
AN ABSTRACT OF THE THESIS OF

Chang-chung Li for the degree of Doctor of Philosophy

in Statistics presented on August 30, 1979

Title: A Comparison of Efficiency and Robustness for Lower Tolerance

Limit Procedures

Abstract approved: Redacted for privacy
David R. Thomas

Several lower tolerance limit procedures are compared with regard

to efficiency and robustness. The procedures include the nonpara-

metric based on a single order statistic and the maximum likelihood

estimates for complete and censored samples from parametric families

of distributions. Right-censoring is considered as an approach for

improving the robustness of the parametric procedures under departure

from the assumed form.

The Pitman asymptotic relative efficiencies of the nonparametric,

complete sample and censored sample parametric procedures are compared

for the 2-parameter lognormal distribution and the 3-parameter gener-

alized gamma distributions, including the special cases of negative

exponential, Weibull and gamma distributions.

Approximate coverage probabilities (A.C.P.'s), based on large

sample theory, are evaluated for the parametric procedures under the

assumption of a Weibull (lognormal) distribution when instead the true

distribution is lognormal (Weibull). The discrepancy between the



A.C.P.'s and the corresponding nominal confidence level is then used

as the measure of the robustness of the parametric procedures. A

Monte Carlo study using samples of size n=60 is conducted to in-

vestigate the adequacy of the large sample approximation.



A Comparison of Efficiency and Robustness for
Lower Tolerance Limit Procedures

by

Chang-chung Li

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

June 1980



APPROVED:

Redacted for privacy
Associate Professor of Statistics

in charge of major

Redacted for privacy

Head of Department of Statistics

Redacted for privacy

Dean o

\

Graduate School

Date thesis is presented August 30, 1979

Typed by Dorothy Jameson for Chang-chung Li



ACKNOWLEDGEMENTS

The author wishes to express his deepest appreciation to Dr.

David R. Thomas for his guidance and encouragement throughout this

research. The author considers himself very fortunate to have had the

opportunity to work with such a person.

The author also wishes to express his appreciation to Dr. David

S. Birkes whose helpful suggestions and criticisms contributed to

this thesis.

To Dr. F. Tom Lindstrom, the author expresses his appreciation

for his numerical analysis technique used to approximate the incom-

plete gamma function and its derivatives. The approximations of

these functions are essential in this research.

The author wishes to thank the many members of the Department of

Statistics with whom he has had valuable course work, especially to

Drs. Donald A. Pierce and Justus F. Seely.

The author also acknowledges the financial assistance of the

Department of Statistics under the Chairmanship of Dr. Lyle D. Calvin,

and the Computer Center of the university, which allowed the author

to complete his educational program.

Finally, the author is indebted to his wife, Ann-Ping, for her

patience and understanding.



TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

2. CENSORED SAMPLES 6

3. ASYMPTOTIC RELATIVE EFFICIENCY 9

3.1 Derivation 9

3.2 Asymptotic Variance for the Log-Generalized
Gamma Distribution 13

3.3 Asymptotic Variances for the Extreme Value,
Log-Gamma, and Log-Negative Exponential
Distributions 18

3.4 Asymptotic Variance for the Normal Distribution 19

3.5 Numerical Results 20

4. ROBUSTNESS 27

4.1 General Construction 27

4.2 Coverage Probability of the Extreme Value
Procedure When the True Distribution is a
Normal 30

4.3 Coverage Probability of the Normal Procedure
When the True Distribution is an Extreme Value 34

4.4. Numerical Results 36

4.5 Remarks Concerning the Choice of a Lower
Tolerance Limit Procedure 38

5. SIMULATION STUDY 48

BIBLIOGRAPHY 53

APPENDIX 55



LIST OF TABLES

Table

Asymptotic relative efficiencies (A.R.E.'s) of

Page

1

lower tolerance limit procedures 23

2 Asymptotic variances for the complete sample
parametric and the nonparametric procedures 26

3 Approximate coverage probabilities (A.C.P.'s) 39

4 Quantities A, B, V*, V used in the evaluation
of the approximate coverage probabilities 42

5 Asymptotic bias on the probability scale 43

6 Empirical and asymptotic estimates (A.C.P.'s)
for the probability of coverage 51

7 Roots of the function Ha(z)-pf for a = 1,2,4 60

LIST OF FIGURES

Figure Page

1 Efficiency and robustness of Weibull procedure 46

2 Efficiency and robustness of lognormal procedure 47



A COMPARISON OF EFFICIENCY AND ROBUSTNESS
FOR LOWER TOLERANCE LIMIT PROCEDURES

1. INTRODUCTION

Consider the problem of setting a lower confidence limit for the

th
p quantile x = x (F) of a distribution with continuous cumulative

distribution function (c.d.f.) F(x) . That is, given p (0 < p < 1)

and the confidence level y a lower confidence limit

L = L(X
1

, , X
n
,p,y) is specified so that

Pr {L <"xp} A y for all F e F

where F is some specified family of continuous c.d.f.'s. It is well

known that lower confidence limits of quantiles correspond to lower

tolerance limits. That is,

Pr {L < x
P
} = Pr {F(L) < p} = Pr {1-F(L) > l -p} > y

shows that the interval (L, CCI ) includes at least (1-p) of the

distribution with confidence level y. We are particularly inter-

ested in small quantiles (0.05 < p < .25) . Applications would

include life-testing and strength of materials. For example, a

lumber company may be interested in setting a lower tolerance limit

for the breaking stress X for a population of lumber of specified

dimension and grade.

This research compares the performance of several lower tolerance

limit procedures with respect to efficiency and robustness. The

procedures include the nonparametric based on a single order



statistics L = X
(k)

and the parametric based on the maximum likeli-

hood estimates x = x (a) for the parametric family F. Here we
P P

consider the negative exponential, 2-parameter Weibull, 2-parameter

gamma, generalized gamma and lognormal families of distributions.

Based on the asymptotic multivariate normal distribution for the MLE B,

B N 7171
-1

(B) )

where I
-1

(a) denotes the inverse of the information matrix for a

single observation, we consider

where

and

L = x
p

- 1(y) -)17ar(t )

Var =1 Dt (B) I1(B) D (a)
n

3x 3x

--2- , ,

3x

D(a) r 3a , 3a
s2

is the gradient vector of x w.r.t. B.

As the parametric family of distributions is enlarged (e.g., from

negative exponential to Weibull to generalized gamma distributions) we

would expect the lower tolerance limit procedures (1.1) to become more

robust. That is, the nominal probability of coverage, y , should

give a better approximation to the true coverage probability,

Pr {L < xp ; F} (1.2)

for distributions F not included in the assumed parametric families.

However, as the family is enlarged the asymptotic variance Var(x
P)



increases (efficiency decreases) for distribution F which are

included in the smaller families. One possible method for improving

the robustness of the parametric lower tolerance limit procedures is

to right-censor the larger observations. That is, corresponding to a

specified value T (Type I censoring) , use the log-likelihood

where

n

t. (a) = {s
k

In f(xk, a) + (1-8
k
) ln[1-F(T:

k=1

k
= I

(-03,T]
(xk)

indicates whether (ak=1) or not (ak=0) xk is in the interval

(-03, T] for the determination of the MLE xp and its asymptotic

variance in (1.1). Of course, the censoring will result in some loss

in efficiency.

The nonparametric, parametric uncensored, and parametric cen-

sored procedures are compared by two large sample performance

criteria: the Pitman Asymptotic Relative Efficiency (A.R.E.) and the

Approximate Coverage Probability (A.C.P.). The A.R.E. under the

assumed parametric family of distributions is calculated as the ratio

of the asymptotic variances of the estimaters for the p
th quantile x .

The A.C.P. is defined as the large sample approximation to probability

(1.2) when F is not a member of the parametric family of distribu-

tions assumed for construction of L.

In Chapter 2, censoring and the corresponding likelihood function

are discussed.

In Chapter 3, the efficiencies of the various procedures are

investigated. First, we develop the general form of the A.R.E.'s for
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both the nonparametric and censored parametric procedures relative to

the uncensored parametric procedures. Formulas for the A.R.E.'s are

then derived for the log-generalized gamma and normal distributions.

Numerical values of A.R.E.'s are provided for the parametric families

of distributions.

In Chapter 4, we first derive the general form of the A.C.P. The

A.C.P.'s are then evaluated for two cases: when the lower tolerance

limit is constructed by assuming an extreme value (Weibull) distribu-

tion and the true distribution is normal (lognormal) and vice versa.

In Chapter 5, a simulation study is used to investigate the

adequacy of the large sample approximations to the true coverage

probabilities.

