have to compare the electric

field of the laser beam with the electric dipole moment of the atom.

We can write the electric field of the laser beam as

Eir) = ElE 8 o7 gty
£ (o -
- %—- [%cowt + § omwet] (3-40)

We derive a matrix [d'l which represents the atomic dipole moment

-
operator d. = eF in the interaction representation. Using Equations

(3-24)-(3-26), (2-157)-(2-159) and the relations

<jlyilk> =0
<JIY kY = A
and . . % - X
<Y KD =*<K“ﬂ [ = A
where A¥= A since we assume that (Q(t) = Q*(t) , we find that
-» #HO ‘LHot

d' =el5 (y'-y, 9 +iY,, =Y )e (3-41)

and
0 etwat 0 Le_“"°t
9 A A4T 1
[d‘]a-XCﬁjﬁA (E’:W"t O)‘HE_EQ A( et.wot 0
- X do 6%+ § do6y (3-42)
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where
d_o = - £ :gr—r' -1%{ A (3-43)
The expectation value of the dipole moment operator is the atomic dipole
moment
D=<d> = tr [Salld]
= Xdor [Sal 6. + §doW[Sd]6y
= X Ao <Bx> + [ ds<By> (3-44)
where
<6x> = Xo
and
<63> = yo

Using Equations (3-14) and (3-15) we find that

D do[x(ﬁcmw:c +§oUnth)

-y (X aimwet - §cow.t)]

1}

do [ X (XCOsW.t + § AW,

~y(Rco(we-T)+ {amlwt -E)]  (3-48)

We compare Equation (3-45) with Equation (3-40) and see that X 1is the
amplitude of that part of the electric dipole moment which is in phase
with the laser beam, and Y is the amplitude of the part which is .E

out of phase.
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3.3 The Time Dependence of the Rabi Frequency f)(t)

We consider a two-level atom which is exactly at resonance with a
left circularly polarized laser beam so that Equations (3-36)-(3-38)
hold. The Rabi frequency (Q(t) in these equations is proportional to
the amplitude E(t) of the electric field of the laser beam. We treat
here the case of a sinusoidally modulated amplitude which can be
written as

E(t) = Eo + E;COOW,T
so that the Rabi fregquency becomes
Qlt) = Qo+t 2,Cowt = Roll+achwt) (3-47)

where f}c is the average Rabi frequency, W, is the modulation fre-

Eoll+ @cCowt) (3-46)

quency and O is the modulation depth which is Timited to Q< @ < |

For & = Q the amplitude and the Rabi frequency are constant in
time. The spectral distribution of the 1ight scattered by a two-level
atom in an intense laser beam of constant amplitude is treated exten-
sively in the literature in both theoretica]m’H’]2’]3’]4’]5’]6 and
experimenta]”’m’]g’20 papers.

The spectral distribution of the 1ight scattered by a two-level
atom in an intense, resonant and amplitude modulated laser beam has

not been previously calculated. To determine this spectral distribu-

tion we need the solutions of both the optical Bloch equations

Xeo
u

_T ]

Ix (3-48)
-Ty-Qoz -Q,coout 2 (3-49)
-T(z+1) +Qoy tL2COWT Y (3-50)

(S eng )
[

m.
1}
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and their associated homogeneous equations

X =-Ix (3-51)
Q = ?Eg -{2,2-Q,C00WT 2 (3-52)
z =-Tz +Q.y +02,coow,t Yy (3-53)

3.4 Solution of the Associated Homogeneous Equations

Any set of n linear first order differential equations of the form

L

V‘ = m“ (t) V, + m,g_ (t) VQ_ ... + m;n(t) Vn
Vo = M)V, + Mg (B Vy + ..o + Man(T) Vyq
can be written in matrix notation as V = M(t) Y,
\(, mu (t) mtz(t) mm(t)
where \7 = and M(t) =
v, Mp, (t) Mag(t) oo Mpnlt)

We can form an nxn matrix whose columns are solutions of = M(t)V .

Such a matrix is called a solution matrix’'. A solution matrix O(t)
whose columns are linearly independent is called a fundamental matrix

of V= M(‘t)V and has a determinant, which is non-zero for all times,

-

det ¢(t) +0 Vvt . We can write every solution Y of
V=MV as
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where
C,
- Cz
C =
Cn
with the constants C,, C, ..... C, determined by the initial con-
ditions.

We assume that we need to solve a system of n Tinear first order

differential equations of the form

V o= (M, + M)V (3-54)
and that we already know the fundamental matrix Cbo of the system of
equations .

V = MV (3-55)
The solution of \7 = M.V can then be written as

Yo = 002 (3-56)
and obeys the differential equation

’{Fo = Mﬁ’l’o (3-57)

We differentiate Equation (3-56) and make use of Equation (3-57). We
find that

(Do Z = M. (Daz (3-58)
Vo=

We now assume that the solution of (M, + M)V is of the form

-~y
-
’\‘P = @oC(t) (3-59)
where the constant vector C of Equation (3-56) has been replaced by a
time dependent vector Clt) . We differentiate Equation (3-59) and
find that

.
-

T = G 20t) + 00 Clt) = (M, + Ma) doCIT)




47
We use Equation (3-58) and obtain the relation
0o C(t) = My 0, C1(2) (3-60)
Since o is a fundamental matrix and thus det ®o + O , an inverse
O exists so that Qg Os' = O;' Do = 1 where 1 is the nxn unit
matrix. We multiply Equation (3-60) from the left by d);' and arrive
at the following differential equation for C (t):
C(t) = 0;' Ma @ Clt) (3-61)
We now solve Equations (3-51)-(3-53) with the "known" initial
conditions X (t'), y{t') and Z(t'). The solution of Equation (3-51) is

-Tie-t
x(t,t) = x(the ? ) (3-62)

The solutions of Fquations (3-52) and (3-53) are obtained in the two
step process outlined above. We write Equations (3-52) and (3-53) in

the form of Equation (3-54) where

vo-(%) (3-63)
1 -0
M, = ( * °> (3-64)
Qo - ’5.
and
-1
M2 = Q Cowt ( - ) (3-65)
The matrix
er+t er.‘t:
O, = (3-66)

with
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re=-2T+00,11-(55) (3-67)

A:'-*q%; iLfl-(;%;)" (3-68)

is a solution matrix of V =MV and a fundamental matrix since

and

det 0, = e ' ™FET A A
-27t . z
= e’ QLT“‘(&,)

+ 0 vt

The inverse of (Do is

-t -
A+e r+ ‘e r+t

@-l - !
o T AL-A. A et prt (3-69)

The matrix (Do" M. D, can be calculated by using Equations (3-65),
(3-66) and (3-69). We find that

2 - '-)t
-1-A,A. (1+AX) e ™"
ds M, 0, = QA—CO_?’ALI (3-70)
+ = a (r...-t‘.)t
(I+AX) e I+ AGAL
We have
A+A- = I

A+°A_ = QL‘I"SQ

Ar = 25+ 2isTi-s* -
d
" r-r. = 2iR.Tr-s*
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)
where S 10, Thus

-2i11-5*t
- e e (s*+isTi-s%)
2 conwt

M, 0, = (3-71)
0 a¥o iyt
.Q I-Sa't . (——
o201 (s*- (s TI-5%) a

We obtain the following differential equations by using Equations (3-61)
and (3-71)

_2iR.Ti-s* t X .
. et ($*+isTT-5%)

l
(0, coow,t z
C = —‘—{2——" ! C (3'72)
-7 2ifo1-8* t
N (s*-isTI-3s%) - |
In cases where the off-diagonal elements of the matrix (D(;" M, Qo are
much smaller than the diagonal elements, we can find an approximate
solution of Equation (3-72) by setting the off-diagonal elements to

zero. This approximate solution is

. -
C&’.LW AWt
clt) = o (3-73)
C_e'l'mémw‘t

where C, and C_ are determined by the initial conditions. The
approximation is valid for S« | and we restrict ourselves to this
case. In Equation (3-73) we can replace W by 1 and in Equation
(3-66) we let Iy = - %'0' tif), and Ay = *L . Thus Equa-
tions (3-66) and (3-73) reduce to




50

6 e-é}n + 10t o 2Tt -iQt
0 N . ) (3-74)
. - 3Tt +i0.t . -2t -0t
e ¥ e e
and Q-
L5 AWt
2oy (3-75)
C‘ e‘tm:'aunw{t

respectively. We obtain the approximate solutions of Equations (3-52)
and (3-53) from Equation (3-59) together with Equations (3-74) and
(3-75). They are

(-3T+10.)T L% AMW,T

yit) = ¢ C, €
RPN Y STeN: C_e-t%amw,t (3-76)
and

. 3T+ QT L2 A, T
z(t) =-i e " e c,e

(-3T-i0at L2 amwt (3-77)

rie c.e "

We determine the constants C, and C_ by using the initial conditions

y(t') and z(t) . We find

(3TziRat_zilanwt’ |

Cs = € e Ly eizy) (78
Thus
LFe (T, T) .
R ST REAL)
i , (3-79)
RS T 1)

and
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2,00 = -ie T ey +iz)
. . (3-80)
rie T Ly -z

where

2 (6,1) = ((3T#iQ)(E-t) £ 1 (At -sinwt’)  (3-8D)

3.5 Long Term Solution of the Optical Bloch Equations

The general solution of an inhomogeneous system of linear first-
order differential equations is obtained by adding a particular solution
of the inhomogeneous system to the general solution of the associated
homogeneous system. The method of variation of parameters can be used
to determine a particular solution of an inhomogeneous system whenever
the general solution of the homogeneous system is knownzz.

