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A COMPARISON OF EFFICIENCY AND ROBUSTINESS
FOR LOWER TOLERANCE LIMIT PROCEDURES

1. TINTRODUCTION

Consider the problem of setting a lower confidence limit for the
th . . .
P quantile xp = xp(F) of a distribution with continuous cumulative
distribution function (c.d.f.) F(x) . That is, given p (0 < p < 1)
and the confidence level Y a lower confidence limit

L= L(Xl, e s Xn,p,Y) is specified so that
Pr’{L.§<Xp} = v for all FefF

where F 1is some specified family of continuous c.d.f.'s. It is well
known that lower confidence limits of quantiles correspond to lower

tolerance limits. That is,
Pr{L<x}=Pr{F) < p} = Pr {1-F(L) > 1-p} > ¥

shows that the interval (L, ®) includes at least (l-p) of the
distribution with confidence level <Y . We are particularly inter-
ested in small quantiles (0.05 < p < .25) . Applications would
include life-testing and strength of materials. For example, a
lumber company may be interested in setting a lower tolerance limit
for the breaking stress X for a population of lumber of specified
dimension and grade.

This research compares the performance of several lower tolerance
limit procedures with respect to efficiency and robustness. The

procedures include the nonparametric based on a single order
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statistics L = X(k) and the paramet:ic based on the maximum likeli-
hood estimates xp = Xp(?) for the parametric family F. Here we
consider the negative exponential, 2-parameter Weibull, 2-parameter
gamma, generalized gamma and lognormal families of distributions.

A

Based on the asymptotic multivariate normal distribution for the MLE B,
- 1 -1
B~ N (B, E'I (B) ) s

-1 . . .
where I (B) denotes the inverse of the information matrix for a

single observation, we consider

L = %p - o iy - ‘\}ar(;p) (1.1)
where
Var(x ) =<+ D'(8) - T 1) - D (8)
% n . . -~ -~
and
s )
D(R) = [ , s see s 1!
8 B, ’ 8, 36,

~

is the gradignt vector of xp w.r.t. B.
As the parametric family of distributions is enlarged (e.g., from
negative exponential to Weibull to generalized gamma distributions) we
would expect the lower tolerance limit procedures (1l.1l) to become more
robust. That is, the nominal probability of coverage, Yy , should

give a better approximation to the true coverage probability,

Pr {L < %, 3 F} (1.2)

for distributions F not included in the assumed parametric families.

A

However, as the family is enlarged the asymptotic variance Var(xp)



increases (efficiency decreases) for distribution F which are
included in the smaller families. One possible method for improving
the robustness of the parametric lower tolerance limit procedures is
to right-censor the larger observations. That is, corresponding to a
specified value T (Type I censoring) , use the log-likelihood

n
2. B) = § {8 1n £(x,, B) + (1-8 ) 1n[1-F(T; B)1} ,
Vg Ok i S K -

where
6k = I(—“,T](xk)

indicates whether (5k=l) or not (5k=0) X is in the interval

(-2, T] for the determination of the MLE ;p and its asymptotic
variance in (1.1). Of course, the censoring will result in some loss
in efficiency.

The nonparametric, parametric uncensored, and parametric cen-
sored procedures are compared by two large sample performance
criteria: the Pitman Asymptotic Rélative Efficiency (A.R.E.) and the
Approximate Coverage Probability (A.C.P.). The A.R.E. under the
assumed paraﬁetric family of distributions is calculated as the ratio
of the asymptotic variances of the estimaters for the pth quantile xp.
The A.C.P. is defined as the large sample approximation to probability
(1.2) when F 1is not a member of the parametric family of distribu-
tions aséumed for construction of L.

In Chapter 2, censoring and the corresponding likelihood function
are discussed.

In Chapter 3, the efficiencies of the various procedures are

investigated. First, we develop the general form of the A.R.E.'s for
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both the nonparametric and censored parametric procedures relative to
the uncensored parametric procedures. Formulas for the A.R.E.'s are
then derived for the log-generalized gamma and normal distributions.
Numerical values of A.R.E.'s are provided for the parametric families
of distributions.

In Chapter 4, we first derive the general form of the A.C.P. The
A.C.P.'s are then evaluated for two cases: when the lower tolerance
limit is constructed by assuming an extreme value (Weibull) distribu-
tion and the true distribution is normal (lognormal) and vice versa.

In Chapter 5, a simulation study is used to investigate the
adequacy of the large sample approximations to the true coverage
probabilities.

Concerning related research, Habermann and Ethington (1975) con-
ducted a simulation study to investigate the performance of the non-
parametric and normal procedures for the lower tolerance limit X 05
for uncensored samples of sizes n=58 (where Pr {X(l) < X.OS} = ,95)

and 93° (where Pr {X } = .95) when the true distribution

(2) < *.05
is either normal, lognormal, gamma or Weibull. They conclude "... the
use of nonparametric procedures is conservative while the penalty for
an incorrect assumption about the true underlying distribution is
possibly severe ...". They also studied the Hanson and Koopman (1964)
procedure based on two order statistics from samples of size n=20

and 40 . The Hanson-Koopman procedure was found to be too conserva-
tive. Warren (1974) further studied the sampling distribution of the
first order statistic, L=X(l) , for the sample size n=58 when sam-

pling from the normal, lognormal, 3-parameter gamma, and 3-parameter

Weibull distributions. Under standardization of the parent
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distributions (common mean and common variance), Warren found that the
distribution of the first order statistic is highly dependent on the
form of the parent distribution.

This research is similar to Habermann and Ethington's in that we
are concerned with both the efficiency and robustness of lower toler-
ance limit procedures. This study is more general in that parametric
procedures other than the conventional normal are investigated. The
use of censoring for improving robustness of the parametric procedures

is also studied.



2. CENSORED SAMPLES

Maximum likelihood estimation for censored data has been widely
studied (e.g., see Mann et al., 1974, or Gross and Clark, 1975). For
completeness, single right-censoring is discussed briefly here.

A random sample X X can be singly censored from the

10 oo o X
right in two different ways:

1) observations larger than a specified value T (also called a
truncation point) are censored;

2) corresponding to a specified integer R (1 < R < n), the
N-R largest observations are censored.
These two kinds of censoring are commonly called Type I and Type II
censoring, respectively. As an example, suppose it is desired to
estimate the average lifetime of light bulbs produced in a factory.
For a complete (uncensored) sample, a certain number, n, of light
bulbs would be randomly selected and the burn-out (failure) time
would be observed for all n bulbs. In order to shorten the duration
of the experiment, Type II censoring might be used where the experi-
ment terminated when a fixed number, R, of light bulbs have failed.
If Type I censoring was used instead, the experiment would be termi-
.nated at a specified number, T, of hours. Note that the number of
fajlures, R, observed in a Type I censored sample will be a random
variable. 1In studies of material strength where the items are
tested sequentially in one machine (or a small number of machines)

only Type I censoring is convenient. In such applications, the stress

need only be increased to the level T. If the item does not fail at
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level T, then the item may still be usable. That is, for items with
X > T the testing is non-destructive.