Concerning related research, Habermann and Ethington (1975) con-

ducted a simulation study to investigate the performance of the non-

parametric and normal procedures for the lower tolerance limit x.05

for uncensored samples of sizes n=58 (where Pr IX(1) < x.051 = .95)

and 93 (where Pr {X
(2) < x.05} .95) when the true distribution

is either normal, lognormal, gamma or Weibull. They conclude "... the

use of nonparametric procedures is conservative while the penalty for

an incorrect assumption about the true underlying distribution is

possibly severe ...". They also studied the Hanson and Koopman (1964)

procedure based on two order statistics from samples of size n=20

and 40. The Hanson-Koopman procedure was found to be too conserva-

tive. Warren (1974) further studied the sampling distribution of the

first order statistic, L=X
(1)

, for the sample size n=58 when sam-

pling from the normal, lognormal, 3-parameter gamma, and 3-parameter

Weibull distributions. Under standardization of the parent
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distributions (common mean and common variance), Warren found that the

distribution of the first order statistic is highly dependent on the

form of the parent distribution.

This research is similar to Habermann and Ethington's in that we

are concerned with both the efficiency and robustness of lower toler-

ance limit procedures. This study is more general in that parametric

procedures other than the conventional normal are investigated. The

use of censoring for improving robustness of the parametric procedures

is also studied.
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2. CENSORED SAMPLES

Maximum likelihood estimation for censored data has been widely

studied (e.g., see Mann et al., 1974, or Gross and Clark, 1975). For

completeness, single right-censoring is discussed briefly here.

A random sample X
1,

, X
n

can be singly censored from the

right in two different ways:

1) observations larger than a specified value T (also called a

truncation point) are censored;

2) corresponding to a specified integer R (1 < R < n) , the

N-R largest observations are censored.

These two kinds of censoring are commonly called Type I and Type II

censoring, respectively. As an example, suppose it is desired to

estimate the average lifetime of light bulbs produced in a factory.

For a complete (uncensored) sample, a certain number, n, of light

bulbs would be randomly selected and the burn-out (failure) time

would be observed for all n bulbs. In order to shorten the duration

of the experiment, Type II censoring might be used where the experi-

ment terminated when a fixed number, R, of light bulbs have failed.

If Type I censoring was used instead, the experiment would be termi-

nated at a specified number, T, of hours. Note that the number of

failures, R , observed in a Type I censored sample will be a random

variable. In studies of material strength where the items are

tested sequentially in one machine (or a small number of machines)

only Type I censoring is convenient. In such applications, the stress

need only be increased to the level T. If the item does not fail at
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level T, then the item may still be usable. That is, for items with

X > T the testing is non-destructive.

For the discussion of the likelihood function, let us consider a

Type I censored sample first. The likelihood for estimating 0 based

on observations of the random variables

and

is

Let

Qi
Mill Ix" T}

1 for X. < T
6. = 1

OforX.>.1
1

L(13'ql'61°12'62' 'cln'6n)

n 6. 1-6,

= if(q.;0) 1,41-F(q.;0)]

1=1

n 6. 1-6.

= {f(X.'0) 141-F(T0)1 1

i=1

R = 8.

i=1

(2.1)

be the number of observations that fail by T, and let X(1)

< X
(R)

< T denote the first R order statistics, then (2.1) becomes

L(0
'

X
(1)

,...,X
(R)

,T) = f(x ;0]. [1F(T;smnR
1 =1 (i)

(2.2)
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Thus, the log-likelihood function for a Type I censored sample can be

written as

t. y {(Sin f (X.0) + (l--6 )-lnll-F(T;a)il (2.3)

i=1 1

from (2.1), or

R
t. = In f(X

(i)
;a) + (n-R)ln [1-F(T;U

i=1

(2.4)

from (2.2).

For Type II censoring, define T=X
(R

Then the log-likelihood

function for Type II censoring differs from (2.3) and (2.4) only by

the additive constant ln(n! /R!(n -R)!) .
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3. ASYMPTOTIC RELATIVE EFFICIENCY

3.1 Derivation

Efficiencies of the nonparametric and the censored sample para-

metric procedures relative to the complete sample procedure are

evaluated for several parametric families of distributions. For

convenience of notation, we apply the logarithmic transformation,

Y = ln (X) , so that each of the parametric families contains a loca-

tion parameter. The choice of the scale (x or y) is irrelevant.

For all tables that follow the distribution can be identified on

either scale; e.g., normal or lognormal, and extreme value or Weibull.

Let F(y;a) be a c.d.f. of the assumed parametric family with

corresponding density function f(y0), where, in the parameter vector

= (al, , as) al is the location parameter. The
pth

quantile of F is then of the form 0 = 8p(e) = al + hp(a2,a3,...,as)

where the function h depends on the particular family. For example,

for the 2-parameter Weibull distribution x = exp(0) where

8 = a
1
+ a

2
1n [-1n[1-p] ] .

Define a
c

as the M.L.E. for $ and TO, p
f
) the information

matrix of a single observation from a Type I censored sample where

p
f
= Pr {X < Tl = F(r;a) with T = ln (T) . Using the asymptotic

normality of the M.L.E. = e )
C p _c

AT(0
c
-0) N(0, QC )

C

where



02(3) = D' (a)*11

10

,P ) D (s) (3.1)

30 30

2

38 1,

pv($) = ,

a

a P as
J

°Pl.

yields the lower confidence limit L
n,c

of asymptotic confidence

level y

where

and

(3.2)

L
n,c

=ec-z -a , (3.3)

Z =
-1

(y)

a2 = a2(a
) =D'

C -C
a

-1
.1 (ac,P )°D(ac), with pf = F(T;f3c), (3.4)

is a consistent estimator for a2(8) . Since a complete sample is a

special case with pf=1, the same notation is used for a complete

sample except that the subscript c is deleted in the M.L.E. 0 ,

asymptotic variance 62(a) , and lower confidence limit Ln .

The confidence intervals ie
o

: e o
< Z } correspond

c c y
to the acceptance regions {8

c
:

c
-0°)/a < Z } for testing the

c y

hypothesis

H
o

: 8 < 8
o

against HA : 8 > 8° . (3.5)

Thus, the power function, denoted by Pw {a} , corresponds to the
c,n

probability that 0° is not contained in the confidence interval



Pw {0 =
c,n

o,
) a

c
> Z

y
;0 = pr{13° Ln

11

The Pitman Asymptotic Relative Efficiency (A.R.E.) of 8c to 8 for

testing the hypotheses (3.5) is then used as the asymptotic relative

efficiency of L
n,c

to L

For an arbitrary positive constant a and parameter values

so (so so
, (3°) and f3(n) = (e+a/Vi, e , a

s
) , denote

l' 2' 1 2'

e
o

= e
P
(e

o
) and 8

(n)

P

(a( n) )
o
4.-a/Vri. The power function of

the test statistic )/R8
c

- 8°)/;
c

for the sequence of alternatives

(n)
8 and censoring values T

n
= T abirT is

Pw .03(n)1 .5471-.(0 -8°) /a
a(n)1

C,n c y '

= Pr {4-1-(8c-8°) > zy ;c ; (3.(n)}

c

_e(n)+a/147)z
Y c

s(n)1

Pr u;( ..0(11)) aicy (3(n)

c Y c'

= Pr {4-1(e -0 )/a > Z - a/a ; a
o
}

c c c

1 - 0(Z1 a/ac(!°) )

Note that equality in the next-to-last line above follows from the

invariance of (0
c
-0 )/a

c
under common location transformations of

Y. and T
1

Using a similar argument for the test statistic 41W(8-8 )/a

based on a complete sample of size n* gives the approximate power

PW (n)
1 1 1 - 0(Z - Vii7;* a/a(e) )n*
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Thus,
(n) .

.PW la 1 PW Da
(n)

1 when n*/n =
20())/a2(e)

Hence
n,c - n* - - c -

the asymptotic relative efficiency of L to L
n*

is the ratio of
n,c

. .

the asymptotic variances of A
c

and A

A.R.E.(L
n,c

; L
n*

) = /2fnON2,,,01p "UclI2 )

Now, consider the efficiency of the nonparametric confidence

(3.6)

limit procedure, L =Y , where k satisfies (3.7) below. The
n**,/e (k)

value e
0
(0

o
< T) is contained in the confidence interval [Y

(k)
, c)

if and only if K > k, where

K = the number of Y 's < 0°
i

has a binomial (n** , p) distribution so that

n**
n**-

Pr {K > k} = (
n**

) p (1p)
i y

i=k 1

Thus, to = Kin** is a test statistic for the corresponding

hypothesis testing problem (3.5). From the results

Ee(tn**) = F(0° ,

Var(tn**) = F(0°; 6)[1-F(0°; 13)]/fl**

de E0(tn**) d3
f(0 °;

1

de

)
E (t

n**
me=e

(n
binVar(t

n**
)]

8=0

= f(0 °; a
(n)

), p (1-p)

and the asymptotic normality of we we apply Theorem 3.1 in

Fraser (1963) to yield the approximate power

(3.7)

11.**,Np {a(n)} 4)1 1 -4(Z - a111;;IT /[4(1-P)/f(0°;6°)])



Thus,

Pw
n*Np(!

(n)

)

(n)
) when n*/n** = 2(8°)/[P(1-p)/f ( °;8°)

The asymptotic efficiency of the nonparametric procedure relative to

the maximum likelihood complete sample procedure is then

where

A.R.E.(L
n**,Np

; L
n*

) = a2(13°)/a2 (S °) ,

Np

aN2
p
0°) = p(1-P)/f2(8();

is the asymptotic variance of the order statistic Y(n**p) .

