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A Delta-Sigma Pulse Width Modulator with Pulse Dithering

1 INTRODUCTION

Industry has long used Pulse-Width Modulation (PWM) to drive motors, to facilitate DC-

DC/AC conversion, and in many other similar applications [1]. Because of non-zero

switching time in power switching devices, the number of digital transitions per unit time

typically determines the thermal power dissipation of systems using these devices. PWM

is ideally suited for these types of applications because it has a fixed number of digital

transitions per unit time. Along with the advantage of the fixed frequency of PWM, is the

problem of harmonic noise from the PWM fundamental switching frequency [1]. Over-

coming the problem of harmonic noise has been addressed in recent literature [3], [4],

[5]. Most methods for spreading harmonic noise involve dithering the PWM fundamental

period, or introducing extra transitions in the PWM waveform to tailor the frequency

spectrum by removing specific harmonics. The latter method does not retain the PWM

feature of a fixed number of digital transitions per unit time. This paper introduces a

PWM design that spreads harmonic noise in the frequency domain by dithering the PWM

pulses within a fixed period, while maintaining a fixed number of digital transitions per

unit time. This is facilitated by combining Delta-Sigma Modulation (DSM) with a digital

PWM block to create a discrete-time Delta-Sigma Pulse Width Modulator (DSPWM).
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2 BACKGROUND

This section covers some background issues leading up to the development of the

DSPWM including the fundamental concepts, applications, and noise characteristics of

conventional PWM and DSM.

2.1 Conventional PWM

This section describes the fundamentals of conventional PWM. The noise characteristics

and typical applications of PWM are also explored.

2.1.1 Modulation Description

Conventional PWM uses a triangle or sawtooth reference waveform to compare against

an incoming analog signal. The digital result of this comparison is the PWM output. Fig-

ure 1 below shows a block diagram of pulse-width modulation with an input signal and a

sawtooth reference waveform driving a comparator, where the output of the comparator

is the PWM output. PWM is simple, closely approximates the input signal (within the

frequency band of interest), and has a fixed number of digital transitions per unit time.

Figure 1: Diagram of Pulse-Width Modulation
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An example of a PWM waveform is illustrated in figure 2 below. Creating a precise ana-

log triangle/sawtooth waveform is typically done using an RC charge-discharge circuit

employing precision resistors, capacitors and current sources. This is not a problem when

using discrete resistors and capacitors, but for integrated circuits, on-chip resistors and

capacitors are hard to control and can exhibit non-linear behavior when fabricated using

digital-only IC processes. A delta-sigma modulator can be used to create a similar PWM

waveform, without requiring a triangle/sawtooth waveform. This will be discussed later

in chapter 3.

VDD

Input & Reference

GND

VDD

PWM Output

GND

Time

p

Figure 2: Example of Pulse-Width Modulation (PWM) waveform

2.1.2 Applications

PWM is used extensively in power electronics applications. Typical applications include

power inverters (DC-AC converters) and DC-DC switch-mode converters (buck,

boost,...). These converters operate by alternately opening and closing a switch between a

DC voltage reference and complex impedance network to generate a desired output

waveform using PWM as the switching control signal. A DC step-down (buck) converter

is shown in figure 3 below. The switches used are typically Insulated Gate Bipolar Tran-
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Figure 3: A Switch-Mode Step-Down (Buck) Converter

sistors (IGBTs), thyristors, or power MOSFETs. Ideally an ON state consists of a zero

voltage drop across the switch, and an OFF state consists or a zero current through the

switch. Either of these two cases results in a zero-power condition. When switching,

however, there is a finite period of time when the voltage across the switch and the cur-

rent through the switch are both non-zero. Each switching event therefore results in a

finite amount of energy that needs to be conducted or radiated away from the switch.

2.1.3 Noise Characteristics

The fixed-frequency, varying duty-cycle rectangular waveform of conventional PWM

results in a significant amount of harmonic noise [1], [3], [4], [5], [6]. This is illustrated

in Fig. 4 below with simulation results of a conventional PWM, where the fundamental

switching frequency is 10kHz and the input signal is a lkHz sine wave. For this simula-

tion a sampling rate of 1MHz was used and 100,000 samples were used to calculate the
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frequency spectrum for each graph. Figure 4 shows that there is a significant amount of

harmonic noise at frequencies not too far above the input signal frequency. This out of

band energy from harmonic noise can result in significant electromagnetic interference

(EMI) if the receiving system cannot reject signals above the frequency band of interest.

0
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< -20

25

-30
0
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PWM Freq = 10kHz

Num Samples = 100,000

Sampling Rate = 1rviHz

- 25

10 15 20
Frequency (kHz)

25

Normalized Frequency Spectrum of Conventional PWM

30 35

- 30
0 5 10 15 20

Frequency (kHz)
25 30 35

Figure 4: Frequency Spectrum of PWM

The mechanism of harmonic noise interference is shown in figure 5 below. In this figure

noise can be radiated into the environment if the PWM signal is a high-current signal as

is the case for driving motors. This radiated noise can interfere with other circuits that
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Figure 5: Mechanism for Harmonic Noise Propagation

may be sensitive to the frequencies of the radiated noise. This could be a wireless

receiver or an unshielded microprocessor circuit board. Another way that harmonic noise

can be a problem is through conduction. Harmonic noise can couple to system power

supplies through stray capacitance and inductance. This can contaminate the power sup-

ply, resulting in power supply noise interfering with sensitive control electronics else-

where in the system. This situation could arise in power inverters or DC/DC switch-

mode converters where there is a significant amount of power device switching activity

in close proximity to sensitive control electronics. Conventional methods for combatting

these two mechanisms of noise propagation are shielding for radiated noise and filtering

for conducted noise. Both of these methods involve added manufacturing costs to the

system.
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2.2 Delta-Sigma Modulation (DSM)

The fundamentals of Delta-Sigma Modulation (DSM) are reviewed in this section. This

review consists of a brief description of DSM followed by a discussion of some DSM

applications, and finally some discussion of the noise characteristics of DSM.

2.2.1 Modulation Description

DSM is an oversampling method for converting an analog signal to a digital waveform.

Unlike conventional Nyquist sampling systems, DSM must be sampled at a rate much

higher than Nyquist (twice the highest frequency component of the signal). The rate of

sampling relative to the Nyquist rate is referred to as the oversampling ratio and is herein

denoted by R. In practical systems, the value of R is typically greater than 100. The sys-

tem-level block diagram for DSM is shown in figure 6 below. A typical DSM waveform

is shown in figure 7 for a 1kHz sine wave input signal modulated at 1MHz. Notice that

DSM is inherently a discrete-time system with a digital output, but not necessarily a dig-

ital system since the input is (in our case) an analog signal. In this thesis we will be refer-

ring to DSM as a discrete-time system implemented in switched-capacitor technology. A

switched-capacitor implementation of a DSM is illustrated in figure 8. Note that since

this is a switched-capacitor implementation, good capacitor matching is required for

good DSM performance.

2.2.2 Noise Characteristics

DSM has the unique characteristic of shaping the quantization noise spectrum. Where a

conventional sampling system may have a constant (quantization) noise floor due to a

uniform distribution of quantization noise of between -1/2 and +1/2 lsb for all frequen-

cies, DSM has a shaped noise floor that is minimum at low frequencies and increases

with frequency. This is illustrated in figure 9. Note that at low frequencies, the noise

floor of DSM is significantly lower than that of conventional Nyquist sampled systems.

In fact, around the frequency of interest (1kHz) the noise floor is 100dB below the signal
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Figure 6: Block Diagram of a Delta-Sigma Modulator

power level, but as the frequency approaches Nyquist (500kHz) the noise floor levels off

at around 20dB below the signal. It is this noise shaping that gives DSM such good per-

formance at low frequencies. For a given frequency of interest, increasing R increases the

signal-to-noise ratio (SNR). The usefulness of DSM is usually limited by the maximum

frequency of interest and by the maximum attainable R. A mathematical model for the

DSM is described in the next section.