We want to obtain the general solution of the optical Bloch equa-

tions. The general solution of their associated homogeneous equations

is given by Equations (3-62), (3-76) and (3-77) as

_I
Xpom (£) = Co € 2t (3-82)
(3-83)
and Yagn (t) = Cy Fi(t) + CF(E)
Zym (£) = ~{CLFelt) + LC_F(t) (3-84)
where
-2 Tt tilot fl%dmw,t (3-85)

F:t t) = e

We choose a particular solution of the optical Bloch equations of the

form
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Ypare (t) = C4(T) Folt) + c_(t) F.(t) (3-86)
and

Zoart (t) = - LCL(E)Felt) +1Co(t) F-(T) (3-87)
We substitute the homogeneous solutions of Equations (3-83) and (3-84)
into Equations (3-52) and (3-53) and the particular solutions of Equa-
tions (3-86) and (3-87) into Equations (3-49) and (3-50). The re-

sulting equations can be reduced to

C+ F.'. + C_F_ =0 (3-88)
and
~lCeFe + IC_F. = -7 (3-89)
which we can solve for &, and &_ . We find that
. | }
Ce =735V = (3-90)

The

We integrate Equation (3-90) and obtain C_(t) and C_(t)
£ amwt

integration is possible after replacing the functions &

by their Fourier devel opment23
ti %—' Amw,t = _Q.L) t it (3-91)
e ! = nZ. In (w, e
z ~C0

where .Tn (%) is the nth order Bessel function. Then
Ta (%) E%Ft FLRoT Finwt
)

Celt) =55T2

-

. . 3-92
2T 10,7 inw, (3-52)

We substitute Equation (3-92) into Equations {3-86) and (3-87) and use

Equation (3-91) one more time. We find that
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' Jn (%) e T Ny L tmwt
Ypare (1) = _%,0,%: 2T-1{Rotnw,) %I‘“(‘*")e
L In(g:)emwt Q) ,-imwt
*2’6% T+ UQotnw) Z:rm( w) e

-
Qi) 7, (&) gt mwe
2T - 1R, +0w,)

= -’O'Renzcﬁt Tl

Q_) 2, '!-.P(I)|t
: w Jn-g(u.n ) e 3_93
Re% T L e (3-93)

and, by a similar calculation, that

Zoart (1) = - TRe Z Lol )%.J“'p gfz nwi;w‘t (3-94)
The general solution of the optical Bloch equations is thus
X{t) = Coe X (3-95)
YE) = Yaom(t) * Ypare (t)
= C, e’ 3Tt +iQot +i B sinwit ic. e-%‘{t-iﬁot-i%olinw,t
“TRe Z i ‘%%)5 et (3-%)
Z(t) = Zpm(t) + Zpare (t)
--ic, o iTETiRE +L%oimw,t+ Lc_e-%wt -0t -1 R At
7Ry T Tnelerrer .
np 2T- UQotnw))
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For times which are large compared to the lifetime T = T°' of the
upper atomic level we find that Tt » TT and thus Tt»1 ,
e-%'d‘t« | and e'gt & | . We obtain the long term solution of

the optical Bloch equations from Equations (3-95)-(3-97) by dropping

- A -
the terms which contain the functions € T or € 3Tt We label
the Tong term solution with a subscript "oo ". Thus
Xolt) = 0 (3-98)
Ol i -Lpuht
_ - Tal8) Tn-p [TF) o0
juit) - -TRe g TeldTeeile (5.9
Dy — n -lpw,t
In("")Jﬂ;O(TJL) e
- - ! : ! (3-100)
2o (1) TRe % 2T-1Rot+nw)

In the Tong term limit only the particular solution survives. Thus the
long term solution is independent of the initial conditions which are

contained in the homogeneous solution.

3.6 The Optical Bloch Equations and Their Solutions in Terms of the
Variables X4 , X. and Z

For the purpose of solving the optical Bloch equations and their
associated homogeneous equations it is most convenient to use the vari-
ables X , g and 2. For the calculations in the next chapter it is
more convenient to switch to the new variables X., X. and 2 , where

Xt = 3(Xtiy) (3-101)

In terms of these new variables the optical Bloch equations are

>.<t = ':%X;r F é_Q(t)z (3-102)
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z = -T(z+1) +iQ0) [x.-%,] (3-103)
with the associated homogeneous equations

Xe = -Ixy T L0z (3-104)

z = =Tz +i0Q0)[x.-X,] (3-105)

The long term solutions of Equations (3-102) and (3-103) are

Xsw = % (X £lYa) 2 o (3-106)
where Xg , Yoo and 2o are given by Equations (3-98), (3-99) and
(3-100), respectively. The solutions of Equations (3-104) and (3-105)
with the initial conditions X4 (t') = %{X(t) £ iy(t)) and 2(t)
can be obtained by using Equations (3-62), (3-79), (3-80) and (3-101).

We find
Xe(t,t) = & [ Xe(t) + X ()] e'g(t’”
.
£ 10,010 - x_ 1) - 2] e
£ £ [x, (1) - x. (1) + 2t et (3-107)
and
L +(t,t‘)
2(tt) = LX) - X, (1) rzi)) et
FE X, - x(e) + 2] e (3-108)

where (f4+(t,t') and Lf.(t,t') are defined in Equation (3-81).
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4. THE LIGHT EMITTED BY A TWO-LEVEL ATOM
IN A STRONG, RESONANT, AMPLITUDE
MODULATED LASER BEAM

4.1 The Spectral Distribution of the Emitted Light: A General
Formula

In Figure (4-1) we illustrate the setup of an experiment to observe

the light emitted by a two-level atom in a laser beam.

A X
A
two- level
atoms
laser R
R beam 2
n
detector g

Figure (4-1). An experiment to observe the light
emitted by a two-level atom in a
laser beam.
Here the laser beam is propagating along the 2 -axis and the beam of
two-Tevel atoms is propagating along the x -axis, so that the two beams
cross at the origin of the coordinate system. The unit vector n points
| in the direction of the detector.
In the last two chapters we investigated the time dependence of the

atomic variables of a two-level atom in a (strong, resonant, amplitude

modulated) laser beam. Now we calculate the frequency distribution of
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the 1ight emitted by such an atom. We do not want to predict the read-
ings of a real detector; we only want to derive an expression propor-
tional to the spectral distribution of the Tight. In our calculations
we can therefore replace the detector by a detecting atom and the beam

]6’24. The detecting atom is

of two-level atoms by one radiating atom
a two-level atom with a ground state [Q.) , an excited state |b> and
an atomic frequency W= Wy,-W, . It is exposed to the radiation field
between t =0 and t=T . At t=0 the atomis in its ground
state. The probability P(w,T) to find the detecting atom of a particu-
lar atomic frequency W in its excited state at £ =T 1is proportional .
to the energy of the radiation in a frequency interval W....W + dw
and the function P{w,T) is proportional to the frequency distribution
T{w) . The observation time T has to be much larger than the life-
time of the radiating atom and much shorter than the lifetime of the
detecting atom. The detecting atom is at X=rn and the distance

r between the detecting atom and the radiating atom is large in com-
parison with optical wavelengths. We assume that the detecting atom
influences neither the radiating atom nor the radiation field.