3.2 Asymptotic Variance for the

Log-Generalized Gamma Distribution

The log-generalized gamma distribution with p.d.f.

13

(3.8)

(3.9)

f(yo) = 1 ii32.1/r03).expt$3.(y-.s )/132 - exp[(y-81)/f32)]

(3.10)

can be obtained from the gamma p.d.f.

ha(z) = za-i.exp(-z)/r(a)

by the transformation Y = 81 + withwith 83 = a. The c.d.f. of

Z can be written

where

H
a
(z) = r(z; a)/r(a)

r(z; a) =
to -1 -t

e at

(3.11)
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is the incomplete gamma function and F(a) = F(=;a) is the complete

gamma function. The p
th

quantile of the log-generalized gamma distri-

bution, 0 , then depends on the inverse function Hal (u) of the

gamma c.d.f. (a=a
3

)

0 E 0 (13)=E + a ',en H1 (P)
2

3

The elements of the gradient D of 0 are then evaluated

where

d
1
= 30/381 = 1

d
2
= avaa

2
= ,en q

83
d
3
= avaa

3
= a

2
w(s ).pr(ci )]/[q -exp(-q )] ,

q = H 1(p)
P a

3

(3.12)

and r'(83) and 1."(q ,0
3
) denote respectively the first derivatives

of r(83) and F(qp,a3) w.r.t. 83. Similar notation, r"(83) and

r.(4
3
) is used later for the second derivatives w.r.t. S3. (See

the Appendix for a discussion of the method used for numerical evalua-

tion of the complete and incomplete gamma functions and their deriva-

tives up to the 4
th

order.)

Recall the p.d.f. for a censored observation

g(y;a0) = f(y;a)
8

. [1-F(T;a) ]
1-8

where 8 = I
( ,T]

(y) is the indicator function on (-=,T] .

TheelementIijof the information matrix I can then be written as



I.. . -E{32tn g(y;$0)/a0.a13.}
ij - i j

15

= -E{632-en f(y0)/ni n.+(1-6)32-en[1-F(TOMPi ODa.) (3.13)
... j j

= -TO - (1-p
f

-I.
(2)

where

1-
(1)

= [a2tn f(Y;f3)/9f3.313.j ] f(Y0) dY

and (3.14)

2)
I..

(
= a zn[1-F(To)] ias.aa. .

From (3.10) the derivatives of £n f(y0) are determined

32.enf/n1 2 = (-1/132) exp(y )

,2,enfiaq = 1/q + yg/q{2-83- ygexp(yg)- 2.exp(yg)1

azznf/n a2enr(a )/a62 - 1"(13 )
3 3 3 3

, the trigamma function,

32Janf/Dalaa2 = s3/s2 1/q exp(yg) -a+ygl (3.15)

Anf/n13133 = - 1/$2

92Znf/4323$3 = 1/0_ y
z g

where

yg = (y-f3
1
)/13

2
.

The expectations in (3.13) are evaluated for fixed probability of an

observed failure

Pr {Y < T; al = Pf

Thus,



T = Rl 0 tn H (P f)
5

-1

3
f

To simplify the notation in the expressions that follow, we denote

q -==" q(P
f

,

3
) = H

a

-1
(p

f
)

3

and

qh a3 *II
(3 1

(q) = a
3
p

f
q (q)

3 3

From the results

E[exp(yg)]= r(q,a3+1)/r(a3) = qh

E[yg] = r1(q,a3)/r(63) = pf'Y(q, a3)

E[y -exp(y )] = r'(q,6
3
+1)/r0

3
) = q

h
"11(q,a

3
+1)

E[y exp(y )] = r"(q,63 +I) /rO
3
) = q

h
T(q,a

3
+1) ,

where

T(qf,63) = 1"(q, a3)/r(q,a3)

T(qf''3) = r"(q''3)/r(cl'63)

we find

16
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(1)
I
11

(1)
I
22

133)

(1
1
12

)

=

.111 2

/82_1/R
f 2 T(q,$3)-qhi(q, $34.1)-2.qh T(q ,034.1)

fTi 03)

-pf.$3/62 + 1/qqh{l+T(q,$34.1)}

(3.16)

(1)
1
13

= p
f
/$

2

(1)
I
23 Pf/f32 T(cl'a3)

Evaluation of the components I. in (3.13) gives
13

(2 )
I
11

= 1/$22 *q
f
{q-a

3 f
q }

(2 )
I
22

= 1/$.q
2 3

(.en q)2 + q + 2.2n q - qf}

I
(23 )

= [T'($
3
) + T($

2
) 2 - 117(q,E3).pf]/(1-pf) -

{[T($
3
) - p T(q,f3

3
)]/(1-p )12 TI(R )

(2
I
12

)
= - va q

f
{1 - gtn

(2
1
13

)
= 1/$

2
.q

f
{-en q -[T($

3
) - p

f
.T(g,$

3
)]/(1-p

f
)1

(2) (2)
1
23

= 1
12

.fin q ,

where

qf = q h$ (q)/(1-p
f
) .

3

(3.17)
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The corresponding terms in (3.16) and (3.17) are then used in (3.13)

to give the information matrix. I(5,pf) . Finally the asymptotic

variance of 8 is evaluated by (3.1), (3.2), (3.12) and (3.13).

To determine the asymptotic variance, a2(5) , for 0 in the

complete sample case, the information matrix is first determined.

Only equations (3.16) are needed for the determination if information

matrix I. In this special case with laf=1, the reductions qh=53,

T(q,53) = 11(53) and 117(q,53) = r"(53)/r(a3) yield

I = 53/8211 3 2

I
22

= 1/52
2

{1 + r " {53 +1) /x(53)} 1

I
33

= T'(5 )
3

1
12

= 1/522 1'1(53 + 1)/r(53 )

1
13

= 1/a
2

I
23

= 1/a
2
Y(5

3
)

The asymptotic variance

a2(5) = D'(5) I1 D($)

is then evaluated using expressions (3.12) and (3.18) .

3.3 Asymptotic Variances for the Extreme Value,

Log-Gamma, and Log-Negative Exponential Distributions

(3.18)

The log-generalized gamma family of distributions includes the

extreme value (log-Weibull, 53=1), log-gamma (52=1) , and log-negative

exponential (53=82=1) distributions as special cases.
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The asymptotic variances a2(e) and a2(8) in these special
c

cases are simply those found by deleting the element(s) of D in

(3.12) and the row-(s) and column(s) of I in (3.16), (3.17) and (3.18)

corresponding to the fixed value(s) for 82 and/or

3.4 Asymptotic Variance for the Normal Distribution

For a normal distribution a
1
= E(Y) and 82

2
= Var(Y) . The pt

h

quantile of Y depends on the inverse of the standard normal c.d.f.

4,()

= , a
2
) =

S1
+- 1(p)82

The gradient of 8 is then

,
(1,

1
(P))

Evaluation of the components (3.13) of the information matrix for the

normal distribution yield

where

(1)
I
11

I
(1)

22

p
f/8 2

= p /2-84
f 2

- -1 ,
- 1/a4-t. l(p )*(1)(4) (13 fI)2 f

(3.20)

I(11) = -1/032 '401(P
f
))

2

1T(2) 1 1
Iii) 1/1q h(4) (pf))[h(t (p f)) -(1) f)

I22)
T ( 2) 3/4 R4 6-1( 1 h(ob1( )1 4-

""'"' -2..' 'Pf'.-" `Pf"

1/402 [1)1(p f) i2'h (4)1(p dih(4)1(p f) )-(D( pf) i

422) = 1/283h(171(Pf)) + 1/283 h(4)1(Pf))[h(4)1(Pf)-(11(Pdi

I

h(- ) = 4)(- )/1-4)(-

is the hazard function for the standard normal distribution.
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The asymptotic variance of is then obtained using (3.1),

(3.2)., (3.12) and (3.13). For the complete sample case it is well-

known that

Hence,

I= 1/82
2

0

0 1/2q.

6203) = 32 {1 + 1. ND1(0 g}
2

3.5 Numerical Results

Recall (3.6) and (3.8)

h,c
; L

n*
) a2(13°)/62(3°)

A.R.E.(L
n**, n*

;L ) = 152(8'3)/62 0°)NP

where the A.R.E.'s of the censored sample parametric (L
n,c

) and the

nonparametric (Ln**,Np) procedures.relative to the complete sample

parametric procedures (Ln*) are seen to depend only on the asymptotic

variances a2
(130.

)6
2 (0o,

and 62(8°) . For convenience of
c NP

notation denote 8
o

by a throughout this section. From Sections

3.2 and 3.3, these asymptotic variances are independent of the location

parameter al when the expected proportion of uncensored observations

p
f

is held fixed. Moreover, the scale parameter 6
2

(if present)

appears in the expressions of these asymptotic variances only as the

factor 1/(32
2

Therefore, the A.R.E.'s for the various families of

distributions depend only on the shape parameter 83, if present, and

a
3
= 1 otherwise. Of course, the A.R.E.'s may depend on the quantile
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p and p
f.