For the discussion of the likelihood function, let us consider a
Type I censored sample first. The likelihood for estimating ? based

on observations of the random variables

Q, = Min {X,, T}
i i
and
1 for X, < T
§, = { T
- 0 for X, > T
i
is
L(?squsl’qzsazs LI ,qn,5n)
n 8, 1-6i
=TT {£(q;38) 1-[1-F(qi;B)] }
1=1 (2.1)
n S. 1-Gi
= TT {£(x;58) “[1-F(T;B)] }
i=1 - -
Let
)
R = 8.
i=1 *
be the number of observations that fail by T, and let X(l)'i X(Z)"'

= X(R) < T denote the first R order statistics, then (2.1) becomes

R
L(BsX 1ys-+»XgysT) = [TT f&x

(i1 1-F(T;8) I} (2.2)
i=1 o~ -
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Thus, the log-likelihood function for a Type I censored sample can be

written as

n
L. = ) {8qn £(X,;B) + (1~ )+1n[1-F(T;B) 1} (2.3)
i=l 1 1 . 1 ~

from (2.1), or

==}

£.=§

1n f(X(. sB8) + (n-R)+1n [1-F(T;B] (2.4)
i=1 D~ -

from (2.2).

For Type II censoring, define T=X Then the log-likelihood

R) °
function for Type II censoring differs from (2.3) and (2.4) only by

the additive constant 1n(n!/R!(n-R)!) .



3. ASYMPTOTIC RELATIVE EFFICIENCY

3.1 Derivation

Efficiencies of the nonparametric and the censored sample para-
metric procedures relative to the complete sample procedure are
evaluated for several parametric families of distributions. For
convenience of notation, we apply the logarithmic transformation,

Y = 1n (X) , so that each of the parametric families contains a loca-
tion parameter. The choice of the scale (x or y) 1is irrelevant.

For all tables that follow the distribution can be identified on
either scale; e.g., normal or lognormal, and extreme value or Weibull.

Let F(y;B) be a c.d.f. of the assumed parametric family with
corresponding density function £(y;B), where, in the parameter vector

. th
is the location parameter. The p

§= (Bl’ 82, cee BS)SQ’ Bl
quantile of F is then of the form 6 = Gp(g) = Bl + hp(BZ,BB,---,BS)
where the function hp depends on the particular family. For example,
for the 2-parameter Weibull distribution x, = exp(6) where

0 = Bl + 82'1n [~In[1-p] ].

N

Define Bc as the M.L.E. for B and I(B, pf) the information
matrix of a single observation from a Type I censored sample where

pe = Pr {X < T} = F(7;8) with T = 1n (T) . Using the asymptotic

normality of the M.L.E. 6 = Bp(gc),
/H(ec -9) > N(O, cg ®),

where
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92(8) = D' (B)+T "(B,p) - D(B) (3.1)
30 96 90

DB = Lgp s gg s e s g 1 (3.2)

~ 381 882 SBS

yields the lower confidence limit Ln c of asymptotic confidence
b

level ¥y
L =9 -2 +0 //n, (3.3)
n,c c Y c
where
z, = o ()
Y
and
A2=2A=|*,-l“‘,“‘ N -
62 = 62(8 )=D"'(8 ) *T “(8_,p,)*D(B ), with p; = F(t;8),  (3.4)

is a consistent estimator for Gi(B) . Since a complete sample is a
special case with pf=l , the same notation is used for a complete
sample except that the subscript c¢ 1is deleted in the M.L.E. 6 ,
asymptotic wvariance cz(é) , and lower confidence limit Ln.

The confidence intervals {6° : /E(éc—eo)/;c j_Zy} correspond
to the acceptance regions {éc: /;(éc—eo)/;c.j ZY} for testing the

hypothesis

H : 6 <0° against H, : 6> e . (3.5)

Thus, the power function, demoted by Pw n{§} , corresponds to the
b

probability that 6° is not contained in the confidence interval
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Pu_ (8] = Pr {/a(8 ~6%)/5_ > z, 38} = Prlo%[L_ =) 8} .

b ~. s

A A

The Pitman Asymptotic Relative Efficiency (A.R.E.) of ec to 6 for

testing the hypotheses (3.5) is then used as the asymptotic relative

efficiency of L to L .
n,c n

For an arbitrary positive constant a and parameter values

(n)

° (B]O-’BZQ eee 8:) and B = (Bi'l'a//g’ B

0 0
§ B 93 et BS) , denote
6° ep(ﬁo) and o(m) _ ep(s(n)) = 8°+a//n. The power function of

the test statistic /5(6c - eo)/oc for the sequence of alternatives

e(n)

and censoring values T = T + a/v/n is
n

pw (8™ = pr (/a6 =69 /0 >z 3 8™
Csn c c

Y ~
~ ~

Pr {/;(ec—eo) > ZY o, B(n)}

5

e ~s™rarmy 2z o s 8™y

) ~—Y ¢ -~

Pr

A

(n), ,a = o(n)
Pr {f‘(ec-e )/8 > 2, - ald ;B }

=}

A

Pr {»’;(ec-e°)/oc >z, - alo; 8%}

~

i

0
1- oz, - a/o (87))

Note that equality in the next-to-last line above follows from the
invariance of (ec_e )/0c under common location transformations of
Y and T.
i
. . N o 04 /o
Using a similar argument for the test statistic vn*(8-6)/o

based on a complete sample of size n* gives the approximate power

Pw *{B(n)} 21 -0z - /afo*x + ala(8%))
n® . Y ~
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Thus, Pw ’{S(n)} = PW.-{B(n)} when n*/n .02(80)/02(80) . Hence
n,Cc ~ n* . ~ C ~

the asymptotic relative efficiency of Ln o to Ln* is the ratio of
the asymptotic variances of Gc and 6
: = 62(8%) /a2 (g° 3.6
ARE.(L 5 L) = o?(8%)/02(8) . (3.6)

Now, consider the efficiency of the nonparametric confidence
limit procedure, Ln**,NP=Y(k) , where k satisfies (3.7) below. The

value 60(6O < 1) 1is contained in the confidence interval [Y(k)’ ®)

if and only if K > k, where

K = the number of Yi's 5_60

has a binomial (n** , p) distribution so fhat

n** k% 3 kx—
Pr {K > k} = ] ") ot (-p) T iy, (3.7)
i=k

Thus, tn** = R/n** 1is a test statistic for the corresponding
hypothesis testing problem (3.5). From the results

o
Bg(t ) = F(O° 5 8)

g e
(o] [o]

Var(e ,,) = F(6; B)+[1-F(6 ; B)]/n**

d - 4 0. - o,

EEe(tn**) = dsl F(e s ,.B,) = f(e s ?)

g e y10=0 //gevarce L)1, .0

a6 2o\ thax neVarit «x’ lg=0

= £(8°; B(n))//h/n**' vp (1-p)

and the asymptotic normality of tn we apply Theorem 3.1 in

*%

Fraser (1963) to yield the approximate power

Pw”

. ¢ . 0,0
%%, Np {? ny - 1-q>(zY - a~/a%/a /[/p(-p) /£(8°38M) 1)
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Thus,

(B(n) (n)

Py anp 8 ) TP, (8) when n¥/mix 2 02(8°)/[p(1-p)/£2(6”;8%)]

The asymptotic efficiency of the nonparametric procedure relative to

the maximum likelihood complete sample procedure is then

. = ~2(a° 2 0
A.R.E.(Ln**’Np ; Ln*) g (§ )/GNP(§ ) (3.8)
where
0f, (8% = p(1-p)/£2(8°; 8 (3.9)

is the asymptotic variance of the order statistic Y(n**p)