The system we consider consists of the radiating atom plus radia-
tion field (referred to as R ) and the detecting atom (referred to as
D ) and has the Hamiltonian

H= Hg+ Hp + Hy = Ho t+ H:z (4-1)
We write the interaction Hamiltonian in the electric dipole approxima-

tion as HI=-D-E , which, in the interaction representation, becomes

‘%Hot g

= - D) E(Xt) (4-2)

, L Hot

HI=€ H e




58
-
Here D (t) 1is the electric dipole operator of the detecting atom in the

interaction representation and can be written as

-»

- M t
i) = 3 lav<nle ™t £ §* pvcal e (4-3)

> - —y
where & =<aIDIb> and E(X,t) s the Heisenberg electric
field operator of R and obeys the Maxwell equations. We rewrite the
-y

Hermitian operator E(fz,t) in terms of a pair of Hermitian adjoint
operators as

L - -\+ - b S

E(X.t) = ET(X,t) + E"(X,t) (4-4)
where g*(?(,t) and E7(X,t) are the positive and negative frequency

parts respectively of the electric field operator. Thus
2 -ltwt 2 twt 2 -
-[S1ad<ble ™ + g pycale™ [EY + E]

~ -8Bt e Y larhl - BTk e pycay  (4-5)

where we dropped the rapidly oscillating terms.
At t =0, when D is in the ground state, the density matrix in

the interaction representation is

8(0) = la><alSqg (4-6)
where Sg is the density matrix of R at t=0 . This density matrix

obeys the differential equation

(h2 8(t) = [Hy(t),8(t)] (4-7)

which, to the second approximation, has the solution
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T
3 (1) - 3(0) - & [ dr [Hz (1), 310)]
T t 0
= fdtfdt‘ [H1 (1), [H{ (1), 8(0)] s)
o 0
The probability to find D in its excited state at 1= T s
Pw,T) = Wep 16><DIS(T) (4-9)

We use Equations (4-5), (4-6), (4-8) and (4-9) and take the trace over

D . We find
-> - - Lw(t-tl)

Plw,T) = tr ”[atfat (6B (k1) S E (Rt e

P e S B ERD ey

We exchange the variables t and t' in the first integral and use the

relations
T t’ T
Jdt(dt * [dt f Jdtf dt’ (4-10)
0 0 0
G- (%t) =2 6, E, (Xt)
)l-
FrETR) = T 4 By
and

CER(RDEF(XEY> = Ty SR E) (X,t) E; (X,t)

We then find
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T T
PluT) - 15 65 [ot[ar B RDET > €T oy

0 0
The probability P(w,T) in Equation (4-11) is expressed in terms
of electric field operators which can, in turn, be related to the di-
pole moment operators of the radiating atom. In classical electrodyna-
mics, the time dependent charge and current distributions are treated
by making a Fourier analysis and handling each Fourier component

-1We T
25 charge distribution 3(X,t) = Q(x) e "™

e“iwat

separately

. -»> - 2, 3 1 2>
has a dipole moment P{t) = fg(x,t) X'd™X = Po
and its fields at a position X = rﬁ in the radiation zone are

= - ROT A - -1
H (X t) "L%%-LQL (ﬂXPo)etwOT

and
2 2 LRAT A - A -1
E(xt) = q%“g;# e ™ [(Axp.) xi]e et

where Rg= % is the wave number of the radiation. We can write the

electric field as

E (%) = g2 £ [(AxPle-£)xA] (4-12)

The complex field E(i,‘t) in Equation (4-12) depends on time like
f’_'iw"t , thus its quantum mechanical analog is the field operator
E* (X,t) . The classical dipole moment ﬁ(t) also goes with

e lwo't . The atomic dipole operator of the radiating atom is
given by Equation (3-42). We rewrite it in a slightly different form,

namely as
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[0 = do (R-if) (9 0) + doliriie ™ (3 5)

-~ -
where DT(t) and D7(t) are the raising and Towering parts of [d']
respectively. By comparison we see that the classical quantity
= r . .
p ('t - c) in Equation (4-12) corresponds to the quantum operator

D° (T" é\) because of its time dependence. We thus find the follow-

ing relations between operators:

-y - 2 A - _

ET(X,t) = Lﬁroeo = {nxD (t-E)xn (4-14)
and

- - 2 A g A

E-{X,t) = ‘,_ﬁ%%: l? (ﬂx D+(t'£))xn (4-15)

The latter equation is the adjoint of the former one.

We now express the operators ]3*'(‘!:) and D (t) in terms of
those operators whose expectation values appear in the optical Bloch
equations. As we noted earlier, the optical Bloch equations are a set
of differential equations for the components of the fictitious spin-i
particle in a frame rotating with frequency W, around the Z -axis. In

that frame any operator (Y becomes

RTINS L AR (16)

The operators 6',(' R 6'3' and 62‘ are the Pauli spin matrices in the in-~

teraction representation. They are given by Equations (3-4)-(3-6). The
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operator SE' is transformed into the operator

At 6zl ( 0 2) (4-17)

Szlt) =€ o €° 0 -1

in the rotating frame. The expectation value of Sz (t) is the function

2 (t) , which we obtain from the optical Bloch equations;

<Sz(t)>y = z(t) (4-18)
We note that
= b (wet | O | }
6, = L(6x+if)) = ¢ 0(00) (4-19)
and
4 . [ -1 ot OO
5 = Ji(Gx‘LGH) - e (; o) (4-20)

In the rotating frame these operators become

S.lt) = g 20T 6, o 80T _ priund 5, (a-21)

and

-&szd: G_l eé‘gzwgt - eiwut 6—-' (4-22)

]

S_(t)

The expectation values of Sy (t) and S.(t) are

<S+B)D = 5<SD TS, ()Y = £[x(t) +iylD)] =X, (1) (4-23)
and

<S-(1)Y = <S4 (t)-iSy(t)y = § [X(T)- lye)] = x_(t)  (a-28)
respectively and X, (t) and X_.(t) are solutions of the optical Bloch
equations. We compare Equations (4-21) and (4-22) with Equation (4-13)

and find
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d, (%-10) e s, t) (4-25)

=

=

N
]

D (1) = do (§<+iQ)€'iw“t S_(t) (4-26)

We can substitute Equations (4-25) and (4-26) into Equations (4-14)
and (4-15) and those in turn into Equation (4-11). We obtain an ex-
pression for the spectral distribution L(W) in terms of two operators,
5-;- (t) and S_(t) , whose expectation values are known from the
optical Bloch equations.

The detecting atom may be anywhere in the radiation zone of the
field as long as it is outside the beams. Thus ﬁ can point in any
direction other than the X -axis or the Z -axis. For convenience

A
we assume that N is a unit vector in the H -direction. Thus

no= g (4-27)
= - * “w(_(t'ﬁ) A
Erk) = Re Qe et TS t-£)x (aze

and

RZ do _twe(t-&)

E-(;,t) LHTEO —T‘ 8 5+(t-£)x (4""29)

]

It is common to neglect the transit time i.e. to replace t - E by

t . We substitute Equations (4-28) and (4-29) into Equation (4-11)

and find
T T o
% ‘ 2 \ ~{w-w)(t-t")
ol = 52 o [or (dfe) <sums. e e
0 ¢

Thus we arrive at the following relations for I (w)
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~ ——Jdtfat <SSt e Hww et (4-30)

or

T ¢t

‘ '.[ - L)(t't')
Tw)~ % Re‘(d’cfdt <S s e o (4-31)
0 0

where we used Equation (4-10) and the relation
<SH(E)S.E)Y = <S¢ (t) S.(’C'))“r to derive Equation (4-31)
from Equation (4-30).

4.2 Average Motion and Fluctuations

There are several approaches to the quantum theory of dampin926’27.

In the density operator methods we deal with a quantum mechanical sys-
tem coupled to a "reservoir" (the radiation field). We trace all equa-
tions of motion over both the system and reservoir since we are only
interested in the statistical properties of the system. This results

in equations 1ike the optical Bloch equations which describe the average
motion of the atomic operators S4(t) , S.(t) and S;(t) and which are

listed here one more time in terms of the variables {S4(t)) ,

<S.{t))> and <Sz(t)) :
Lcse(ty = - Tesattd 2500 <S, 00 (4-32)
(%<Sz(‘c ST[CSa )y 1] +1QM[KSD)> - <Se (0] (4-33)

A gquantum system experiences damping and fluctuations when inter-
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acting with the reservoir. In the Langevin method we take the reser-
voir into account by introducing damping terms, which describe the
cumulative effect of the reservoir and give the correct statistical
properties of the system and by introducing a random force R(t) , with
an extremely short correlation time and a zero average value to create
fluctuations. We then obtain the following equations of motion for

the atomic operators S.(t) , S_{t) and S;z(t):

&d‘? Silt) =-LSs(t) 7 LIS (1) + Kelt) (4-34)
L s, it)= - T[Sz 1) +1] + LR[S (-5 1t)] + Kz lt) (4-35)

Here

<Ke(t)Y = 0 (4-36)
and

<Kz (t)> = 0 (4-37)
so that Equations (4-34) and (4-35) reduce to Equations (4-32) and
(4-33) when we take the average.

