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RESPONSE OF TWO-LEVEL ATOMS TO INTENSE
AMPLITUDE MODULATED LASER BEAMS

1. INTRODUCTION

The spectral distribution of the light scattered by a two-level

atom in an intense laser beam of constant amplitude has been termed the

dynamic Stark effect. It has been the subject of a number of theoreti-

cal papers, as well as experimental ones.

We treat the case of a two-level atom in an intense, resonant,

amplitude modulated laser beam. We refer to our case as the modulated

amplitude dynamic Stark effect and to avoid confusion we name the dy-

namic Stark effect more specifically the constant amplitude dynamic

Stark effect.

In Chapter 2 we derive the equations of motion for the elements of

the density matrix of a two-level atom which interacts with a laser

beam of arbitrary time dependent amplitude and at the same time under-

goes spontaneous decay. We obtain these equations from the equations of

motion for a system consisting of the atom and a radiation field by

tracing over the field states. The laser-atom interaction is treated

classically from the start.

In Chapter 3 we rewrite the equations of motion of the previous

chapter in terms of a new set of variables, namely the atomic inversion

and the components of the atomic dipole moment in phase and I out of

phase with the electric field of the laser. The equations in the new

form are known as the optical Bloch equations. We solve them for the

particular case of a sinusoidally modulated laser amplitude.



In Chapter 4 we derive the relation between the atomic variables

and the light emitted by the atom. We subsequently calculate the co-

herently and incoherently scattered intensities as well as their

spectral distributions.

In Chapter 5 we graph our results, interpret them and compare them

to the constant amplitude dynamic Stark effect.



2. EQUATIONS OF MOTION FOR THE ELEMENTS OF THE
ATOMIC DENSITY MATRIX OF THE

TWO-LEVEL ATOM

2.1 Two-Level Atom Undergoing Spontaneous Decay: Time Dependence of
the Amplitude of the Excited State

Whenever a Hamiltonian can be written as H = Ho+ HT , where Ho

is the unperturbed part of the Hamiltonian and HI is the perturba-

tion, we can go from the Schrodinger representation with

H N > = pt to> (2-1)

to the interaction representation where

HT 10> = Leta 14Y> (2-2)

with

and

t
(2-3)

i-Hot tHI = e" e
0

(2-4)

We write hio as a linear combination of states In> , which are or-

thonormal eigenfunctions of Ho . Thus

101> = Z b (t) In> (2-5)

and we obtain the following differential equations for the amplitudes

bn (t) :

bn(t) <mIHiln> (2-6)

We consider a two-level atom with an excited state (j> of energy

and a ground state 10 of energy 11 Wk . We write the vacuum

state of the radiation field as 10> and the one photon states as
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Re> where at stands for all the quantities which describe a photon

in this mode, namely the frequency (.1312. , the polarization direction

/.

eAt and the propagation direction Ikle .

The annihilation operator al( and the creation operator CIAl; for

a photon in mode at obey the commutation relation for bosons,

[Qat, 0.a &Cm . We can write some basic relations for the

field states 10> and l AO in terms of these operators as

altio> = 0 <ol aQ = 0

aZtio> = <01 aAt = 0.0
<oirle> =

0111Am> = <01C10,410> = < 0 a:. + cif), 1 0 >

(2-7)

(2-8)

(2-9)

(2-10)

The unperturbed Hamiltonian Ho consists of an atomic part HA

and a radiation Hamiltonian HR , such that

HA I j> I j> (2-11)

HA IK> = WK IK> (2-12)

HR 10> 0 (2-13)

HR Re) = %at lae> (2-14)

The transition of the system of atom plus radiation field (from

now on simply called the system) from the initial state j>10>

to the final states Ife) = 1 K> tat> is called spontaneous decay. Spon

taneous decay has been treated extensively in the literature1'2'3'4

We review it here to present our notation, to demonstrate our method

of introducing the decay rate and to provide some means of comparison

between the approximations made here and in later sections of this
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chapter.

The states ii> and If > are eigenstates of the unperturbed

Hamiltonian Ho with

Hort.> = (HA+1-.1 )k> IL> = "AUL IL> (2 -15)

and

Ho lfe> = (HA+ HR)lfe> = (wK +WA. )If > = wfelfe>

The interaction Hamiltonian is

H =
_ e. A.A

m r

2-16)

(2-17)

with the quantized vector potential

'h
ieg

e
1 A -LAA "..

A* = Z. (2u.) ( eAt c).L e -i- e4 ale
e AL 0

Using Equations (2-4), (2-7)-(2-10) and (2-15)-(2-17) we find that

<i. 1 Hrii.> = 0 (2-19)

<felHilfni> = 0 V einl. (2-20)

*
< L I Hi'l -ft> = j<1<01 e

Hot p
p.

where

and

where

7
i.kAm.; A *

u),.101E.0
f eA a Ant

Zef. i (toi 6/fdt

e
< J I 4q(A),E P

Jr
4 - iHot

e /e K>lat>

<fel H:1 ) =<LIKift>* = VtfP e-i-(6-)i-Ufe)t

Vfzi e-"1-wf )t

= <K 71
- A * LAA

(J-)Ae rn. P et e t j >

(2-21)

(2-22)

(2-23)

(2-24)



Before making use of Equation (2-6) a peculiarity of bound state

problems has to be pointed out3: In problems involving discrete bound

states the transition probability per unit time between states is fi-

nite, so that it is not possible to fix the initial conditions for

t ; instead they have to be fixed for a finite time, say t= 0

Then Equation (2-6) is physically meaningful only for t> 0 . We would

like these equations to hold for all times, however. If we assume

bijt) = 0 and bfe(t)= 0 for t< 0 , these amplitudes will satisfy

Equation (2-6) for negative times.

It was pointed out earlier that in the case of spontaneous decay

initially only state IL> is populated. This implies that

bL(0) =I bft(0) = 0 V I. (2-25)

There is a discontinuity in bi(t) at t= 0 , so that the integral of

d (t)
over a small time interval around t = 0 isdt

o+zf d dt = +-(06) b (0-E)
(it

0-E

We conclude that we have to add a delta function term in the differen-

tial equation for b(t) to achieve this. Therefore, with the use of

Equations (2-6) and (2-19)-(2-24) we arrive at the following set of

differential equations, which are valid for all times:

ii)L(t) = Z vif, bye (t) + L6(t)
e.

Lipft(t) = Vfti e

(2-26)

(2-27)

We solve these equations by Fourier transforming the amplitudes.

, 14)1rit
We define bin(t) - f EWW) Lcu) , so that

-03



bi,(t) 2Tri.

0,0

Lwct e-i.Lot

-Liott
bfe(t) = 27(.. e Lio

ft Bfe (10) e diu
_oo

We write the delta function as

7

(2-28)

(2-29)

co

f e-Luit
dwL6(t) = Tirt. (2-30)

oo

where the factor E?
iwit

is introduced in the definition of the delta

function since it is also present in the definition of bi(t) and can

be factored out of the equation which we obtain by substituting Equa-

tions (2-28)-(2-30) into Equation (2-26), namely

or

c,.

f e e
LLtQL-t-

(w) dco
-Go

= VLft
(2.

GO

'WL

LLOCt
e

-cwt
dW

Lo...).ft-wyt
Bft(w) du)

eLLtjtt [ 0.0 -(1)0 Bi(w) -Z Vife. (w)

which implies that

(LA.)-(.Jj)Bi Vilft Bfe, (14)) +

Similarly, Equation (2-27) becomes

(L0-4)4- WAL) BO)) = Vfei BL(w)

-Lutdts.)
= 0

(2-31)

(2-32)



We replace 8ft(U)) in Equation (2-31) by the expression obtained from

Equation (2-32) and get

Vi. ft V-fe
(3L (w)( -11-)J z- it) LJK

8

(2-33)

For photons in a cavity the density of modes in the frequency range

Wat LJAt diJat i s

Wa t UWat.
- (wxt) dwat Vc3

We can replace the sum over states I-FE> in Equation (2-33) by an inte-

gral over frequencies, an integral over propagation directions and a

sum over polarizations if we introduce the following density of states:

Then

(u)At cluAt clf2

Vi.ft Vfei.

W K Wat

Wat dwat d.Q
811-3 C3

00 TT

Wi.ft.12.WAt
= ' Z fd(JJA fac2 Lo_w..w4

811 c Pa t
0 o

where Viit is given by Equation (2-22).

In the dipole approximation we can set e
i3RAt7

, so that

, e j
Vft

.
Pin 1 .1 WAtE0

The following relations between matrix elements can be derived":

<ji-PIK) = Lm (Wj- (O <i Fel k
and

1<j17.a I i<>14 = 3 I <J 17- IK>12'

(2-34)

(2-35)

(2-36)

2-37)

(2-38)

A
where the bar denotes an average over the polarization directions e .
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We calculate I V,ftr using Equations (2-36) and (2-37) and subsequent-

ly average over polarizations. We obtain

Vtft z = pdz kjIr1011
zwatE0'h

(w.-Lo

We substitute this into Equation (2-35), sum over the polarization

directions and integrate over the propagation directions. Then

oo

Vife, Vt+e (1),i Cdx f (ae. dwat
(2 -39)

(.0 WIC Wat c3 EoR (1)- UK- 10At

In Equation (2-39) we can extend the limit of integration to -cry . This

introduces a negligible error since the lntegrand is strongly peaked

at (Oat= CI)] -(1), as we shall see later and thus is essentially zero

for negative values of (Jae. Since

CI)p f W Try uj) (w)-F(w) du) eina .citi)

40 I (.0 +

f(w)
LE

-co -co

where P denotes the Cauchy principal value, we can replace
W-WK-ukt

I 1 1 ,
by the zeta function (1)-(.4-1.JAe) = P Lu 0.1)-LucLuAti

4)- (A)K- Wat

so that Equation (2-39) becomes

7 vifLvt.
tA) 1-1-C Ili At

G

) fprac3e., 1<j IrIK>ri
00

wat dwat
J
-0

it(w) 'nu))

LritJA(.6(b)-(i)K-wAt)dwAti
-co

where

T(w)
ea(w.i-LIJK)a"311- c 6 Kilrik>1 (w-wit) D(u-LJK)

Fly
and

(2-40)

2-41)



tu))
)(());

6-Trac3e0 Ri il'IK>la

GO

oo
(,JAL CtWat

J (A-) WK' Wit
- OD

10

Cat Ct
alr

-co
Ltikt (2-42)

We substitute Equation (2-40) into Equation (2-33) and get

(14)-WI -11(W)+iT(tzi)) Bi (w) = I (2-43)

We obtain the amplitude b1(t) by evaluating the integral in Equation

(2-28). This integral can be replaced by a contour integral, where the

contour consists of the real axis and an infinite semi-circle in the

lower half-plane. There is no contribution from the semi-circle since

t is positive in Equation (2-28). We make use of the residue theorem

which states that

ctz = ,21rL eUw (z-zo) f (2)
2:iEo

where f(s) is a function of the complex variable a with a simple pole

at Z .=.,Z0 and stands for an integral around the contour C. in the

positive sense (counterclockwise). The integral described above is such

an integral except for the direction of the integration which is clock-

wise. This introduces a negative sign. We need to know the pole of

di(W) . For optical frequencies ( Te. 1015 Hz ) the order of mag-

nitude of the quantity D defined by Equation (2-41) is 10-10, which

means 1)<KI . The function VW) is essentially independent of W

within a reasonable range of W-values and to a first approximation we

can replace the functions 6(W) and 1.(u)) in Equation (2-43) by '(W.1)

and 11(WJ) , respectively. Then we find that

Bi (w) _ (ujj) +

r



with a pole at 4).. Wj + 11(4.0-..1.7:ULO and

- (t.o)t t

(t) = e 0 1 j
e

The wave function is therefore

Hot r

e t bi (t) ii.> bfe(t) 1-Fe>

41(wi)t -62-1-t--L)jt .

e c z + e
wfet

b.ct(t) f e >

11

(2-44)

(2-45)

The state ii> oscillates with a frequency (Ai +71(4 ; we can inter-

pret 11(Wi) as an energy shift of the upper atomic level. It repre

sents the so-called self energy of that level which arises because the

bound electron is accompanied by, and interacts with, a field of

virtual photons. We define

00

D r WAQciw,t,
5 3. 1(wi) aTr P wj-th.) t< (1.4t

C4

(2-46)

In our representation of the system S * 0

The correct representation is one in which the virtual photon

states are included in the unperturbed eigenstates and the self ener-

gies are included in the eigenvalues of Ho . In such a representation

TIM vanishes 3
.

Let us drop Tow in Equation (2-43). By using Equation (2-41)

we can write

(w) = w( I +

The pole of the function Bi(W) is at

(4)*+ :LDWK)(1-(1) p)

(2-47)



or, approximately, at

D w; K )

where terms of the order of Da. have been neglected, and Equation

(2-28) yields

i'3)((41-11-1k) Def. - iTt
bL (t) = = e

The decay rate T is defined by Equation (2-49) as

D (Lui -(k)14) (2-50)

Incidentally, D (wj -WO = fill(uo , which is another justification

for replacing Z-(t.i.)) in Equation (2-43) by '6(4.)j) .