Thus, we denote

el(Pf, P5 03 ) = A.R.E. (Lnc; Lnd 62(0/

and (3.21)

n**Np; Ln *) = a2(0)/a2m,(0)e
2
(p,0

3
) = A.R.E. (L

The values of the asymptotic relative efficiencies el(Pf, 13, 03) and

e2(p,
03) when pf > p are given in Table 1 for p = 0.5, .1, and

.25. Table 2 gives the values of 022 a2(0

2

) and a2a2 (a) . Values
_ NP

of the corresponding
022

a2 (0 can then be obtained from Table 1 by
c

using (3.12).

It is of interest to see how el(pf, p, E3) varies as the family

of distribution is enlarged from the log-negative exponential to the

extreme value (3
2
= 1), or to the log-gamma (0

3
= 1) , and then to

the log-generalized gamma (02 = a = 1) . For these cases with

pf = .5, the values of el(pf, p, 03) in Table 1 increase from .5

to .66, or to .82, and then to .96 for p = .05 , and increase

from .5 to .76, or to .91, and then to .95 for p = .1, and

increase from .5 to .95 , or to .97, and then decrease to .79

for p = .25 . Next consider the changes in the asymptotic variances

02(52(0) . From Table 2, the corresponding parametric complete sample
2

asymptotic variances are seen to increase from 1 to 7.99 or to

10.65 and then to 13.04. It is also of interest to compare

e
1
(p

f'
p E

3
) with e2(p, 03) in Table 1 for the various assumed

distributions. These two A.R.E..'s are approximately equal when

p
f

= p for each distribution. That is, if the expected proportion of

uncensored observations p is p, then there is no significant
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improvement in the relative efficiencies of the censored parametric

procedure over the nonparametric procedure. Table 3 is also consis-

tent with the well -known fact that the log-gamma distributions tend to

the standard normal distribution as the parameter 63 tends to infin-

ity by noting the values of el(pf, p, 83) for the log-gamma distri-

butions approach those for the normal distributions. As expected,

each column in Table 1 is an increasing function of pf for all p.

Finally, el(pf,
p, 83) = pf is independent of p for the log-

negative exponential family.



(a) p=0.05

Table 1. A.R.E.'s of Lower Tolerance Limit Procedures

e
1
(p

f
,p,(3

3
) : censored relative to uncensored parametric

e2(p,03) : nonparametric relative to uncensored parametric

P
f

log-N.E. extreme value log-gamma normal log-generalized gamma

a
3
=1 2 4 P.

3
= 1 2 4

.05 .05 .3998 .5324 .5326 .5309 .5274 .6519 .6466 .6405

.10 .10 .5447 .7388 .7437 .7427 .7382 .7434 .7507 .7550

.25 .25 .5638 .7561 .7617 .7615 .7575 .9161 .8951 .8789

.30 .30 .5792 .7678 .7707 .7697 .7652 .9403 .9276 .9134

.40 .40 .6175 .7962 .7955 .7930 .7877 .9573 .9640 .9574

e1(P1,P,03) .50 .50 .6614 .8277 .8245 .8213 .8156 .9603 .9783 .9791

.60 .60 .7097 .8601 .8555 .8518 .8462 .9604 .9825 .9867

.70 .70 .7625 .8927 .8878 .8841 .8790 .9617 .9831 .9896

.80 .80 .8217 .9258 .9214 .9189 .9141 .9659 .9834 .9941

.90 .90 .8920 .9602 .9572 .9553 .9525 .9747 .9859 .9967

.95 .95 .9358 .9786 .9769 .9760 .9741 .9824 .9894 .9982

e2(P,03) .0499 .3988 .5323 .5313 .5277 .5268 .6519 .6466 .6405



(b) p=0.10

Table 1. (continued)

Pf log-N.E. extreme value log-gamma normal log-generalized gamma

3
=1 2 4

3
=1 2 4

.10 .10 .5340 .6285 .6273 .6264 .6247 .6668 .6547 .6497

.25 .25 .7380 .9026 .9048 .9038 .9000 .8016 .7855 .7848

.30 .30 .7382 .9040 .9075 .9068 .9034 .8417 .8137 .8070

.40 .40 .7460 .9054 .9083 .9074 .9040 .9101 .8728 .8596

e
1
(pf"p 0 3) .50 .50 .7645 .9121 .9134 .9122 .9084 .9545 .9216 .9075

.60 .60 .7912 .9236 .9233 .9215 .9178 .9797 .9561 .9440

.70 .70 .8247 .9382 .9369 .9350 .9314 .9923 .9787 .9702

.80 .80 .8654 .9554 .9536 .9524 .9488 .9976 .9919 .9824

.90 .90 .9166 .9750 .9736 .9687 .9702 .9990 .9984 .9972

.95 .95 .9496 .9863 .9853 .9848 .9832 .9991 .9997 .9999

e
2
(P

'
0
3
) .0999 .5339 .6283 .6268 .6262 .6232 .6668 .6547 .6496



(c) p=0.25

Table 1. (continued)

log-N.E. extreme value log-gamma normal log-generalized gamma

3
=1 2 4 0

3
=1 2 4

. 25 .25 .6698 .6488 .6561 .6614 .6668 .6687 .6808 .6857

.30 .30 .7965 .7741 .7751 .7777 .7813 .7622 .7866 .7962

.40 .40 .9167 .9165 .9134 .9135 .9147 .7771 .8152 .8357

e
1
(p

f'
p

'

0
3
) .50 .50 .9473 .9724 .9701 .9698 .9700 .7911 .8213 .8405

e
2
(P,0

3
)

.60 .60 .9515 .9917 .9906 .9903 .9900 .8235 .8405 .8518

. 70 .70 .9519 .9972 .9968 .9965 .9958 .8646 .8708 .8776

.80 .80 .9561 .9981 .9979 .9979 .9967 .9082 .9075 .9151

.90 .90 .9679 .9982 .9980 .9977 .9970 .9516 .9484 .9492

.95 .95 .9787 .9987 .9985 .9984 .9977 .9736 .9704 .9714

.2482 .6685 .6472 .6533 .6510 .6610 .6686 .6806 .6854



Table 2. Asymptotic Variances for the Complete Sample Parametric

and the Nonparametric Procedures

log-N.E. extreme value log-gamma normal log-generalized gamma

0
3
=1 2 4

3
=1 2 4

p

.05 1.00 7.99 10.65 3.22 1.14 2.35 13.04 3.92 1.38

.10 1.00 5.34 6.29 2.04 .73 1.82 6.67 2.13 .80

.25 1.00 2.69 2.60 .98 .41 1.22 2.69 1.02 .43

.05 20.00 20.00 20.00 6.06 2.16 4.46 20.00 6.06 2.16

.10 10.00 10.00 10.00 3.25 1.23 2.92 10.00 3.25 1.23

.25 4.02 4.02 4.02 1.5 .63 1.85 4.02 1.5 .63
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4. ROBUSTNESS

Suppose a lower tolerance limit (3.3) based on the maximum like-

lihood estimator of the p
th

quantile x (0.05 < p < .25) for a

censored sample is constructed for an assumed family of distributions

F {F(y03) c . If instead the true distribution is

F
o
(y;a) F

n
, with the p

th
quantile

Go = Fo
-1

(p)

the true probability of coverage

Pr < 0° ; F 1
n,c o

(4.1)

is of interest. We approximate the probability (4.1) by large sample

theory and call the approximation the Approximate Coverage Probability

(A.C.P.). The discrepancy between the A.C.P. and the nominal confi-

dence level y provides a measure for the robustness of L
n,c

. We

expect this discrepancy to decrease as pf is decreased. That is,

the robustness of the procedure should tend to improve with increased

censoring of the larger observations. The argument and notation

developed here are similar to that used by D. R. Cox (1961) in his

"Test of separate families of hypotheses".

4.1 General Construction

The asymptotic distribution of S
c

and the probability limit of

a2 under F
o
(y;a) are required for the large sample approximation of

(4.1) . We assume that the derivatives of the log-likelihood function

(2.3)



Dt.m. =,
k
-attif(y

k
0)/Da. + (176k}D.en -ier;a)/as.1

k-1
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i=1,...,s

yield the M.L.E. f3 as the unique solution to the maximum likelihood
_c

equations

linat /n.k = 0 , i =1s (4.2)

and a converges in probability as n 03 to a limit a a(a) .

Expand (4.2) about

0 = 1/11at./aa4 1/n-a2t./3a.1 -aaj T-(a
c,1 j

) i = 1,..,s
j=1

and apply the Weak Law of Large Numbers to give

0 1 linat./n.
1

Ect [32.013: n.