3.2 Asymptotic Variance for the

Log-Generalized Gamma Distribution

The log-generalized gamma distribution with p.d.f.

f(y;?) = 1/82°1/T(B3)‘exp[83°(y-81)/82 - exp[(y—sl)/sz)]
(3.10)

can be obtained from the gamma p.d.f.

h (2) = 2* " -exp(~2) /T (a)

by the transformation Y = Bl + 62°Z with 63 = a. The c.d.f. of

Z can be written
Ha(z) = T(z; a)/T(a) (3.11)

where

z
I'(z; a) = j £ 1 e t dt
o
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is the incomplete gamma function and T(a) = T(»;a) is the complete
gamma function. The pth quantile of the log-generalized gamma distri-

bution, & , then depends on the inverse function H;l(u) of the

gamma c.d.f. (d=83)

= — L] —1
B = 9p(§)-— Bl + 62 Ln H . (p)

By

The elements of the gradient D of 8 are then evaluated

d1 = ae/asl =1
d, = ae/aez = Ln 1, (3.12)
B8
— — [y — 3. —
where

-1

q_ = H, (p)

P 83

and r'(33) and r'(qp,53) denote respectively the first derivatives

of P(B3) and P(qp,83) w.r.t. B Similar notation, P"(SB) and

3"
P"(°,B3) is used later for the second derivatives w.r.t. 83. (See
the Appendix for a discussion of the method used for numerical evalua~
tion of the complete and incomplete gamma functions and their deriva-

tives up to the 4th order.)

Recall the p.d.f. for a censored observation
8 1-6
g(y;B38) = £(y;8) . [1-F(1;8)]

where 6 =1

(o T](y) is the indicator fumction on (-=,T].
3

The element Iij of the information matrix I can then be written as
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= "- 205 . .
Ly = “El*En g(y;8:6)/98,98 .}

= -E{6:3%Lg f(y;s)/asiasj+(1-a)32£n[1—F(T;B)]/aeiasj} ©(3.13)

oD@
= Iij (1 pf) Iij

where

I.gl) = - [T [82£n f(y;B)/9B.+93B.] £(y;B) dy

ij - i 3 ~
o)
and (3.14)
(2) _ .2 .
Iij =9 En[l—F(r,§)]/asiaBj .

From (3.10) the 2nd derivatives of 4{n f(y;B) are determined

32 2 - (- 2
an/aBl ( 1/82) exp(yg)
82 2 - 2 2 . -— -— .
znf/asz 1/52 + yg/82{2 By ygexp(yg) 2 exp(yg)}
azﬂnf/BBg = BZCnP(BB)/BBg = - W'(BB) , the trigamma functionm,
2 = 2 _ 2 . .
a'enf/881882 83/82 l/B2 exp(yg) {1+yg} (3.15)
2 = -
B«an/BBlSBB 1/32
z = e .
¥Lnf/8,08, 1/8, Vg
where

Vg = (y—Bl)/B2

The expectations in (3.13) are evaluated for fixed probability of an

observed failure

Pr{Y < T B} = pf

Thus,



-—

- 2
T Bl + 82 n HB

(po) -
3 £

To simplify the notation in the expressions that follow, we denote

- -1

and
q = 83'H83+1 (@) = ByPe -4 h83(q)

From the results
E[exp(yg)]= T(q,8,+1)/T(8,) = qp

E[Yg] = F'(q,83)/T(83) = pg ¥(q, 83)

a, ¥(q,85+1)

E[yg'eXp(yg)] F'(q,83+l)/r(83)

® \y(q383+l) 3

E[yg exp<yg)] F"(q,s3+1)/r(83)

9y

where

L]

¥(az,83) = T'(a, B,)/T(q,8,)

¥(qs8,) = T"(q,8,)/T(a,8,)

we find

16



(1)
I

(1)
22

(D
I35

(1
Iy

(D
113

(1)
o3

—3 — 2- y 2 L] L] L] — ._
pf/B2 1/62{2 PeBy W(q,BB) a9y ¥(q,8

= -1 2 2.
Pe 63/62 + 1/82 qh{1+W(q,B

— 2
= q, /85

3+1)-2°qh°W(q,B

= - pf-w'(BB)

3+1)}

pf/B2

pf/B2 . W(q,BB)

Evaluation of the components Iij in (3.13) gives

(2)
11

(2)
Iy

(2)
I,

(2

(2)
I3

(2)
23

where

=1

2. —a -
1/82 qf{q 63 qf}

- 1/B§-qf{63(£n Q)% + qfn q + 2-8n q - qf}

= [¥'(8y) + ¥(B))% - ¥(q,8))°p,1/(1-pp) -

3+1

)}

17

(3.16)

{f¥(g) - Pf"l’(q,BB)]/(l-pf)}2 - W'(BB)

- 1/8%‘ qf{l - qf°£n q}

= 1/62-qf{£n q -[W(BB) - pf-W(q,BB)]/(l-pf)}

(2)

12 “tma

(3.17)
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The corresponding terms in (3.16) and (3.17) are then used in (3.13)

to give the information matrix I(B,pf) . Finally the asymptotic

variance of éc is evaluated by (3.1), (3.2), (3.12) and (3.13).

~

To determine the asymptotic variance, 02(8) , for 6 in the
complete sample case, the information matrix is first determined.
Only equations (3.16) are needed for the determination if information

matrix I. In this special case with P.=1, the reductions qh=33,

£
¥(q,8,) = ¥(8;) and ¥(q,8,) = T"(8,)/T(B;) yield

I = By/85

I, = 1/82 {1+ I"(B,+1)/T(B)}

133 = W’(B3) . (3.18)
I, = 1/B§-r'(e3 + 1)/T(8,)

I4= 1/62

I,y = 1/82'W(63)

The asymptotic variance

-1

0?(8) =D'(8) * I~ + D(8)

is then evaluated using expressions (3.12) and (3.18) .

3.3 Asymptotic Variances for the Extreme Value,

Log-Gamma, and Log-Negative Exponential Distributions

The log-generalized gamma family of distributions includes the
extreme value (log-Weibull, 63=1), log-gamma (82=1) , and log-negative

exponential (63=62=1) distributions as special cases.
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The asymptotic variances .ai(%) and ,Gz(ﬁ) in these special
cases are simply those found by.deleting the element(s) of P in
(3.12) and the row(s) and column(s) of I in (3.16), (3.17) and (3.18)
corresponding to the fixed value(s) for B8, and/or B8

2

3.4 Asymptotic Variance for the Normal Distribution

th
For a normal distribution Bl = E(Y) and B% = Var(Y) . The p

quantile of Y depends on the inverse of the standard normal c.d.f.

()
8 =0 (8., B.) = B, + & 1(p)+B
p 1> P2 1 2
The gradient of 0 1is then

a, o tent .