12

2-48)

(2-49)

2.2 Two-Level Atom Undergoing Spontaneous Decay: Time Dependence
of the Probability of the Excited State

As before, we work in the interaction representation where

iii at H= 1(1)1>

= <4311i HI

The definition of I IV> and H z are given by Equations (2-3) and

(2-51)

(2-4), respectively. The density operator

the differential equation

s' = .><

qt >) <V +. ( 64-t <of )1

IV><011 14)" >< 'I

which is equivalent to

h [3'] = ri-in{ss]

where [31 is the density matrix with elements [Slim = <miSsIn> 3 Snin

and [H stands for a matrix with elements [ H timn < M i HT' I n >

obeys

(2-52)

2-53)



The system under consideration has states IL> = lj >10 > and

WE> Ii01:11> , its density matrix is

3 Li 31f, 3 if%

Sfa.i

13

(2-54)

and its interaction Hamiltonian is given by Equation (2 -17) so that

(

0
i.o.),- 44,)tve

eT6 44- u4ot

x

x

(2-55)

We substitute Equations (2 -54) and (2-55) into Equation (2-53) and get

;At) L-afot 0
L Si:

L

= e vtfe &f

-1,(C4I-Laft)t
t. 6(t) (2-56)Z ee

ei(1.4-140)t ei.(wi-(04e)t
VLft

-L(wi-440t
Afei. = vft S Sfe-fm e-L(44-wfm)t Vfmi

fi

10.43culfm)t
vifmLSfefm 3Lfm

- Sfei e

(2-57)

(2-58)

(2-59)

where we added a term Id(t) in Equation (2-56) for reasons similar

to the ones stated in Section 2.1. These equations are valid for

all times and contain the initial conditions 3;1(0) = 1

g Lft ( 0 ) = Sfei (0) 3fefm, (0) = 0 1/ e, m . Probability is put

into the system at t. 0 and all matrix elements are set to zero

for negative times. We transform



Qo

(ti.) - wrot - Lurt
g ran_ (t) 27L e e R 111 11 (it)) dw

-GO

so that

g ii (t) = a1Ti e-Lwt Rujui) dto

GO

Stfe(t) =
etAwl-wice)t e-Lwt

SfeL(t)

-GO

Rift (w) dw

eztri, c. e. rsfti.
n-i.(wi-uft)t ..Lwt

Sfefmtt) 2-Tri

(44 t- tOf )t -twt
Rfefm (w) du.)

-0

W) dw

and let
co

L6(t) = airy
-o3

-iwt

14

(2-60)

(2-61)

(2-62)

(2-63)

(2-64)

2-65)

We substitute Equations (2-61)-(2-65) into Equations (2- 56)- (2 -59)

and get

R ) = Vift Rfti, (w) Rife (to) Vf (2-66)

(tL) + Wft) Rift (W) Kfm. Rfatfe (6)) Rif. (W) Vift, (2-67)

(W + Rfti, (W) = Vfei. R Li, (4)) Rfefm (W) Vfm (2-68)

+ Wfm Wft) Rftfrn Vfei R iffn Rft (4)) Vifm (2-69)

We replace Rife(W) and Rfel(W) in Equation (2-66) by the expressions

obtained from Equations (2-67) and (2-68), respectively, and get



(1) Row) \AftVfti RiiW-Laft+Liii It)
c- R.Etfrft(W)

LI) f ( +11.1q

V-Ft Rfinft (to) 7 Vi+e V.feL

tin
(.0+ tOi ' W+Wft-Wi.

15

1- 1 (2-70)

The single sums become, in complete analogy with previous calcula-

tions,

where

and

where

\lift V.Fei.

4)K = 111 (tk) 2. T

"fi (w) = D(A) WK)

(w) P
wAt CI.U.)At

zr +14.):1 LJK-11..)At
-a)

Vife Vft
+ K (Aid + 11.)A t

(ii)) z Ta (to)

TZ kJ) = D (wi-wK-w)
0,0

wAt Moat
112 (w) = p

air (4-1- wK- + wA
-co

We assume for the moment that we can neglect the double sums in

Equation (2-70). We then get

WRii(U)) = [V(1-011240 -i,D(WJ-64)]Rii.(W) +

We can eliminate 11 (AJI) and 1 (U)) from Equation (2-77) by noting

that to a very good approximation 111(4)) and 1a(W) can be replaced

by 111(0) and WO) and that

(2-71)

(2-72)

(2-73)

(2-74)

(2-75)

(2-76)

(2-77)



711(0) = TWO)

Thus Equation (2-77) becomes

R (w ) = + L

and by using Equation (2-61) we finally get

Sit (t) = e T- t

16

(2-78)

(2-79)

(2-80)

We compare Equations (2-80) and (2-49) and find that

Sa(t) = bi*(t) bi(t) (2-81)

From Equation (2-81) we conclude that the approximation made by

neglecting the double sums in Equation (2-70) is of the same order as

the approximation made by dropping the 1 terms.

2.3 Two-Level Atom Undergoing Spontaneous Decay: Differential Equa-
tions for the Elements of the Reduced (Atomic) Density Matrix

We derive a set of differential equations for the elements of the

atomic density matrix [S0} of a two-level atom undergoing spontaneous

decay. The atom has the two eigenstates 1j> and ; [Scat] conse-

quently has four matrix elements: Sji, S. 3xj, 3KK These are

not all independent. We have

2.1j SKK = I
(2-82)

Kj = Sj: (2-83)

Calculations, which lead to the same result as the ones below are

done by Mollow and Miller
6

. They consider a two-level atom coupled to

a zero-temperature bath of harmonic oscillators. Such a zero-tempera-

ture bath can be assumed to always be in the ground state as far as its
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effect on the atom is concerned (Markoff approximation). They derive a

time development operator Wilt) , which is expanded to second order in

the coupling parameters which appear in the interaction Hamiltonian and

apply ii(at) to Sit) to get Si(t+At) . Then they take traces over

the states of the bath to obtain Sal (t) and So..' (t +At) and finally

(t)..arrive at an expression for S o (t+ 6,t ) - 3 0!
, the "coarse-

6t
grained" time derivative of 3a: (t) , from which they are able to

extract the following differential equations:

§di = T Sii (2-84)

.j1( = 3jK (2-85)

Compared to this approach our method is straightforward and the

implications of the approximations we make are more transparent as well.

We use the very general Equation (2-53), which holds for any quantum

mechanical system and apply it to a suitable representation of the

system of atom plus radiation field. This results in a set of differ-

ential equations for the elements of the density matrix of that system.

We also derive the relations between the elements of the density matrix

of the system and the elements of the reduced density matrix. With the

help of these relations we arrive at the differential equations for the

elements of the reduced density matrix.

First we note that the solutions of Equations (2 -84) and (2-85)

are

and

S (t) = sji (0) (2-86)

Sdx (t) = Sil( (0) e
t

(2-87)

or, with the initial conditions Sii(0)= 1 and SiK (0) =



ji (t) = e

and

c7 t
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(2-88)

SiK(t) a 0 dt (2-89)

This should caution us against representing the system by states

i.> = 1j > 1 0 > and Ife> =1101A.e> only, when trying to derive

Equations (2-84) and (2-85). Let us pick such a representation (which

implies that at some time to al 1 the probability is in state I L > and

we have conditions as in Equations (2-88) and (2-89) ). Then we

expect to:

a) get the equation = Sji and

b) get the information that 4.j1 = 0

We will now verify the claims made above. We write the most

general wavefunction of the system as

b1 IL> -1- bf Ife> 2-90)

and calculate the density operator:

= 101><V1 = IDL1D7 IOW 11><fel

+ br I fe I +
m

b.Febfm Ife <fnl I (2-91)

We use the definition [2'3.n = onis'In) = S mn to rewrite Equation

(2-91) as

= 0(0><jl<Oi -1- 2J Sift (j>10><KRAti
(2-92)

g-feilk)IAL)<j1<01-1-1.0fncrn1101Ae)<KkArn1

We "reduce" the density operator 3' by taking the trace over the field



states; S a: stands for the reduced (atomic) density operator. Then

tr S
lett

0.t0

and, with Equation (2-92)
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= < 0 I S I > 2: <Ael VI > (2-93)

so = s Li Ij > <j I 1- Z g.ftft IK> i( 1,,(

The matrix elements of [80!.] are defined as follows:

Sjj = <j13a:lj>
<j I SO:. K >

<KI 84:1j>
<KI

3jK =

sKJ =

S KK =

(2-94)

(2-95)

(2-96)

(2-97)

(2-98)

We therefore find that in the case of the reduced density operator of

Equation (2-94) we have

gjj = gLi
Sji4 = 0

gKJ = 0

S KK Z 3Ftft

(2-99)

(2-100)

(2-101)

(2-102)

which proves the statement b) above.

In Section 2.2 we treat a system with states I i> and (ft> and

given initial conditions. Now we look at the same system without spe-

cifying the initial conditions, since we don't want a solution for

gii(t) but only a reduced differential equation. We therefore use

Equations (2-56)-(2-59), but drop the term "+i,e(t)" in Equation (2-56).

This leads to Equations (2-66)-(2-69) but without the term '+ I " in

Equation (2-66). In a calculation analogous to the one above we obtain



6) Ra(i,)) = LTRii(w)
We multiply Equation {2-103) by 1 e
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(2-103)

and integrate over (A)

Lfw
Lwt

e du) = fR.i(w)e-Lwt du)
L

00

= xrFr L ciwI R )

- C4

We use Equation (2-61) and get

s ii

or, because of Equation (2-99)

Sii

thus proving the statement a) above.

(2-104)

(2-105)

(2-106)

We conclude that we have to pick the most general representation

of the system in order to derive Equations (2-84) and (2-85) and take

= b. (i) + + bf, Ift>
where

Ii> Ij> io>
lq) = IK>10>

Ife> = Ik> lAe)

We use Equation (2-53) with

s' =

and

Sill Sift

(2-107)

(2-108)

(2-109)



I H

,
0 0 v tf e

0
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(2-110)

where 1.4)0 = WI - WK is the atomic frequency and find

I §.. zeL(coo-wxtrc e- LoA).-Lo,ot

" 2.
t (2-111)

i
i(wo-Wat)t

9
(2-112)

i 'tff. = Ze.L(w°-tja)t Viin, .4n-ft S e Vift (2-113)

- 'L(6)0 - wxt)t
L §431 - sift e v.fti, (2-114)

.

L Sii = 0 (2-115)

=
eL(wo-wzdt I,

v Lfe (2-116)

-i(wo-wAt)t
41. -I (WO (4),In)t t /

1 .Ft:t. = e life i 3ii, Z 3fefin vL-.. Y.Fri i (2-117)
re

L§fti e-i(too-wAt)t a
Vf t I, 3 ii (2-118)

§fefm e-L(t40-Wadt
e

,
V.Fei 5 1,f in 3 fc i. C. V if m (2-119)

We Fourier transform the matrix elements using Equation (2-60) and

find
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w Rii = Z Vift Rfe1 Rife V.pti, (2-120)

(w (1)0) Rig = Z Vift Rft$ (2-121)

(IL) -Wo+ (.01.t) Rife Z Vi.frn Rfm-ft Vife (2-122)

(it) I- Wo) Rii Rift Vfel (2-123)

t LJA.1) Rife = R5i Vi ft (2-124)

(4.)+ Wo (JAL) Rfti. = Vfei Rd Rfefm Vfmi (2-125)

(w-wAt) = Vfei Rid (2-126)

(w + LJArn- WAt) Rftfm = Vfti Rifm Rfti. Vifm (2-127)

We replace Kfttw) and RfeL(w) in Equation (2-120) by the

expressions obtained from Equations (2-122) and (2-125), respectively,

and following the procedure outlined above we again derive

Rci (W) Ri(w) (2-128)

and

g ii = 6 ii
(2-129)

Next we replace R4e1(w) in Equation (2-121) by the expression ob-

tained from Equation (2-126) and find

(14-Wo)Rii(W) Z Vifc Vfei
R i (u)10- WAt

where

and

(w) '= 0-1(,A))) Rii(w)

D cf dwAt
air r w -wit
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Y(W) = DLJ (2-132)

The pole of Rii(W) is approximately at W = Wo

replace (w) in Equation (2-130) by
oo

P
Wat CLUJAtD(OO) =
LOCI -wee S

,21r J
-CP

We can therefore

This turns out to be the self energy S again, which can be added to

Wi to give the renormalized Ltij . Similarly we can substitute t(Wo)

for "t (w) where t(Wo) DWo = . Thus Equation (2-130) becomes

[ W (to., ÷s) t WK] Rig (w) = Rich (to)

(A) j

(2-133)

or

(w-wo) Rich ((kJ) = zT Ri.a(w) (2-134)

which leads to

S (2-135)

Similarly we get

(U)+Wo) Riai(W) ("7-1(w) 1*(10)) RiL(W) (2-136)

The pole of R%i.(w) is at Wz-W0 and we can replace W by -Wo in

ft(w) and t(w) . Then

= S (2-137)

and

(-Wo) = D ()Jo = (2-138)

and we find

[ W + (wi +5) 6),1 Rit (U) = Rii (w) (2-139)

or

(431- too) = z T Rit(w) (2-140)



which gives

are
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s = 8
$1. $1 (2-141)

The relations between the matrix elements of (.%1 and (31

2ii 6-

SD( = Si%

SKJ = Sii.

KK = g gg 3+eft

(2-142)

(2-143)

(2-144)

(2-145)

We use Equations (2-142), (2-143) and (2-144) to rewrite Equations

(2-129), (2-135) and (2-141), respectively, as

&Li gji
(2-146)

S.itt
(2-147)

Ki Ki (2-148)

From Equations (2-145) and (2-142) together with Equations (2 -111),

(2-115) and (2-119) we get

43i 2: gfeft = S KK = 0 (2-149)

2.4 Two-Level Atom in a Laser Beam: Differential Equations for the
Elements of the Atomic Density Matrix

We are concerned with electric dipole transitions and describe the

interaction between the atom and the laser beam by the Hamiltonian

H = a.? (2-150)

where er is the electric dipole moment of the atom. We write

the electric field as a classical quantity, namely

(t) = E(t) Re t a c-iucti (2-151)

where EE(t) is the (possibly time dependent) amplitude of the laser
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beam, Wt. is its frequency and e its polarization vector.

In the case of a left circularly polarized wave propagating in the

z-direction we have
1 A A

e. = ( x -fr Ly (2-152)

and Equation (2-150) becomes

H
ate) i(r.x÷Ly e-iukt,

where

and

47 e. E(t) 1J -iWILt -1

) 3 2 (r) e , (r) e'Lw-t
r

(2-153)

1J,'(r) = (rx iry) = (OA))

(r) = r = r Y1 (13,0)

(r) (-rx-Lry) = rY;(8,0)

(2-154)

(2-155)

(2-156)

are the components of the solid spherical harmonic of first rank and

/
Y--t` (8 0) and 7

0 ( 9,0) are spherical harmonics.