13- ;=-1
1

i = 1,...,s

(4.3)

where £ is the log - likelihood for a single observation and Ea is

the expectation under F (y;a) . Denote
o

G. = 1/wat./38.1 ,

1
G = at/3 . G. = 92ln.a3.

1 al
0

lj 1 3

The solution to (4.3) in matrix notation then is

.

a
c
.a_m G

where

G = [G1, G2, , G
s
]'

and

T
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M is a sxs matrix with (i,j)th entry Ea(Gii) . (4.4)

Thus,

where

because

Cov(8
c

. -1.
) M Colt(G)*M

1
= 1/nM-12'M71

C = n Cov(G) is a sxs matrix with (i,j)th entry

E
a i j
(G G)

Ea(Gi) = Ea(Gi) = 0

(4.5)

i = 1, s . (4.6)

Since a converges to S, equation (4.6) can be taken as a
-c

definition of S. Hence, the asymptotic normality of
c

under

F (y; a)

where

- -,- No, a2G)) ,
c c

o2(S) = m c m ,
c

(4.7)

yields the asymptotic normality of 0
c

under F
o
(y; a)

ilT0c ÷ N(0, VG)) >

= e (IT)

= (I3) 62C83 D(S) (4.8)

where

and

Next, we determine the probability limit o

F
o
(y; a) . Taking the censoring value

62 =.a2 (Sc) under



T = tn T = F010f)

and the probability limits 5 "5 and

in (3.4) gives

where

p = F(T;$ ) + = F(F
-1

^ 2a
c

± V
*
(13)

30

; (4.9)

(4.10)

V a) = D! (S-) I-1(73- i; ) D(-6) . (4.11)

Hence, from (3.3) the probability (4.1) becomes

Pr{) < 0° + Z 6c /471

= Pr{A(8c-(i)AAJT < [7(0° + Z /15- 6)/11/71

(D(Z

I
h*(R)/V(R) + 0°- To/t(T)).

(4.12)

To sum up, we need the M and C matrices and which are defined

respectively in (4.4), (4.5) and (4.6) to evaluate (4.12).

4.2. Coverage Probability of the Extreme Value

Procedure When the True Distribution is a Normal

Recall that the extreme value distribution is a special case of

the log-generalized gamma distribution (a3 = 1) with p.d.f.

M7;31, = 1/32 exp[(y-61)/62-exp((y-61)/a2]

and c.d.f.
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F(Y; 131,a2) ---- 1- exp(- exP((Y-y/$2))

The log-likelihood for a single observation is then

= 8- [-,enS2 + (y ) /132- exp((y-f3 )/132)]- (1-8)exp( et-y/132)

(4.13)

When Z = (Y-a
1
)/a

2
has a N(0,1) distribution, we write

where

W= (Y -
1
)/f3

2
= A + B-Z

WT= (T $1)/2 = A + B1)-1(pf) ,

A = -
1
)/[3

2
, B =

2/ 13 2

,
since T = al + a2 (I)

-1
Qf, . Using

D.e/a$
1

= - 1/13
2
{6-[1-exp(w)] - (1-6)-exp(w )1

aZ/a13
2

= 142{d[I+w-exp(w)w] + (1-0exp(wT)'w,r1

a2t/ni = - 1/1322 {6exp(w) + (1-6).'exp(w )1

(4.14)

a2tin
1
.af3

2
= - 1/(322 {6.1-1+w-exp(w)+exp(w)] + (1-S)[exp(w

T
)-w

T
exp(wT)11

a2t/as2
2

we find

= - 1/132 {6[-1-2w+w2exp(w)+2wexp(w)]

+ (1-6)qw?r,exp(wT)-2-wT.e )i)

a
2
E
a
(a213a

1
) = J

12
p
f
+ (1-p

f
)..J.

3

(4.15)

2
E
a
(atIn

2
) = ZnJ

1
-J
12
-B-J

3
-S

p
-A-p

f
+ B-S

P
-p

f
+(l-p

f
)--enJ

3
J

3
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where

JI = exp(A ; J2 = 1)(i
1
(Pd-B) ; J3 = exp(A+BD

-1

J
12

= J
1
.J

2
S = (1)(4) -1(Pf)

per))

are then functions of A and B. Denote the roots of (4.15) as

= (K(P Pf) , 1(P, pf ) ) (4.16)

from which we can obtain Sl = al k/i3 a2 S2 = a2/1

Evaluation of the matrices M and C, defined by (4.4) and (4.5),

gives

_2

2
-m

11
= -

Pf

-2
F3

2
.m
12

-p
f

-
f
+

(4.17)

S2
m
22

= -{(A
2

+1).p
f
+[2.A.T2+(E

2

+1).B ].J
12

-[2.-14

2

(E11-1

1

(p
f
))]..1

3
S

p

r 1
+ (1-p

f
).[2.A.B.0-1 (p

f
) + B

?
*0 (p

f
)]2J

3
D

and

132- 'C1
= J4.J5 Pf (1-13f)J6 2."1-12

2 -2 _2
2 C12 = (X+2B ) J4- J5 - J6. Sp-2-(A+B )J12 + J3. S

p
- J12

+ P
f
+ (1-p

f
)tn J

3
J

6
+ APf -

_2 _2 _2 _2 _2 _2
132 C22 = (A +4AB +B. +4B )J4 J5

5
2A B J6* S p-B S

p
J
7-2A

-J12-4AB J
12

2 _2 2
+ 4 -A-73- S J - 2B (1+B )J +2-B S J J +A -p

P 3 12 p 3 8 f

L2
2 + B J

9
+ p

f
+ (1-p

f
)-(tnJ

3
)2.J

6
- 2 -A-.7

12

2

- J
2
+iE.J S + 2X - ,

P-

(4.18)



where

J
4
= exp(2--A + 2*.B J

5
= 0( (p ) J

6

J
8

= J
7
- B , J = p

f
- 4)-1(p

f
)S

p
.

Finally, from (4.11) and (4.9), we have

33

J1 ,

1
= p )+g

* * (5f -E1)(Cpf -C9)2 -2.E2.Cp+El.C12)+E3+5f
V (-1T)/t3

2
-=1/

Pf(PfE1) (Cpf-Cp)2+pf+p(E3-2 Ep+EiC - (pf (C -Cp)-FiCp +E2 2

and

where

p
f

= 1 exp( - J ) ,

3

El = r( ) E = 1"(u,2) ,
E3 = r " (u, 2) with u = - Zn(1-pf)

Hence, using (4.16) - (4.19) and the fact that

V = V(3)/132
2

is independent of fT, in (4.8), from (4.12) we have

. A. C.P . ( Z V"*(i) N(8) + ( 6°-e) /h(3) )
Y

= + 17(a
1
+a

2
471(p) -81-13

2
.0

p
)//V 82

/
= .1)(z VV:

*
/V + (A+13',1) l(p) - ) /17)

(4.19)

(4.20)

(4.21)
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4.3 Coverage Probability of the Normal Procedure

When the True Distribution is an Extreme Value

Here, we have

Y; , a = 1/ii7W 1/a2 exg-1/2((y-81)/a2)2)

F(y;131,(32) = My-01)/132)

= 8 [2n(1/1/270-1/2tna -1/2((Y-r31)/132)21+(1-0..en[1-(1)((t-y/i32)1

The evaluations of A, B and 14, C are similar to those in the

previous section. Analogous to (4.14), we have

Dt/aa
1
= 1 /132 {8z + (1-0 11(z )1

at/a02
2
= -1/2 1/1322 '{6(1-z2) (1-6) h(z

T
)*z

T
1

= 1/q.{s + (1-0 b(zT)[h(zT) - zT]1

a2t/aaq = 1/ s2{ S z+ 1/ 2( 1 S) h( zT) +1 /2(1 S)zTh(zT)[h(zT) zT]}

32t/a(a2)2= -1/0.11/2.6+z2+3/4.(1-6).z .11(z )+1/4(1-6).z2'b(z )*
2 2 T T T T

[h(zT) - zr]).

where z = (y-01)/$2 , zr = (T-01)/132 and h() is defined in

Section 3.4. Corresponding to (4.15)

fi2Ea(atini) = Apf + + (1-pf)11(A+BCpf)

(4.22)

62Ea(at/3q) = A2-pf+2-A-B-B1 + B2-I2 +(1-pf)(A+B-Cpdh(A+BCpf)-Pf,



where

A = (alal) /a2 B = a2 , Ri = r' ,1

Corresponding to (4.17) ,

_2

a2.m11 = Pf
(1-p

f
)-1-1(T

f
)'[h(T

f
) - T f]

2=r"(u 1) u = -4n(1-p
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_2
B
2 12

= - Ap
f
- E'R

1
- (1-p

f
)/2'{h(T

f
) - T

f
'11(T

f
)ih(T

f
) - T

f
1 (4.23)

2 111 22
= p /2 + A p

f
- - B.42.