Evaluation of the components (3.13) of the information matrix for the

normal distribution yield

Iﬁ) =r¢/8;
Lyy = Pg/2:8% - 1848 1) 406 (o ) (3.20)
1) = -1/83-0667 0 )
I](j) = 1/s§-h(¢>'l(pf))[h(@'l(pf)) -0 —l(Pf)]
Ig) = 3/4 6‘2*~¢'1(pf)'-h(¢'1(pf)) +

1/48%+ (671 ) 120 (8™ HIh(e o )-8 (pp)]
1§§> = 1/zsg-h(¢'1(pf)) +1/283 h(@'l(pf))[h(¢“1(pf)-¢‘1( pe) ]

where

h(s) = ¢(-)/1-0(+)

is the hazard function for the standard normal distribution.
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~

The asymptotic variance of Sc is then obtained using (3.1),

(3.2), (3.12) and (3.13). For the complete sample case it is well-

known that
= /a2
I l/B2 0
L
0 1/282

Hence,

52(8) = B2{1 + 3[8 " (p)12}

3.5 Numerical Results

Recall (3.6) and (3.8)

. = 2 (o) 2+ 00
ARE. (L 5 L) = 0%(B)/0 (B7)

Cc

. = ~2¢a°% /2 o
ARE (L wpilpe) = 07 (B)/055(87)

where the A.R.E.'s of the censored sample parametric (L ,c) and the
nonparametric (Ln**,NP) procedures.relative to the complete sample
parametric ptocedures (Ln*) are seen to depend only on the asymptotic
variances Gi(éo) . o%ﬂ,(éo) and oz(éo) . For convenience of
notation denote B° by B throughout this section. From Sections

3.2 and 3.3, these asymptotic variances are independent of the location
parameter Bl when the expected proportion of uncensored observations
Pe is held fixed. Moreover, the scale parameter 32 (if present)
appears in the expressions of these asymptotic variances only as the
factor 1/6;. Therefore, the A.R.E.'s for the various families of

distributions depend only on the shape parameter 8 if present, and

3 b

63 = 1 otherwise. Of course, the A.R.E.'s may depend on the quantile
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P and Thus, we denote

pf.

el(pf, P» 83) = A.R.E. (Ln,c

3 L) =.a%(8)/a2(B)
and (3.21)

= . = 2
ez(p,83) = A.R.E. (Ln**’NP, L) = 02(53)/0NP (8)

The values of the asymptotic relative efficiencies el(pf, P> 83) and
ez(p, 83) when p. > p are given in Table 1 for p = 0.5, .1, and
.25 . Table 2 gives the values of 8502(9) and B§0§P(§) . Values
of the corresponding B% Gi (g) can then be obtained from Table 1 by
using (3.12).

It is of interest to see how el(pf, P> 83) varies as the family
of distribution is enlarged from the log-negative exponential to the
extreme value (82 = 1), or to the log-gamma (83 = 1), and then to
the log-generalized gamma (82 = 83 = 1) . For these cases with
P = +5, the values of el(pf’ P> 83) in Table 1 increase from .5
to .66, or to .82, and then to .96 for p = .05, and increase
from .5 to .76, or to .91, and then to .95 for p = .1, and
increase from .5 to .95 » or to .97, and then decrease to .79
for p = .25. Next consider the changes in the asymptotic variances
Bgcz(g) . From Table 2, the corresponding parametric complete sample
asymptotic variances are seen to increase from 1 to 7.99 or to
10.65 and then to 13.04. It is also of interest to compare
el(pf’ Ps 83) with ez(p, 33) in Table 1 for the various assumed
distributions. These two A.R.E.'s are approximately equal when

pf = p for each distribution. That is, if the expected proportion of

uncensored observations Pe is p, then there is no significant
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improvement in the relative efficiencies of the censored parametric
procedure over the nonparametric procedure. Table 3 is also consis-
tent with the well-known fact that the log-gamma distributions tend to
the standard normal distribution as the parameter 63 tends to infin-
ity by noting the values of el(pf, P, 83) for the log-gamma distri-
butions approach those for the normal distributions. As expected,
each column in Table 1 is an increasing function of Ps for all p.

Finally, el(pf, P> 83) = p. 1is independent of p for the log-

f

negative exponential family.



(a) p=0.05

el(pf,p,83)

ez(p,63)

Table 1. A.R.E.'s of Lower Tolerance Limit Procedures

el(pf,p,83) : censored relative to uncensored parametric

e2(p,63) : nonparametric relative to uncensored parametric
pf log—-N.E. extreme value log-gamma normal  log-generalized gamma
= ‘ = 4
63 1 2 4 83 1 2

.05 .05 .3998 .5324 .5326 .5309 .5274 .6519 .6466 .6405
.10 .10 .5447 .7388 .7437 .7427 .7382 7434 . 7507 .7550
.25 .25 .5638 .7561 .7617 .7615 .7575 .9161 .8951 .8789
.30 .30 .5792 .7678 .7707 .7697 . 7652 .9403 .9276 .9134
.40 .40 .6175 .7962  .7955 .7930 .7877 .9573 .9640 .9574
.50 .50 .6614 .8277 .8245 .8213 .8156 .9603 .9783 .9791
.60 .60 . 7097 .8601 .8555 .8518 .8462 . 9604 .9825 .9867
.70 .70 .7625 .8927 .8878 .8841 .8790 .9617 .9831 .9896
.80 .80 .8217 .9258 .9214 .9189 .9141 .9659 .9834 .9941
.90 .90 .8920 .9602 .9572 .9553 .9525 L9747 .9859 .9967
.95 .95 .9358 .9786 .9769 .9760 .9741 .9824 . 9894 .9982

.0499 .3988 .5323 . .5313 .5277 .5268 .6519 .6466 .6405

X4



(b) p=0.10

el(pf,p,63)

ez(p,63)

Table 1. (continued)
Ps log-N.E. extreme value log—-gamma normal log-generalized gamma
. B3=1 2 4 B3=1 2 4
.10 .10 .5340 .6285 .6273 .6264 .6247 .6668 .6547 .6497
.25 .25 . 7380 .9026 .9048 .9038 .9000 .8016 . 7855 .7848
.30 .30 .7382 .9040 .9075 .9068 .9034 .8417 .8137 .8070
.40 .40 . 7460 .9054 ,9083 .9074 .9040 .9101 .8728 .8596
50 .50 . 7645 9121 .9134 .9122 .9084 . 9545 .9216 .9075
.60 .60 .7912 .9236 .9233 .9215 .9178 .9797 .9561 .9440
.70 .70 . 8247 .9382 .9369 .9350 .9314 .9923 .9787 .9702
.80 .80 .8654 .9554 .,9536 .9524 .9488 .9976 .9919 .9824
.90 .90 .9166 .9750 .9736 .9687 .9702 .9990 . 9984 .9972
.95 .95 .9496 .9863 .9853 .9848 .9832 .9991 .9997 .9999
.0999 .5339 .6283 .6268 .6262 .6232 .6668 .6547 .6496

e



(c) p=0.25

e, (pgspsBy)

ez(p,83)

Table 1. (continued)
Ps log-N.E. extreme value log-gamma normal log-generalized gamma
83=1 2 4 83=1 2 4
.25 .25 .6698 6488 .6561 .6614 . 6668 . 6687 .6808 . 6857
.30 .30 .7965 7741 .7751 .7777 .7813 .7622 .7866 .7962
.40 .40 .9167 9165 .9134 _.9135 .9147 L7771 .8152 .8357
<50 .50 .9473 9724 .9701 .9698 .9700 .7911 .8213 . 8405
.60 .60 .9515 .9917 .9906 .9903 .9900 .8235 . 8405 .8518
.70 .70 .9519 .9972 .9968 .9965 .9958 . 8646 .8708 .8776
.80 .80 .9561 9981 .9979 .9979 .9967 .9082 .9075 .9151
.90 .90 .9679 9982 .9980 .9977 .9970 .9516 .9484 . 9492
.95 .95 .9787 9987 .9985 .9984 .9977 .9736 .9704 .9714
.2482 .6685 .6472 .6533 .6510 .6610 .6686 . 6806 .6854