We assume that the atomic states are states of good angular momen-

tum. The atomic state I > has angular momentum quantum numbers Qj,

, and I k > has angular momentum quantum numbers .4 , , respec-

tively.

The Wigner-Eckart theorem gives us some information about matrix

elements involving states of good angular momentum (definite e, , m,
m

and ,

-r
t) and tensor operators i , namely

<e;. ma I T11 t i = < t , t m, m I Q, t 2z mz > < II Tell e, >

where < MI Ill I t, P. e,1112> is a Clebsch-Gordan coefficient which

is zero unless nil + rn = ma. and ti+ e, and <.e2,11 re. II 21>
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is the reduced matrix element of the irreducible spherical tensor opera-

tor -re and does not depend on the magnetic quantum numbers. The set of

the 2k+ I operators 11Z = rk Y; is an irreducible spherical tensor

operator of rank ft. Thus the three operators 11,1 ,11, and J 1 . form

an irreducible spherical tensor operator of rank 1. Using the

Wigner-Eckart theorem we find that

l

13t1 I = 0

<k1 lk> = 0
and if

<j ; 1 k 0

which implies ffl - MK° I then

I13;'1k)
Thus

<j l Hai li> = 0
<K11-110 = 0

J I Hz Ik> = el(1430-w1-)t (t)

where

(t) e E2(t)

and

<K1E11> = e-L(wo-w,.)-t
nit)

II 2

where
.fin

2

*(t) 41r e E2(..t) < >

We use Equation (2-53) with

[8'1 = SiK)
8k; SIKK

(2-157)

(2-158)

(2-159)

(2-160)

(2-161)

(2-162)

(2-163)

(2-164)

(2-165)

(2-166)



and

[ [ H

and find

r2(t)
0

777-

e
-Liwo-wot n*(t) 0

, owo-wot
L sji = z e 12(t) sxj _ e-i(wo-wotfr(t) sj,

L JjK = L en(t) [gm( Sin

I = e4(w°-wL)tn*(t) 3J; 3Kici

L 3 KK c-
.(40-1)0Il(t) 3:K - eL(oo-wotn(t) J KJ

2.5

Adding Equations (2-168) and (2-171) we get

..i_r S KK "4" 0

which implies that 2jj SK
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(2-167)

(2-168)

(2-169)

(2-170)

(2-171)

Two-Level Atom Interacting with a Laser Beam and Undergoing
Spontaneous Decay: First Approximation

We consider a two-level atom interacting with a laser beam and with

the radiation field. The interaction Hamiltonian is therefore

Hz = Hi t H (2-172)

where HI is defined by Equation (2-17) and Hz by Equation (2-150).

To a first approximation we describe the system by the wave function of

Equation (2-107) and by the density matrix of Equation (2-109).

In Figure (2-1) we schematically show the states and interactions

of the system.



IL>

fe >
Figure (2-1). The states and interactions of the

system in the first approximation.

We find

icw0-4),Yt
0 -07 e

S2* e- (t.),3-4.k)tr, e
i.- two- wl.,Yt

Vf,L e

X

e
LIW0-114)t

and

vi.ft sfti -1):* Sid Z Vfti. 3 Lf¢

Vi,fe 3fei -S2 3a

sifts 12 Sot 1- Z Vifim Sfmft Vi:ft Sit

iAgt S2,* Su SrSgt V4. Sot

S'

Life = f2s*Sift

x
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(2-173)

(2-174)

(2-175)

(2-176)

(2-177)

(2-178)

(2-179)



VfLi S ii

Vfti Sig C2' Sfei

§ftfrn V.FeL 3ifm Vifim j

vfmf 3-Fefm

In Equations (2-174)-(2-182) we used the abbreviations

121
ei(.00-4k)t

2

Vife e"0-wa.frt

V4L
vfei e-L(uie-w4dt

These equations reduce to

13a = -ITS ii 1- f21 31i

S. )f5 z Li

6 35i + 121* ( 3d Sg3)

L fr S gi

L Z Sfefe = Li

or, when using Equations (2-142)-(2-145), to

3KK

=
Oct) e

06).-w
L

ytzsKj
a*It) - (wO- e

_ Si +
nit) eict...)0-6)Lyt

( Sim

0 fr(t) -i.(wo-toorI e.
SKI Sii

Sij Sfefe

SKK Z 5-Feft

3. 1_2Lt) ow° wot
z e

21t) eLtwo-wLit 0
3K;
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(2-180)

(2-181)

(2-182)

(2-183)

(2-184)

(2-185)

(2-186)

(2-187)

(2-188)

(2-189)

(2-190)

(2-191)

(2-192)
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These differential equations should reduce to Equations (2 -146)-

(2 -149) for Q = 0 , and Equations (2-168)-(2-171) for 1.= 0 . We

set n = 0 in Equations (2-189)-(2-192) and get a set of differential

equations, which are identical with Equations (2-146)-(2-149). We set

1 = 0 in Equations (2-189)-(2-192) and get

12(t) owo-wot nt) _0)0-wdt
L

Jj

I K IT)e L'64-wt)t [ Sly( 3J1 sfefe

Int) (wo-w tt
L 31.(i = e gji S KK 24efe I

SKI n/(t) e-`(')°-wjt 3 12(40 ,i.o...10-wdt

K K

These equations differ from Equations (2-168)-(2-171) by the term

gfefe in the equations for the off-diagonal matrix elements.

To sum up, the spontaneous decay is described correctly by Equa-

tions (2-189)-(2-192), the interaction with the laser beam is described

incorrectly. The reason lies in our choice of states to represent the

system, which makes it impossible to take into account that the atom

can reach the excited state starting from states ift> .

2.6 Two-Level Atom Interacting with a Laser Beam and Undergoing
Spontaneous Decay: Second Approximation

We describe the system by the "improved" wavefunction

> = bi 11> + by 14> bh. ihj> +.Z 4i.> (2-193)

where



and by Figure (2-2).

11.> = 1j> 10>

14) = IK> 10>

Ihi> lj>

Ifi.> = 1 K> laL>

Ift>

Figure (2-2). The states and interactions of the
system in the second approximation.

The density matrix is

tsl] =

7
9u. i 34. i Si.h, i 3Lft

341 gig 31111- Sift

Sh,i : Sh,% : Sh,h,

: Sfik..
: ;

afif,
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(2-194)

(2-195)

The interaction Hamiltonian is HI = Hii-Hi again and CHI.] is given

in Equation (2-196) on the next page. The sole purpose of the dotted

lines appearing in the matrices of Equations (2-195) and (2-196) is

to make their structure more apparent.



: a 61,, "0- Uat .
0 : k C.

ir e-i(L00-UL)t . 0

-L(w0-4),)-t
vf.1 e 0

0

ey *

o-

-i(wo-udt

x



The matrix elements appearing in slots * and ** are

0-).;+wAL-ti)lot= <jI<A:Lie I-I: 1010>

= e g..1i .2.4)Aieo

L(4)01-Luat)t
e

and

* -L(6)0+ waot
I hi) = e

1 k>

33

(2-197)

(2-198)

respectively. We set them to zero because they oscillate in time much

more rapidly than the other matrix elements. This approximation is

similar to the rotating wave approximation, which is covered extensive-

ly in the literature
7.

The relation between the matrix elements of [ SI.1 and [T] is

sjj = ShoL (2-199)

3jK = SLi + Z ShifL (2-200)

Ki + Z g fihi (2-201)

3" gfifi
(2-202)

We use the method outlined above and find

n(t) LP° WL).t Q ret) -i(tdo-wot
JK - if (Si.; -Z ShotSi = e -)K.1;

nit) ei(t40-40t
(SKK

_atm) e-i(wo-wot

L St% = I Si;

LT(S. h'f* )a 1K t

ifT( SKj 3fihi)

(2-203)

(2-204)

(2-205)

(2-206)
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To check these equations in the known limiting cases we set Tr- 0

in Equations (2-203)-(2-206) and get a set of differential equations

which are identical with Equations (2-168)-(2-171). Then we set 12=0

in Equations (2-203)-(2-206) and get

L SJJ ( )

SDK z T ( SDK -Z Shifi)
L

L SKi (3K,i -Z Sfihi)

L SKK L Sii

These equations differ from Equations (2-146)-(2-149) by the term

ghoi in the equations for gji and 38x , the term 2: ?hifi in

the equation for 3,0( and the term I Sfihi in the equation for 9kj

This time the interaction with the laser beam is described

correctly and the spontaneous decay is described incorrectly. The

reason for this is that with our choice of states we cannot take the

spontaneous decay of states 1113> into account.

For the n
th

approximation we expect the following:

For even n the spontaneous decay will be described incorrectly;

for odd n the interaction with the laser beam will be described in-

correctly.

The deficiencies of the two kinds of approximations are illustra-

ted by Figures (2-3) and (2-4). In Figure (2-3) the spontaneous decay

is cut off, which results in an inaccurate spontaneous decay term. In

Figure (2-4) the laser interaction is cut off, which results in an in-

correct description of the interaction with the laser beam.



Figure (2-3). Diagram of the states and interactions
for even n.

Figure (2-4). Diagram of the states and interactions
for odd n.

From the above calculations it follows that

Q t) Uwo-wt.)t re(t) -L(wo-wot
= .. e.

1.1
3.K1

§KK = L

SiK f21t) e."°'WL)t

Q
Kj

_L_ ajtZ t) tWo-lAUt s 3 )
--)
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(2-207)

(2-208)

(2-209)

(.2 -210)

are the correct differential equations. Mollow and Miller
6
derive

these equations for the special case of a resonant laser beam, where

the atomic frequency Wo and the laser frequency Wt are equal.
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3. THE OPTICAL BLOCH EQUATIONS AND THEIR SOLUTIONS

3.1 The Optical Bloch Equations for a Two-Level Atom Interacting with
a Laser Beam and-Undergoing Spontaneous Decay

The optical Bloch .equations are a set of differential equations

which describe the time dependence of the expectation values of the

Pauli spin matrices

6-x ( 0

o) 6-3=
0i.

(0 -1 )

(3-1)

in a frame which rotates with the electric field vector of the laser

beam. In our case this frame is one which rotates with frequency L)

around the Z-axis (see Equations (2-151) and (2-152)).

We can derive the Bloch equations from Equations (2-207)-(2-210)

after establishing the connections between the matrix elements of [2a:]

and the expectation values of Ex , and 6.2 . We know that

(S Sjj Sus )

xj Ssx

representation. Since expectation values are independent of the

is the atomic density matrix in the interaction

representation we can write

<6L> = E = tfr rSfl6 x, y, (3-2)

where [Saj is the atomic density matrix in the Schrodinger representa-

tion and

6-: iHot6.1 iHot
(3-3)

are the Pauli spin matrices in the interaction representation. Using

Equations (3-1) and (3-3) we find



o e iL)0t

0

( I 0

o -1

0

and using Equations (3-2) and (3-4)-(3-6) we get

X 0 3 < 6-x > = [ JCL ] = 3- ..''').3t 3JK e kj
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(3-4)

(3-5

(3-6)

Wot
(3-7)

ilk' 63,

e-wat
L

SK,
Lwot

N < > VT f VL] 3Kg

(3-8)

(3-9)

We want to observe the vector (y(:) in a frame which, in a time t

rotates around the E-axis by an angle 01=(4)Lt . Our observations

are equivalent to the ones made in the lab frame of a vector being

rotated by an

(
y

angle C.. -4)Lt around the same axis. This vector is

ukt. /tirt wit 0 ' I xo

/S 01.4kt CIO Ukt 0 8o

\ 0 0

X 0 CM Likt !lii11 (Akt

X0 4U11.4.kt yo con 6.),t

2io

We now calculate the replacements we have to make for 33j SJK

(3-10)

3 K

and 21(K in Equations (2-207)-(2-210) to obtain the corresponding equa-



tions for x , ,y and a . From Equations (3-7)-(3-9) we obtain

Luot x 0 L12

sKi 0-swot Xa Lyo

Sdj SKK Bo

and from Equation (3-10) we derive that

X0 = X COS C4iLt y Lt)Lt

zo

so that

=

gjic

SK.

Ji

X aim WLt + y COI 14),:t

- atoe-wLyt

x -iy
a

x+ Ly
a.
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(3-17)

(3-18)

(3-19)

We substitute Equations (3-17)-(3-19) into Equations (2-207)-(2-210)

and, after some manipulations, find that

= ax (1J0 wL) 9 n211-2* z

g (wo-wL)x n2+ C2* E

= (2 + I) +11-(y-lx) q(y ix)

(3-20)

(3-21)

(3-22)

The quantity c2(t) is defined by Equation (2 -163). We can write

iffr ea(t)
(3-23)



since by Equation (2-159) rrillk;) = 0 . The components of the

solid spherical harmonic of rank 1 are given by Equations (2-154)-

(2-156) and we find

L 174
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(3-24)

(3-25)

(3-26)

The quantity E(t) is the (real) amplitude of the electric field of

the laser beam and Ij> and 1K> are eigenstates of good angular momen-

tum. We can write these states in spherical polar coordinates as

and

ij> = R n; tj (r) Yern2 ( a, 4')

1K> = EL R n te< (r) Yem: (e, (1) )

(3-27)

(3-28)

where the Ra(r) are the (real) radial parts of the wave functions

and the spherical harmonics \q(6,0are eigenstates of the angular

momentum operator L with

Yge (e,4)) tati-oce-m)!
Lor (e tin)!

and

ei,m Pt 8)

for 0.MS

Ye ( 6, (D)
-i)m

[Ye (9 Cr

(3-29)

(3-30)

.(1)

The associated Legendre functions Pm(0056) are real and thus e im
J

0110
and El are the only complex quantities in ii> and 1k> aside

from the arbitrary phase factors El
idand

El . Using Equations

(3-24), (3-29) and (3-30) we find



CO ir a

a1 e."-L Rniti (6 [Y:1 (e, (1))] *r4ifit e con 0
0 0 0

i(
el

d
RnKeK(r) Ye:(e,$) radr 4tin 8 de d
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(3-31)

The integrals over the variables r and e are real numbers. Thus

air

(t) = E(t) Ro
r
e

i(rnK-m3)0
con (0 (3-32)

0

where Ro is a real constant. From Equation (2-158) we know that

-rnK = . Thus the integral over 11) is real and we can adjust the

arbitrary phases of the states so that f(t) becomes real.