2.2.3 Mathematical Model of DSM

The mathematical model of the DSM can be developed by assuming that the comparator

in the DSM block diagram (figure 6) can be replaced with a white-noise source to repre-

sent the quantization noise. It is a safe assumption that the quantization noise resulting

from the comparison is uniformly distributed over frequency, although this is a safer

assumption for DSMs of order 2 or higher. First-order DSMs are prone to limit-cycles [2]

and can therefore perform worse than theoretical predictions. Now assuming the compar-

ator injects uniformly distributed quantization noise, we can replace it with an ideal noise

source and determine the Z-domain transfer function for the system. Referring to figure

10 we have redrawn the system-level block diagram of the DSM, replacing the compara-

tor with an ideal noise source E and replacing the integrator with the unit-delay Z-domain
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Figure 7: DSM Typical Waveform

equivalent. The resulting equation for the output signal is a sum of the original input sig-

nal plus a high-pass filtered version of the noise. This high-pass filtering is the noise-

shaping mechanism described in the previous section. At low frequency the output

closely approximates the input signal, but at high frequency (half the sampling fre-

quency) the noise component is maximum. Alternatively, we could have used a zero-

delay integrator in the system shown in figure 10, but to get the same transfer function

would have required a unit delay in the feedback. Both methods are valid, but one may

prove better than the other in a certain situation based on implementation issues. This

model is fully described in reference [2].
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Figure 8: Switched-Capacitor Delta-Sigma Modulator (first order)

2.2.4 Applications

DSM is used extensively in audio-band circuits, and wherever an acceptable R can be

attained for a desired input signal frequency. Audio is a well-behaved application since

the upper frequency of interest is on the order of 20kHz. This allows the use of a rela-

tively slow 20MHz system clock while still achieving an R value of 500. Ifa lower R is

acceptable, say 100, then a 100kHz input signal could be modulated with a 20MHz

clock. Exact SNR calculations for DSM output can be found in reference [2].
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Spectrum of DSM Output
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Figure 10: Z-Domain Equivalent Block Diagram of the DSM
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3 DELTA-SIGMA PULSE WIDTH MODULATION (DSPWM)

The Delta-Sigma Pulse Width Modulator (DSPWM) is a hybrid circuit using DSM as an

input stage and a digital PWM waveform generator as an output stage. This is illustrated

below in figure 11. The DSM is a conventional first-order switched-capacitor implemen-

Input
(analog)

Clock

r DSPWM

L

DSM PWM

7

1

1 PWM Output
I (digital)

_I

Figure 11: DSPWM Block Diagram

tation that inputs an analog waveform and outputs a digital bit stream. This digital bit

stream feeds a digital PWM output stage which collects the DSM through a low-pass

decimation filter (accumulate and dump) and reformats it into a PWM waveform. This

PWM waveform has two characteristics which separates it from a conventional PWM

waveform. First of all, the PWM pulses are dithered in time by a pseudorandom offset

generator in the output stage. Secondly, the PWM pulses are selectively "inverted" and

become active LOW going pulses when the effective PWM pulse is greater than 50% of

the available PWM period. This later characteristic maximizes the effect of the dithering

mechanism. The details of the DSPWM are illustrated in figure 12 below.
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Figure 12: DSPWM Detailed Block Diagram

3.1 DSPWM Block Diagram

The individual blocks of the DSPWM are described in the following subsections.

3.1.1 DSM

The DSM inside the DSPWM is a conventional first-order switched-capacitor implemen-

tation as described in section 2.2 above.

3.1.2 Accumulator

The accumulator block integrates the incoming DSP bit stream over the defined PWM

period and creates two parameters that are registered at the end of the current PWM
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period for use down stream. The first parameter is the pulse duty cycle, or more appropri-

ately, the effective PWM pulse width (in number of system clock cycles) that would rep-

resent the integrated DSM output over the PWM period. The second parameter is the

pulse off-time (in number of system clock cycles) which represent the amount of time

left in the PWM period beyond the PWM pulse. The sum of the two parameters "duty-

cycle" and "off-time" always equals the total PWM period. An equivalent schematic of

the accumulator is shown below in figure 13. This block is implemented as an 11-bit

counter that is increased by one on each clock edge when the associated DSM output is in

the high state (digital "1"). At the end of the current PWM period, the accumulated value

is registered on the next rising edge of the clock, and the counter is either cleared or set to

a value of "1" depending on the value of the associated DSM output. This method allows

the registering of the accumulated data from the previous PWM period to occur while

clearing the counter and accumulating for the first clock cycle of the next PWM period.

DSM
Output

End

System
Clock

PWM
Period

11-Bit Counter

count enable

load data
sync load

clock

out

Register

D Q
we

clk/\

+

oio

lo, Duty-Cycle

111" Off -Time

Figure 13: Accumulator Schematic Diagram
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The accumulator acts as an N-tap FIR decimation filter with a sin(x)/x frequency

response, where N (decimation factor) is determined by the ratio of the system clock to

the PWM switching frequency. The DSPWM has a programmable N value in the range

of 127 to 2047. The sin(x)/x response of this decimation filter has low-pass filter charac-

teristics with the first zero of the frequency spectrum at the system clock frequency

divided by N, or equivalently, the PWM frequency.

3.1.3 Pulse Inverter

The pulse inverter takes the two parameters from the Accumulator block and determines

whether the duty-cycle parameter represents a value greater than or less than the total

PWM period. Normally the PWM pulse is considered an active HIGH signal, where the

PWM output is HIGH from the beginning of the PWM period until the end of the pulse,

at which time the PWM output goes LOW. When the pulse inverter detects a duty-cycle

parameter greater than 50% of the total PWM period, the pulse is converted from an

active HIGH pulse to an active LOW pulse. This results in the two parameters "duty-

cycle" and "off-time" switching values. So when inverted, the old "duty-cycle" becomes

the new "off-time" and the old "off-time" becomes the new "duty-cycle". This guaran-

tees that the amount of available dither will be at least half of the PWM period for any

given PWM pulse. If the input duty-cycle parameter is less than 50% of the PWM period,

the "duty-cycle" and "off-time" are passed through the pulse inverter block unchanged.

This procedure is described in more detail in section 3.2 below. An equivalent schematic

diagram of the pulse-inverter is shown in figure 14.

3.1.4 PWM Formatter

The PWM formatter takes the final parameters "duty-cycle" and "off-time" from the

pulse inverter and generates a PWM waveform. The pulse inverter sends a signal to the

PWM formatter indicating whether the pulse is inverted or not. The PWM formatter

takes the final off-time, increments it by one, multiplies it with a pseudorandom 11-bit

fixed-point fraction, then truncates it to an integer. This creates an integer in the range
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Figure 14: Schematic Diagram of the Pulse Inverter

[0,off time], where both endpoints 0 and "off-time" and all points in between have equal

probability of being generated. The result of this multiplication is an offset that has a

pseudorandom value in the range of [0,off-time] inclusive. This offset is used to delay the

start of the PWM pulse. At the start of the new PWM period, a value equal to the OFF

state is output for "offset" clock cycles. If the pulse is inverted, this is a HIGH, otherwise

the OFF state is a LOW value. At the end of the offset, the PWM waveform goes to the

ON state for "duty-cycle" clock cycles. After "duty-cycle" clock cycles the PWM wave-

form returns to the OFF state for the remainder of the PWM period. Details of this PWM

waveform are discussed in section 3.2 below.
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3.1.5 Random Offset Generator

The pseudorandom number generator is a 11-bit linear feedback shift register (LFSR)

implementation. This consists of an 11-bit shift register using a specific pattern of bit taps

that are XORed together (binary summed) and fed into the input of the shift register. A

special circuit is used to detect a specific 11-bit (terminal) pattern that forces the LFSR

into the all-zero state. The all-zero-state than maps to a specific 11-bit (initial) pattern.

Normally a LFSR without this special circuit needs a non-zero pattern to be loaded into

the registers. Since an all-zero pattern maps to an all-zero pattern, this is a lost code

word, resulting in only 211-1 possible bit patterns. Using this special circuit to map to and

from the all-zero state results in 211 possible bit patterns. It should also be made clear that

the specific bit tap pattern chosen results in a "maximal" number of possible bit patterns

for this 11-bit LFSR. A "non-maximal" implementation would result in a repeated pat-

tern that contains less than 211 bit patterns. A schematic diagram on the Random Offset

Generator is shown in figure 15 below.

al k
.c) r--- 00

^ -
o

E, E, E- E, E,
O7:1 1:1:1 GG- CC1- CO

LSB Shift Register Po. MSB

* Zero-detect logic not shown

Figure 15: Schematic Diagram of the Random Offset Generator
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3.2 Pulse Dithering and Inverting

The "dithering" and "inverting" characteristics are illustrated with a typical waveform in

figure 16. Note that waveform (a) represents the PWM waveform as it comes from the

accumulator block. Here the parameters "duty-cycle" and "off-time" define the PWM

pulse for the previously integrated value of the DSM output over the last PWM period.

Notice that the waveform on the left is less than 50% of the PWM period, while the

waveform on the right is greater than 50% of the PWM period. Waveform (b) represents

the PWM waveform after it is processed by the pulse inverter block. Notice that the

waveform on the left (less than 50%) is unchanged as it passes through the pulse inverter,

but the waveform on the right (greater than 50%) gets inverted and the parameters "duty-

cycle" and "off -time" reverse values. Finally waveform (c) represents the PWM wave-

(a)

Duty

Duty <50%

(b)

(c)

Duty>50To

Delay Delay

ut

NON-INVERTED INVERTED

Figure 16: Dithered & Inverted Waveform Example
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form from the PWM formatter (final output). The PWM formatter creates a PWM wave-

form that has a pulse width equal to "duty-cycle" system clock cycles, an offset equal to

"offset" system clock cycles, and a polarity determined by the pulse inverter block

(inverted or non-inverted). One unique characteristic of the dithering/inverting process is

that when going from an "inverted" PWM pulse to a "non-inverted" PWM pulse from

one PWM period to another, the random offset is disabled for that one PWM period

(effectively zeroed out). This mechanism guarantees that the number of transitions on the

DSPWM is exactly that of conventional PWM except in the case of the pseudorandom

number being exactly 1 or exactly 0. This condition occurs twice in 211 PWM periods.
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4 PROOF OF CONCEPT

The original proof of concept of the DSPWM was done using MATLAB. The DSPWM

system was modeled at a high level without regard to implementation issues.