174



Table 2. Asymptotic Variances for the Complete Sample Parametric

and the Nonparametric Procedures

log-N.E. extreme value log-gamma normal log-generalized gamma
B3=1 2 4 33=1 2 4
p
.05 1.00 7.99 10.65 3.22 1.14 2.35 13.04 3.92 1.38
B§ a%(B) .10 1.00 5.34 6.29 2.04 .73 1.82 6.67 2.13 .80
.25 1.00 2.69 2.60 .98 .41 1.22 2.69 1.02 .43
.05 20.00 20.00 20.00 6.06 2.16 4.46 20.00 6.06 2.16
B§ oép(B) .10 10.00 10.00 10.00 3.25 1.23 2.92 10.00 3.25 1.23
i .25 4.02 4.02 4.02 1.5 .63 1.85 4.02 1.5 .63

9¢
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4. "ROBUSTNESS

Suppose a lower tolerance limit (3.3) based on the maximum like-
lihood estimator of the pth quantile x, (0.05 < p < .25) for a
censored sample is constructed for an assumed family of distributions
Fo = {F(y;8) : B e 0} . 1If instead the true distribution is

FO(Y;“) ¢ F, with the pth quantile

the true probability of coverage

pr{L <0 ;F} (4.1)
n s (o]

»C

is of interest. We approximate the probability (4.1) by large sample
theory and call the approximation the Approximate Coverage Probability
(A.C.P.). The discrepancy between the A.C.P. and the nominal confi-
dence level Y provides a measure for the robustness of Ln,c . We
expect this discrepancy to decrease as Ps is decreased. That is,
the robustness of the procedure should tend to improve with increased
censoring of<the larger observations. The argument and notation

developed here are similar to that used by D. R. Cox (1961) in his

"Test of separate families of hypotheses'.

4.1 General Construction

The asymptotic distribution of Bc and the probability limit of

Gi under FO(Y;G) are required for the large sample approximation of

(4.1). We assume that the derivatives of the log-likelihood function

(2.3)
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n
BE./BSi =‘k§l‘{&kfaﬂnf(yk;§)/36ib+ (l—Sk)BKn F(T;?)/Bﬁi} -, i=l,...,s

yield the M.L.E. B8  as the unique solution to the maximum likelihood

~

equations

1/nedl /38 |a =0 , 1=1,..58 , (4.2)
"

~C

and Bc converges in probability as n + «® to a limit E-= Eka).
Expand (4.2) about B8,
s - —
0 é 1/n°3£-/38i';_:—+ z 1/n'32'e—-/38.'38.’__'(sc j - B.) ’ i = 1,"',S
B 3=1 vl ©d
and apply the Weak Law of Large Numbers to give
s ) . _
0= +32./98B. + 3 “L/3B - . .- B.) , 1=1,...,s
1/n+3L./ Bllé_ jzlEa[ /3 838 IE (6, 5 = 85

where £ 1is the log~likelihood for a single observation and Ea is
the expectation under Fo(y;a) . Denote

G. = 1/n-22./38.| G, = 30/38, , G,. =020/ 9B,
i i g i ilg ij i 7] 8

~ ~

The solution to (4.3) in matrix notation then is

.'B"_—M-l.G

LT >
L]

where

and
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M is a sxs matrix with (i,j)th entry Ea(cij)' (4.4)
Thus,
~ . -1 - - -
COV(BC) =M " Cov(G)°M - 1/a°M l‘_(_]_‘y_ 1
where
C=n - Cov(G) 1is a sxs matrix with (i,j)th entry
Ea(Gi . Gj) (4.5)
because
Ea(Gi) = Ea(Gi) =0 , i=1, ... s. (4.6)

Since Bc converges to 'E, equation (4.6) can be taken as a

-~

definition of B . Hence, the asymptotic normality of Bc under

F (33 o)
- /}{-(%c - B > N0, 2(B) ,

where

OIS S (4.7)

14

)

yields the asymptotic normality of ec under Fo(y; a)

/;‘-(éc - ® -+ N, V@) ,

where
9 =6 (8)
p e
and
V() =D'(8) - o2(8) - D(8) (4.8)
Next, we determine the probability limit of og =vcg (Bc) under

Fo(y; a) . Taking the censoring value
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- _ 1
T=4nT-= F (pf)

and the probahility limits éc + B and

Rl

) IA - — -1 - Y
P = F(T,éc) > pp = F(F (pf) H §) (4.9)
in (3.4) gives

2 > V() (4.10)

where

v*(g) = D' (®) - 1'1@' . pp) c D) . (4.11)

Hence, from (3.3) the probability (4.1) becomes

]

Pr{/a(e ) WT(D) < /i(e” + 2 o //E = B)// V(E)}

(4.12)

@(ZYW*(‘@N@‘) + /. (8% /@),

To sum up, we need the M and C matrices and E. which are defined

respectively in (4.4), (4.5) and (4.6) to evaluate (4.12).

4.2, Coverage Probability of the Extreme Value

Procedure When the True Distribution is a Normal

Recall that the extreme value distribution is a special case of

the log-generalized gamma distribution (83 = 1) with p.d.f.

lﬂy;Bl s 82) = 1/82 . exp[(y-Bl)/Bz-exp((y-Bl)/Bz]

and c.d.f.
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F(y; 8,,8,) =1-exp(-exp((y-8,)/8,)) -
The log-likelihood for a single observation is then

£ =8-[~fnB, + (v~ 8 /B, - exp((y-B,)/8,) ]~ (1-8) ~exp((1-8,)/8,)

(4.13)
When 2Z = (Y—al)/a2 has a N(0,1) distribution, we write
W= (Y- Bl)/s2 = A+ B-Z
w=(t-8)/8, =A+B31(p) ,
T 1 2 f
where
A= (al‘- Bl)/B2 » B = a2/82
since T =oa, + a, * ¢_1(p ) . Using
1 2 f
32/381 = - 1/82{5‘[1—6XP(W)] - (l-G)exp(wT)}
32/332 = - 1/32{6[1+w-exp(w)-w] + (l—6)~exp(WT)'wT}
azz/asi = - l/B%{S'exp(w) + (1—6)Exp(WT)}
' (4.14)
322/881'882 = - 1/85{6°[-l+w'exp(w)+exp(w)] + (1—6)[exp(WT)—WTexp(wT)]}
BZK/BBé = - 1/85{6[-l—2~w+w2~exp(w)+2~w~exp(w)]
+ (l—6)‘[w?r-exp(w_r)-2'w_r-eXp(WT)]} R
we find
sz-Ea(az/ael) =J, " Pt (1-pf)'J3
(4.15)
Bz'Ea(az/asz) = szl-le—B-J3-sp-A-pf + B-sp-pf+(1-pf)-£nJ3-J3 ,
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where

»

I, = exp(a +.32/2) ; J, = @(Q_l(pf)-B) 53, = exp(A+B-c1>-1'(,pf))