We let fr(t) f2(t) in Equations (3-20)-(3-22) and obtain a

simplified set of equations, namely

= - a x wo-uu

h (wo-wDx -f)(t)e
tn(t)y

(3-33)

(3-34)

(3-35)

These are the optical Bloch equations for a two-level atom in a laser

beam. The decay rate of the upper level is ' , .f2 (t) is called the

Rabi frequency. At resonance (Wo =COL) Equations (3-33)-(3-35) sim-

plify considerably. They become

xa

-ay -n(t)

= -11(2÷1) -1-.0(t)Y

(3-36)

(3-37)

(3-38)
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where the first equation is now uncoupled from the others.

3.2 Interpretation of the Quantities X , y and E

The original Bloch equations were phenomenological differential

equations which describe the time dependence of the spin of a nucleus

which is under the influence of a magnetic field H (t) = H o + Rift)

where Ho is a strong, static field in the a-direction and fl,(t)

is a weak, transverse field of arbitrary time dependence. These equa-

tions were first proposed by Bloch8. In later calculations, which are

reminiscent of the approach taken by Mollow and Miller in deriving the

optical Bloch equations, they were shown to be rigorously true for

spin 1/2 nuclei
9

.

The original Bloch equations are very similar to the optical Bloch

equations, but instead of the factors 1" and they have two unrelated

constants -- and , where 1; and Ta. are called the longitudinal
T;

(parallel to the static field) and transverse relaxation times respec-

tively. This similarity is not surprising since formally a spin 1/2

system in a static magnetic field and a two-level atom can both be de-

scribed by operators which are Zx a matrices and wave functions which

are spinors.

In the case of a spin 1/2 system, the operators EN , eTs and Era

represent the three components of the spin of the system, so that the

X
vector (9) is the spin vector in the frame rotating with frequency WI.

around the a-axis. The physical significance of X , .9 and E in the

case of a two-level atom is less transparent.
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We use Equations (3-16) and (3-9) and find that

0 = S jj 3 KK
(3-39)

where and 2KK are the probabilities of states Li> and 10 re-

spectively. The quantity E is called the inversion; it is a measure

of the difference in population of the upper and lower atomic levels.

For an interpretation of X and y we have to compare the electric

field of the laser beam with the electric dipole moment of the atom.

We can write the electric field of the laser beam as

F(t)
E(z t) fee- wLt +e *e`Wt

E(t) f (3-40)

We derive a matrix call which represents the atomic dipole moment

operator a= eit in the interaction representation. Using Equations

(3-24)-(3-26), (2-157)-(2-159) and the relations

<31 1J k> = 0

<311j:1K) = A
and

<3. III: I K)* <KI '...;11,j
-A*

where it\*=. A since we assume that f2(17) = fl (t) , we find that

=
`Not

(3 -41)LP-1 I k8°t(lf:-113:, 113,1+3 a,

and

C al -C(eg-
0 &wit

e."`w°1. 0

= X do 6",(1 + do 6-31

ir
3 W.- A ( Le--00tf '

- Le. Lts
0
t

(3-42)



where

H

=

T 1

cl 0
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(3-43)

The expectation value of the dipole moment operator is the atomic dipole

moment

where

and

= <d> = tri-

= X dorir [3(11.] 6)1( + do

= X do <6',(> + g do <6'g>

<6.x > =

<6'9> = yo

Using Equations (3-14) and (3-15) we find that

[

= do[x (') cal wLt ,g 6vraLt)

y CC( y coy 6.)Lt

= do [ x CO'3 LoLt 61.f11 WLt)

y ca3(uit.t- q/3111.(6.),:t -11.))1

(3-44)

(3-45)

We compare Equation (3-45) with Equation (3-40) and see that X is the

amplitude of that part of the electric dipole moment which is in phase

with the laser beam, and y is the amplitude of the part which is

out of phase.
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3.3 The Time Dependence of the Rabi Frequency .0 (t)

We consider a two-level atom which is exactly at resonance with a

left circularly polarized laser beam so that Equations (3-36)-(3-38)

hold. The Rabi frequency 12(t) in these equations is proportional to

the amplitude E (t) of the electric field of the laser beam. We treat

here the case of a sinusoidally modulated amplitude which can be

written as

E(t) = Ei + E C. 0 1 Lk), t = E:0(11-a co wit )

so that the Rabi frequency becomes

12(t) 0 + 12, co) = S20(1 + Q a Wit) (3-47)

where no is the average Rabi frequency, 4.), is the modulation fre-

quency and 0. is the modulation depth which is limited to C).. 0- I

For a= 0 the amplitude and the Rabi frequency are constant in

time. The spectral distribution of the light scattered by a two-level

atom in an intense laser beam of constant amplitude is treated exten-

sively in the literature in both theoretical
10,11,12,13,14,15,16

and

experimental
17,18,19,20

papers.

The spectral distribution of the light scattered by a two-level

atom in an intense, resonant and amplitude modulated laser beam has

not been previously calculated. To determine this spectral distribu-

tion we need the solutions of both the optical Bloch equations

3-46)

= -11;-A -2, coiu,t a

= '6*(E + 1) +noy y

(3-48)

(3-49)

(3-50)



and their associated homogeneous equations

x

2 y z a col wit a
-112 f20 y +.12 coi wit y

3.4 Solution of the Associated Homogeneous Equations
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(3-51)

(3-52)

(3-53)

Any set of n linear first order differential equations of the form

M il(t) V, -I- 11'1 (t) v2 in in (t) va

Vn = Mni(t)V -f- Mna(t) VA M nn(t) Vn

can be written in matrix notation as

where
V6

and M (t) =

= M (t)

m i (t) m1 (t) .... min(t)

mni (t) rnna(t) .... mnn(t)

We can form an nxn matrix whose columns are solutions of "I% = M(t)

Such a matrix is called a solution matrix
21

. A solution matrix Mt)

whose columns are linearly independent is called a fundamental matrix

of V = M(t)-k% and has a determinant, which is non-zero for all times,

det c (t) * 0 vt
. We can write every solution ofof

= M c," as

= (t)



where

C

with the constants C,, determined by the initial con-

ditions.

We assume that we need to solve a system of n linear first order

differential equations of the form

"/' ( + m2.) -%

and that we already know the fundamental matrix

equations

-0

V " MI V

The solution of V* = M,V can then be written as

71;0 = (1) o

and obeys the differential equation

tr.

o =

46

(3-54)

of the system of

(3-55)

(3-56)

(3-57)

We differentiate Equation (3-56) and make use of Equation (3-57). We

find that

C1)0 C. = MI 00 e*

We now assume that the solution of \.; =

(I) 0 a* (t)

(3-58)

m,+M )r; is of the form

(3-59)

where the constant vector L' of Equation (3-56) has been replaced by a

time dependent vector C(t) . We differentiate Equation (3-59) and

find that

C(t) (t) (M, m2) (1)0-&r)



We use Equation (3-58) and obtain the relation

0 (t) = Ma 1)0 C (t)

Since 00 is a fundamental matrix and thus det4P0 * 0
A, A.,

CI: I 0-1 exists so that 00 (1)0." = kvo
1

WO = 1
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(3-60)

, an inverse

where 1 is the nxn unit

matrix. We multiply Equation (3-60) from the left by 04V and arrive

at the following differential equation for Z!(t)

(t) = 4);' C(t) (3-61)

We now solve Equations (3-51)-(3-53) with the "known" initial

conditions )((t) , y (-ti) and (t') . The solution of Equation (3-51) is

-

X(t,t1) = X (ti) e 2 (tta) (3-62)

The solutions of Equations (3-52) and (3-53) are obtained in the two

step process outlined above. We write Equations (3-52) and (3-53) in

the form of Equation (3-54) where

and

The matrix

with

11/

(
_a
n a - t^f

11,a = C11 CO.3 Wit ( °I 0 )

(Do

(A _

t r_ t

Al.er_t

(3-63)

(3-64)

(3-65)

(3-66)



and

= - 1.00 I (T
Lif20

A t = (+20)2.

is a solution matrix of 1/ =r1,7 and a fundamental matrix since

det o

( r+ t (A+-Ai(P

1-(T rIMO

The inverse of 1) 0 is

vt

(A+e-r+t
1

A + A.. _A..e-rt

The matrix I11 M 2, (I) o
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(3-67)

3-68)

can be calculated by using Equations (3-65),

(3-66) and (3-69). We find that

(1);1 Ma
O,c(mw,t
A4-A_ (r+-1-..)t

(11-An e I i" A+A_

We have

and

A+A_ (H-A) er+-r-

AtA_ = I

A+-A_ =

A: - 252' ± 2i.51 1- sz

r+-r_ =

)t

(3-70)



where S =
4

Thus

(nlm,cto
_ f2, COt

LI777
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We obtain the following differential equations by using Equations (3-61)

and (3-71)

w,tc
i 1- s4.

In cases where the off-diagonal elements of the matrix 4);#112. 00 are

much smaller than the diagonal elements, we can find an approximate

solution of Equation (3-72) by setting the off-diagonal elements to

zero. This approximate solution is

C(t) =

6747.71 6-1- uit
C e "

f),
/Nfil. Wit

C_ e W 1-s

(3-73)

where C.+ and C_ are determined by the initial conditions. The

approximation is valid for 5 << I and we restrict ourselves to this

case. In Equation (3-73) we can replace 1777 by 1 and in Equation

(3-66) we let r+ - f) 0 and A t

tions (3-66) and (3-73) reduce to

. Thus Equa-



and

(t)

mot

-fit t Met

C + e.
6iin.b.sit

.

14-LL4U11,e /

e
-mot

Le
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(3-74)

3-75)

respectively. We obtain the approximate solutions of Equations (3-52)

and (3-53) from Equation (3-59) together with Equations (3-74) and

(3-75). They are

and

e
,i1r-frino)t L wit

(t)
c + e

C_

(4zi-if20)t 6Cmult
(t) = e c+ e

e(-il-Looyt c..
611111Olt

e

(3-76)

(3-77)

We determine the constants Cf. and C_ by using the initial conditions

y(f) and B(V) . We find

LiT ino)tl (At'

C + e
r

g(t) ± Lz(V)] (3-78)

Thus

(t,t'
Lf (t,t1

[ (ti ) in]
eL1C- (t,t1)

[a y (t') L (f)]
and

(3-79)



Lf+It,t
(t,V) = e

1 y(f) +

Lf-(te a [ y(f)-1z(t)]
where

if t (t,t) (- iD0)(t-f)± L-91

3.5 Long Term Solution of the Optical Bloch Equations
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(3-80)

(3-81)

The general solution of an inhomogeneous system of linear first-

order differential equations is obtained by adding a particular solution

of the inhomogeneous system to the general solution of the associated

homogeneous system. The method of variation of parameters can be used

to determine a particular solution of an inhomogeneous system whenever

the general solution of the homogeneous system is known
22

.

We want to obtain the general solution of the optical Bloch equa-

tions. The general solution of their associated homogeneous equations

is given by Equations (3-62), (3-76) and (3-77) as

and

where

?Et
)(4am (t) = Coe 2

km (t) = C÷ F+ (t) C.. F_ (t)

zAam (t) = LC+ F+(t) c_ F. (t)

F + (t) =
Tt t Lflot -4(4:

(3-82)

(3-83)

(3-84)

3-85)

We choose a particular solution of the optical Bloch equations of the

form



Y ()Girt
(1- ) = C (t) F.t.(t) + c_ (t) F_ (t)

and
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(3-86)

apart (t) = Lci.(t)Ei.(t) + I c_(t) F-(t) (3-87)

We substitute the homogeneous solutions of Equations (3-83) and (3-84)

into Equations (3-52) and (3-53) and the particular solutions of Equa-

tions (3-86) and (3-87) into Equations (3-49) and (3-50). The re-

suiting equations can be reduced to

C F4. -I- C F_ = 0
and

-LC+.Fi. t Lc_F = -T
which we can solve for C.4. and C._ We find that

(3-88)

(3-89)

(3-90)

We integrate Equation (3-90) and obtain C4(t) and C..(t) . The

a
611ithi t

integration is possible after replacing the functions e.

by their Fourier development
23

. fl, 4. CO

L -- aina.), L a x t imbJ,t

e- wi = Z. Tn (7,) a
11=-0

where In (a) is the n
th

order Bessel function. Then

Une\ e.
irt ; i.f2ot ; inwit

ci.--ll)0

C ±(t) .--- -T--.0-Z
- 3 0 + I n ° ini

I4

(3-91)

(3-92)

We substitute Equation (3-92) into Equations (3-86) and (3-87) and use

Equation (3-91) one more time. We find that



s9 part (t) =
(f..7.24,) e-i.nwit

n il- i(notnw,) Z Tin (a) e..Lmwtt.
m

i an(4,-)enwit
n '.