4.1 Model

The MATLAB DSPWM is modelled in two parts. The first part is an ideal DSM with a

dynamic range of [-1,+1] volt. This DSM model dumps output to a data vector for tempo-

rary storage. This vector (when complete) is then run through a system-level implemen-

tation of the digital PWM output stage. The default single-precision of the HP9000/735

workstation was used for this simulation, and the digital values for the DSM output are

defined to be -1 and +1. Though not ideal in a real single supply system, this choice of

digital voltage levels makes calculations easy and removes the need to compensate for

any DC offsets that would exist in a real system between real GND and virtual GND. The

MATLAB simulation script files are included in appendix A.

4.2 Simulation Results

The results of the MATLAB simulation are shown in figure 17 below. Figure 17 (a)

shows the frequency spectrum of the input signal. In this case the input signal is a 1kHz

sine wave of magnitude equal to lvolt. Figure 17 (b) shows the spectrum of the DSPWM

operating on the input, with no dithering. Figure 17 (c) shows the spectrum of the

DSPWM operating on the input, with dithering enabled. For this simulation the input sig-

nal is a 1kHz sine wave of magnitude equal to lvolt, the PWM switching frequency is

10kHz, and the system clock frequency is 1MHz. This results in an oversampling ration

of 500 for this particular input signal. The PWM fundamental period is equal to 100 sys-

tem clock periods. The spectral plots are the result of taking 100,000 samples of the sig-

nal of interest, multiplying it by a Hanning window, then taking an FFT of the result. The

frequency spectrum plot is the magnitude of the FFT. Note the significant reduction in

harmonic noise peaks in the dithered DSPWM case compared to the non-dithered case.
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5 CIRCUIT IMPLEMENTATION

The implementation of the DSPWM consists of an analog block (switched capacitor

DSM) and a digital block (digital PWM). A block diagram showing the system inputs

and the analog/digital block interconnections is illustrated in figure 18 below. In this

implementation there is a set of VDD/GND for the I/O pad drivers, a set for the analog

block, and a set for the digital block. Separate power supplies helps to avoid on-chip

noise coupling between the (noisy) I/O pads, the (noisy) digital logic, and the (sensitive)

analog circuits. Externally, these supply pins can all be connected together to a 3.3 volts

power supply. The SW[3:0] inputs are the upper four bits of the 11-bit constant that

defines the PWM period in the digital block. With a binary range of between

00001111110 and 11111111110, the PWM period can range from 6.4usec to 102.4usec

when using a 20MHz system clock. The PWM period/frequency as a function of

SW[3:0] is tabulated below in table 1. The reset input puts the digital logic into an initial

state asynchronously. The dither_enb signal enables dithering when HIGH. Dithering is

disables when dither_enb is LOW by forcing a pulse offset of zero in the digital PWM

formatter block. The clock input is the system clock. This clock input also drives the 2-

phase clock generator that generated the 2-phase clocks needed by the switched-capaci-

tor DSM in the analog block. The analog inputs are Vin+, Vin-, and Vref. Vin+ is the ana-

log input signal to be modulated. Vin- is currently unused, but will be used if the DSM

gets converted to a fully differential DSM. The Vref input is a reference voltage input and

should be tied to VDD/2 or 1.65 volts. The outputs of the DSPWM are PWM_out,

DSM_out, and TPD. PWM_out is the dithered PWM output from the entire system. The

DSM_out signal is the output of the DSM of the analog block. The TPD output is a

MUXed version of the 2-phase clocks for use during debug to verify the health of the

clocks to the analog block. The implementation of the DSPWM was done with different

parameters than that of the proof-of-concept model. The reasoning for this was to allow

for useful real-world input frequencies (audio) and still get a good R value in the DSM.

The PWM period is programmable in this implementation to allow for characterizing the

circuit at difference PWM frequencies.
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SW[3:0] (binary) PWM Period PWM Frequency

0000 6.35 iisec 157.480 kHz

0001 12.75 [tsec 78.431 kHz

0010 19.15 iisec 52.219 kHz

0011 25.55 lisec 39.139 kHz

0100 31.95 gsec 31.299 kHz

0101 38.35 p.sec 26.076 kHz

0110 44.75 pec 22.346 kHz

0111 51.15 iisec 19.550 kHz

1000 57.55 gsec 17.376 kHz

1001 63.95 psec 15.637 kHz

1010 70.35 pec 14.215 kHz

1011 76.75 Rsec 13.029 kHz

1100 83.15 lisec 12.026 kHz

1101 89.55 Rsec 11.167 kHz

1110 95.95 gsec 10.422 kHz

1111 102.35 [tsec 9.770 kHz

Table 1: PWM Period and Frequency vs. SW[3:0] Using a 20MHz System Clock

5.1 Model

The DSPWM was modelled in two parts, an analog block for the switched-capacitor

DSM and a digital block for the digital PWM output stage. The two blocks share a com-

mon system clock of 20MHz.
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5.1.1 Analog Model

The analog model is the model for the DSM block. This block is modelled using

HPSpice circuit simulator. The DSM analog model consists of several individual compo-

nents and a top-level block that is the DSM. These blocks are described below

5.1.1.1 DSM Top-Level Block

A schematic diagram of the top-level DSM block is shown below in figure 19. This is a

first-order single-ended switched-capacitor DSM. This is the same as figure 8, except

with capacitor values added. The capacitor ration of 1pF/2pF for C1 /C2 allows the input

voltage to traverse the entire analog dynamic range (0.0v-3.3v) while the output of the

opamp will never attempt to exceed the bounds of the dynamic range. This avoids "clip-

ping" of the integration value on C2. Using a capacitor ratio smaller than 2 could cause

the integrator to saturate for certain inputs, resulting in distortion. The inputs to the block

are VDD, GND, Vref, and Vin. VDD and GND are the power supply rails, Vref repre-

sents analog (virtual) GND and is ideally equal to VDD/2. Vin is the input signal to be

operated on and eventually converted to PWM. The output of the block is the bit stream

"DSM out" which feeds the accumulator of the digital PWM output stage. For our simu-

lation purposes, ideal capacitors are used, but for more accurate analog simulation realis-

tic capacitors need to be used. Unfortunately, there is no HPSpice model available for

modelling a capacitor consisting of poly-silicon over gate oxide over highly doped (n++)

substrate inside of a n-well, which is the method used in the HP 0.5 urn process for creat-

ing linear capacitors in an analog process (AMOS14). This approximation does not

adversely affect the validity of this "proof of concept". Also, an ideal comparator was

used in place of a real comparator. The ideal comparator is a native model in HPSpice.

Also not shown is an ideal 10011A current source. This current source circuit has been

designed, but it takes a significant amount of time to simulate the DSM with the current

source in place. Again, this approximation does not take away from the validity of this

"proof of concept"



27

Input
Analog Cl=lpF

412 4:1

AGND* AGND*

COMPARATOR0----\-11-1

C2=2pF

OPAMP

DSM
Output

0

AGND*

1-BIT D/A CONVERTER
r

I W=501.1m
L=0.81=

VDD

W
*Note: AGND = VDD/2

,

L=2011m= 0 . 81.trn

GND
L J

Chold
=lpF

Figure 19: Schematic of DSM

5.1.1.2 OPAMP

The schematic diagram of the DSPWM opamp is shown in figure 20 below. The opamp

used in the DSPWM was designed using a circuit optimizer called OPTSPICE. This is a

Hewlett-Packard tool and cannot be fully described here. OPSPICE is an optimizer built

around the HPSpice simulator that uses the Simplex algorithm for optimizing a user

defined cost function. The cost function consists of performance measurements for the

circuit being optimized in the particular test bench used for optimization. OPTSPICEcan
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optimize device sizes, capacitances, and resistances based on desired AC, DC, and tran-

sient performance objectives.
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Figure 20: Schematic Diagram of Opamp

For the DSM circuit, initial device sizes were chosen to give reasonable performance.

The optimizer was then used to get optimum performance. Several optimization objec-

tives were defined to help the optimizer find a good solution. The objectives and the pur-

pose for each objective is listed in table 2 below along with the final design performance.

A "20dB-frequency" objective of 1 decade BELOW the unity-gain-frequency provides

for a "straight line" approach to the 0db gain line. This proved to be a critical constraint

in the optimization that forced a one-pole (20db/decade) gain roll-off as the gain crossed

the 0dB line. This insured a good gain-margin. For simplicity a single gate length was

used throughout the opamp. OPTSPICE was used to help evaluate the "best" perfor-
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mance possible at several candidate gate lengths and it was determined that 0.8um gate

length provided the best results. The resultant device sizes are listed in table 3 below.