[
Il
[
»
[
w0
|

: -1
are then functions of A and B . Denote the roots of (4.15) as
(a, B) = (A(p, P , B(p, b)) (4.16)

from which we can obtain Ei =a - A/B - o, EZ = azfg

Evaluation of the matrices M and C, defined by (4.4) and (4.5),

gives
2
Bp"M1 T 7 P
2 — -
By*my, = ~P = A-pf + B-Sp
(4.17)
-2 _2 _ 2 2 2 2 1 5
By My = -{(A +1)-pf+[2-A-B +(B +1).B ]-le-[Z-A-B+B (B+o (pf))]-J3- )
5oL 5 .To L )12
+ (1-pg)-[2-A.B.¢ “(p,) + B [o (pf)] J3]}
and
-2
3'2'(311. = J4'JS + Pg + (l--pf)'J6 - 2'J12
2 . _2 _ 2 _ S
p = - - - . - - -_ . + -B- - - J
By (:12 (A+2-B ) J4 J5 B J6 sp 2(A+B )le 2 J3 > 12
+ - . . A- - B-
Pf + (1 pf) £n J3 J6 + A pf B Sp
DRSNStV SO IETCR RO SRR G
82 022 = (A +4AB B +4B )J4-J5-2AB-J6'SP-B 'JG-SP-J7-2A J19m 12
—_— 2 2 2 2
+ 4 AB -SP-J3 - 2B ‘(1+B )J12+2-.B -SP-J3-J8+A Pg
2 (4.18)
- 2 A B- B - -5 ). 2.7 - 2 A
2ABSP+B J9+pf+(lpf) (ﬂnJ3) J6 2AJ12

2 —

- 2B I #2838 4+ Jhepy - 2BS
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where
_ _2 _i - ’ -1 —
J4 = exp(2A + 2°B), J5 = 5(d (pf) -.28) , J6 —.J3 s J7 = & (pf)+2B
J. =J_ -3 J=p-<1>'1( ) =S
8 "7 » Y9 T Pg Pgl™0p
Finally, from (4.11) and (4.9), we have
V(B)/BmV =—— 2 P P = — ;
- = - b +p(E - +E.+Cd-(p.(C. -C_)-EC, +E
pe(PFE)) (Cpf C )P AR(E~2EL +E) c3 (p(Gp ~C)) E.chf )
(4.19)
and
where
= = ' = " i = - -_—
El r( ) EZ r'(u,2) , E3 T"(u, 2) with u Zn(1 pf)
Hence, using (4.16) - (4.19) and the fact that
v = v(B) /‘s’% (4.20)

is independent of B in (4.8), from (4.12) we have
oz /Y B®AE) + Vu CBHHI® )

*._ T _1 - v - 7
$(Z VIV + /?(almz@ (p)-B,-8, cp)/ V.8,

A.C.P.

@(zY/v*/V + Yo (&80 l(p) - ) WYy . (4.21)
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4.3 Coverage Probability of the Normal Procedure

When the True Distribution is an Extreme Value

Here, we have
£(y385 8,) = 1//2m « 1/8, - eXp(—1/2-((y-Bl)/82)2)
with
F(y3B,,8,) = ¢((y-8,)/8,)
and

L= 6'[£n(1//§F)—1/2-£ns§ —1/2-((y—sl)/sz)2]+(1-6>£n[1—¢((r—31»62].

The evaluations of A, B and M, C are similar to those in the

previous section. Analogous to (4.14), we have

3£/381 = 1/B£{G°z + (1-6) 'h(zT)}
3£/383 = -1/2 + 1/82° {6+ (1-2%) - (1-8)* h(z )z }
azz/asi = —1/3%-&; + (1-8)+ bz )[n(z) - 2. 1}

azz/asl-asg = —1/33{5-z+1/2~(1—6)-h(zT)+1/2-(1—6)-zT-h(zT)-[h(zT)—zT]}
azz/a(s§)2= -1/3’; {1/2'-6+z2+3/4°(1—6)°zT-h(zT)+1/4»(1—6)°z§'h(zT)-

[h(z) - zT]}

where z = (y—Bl)/B = (T—Bl)/B2 and h(*) is defined in

2 %
Section 3.4. Corresponding to (4.15)

BZ-EQ(BK/le) A°pf + B°Ei + (1—pf)°h(A+B°Cpf)
(4.22)

2' . - . 2. — . -
A pf+2 A*B Ri + B R2+(1 pf)(A+B Cpf)h(A+BCpf) Pf,

. 2
82 Ea(azlaez)
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where

A= (al"Bl)/Bz s B = GZ/BZ > Rl = I'"(U’l), R2=I1 (u9l) s U = ‘Zn(l‘Pf)-
Corresponding to (4.17) ,
2
B, myy == pp = (1-p)-h(T)-[h(TY) - T,.]
_2 —_ —
Bymy, = = AP - B'R - (1-p.)/2° {h(T,) - T, h(Tor[h(Te) - T} (4.23)
2 —2 ——— 2
By, = - Pe/2 + A -p. - 2:A*B*R, - B'R, - 3/4(1—pf)-Tf-h(Tf)

- (1- o2 -

(1-p ) /4-T2(TMh(T,) - T(]

where

T, = A+ B-Cp, ,

Analogous to (4.18) ,

_2 2 — _2
: - — ‘ - - - . -— Z
B, Cll Apf+2ABRl+BR2+ (lpf)'h (Tf)
2 -3 _— — 2 -3 x
B, Ciy = l/Z'{A‘pf+3-A-B-R1 + 3A-B~-R2 + BsR3 - A.p,
(4.24)
- o e oh2
B Rl + (1 pf) T, h (Tf)}
2 bk 3 2_2 -3 .B_u_
By -022 = 1/4{A M 4A-B-Rl + 6-A-‘B-'R2 + 4-A-B-R3 + .R4
2 — 2
— 2 -— B - ".
+ (1-p T 2R(T) + pp - 2(Aupg + 20ABR) + B R}
where

R = I""(ii,l) , R

3 =T "(y,1)

4

Finally, analogous to (4.19), we have

— =2 - -
V(B /B, = VF = L1, + /4 [ T2, - € )0y, (4.25)

A ‘12



where

iz

A= - 1h

and 111, i

(3.20) by setting 82 = 1 and replacing Pe by
pe = (To)

Analogous to (4.21), we then obtain

A.C.P. = @(zr*vﬁ*/v ++vn (A + E‘cp - ®'l(p))hﬁ73.

4.4 Numerical Results

36

12° i22 can be obtained from the corresponding terms in

(4.26)

From (4.16)-(4.21), (4.22)-(4.26) it is clear that the approxi-

mate coverage probabilities A.C.P.=A.C.P.(Pf,P,Y,n) are independent

of the parameters o« and B. The argument of the ¢-function in

~

(4.21) and (4.26) can be written as

z - WH/T  ++n (8%-9)/ T B))
where

o
1

and F = the extreme value (81,82) ;

or.

o
1 2

_l —_ —— J—
6 = -+ o] P e = -+ . = 2
a o, (P) and Bl 82 Cp when Fo N(al,az)