1)* iiT + i.(notnw,) Im (L.) Cif''

L gn (a) Jrn (a-) e-i(n-m)wct
nm ill - 0120+nw,)

= IT ReZ L 14) Tn-P (&)
np rilr -i. (noi-nw,)

and, by a similar calculation, that

E pont = Z
np

un(a) Tn_p (a) e-iPwit

iJnoi-nwi)

The general solution of the optical Bloch equations is thus

X (t) = ca e zt

ham (t) y part (t)
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(3-93)

(3-94)

(3-95)

fit -frillot + i.fi2,1,6iniu.),t -Art -mot ii?-isolinwit4
= C.,. + c_ e

'IF Re, Z L 7^ (a) un_p (-flit) e-LPwit

np al- -.dn.+ nw,)
it

(3-96)

2 (t) = . ( t ) ) -f- Epairt (t)

= iC
4

i. E
- ilrt +1.1.20t + itswIt

+ i.C_ E
frIft -Lflot i Nin bi,t

Re Z L-A---L-P-1-?'1- (a) e-Lpwit
np LCD0-1-nui,)

(3-97)
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For times which are large compared to the lifetime 15 = of of the

upper atomic level we find that 7rt >> '-/S-Z and thus Tt
e 4 << I and e. << I . We obtain the long term solution of

the optical Bloch equations from Equations (3-95)-(3-97) by dropping

the terms which contain the functions e.11
Tt

or El 2 We label

the long term solution with a subscript "co ". Thus

X03(t) = 0

oo (t) T Re Z ( 7n_p(4,..)e-i,ptil,t
i.(f20-f-nw,)np

7 7n (Ti=) Tn- (11) e-LPwitp Uh
Eco (t) = -TReL.

np - ono+ mot)

(3-98)

(3-99)

(3-100)

In the long term limit only the particular solution survives. Thus the

long term solution is independent of the initial conditions which are

contained in the homogeneous solution.

3.6 The Optical Bloch Equations and Their Solutions in Terms of the
Variables X+ , X_ and

For the purpose of solving the optical Bloch equations and their

associated homogeneous equations it is most convenient to use the vari-

ables X , y and B . For the calculations in the next chapter it is

more convenient to switch to the new variables X.1., and a , where

X+ = t ty) (3-101)

In terms of these new variables the optical Bloch equations are

Xi. 74 n (t) (3-102)



''(z+ L. (t) x_

with the associated homogeneous equations

= X± (t)

= Tz _act) [x_ x+}

The long term solutions of Equations (3-102) and (3-103) are

X + (73
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(3-103)

(3-104)

(3-105)

E co (3-106)

where X. , yco and Zoo are given by Equations (3-98), (3-99) and

(3-100), respectively. The solutions of Equations (3-104) and (3-105)

with the initial conditions Xt (t') = (x (t') Ly(t)) and z (t')

can be obtained by using Equations (3-62), (3-79), (3-80) and (3-101).

We find

and

where

(t,f) = [ x ti) + x. (t)] 1(t-ti)

[x+ (t') x_ (ti) (t1 e Lf+ (tv)

X+ (t) x_ (t) E e (tx)

(t, t' )

L++ (tit')

x_ (t) x (ti) z(t)] c ++(t,t)

[ x+ (t') x (t') att.)] e f_ct,t9

(3-107)

(3-108)

and (t,t1) are defined in Equation (3 -81).
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4. THE LIGHT EMITTED BY A TWO-LEVEL ATOM
IN A STRONG, RESONANT, AMPLITUDE

MODULATED LASER BEAM

4.1 The Spectral Distribution of the Emitted Light: A General

Formula

In Figure (4-1) we illustrate the setup of an experiment to observe

the light emitted by a two-level atom in a laser beam.

x

two- Levet
atoms

Laser

detector

Figure (4 -1). An experiment to observe the light
emitted by a two-level atom in a
laser beam.

Here the laser beam is propagating along the e -axis and the beam of

two-level atoms is propagating along the x-axis, so that the two beams

A
cross at the origin of the coordinate system. The unit vector n points

in the direction of the detector.

In the last two chapters we investigated the time dependence of the

atomic variables of a two - level atom in a (strong, resonant, amplitude

modulated) laser beam. Now we calculate the frequency distribution of
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the light emitted by such an atom. We do not want to predict the read-

ings of a real detector; we only want to derive an expression propor-

tional to the spectral distribution of the light. In our calculations

we can therefore replace the detector by a detecting atom and the beam

of two-level atoms by one radiating atom
16,24

The detecting atom is

a two-level atom with a ground state Ia.> , an excited state ib> and

an atomic frequency 14)= . It is exposed to the radiation field

between t =0 and t = T . At t= 0 the atom is in its ground

state. The probability P(W:1") to find the detecting atom of a particu

lar atomic frequency W in its excited state at t = T is proportional

to the energy of the radiation in a frequency interval 10U + dui

and the function P(W,T) is proportional to the frequency distribution

1:(U3) . The observation time 1- has to be much larger than the life-

time of the radiating atom and much shorter than the lifetime of the

^
detecting atom. The detecting atom is at X = r n and the distance

r between the detecting atom and the radiating atom is large in com-

parison with optical wavelengths. We assume that the detecting atom

influences neither the radiating atom nor the radiation field.

The system we consider consists of the radiating atom plus radia

tion field (referred to as R ) and the detecting atom (referred to as

D ) and has the Hamiltonian

H HR Hz + HI = Ho + Ht (4-1)

We write the interaction Hamiltonian in the electric dipole approxima-

tion as HI , which, in the interaction representation, becomes

" °t

H t

= H e = -"i5(t)-g(x,t) (4-2)
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Here D (t) is the electric dipole operator of the detecting atom in the

interaction representation and can be written as

la)<bl e- t dW 1 b>< al eLLI't (4-3)

where 6 = <0.1516> and g , t ) i s the Heisenberg el ectri c

field operator of R and obeys the Maxwell equations. We rewrite the

Hermitian operator E (tt) in terms of a pair of Hermitian adjoint

operators as

g(54,t) = g+(1,r) + -L(5Z,t) (4-4)

where ti.(3.4,t) and 2-(5C,t) are the positive and negative frequency

parts respectively of the electric field operator. Thus

H [3 la><bl lb><at eiwti.[L"

11-(51,t) a ><bl a*' E**(5(e,t) e`i't In< a f 4-5)

where we dropped the rapidly oscillating terms.

At t - 0 , when 1) is in the ground state, the density matrix in

the interaction representation is

3(0) = Ico<al gf (4-6)

where SK is the density matrix of R at t. 0 . This density matrix

obeys the differential equation

LTIIt 3(t) = rH1(t) g(t)]
"a

which, to the second approximation, has the solution

(4-7)



T

S(T) = S(o) f at [Hi(t), S(0)]
0

-r t
dt f dt j H; (t), [ H It'), ?(0)]]

o o

The probability to find D in its excited state at t = T is

P (w,T) = tfrR,D lb><131 S(T)

(4-8)

4-9)
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We use Equations (4-5), (4-6), (4-8) and (4-9) and take the trace over

D . We find
T t

P(W,T) = 1-frR -klfdtfdt fic54`-E+ (5Z,t) SR j- *E-(5Z,t`) e`w(t-t9
0 0

cr.t+(1,t) sR 13-E-(,t) e`')(-c-t)1

We exchange the variables t and in the first integral and use the

relations

and

T t

dt f f f dt dt f dt
00 oo o o

a E (3, t) E; (5'<, t

E+ (sz,f) = z av E:

< E; (x,t) E; (3c t > = tfra

We then find

SCIt) E9+ (rcts)

(4-10)
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T

p (4.),T) = th.;? 6p. 6: <E (>1,t) E'; ( t )> e (4-11)

(t-ti)

" A

The probability P(w,T) in Equation (4-11) is expressed in terms

of electric field operators which can, in turn, be related to the. di-

pole moment operators of the radiating atom. In classical electrodyna-

mics, the time dependent charge and current distributions are treated

by making a Fourier analysis and handling each Fourier component

separately25. A charge distribution S(X,t) = g (X) e.-°4)"t

-0 - wot
has a dipole moment -is (t) = fs(-zi,t) crxi = po e

and its fields at a position 5= r in the radiation zone are

and

H(X,t)
wok() kor
LITT- e

i

(itxPo)
t

54,t) 44ff( 7 + {.(

-1
o) x n wot

A
p

where k0 = -2-9 is the wave number of the radiation. We can write the

electric field as

(>1,t) 4-TraE2 71 "/ t x 4-12)

The complex field E (x,t) in Equation (4-12) depends on time like

, thus its quantum mechanical analog is the field operator

(5Z,t) . The classical dipole moment -(:)(t) also goes with

e-iwot
. The atomic dipole operator of the radiating atom is

given by Equation (3-42). We rewrite it in a slightly different form,

namely as



[di] = do (X-ii) e..`w°"t
g

I fr do (x+L4 )e t
(

o o
0 0

)

= Dt (t) (t)
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(4-13)

where Sit) and 1S-(t) are the raising and lowering parts of [T]

respectively. By comparison we see that the classical quantity

P(t -E) in Equation (4-12) corresponds to the quantum operator

D (17- E) because of its time dependence. We thus find the follow-

ing relations between operators:

and

g+(36<t) = IN° ( x tLire° T

E N4</t) t12. FIX5 (t-E))X fA4TnrkE. (

The latter equation is the adjoint of the former one.

(4-14)

(4-15)

We now express the operators D''(t) and D (t) in terms of

those operators whose expectation values appear in the optical Bloch

equations. As we noted earlier, the optical Bloch equations are a set

of differential equations for the components of the fictitious spin-1/2

particle in a frame rotating with frequency 6.4 around the E -axis.

that frame any operator Y becomes

uLt z 6-z wt.t

The operators 6 , 01 and 02 are the Pauli spin matrices in the in-

teraction representation. They are given by Equations (3-4)-(3-6). The

(4-16)



operator 6-Es is transformed into the operator

tAiLt 1-6a 6-kt
Sz(t) e t 0

0 -t
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(4-17)

in the rotating frame. The expectation value of Sz (t) is the function

(t) , which we obtain from the optical Bloch equations;

SE(t)> = (t) (4-18)

We note that

and

(6 =

= (5xl L 6"yi ) =

iwot 0 I

e 1 o 0

e
- iwot (0

o
0 \

In the rotating frame these operators become

t2. 6-a L 6+ 6-e t'iL
(t) s e_

t e
Cukt

and

ukt 61 t

S_(t) e Q_ e
iwt.te

(4-19)

4-20)

(4-21)

(4-22)

The expectation values of 5.1. (t) and S_ (t) are

<S+(t)> -Sx(t)+1.5p)) = i-EX(t) +1 (t)1 = X+ (t) (4 -23)

and

<S_ (t)> = <Sx (t)- (t)) = [X (t) i(t)] = X_ (t) (4-24)

respectively and x+ (t) and X (t) are solutions of the optical Bloch

equations. We compare Equations (4-21) and (4-22) with Equation (4-13)

and find



D = do (IX- ) e"Lt Si.(t)

(t) do (S(4-t.q)e-uuLt S_(t)

63

(4-25)

(4-26)

We can substitute Equations (4-25) and (4-26) into Equations (4-14)

and (4-15) and those in turn into Equation (4-11). We obtain an ex-

pression for the spectral distribution I(w) in terms of two operators,

.54.(1:) and 5..(t) , whose expectation values are known from the

optical Bloch equations.

The detecting atom may be anywhere in the radiation zone of the

A

field as long as it is outside the beams. Thus n can point in any

direction other than the X -axis or the E -axis. For convenience

A

we assume that n is a unit vector in the -direction. Thus

A

n =

and

(4-27)

k0
2.

do WL{t-E)

1-11 E0 T
S_ (t- (4-28)

T-

do LWL(t-E)5÷(t-E) x
LITE° E

(4 -29)

It is common to neglect the transit time i.e. to replace t by

t . We substitute Equations (4-28) and (4-29) into Equation (4-11)

and find
T T

Ito.
U.0

P WiT ()

1.

)4

A.*

fdt (--) <s (t) sit1)> e.-(w-wL)(t-t)
tl LoreoT

0 0

Thus we arrive at the following relations for I (w) :



or
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7 7

(LO) fidtict-C < St (t) s_cti)) e-L(Lo-(1.0(t-v)
(4-30)

0

T t

(tu Relcit fdr. < 5+ (t) s..(t)> (4 -31)

0 0

where we used Equation (4-10) and the relation

< (t) 5- (t) ) = < St (t) S_ (t) >* to derive Equation (4 -31)

from Equation (4-30).

4.2 Average Motion and Fluctuations

There are several approaches to the quantum theory of damping26'27.

In the density operator methods we deal with a quantum mechanical sys-

tem coupled to a "reservoir" (the radiation field). We trace all equa-

tions of motion over both the system and reservoir since we are only

interested in the statistical properties of the system. This results

in equations like the optical Bloch equations which describe the average

motion of the atomic operators 5.1.(t) , S_ (t) and 5e (t) and which are

listed here one more time in terms of the variables <S*(t)> ,

<5..(t)> and <Sa(t)>

d < st (-0> = <st (t)> (1 f2(t) <5 ct» (4-32)

csk <sa (t)> = [ <Se (t)> 1-1] i.Q(t)ks_(-t)> <5+(t)>] (4-33)

A quantum system experiences damping and fluctuations when inter-
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acting with the reservoir. In the Langevin method we take the reser-

voir into account by introducing damping terms, which describe the

cumulative effect of the reservoir and give the correct statistical

properties of the system and by introducing a random force ;:(17) with

an extremely short correlation time and a zero average value to create

fluctuations. We then obtain the following equations of motion for

the atomic operators S (t) , S_(t) and SE(t)

j1= S± (.0 1St (t) ; i:C2(t)5A(t) I- Kt (t) (4-34)

ci- SE (t) = [Sz (t) + + [n(t)is_(-0-s K (t) (4-35)

Here

and

<Kt (-0> = 0 (4-36)

<1<:z (t) > = 0 (4-37)

so that Equations (4-34) and (4-35) reduce to Equations (4 -32) and

(4-33) when we take the average.