We need all the above equations to calculate the two-time average
<SL)S. i , which appears in Equations (4-30) and (4-31)
for T{w) . We express the operators S_(t) , S_(t) and S;I(t)

terms of their average values and fluctuations as]6

Selt) = <Ss(t)> + S (t) (4-38)
Sal(t) = <Sa(t)> + dS; (1) (4-39)
where
< dst(t)> = 0 (4-40)
<dSz )Y = 0 (4-41)

and find that
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CSt) SLE)Y = <SS +< 88, (D) ES.(tY>  (4-42)
Thus

rot
T(w)~ %Rejdtfa ¢S, I£)5CS. 1) ertwTwIE-t)
o 0 .

t
+ 31, Re-jdtjdtl (S, t) S, ()Y eaL(w‘wL)(t-t) (4-43)
0 0

Both the average motion and the fluctuations contribute to the spectral
distribution of the emitted 1ight; their contributions are the coherent
and incoherent parts of the spectrum, respectively.

We now derive equations of motion for the functions g, (t,t'),

- (t, ) and g5 (t,t') , which are defined as

Gy (t,t) = <ESelt) GS. () (4-44)
and
Gz (t,t') = <dSz(t) dS_(t)7 (4-45)
We note that
dSi (t) = 54_: (t) - < Si (t)> (4-46)
dSz_ (t) = Sz(t) - <Sz(t)> (4__47)

& 8ssle) = -FdSe () $E Q) dSalt) + Relt)  (4-48)

g—tdszm = -TdSa(t) + LIS ) -ES, )] + Kz (t) (4-49)

We multiply Equations (4-48) and (4-49) by dS. (t') from the right and

then take the average. We find
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(%? g (Lt =-To.crrimw ga(tt) (4-50)
and
ELC% Gz (T,1) = - TG, (t,t)+iQD[g(tt) - g, (tT)]  (a-51)

since

<K (t)dS.(th> = 0 (4-52)
and

<Kz (t)dS. (> = 0 (4-53)
because of the extremely short correlation time of the random force
Elt) . Thus 9+(t,t3 , g-(TftW and gz(tff) obey Equations (3-104)
and (3-105), the solutions of which are given by Equations (3-107) and
(3-108).

We are particularly interested in g, (t,t') = <ESLt)IS. (1))
and find that

-3t-t)

]

g.(tt) = 5[ g.(t) +git)] e

v (T,T0)
+4lg,.)-g-1t)-ga(t)] e f

iof. (t,t)

+ g (t)-g.1t) +galt)e (4-54)
where

gs(t) = <dSg(t)dS ()5 (4-55)
and

gz (t) = <dSa(tYdS.(t)) (4-56)

Instead of the two-time average { & S4(t) dS.(t') > we now have
to evaluate the one-time averages Q. (t'), 4.(t") and g4 (t') . This
is easier, since for equal times there exist some fundamental relations

between the operators, like
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Syt = Sy (t) = S (1) = 1 (4-57)

Sx (1) Sy(t) = 13alt) (cyclic) (4-58)
and

Sylt) Sx(th = -iS,(t) (eyelic) (4-59)

The time T during which the "detector" is exposed to the radiation
is the time during which the atom radiates and is approximately equal
to the time the atom spends in the laser beam. For a beam crossing ex-
periment 1ike the one illustrated in Figure (4-1) T 1is large compared
to the lifetime of the radiating atom. Thus the atom is essentially at
all times in a state described by the long term solutions, where
<S4t = Xyiplt)) and <SSz (t)Y>=2,(t") . We use Equations
(4-46) and (4-47) and find

G.lt) = S0+ Zult)] - & g;(t') (4-60)
9. (t) = § yw (t) (4-61)
Galt) = 5Unlt) + & Yolt)zalt) (4-62)

Here we made use of Equation (3-98) (X, =0 ). We substitute Equa-
tions (4-60)-(4-62) into Equation (4-54) and get
L (t-t')

<ES.(8)dS.(t)> = & (I +2mlt)) e

FE4 2alt) - g2 8) - oo (1) - L) 2g (1) @ T+ 1O0)
if-(t,t)

+-§(I + 2 (t') - g; (t') + ng(tl) t Lgoo('t') Z“(t’)) ¢ (4-63)
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4.3 The Spectral Distribution of the Emitted Light: The Coherent
Part and the Incoherent Part of the Spectrum

We now calculate the coherent part and the incoherent part of the

spectrum using

! - (W) (-t
T eon (W) ~ fdtfat S, Y¢S ) € (4-64)
0
and
’ Siw-w)(t-t)
Line (W) %P\ejdtfdt <dS+ (1) FS-(t) ] (4-65)
0
respectively.
We rewrite the long term solutions in a more transparent form as
. Ta Jn-p - TIn Jarp -itpwt
Yoo (T) = - liﬁéé {M-L(ﬂoi-nw.) %T+L(ﬂo+ﬂh)f)} e
y pwt
- - ,—ﬂ)‘%yp e (4-66)
— - ,t
Xsmlt) = T égm('t) =1 g—% /Py Py (4-67)
and
In Jn-p Jn Ja -ipwt
Z, (t) = '%%%{ ety T %”Q’J,-L(Qoi?\w.)} ¢
- . g ; z, o puit (4-68)

where HP and EP are time independent factors which obey the relations
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i

Y-p

- HP* (4-69)

and
r©

Z_P = ZP (4-70)

Thus the coherent part of the spectrum is

T T
i -pw,t -1 Wty ~{lw-w){(t-t
L on ) ~ Hdtfat [F3ye P )(-%%gqe ot grtiuwlit-t)
ol (4-71)
A common representation of the Dirac delta function is
F(R-R) = f—,rfe”h'“x dx (4-72)

We can derive an equivalent representation for the Kronecker delta

function, Cfpf We note that

fe P)X l for P=P‘
and

L JeL(P-P)X dx = O for P*P' and LI
Thus we have

L
Spp = 2im i_jeL(P‘P)xax
0

L=on

and from this it follows that
L
L(p-pY X
ffi PP g ~ L dpyp (4-73)
0

for large L .

With Equations (4-72) and (4-73) in mind we change the integration
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variable t' in Equation (4-71) to t" = t-t' and get

Lo (W)~ -7(F) ZHquKdte Lpralw, fd y LW W quot

e (4-74)

where the integrand of the integral over t has the form of the one in
Equation (4-73) and the integrand of the integral over t" has the
form of the one in Equation (4-72)., The values of the variable t 1lie
in the range [0,T]; thus the values of the lower limit of the t"-in-
tegral are in the range [-T;O] and the values of the upper limit are
in the range [0,T]. Since T» T~ and (,d W, -qW, is of the order
of T we can replace the function f{t) = fd.t" g {w-w-quot by
) = ,Ldt" e-i(w-wcqw.)t” for all t except in a small region

near t=0 and t=T . We can thus write to a very good approxima-

tion

- Jw,t
Im(w)w- %’ gpyq fdt LT 2T d‘(w-w,,-qw,) (4-75)

In the 1imit of large measuring times T we can use Equation (4-73) to
solve the remaining integral. This, together with Equation (4-69),

yields
T lw) ~ T nggpd(w W+ puwi) (4-76)

We substitute the expressions for Ye and gp* into Equation (4-76)

and get
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- 5
T3 () . Iu ( 2
Teon (W) ~ TZ[Z ST + (Qorma)® (T + (Rt M0

P Lan' \¥

IR + Qo ) Q[T (8) T (84T, (BT, (8]

—

+ [(Qo+nw M +0'w,) - ( U) ][Iﬂ—p(m) Jn+p (QL) + IMP(%) Jn’-p(%)]}}

o J{W-W tpw) (4-77)
The incoherent part of the spectrum is
T t
) 't""t‘) -{ w- L)(t‘t')
[ipc(w %Rejdtjctt gy T2t 2] gty
0 G
T ¢ )
' e (61 = {(w-w) (t-T)
+%Re§dtfdt§ (14 Zalt) - Yw(t) € e |
0 0
T t
W (81 ~i(w-w)(t-t)
+ ZRe (dt{d’c -lelt)zat)e e
0
T

0
f | . Lot -lw-w)it-T)
¢ Re [atfdt flirzartigit) e e

0 O

t
. 2 f-(t1) ~l(w-w)(t-t)
+3Re gdtjdt § (Yo (1) + LYult) Zo(t)) € e
¢ O

=T, + I, +IS+TI]+1Is5 (4-78)
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To evaluate the integral I, we express Z,(t') by Equation (4-68) and

change the variable from t' to t"=t-t'. We get

| pwtt,  ~(Trilw-w)t”
- Wl T -ipwt pwt (;z Tt L
I, ? g g 7{ 9‘% Z,€ € ) e

° (4-79)