Objectives Target Value Attained Value

DC Gain 70 dB 66 dB

0dB Gain Freq (ugf) 100 MHz 128.8 MHz

20dbGain Freq 10 MHz 12.77 MHz

Phase Margin 70 degrees 70.0 degrees

Settling Time (0.1%) High 17 nsec 15.29 nsec

Settling Time (0.1%) Low 17 nsec 17.00 nsec

M6(Vdsat) 0.2 volts 0.197 volts

M7(Vdsat) 0.2 volts 0.193 volts

M1(Vds) - M2(Vds) 1.0 millivolts 0.992 millivolts

Table 2: Optimization Objectives for Opamp Design

M1 M2 M3 M4 M5 M6

Width 109.3 109.3 16.0 16.0 49.5 1524.3

Length 0.8 0.8 0.8 0.8 0.8 0.8

M7 M8 M9 M10 M11 M12

Width 349.3 8.9 1.8 1.8 8.9 22.7

Length 0.8 0.8 0.8 0.8 0.8 0.8

Table 3: Opamp Device Sizes (in gm)
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5.1.1.3 Comparator

The use of a comparator is necessary in the final design, but the comparator was approxi-

mated in the simulation with an ideal comparator that switches at VDD/2.

5.1.1.4 CMOS Switch

The schematic diagram of the CMOS switches used is shown in figure 21 below. This is

a very conventional implementation. Reasonable values for the device sizes were chosen

from simulation results. The devices were sized to give a fairly balanced charged/dis-

charge time using a simple test circuit (10ns into 5pF). There are 4 extra devices in this

switch to combat charge-injection. The extra devices are half the size of the main devices

and are split among the output and the input. This architecture gives very good simula-

tion results.

Enable
0
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0

O w=25prn
L=0.811.

SZ
W=20pm
L=0.8pm

() W=25pm
L=0.8pm

Out

I
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Figure 21: CMOS Switch Schematic Diagram
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5.1.1.5 Current Source

The schematic diagram for the current source is shown in figure 22 below. This circuit is

used to generate a 100uA reference current from Vref input. Vref should be carefully set

to VDD/2 = 1.65 volts externally, and the value of the external resistor should be care-

fully chosen to be 16500 ohms. This circuit is used in the opamp for generating bias volt-

ages for various devices.
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W=52.7Rm
L=2Rm W=20Rm

L=3Rm

W=9Rm

L=2Rm

1_
W=18gm
L=2gm r

GND

F

r

W=20Rm
L=3Rm

Vres 0 lout

GND

External
I Resistor
I R=16500 ohms

Figure 22: Current Source Schematic Diagram
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5.1.2 Digital Model

The digital model is used for the digital PWM output stage of the DSPWM. The sche-

matic diagram of the PWM output stage is shown in figure 23 below. This is only repre-

sentative of the PWM output stage functions, not the implementation. This model is

completely digital and was implemented using Verilog Hardware Description Language

(HDL) to describe the function of the digital circuits, and Synopsys synthesis tools to

convert the HDL code to a gate-level netlist. The gate-level netlist maps the design to a

specific set of standard cells within a specified standard cell library. In this case the

Hewlett-Packard HPCMOS14 (0.5um) standard cell library version REV50 was used.

The Verilog HDL source code files are included in appendix B.

5.2 Simulation Results

The DSPWM was simulated in two parts. First the analog block was simulated in

HPSpice and the resultant output bit stream was stored in a temporary file representing

the DSM output. This DSM output was then formatted in MATLAB to be either a 1 or a

0 in value (simulating a comparator). This formatted output was then fed into the Verilog

HDL simulation of the gate-level netlist of the DSPWM digital model. The output of the

digital model was sampled during simulation and the samples were stored in a temporary

file representing the DSPWM output. This output was read into MATLAB for processing

and displaying. As before, the samples of the signal of interest were multiplied by a Han-

fling window and FFTed to get a frequency spectrum. For this circuit-level simulation the

system clock was chosen to be 20MHz so that the PWM frequencies of table 1 could be

used. The input switch settings for the PWM frequency were set to all zeros (SW[3:0] =

0000) which results in a PWM frequency of 157.48kHz. The input signal was chosen to

be a 4kHz sine wave to approximate a typical audio signal. Figure 24 shows the results of

this simulation, where the upper graph in this figure is the frequency spectrum of a non-

dithered PWM and the lower graph is the frequency spectrum of a dithered PWM. This

simulation involved running two DSPWMs side-by-side with the same input data (from

the DSM spice model), the same system clock, and the same switch settings
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(SW[3:0]=0000), but with one having a "dither-enable" signal of 0 and the other having a

"dither-enable" signal of 1. Notice that the clustering of the spectral noise at the PWM

fundamental frequency is almost completely removed by dithering. There is some near-

band noise that seems to be added, but the overall harmonic noise level is lower.

-o
.m -20

E

- 30

40

0

a)

-20

E

-30

Spectrum of Non-Dithered PWM Signal

Input Signal Freq = 4kHz

PWM Freq = 157kHz

System Clock = 20MHz

100 200 300 400 500 600
Frequency (kHz)

Spectrum of Dithered PWM Signal

- 40
0

i

LI I I ill 1.

100 200 300 400 500 600

Figure 24: Spectral Plots of Simulation Using 4kHz Input signal
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6 CONCLUSION

Simulation has shown that DSPWM is a viable method for spreading spectral noise in

systems requiring PWM. DSPWM also lends itself to be manufactured in a digital pro-

cess since there is no requirement for precision resistors and capacitors, but only a

requirement that capacitors are closely matched (for a switched-capacitor DSM only).

Employing the DSPWM approach can reduce peaks in the frequency spectrum due to

harmonic noise. From behavioral simulation and from circuit simulation it has been

shown that the DSPWM can reduce harmonic noise energy peaks by at least 10 dB. This

is a significant improvement in the frequency spectrum and requires no bulky filter com-

ponents. The noise dithering is most effective when the PWM fundamental frequency is

well above the input signal frequency. When a 4kHz input signal and a 157.48kHz PWM

fundamental frequency was used in simulation, the noise peak reduction was greater than

10dB .

There is currently an effort to implement the DSPWM in the Hewlett-Packard CMOS14

(0.5um) digital process using a first-order switched-capacitor DSM and a fully digital

standard-cell PWM dithering circuit. This circuit should be in silicon by late 1997.
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Appendix A Mat lab Source Code Files

% Matlab File to Implement conventional PWM.

By: Richard S. Lewison
Date: February 12, 1996
Mod: June 3, 1997 (save environment upon exit)

% Define simulation parameters

clear;

simulation_time = .1; % duration of simulation (sec)
sample_period = le-6; % system clock = lusec (1MHz)
Samples = fix(simulation_time/sample_period);
PWM_period = le-4; % PWM period = 0.lmsec (10kHz)
Max = fix(PWM_period/sample_period); % Number of clks in PWM period
signal_freq = 1000; % Signal freq = 1kHz
period=round(PWM_period/sample_period); % PWM period (in clock ticks)

% Create time vector

time = [0:sample_period:simulation_time];

% Create Sawtooth Waveform

Saw = sawtooth(2*pi*time/PWM_period);

% Create Input Signal Waveform

Input = sin(2*pi*signal_freq*time);

% Generate conventional PWM from the Sigma-Delta output.

PWMout = sign(Input Saw); % Do PWM
PWMout = sign(PWMout + 0.1); % get rid of zeros

% get spectrum of PWM signals

freq,(time/simulation_time)*(1/sample_period) 0.5/sample_period;
Size = size(Input);
% Window = boxcar(Size(2));
% Window = hamming(Size(2));
Window = hanning(Size(2));

spectl=abs(fftshift(fft(Input.*Window')));
spect2=abs(fftshift(fft(PWMout.*Window')));
save DSPWM4;

if 1
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Limit = 1.1*max(fmax(spectl) max(spect2)]);
maxl=max(spectl);
subplot(2,1,1);
plot(freq/1000,20*log10(spectl/max1))
A = axis;

% axis([-2.5/PWM_period 2.5/PWM_period -30 1])
% axis([-.0035/PWM_period .0035/PWM_period -30 1])
axis([0 .0035/PWM_period -30 1])
grid

title('Normalized Frequency Spectrum of Input Signal')
xlabel('Frequency (kHz)')
ylabel('Amplitude (dB)')
% Answer = sprintf('Signal Freq = %d Hz',signal_freq);
% text(0.0003/PWM_period,0.8*Limit,Answer);
% Answer = sprintf('Num Samples = %d',Samples);
% text(0.0003/PWM_period,0.7*Limit,Answer);
% Answer = sprintf('PWM Freq = %dkHz',fix(1/(1000*PWM_period)));
text(0.0003/PWM_period,0.6*Limit,Answer);
text(3,-5, 'Signal Freq = 1kHz')
text(3,-8, 'PWM Freq = 10kHz')
text(3,-11,'Num Samples = 100,000')
text(3,-14,'Sampling Rate = 1MHz')

subplot(2,1,2);
plot(freq/1000,20*log10(spect2/max1))
A = axis;
% axis([-2.5/PWM_period 2.5/PWM_period -30 1])
% axis([-.0035/PWM_period .0035/PWM_period -30 1])
axis([0 .0035/PWM_period -30 1])
grid
title('Normalized Frequency Spectrum of Conventional PWM')
xlabel('Frequency (kHz)')
ylabel('Amplitude (dB)')

print -deps DSPWM4.eps

end

% Plot Input PWM output vs. time

if 0

subplot(2,1,1)
plot(time,Input,'-',time,Saw,'-')
axis([0 simulation_time -1.1 1.1])
title('PWM Input & Sawtooth Wave')
xlabel('Time (sec)')
ylabel('Amplitude (volts)')
grid

subplot(2,1,2)
plot(time,PWMout,'-')

axis([0 simulation_time -1.1 1.1])
title('PWM Output')
xlabel('Time (sec)')
ylabel('Amplitude (volts)')
grid

end

if 0
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plot(time,Input,'-',time,PWMout,'-',time,Saw,'-')
axis([0 simulation_time -1.1 1.1])
title('PWM Input, Sawtooth Wave, & Output')
xlabel(`Time (sec)')
ylabel('Amplitude (volts)')
grid

end

% Matlab File to Implement Delta-Sigma PWM using fixed
% PWM pulses (determined by signal) and random offsets
% from conventional PWM window. This version also
% splits up a pulse into a low-high-low pattern if the
% pulse count is less that 50% of MAXCOUNT, and splits
% up a pulse into a high-low-high pattern if the pulse
% count is greater than 50% of MAXCOUNT. This maximizes
% the jittering as the PWM duty cycle approaches unity.
% This version is the same as DSPWM5.m, except implemented
% more efficiently