2
3/4(1-p

f
)T

f
11(T

f
)

where

Tf = A + TiCpf ,

Analogous to (4.18) ,

2

132.C11

f3 C
2 1

= 1/ p
f 1

+
2
+ BR3 -

(1-pf)/4Vh(Tf){h(Tf) - Tf] ,

2

+T.R2 + (1-pf} h2(Tf)

_3 _2 3

_2
a

-
1
+ (1-p

f
)T

f
112(T

f
)1

-A

22
= 1/4itIT + 4ABR

1
+ 6AB-R

2
+ 4ABR

3
+ B.R

4

where

(4.24)

-2 2

+ (1-pf)Tf2h(Tf) + pf - 2(A.pf + 2ABR1 + B.R2)1 ,

R
3
= R = r "(u,1)

Finally, analogous to (4.19), we have

17*(0/132 = 1.7* (i
22

+ 1/4 '[.14 l(p))]2'i
11

(P)*1- )
A

(4.25)
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where

ill.i22 1'12

and i11
, i12 , i22

can be obtained from the corresponding terms in

(3.20) by setting 0 = 1 and replacing pf by

p
f

= (1)(T
f
)

Analogous to (4.21), we then obtain

A.C.P. A (1)(ZVV*/-87 +./TC(A + 13Cp (D-1(P)) N7) (4.26)

4.4 Numerical Results

From (4.16)-(4.21), (4.22)-(4.26) it is clear that the approxi-

mate coverage probabilities A.C.P.=A.C.P.(Pf,P,y,n) are independent

of the parameters a and a. The argument of the (D-function in

(4.21) and (4.26) can be written as

Z VV*/V + (0
o
-D)/ (N/ V T2)

where

Oo = al + a2 1(P) and 8 = a
1 2
+ a .0 when F

o
=N(a

1, 2
a2)

P

and F = the extreme value (0
l'

62 )

or.

00 = a
1
+ a

2
C

p
and TT = S + -(D-1(P) when F

o
= the extreme

value (a
1
,a

2
) and F=N(a

l' 2
a2) . We call 613-8 the asymptotic bias

8c because 0
o

is the true pt
h
quantile and 5= 8p(R) is the
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probability limit of Oc, the estimator for the pth quantile of F,

under F
o.

Moreover,

F
o

- p

is the asymptotic bias on probability scale. Both biases provide

indices for the robustness of the point estimator 0
c

under F
o.

Tables 3a, 3b, and 3c give values of the A.C.P.'s when the

assumed distribution is extreme value and the true distribution is

normal and vice versa for p =0.05 , 0.1, and 0.25. Each table

contains two values of the nominal confidence level: y = 0.9 and

.95 , and four sample sizes: n = 20, 40 , 60 ,and 100. In Tables 3a-

3 c , the values of the A.C.P.'s are closest to the nominal confidence

level y when the expected proportion of uncensored observations pf

is equal to p. The A.C.P.'s are seen to deviate from y in opposite

directions for the two distributions under investigation. For example,

in Table 3a, start with pf = .1 and except for pf = 1, the values

of the A.C.P.'s are increasing in p
f

when (Case 1) F is the extreme

value distribution and F
o

is the normal distribution and are decreas-

ing in pf when (Case 2) F is the normal distribution and Fo is

the extreme value distribution. Thus, when p = .05 the procedures

in both Case 1 and Case 2 are less robust as the expected proportion

of uncensored observations pf is increased. We also observe in Table

3a that the deviations between the A.C.P.'s and the nominal confidence

level y increase as the sample size is increased except for pf= .25,

.30, and .40 in Case 2. In Table 3b, the values of the A.C.P.'s are

still monotonic in pf, except for pf = 1, for both Case 1 and 2.

The deviations between the A.C.P.'s and y increase as the sample size
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n is increased except for pf = .60, .70, .80 and .90 in Case 2.

In Table 3c, the A.C.P. s are no longer monotonic functions of pf in

both cases. As a matter of fact, the values of the A.C.P.'s decrease

and then increase in Case 1 or increase and then decrease in Case 2.

The turning point occurs at about pf = .5. The deviations between

the A.C.P.'s and y still get larger as the sample size increases ex-

cept for pf = .8 and .9 in Case 1 and 2.

Table 4 gives values of A, B , V* and V for both Cases 1 and

2. By using these values in (4.21) and (4.26), the A.C.P.'s can then

be evaluated for any sample size n and confidence level y. Table 5

gives values of the asymptotic bias on the probability scale F0(6) -p

(A.B.P.S.) which is also independent of the parameters a and a. It

can be seen from Table 5 that the values of the A.B.P.S. corresponding

to each p
th

quantile are of opposite signs for Case 1 and 2 except for

a few values of pf. In Case 1, the smallest absolute value of

A.B.P.S. for each p occurred at pf = p . Whereas in Case 2, the

smallest absolute value of A.B.P.S. occurred at pf = .05 , .09 and

.3 for P = .05, .1 and .25, respectively.

4.5 Remarks Concerning the Choice of a

Lower Tolerance Limit Procedure

From Table 1, efficiencies of the censored parametric procedure

relative to the complete sample parametric procedure for various dis-

tributions were seen to decrease (i.e., more larger observations being

censored). But from Table 3, the censoring was also seen to improve

the robustness of the parametric procedures for the Weibull and



Table 3. Approximate Coverage Probabilities (A.C.P.'s)

(a) p=0.05

Y =0.90 Y = 0.95

F=extreme value
F
o
=normal

F=normal
F
o
=extreme value

F=extreme
F

value
=normal

0

F=normal
F =extreme value
0

n 20 40 60 100 20 40 60 100 20 40 60 100 20 40 60 100

.05 .899 .899 .900 .900 .900 .899 .899 .899 .949 .949 .949 .950 .950 .950 .949 .949

.10 .894 .888 .883 .874 .904 .910 .915 .922 .948 .944 .941 .936 .951 .954 .957 .961

.25 .920 .919 .917 .915 .880 .889 .895 .905 .965 .965 .964 .964 .931 .936 .940 .947

.30 .930 .931 .931 .933 .872 .880 .885 .894 .970 .971 .971 .972 .924 .929 .933 .939

.40 .947 .953 .956 .962 .853 .858 .861 .867 .979 .982 .983 .986 .909 .912 .915 .918

.50 .963 .970 .975 .982 .842 .832 .831 .831 .987 .990 .992 .994 .892 .892 .891 .891

.60 .975 .984 .988 .993 .808 .801 .795 .786 .992 .995 .996 .998 .872 .867 .862 .855

.70 .985 .992 .995 .998 .781 .765 .751 .730 .995 .998 .999 .999 .849 .836 .825 .808

.80 .993 .997 .998 .999 .750 .721 .698 .661 .998 .999 .999 1.00 .822 .799 .779 .747

.90 .997 .999 .999 1.00 .712 .668 .634 .576 .999 .999 1.00 1.00 .788 .751 .720 .668

.95 .998 .999 1.00 1.00 .689 .637 .594 .526 1.00 1.00 1.00 1.00 .768 .722 .683 .619

1.0 .993 .998 1.00 1.00 .657 .592 .541 .459 1.00 1.00 1.00 1.00 .737 .679 .631 .551



Table 3. (continued)

(b) p=0.10

y =0.90

value

y =0.95

F=extreme value
F
o
=normal

F=normal
F
o
=extreme

F=extreme value
F
o
=normal

F=normal
F
o
=extreme value

20 40 60 100 20 40 60 100 20 40 60 100 20 40 60 100

.10 .899 .900 .900 .900 .899 .898 .898 .897 .949 .949 .950 .950 .950 .949 .949 .948

.25 .889 .877 .866 .849 .911 .922 .931 .942 .946 .939 .933 .923 .953 .960 .965 .971

.30 .895 .884 .875 .859 .907 .920 .929 .942 .951 .944 .939 .930 .949 .957 .963 .970

.40 .911 .905 .899 .890 .897 .912 .922 .939 .961 .957 .954 .949 .941 .951 .957 .966

.50 .929 .938 .927 .926 .886 .901 .911 .926 .970 .970 .970 .969 .932 .942 .949 .958

.60 .946 .950 .953 .957 .873 .887 .897 .911 .979 .981 .982 .984 .922 .931 .938 .948

.70 .963 .970 .974 .980 .858 .870 .878 .891 .987 .990 .991 .994 .909 .918 .924 .933

.80 .978 .985 .989 .994 .840 .848 .855 .864 .993 .995 .997 .998 .895 .901 .906 .913

.90 .989 .995 .997 .999 .818 .821 .823 .827 .997 .998 .999 .999 .876 .879 .880 .883

.95 .994 .998 .999 .999 .804 .803 .803 .802 .998 .999 .999 1.00 .864 .864 .863 .863

1.0 .985 .995 .997 1.00 .784 .778 .773 .766 .994 .998 1.00 1.00 .847 .842 1.838 .832



Table 3. (continued)

(c) p=0.25

Y = 0.90 Y = 0.95

F=extreme value
F
o
=normal

F=normal
F
o
=extreme value

F=extreme value
F
o
=normal

F=normal
F
o
=extreme value

20 40 60 100 20 40 60 100 20 40 60 100 20 40 60 100

.25 .900 .901 .902 .903 .876 .892 .889 .885 .949 .950 .951 .951 .948 .946 .944 .942