- = - =1
5] = -+ . = -+ .
o o Cp and & Bl 82 & “(P) when Fo

the extreme

value (al,az) and F=N(81,B§) . We call 6°-8 the asymptotic bias

A

of 6  because 8° is the true pth quantile and 8 = GP(ES is the
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probability limit of Gc » the estimator for the pth quantile of F,

undex F . Moreover,
o

Fo(e) -p

is the asymptotic bias on probability scale. Both biases provide
indices for the robustness of the point estimator 6c under FO .
Tables 3a, 3b, and 3c give values of the A.C.P.'s when the
assumed distribution is extreme value and the true distribution is
normal and vice versa for p=0.05, 0.1, and 0.25. Each table
contains two values of the nominal confidence level: y = 0.9 and
.95, and four sample sizes: n = 20, 40, 60,and 100. In Tables 3a-
3¢ , the values of the A.C.P.'s are closest to the nominal confidence
level y when the expected proportion of uncensored observations Pe
is equal to p. The A.C.P.'s are seen to deviate from y in opposite
directions for the two distributions under investigation. For example,
in Table 3a, start with P, = .1 and except for P = 1, the values
of the A.C.P.'s are increasing in Pe when (Case 1) F 1is the extreme
value distribution and FO is the normal distribution and are decreas-
ing in Pe when (Case 2) F is the normal distribution and F0 is
the extreme value distribution. Thus, when p = .05 the procedures
in both Case 1 and Case 2 are less robust as the expected proportion

of uncensored observations is increased. We also observe in Table

Pg
3a that the deviations between the A.C.P.'s and the nominal confidence
level Y 1increase as the sample size is increased except for pf==.25,
.30, and .40 in Case 2. In Table 3b, the values of the A.C.P.'s are

still monotonic in P., except for P = 1, for both Case 1 and 2.

The deviations between the A.C.P.'s and Yy 1increase as the sample size
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n is increased except for P =..60, .70, .80 and .90 . in Case 2.
In Table 3c, the A.C.P.'s are no longer monotonic functions of Pe in
both cases. As a matter of fact, the values of the A.C.P.'s decrease
and then increase in Case 1 or increase and then decrease in Case 2.
The turning point occurs at about P = .5 . The deviations between
the A.C.P."'s and y still get larger as the sample size increases ex-
cept for P = .8 and .9 in Case 1 and 2.

Table 4 gives values of A, B, V¥ and V for both Cases 1 and
2. By using these values in (4.21) and (4.26), the A.C.P.'s can then
be evaluated for any sample size n and confidence level Y. Table 5
gives values of the asymptotic bias on the probability scale Fo(§3-p
(A.B.P.S.) which is also independent of the parameters o and B . It
can be seen from Table 5 that the values of the A.B.P.S. corresponding
to each pth quantile are of opposite signs for Case 1 and 2 except for
a few values of P; - In Case 1, the smallest absolute value of
A.B.P.S. for each p occurred at Pg =P - Whereas in Case 2, the

smallest absolute value of A.B.P.S. occurred at P = .05, .09 and

.3 for P = .05, .1 and .25, respectively.

4.5 Remarks Concerning the Choice of a

Lower Tolerance Limit Procedure

From Table 1, efficiencies of the censored parametric procedure
relative to the complete sample parametric procedure for various dis-—
tributions were seen to decrease (i.e., more larger observations being
censored). But from Table 3, the censoring was also seen to improve

the robustness of the parametric procedures for the Weibull and



(a) p=0.05

.05

.10

.25
.30

.40
.50
.60
.70
.80
.90
.95
1.0

Table 3.

Y =0.90

F=extreme value
Fo=normal

F=normal

Fo=extreme value

Approximate Coverage Probabilities (A.C.P.'s)

Y = 0.95

F=extreme value
F =normal

[¢)

F=normal

F =extreme value

[¢)

20 40 60 100 20 40 60 100 20 40 60 100 20 40 60 100
.899 .899 .900 .900 .900 .899 .899 .899 <949 .949 .949 .950 .950 .950 .949 .949
.894 .888 .883 .874 .904 .910 .915 .922 .948 .944 .941 .936 .951 .954 .957 .961
.920 .919 .917 .915 .880 .889 .895 .905 .965 .965 .964 .964 .931 .936 .940 .947
.930 .931 .931 .933 .872 .880 .885 .894 .970 .971 .971 .972 .924 .929 .933 .939
.947 .953 .956 .962 .853 .858 .861 .867 .979 .982 ,983 .986 .909 .912 .,915 .918
.963 .970 .975 .982 .842 .832 .831 .831 .987 .990 .992 .994 .892 .892 .891 .891
.975 .984 .988 .993 .808 .801 .795 .786 .992 .995 .996 .998 .872 .867 .862 .855
.985 .992 .995 .998 .781 .765 .751 .730 .995 .998 .999 .999 .849 .836 .825 .808
.993 .997 .998 .999 .750 .721 .698 .661 .998 .999 .999 1.00 .822 ,799 .779 .747
.997 .999 .999 1.00 712 .668 .634 .576 .999 .999 1.00 1.00 .788 .751 .720 .668
.998 .999 1.00 1.00 .689 .637 .594 .526 1.00 1.00 1.00 1.00 .768 .722 .683 .619
.993 .998 1.00 1.00 .657 .592 .541 .459 1.00 1.00 1.00 1.00 .737 .679 .631 .551

6¢



(b)

.10
.25
.30
.40
.50
.60
.70
.80
.90
.95
1.0

Table 3. (continued)
p=0.10
v =0.90 v =0.95
F=extreme value F=normal F=extreme wvalue F=normal
Fo=norma1 Fo=extreme value Fo=normal Fo=extreme value
20 40 60 100 20 40 60 100 20 40 60 100 20 40 60 100
.899 .900 .900 .900 .899 .898 .898 .897 .949  .949 .950 .950 .950 .949 .949 . 948
.889 .877 .866 .849 .911 .922 .931 .942 .946 .939 .933 .923 .953 .960 .965 971
.895 .884 .875 .859 .907 .920 .929 .942 .951 .944 .939 .930 .949 ,957 .963 .970
.911 .905 .899 .890 .897 .912 .922 .939 .961 .957 .954 .949 .941 .951 .957 .966
.929 .938 .927 .926 .886 .901 .911 .926 .970 .970 .970 .969 .932 .942 ,949 .958
.946 .950 .953 .957 .873 .887 .897 .911 .979 .981 .982 .984 .922 .931 .938 . 948
.963 .970 .974 .980 .858 .870 .878 .891 .987 .990 .991 .994 .909 .918 .924 .933
.978 .985 .989 .994 .840 .848 .855 .864 .993 .995 .,997 .998 .895 .901 .906 .913
.989 ,995 .,997 .999 .818 .821 .823 .827 .997 .998 .999 .999 .876 .879 .880 .883
.994 .,998 .999 .,999 .804 .803 .803 .802 .998 .999 .,999 .1.00 .864 .864 .863 .863
.985 .995 .997 1.00 .784 .778 .773 .766 .994 .,998 1.00 1.00 .847 .842 1.838 .832

oy



(¢) p=0.25

.25
.30
.40
.50
.60
.70
.80
.90
.95
1.0

Table 3. (continued)
Y = 0.90
F=extreme value F=normal

Y = 0.95

=extreme value

F=normal

F0=norma1 Fo=extreme value Fo=norma1 Fo=extreme value

20 40 60 100 20 40 60 100 20 40 60 100 20 40 60 100
.900 .901 .902 .903 .876 .892 .889 .885 .949 .950 .951 .951 .948 .946 .944 .942
.882 .875 .869 .859 .914 .917 .919 .923 .939 .934 .931 .925 .958 .960 .962 .964
.860 .837 .819 .787 .932 .943 .951 .961 .926 .912 .900 .878 .968 .974 .978 .983
.854 .823 .798 .752 .948 .953 .962 .974 .924 .905 .888 .857 .970 .978 .983 .989
.860 .828 .800 .752 .939 .956 .967 .979 .930 .910 .892 .859 .969 .979 .984 .991
.874 .846 .822 .779 .937 .956 .968 .981 .940 .924 .909 .881 .967 .978 .984 .991
.896 .876 .860 .830 .933 .955 .967 .981 .954 .943 .934 .916 .963 .976 .983 .991
.926 .918 .912 .904 .928 .951 .964 .979 971 .967 .964 .958 .959 .973 .981 .990
.945  .944  .943 .942 .924 .948 .962 .977 .980 .980 .979 .979 .956 .971 .979 .988
.952 .960 .966 .973 .918 .943 .958 .974 .982 .984 .987 .990 .952 .968 .977 .987