By: Richard S. Lewison
Date: April 15, 1996
Mod: January 14, 1997

May 22, 1997 to plot out DSM waveform
June 39, 1997 to plot the freq spect of DSM

% Define simulation parameters

clear;

simulation_time = .1; % duration of simulation (sec)
sample_period = le-6; % system clock = lusec (1MHz)
PWM_period = le-4; % PWM period = 0.lmsec (10kHz)
signal_freq = 1000; % Signal freq = 1kHz
period = round(PWM_period/sample_period); % number of clocks in PWM

% Create time vector

time = [0:sample_period:simulation_time];

% Create Sigma Delta bit stream

error=0.0; sigma=0.0;

fprintf(1,'\nCreating Sigma-Delta bit stream...');
for step = l:simulation_time /sample _period + 1,

t = time(step);

signal(step) = sin(2*pi*signal_freq*t);
signal(step) = 0.8*sin(2*pi*signal_freq*t);
signal(step) = 0.5;
sigma = sigma + error;
out(step) = sign(sigma);
out(step) = sign(out(step) + 0.1); % get rid of zeros
error = signal(step) out(step);

end



if 0

% plot DSM signal

subplot(2,1,1);
plot(time*1000,signal);
axis([0 1 -1.1 1.1]);

title('Sinusoid Input Signal (1kHz)')
ylabel('Amplitude')
xlabel('Time (msec)')

text(0.6, .5,'Signal Freq = 1kHz')
grid;

subplot(2,1,2);
stairs(time*1000,out);
axis([0 1 -1.1 1.1]);

title('Associated DSM Waveform (1MHz System Clock)')
ylabel('Amplitude')
xlabel('Time (msec)')
grid;

print -deps DSPWM6a.eps

% get spectrum of DSM signal

fprintf(1,'\nGet spectrum of DSM stream...');
freq=(time/simulation_time)*(1/sample_period) 0.5/sample_period;
window = hanning(length(time));

spect=abs(fftshift(fft(out.*window')));

% plot DSM spectrum

max0=max(spect);
Limit = 1.1*max0;

subplot(2,1,1);

plot(freq/1000,20*log10(spect/max0))
A = axis;

axis([0 10 -140 10])
grid
title('Spectrum of DSM Output')
ylabel('Amplitude (dB)')
xlabel('Frequency (kHz)')
text(3,-5,'Signal Freq = 1kHz')
text(3,-15,'Num Samples = 100,000')
text(3,-25,'Oversampling Ratio R=1000')
text(3,-35,'System Clock = 1MHz')

subplot(2,1,2);

plot(freq/1000,20*log10(spect/max0))
A = axis;

axis([0 500 -70 5])
grid

ylabel('Amplitude (dB)')
xlabel('Frequency (kHz)')

print -deps DSPWM6b.eps

end

exit
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% Generate conventional PWM from the Sigma-Delta output.

count = 0; randcount = 0; downcount = 0;
step = 0; ustep = 0;
fprintf(1,'\nCreating conventional PWM bit stream...');
while step < fix(simulation_time/sample_period) + 1,

if ustep == 0
downcount = count;
count = 0;
randcount = 0;

end;

if (downcount > 0) & (randcount == 0)
PWMout(step +l) = 1;

else

PWMout(step+1) = -1;
end;

count = count + (out(step+1)+1)/2;

if randcount == 0
downcount = downcount 1;

if downcount < 0, downcount = 0; end;
end

randcount = randcount 1;

if randcount < 0, randcount = 0; end;

step = step + 1;
ustep = rem(step,period);

end;

% Generate RANDOMIZED PWM from the Sigma-Delta output.

index = 1;

count = 0; randcount = 0; downcount = 0;
step = 0; ustep = 0;

fprintf(1,'\nCreating randomized PWM bit stream...');
while step < fix(simulation_time/sampleperiod) + 1,

if ustep == 0
if count <= fix(period/2)

polarity = 1;
downcount = count;

else
polarity = -1;
downcount = period-count;

end;

randcount = round( rand*(period-downcount) );

count = 0;

test(index) = downcount + randcount;
index = index + 1;

end;

if (downcount > 0) & (randcount == 0)
PWMR0ut(step+1) = l*polarity;
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else
PWMRout(step+1) = -1*polarity;

end;

count = count + (out(step+1)+1)/2;

if randcount == 0
downcount = downcount 1;

if downcount < 0, downcount = 0; end;
end

randcount = randcount 1;

if randcount < 0, randcount = 0; end;

step = step + 1;
ustep = rem(step,period);

end;

% get spectrum of PWM signals

fprintf(1,'\nGet spectrum of bit stream...');
freq=(time/simulation_time)*(1/sample_period) 0.5/sample_period;
window = hanning(length(time));
spectl=abs(fftshift(fft(signal.*window')));
spect2=abs(fftshift(fft(PWMout.*window')));
spect3=abs(fftshift(fft(PWMRout.*window')));

% plot signals

maxl=max(spectl);
Limit = 1.1*max([max(spectl) max(spect2) max(spect3)]);

subplot(3,1,1);
plot(freq/1000,20*1og10(spectl/maxl)
A = axis;

axis([0 0.0035/PWM_period -30 1])
grid
title('Spectrum of Input Signal')
ylabel('Amplitude (dB)')
% text(0.0005/PWM_period,0.80*Limit,
% text(0.0005/PWM_period,0.65*Limit,
% text(0.0005/PWM_period,0.50*Limit,
% text(0.0005/PWM_period,0.35*Limit,
text(3,-5,'Signal Freq = 1kHz')
text(3,-10,'Num Samples = 100,000')
text(3,-15,'PWM Freq = 10kHz')
text(3,-20,'System Clock = 1MHz')

'Signal Freq = 1kHz')
'Num Samples = 100,000')
'PWM Freq = 10kHz')
'Sigma-Delta Freq = 1MHz')

subplot(3,1,2);
plot(freq/1000,20*1og10(spect2/max1))
A = axis;

axis([0 0.0035/PWM_period -30 1])
grid
title('Spectrum of Non-Dithering Delta-Sigma PWM')
ylabel('Amplitude (dB)')

subplot(3,1,3);
plot(freq/1000,20*1og10(spect3/max1))
A = axis;

axis([0 0.0035/PWM_period -30 1])



grid
title('Spectrum of Dithering Delta-Sigma PWM')
xlabel('Frequency (kHz)')
ylabel('Amplitude (dB)')

print -deps DSPWM6.eps
answer=input('Hit <RTN> to continue...');

% Plot PWM output vs. PWMR output

if 0

subplot(2,1,1)
plot(time*1000,PWMout,'-',time*1000,signal,'y:')
title('Conventional PWM & Input')
xlabel('Time (msec)')
ylabel('Amplitude')
axis([0 1 -1.1 1.1])
grid

subplot(2,1,2)
plot(time*1000,PWMRout,'-',time*1000,signal,'y:')
title('Jittered PWM & Input')
xlabel('Time (msec)')
ylabel('Amplitude')

axis([0 1 -1.1 1.1])
grid

end

fprintf(1,'\nDone!\n');

% Matlab File to Implement a pseudorandom number gener-
% ator. This file uses an N-bit linear shift register
% and an N-bit tap which is xored into the bit-1 posit-
% ion. Every possible tap is investigated for it's
% natural period. The goal is to find the OPTIMUM taps
% for a given N-bit linear shift register.

By: Richard S. Lewison
Date: April 25, 1996
Mod:

% Define simulation parameters

clear
N = input('How Many Bits? '); % Length of Register
ans = input('Do you want output to a file [y/n] ? ','s');
if ans == 'y'

fname = input('Output filename: ','s');
outfile = fopen(fname,'w');

else
outfile = 1;

end

% Begin Mask loop
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fprintf(1,'\nWorking...');
fprintf(outfile,'\n\n');
for i = 1:(N/2-2),

fprintf(outfile,");
end
fprintf(outfile,'Mask\tCount');
fprintf(outfile,'\n');
for i = 1:N,

fprintf(outfile,'-');
end
fprintf(outfile,'\t ');

fprintf(outfile,'\n');
for Mask_decimal = 1:2^N-1

temp = Mask_decimal;
for i = 1:N % Convert to binary vector

Mask(i) = fix(temp/2^(N-i));
temp = temp Mask(i)*2A(N-i);

end

% Search for natural period

LSR = Mask; Start = 0; Count = 0; LSRlast = LSR;
while ((sum(LSR -= Mask) -= 0) 1 (Start == 0)) & (Count < 2*2^N)

LSRlast = LSR;
Start = 1;

bitl = rem(sum(Mask & LSR),2);
LSR(2:N) = LSR(1:N-1);
LSR(1) = bitl;
Count = Count + 1;

end
fprintf(outfile,'%d',Mask);

if Count > (2*2AN)-1, Count = 1; end
if Count == 2AN-1,

fprintf(outfile,'\t %d *\n',Count);
else

fprintf(outfile,'\t %d\n',Count);
end

end
fprintf(outfile,'\n');
fprintf(1,'....Done!\n\n');
fclose('all');

% This is a Matlab script file for taking data from the final
% verilog simulation of the DSPWM and plotting the spectrum.