We need all the above equations to calculate the two-time average

<Si. ("OS_ (ti) > , which appears in Equations (4-30) and (4-31)

for ]:(10 . We express the operators Slit) , Sit) and 5a (t) in

terms of their average values and fluctuations as
16

where

and find that

St (t) = < St (t) > t 6S± (t)

(t) = < Se (t) > + 6Sz (t)

< d-S± (t) > = 0

< cfSa (-0> = 0

(4-38)

(4-39)

(4-40)

(4-41)
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<S+ (t) (t ) <S +(t) >< S.. (t1)> +<65+ (t) (t )> (4-42)

Thus

T t

1(w) Reicit <s+(t))<s.(f)> )(t-t1)

0 0

t

+ Re (itfdti <6S+ (t) 6S_ (ti)) L (w-ld )(t-t') (4-43)

0 0

Both the average motion and the fluctuations contribute to the spectral

distribution of the emitted light; their contributions are the coherent

and incoherent parts of the spectrum, respectively.

We now derive equations of motion for the functions t t ) ,

(t,t') and is (t,t') , which are defined as

q± (t,t') = < ds ± (t) 65_ in>
and

(t/ti) = < d'S (t) d'S (t)
We note that

dSt (It') = (t) < (t))

5Sz (t) S (t) < Se (t))

gt- SS (t) = ISS± (t) ; z S2 (t) 6s, (t) + K± (t)

ossa(t) = T cfSa (t) (t )1:6S- (t) SS-1.(t)] + KE (t)

We multiply Equations (4-48) and (4-49) by CrS- (ti) from the right and

(4-44)

(4-45)

(4-46)

(4-47)

(4-48)

(4-49)

then take the average. We find



qt (t,t') =

and

ctt qz
since

and

I ,

a (t,t );---fmt) C3a (t,t')
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(4-50)

(t,t') = 7r qa (t,t') t L (t) (t,t') + (t,ta)] (4-51)

< K± (t) SS_ (V) > = 0

< Ka (t) 65_ (t)> 0

(4-52)

(4-53)

because of the extremely short correlation time of the random force

1(t) . Thus 9.4. (t,t') , (t,t') and qz(t,t) obey Equations (3-104)

and (3-105), the solutions of which are given by Equations (3-107) and

(3-108).

We are particularly interested in (t,t') = ( ISS (t) 6S_ (11>

and find that

where

and

- (t-)
÷ (t,t') qt(v) e

v

[ +(ti)- (t eLf+it,-0

+ y [ qt (t7)- (t) + (t1 e.
Lf- (t,e)

(4-54)

q± (f) < (t') 6S_ (t ) > (4-55)

(t') = < CfS a (t') (t)) 4-56)

Instead of the two-time average < 6S+ (t) d S_ (t') > we now have

to evaluate the one-time averages (t') , q.. (t') and qz . This

is easier, since for equal times there exist some fundamental relations

between the operators, like



and

sxa(t')

S (t') S

(ti) (ti)

(t') = 1 Sa (ti)

Sy (t') Sx (V) = -L (t)

(cyclic)
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(4-57)

(4-58)

(cyclic) (4-59)

The time T during which the "detector" is exposed to the radiation

is the time during which the atom radiates and is approximately equal

to the time the atom spends in the laser beam. For a beam crossing ex-

periment like the one illustrated in Figure (4-1) T is large compared

to the lifetime of the radiating atom. Thus the atom is essentially at

all times in a state described by the long term solutions, where

< St (f) > = Xto(ti) and <SE = Z ) We use Equations

(4-46) and (4-47) and find

qi.(v) = [ 1 +- zco(ti)]

q- (ti) f yo: (v)

qE(f) = 900(f) + clo(t )a(f)

(4-60)

(4-61)

(4-62)

Here we made use of Equation (3-98) (X00 = 0 ) We substitute Equa-

tions (4-60)-(4-62) into Equation (4-54) and get

< CcS÷(t) cFS_(t')> = l ( ÷ Roo (t'))

+ ${ I + zoo (t' )- (t') L (t) Lqco Eco (ts)) e (tit)

+ t I + aco ft' y et; (t') yoo (t') 1y 00(t') zoo (t'))
if_ (t,t)

(4-63)
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4.3 The Spectral Distribution of the Emitted Light: The Coherent

Part and the Incoherent Part of the Spectrum

We now calculate the coherent part and the incoherent part of the

spectrum using

T T
-L(W-UO(t-t)

Tait (w) fdtf dtl <S4.(t)><S_(t)) e (4-64)

0 0

and
T -t

ItiAc(u)'-"t--Reldtfctf < 6S+ (t) 6s_ (t')> e-i(w-Lo(t-v) (4-65)

0 G

respectively.

We rewrite the long term solutions in a more transparent form as

1 Tn 7n-p
yoo(t) = [3/6-0c20-1-nwl)

P
m 4

= e2 p

and

Tn-_e
zoo (t) = -IZZf Li/6-1.(r201-11w1

PR

Tn 3114-p t,ipw,t
,,-i+i-(1-20+nti.) I c-

T

(4-66)

(4 -67)

e-ipw,t

4-68)

where P
and E are time independent factors which obey the relations



and

=

Thus the coherent part of the spectrum is

T T

oh 6) +-fdtictt vpe
,t)(_ 12

0 0

A common representation of the Dirac delta function is

70

(4-69)

(4-70)

w-w, gt-t)

(4-71)

(4-72)

We can derive an equivalent representation for the Kronecker delta

function, SRp' We note that

r -')
L j e

Oppx
dx for p=p i

and

L

Thus we have

0

L

jeL(P-PI)xctx
0

cfp,p' L jE

and from this it follows that

L

le
0

l(p-p')x
X

6p,p'

for pip. and L >>

(4-73)

for large L .

With Equations (4-72) and (4-73) in mind we change the integration



variable t i n Equation (4-71) to e = t-ts and get

)2-Z p99 fdt e"'P+1)witfctt e-iuu-wt-quidt"

tP9

71

(4-74)

where the integrand of the integral over t has the form of the one in

Equation (4-73) and the integrand of the integral over t" has the

form of the one in Equation (4-72). The values of the variable t lie

in the range [0,1] ; thus the values of the lower limit of the t° -in-

tegral are in the range [-T,0] and the values of the upper limit are

in the range [0,T] . Since TY>lr and w-wcqw, is of the order

r -i(u)-44-quwe
of T we can replace the function f(t) = dt e by

6(W -WiqW0t"
t-T

f o(t) dt" for all t except in a small region

near t= 0 and t = T . We can thus write to a very good approxima-

ti on

Tatti(w)--iF( ) 909 fdt 21r 01(14)-Wc-qt) (4-75)
-Optq)uilt

P9
0

In the limit of large measuring times 7 we can use Equation (4-73) to

solve the remaining integral. This, together with Equation (4-69),

yields

Its t w ) 91 yp* 6 ( t

We substitute the expressions for yp and 9p* into Equation (4 -76)

and get

(4-76)
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Icon (W), Tri ) Te )

a p Lnni (ITTr (not(I431)2' (tinl 0+0A1

fi(iT)2-+ {not nwmn 4-ntwiaTn_p 9, )711,-p )+ Tn.ei )1n,e (12d)]

+ R120+ (ano + n'w,) in[In_p w. ) Instp P
)

P (1)111.

6(w-Lk+-pw,) (4-77)

The incoherent part of the spectrum is

T t

-1(t-t) --ijLO-wt) (t
riTtc(4)) '" a Re (fit' 1(1 fz. (t) ) eT 4

0 0

Lf+(t,t1) -i(w-i6L)(t-ti)

t- Re cdt dt' t + (ti) i.90.(f)) e.

0 0

T t
Lf+(t,t1 w-wL)(t-t

T.2- Re cdt icit1( 9:0 (f) 19..(t')Ec,,(1 e

0 0

T
if- (t,t ) e-i.fLu-wi)(t-t0

Re fdtfdts t (1+ (-c)+ 1100(-c)) e-

0 0

T t
+ 2- Re cit at'

-T.

0 0

= ÷ I: I: + t; (4-78)
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To evaluate the integral I, we express Zoo(t) by Equation (4 -68) and

change the variable from t' to 'CI= t-t'. We get

T t

-(11-1(6)-(4)At"

II 7 R cdtca4 pn 1.ZaP LPwitn) e
0 0

(4-79)

Because of the factor e in the integrands the integrals over t

are independent of t except for a small region near t =0 . Thus we

can find an approximate expression for I, by replacing the upper

limits of the t "- integrals by infinity and subsequently using Equation

(4-73) to evaluate the integral over t . We find that

I = 2Re 4 I +.i
Ltw-wt.)

We now evaluate the integrals

and (3-97) and find

ft (t,t)
=

(- LOOM
Tk(±t

km

;

T
8 r Lth,_

(4-80)

and I We use Equations (3-87)

From Equations (4-66) and (4-68) we get

Z.03 (t 1903(ti) Z. (aP

e.
im wit

(4-81)

(4-82)

We manipulate the integration variables and limits as before and find

that



1'2! = 2Re

16
km_
z--

We note that

and28

Zp

Jm2( 2;)
8 m 1().)-WL;f2.07-illuil)+

Jrlk a) Trn to9 [Z*(A-M) -t 9.±Ok-in

L(Lti-ti)L. 7-no

,Trt )

.21 3 +4) 141

T 1. (no+ nw,)

rn
I vi ( a) Till (6) ( a±b)
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(4-83)

(4-84)

(4-85)

The triple sums in I: and I reduce to single sums, since executing

the sum over fit gives In..k(0) = do k in both cases. Thus

t
-I-

7111a(t41)

w-tAit.;f2,,T1114),)+

T

4

4-86)

The evaluation of the integrals 13
+

and I; is straightforward; the

result is

eZ ns.p-i-p'
npp1

ha)

(4-87)

f yP (ZP'÷ YPI) Yp*( ÷ Yp')
+ (U-) -520 (ni-ptpl)w, ) 4 2f-fr (4)- wLi- not (n-t-ptr )w,

4
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We replace E0 in Equation (4 -80) and 2Ep and tdp in Equation (4-87) by

their corresponding sums and determine the real parts of the resulting

expressions. Then the incoherent part of the spectrum becomes

(w)
(1) + (w-wL)

3 '6- Z (14
4 m ( T Y' + mu),)

Tol( et)

1- 16'14.-7 ( (3.^0 (W-12) o_fritj (41)1 ti2otirtw a)
m. 4

ra(e)[(ii.n1 + (120+mw, )( uiL-112- rrt 4), )]

4 in [( 2 (120+ MW1)1(
(A)- wt.-no

,,,. 7 Im(a)[(Li)I- (120+Mwi)(W-tut.-1-120+ (WI)]
'70 [(rai-Tr (S20+TRI.01)1(4 1)1÷ (W-WL÷nci+9114)21

trt

2 (1)2 Tn+p+-p' -Tn (9)
npp

(i102- + (w-we -f20-(n+p+r)wi)

(U)--WL÷noi- (ntptpUI)Cpirp'

+ W it) + (n+ p pi)w,



where

and

C
I

PP. mm'

--Tm(4) :mi({4,1)Te-p1 (9)
L(4 T)1+ (n0tinW1)11[( + (12 °+ 'W )1]

f (1-1)2' (TM-p ( ) 'mil) (a»

(f20÷Ittuo(s20-1-nliwt)(7m_ (a) )))

Tra(B) Tm (a) Te-pi (t.fia-;,)
C =

Pp {(Liqy + (f20-1-mumxipT)2--f- (note w )mire

f -frewf)(3rn_p(f4t)

('4--6-)(n i-inw.)(Tm-p(a)

7

(4-88)

+
It turns out that for most frequencies 13 and _.T 3 contribute very

little to the spectrum and the approximate formula obtained by dropping

the terms in the square bracket is generally quite accurate.

4.4 The Total Intensity of the Emitted Light; Coherent and
Incoherent Parts of the Total Intensity

By integrating Equation (4-30) for I(W) over all (positive) fre-

quencies bi) we obtain an expression which is proportional to the total

intensity of the emitted light. We can extend the integral to include

the negative frequencies as well, since the spectrum is non-zero only
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03

at optical frequencies and thus j° I (w) dw = f I(w) dw We use the
0 -co

definition of the delta function and find that the total scattered in-

tensity is

I tot Tir cdt < (t) 5- (t) > = It z (I I- <Se(t)>) (4-89)

We use Equation (4-42) with t = ti and get the coherent and incoherent

parts of the total scattered intensity. They are

Icon dt < 5+ (t)><5_(t)>
and

I LC dt < 6St (t) (t) >

0

T-fdtii. (I+ <SEM>) <5+(t)Xs (t)>1
0

(4-90)

(4-91)

respectively.

In the limit of long measuring times T , we get the following

results:

I tot
( I z

n

Jr).( if+)
(4T)2-1-(S20i-nw,

4 [Z + (120-f-nw,

Un(a)3niei,:7:),Tntni(-1){(744)z -(120+nw,)(1.2.t.naw

{( t3fT)2. (120"w1)211(i"102. + LQ0+ nitA02)

) (4-92)

4-93)
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Iimr
3;14. fA2-30

+ (120-F.nw,)2"

Tn(a0 Tna () i( 13(1)2. (1201-nwl)(12 +.11'w )1

nns r(4 Tr÷(n,,,,402-it(iT)zi-(120÷,N.)2]

(4-94)

It is straightforward to show that Equations (4-93) and (4-94) can

also be obtained by directly integrating Equations (4-77) and (4-88)

respectively over w . This fact justifies once again the approximation

which we make in evaluating the integrals of Equation (4-64) and

(4-65).

4.5 Why the Terminology "Coherent-Incoherent"?

The total scattered intensity of Equation (4-89) is proportional

to the time average of the time dependent quantity <S4.(t)5,-(t)>

which, in turn, is proportional to the counting rate of an ideal photo-

detector placed in the field of the radiating atom
29

.

The normalized form of the first order correlation function of the

radiation field is

%(° (t,t') Er")(t,t1
[ (t,t) 6(1' ttrt

(4-95)

with the first order correlation function &°/(tX) <S.,,(t)5..(ti)>

A necessary condition for radiation which is coherent to first order is

(4(''(t,t')I =I vt,ti (4-96)

Apart from laser light even the most coherent fields in the optical

range lack second and higher order coherenc
e27

and thus we only need to
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check for first order coherence.