Because of the factor e-% ' in the integrands the integrals over t"
are independent of t except for a small region near £ =0 . Thus we
can find an approximate expression for L, by replacing the upper
1imits of the t"-integrals by infinity and subsequently using Equation
(4-73) to evaluate the integral over t . We find that

I, =52R8_H§—+.‘—’——- -ET——.‘EL———} (4-80)

tw-w) & T+i(w-w)

We now evaluate the integrals I; and I; . We use Equations (3-87)
and (3-97) and find
Lfe(t,T) (-2T£iQ)Nt-T) Q. Q) tiRwt _Fimwt'
e 2 Tu(g)dnlde” e

&m '
(4-81)

From Equations (4-66) and (4-68) we get

Flyalt) = - §Z(2pryp) P (4-52)

We manipulate the integration variables and limits as before and find

that
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IS =2Re [} 2 o (5
2 8 m L(h)-wLIQO;me)+%W

Z Q‘)T [Zt(h -m) = Htm-m)] }
A

00 T TR + T (4-83)
We note that
— Q: g ﬂ
Jn(D’I) Jn~p(u')
Z5 T = * ! (4"84)
e STy WY |
and28
% Tnenta) Jnle) = JTo(atb) ‘ (4-85)

The triple sums in I; and I; reduce to single sums, since executing

the sum over M gives In-k(O) = dn g in both cases. Thus

T () T

t Im {w, -
I, = gRe {% i(w-wL+Qo+mw,)+§b‘“ %’JFL(Qaf-mw,))} (4-86)

The evaluation of the integrals I; and I; is straightforward; the

result is

Iy+1I; = (}‘H Re%} Jneprp! (ﬁ»)jn(%)°

(4-87)
BPZP+HP) Uo* (Zp' + Ypr) }

(i i
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We replace 2, in Equation (4-80) and Z, and le in Equation (4-87) by
their corresponding sums and determine the real parts of the resulting

expressions. Then the incoherent part of the spectrum becomes

L
I+ wew)?

Line (w) ~

P _Tu ()
(1 “F?,,-r TQ°+mw.)")

H

3 Tn () Tn (i5)
+ lén‘é( (21)* + (W-We-Qo-mw,)” 1'{ 1) +(wm-w?+f20+mw,)‘)

Crqy ZeBIET o) (w-w - )]
T LAY Qe [(3T)* + (- W Qo - M)

+ 2 (%) %P' Jneprp (%) T (8) -

. { 2T Cpfy + (W-We-Qq-(n+p+pw, ) ng_c
(RT)* + (W-We-Ro-(n+prpHw,)?*

4

27 CpIp’ - (w-Wo+N,+ (n+p+y')w.)Cp]f>'
(2T + (W-W Qo + (n+ p+pIw,)? }




where

I _Z J (Q') Im'(w.)]-mp(%)
PP T G [(3T) Qofmw.r[ BT+ (Rotn'w,)]

* {(%T)z (Im-p(%) ']-mwr-p(%»

S (2ot nu)(Qornw)( Ty (B) + Taep (B))]

and

C

r Z IM(%)jm'(%)jm'-p'(%)
PP S [AT) 4 (et mu P I[GT)T + (ot w)]

e { B+ M) (Tnop (B) - Tnep (1)

t (%W)(Qo‘*'mwu)(jm-p (%.) + Tm+p(%))}
(4-88)

+ -
It turns out that for most frequencies Is and Is contribute very
little to the spectrum and the approximate formula obtained by dropping
the terms in the square bracket is generally quite accurate.

4.4 The Total Intensity of the Emitted Light; Coherent and
Incoherent Parts of the Total Intensity

By integrating Equation (4-30) for I{w) over all (positive) fre-
quencies W we obtain an expression which is proportional to the total
intensity of the emitted light. We can extend the integral to include

the negative frequencies as well, since the spectrum is non-zero only
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Pes) [/ ]
at optical frequencies and thus | I(w)dw = [ T(w)dw . we use the
[e] -0
definition of the delta function and find that the total scattered in-

tensity is
T

.
oot ™ %—det<s+(t)5- (t)> = _;_rj T3 (1+<S(t))  (4-89)
0 0

We use Equation (4-42) with t =t' and get the coherent and incoherent

parts of the total scattered intensity. They are

T ~ %Ejdt <S¢ (T)XKS.(T)D (4-90)
and 0
-
Tue ~ (4 <d5,10 850>
0
r
= -l%rfdt{p‘: [1+ ¢Sz (1)) = <S4+ (E)><S_ (1)) ] (4-91)
0
respectively.

In the 1imit of long measurina times T , we get the following

results:

yeet
/G-R-Z Jn(u.) )

3
I'tO‘t ~ Tr(‘ Ty = (%T)z+(ﬂo+nw|)z (4-92)

PO of [ o
coh Y L& (2T)* + (Rotnw)?

2
W

-Z Tl c)Jn’(Q)Jnfn (%%)[(%J)z (Qotnw N, "“n'w')]}
o [RT* +(Qotaw ¥ J[(RT)* + (Ro+n'w,)?]

(4-93)
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_n'_‘"z jn(%) J (%) In+n'(‘2(,{% )[(%ﬂ’-, (Q°+nw,)(Qo+n'w,)J
T [(BT)* + (QotnwFJ(3T) + (Rornw))’]

(4-94)

It is straightforward to show that Equations (4-93) and (4-94) can
also be obtained by directly integrating Equations (4-77) and (4-88)
respectively over W . This fact justifies once again the approximation
which we make in evaluating the integrals of Equation (4-64) and

(4-65).

4.5 Why the Terminology "Coherent-Incoherent"?

The total scattered intensity of Equation (4-89) is proportional
to the time average of the time dependent quantity { S,.{t)S.(t)>
which, in turn, is proportional to the counting rate of an ideal photo-
detector placed in the field of the radiating atong.

The normalized form of the first order correlation function of the

radiation field is

G‘“)(t,t')
[G©(t,t) GVt t)]%

with the first order correlation function G (t,t') ~ {S,(t)S.{t")>

(4-95)

g (t,t) -

A necessary condition for radiation which is coherent to first order is

g (tt)] = | Vtt (4-96)
Apart from laser light even the most coherent fields in the optical
27

range lack second and higher order coherence™ and thus we only need to
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check for first order coherence.

We have the relation <S,(t)S_(t)) = <Su(t))S. )Y +<ESLE)SS.(E)) .
Thus <SeE)¥<S.(E)> and <SS, (t)dS.{t))> are proportional to the
counting rates of ideal photodetectors due to the parts of the field,
which we termed "coherent" and "incoherent" respectively; and
S+ {E)PCS.{E)Y and <S8S,(t)dS.(t")> are proportional to the
first-order correlation functions of the "coherently” and "incoherently"
scattered radiation respectively.

For the "coherent" part of the radiation we find

0 gy - (S, (8D ¢St |
Geon (BT = T T3 <5. (0945, (1545, E)E

- X4 (T) X_(T) 4-97
[Xe(t) X(t) Xelt) X-(t‘)]l": ( :
In the 1imit where T, ' > T ™' this becomes
() = Hm (t) goo (t') = ' (4-98)

(t.t) = . .
% oot (4o Yoo (0 Yo (£ J (]
Thus this part of the radiation is indeed coherent to first order as
long as the radiating atom is in the long term regime.

For the "incoherent" part of the radiation we find

0 N oL <IS+)AS.(t)D (4-99)
i (V1) = 03 065 11)><85, (1) G 5. TIE

or
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m =
g'“nc tt) [()ffm Q_Hoo

s [+ 2, t) e 2ED)

EENGETHZ BN

+ 51+ 2a(t) - Ua(t) - Yo lt) - lj=(t)Z2a(t) € “HlnE)

+ 31+ 26lt) - Yalt)+ Ln(t +Lgm(t‘)z¢(t'))eif'(t’t’} (4-100)

in the steady state. Here | (}un (tt)] +1 ; in fact 5,,,&2 t,t)-=0

for t-t' > T~' and there is no coherence in time beyond an interval

of the order of the atomic lifetime.

We expect the total radiation to exhibit partial coherence:

() i <S. ) S.1E)>
Froe OT) = s e <ae t)S DI
~ #goo(t) gw(t‘) 't,t‘ )‘6"'
[3(1+2a(t) U202 t-t' > T
.oy FYelt) el
Y(1+2,0) {1+ Zelt) (4-101)

Under the square root we have the ratio of the coherent counting rate

to the total counting rate at the times t and t'.
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5. RESULTS

5.1 The Approximations in the Numerical Calculations

The results of our calculations, namely Equations (4-77), (4-88),
(4-93) and (4-94), contain single sums, double sums, triple sums and
even fivefold sums over all the indices m of the Bessel functions
I (%) and Jn (gm{'?l) .