File: plot_spectrum.m
Date: 07/06/97
Author: Richard Lewison

% (1) input: <user prompted filename of Verilog output data>
...either pwmout_20kHz.dat or pwmout_4kHz.dat

% (2) output: plot_spectrum.eps plot of frequency spectrum



% Input the data from the Verilog simulation

file=input('What is input filename containing Verilog output data: ','s');
load(file);

time=pwmout(:,1)-pwmout(1,1); % time vector
pwm1=pwmout(:,2)-0.5; % dithered PWM
pwm2=pwmout(:,3)-0.5; % non-dithered PWM

% get spectrum of PWM signals

fprintf(1,'\nGet spectrum of PWM signals...');
len=length(time);
simulation_time=time(len)-time(1);
sampleperiod=simulation_time/len;
freq=(time/simulation_time)*(1/sampleperiod) 0.5/sample_period;
window = hanning(len);
spectl=abs(fftshift(fft(pwm1.*window)));
spect2=abs(fftshift(fft(pwm2.*window)));

% plot signals

maxl=max(spectl);

if (stremp(file,'pwmout.20kHz.dat') == 1), % for 20kHz signal

subplot(2,1,1);
plot(freq/1000,20*log10(spect2/max1))
axis([0 600 -40 1])
grid
title('Spectrum of Non-Dithered PWM Signal')
ylabel('Amplitude (dB)')

text(350,-3,'Input Signal Freq = 20kHz')
text(350,-7,'PWM Freq = 157.48kHz')
text(350,-11,'System Clock = 20MHz')

subplot(2,1,2);
plot(freq/1000,20*1og10(spectl/max1))
axis([0 600 -40 1])
grid
title('Spectrum of Dithered PWM Signal')
ylabel('Amplitude (dB)')
xlabel('Frequency (kHz)')

print -deps plot_spectrum_20kHz.eps

end

if (strcmp(file,'pwmout.4kHz.dat') == 1),

subplot(2,1,1);
plot(freq/1000,20*log10(spectl/max1))
axis([0 600 -40 1])
grid
title('Spectrum of Dithered PWM Signal')
ylabel('Amplitude (dB)')

text(300,-5,'Input Signal Freq = 4kHz')
text(300,-10,'PWM Freq = 157kHz')
text(300,-15,'System Clock = 20MHz')

% for 4kHz signal
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subplot(2,1,2);
plot(freq/1000,20*log10(spect2/max1))
axis([0 600 -40 1))
grid

title('Spectrum of Non-Dithered PWM Signal')
ylabel('Amplitude (dB)')
xlabel('Frequency (kHz)')

print -deps plot_spectrum_4kHz.eps

end

fprintf(1,'---Done \n');



Appendix B Verilog HDL Source Code Files

/********************************************************************************
* Sigma-Delta Pulse-Width Modulator (SDPWM) *

* *

* File : DSPWM.v (TOP level file) *

* Module(s) : DSPWM +

* Engineer : Richard S. Lewison *

* Date : February 13, 1997 *

* February 18, 1997 *

* February 28, 1997 *

* *

* Description *

* This module is the top-level module for the Delta Sigma Pulse Width Modulator *
* (DSPWM). *

*********************************************************************************/

'timescale 1 ns / 10 ps

module DSPWM

//

clock, // In System clock input
reset, // In Asynchronous reset input (active high)
Vinp, // InOut Analog input signal (+)
Vinn, // InOut Analog input signal (-)
Vref, // In Analog ground (reference)
dither_enb, // In Dither enable flag (0 = no dither)
SW, // In 4-bit DIP switch setting for max[10:7]
PWM_out, // Out DSPWM output (PWM waveform)
TPD_sel, // In 2-bit selector for test point
TPD, // Out Digital test point (for analog clocks)
AVDD, // InOut Analog VDD
AGND // InOut Analog GND

);

// Inputs & outputs
//

input [3:0] SW;
input [1:0] TPD_sel;
input dither_enb, reset, clock;
output PWM_out, TPD;
inout Vinp, Vinn, Vref, AVDD, AGND;

wire clock, clk1N,c1k1P,c1k2N,c1k2P, TPD;
wire DSM_out, PWM_out, reset, dither_enb;
wire [3:0] SW;
tri Vinp, Vinn, Vref, AVDD, AGND;

//

// ASSIGN statements
//

assign TPD = ( (TPD_sel == 2'b00) & clk1P
(TPD_sel == 2'b01) & clk1N
(TPD_sel == 2'b10) & clk2P

1 (TPD_sel == 2'b11) & clk2N );

//

// Instantiate other modules
//

// clk1P -> Test point
// clk1N -> Test point
// clk2P -> Test point
// clk2N -> Test point
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TOP_analog Analog
.Vinp(Vinp),

.Vinn(Vinn),

.Vref(Vref),

.c1k1P(c1k1P),

.c1k1N(c1k1N),

.clk2P(clk2P),

.clk2N(clk2N),

.reset(reset),

.DSM_out(DSM_out),

.AVDD(AVDD),

.AGND(AGND)

);

aclk_gen Aclk_gen
.clock(clock),

.c1k1P(c1k1P),

.c1k1N(c1k1N),

.clk2P(clk2P),

.clk2N(clk2N)
);

// Delta-Sigma modulator
// InOut Analog input signal (+)
// InOut Analog input signal (-)
// In Analog ground (reference)
// Phase 1 (+) switch capacitor clock
// Phase 1 (-) switch capacitor clock
// Phase 2 (+) switch capacitor clock
// Phase 2 (-) switch capacitor clock
// Input --> asynchronous reset
// Output -> modulator digital output
// InOut Analog VDD
// InOut Analog GND

// Generator for analog clocks --

// Input clock reference
// Output -> Phase 1 clock (+)
// Output -> Phase 1 clock (-)
// Output -> Phase 2 clock (+)
// Output -> Phase 2 clock (-)

TOP_digital Digital ( // Pulse-Width Modulator
.clock(clock), // In clock input from crystal oscillator
.reset(reset), // In Asynchronous reset inpiu (active high)
.dither_enb(dither_enb),// In Dither enable flag (0 = no dither)
.SW(SW), // In DIP switch setting for max[10:7]
.DSM_out(DSM_out), // In output from Delta-Sigma modulator
.PWM_out(PWM_out) // Out DSPWM output (PWM waveform)
);

endmodule

/********************************************************************************
* Sigma-Delta Pulse-Width Modulator (SDPWM) *

* *

* File : aclk_gen.v *

* Module(s) : aclk_gen *

* Engineer : Richard S. Lewison *

* Date : February 28, 1997 *

* *

* Description *

* This module generates the two non-overlapping clocks for switched-capacitor *

* circuits in TOP_analog. *

*********************************************************************************/

'timescale 1 ns / 10 ps

module aclk_gen
clock, // Input --> clock for counter
clk1P, // Output -> Phase 1 clock (+)
clk1N, // Output -> Phase 1 clock (-)
clk2P, // Output -> Phase 2 clock (+)
clk2N // Output -> Phase 2 clock (-)
);

//

// define inputs/outputs
//

input clock;

output clk1P,c1k1N,c1k2P,c1k2N;

reg clockN,c1k1N,c1k2N;
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reg clk1N1,c1k2N1;
wire clk1P = !clk1N;
wire clk2P = !clk2N;

//

// define asynchronous logic
//

always @ (clock)
begin

#1 clockN = !clock;
end

always @ (clock or clk2N)
begin

#3 clk1N1 = !(clock & clk2N);
end

always @ (clockN or clk1N)
begin

#3 clk2N1 = !(clockN & clk1N);
end

always @ (clk2N1)
begin

#3 clk2N = clk2N1;
end

always @ (clk1N1)
begin

#3 clk1N = clk1N1;
end

endmodule

/********************************************************************************

Sigma-Delta Pulse-Width Modulator (SDPWM) *

*

File : counterll.v *

Module(s) : counterll *

Engineer : Richard S. Lewison *

Date : February 1, 1997 *

February 9, 1997 *

* Description
* This module is a generic 11-bit up/down loadable counter with count enable
* and synchronous reset.