We have the relation <5.1.(t)S_(tl> = <54-0><S..(t)> 1- <654.(t)65.(t)>

Thus <5.1.(t))<5_(t)> and < Ss+ (t) ss_ (t) > are proportional to the

counting rates of ideal photodetectors due to the parts of the field,

which we termed "coherent" and "incoherent" respectively; and

<5+(t)><S-(t")> and <6's+(t) (t") > are proportional to the

first-order correlation functions of the "coherently" and "incoherently"

scattered radiation respectively.

For the "coherent" part of the radiation we find

0) <5÷(t)><Sitl>
(j.cok (tit') <St(t)><5..(t)>< S+ (f)><S_Ct'Dit

X +(t) X_ (t)

(t) X_(t) x+(ti) X_(t)it

In the limit where t,t' > 1F-' this becomes

co
903 (t) 900 (V)

(tti) =
[900(t)900(t) yoo(t).900(tlz

J. I

Thus this part of the radiation is indeed coherent to first order as

long as the radiating atom is in the long term regime.

For the "incoherent" part of the radiation we find

4-97)

4-98)

(t,ti) =
<Ssi_(t)cfs.(ti)>

R6s+(t) ds_ (t) ><ds+ (t) Ss_ (ta)>ii
or

(4-99)
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g, [I:1)c (t1V) [( i.
(t)

a.

(t))( 1- 2. (t) 4,-3,02(nJi

( I ÷ Zoo (ti)) e- (t -t)

i-zoo(t) -.gc:;(ti) L900 (ti) iyo,(t)E.50(t.)) eif+(tti)

it Zo2(t) yct(t) + Yoo (r) + .q0.(tlac. ("C))e Ct.° (4-100)

in the steady state. Here 1 qiinnt,v)1 * 1 ; in fact iii1;2(tx)-- 0

for t-t' > 31.-1 and there is no coherence in time beyond an interval

of the order of the atomic lifetime.

We expect the total radiation to exhibit partial coherence:

0) <S+(t)S_It'D
ctot (t,t) (t)s..(t))<st(t)s (t)>li

yoo(t)yoottl

[i(l-hca(t))-

(t) ti cr, (ti)

( I I- zoottl)
(4-101)

Under the square root we have the ratio of the coherent counting rate

to the total counting rate at the times t and t'.
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5. RESULTS

5.1 The Approximations in the Numerical Calculations

The results of our calculations, namely Equations (4-77), (4-88),

(4-93) and (4-94), contain single sums, double sums, triple sums and

even fivefold sums over all the indices m of the Bessel functions

1m (W,) and Tin ( 442 .

The relation _Q.< 3w, expresses an experimental limitation. In

the graphs which follow, the variables are taken to be multiples of

'17

. We restrict ourselves to 0.5 S-m-T 5. 2.5 for 7-411 = 0.2, which

means 0.02 5 4.---r--2; 0.1 and 0 u--37- 5. 2.5.

Thus, in order to obtain the data for our graphs, we have to

evaluate the sums for 0 <
SI.

2.5.

For 0 X < 5 ITIII(X)1 decreases rapidly with increasing

beyond a certain small value of Im] as illustrated by Table (5-1).

Because of the structure of the summands we can approximate all the

infinite sums by finite sums with only a few terms.

The constant M in each figure caption indicates how many terms

were kept in obtaining the data for the graph. For M = 2, for example,

the single sums contain the terms with Jo ,3±, and 1.2. The multiple

sums contain products of Till's such that all m's go at least through

the full range of values 0, ± 1, ± 2. Some of them may go beyond that

range however, due to the relations among the indices. For example, to

evaluate the double sum of Equation (4-95) with the product 111711.3-n+ni

we let n = 0, ± 1, ± 2 and n' = 0, ± 1, ± 2, ± 3, ± 4 to insure that
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ni-n1 takes on all the "important" values (0, ± 1, ± 2 in this case)

for each fixed value of n as n' covers the chosen range.

We determine the appropriate value of M for a particular plot by

listing some sample data for various values of 11 and finding the M

for which the approximation is "good enough". This means that the data

obtained when using M1+.1 and those obtained when using M differ by a

factor of 10
-4

or less of the maximum value in the set of data to be

plotted. We illustrate the method with an example. Let us assume that

we want to plot the coherently and incoherently scattered total inten

sities versus 49, for T1 = 0.2 and 0. = 1 (i.e. .(2 =111). We compute

some sample data as shown in Tables (5-2) and (5-3), namely 1.colk and

I
tint

respectively for -.1 = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0,

2.25, and 2.5, when M = 0, 1, 2, 3, 4, and 5. (The values are if of

the right-hand side of Equations (4-93) and (4-94) respectively.) The

maximum value in the set of data is 0.5. Thus we allow an error of

no more than 0.00005. In order to get this accuracy we need to use

M = 4 when calculating the data for the graph.



Table (5-1). Table of the Besse] functions Jm(x) up to Iml = 10 and with arguments
x = 0, 1, 2, 3, 4, 5. Note that IF:..u,J;(x) = 1 for all values of x.
Thus all the Jto's for imi>10 are essentially 0 for 0 x15.

x = 0.0 x = 1.0 x = 2.0 x = 3.0 x = 4.0 x = 5.0

Jo (x) 1.0 .76520 .22389 -.26005 -.39715 -.17760

Jt (x) 0.0 ±.44005 ±.57672 ±.33906 T.06604 .32758

jt4(x) 0.0 .11490 .35283 .48609 .36413 .04657

J±3(x) 0.0 ± .01956 ±.12894 ±.30906 ±.43017 ±.36483

44 (x) 0.0 .00248 .03400 .13203 .28113 .39123

45(X) 0.0 ±.00025 ±.00704 t.04303 #.13209 1.26114

Jt6(X) 0.0 .00002 .00120 .01139 .04909 .13105

Jti.(x) 0.0 ±.00000 ±.00017 #.00255 ±.01518 ±.05338

Jts(x) 0.0 .00000 .00002 .00049 .00403 .01841

Jt9(x) 0.0 ±.00000 ±.00000 ±.00008 ±.00094 1-.00552

Jim(X)

io

1,7,(x)
m.-10

0.0

1.0

.00000

.99999

.00000

.99998

.00001

.99999

.00020

1.00000

.00147

1.00000



Table (5 -2). The coherently scattered total intensity

for 0.2, a = 1.0 and 0.5 5 ti .5. 2.5

when M = 0, 1, 2, 3, 4, and 5. '

M = 0 M = 1 M = 2 M = 3 M = 4 M =5

0.50 .02648 .02587 .02590 .02590 .02590 .02590

0.75 .00940 .01279 .01296 .01296 .01296 .01296

1.00 .00348 .03079 .03078 .03078 .03078 .03078

1.25 .00125 .02444 .02343 .02334 .02334 .02334

1.50 .00043 .01080 .01006 .00994 .00993 .00993

1.75 .00014 .00541 .00795 .00784 .00782 .00782

2.00 .00004 .00285 .02202 .02184 .02182 .02182

2.25 .00000 .00151 .01517 .01452 .01449 .01449

2.50 .00000 .00079 .00703 .00662 .00655 .00655

Table (5 -3). The incoherently scattered total intensity
for IT, = 0.2, O.= 1.0 and 0.555 w,5 2.5
when = 0, 1, 2, 3, 4, and 5.

M = 0 M = 1 M = 2 M = 3 M = 4 M = 5

0.50 .42504 .42203 .42200 .42200 .42200 .42200

0.75 .47145 .44594 .44572 .44572 .44572 .44572

1.00 .48793 .33080 .33060 .33060 .33060 .33060

1.25 .49480 .42484 .42505 .42513 .42513 .42513

1.50 .49784 .46959 .46730 .46739 .46740 .46740

1.75 .49920 .48463 .46675 .46677 .46679 .46679

2.00 .49978 .49153 .38925 .38917 .38919 .38919

2.25 .49998 .49520 .45250 .45238 .45240 .45240

2.50 .49999 .49727 .47993 .47774 .47777 .47777



85

5.2 The Population Inversion and the Atomic Dipole Moment in the
Steady State

The results for the constant amplitude dynamic Stark effect are

listed in the Appendix. They are well-established theoretically and

have been verified experimentally to some extent. They can be used to

check our results since the constant amplitude case is contained in our

more general calculations. When making comparisons we have to keep in

mind that our results are only valid for 1.1V:l. In addition, compar-

ison of the constant amplitude dynamic Stark effect and the modulated

amplitude dynamic Stark effect reveals which features stem from the

modulation.

At resonance, the first one of the optical Bloch equations does

not depend on the applied field and thus has the same solution regard-

less of the time dependence of the amplitude. The long term result

>(04 = 0 is easy to understand: A classical dipole oscillator, which

is allowed to radiate and which is driven by a field whose frequency

equals its natural frequency, is iE out of phase with that field.

For the constant amplitude dynamic Stark effect the long term

solutions yo, and Zoo are time independent. The function of Equa-

tion (A-5) is plotted in Figure (5-1) for 0 5. .13f 5_ 2.5 and = 0.2.

Similarly, the function Zoo of Equation (A-6) is plotted in Figure (5-2)

for 0 2.5 and 3: 0.2.

All our results simplify considerably when a = 0, since

TA (0) = 60A.. In particular

(5-1)



and

2°1(a= °) +nox
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(5-2)

In the limit where I
Equations (5-1) and (5-2) agree with Equa-

tions (A-5) and (A-6) if terms of the order of (Ware dropped. Then

,900 x k and Zoo 0 in both cases. The degree of accuracy of

our results for Q. = 0 is demonstrated by Figures (5-3) and (5-4). In

Figure (5-3) the functions of Equation (5-1) (solid line) and q. of

Equation (A-5) (dashed line) are plotted versus . Similarly, in
cut

Figure (5-4) the functions 2c0 of Equation (5-2) and Zoo of Equation

(A-6) are plotted versus --2 . As expected the agreement is much

better for 1-2° = 2.5 where = 0.02 than for 1.1.2 = 0.5 where
(A), Lino

r
= 0.1.

Liao

For C. * 0 the functions lo,(t) and Eco(t) of Equations (3-99) and

(3-100) respectively become time dependent. They oscillate with all

harmonics of the modulation frequency. This is illustrated by Figure

(5-5) where Eco(t)is plotted as a function of time for various values

of a ; 0.2 and 21 = 1.0 are kept constant. The amplitude of the

oscillations increases with increasing O., otherwise the features of

the curves are rather similar. It seems reasonable then to choose

0. = 1 for the modulation depth, since the effects of the modulation

are most obvious in that case. The function 960(t) is plotted for

f2
0. = 1, W, = 0.2 and various values of 14 in Figure (5-6). The

LU)

corresponding plots for Z(.0 are shown in Figure (5-7). With increa-

sing values of --- a greater number of the harmonics contribute signif-m
icantly to the time dependence, which becomes increasingly complicated.
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The amplitude of the oscillations goes through a maximum when no= nu,

(n integer). This is attributed to parametric resonances30'31.

The time average of the atomic dipole moment It) is just the

static component of 00(t) , the time average of the inversion Zoo(t) is

the static component of Eco(t). These static components are the quan-

tities which should be compared with yo, and Eco of the constant amplitude

dynamic Stark effect. The static components of 0.(t) and i40(t) as

functions of III are shown as solid lines in Figures (5-8) and (5-9)
LOI

respectively; the dashed lines are once again the corresponding curves

of Figures (5-1) and (5-2). In the constant amplitude case the inver-

sion steadily approaches zero as as increases toward saturating values.

In the modulated amplitude case, the static component of the inversion

exhibits parametric resonances, i.e. it reaches zero over a set of

maxima and minima. Similar remarks hold true for the atomic dipole

moment.
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FIGURE CAPTIONS

120
Figure (5-1): The atomic dipole moment as a function of 157 for

W= 0.2 in the case of the constant amplitude dynamic

Stark effect.

Figure (5-2): The atomic inversion 4. as a function of (1?° for

w, = 0.2 in the case of the constant amplitude dynamic

Stark effect.

Figure (5-3 ): The atomic dipole moment for the constant amplitude dy-

namic Stark effect (dashed line) and for the modulated

amplitude dynamic Stark effect (solid line) with a = O.

Both are plotted as functions of gs for I 0.2.

Figure (5-4): The atomic inversion for the constant amplitude dynamic

Stark effect (dashed line) and for the modulated ampli-

tude dynamic Stark effect (solid line) with OL= O. Both

no I
are plotted as functions of IT for = 0.2.

Figure (5-5 ): The inversion E.(t) of the modulated amplitude dynamic

Stark effect as a function of time in the interval

O
Gal
77F

t
< 3, for 7, = 0.2, M = 4 and various values

of the modulation depth CI .

Figure (5-6): The atomic dipole moment 9o3(t) of the modulated amplitude

dynamic Stark effect as a function of time in the inter-

val 0 4 (4'21 2, for a = 1, w = 0.2, M = 4 and
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various values of P-72 . The y-axes go from -1 to +1,

the numbers at the bottom of the graphs give the respec-

tive values of 12g
u4

Figure (5-7 ): The atomic inversion 1100(t) of the modulated amplitude dY-

namic Stark effect as a function of time in the interval

0 4 1.41t 2, for a. = 1 , 2L = 0.2, M = 4 and various
ail'

f2values of --2 . The y -axes go from -1 to +1, the

numbers at the bottom of the graphs give the respective

values of fl
--9 .