The relation (2,< 3w, expresses an experimental limitation. In

the graphs which follow, the variables are taken to be multiples of

W, . We restrict ourselves to 0.5 S%T"S 2.5 for -g—' = 0.2, which
(] 0,
means 0.02 £ TN £0.1and 0 £ o, < 2.5,

Thus, in order to obtain the data for our graphs, we have to

0

evaluate the sums for 0 < 45+ & 2.5.

For 0 € X € 5 |Tp{X)| decreases rapidly with increasing Imi
beyond a certain small value of |mi as illustrated by Table (5-1).
Because of the structure of the summands we can approximate all the
infinite sums by finite sums with only a few terms.

The constant M in each figure caption indicates how many terms
were kept in obtaining the data for the graph. For M = 2, for example,
the single sums contain the terms with Jo , J&, and J+a. The multiple
sums contain products of Jp's such that all m's go at least through
the full range of values 0, £+ 1, £ 2. Some of them may go beyond that
range however, due to the relations among the indices. For example, to

evaluate the double sum of Equation (4-95) with the product J-njn'J-m-n‘

we let n =0, 1, *2and N'=0, £1, %2, £3, £ 4 to insure that
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n+n' takes on all the "important" values (0, £ 1, * 2 in this case)
for each fixed value of n as n' covers the chosen range.
We determine the appropriate value of M for a particular plot by
listing some sample data for various values of M and finding the M
for which the approximation is "good enough". This means that the data
obtained when using M+ and those obtained when using M differ by a
factor of 10'4 or less of the maximum value in the set of data to be
plotted. Ve illustrate the method with an example. Let us assume that
we want to plot the coherently and incoherently scattered total inten-
sities versus %%f for g& =0.2and & =1 (i.e. 2, =0,). HWe compute
some sample data as shown in Tables (5-2) and (5-3), namely L p and
T e respectively for %%? = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
=0,1, 2, 3, 4, and 5. (The values are == of

T
the right-hand side of Equations (4-93) and (4-94) respectively.) The

2.25, and 2.5, when M

maximum value in the set of data is ~ 0.5. Thus we allow an error of
no more than 0.00005. In order to get this accuracy we need to use

M = 4 when calculating the data for the graph.




Table (5-1). Table of the Bessel functions Jm(x) up to Imi = 10 and with arguments
x=0,1, 2,3, 4, 5. Note that ZP,,,,,J;’(X) = 1 for all values of x.
Thus all the J,'s for Imi>10 are essentially 0 for 0<xs5,

x =0.0 x=1.0 x=2.0 x = 3.0 x=4.0 x =5.0
T, (x) 1.0 .76520 .22389 - . 26005 -.39715 -.17760
Ty, (x) 0.0 .44005 +.57672 +.33906 %.06604 F.32758
Tea () 0.0 .11490 .35283 .48609 .36413 .04657
Tss (%) 0.0 +.01956 +.12894 +.30906 +.43017 +.36483
Ty (X) 0.0 .00248 .03400 .13203 .28113 .39123
Jes(x) 0.0 +.00025 +.00704 t.04303 +.13209 t.26114
Jee(x) 0.0 .00002 .00120 .01139 .04909 .13105
Itz (x) 0.0 +.00000 +.00017 +.00255 £.01518 +.05338
J1a(x) 0.0 .00000 .00002 .00049 .00403 .01841
Jq(x) 0.0 +.00000 +.00000 £.00008 +.00094 +.00552
Jtio(x) 0.0 .00000 .00000 .00001 .00020 .00147

‘ 10
‘);_'; _I;T,‘;(x) 1.0 .99999 .99998 199999 | 1.00000 1.00000 =
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Table (5-2). The coherently scattered total 1‘n;c2ens1'ty
\ for & =10.2, Q@ =1.0and 0.5¢ 3 < 2.5
when M =0, 1, 2, 3, 4, and 5.

‘ & M =0 M= M =2 M =3 M= 4 M=5
0.50 .02648 .02587 .02590 .02590 .02590 .02590
0.75 .00940 .01279 .01296 .01296 .01296 .01296
1.00 .00348 .03079 .03078 .03078 .03078 .03078
1.25 .00125 .02444 .02343 .02334 .02334 .02334
1.50 .00043 .01080 .01006 .00994 .00993 .00993
1.75 .00014 .00541 .00795 .00784 .00782 .00782
2.00 .00004 .00285 .02202 .02184 .02182 .02182
2.25 .00000 .00151 .01517 .01452 .01449 .01449
2.50 .00000 .00079 .00703 .00662 .00655 .00655

Table (5-3). The incoherently scattered total intensity

‘ for & =0.2, = 1.0and 0.5¢ &< 2.5

i when M=0, 1, 2, 3, 4, and 5. !

i 2 M=0  M=1 M=2 M=3 M=4  M=5

0.50 .42504 .42203 .42200 .42200 .42200 .42200
0.75 .47145 .44594 .44572 .44572 .44572 44572

| 1.00 .48793 .33080 .33060 .33060 .33060 .33060

‘ 1.25 .49480 .42484 .42505 .42513 .42513 .42513

1.50 .49784 .46959 .46730 .46739 .46740 .46740
1.75 .49920 .48463 .46675 .46677 .46679 .46679
2.00 .49978 .49153 .38925 .38917 .38919 .38919
2.25 .49998 .49520 .45250 .45238 .45240 .45240
2.50 .49999 .49727 .47993 47774 47777 47777




5.2 The Population Inversion and the Atomic Dipole Moment in the
Steady State

The results for the constant amplitude dynamic Stark effect are
Tisted in the Appendix. They are well-established theoretically and
have been verified experimentally to some extent. They can be used to
check our results since the constant amplitude case is contained in our
more general calculations. When making comparisons we have to keep in
mind that our results are only valid for <§§%;« 1. In addition, compar-
ison of the constant amplitude dynamic Stark effect and the modulated
amplitude dynamic Stark effect reveals which features stem from the
modulation.

At resonance, the first one of the optical Bloch equations does
not depend on the applied field and thus has the same solution regard-
less of the time dependence of the amplitude. The long term result

X oo = 0 is easy to understand: A classical dipole oscillator, which
is allowed to radiate and which is driven by a field whose frequency
equals its natural frequency, is %{ out of phase with that field.

For the constant amplitude dynamic Stark effect the long term
solutions Hoo and 2, are time independent. The function Yoo of Equa-
tion (A-5) is plotted in Figure (5-1) for 0 < {%f £ 2.5 and Ei = 0.2.
Similarly, the function Z, of Equation (A-6) is plotted in Figure (5-2)
for 0 < %%% < 2.5 and gi = 0.2.

A1l our results simplify considerably when @ = 0, since

Ta(0)= don . In particular

PR Y 07 ]
Yo l8=0) = Topyeing .
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and
37
Zm(a’O) = - (%,6-)1+Qoz (5-2)

In the Timit where & | Equations (5-1) and (5-2) agree with Equa-

T
Y12, .
tions (A-5) and (A-6) if terms of the order of (%o) are dropped. Then

Yoo = %"o and Ze, = 0  in both cases. The degree of accuracy of
our results for @ = 0 is demonstrated by Figures (5-3) and (5-4). In

Figure (5-3) the functions Hoo of Equation (5-1) (solid line) and Yoo of

Equation (A-5) (dashed line) are plotted versus %“3 . Similarly, in
Figure (5-4) the functions 2. of Equation (5-2) and Zc of Equation
(A-6) are plotted versus %—? As expected the agreement is much

o _ I . 0o _
better for vl 2.5 where G, ~ 0.02 than for © 0.5 where

T .
H4{2

For @ # 0 the functions Ye(t) and Z,(t) of Equations (3-99) and

0.1.

(3-100) respectively become time dependent. They oscillate with all
harmonics of the modulation frequency. This is illustrated by Figure
(5-5) where 2. (t)is plotted as a function of time for various values
of @ 5‘5‘ = 0.2 and % = 1.0 are kept constant. The amplitude of the
oscillations increases with increasing @, otherwise the features of
the curves are rather similar. It seems reasonable then to choose

0. = 1 for the modulation depth, since the effects of the modulation
are most obvious in that case. The function gm(t) is plotted for

a =1, %. = 0.2 and various values of %—? in Figure (5-6). The
corresponding plots for Zx(t) are shown in Figure (5-7). With increa-
sing values of %—‘.’- a greater number of the harmonics contribute signif-

icantly to the time dependence, which becomes increasingly complicated.
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The amplitude of the oscillations goes through a maximum when 2, = nw,
(n integer). This is attributed to parametric resonances3o’3].