*

*

*
*

*********************************************************************************/

'timescale 1 ns / 10 ps

module counterll

//

clock, // Input --> clock for counter
up_downN, // Input --> 1 = counts UP, 0 = counts DOWN
count_enb, // Input --> enables counting when HIGH
load, // Input --> loads counter when HIGH
load_data, // Input --> data to be loaded into counter
reset, // Input --> asynchronous reset to all 0's
count // Output -> output 11-bit count value
);

// define inputs/outputs
//
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input up_downN, count_enb, load, reset, clock;
input [10:0] load_data;

output [10:0] count;

//

// define registers
//

reg [10:0] count;

//

// define synchronous logic
//

always @ (posedge clock or posedge reset)
begin

if (reset == 1) count <= #3 0;
else
begin

if (load == 1) count <= #3 load_data;
else
begin

if (count_enb == 0) count <= #3 count;
else
begin

if (up_downN == 1) count <= #3 count + 1;
else count <= #3 count 1;

end
end

end
end

endmodule

/********************************************************************************

Sigma-Delta Pulse-Width Modulator (SDPWM)
*

File : multiplyllxll.v
Module(s) : multiplyllxll
Engineer : Richard S. Lewison
Date : August 28, 1996

Description
** This module implements an 11x11 shift-and-add multiplier. The multiply

* operation is initiated by a HIGH pulse on START. When the multiply operation *
* is done, the signal DONE goes high and stays HIGH until another START pulse. *
*

*

* clock
*

* start
*

* done

11111111111111111111111111111111
_1 1

* part prod XXXXXXX 11213141.. 11

*

* If one operand is an integer and the other is a fraction, the upper 11 bits
* of the product represent the integer portion of the product and the lower 11 *

* bits of the product represent the fractional part. In the SDPWM the typical *

* use of the multiplier is to multiply an integer by a fraction.
*********************************************************************************

Description of I/Os
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signal type description

clock I System clock in
start I Initiates a multiply when HIGH
ina I Multiply input A
inb I Multiply input B
product 0 22-bit multiply output IIIIIIIIIII.FFFFFFFFFFF

*********************************************************************************/

'timescale 1 ns / 10 ps

module multiplyllxll (clock, reset, start, ina, inb, done, product);

//

// define inputs/outputs
//

input clock, reset, start;
input [10:0] ina, inb;
output done;
output [21:0] product;

wire [21:0] adder_A, adder_B;

reg done;

reg [1:0] state;
reg [3:0] counter;
reg [10:0] latch_A, latch_B;
reg [21:0] product;

//

// define constants
//

'define NUM_CYCLES 4'b1011
'define IDLE_STATE 2'bOO
'define LOAD_STATE 2'b0l
'define MULT_STATE 2'bll

//

// assign statements
//

assign adder_A[21:11] = 0;
assign adder_A[10:0] = (latch_B[10] == 0) ? 0 : latch_A;
assign adder_B = product « 1;

//

// synchronous state machines w/async reset
//

always @ (posedge clock or posedge reset)
begin

if (reset == 1)
begin

state <= 'IDLE_STATE;
counter <= 0;
product <= 0;

latch_A <= 0;
latch_B <= 0;
done <= 0;

end
else
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begin

case(state)

'IDLE_STATE :

begin
if (start == 1)
begin

state <= 'LOAD_STATE;
counter <= 'NUM_CYCLES;
product <= 0;
latch_A <= ina;
latch_B <= inb;
done <= 0;

end
else
begin

state <= 'IDLE_STATE;
counter <= 0;
product <= product;
latch_A <= 0;
latch_B <= 0;
done <= done;

end
end

'LOAD_STATE :

begin
state <= 'MULT_STATE;
counter <= counter 1;

product <= adder_A + adder_B;
latch_A <= latch_A;
latch_B <= latch_B « 1;
done <= 0;

end

'MULT_STATE :

begin
if (counter == 0)
begin

state <= 'IDLE_STATE;
counter <= 0;
product <= product;
latch_A <= 0;
latch_B <= 0;
done <= 1;

end
else
begin

state <= 'MULT_STATE;
counter <= counter 1;

product <= adder_A + adder_B;
latch_A <= latch_A;
latch_B <= latch_B « 1;
done <= 0;

end
end

default :

begin
state <= 'IDLE_STATE;
counter <= 0;
product <= 0;
latch_A <= 0;
latch_B <= 0;



54

end

endcase

end
end

endmodule

done <= 0;

/********************************************************************************
Sigma-Delta Pulse-Width Modulator (SDPWM)

* *

File : pngenll.v
Module(s) : pngenll
Engineer : Richard S. Lewison
Date : December 28, 1996

February 10, 1997
* *

Description
This module is an 11-bit pseudo-random number generator. This PN generator uses
a linear-shift register with taps defined by the constant MASK. The width of the
PN number is 4 bits. From reset, the LSR is set to zero. Once reset is de-
activated, the LSR cycles through 2AN combinations. The LSR uses 0 as a
valid state and decodes it to a non-zero state in order to get 2AN valid states.
*********************************************************************************/
'timescale 1 ns / 10 ps

module pngenll
clock, // Input System clock for PN generator
enable, // Input Trigger to generate new 11-bit PN
reset, // Input Asynchronous reset of all registers
pn // Output 11-bit pseudo-random number
);

//

// Define inputs/outputs
//

input clock, enable, reset;
output [10:0] pn;

//

// Define Signals
//

wire bit0;
reg [10:0] pn;

//
// Define Constants for Tap Points
//

'define MASK ll'b10010001001 // This is the LFSR tap mask
'define LAST ll'b10101010101 // This is the USER-DEFINED break before ZERO
'define FIRST (('LAST « 1) & ll'b11111111111) I {10'b0000000000,(^(MASK & 'LAST))) //
After ZERO

//
// Assign statement(s)
//

assign bit() = (^(pn & 'MASK));
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//
// Define Synchronous Logic
//

always @ (posedge clock or posedge reset)
begin

if (reset == 1)
begin

pn <= #3 0;
end

else
begin

if (enable == 1)
begin

if (pn == 'LAST) pn <= #3 0; // Test for LAST code
else if (pn == 0) pn <= #3 'FIRST; // Test for ZERO code
else // Otherwise process normal PN
begin

pn <= #3 pn « 1;
pn[0] <= #3 bit0;

end
end

end
end

endmodule

/********************************************************************************

Sigma-Delta Pulse-Width Modulator (SDPWM)
* *
* File : pulse_inv.v *

* Module(s) : pulse_inv *

* Engineer : Richard S. Lewison *

* Date : August 30, 1996 *

* *

* Description *

* This module inverts a W wide pulse of LOW/HIGH/LOW to a (PWM_PERIOD W) wide *
* pulse of HIGH/LOW/HIGH when the pulse width is greater that 50% of the PWM *

* period.HIGH/LOW/HIGH. This allows maximum jitter of the PWM pulse by the *

* randomizing logic (see TOP-level module). *

* *

* ORIGINAL PULSE > NEW PULSE *

* *

* I< PWM Period >I I< PWM Period >I *

* *

*
I I

I I

*
* *
* *

*
I I I I

*

*********************************************************************************

Description of I/Os

signal type description

pulse_count[10:0] I Number of pulses accumulated from last period
max[10:0] I Number of clock pulses in PWM period (strapped)
duty_cycle[10:0] 0 Duty cycle of the current pulse (in clk cycles)
delay[10:0] 0 Delay before the pulse starts (in clk cycles)
polarity 0 Polarity of the current pulse 1=inv 0=noninv

*********************************************************************************/
'timescale 1 ns / 10 ps



module pulse_inv
enable, // In enables pulse inverting
pulse_count, // In pulse count
max, // In maximum possible pulses (programmable)
duty_cycle, // Out resultant PWM pulse duty cycle
delay, // Out resultant PWM pulse delay
polarity // Out resultant PWM pulse polarity
);

//

// Inputs & outputs
//

input enable;

input [10:0] pulse_count, max;
output [10:0] duty_cycle, delay;
output polarity;

wire [10:0] half_max;
reg [10:0] delay, duty_cycle; // pseudo-registers

//

// ASSIGN statements
//

assign half_max = (max » 1);
assign polarity = (enable & (pulse_count > half_max)) ? 1 : 0 ;

//

// Determine POLARITY and PULSE_COUNT asynchronously
//

always @ (polarity or pulse_count)
begin

if (polarity == l'bO)
begin

delay = max pulse_count;
duty_cycle = pulse_count;

end
else

begin
delay = pulse_count;

duty_cycle = max pulse_count;
end

end

endmodule

/********************************************************************************

Sigma-Delta Pulse-Width Modulator (SDPWM)

File : TOP_digital.v
Module(s) : TOP_digital
Engineer : Richard S. Lewison
Date : April 25, 1997

Description
* This module is the top-level digital module for the Delta Sigma Pulse Width
* Modulator (DSPWM).
*********************************************************************************/
'timescale 1 ns / 10 ps

module TOP_digital

clock,

reset,
// In clock input from crystal oscillator
// In Asynchronous reset input (active high)
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dither_enb,

SW,

DSM_out,

PWM_out

);