Figure (5 -8): The static component of the atomic dipole moment 010("t)

of the modulated amplitude dynamic Stark effect (solid

line; C. = 1, M . 4) and the atomic dipole moment of

the constant amplitude dynamic Stark effect (dashed line).

f20
Both are plotted as a function of for = 0.2.

wi

Figure (5-9 ): The static component of the atomic inversion 2:0(t) of

the modulated amplitude dynamic Stark effect (solid line;

OL = 1, M = 4) and the atomic inversion 4, of the con-

stant amplitude dynamic Stark effect (dashed line). Both

no for
W

are plotted as a function of = 0.2.
w,



90
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Figure (5-1)
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1.00

0.00

-1.00
1.00

0.00

C

C

92

.00 1.00 2.00

o.= 0.2

-co 1.00 2.00 3.00

-1.00 a = 0.4

1.00 -

0.00 .,1
1.00 2.00 3.00

-1.00 a = 0.6

1.00

0.00
.00 1.00 2.00 3.00

-1.00 C.= 0.8

1.00 -

0.00

-1.00 = 1.0
w,t
ZT

Figure (5-5)
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Figure (5-6)
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Figure (5-7)
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5.3 The Intensities

The formulas which we use to calculate the scattered intensities

are formally identical to the ones used for the constant amplitude dy-

namic Stark effect. The total scattered intensity, for example, is ob-

tained from the relation Itat-- T fdt t(ii-E,,,(t)) and will, in the

modulated amplitude case, exhibit parametric resonances just like the

static component of the inversion. This is illustrated in Figure (5-10)

where the total intensity and its coherent and incoherent parts are

plotted using Equations (4-92), (4-93) and (4-94) with O. = 1 (solid

curves) and the corresponding equations of the Appendix (dashed curves).

The decay rate is = 0.2 in all cases. We can determine the average

Rabi frequency no and thus the strength of the atom-field interaction by

measuring the total intensity of the scattered light as a function of

the mean field strength and finding the minima of the resulting curve.

For the constant amplitude dynamic Stark effect this is not possible.

The coherently scattered intensity has the same functional dependence

on f-22 as the static component of (t) since Icat iTfty:(t)
the incoherently scattered intensity is linked with the static compo-

T

nents of both E00(t) and 90:(t) since 4r.fdtfi( te.co(t))

When f, reaches saturating values, almost all the light is scat-

tered incoherently in both the constant amplitude and the modulated am-

plitude case. Moreover, the incoherently scattered intensity in the

modulated amplitude case has minima at the same values of 122 as the

static component of the inversion. We recall that the incoherently

scattered light has its origin in the fluctuations of the atomic varia-
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bles. It thus appears that the atoms fluctuate more when they are in

the excited state.

We can rewrite Itat as

I:

g1.1r

dt (5-3)
tot jj (t)

0

The time average of the probability Vt) cannot exceed 0.5 and thus

there is an upper limit to the scattered intensity. The few authors

who have treated aspects of the modulated amplitude dynamic Stark ef-

fect3°'
31,32,33

all make use of the fact that the intensity of the

light scattered by an atom is proportional to the population of its up-

per level. Consequently, they have to derive the function Vt) or Ett).

32
Armstrong and Feneuille treat the case of a two-level atom at

resonance with a monochromatic, weakly modulated laser beam using per-

turbation theory with the modulation depth Q. as the expansion parame

ter. Their results are valid for arbitrary field strengths and for

Ot.<( I Their density matrix element 3.0t), expressed in our nota

tion, is

= aficYl-r2-
Li a

lOLr +
z4.);')

it),t (Q:- Tz) 41.f11 Wit I

In Figure (5-11) we compare Equation (5-4) to our function

3ji(t) = + zoo (-0) . We see that the time dependence of the

two functions agrees quite well, but that they differ by a small

constant term.

The assumptions made by Feneuille, Schweighofer and Oliver33 are

such that a comparison between their results and ours is not possible.

(5 -4)
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FIGURE CAPTIONS

Figure 5-10) : The intensities lack, I(mc and rtot for the constant

amplitude dynamic Stark effect (dashed lines) and for

the modulated amplitude dynamic Stark effect (solid

lines, a = 1, m = 5). They are plotted as functions

of forfor . = 0.2.

Figure (5-11): The density matrix element ?ii(t) as a function of time

in the interval 0 4 Lt. -) 2 for our calculation (solidav
lines) and for the calculation done by Armstrong and

Feneuille (dashed lines). The respective values of I

and
o--- are given at the lower left hand corner of each

graph.
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5.4 The Coherent Spectrum

The coherent spectrum in the case of the constant amplitude dynamic

Stark effect consists of a sharp (6 function) peak at La =64 ; the

coherently scattered light is scattered elastically.

In the modulated amplitude case additional frequencies appear at

WL+ mtiJ, (m integer). This is illustrated by Figure (5-12),

where the length of the line at co = LJLI-mtJ represents the factor

guiVin which appears with 6(w-wt.-moo in Equation (4-76); i.e.

it is proportional to the intensity of the light with frequency

U.) = M W,. We note that the coherent spectrum is symmetric about

* *
(A) = WL since = ym gm

For O.= 0 Equation (4-77) reduces to

rf2:
loft (w) uva.÷nozr op

which is in good agreement with Equation (A-14).
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FIGURE CAPTION

Figure (5-12): The coherent part of the spectrum, radt(U1) , of the

modulated amplitude dynamic Stark effect as a function

of
1.0 4J1.
----- for a = 1, = 0

' '
2 M = 4 and 12 = 0.5,

u4

1.0, 1.5, 2.0, and 2.5.



Figure (5-12)
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5.5 The Incoherent Spectrum

The feature which is usually associated with the constant amplitude

dynamic Stark effect is the spectrum of the incoherently scattered

light. It is a three-peaked structure which is symmetric about Wt.. In

the strong field limit the peaks are at 4)=631. and at Ili = WL t

and have a half width of f and 1.T respectively. The height of the

central peak is three times greater than that of each side band. A set

S2
of such curves is plotted in Figure (5-13) for 7111 = 0.5, 1.0, 1.5, 2.0,

and 2.5 and = 0.2 using Equation (A-15).

In Figures (5-14) and (5-15) our results for a = 0 (solid curves)

are plotted along with the constant amplitude results in the strong

field limit (dashed curves) for 1 = 0.2 and Li = 0.5 and 2.5 respec-
w, 6J,

tively. The agreement for . 2.5 is considerably better than that
Lot

for as = 0.5.

The spectral distribution of Equation (A-16) is correct for all

no provided no . In Figures (5-16) and (5-17) we compare our

results for O. = 0 (solid curves) with the right-hand side of Equation

(A-20) for = 0.2 and = 0.5 and 2.5 respectively. The agreement

11for --2 = 0.5 is better as before and for = 2.5 it is very good.
to,

---

In the modulated amplitude case the incoherent spectrum has peaks

at W=4)1. and LA) = CUL±.110 + mW, (m integer). Thus, the main

effect of the modulation is that the sidebands are now accompanied by

their own sidebands whereas the central peak is essentially unaffected.

This can be justified by examining the origin of the different peaks in

the incoherent spectrum. The width and position of the central peak
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are determined by the transient behavior of X , which is independent

of the applied field. On the other hand, the widths and positions of

the sidebands are determined by the transient behavior of B , and B ,

which for (1*Q contains the frequencies 12 0 t (11W, and -120÷1111U

In Figure (5-18) we show a set of spectra corresponding to Q. = 1,

S-20
= 0.2 and = 0.5, 1.0, 1.5, 2.0 and 2.5. These curves exhibit

the expected peaks at W WL and W rz ± .c20 , but some

peculiarities do occur. For example, for 22 = 2.5, we would expect

peaks at (1) = WL ± a.5 U), , but they are missing. The reason for

this is that the factor To 0.. w° °) which appears in the terms for

the peaks at C.J= 6..)Lt no is very small for this particular combina-

tion of modulation depth and Rabi frequency: 7 (2.5) -0.04838,

L(2.40483) = O.

The incoherent spectrum is also symmetric about L)= W t . This

can be shown by replacing 10-wi by -(.)-WL) in Equation (4-90). This

yields an expression which is identical with the original one.

The positions of the peaks in the incoherent spectrum can be

determined using the dressed atom picture35.



Figure (5-13):
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FIGURE CAPTIONS

The incoherent part of the spectrum of the constant

amplitude dynamic Stark effect in the strong field limit

as a function of (1)-(14. for 1 0.2 and 122
LUI WI

0.5, 1.0, 1.5, 2.0, and 2.5.

Figure (5-14): The incoherent part of the,spectrum for the modulated

amplitude dynamic Stark effect with O = 0 (solid line)

and for the constant amplitude dynamic Stark effect in

the strong field limit (dashed line). Both are plotted

as functions of WW W` for 4212 = 0.5 and X 0.2.

Figure (5-15): Same as Figure (5-14) but with --- = 2.5.
Lui

Figure (5-16):

Figure (5-17):

Figure (5-18):

The incoherent part of the spectrum for the modulated

amplitude dynamic Stark effect with 0. = 0 (solid line)

and for the constant amplitude dynamic Stark effect

(dashed line). Both are plotted as functions of 4/".

for
12
--2 = 0.5 and I = 0.2.

Same as Figure (5-16) but with 2.5.

The incoherent part of the spectrum of the modulated

amplitude dynamic Stark effect as a function of 44;41--

120
for 0. = 1, M = 5, Lu

I vl= 0.2 and .-. 0.5, 1.0, 1.5,

2.0, and 2.5.
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5.6 An Estimate of the Order of the Effects Which are Neglected
in the Rotating Wave Approximation

The optical Bloch equations of Chapter 3 describe a two-level atom

of atomic frequency Wo interacting with a left circularly polarized

wave of frequency WL . In the rotating frame there are, for the con-

stant amplitude case and near resonance, no optical frequencies left

in the problem.

A linear wave can be written as the sum of a left circularly

polarized wave and a right circularly polarized wave. In the frame

rotating with the left circularly polarized wave these are observed as

a static field and a field which rotates clockwise with frequency WL

Neglecting the latter is called the rotating wave approximation. For

optical frequencies WL this is a very gobd approximation and the

neglected effects, notably the Bloch-Siegert Shift7'34, are very small.

Our calculations enable us to make an estimate of the order of the

effects which are neglected when we approximate a linear wave of con-

stant amplitude and with frequency Wt.= (Jo by a left circularly po-

larized wave. The linear field, which can be written as fiE0 CD(JOAX

fiia
"

1 1 .1 + 1
in the lab frame becomes 11 ( I + C.032Lact)i "
in the rotating frame. Instead of dropping the terms containing the

optical frequencies altogether, as in the rotating wave approximation,

A

we retain the component in the X' direction and thus are left with a

field of amplitude E.(t) = !I! ( 1÷(:03 ZbiLlt)

This amplitude has the same time dependence as the one of Equation

(3-46) with a modulation depth a = 1 and a modulation frequency

WI = :16J1. . In our calculations we did not have to impose any re
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strictions on GJ, even though we chose L*) = 51f for our graphs as a

reasonable value for the modulation frequency. The results of our cal-

culations are correct even for optical w, . The effect of the rapidly

oscillating part of the X' -component of the electric field is to intro-

-r 120%
duce the terms containing Jatazi and products thereof in the

results. We have neglected the qi -component of the electric field,

which should have a similar effect. The right circularly polarized

wave thus manifests itself in the spectrum in effects of the order of

:rn(a) of the effects of the left circularly polarized wave. A

typical value of the argument for a strong field (120.P...100 MHz) is

120 (

n

lx )
10

-8
. We use the relation Jn(x) for x<K1 and

conclude that the effects neglected in the rotating wave approxima-

tion are of the order of 0.5 x 10-8 and smaller of the main effects for

optical frequencies.
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APPENDIX

The Spectral Distributions and Total Intensities in the Case
of the Constant Amplitude Dynamic Stark Effect

The constant amplitude dynamic Stark effect has been treated by

10,11,12,13,14,15,16
many authors . Their results can be obtained in

many different ways, one of which is the one we use to solve the

modulated amplitude dynamic Stark effect.

The optical Bloch equations

)< a x (Al)

y no E
(A-2)

+ncA (A-3)

have the long term solution

X03 = 0 (A 4)

z-no
Y 75.2..1.1202. (A-5)

(A-6)+n:
and the transient solution (for 0

> )

x(t,t') = )0( ( t e. (t-v)

At y(V) -E(t1) ergt-t1) ik.9(t')-a(v) r_ (t-t)

A+ A. A t1t (A-8)

(t1)AE(ts) r+ (t-tt) 9 (t) -A+ B (t

L.
i) r_ (t- 1)

(A-9)
tt,V) A, A _ A- A+

(A-7)

where r+ and Ak± are given by Equations (3-67) and (3-68) respective-

ly.

The coherently and incoherently scattered total intensities can
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be determined using Equations (4-90) and (4-91) respectively.

In the limit of large measuring times T one can replace <p.(t))

by 26 and < S ± (t) > by ti.,960 and one finds

Tr 1201r(ir +no2)IC

and
no4

er+no

(A-10)

(A-11)

The coherent and the incoherent parts of the spectrum can be deterMined

using Equations (4-64) and (4-65) respectively. One can show that in

the limit of large measuring times

< 6S+ (t) (V)) = ( -1- Boo) e
t4)

A (1+-E yoa -I- Boy) r+ (t-V)
4 A+- A_ e.

1-
(1+a 140:1 e3y (1-frz r_ (t-t')

-I-
4 A_ -A+

In the strong field limit ( r-2<K 1 )

6S+(t)6S_(t1))
L e t1)

8
e /- k e )(t-t')

(A-12)

A-13)

In the limit of large measuring times 1- one finds

r.cott(U)) gt-'3rd*Usi-tdt.) = (Je--5:+12Z0zr. 6(1))-14L) (A-14)

and in the limit of large measuring times 1- and strong fields one o

tains
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(A-15)

In the above references the incoherent frequency distribution is given

in the strong field limit of Equation (A-15). We can calculate Tine (w)

for arbitrary field strengths using Equations (4-65) and (A-12).

In the limit of large measuring times 1- we obtain the following result,

which is valid for c20.1

Ilinc(w) z(TaH-z1-2,22.) t ÷(w-wo

it) noi (cIrr )2'

(f203*-tTa.) 120

[ 2 r2-i-s20']1( w (&)a-r]

(f20'- kr) + 1 12v g Ira) n 011 )2' (A -1 6)
2. 2.[iTa+noain 11 1 ) ÷ (

) Wt.+ 120 60) )