.30 .882 .875 .869 .859 .914 .917 .919 .923 .939 .934 .931 .925 .958 .960 .962 .964

.40 .860 .837 .819 .787 .932 .943 .951 .961 .926 .912 .900 .878 .968 .974 .978 .983

.50 .854 .823 .798 .752 .948 .953 .962 .974 .924 .905 .888 .857 .970 .978 .983 .989

.60 .860 .828 .800 .752 .939 .956 .967 .979 .930 .910 .892 .859 .969 .979 .984 .991

.70 .874 .846 .822 .779 .937 .956 .968 .981 .940 .924 .909 .881 .967 .978 .984 .991

.80 .896 .876 .860 .830 .933 .955 .967 .981 .954 .943 .934 .916 .963 .976 .983 .991

.90 .926 .918 .912 .904 .928 .951 .964 .979 .971 .967 .964 .958 .959 .973 .981 .990

.95 .945 .944 .943 .942 .924 .948 .962 .977 .980 .980 .979 .979 .956 .971 .979 .988

1.0 .952 .960 .966 .973 .918 .943 .958 .974 .982 .984 .987 .990 .952 .968 .977 .987



Table 4. Quantities A,B,V *,V Used in the Evaluation

of the Approximate Coverage Probabilities

F=extreme value F
o
=normal F=normal F

o
=extreme value

A B V* V A

p=.05 .10 .25 .05 .10 .25 .05 .10 .25 .05 .10 .25
P
f

.05 1.02 2.43 19.98 30.56 79.48 20.03 28.55 67.79 -.453 .401 4.48 7.62 22.16 4.44 8.36 27.52

.10 .533 2.17 14.68 9.98 20.28 13.61 10.04 18.10 -.284 .445 3.19 2.93 6.98 3.53 2.89 8.22

.25 -.022 1.80 14.18 7.24 3.99 11.25 6.30 4.08 -.034 .525 3.10 2.02 1.87 4.45 2.47 1.80

.30 -.116 1.72 13.79 7.23 3.36 10.63 6.04 3.41 .019 545 3.08 2.01 1.59 4.64 2.64 1.52

.40 -.252 1.60 12.91 7.16 2.93 9.48 5.59 2.81 .108 .582 2.99 2.01 1.35 4.90 2.95 1.37

.50 -.345 1.49 12.03 6.97 2.84 8.45 5.15 2.54 .181 .615 2.90 2.00 1.27 5.08 3.21 1.43

.60 -.411 1.40 11.18 6.72 2.83 7.53 4.73 2.35 .243 .647 2.81 1.99 1.24 5.23 3.43 1.55

.70 -.459 1.31 10.36 6.43 2.82 6.67 4.29 2.19 .299 .678 2.71 1.96 1.23 5.37 3.63 1.70

.80 -.492 1.23 9.56 6.10 2.81 5.87 3.85 2.02 .351 .709 2.62 1.93 1.23 5.51 3.82 1.87

.90 -.512 1.14 8.75 5.72 2.76 5.12 3.39 1.82 .399 .741 2.52 1.90 1.23 5.66 4.03 2.05

.95 -.515 1.09 8.33 5.52 2.73 4.83 3.17 1.69 .424 .759 2.47 1.88 1.23 5.75 4.14 2.15

1.0 -.500 1.00 7.99 5.34 2.69 9.11 5.38 2.10 .450 .780 2.35 1.82 1.22 5.85 4.26 2.27



Table 5. Asymptotic Bias on the Probability Scale

Cp -A -1,
F
o o
( 6 ) - p = p F a0 - p - 1-exp(-exp 13J-21. ) - p

B

F=extreme value F
o
=normal F=normal F

o
=extreme value

P
f

p=0.05 p=0.10 p=0.25 p=0.05 p=0.10 p=0.25

.05 0000331 - .00028

.10 .0032 -.0001 - -.0040 .0009 -

.25 .0012 .0084 -.0011 -.0045 -.0112 .0057

.30 -.0007 .0083 .0066 -.0038 -.0120 -.0057

.40 -.0054 .0057 .0172 -.0020 -.0123 -.0206

.50 -.0105 .0011 .0233 .0001 -.0113 -.0295

.60 -.0160 -.0052 .0258 .0026 -.0096 -.0351

.70 -.0217 -.0131 .0250 .0052 -.0075 -.0385

.80 -.0277 -.0228 .0207 .0081 -.0048 -.0402

.90 -.0340 -.0353 .0110 .0114 -.0016 -.0407

.95 -.0376 -.0437 .0020 .0134 .0003 -.0404

1.0 -.0435 -.0600 -.0130 .0160 .0030 -.0390
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lognormal distributions. In Figure 1 (2), Curve (a) gives the effi-

ciency of the censored Weibull (lognormal) parametric procedure rela-

tive to the complete sample Weibull (lognormal) parametric procedure

for 0.05 < pf < 1 and (b) gives the approximate coverage probability

when the censored Weibull (lognormal) parametric procedure is used

(y = .95, n = 60, p = .05) where the true distribution is lognormal

(Weibull) for 0.05 < pf < 1. For example, in Figure 2, for lognormal

procedure with p = .05, y = .95 , and n = 60 the approximate cover-

age probability increased from .63 for the complete sample (pf = 1)

to .90 for censoring with pf = .5 when the true distribution is the

Weibull. In addition to improving robustness, censoring has practical

benefits. The censored units may not be destroyed by testing. For the

lumber stress example, the boards are not damaged by certain stress

tests. In life testing, censoring is used to shorten the duration of

the experiment.

An alternative to censoring that might improve the robustness of

a parametric procedure would be to choose a larger family of distribu-

tions. For example, suppose the true distribution were Weibull

(63 = 1) and the generalized gamma family were assumed. In this case,

it can be determined from Table 1 that the complete sample parametric

procedure based on the 3-parameter generalized gamma distribution is

about as efficinet as the Weibull censored parametric procedure with

p
f
= .4. The complete sample procedure for the 3-parameter family

might also tend to be more robust than the Weibull censored procedure

with pf = .4. For example, if the true distribution were a gamma

with a
2
= 1, the Weibull censored procedure would not have the A.C.P.
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exactly equal to the nominal confidence coefficient y. Moreover,

there is less than 5 percent loss in efficiency for censoring with

p
f
= .4 in the generalized gamma family.

Goodness of fit tests or tests for discriminating among various

parametric families might also he made prior to adopting a lower

tolerance limit procedure. The effects of such preliminary test on

robustness of the lower tolerance limit procedures would be of interest

for further research.
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Figure 1. Efficiency and Robustness of Weibull ProcedUre

Curve (a): A.R.E. e
1
(p

f
,p,0

3
) when the true distribution is

Weibull (p = .05)

Curve (b): A.C.P. of Weibull procedure when the true distribution

is lognormal (1 = .95 , n = 60, p = .05)
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Figure 2. Efficiency and Robustness of Lognormal Procedure

Curve (a): A.R.E. e
1
(P ,P,13

3
) when the true distribution is

lognormal (p .05)

Curve (b): A.C.P. of lognormal procedure when the true distribution

is Weibull (y = .95, n = 60, p = .05)
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5. SIMULATION STUDY

A simulation study was conducted to investigate the adequacy of

the large sample normal approximations used in Chapters 3 and 4.

Samples of n = 60 uniform (0,1) random variates were gener-

ated using the subroutine GGUB of the IMSL Library on the Cyber 70/73

Computer at Oregon State University. These variates were then trans-

formed into ordered samples from either the lognormal or the Weibull

distributions. Sets of 500 samples were generated for 12 cases com-

prised from the combinations of the two distributions; the three

quantiles p = .05, .10, .25 ; and the two expected proportions of

uncensored observations pf = .5 and 1. Six lower confidence limits

for the p
th

quantile

x = exp(y ) = exp(8)

with nominal confidence level y = .90 were calculated for each

sample. For the non-randomized

and randomized

X(k)

RNP =

x
(k+1)

NP = X
(k)

with probability c

with probability 1-c

nonparametric procedures the integer k and randomization probability

c are determined such that

60
Pk = Pr{X(k) < XP} = ( 60)pi (l-p)n-i > .90

i=k



but
Pk+1 < .90

Thus,

and c = (.90 - P
k+I

)/(P
k Pk+1)

Pr{NP < > Pr {RNP < x .90

Weibull lower tolerance limits are constructed from the asymptotic

A A

normal distribution of 0 E y
p

W = 8 - 1.282-3/A ,

as described in Section 3.1, and from x = exp(0)

A A

W
x
= exp(0) {1-1.282-0/AT} .

A A

The corresponding lognormal lower tolerance limits based on 6 E y
p
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A A

and x
P

= exp(e) are denoted respectively as LN
Y

and LN
x

. Newton's

method was used for iterative solution of the maximum likelihood equa-

tions (see Elashoff, p. 63, 1975).

The proportion of the 500 samples for which the lower tolerance

limit is less_than or equal to the value of the true p
th

quantile x

(on x-scale) or 0 0 (on y-scale) then gives the empirical estimate y

of the true coverage probability.