The time average of the atomic dipole moment gm(t)is just the
static component of ym(t), the time average of the inversion Z,(t) is
the static component of Z4(t). These static components are the quan-
tities which should be compared with Y and 2, of the constant amplitude
dynamic Stark effect. The static components of H”(t) and Z4,(t) as
functions of {%f are shown as solid lines in Figures (5-8) and (5-9)
respectively; the dashed Tines are once again the corresponding curves
of Figures (5-1) and (5-2). In the constant amplitude case the inver-
sion steadily approaches zero as (2, increases toward saturating values.
In the modulated amplitude case, the static component of the inversion
exhibits parametric resonances, i.e. it reaches zero over a set of

maxima and minima. Similar remarks hold true for the atomic dipole

moment.




Figure

Figure

Figure

Figure

Figure

Figure
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FIGURE CAPTIONS

The atomic dipole moment HQ as a function of %%? for
(R

W, = 0.2 in the case of the constant amplitude dynamic

Stark effect.

The atomic inversion Z, as a function of %%f for
I

w, = 0.2 in the case of the constant amplitude dynamic

Stark effect.

The atomic dipole moment for the constant amplitude dy-
namic Stark effect (dashed 1ine) and for the modulated
amplitude dynamic Stark effect (solid line) with & = 0.

Both are plotted as functions of %%2 for gi = 0.2.
i

The atomic inversion for the constant amplitude dynamic
Stark effect (dashed line) and for the modulated ampli-

tude dynamic Stark effect (solid line) with @ = 0. Both

o ¢, 5 =02

are plotted as functions of ™, W
}

The inversion Zglt) of the modulated amplitude dynamic
Stark effect as a function of time in the interval
08¢ %’frz < 3, for -g—)' = 0.2, M = 4 and various values

of the modulation depth Q .

The atomic dipole moment gw(t)of the modulated amplitude
dynamic Stark effect as a function of time in the inter-

val 0¢ Bk < 2, for @ =1, T -02,M=4and




Figure (5-7):

Figure (5-8):

Figure (5-9):
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various values of {%ﬂ . The y -axes go from -1 to +1,
1
the numbers at the bottom of the graphs give the respec-

tive values of %%f .

The atomic inversion Z,(t) of the modulated amplitude dy-
namic Stark effect as a function of time in the interval
0 Srggg <2, for @ =1, &E = 0.2, M = 4 and various

. 1
values of %%2 . The Y -axes go from -1 to +1, the

!

numbers at the bottom of the graphs give the respective

Lo

values of ),

The static component of the atomic dipole moment gadt)
of the modulated amplitude dynamic Stark effect (solid
line; @ =1, M = 4) and the atomic dipole moment Ye of
the constant amplitude dynamic Stark effect (dashed line).

Both are plotted as a function of {%% for gi = 0.2.

The static component of the atomic inversion Z4(t) of
the modulated amplitude dynamic Stark effect (solid line;

@ =1, M = 4) and the atomic inversion 2, of the con-

stant amplitude dynamic Stark effect (dashed Tine). Both
T

are plotted as a function of %%% for W 0.2.
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Figure (5-6)
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5.3 The Intensities

The formulas which we use to calculate the scattered intensities
are formally identical to the ones used for the constant amplitude dy-
namic Stark effect. The total scattg:ed intensity, for example, is ob-
tained from the relation Legr™ %1]_’ fdt {I+Zo(t) and will, in the
modulated amplitude case, exhibit pa:;metric resonances just like the
static component of the inversion. This is illustrated in Figure (5-10)
where the total intensity and its coherent and incoherent parts are
plotted using Equations (4-92), (4-93) and (4-94) with @ =1 (solid
curves) and the corresponding equations of the Appendix (dashed curves).
The decay rate is ai = 0.2 in all cases. We can determine the average
Rabi frequenqyf)o and thus the strength of the atom-field interaction by
measuring the total intensity of the scattered 1ight as a function of
the mean field strength and finding the minima of the resulting curve.
For the constant amplitude dynamic Stark effect this is not possible.
The coherently scattered intensity has the same functions] dependence
on '%5'! as the static component of 3;&) since Im"’g-,gﬁ‘g:(ﬂ at s
the incoherently scattered intensity is 1inkedrwith the static compo-
nents of both Z(t) and Ye (t) since Lipc~ %Ejdt{g(wzw(t)) - :‘;tj;(t)} .

When £2, reaches saturating values, a]mosg all the light is scat-
tered incoherently in both the constant amplitude and the modulated am-
plitude case. Moreover, the incoherently scattered intensity in the
modulated amplitude case has minima at the same values of {%? as the

static component of the inversion. We recall that the incoherently

scattered light has its origin in the fluctuations of the atomic varia-
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bles. It thus appears that the atoms fluctuate more when they are in
the excited state.

We can rewrite Itat as

T
QT
Itot ~ ? .(gjj (t) dt (5-3)
(s}

The time average of the probabi1ity'.gﬁﬁﬂ cannot exceed 0.5 and thus
there is an upper 1limit to the scattered intensity. The few authors
who have treated aspects of the modulated amplitude dynamic Stark ef-

fact30,31,32,33

all make use of the fact that the intensity of the
light scattered by an atom is proportional to the population of its up-
per Tevel. Consequently, they have to derive the function gjj(t} or Z(t).
Armstrong and Feneui11e32 treat the case of a two-level atom at
resonance with a monochromatic, weakly modulated laser beam using per-
turbation theory with the modulation depth @ as the expansion parame-
ter. Their results are valid for arbitrary field strengths and for
A&l . Their density matrix element gﬁ(t), expressed in our nota-

tion, is

. _ 08 4aT .
3ilt) = Zp 27 { ' ur T andr rITee”

[TAT*+Q2 + 101 cowt -w, (R~ w3~ T*) AMw,t] } (5-4)
In Figure (5-11) we compare Equation (5-4) to our function
Sjj (t) = z’z-(H- Z,(t) . e see that the time dependence of the
two functions agrees quite well, but that they differ by a small
constant term.

The assumptions made by Feneuille, Schweighofer and 01iver33 are

such that a comparison between their results and ours is not possible.




Figure (5-10):

Figure (5-11):
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FIGURE CAPTIONS

The intensities L., Line and ot Tor the constant
amplitude dynamic Stark effect (dashed lines) and for
the modulated amplitude dynamic Stark effect (solid
lines, @ =1, M = 5). They are plotted as functions

2o T .
of 257 for W, - 0.2.

The density matrix element gn(t)as a function of time

in the interval 0 < %%; £ 2 for our calculation (solid

1ines) and for the calculation done by Armstrong and

Feneuille (dashed lines). The respective values of @

and 73% are given at the lower left hand corner of each

graph.
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5.4 The Coherent Spectrum

The coherent spectrum in the case of the constant amplitude dynamic
Stark effect consists of a sharp ( § function) peak at W =W, ; the
coherently scattered 1ight is scattered elastically,

In the modulated amplitude case additional frequencies appear at

W=WL+mw, (minteger). This is illustrated by Figure (5-12),
where the length of the line at W = W_+ MW, represents the factor
YnYn™ which appears with ¢ (w-w,-mw,) in Equation (4-76); i.e.
it is proportional to the intensity of the light with frequency '
W=W,+MW,., We note that the coherent spectrum is symmetric about
Ws=We since Y-m Yom = Ym Un

For & = 0 Equation (4-77) reduces to

Ten (W) ~ g((%wv)*?-}z:)‘ cf(w-wF) (5-5)

which is in good agreement with Equation (A-14).




Figure (5-12):
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FIGURE CAPTION

The coherent part of the spectrum, e (W) , of the
modulated amplitude dynamic Stark effect as a function

U‘UL - E - =3 2(_2..0. =
ofoor a=1, y, =02 M =4 and m 0.5,
1.0, 1.5, 2.0, and 2.5.
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5.5 The Incoherent Spectrum

The feature which is usually associated with the constant amplitude
dynamic Stark effect is the spectrum of the incoherently scattered
light. It is a three-peaked structure which is symmetric about W, . In
the strong field limit the peaks are at W= W, and at W = W o

and have a half width of L

> and %"d' respectively. The height of the

central peak is three times greater than that of each side band. A set
of such curves is plotted in Figure (5-13) for %—? = 0.5, 1.0, 1.5, 2.0,
and 2.5 and (-E-. = 0.2 using Equation (A-15).

In Figures (5-14) and (5-15) our results for @ =0 (solid curves)
are plotted along with the constant amplitude results in the strdng
I . 0.2 and Q—‘l = (0.5 and 2.5 respec-

W, Wy
tively. The agreement for % = 2.5 is considerably better than that
i

field 1imit (dashed curves) for

2 _
for O 0.5.