//

// Inputs & outputs
//

// In Dither enable flag (0 = no dither)
// In DIP switch setting for max[10:7]
// In output from Delta-Sigma modulator
// Out DSPWM output (PWM waveform)

input [3:0] SW;
input clock, reset, dither_enb, DSM_out;
output PWM_out;

reg polarity_reg, PWM_out, reset_l, reset_2, reset_sync;
reg [10:0] pn_reg, pulse_cnt_reg;
wire clock, last_pulse, first_pulse, second_pulse, third_pulse;
wire start_PWM, delay_enb, duty_enb;
wire DSM_out, reset, dither_enb;
wire [3:0] SW;

wire [10:0] max_clock_cnt, max_pulse_cnt, clock_cnt, pulse_cnt, delay_final;
wire [10:0] delay, duty_cycle, pn, delay_cnt, duty_cnt, pc_load_data;
wire [11:0] delay_plusl;
wire [21:0] delay_rand;

//

// ASSIGN statements
//

assign max_clock_cnt = {SW,7'b1111110}; // maximum clock count (program-
mable)

assign max_pulse_cnt = {SW,7'blllllll}; // maximum pulse count (program-
mable)

assign last_pulse = (clock_cnt == max_clock_cnt); // LAST pulse
assign first_pulse = (clock_cnt == 0); // FIRST control pulse
assign second_pulse = (clock_cnt == 1); // SECOND control pulse
assign third_pulse = (clock_cnt == 2); // THIRD control pulse
assign delay_plusl = (1'bO,delay} + 12'bl; // delay plus one
assign delay_final = (delay_plus1[11]) ? pn_reg : delay_rand[21:11]; // use straight pn if
carry

assign delay_enb = (delay_cnt != 0); // enable pulse delay count-down
assign duty_enb = ((delay_cnt == 0)&(duty_cnt != 0)); // enable duty cycle count-down
assign start_PWM = (clock_cnt == 25); // time to trigger a new PWM cycle
assign pc_load_data = {10'bO,DSM_out}; // data to be loaded into pulse
counter

//

// Instantiate other modules
//

counterll clock_counter // clock counter
.clock(clock),

.up_downN(l'bl),
//

//

Input
Input

--> clock for counter
--> 1 = counts UP, 0 = counts DOWN

.count_enb(l'bl), // Input --> enables counting when HIGH

.load(last_pulse), // Input --> loads counter when HIGH

.load_data(11'b0), // Input --> data to be loaded into counter

.reset(reset_sync), // Input --> asynchronous reset to all 0's

.count(clock_cnt) // Output -> output 11-bit count value
);

counterll pulse_counter // pulse counter
.clock(clock),

.up_downN(l'bl),
//

//

Input
Input

--> clock for counter
--> 1 = counts UP, 0 = counts DOWN



.count_enb(DSM_out),

.load(first_pulse),

.load_data({10'bO,DSM_out}),

.reset(reset_sync),

.count(pulse_cnt)
);

pulse_inv pulse_inv
.enable(dither_enb),
.pulse_count(pulse_cnt_reg),
.max(max_pulse_cnt),
.duty_cycle(duty_cycle),
.delay(delay),
.polarity(polarity)

);

pngenll pngen
.clock(clock),
.enable(start_PWM),
.reset(reset_sync),
.pn(pn)

);

multiplyllxll mult
.clock(clock),

.reset(reset_sync),

.start(third_pulse),

.ina(delay_plus1[10:0]),

.inb(pn_reg),

.done(),

.product(delay_rand)
);

counterll duty_timer
.clock(clock),

.up_downN(l'bO),

.count_enb(duty_enb),

.load(start_PWM),

.load_data(duty_cycle),

.reset(reset_sync),

.count(duty_cnt)

);

counterll delay_timer
.clock(clock),

.up_downN(l'bO),

.count_enb(delay_enb),

.load(start_PWM),

.load_data(delay_final),

.reset(reset_sync),

.count(delay_cnt)

);

//

// Synchronous logic

//
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// Input --> enables counting when HIGH
// Input --> loads counter when HIGH
// Input --> data to be loaded into counter
// Input --> asynchronous reset to all 0's
// Output -> output 11-bit count value

// pulse inversion logic
// Input --> enables dithering
// Input --> registered pulse count
// Input --> max pulse count
// Output -> PWM pulse duty cycle
// Output -> PWM pulse delay (max)
// Output -> PWM pulse polarity

// pseudorandom number generator
// Input System clock for PN generator
// Input Trigger to generate new 11-bit PN
// Input Asynchronous reset of all registers
// Output 11-bit pseudo-random number

// pulse delay multiplier
// Input System clock
// Input Asynchronous reset
// Input Start multiply
// Input operand #1 = delay plus one
// Input operand #2 = registered pn
// Output flag 1=done (unused here)
// Output 22-bit product

// pulse duty cycle timer
// Input --> clock for counter
// Input --> 1 = counts UP, 0 = counts DOWN
// Input --> enables counting when HIGH
// Input --> loads counter when HIGH
// Input --> data to be loaded into counter
// Input --> asynchronous reset to all 0's
// Output -> output 11-bit count value

// pulse delay timer
// Input --> clock for counter
// Input --> 1 = counts UP, 0 = counts DOWN
// Input --> enables counting when HIGH
// Input --> loads counter when HIGH
// Input --> data to be loaded into counter
// Input --> asynchronous reset to all O's
// Output -> output 11-bit count value

always @(posedge clock or posedge reset_sync)
begin

if (reset_sync == 1) begin
polarity_reg <= 0;

PWM_out <= 0;

pn_reg <= ll'b0;
pulse_cnt_reg <=
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end
else begin

if (start_PWM) polarity_reg <= polarity;
if (first_pulse) pulse_cnt_reg <= pulse_cnt;
if (second_pulse) begin

if (!dither_enb I (polarity^polarity_reg)) pn_reg <= ll'b0;
else pn_reg <= pn;

end

//

end
PWM_out <= polarity_reg^duty_enb;

end

// Synchronize Input "reset" to create system reset "reset_sync".
//

/* synopsys dc_script_begin
set_register_type -exact -flip_flop SYNCFF reset_l_reg
*/

always @ (posedge clock)
begin: sync_l

if (reset == 1) reset_l <= 1; /* step 1 */
else reset_l <= 0; /* step 1 */

end

always @ (posedge clock or posedge reset)
begin: sync_2

if (reset == 1) reset_2 <= 1;

else reset_2 <= reset_1;
end

always @ (posedge clock or posedge reset)
begin: sync_3

if (reset == 1) reset_sync <= 1;
else reset_sync <= reset_2;

end

endmodule

/* asynchronous reset */
/* synchronize un-reset (step 2) */

/* asynchronous reset */
/* synchronize un-reset (step 3) */

/********************************************************************************

File : TOP_analog.v
Module(s) : TOP_analog
Engineer : Richard S. Lewison
Date : February 6, 1997

February 10, 1997

Description
* This module implements the top-level analog block of the DSPWM.
*********************************************************************************/

'timescale 1 ns / 10 ps

module TOP_analog(
Vinp,

Vinn,

//

//

//

TOP analog block
InOut Analog input signal
InOut Analog input signal

(+)

(-)

Vref,

clk1P,
clk1N,

clk2P,

clk2N,

reset,

//

//

//

//

//

//

In

Phase
Phase
Phase
Phase
Input

Analog ground (reference)
1 (+) switch capacitor clock
1 (-) switch capacitor clock
2 (+) switch capacitor clock
2 (-) switch capacitor clock
--> asynchronous reset

DSM_out,

AVDD,
//

//

Output
InOut

-> modulator digital output
Analog VDD
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AGND

);

// InOut Analog GND

input clk1P,c1k1N,c1k2P,c1k2N,Vinp,Vinn,Vref,reset;
output DSM_out;
inout AVDD, AGND;

reg DSM_out, up_downN;

wire clk1P,c1k1N,c1k2P,c1k2N,Vinp,Vinn,Vref,reset;
real yin, vin_int, sum, feedback;
tri AVDD, AGND;

parameter top = 1.5;

parameter bottom = -1.5;
parameter step = 0.001;

// -1 <= bottom <= top <= +1
// -1 <= bottom <= top <= +1
// step size

//

II Simulation initialization
//

initial

begin

$display("Starting Delta-Sigma modulator!");
vin_int = bottom;
up_downN = 1;

end

//

// Delta-Sigma Modulator
//

always@(posedge clk1P or posedge reset)
begin

if (reset) begin
DSM_out = 0;
feedback = 0.0;
vin_int = bottom;
yin = -0.9999;

up_downN = 1;
sum = 0.0;

end

else begin
//

// Update Delta-Sigma Modulator
//

sum = sum + yin feedback;
if(sum >= 0.0) DSM_out = 1;
else DSM_out = 0;

if(DSM_out == 1) feedback = 1.0;

else feedback = -1.0;

// $display("Vin = %8.4f Up_DownN = %b Sum = %8.4f DSM_out = %b Feedback = %8.4f",
// vin,up_downN,sum,DSM_out,feedback);

//

// Update Stimulus
//

case(up_downN)
l'bO: begin

if(vin_int -step > bottom) vin_int = vin_int step;
else begin

vin_int = bottom;

up_downN = 1;
end
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end

l'bl: begin
if(vin_int+step < top) vin_int = vin_int + step;

else begin
vin_int = top;
up_downN = 0;

end
end

endcase
if (vin_int>=1.0) vin = 1.0;
else if (vin_int<=-1.0) vin = -1.0;
else vin = vin_int;

end
end

endmodule