The empirical estimators y of the true coverage probability are

given in Table 6. The values of the A.C.P.'s that are within two

standard error units, i.e.,

y 2Vi(1-i)/500 < A.C.P. < y + 24(1-i)/500
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are identified in Table 6 by Notice that the values of the

A.C.P.'s tend to give better approximations for the parametric proce-

dures developed from x (x- scale) than that from 0 E y = tn(x )

Also note that 45 out of the total 72 (12 cases x 6 procedures)

empirical values are less than the corresponding values of the A.C.P.'s.

Overall, we found for the sample size n = 60 that the A.C.P.'s give

reasonably accurate approximations for the true coverage probabilities.

(4.1).



Table 6. Empirical
1

and Asymptotic Estimates (A.C.P.)
for the Probability of Coverage

(a) F
o
= Extreme Value Distribution

p=0.05 ; x =.05129 p=0.10 ; x =.10536 p=0.25 ; x =.28768

p
f
=1.0 p

f
=0.5 p

f
=1.0 p

f
=0.5 p

f
=1.0 p

f
=0.5

EMP. A.C.P. EMP. A.C.P. EMP. A.C.P. EMP. A.C.P. EMP. A.C.P. EMP. A.C.P.

NP .934 .954 .96 .954 .96 .947 .958 .947 .892 .914 .892 .914

RNP .872* .90 .916* .90 .938 .90 .916* .90 .868 .90 .876* .90

W
x

.90* .90 .926* .90 .90* .90 .878* .90 .886* .90 .884* .90

W .82 .90 .854 .90 .854 .90 .824 .90 .846 .90 .858 .90
Y

LN
x

.55* .542 .842* .832 .738* .774 .892* .911 .948* .958 .956* .963

LN .488 .542 .774 .832 .694 .774 .846 .911 .944* .958 .948* .963
Y

1

Based on 500 independent samples of size n = 60 for each case



Table 6 (continued)

(b) F = Normal Distribution
0

p=0.05 ; x= .19304 p=0.10 ; x= .27760 p=0.25 ; x= .50940

p
f
=1.0 p

f
=0.5 p

f
=1.0 p =0.5 p

f
=1.0 p

f
=0.5

EMP. A.C.P. EMP. A.C.P. EMP. A.C.P. EMP. A.C.P. EMP. A.C.P. EMP. A.C.P.

NP .958 .954 .972 .954 .946 .947 .954 .947 .948 .914 .926 .914

RNP .904* .90 .924 .90 .918* .90 .908* .90 .936 .90 .912* .90

Wx 1.00* 1.00 .964* .976 1.00* 1.00 .898* .927 .994 .966 .81* .798

W 1.00* 1.00 .938 .976 1.00* 1.00 .864 .927 .964* .966 .80* .798
Y

LN
x

.878* .90 .852 .90 .904* .90 .856 .90 .914* .90 .918* .90

LN .84 .90 .826 .90 .876* .90 .836 .90 .894* .90 .896* .90
Y
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Recall (3.11)

and the root of

APPENDIX

Ha(z) = r(z; a)/r(a) =

Ha(z) Pf

to
-1

e
-t

dt/r(a)
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(A.1)

are required in Chapter 3 to evaluate the asymptotic variance a2 for

the censored generalized gamma procedure. In general there is no

simple analytic treatment to find the root. However, if a is a

positive integer, then Ha(z) becomes (see Johnson Kotz, 1972)

a-1
1 - exp(-z) / zjij

j=0

(A.2)

and hence (A.1) can be solved numerically by iteration. Table 7 gives

the root for a = 1, 2 and 4. Moreover, in Chapter 3 we have terms

like 1"(q; a+1) , ru(q; a+1) where q is the root of (A.1). So a

general series expansions for these derivatives of the incomplete gamma

functions are developed. Recall that

r(x,A) = I to
-1

e-t dt

By repeated use of integration by parts we have

Also,

A > 0 .

r(x,A) = exp(-A)xA/A 1 + x /(A +l) + 2/(A+1)(A+2) + ...1 .

(A.3)
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x
r' (x,A) =

A-1
t

t
e .en dt
-

4 0

By direct partial differentiation w.r.t. A in (A. 3)

ar 1
A

c2+... } (A.4)(2n x- r (x,A) exP (- x 2

(A+1) 1 (A+ (A+2)T)A
A) 'x C +

where

C.

Moreover,

ri 1

A4j
j=1

i = 1, 2, 3, ...

1""(x,A) = I to -1 e t t)2 dt , A > 0 .

Jo

By again direct partial differentiation in (A.4)

a2r 1 exp(-A)xA x2
-3-A-72-=-A-Tr(x,A) +1" (x,A) x

A (A +1)
C
1 -1-(A+1) (A +2)

C2 +... 1

But

exp(-A).x
A

d 1
C
2

fx + x2 +
A dA (A+1) dA (A+1)(A+2)

d (
C

1

dA
-2/(A+1)3

C.
d ( 2

dA k.(A+1)(A+2)...(A+i) (A+1)(A+2)...(A+i)EDi CiJ '

(A.5)
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where

D. = (1 +
1
+...+

2

1 1
+...+

1 1)( 1 1 1 1

i-1 A+1

1

A+2 2 i-21\ `A+2

when i = 2 k, k = 1, 2, ...

1 \ 11 N4.( 1

A+1-11

(A.6)

and

1

(
A+kk

1 +N

-
A+k+1)

1 1

i-1)(A+1 A+21.\T i=2J'A+2 A+i-1)

1 1 1 1

+.'" (1-C. k--7-1)(A+k A+k+1)
when i= 2 k +1 , k=1,2,...

Therefore, after substituting (A.6) in (A.5) and combining terms, we

have

a2r 1
- r(x,A) + r'( ,A)(Zn x - 1)-(

1
en x -

2
.r(x,A) ex13(;)x

A A

(A.7)

f-2x 4. 2x2

(A+1)3 (A+1(A+2)
+ {(D2 Cb+x([D -C2] +xfl

(A+3) 3 3 (A+4)

In Chapter 4, we have to compute 1"(u,1),r"(u,1),1""(u,l) and

r""(u,l) We can use (A.4) and (A.7) to compute r'( ,1) and

ril(u,l) . As for r"(u,l) and r""( ,i) , another representation of

incomplete gamma function based on the Taylor expansion of exp( -t)

is used

r(x,A) = f to -1 e-t dt = L
(-1)

n
x
n+A

o h0 n. n+A
=

(A.8)

From (A.8) we direct differentiate w.r.t. A four times and found
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1"(x,A) = x-r(x,A)
n xn+A

n . (;ToiTZ
n=0

n n+A
L

(-r'(x,A) = 2.en xr'(x,A) - (en x)2r(x,A) + 2 L
n:

1) x

n=0

r"( ,A) = 3-en x-r(x,A) 3(en x) 2 1"(x,A) + (en x) 3 r(x,A)

(-1)n
x
n+A

- 6
n.

n=0 (n+A)

r""(x,A) = 4 .en x r"(x,A) 6(en x) 2 r"(x,A)

+ 4(.en x) 3 rl(x,A) - (en x) 4 r(x,A)

cc (_l)n xn+A
+ 24

n=0
`n.

(n+A) 5

(A.9)

When equations (A.3), (A.4), and (A.7) are used to compute the incom-

plete gamma function and its first and second derivatives, it is found

that the first 12 digits of the values obtained by using the first 50,

100, 150, 200 terms in the series expansion(A.3), (A.4), and (A.7)

are the same. On the other hand, the error can be bounded analytically

for (A.9) because in an alternating decreasing series, the error for

the n terms approximation to the whole series will be less than the

absolute value of the next term. That is, for example

where

Error <
x
n+A

n:(n+A)2

Error = s-s
k



and

^
Ca

I (-1) n
n:

n=0

n+A
x

(n+A)
(-1 X

An+

n (n+A)
n=0
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Table 7. Roots of the function

a = 1

H
a
(z)-p

f
for

a= 2

a = 1, 2, 4

a
2

= 4

.05 .0512932943 .3553615108 1.366318398

.10 .1053605157 .5318116084 1.744769594

.15 .1625189295 .6832386131 2.039099548

.20 .2231435513 .8243883188 2.296786806

.25 .2876820725 .9612787632 2.535320212

.30 .3566749493 1.097330533 2.763711043

.35 .4307829161 1.235033575 2.987644562

.40 .5108256380 1.376420537 3.211322778

.45 .5978370008 1.523380674 3.438315333

.50 .6931471806 1.678340731 3.672056688

.55 .7985076962 1.843566915 3.916215561

.60 .9162907319 2.022313143 4.175262726

.65 1.049822124 2.218842854 4.454679274

.70 1.203972804 2.439198247 4.762227200

.75 1.386294361 2.692634523 5.109414292

.80 1.609437912 2.994308082 5.514995322

.85 1.897119985 3.372432505 6.013458699

.90 2.302585093 3.889720139 6.680764999

.95 2.995732274 4.743816045 7.753574496