The spectral distribution of Equation (A-16) is correct for all
Q4 provided 02,2 % . In Figures (5-16) and (5-17) we compare our
0 (solid curves) with the right-hand side of Equation

results for Q

(A-20) for -E}-. = 0.2 and %—‘f = 0.5 and 2.5 respectively. The agreement
for %-f = 0.5 is better as before and for ‘%—"’ = 2.5 it is very good.

In the modulated amplitude case the incoherent spectrum has peaks
at W=W, and W=W tQe +Mw, (m integer). Thus, the main
effect of the modulation is that the sidebands are now accompanied by
their own sidebands whereas the central peak is essentially unaffected.
This can be justified by examining the origin of the different peaks in

the incoherent spectrum. The width and position of the central peak
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are determined by the transient behavior of X , which is independent
of the applied field. On the other hand, the widths and positions of
the sidebands are determined by the transient behavior of Y , and Z ,
which for @ #0 contains the frequencies (2, + MW, and -2, +Mw, .

In Figure (5-18) we show a set of spectra corresponding to Q = 1,
T -o0.2and i -0.5, 1.0, 1.5, 2.0 and 2.5. These curves exhibit
the expected peaks at W=w, and W = W ¢ Qo+ mw, , but some
peculiarities do occur. For example, for {%% = 2.5, we would expect
peaks at W = W_t .5 W, , but they are missing. The reason for
this is that the factor J'al (O.%‘f) which appears in the terms for
the peaks at W= UJLi:fzo is very small for this particular combina-
tion of modulation depth and Rabi frequency: Jo(2.5) = -0.04838,
J,(2.40483) = 0. |
The incoherent spectrum is also symmetric about W=, . This
can be shown by replacing W-w, by -{w-w.) in Equation (4-90). This
yields an expression which is identical with the original one.
The positions of the peaks in the incoherent spectrum can be

determined using the dressed atom picture35.




Figure (5-13):

Figure (5-14):

Figure (5-15):

Figure (5-16):

Figure (5-17):

Figure (5-18):
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FIGURE CAPTIONS

The incoherent part of the spectrum of the constant

amplitude dynamic Stark effect in the strong field limit
i —_——w‘w"' 1 = Q—Q:

as a function of m) for W, 0.2 and )

0.5, 1.0, 1.5, 2.0, and 2.5.

The incoherent part of the .spectrum for the modulated
amplitude dynamic Stark effect with & = 0 (solid line)
and for the constant amplitude dynamic Stark effect in

the strong field 1imit (dashed 1ine). Both are plotted

f W=~ We

.QQ: 1 =
W, for o 0.5 and W 0.2.

as functions o

Same as Figure (5-14) but with {%2 = 2.5.
i

The incoherent part of the spectrum for the modulated
amplitude dynamic Stark effect with & = 0 (solid Tine)

and for the constant amplitude dynamic Stark effect

W =W

(dashed line). Both are plotted as functions of ™
|

2, _ 1.
for W 0.5 and W, 0.2.
Same as Figure (5-16) but with {%f = 2.5.

The incoherent part of the spectrum of the modulated
W=-We
0 .
for @ =1, M =5 & =0.2andEE=05,1.0, 1.5,

amplitude dynamic Stark effect as a function of

2.0, and 2.5.
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5.6 An Estimate of the Order of the Effects Which are Neglected
in the Rotating Wave Approximation

The optical Bloch equations of Chapter 3 describe a two-level atom
of atomic frequency W, interacting with a left circularly polarized
wave of frequency W,_ . In the rotating frame there are, for the con-
stant amplitude case and near resonance, no optical frequencies left
in the problem.

A Tinear wave can be written as the sum of a left circularly
polarized wave and a right circularly polarized wave. In the frame
rotating with the left circularly polarized wave these are observed as
a static field and a field which rotates clockwise with frequency 2W, .
Neglecting the latter is called the rotating wave approximation. For
optical frequencies W, this is a very good approximation and the

neglected effects, notably the Bloch-Siegert Shift7’34

, are very small.
Our calculations enable us to make an estimate of the order of the
effects which are neglected when we approximate a linear wave of con-
stant amplitude and with frequency W, =W, by a left circularly po-
larized wave. The linear field, which can be written as {Eo o w,_t})‘z
in the lab frame becomes {-Ei‘l( | + CODQUL‘t)} X' - {%9- Alm le_‘t} g'
in the rotating frame. Instead of dropping the terms containing the
optical frequencies altogether, as in the rotating wave approximation,
we retain the component in the §<‘ direction and thus are left with a
field of amplitude E(t) = %ﬂ (1+co2w.t)
This amplitude has the same time dependence as the one of Equation

(3-46) with a modulation depth @ = 1 and a modulation frequency

W, = LW, . Inour calculations we did not have to impose any re-




112
strictions on W, even though we chose W, = 5T for our graphs as a
reasonable value for the modulation frequency. The results of our cal-
culations are correct even for optical w, . The effect of the rapidly
oscillating part of the Q‘ -component of the electric field is to intro-
duce the terms containing In(a%;’) and products thereof in the
results. We have neglected the g' -component of the electric field,
which should have a similar effect. The right circularly polarized
wave thus manifests itself in the spectrum in effects of the order of
I“(.’z%) of the effects of the left circularly polarized wave. A

typical value of the argument for a strong field ({20~ 100 MHz) is

- - Ly)n
—&i = 10 8. We use the relation Jgp(x) = (ln!) for X&1! and
conclude that the effects neglected in the rotating wave approxima-

8

tion are of the order of 0.5 x 107° and smaller of the main effects for

optical frequencies.
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APPENDIX

The Spectral Distributions and Total Intensities in the Case
of the Constant Amplitude Dynamic Stark Effect

The constant amplitude dynamic Stark effect has been treated by

]0’]]’]2’]3’]4’]5’]6. Their results can be obtained in

many authors
many different ways, one of which is the one we use to solve the
modulated amplitude dynamic Stark effect.

The optical Bloch equations

x =- Zx (A-1)
9 =z - gg -QOZ (A"Z)
2 = -T(zt1) +0Q,Y (A-3)
have the long term solution
Xow = 0 (A-4)
T,
Yoo LT+ Q4 (A-5)
- 477 A-6
2o = IF 102 (A-6)
and the transient solution (for {2, 2 ‘%: )
- Rt
X(t,t') = X(t)e& (A-7)
' Az ult)-2(t +(t- t) ) I'- (t-1)
g(t,t) - j';%- )A‘ e A U( ATLJ (A—S)
" - ! -t -~ (t-T
2t 1) = g(“i\)+f\/&-z(t)er+(t ), (‘cp)\ A;i Do) gy

where '+ and Ay are given by Equations (3-67) and (3-68) respective-

ly.

The coherently and incoherently scattered total intensities can
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be determined using Equations (4-90) and (4-91) respectively.
In the limit of large measuring times T one can replace <S,(t)>

by Zeo and <S+(t)> by tlgm and one finds

T Q:W"

ICOﬂ ~ i (‘5’6‘2+Q02)1 (A-TO)
and
. Q. )
Liae ~ (LT“+QO) (A1)

The coherent and the incoherent parts of the spectrum can be determined
using Equations (4-64) and (4-65) respectively. One can show that in

the 1imit of large measuring times

-t

Arll+20= Yoo ) + U (1 + Ze) T+ (t-T")
1 4
+ g AL AL e (A-12)
A (l+Zp-Yw) * UolltZe) r-(t-t')
+ & -
't A-‘A+ <
In the strong field limit (‘LQ K1)
-T(t-t)
<FS+)ES.t)Y = t e 2
AT+t~ 2T -106)t-tY A13)
(=T 0+Liloitt” (=g 0 -Lilg)iT-
+3¢€ t gt

In the limit of large measuring times T one finds

Lon) ~ 2T () 00 = § ey Gl (s

and in the 1imit of large measuring times T and strong fields one ob-

tains
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. T !
L e (W) 16{ (£T)* +{w-w)?
(A-15)
3 3

T BT+ - -0 T ETF (w- Wit )

In the above references the incoherent frequency distribution is given
in the strong field limit of Equation (A-15). We can calculate I jpc (w)
for arbitrary field strengths using Equations (4-65) and (A-12).

In the 1imit of large measuring times T we obtain the following result,

which is valid for Qo?. f-g: :

o (o) ~ 1o !
mc (W) 1m0y | (E) +(w-w)

wwkﬁ1 %)

L HQI-47) - (§07-577)  A.T1- ()
[ET+RITETY + (w-w- 2oT1-(5,)7)°]
. +0,7]1- (&))"
. _E(0S- 5T+ (30, - ¢ T) QOTI-(L.»* }(A_m
BT+ (BT + (w-wo+ 2,11 (3,) )]