%



.05
.10
.25
.30
.40
.50
.60
.70
.80
.90
.95
1.0

Table 4. Quantities K;g,V*;V Used in the Evaluation
of the Approximate Coverage Probabilities

F=extreme value Fo=norma1 F=normal Fo=extreme value
A B v v A B v v

p=.05 .10 .25 .05 .10 .25 .05 .10 .25 .05 .10 .25
1.02 2.43 19.98 30.56 79.48 20.03 28.55 67.79 .453 401 4.48 7.62 22.16 4.44 8.36 27.52
.533 2.17 14.68 9.98 20.28 13.61 10.04 18.10 .284 445 3.19 2.93 6.98 3.53 2.89 8.22
.022 1.80 14.18 7.24 3.99 11.25 6.30 4.08 .034 .525 3.10 2.02 1.87 4.45 2.47 1.80
116 1.72 13.79 7.23 3.36 10.63 6.04 3.41 .019 .545 3.08 2.01 1.59 4.64 2.64 1.52
.252 1.60 12.91 7.16 2.93 9.48 5.59 2.81 .108 .582 2.99 2.01 1.35 4.90 2.95 1.37
.345 1.49 12.03 6.97 2.84 8.45 5.15 2.54 .181 .615 2.90 2.00 1.27 5.08 3.21 1.43
.411 1.40 11.18 - 6.72 2.83 7.53 4.73 2.35 .243 .647 2.81 1.99 1.24 5.23 3.43 1.55
.459 1.31 10.36 6.43 2.82 6.67 4.29 2.19 .299 .678 2.71 1.96 1.23 5.37 3.63 1.70
.492 1.23 9.56 6.10 2.81 5.87 3.85 2.02 .351 .709 2.62 1.93 1.23 5.51 3.82 1.87
.512 1.14 8.75 5.72 2.76 5.12 3.39 1.82 .399 .741 2.52 1.90 1.23 5.66 4.03 2.05
.515 1.09 8.33 5.52 2.73 4.83 3.17 1.69 424,759 2.47 1.88 1.23 5.75 4.14 2.15
.500 1.00 7.99 5.34 2.69 9.11 5.38 2.10 .450 .780 2.35 1.82 1.22 5.85 4.26 2.27

(4



.05
.10
.25
.30
.40
.50
.60
.70
.80
.90
.95
1.0

Table 5.

Asymptotic Bias on the Probability Scale

F0(§) -p =0 Eifﬁ -p FO(E) - p = l-exp(-exp Q—EQEQZA;) -p
: B B

F=extreme value F0=norma1 F=normal F0=extreme value
p=0.05 p=0.10 p=0.25 p=0.05 p=0.10 p=0.25

-.0000331 - - .00028 - -

.0032 -.0001 - -.0040 .0009 -
.0012 .0084 -.0011 -.0045 -.0112 .0057
-.0007 .0083 .0066 -.0038 -.0120 -.0057
-.0054 .0057 .0172 -.0020 -,0123 -.0206
-.0105 .0011 .0233 .0001 -.0113 -.0295
-.0160 -.0052 .0258 .0026 -.0096 -.0351
-.0217 -.0131 .0250 .0052 -.0075 -,0385
-.0277 -.0228 .0207 .0081 -.0048 -.0402
-.0340 -.0353 .0110 .0114 -.0016 -.0407
-.0376 -.0437 .0020 .0134 .0003 -.0404
-.0435 -.0600 -.0130 .0160 . 0030 -.0390

1%
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lognormal distributions. In Figure 1 (2), Curve (a) gives the effi-
ciency of the censored Weibull (lognormal) parametric procedure rela-
tive to the complete sample Weibull (lognormal) parametric procedure
for 0.05 < pf‘i 1 and (b) gives the approximate covérage probability
when the censored Weibull (lognormal) parametric procedure is used
(y=.95, n=60, p= .05 where the true distribution is lognormal
(Weibull) for 0.05 < Pe < 1. For example, in Figure 2, for lognormal
procedure with p = .05, vy = .95, and n = 60 the approximatebcover—
age probability increased from .63 for the complete sample (pf = 1)
to .90 for censoring with Pp = .5 when the true distribution is the
Weibull. In addition to improving robustness, censoring has practical
benefits. The censored units may not be destroyed by testing. For the
lumber stress example, the boards are not damaged by certain stress
tests. In life testing, censoring is used to shorten the duration of
the experiment.

An alternative to censoring that might improve the robustness of
a parametric procedure would be to choose a larger family of distribu-
tions. For example, suppose the true distribution were Weibull

(B

3 = 1) and the generalized gamma family were assumed. In this case,
it can be determined from Table 1 that the complete sample parametric
procedure based on the 3-parameter generalized gamma distribution is
about as efficinet as the Weibull censored parametric procedure with
Pe = .4 . The complete sample procedure for the 3-parameter family

might also tend to be more robust than the Weibull censored procedure

with Pe = .4 . TFor example, if the true distribution were a gamma

with B 1, the Weibull censored procedure would not have the A.C.P.

2
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exactly equal to the nominal confidence coefficient Y. Moreover,
there is less than 5 percent loss in efficiency for censoring with
P = .4 1in the generalized gamma family.

Goodness of fit tests or tests for discriminating among various
parametric families might also be made prior to adopting a lower
tolerance limit procedure. The effects of such preliminary test on

robustness of the lower tolerance limit procedures would be of interest

for further research.



Figure 1. Efficiency and Robustness of Weibull Procedure

Curve (a): A.R.E. el(pf,p,BB) when the true distribution is
Weibull (p = .05)
Curve (b): A.C.P. of Weibull procedure when the true distribution’

is lognormal (Y = .95, n =60, p = .05)

1.0

T (b) ¥

oD 1.0



Figure

Curve (a):

Curve (b):

1.0 1
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2. Efficiency and Robustness of Lognormal Procedure

A.R.E. el(Pf,P,B3) when the true distribution is
lognormal (p = .05)

A.C.P. of lognormal procedure when the true distribution

is Weibull (y = .95, n =60, p = .05)

(a)

.50 ' 1.0



48

5. SIMULATION STUDY

A simulation study was conducted to investigate the adequacy of
the large sample normal approximations used in Chapters 3 and 4.

Samples of n = 60 wuniform (0,1) random variates were gener-
ated using the subroutine GGUB of the IMSL Library on the Cyber 70/73
Computer at Oregon State University. These variates were then trans-
formed into ordered samples from either the lognormal or the Weibull
distributions. Sets of 500 samples were generated for 12 cases com-
prised from the combinations of the two distributions; the three
quantiles p = .05, .10, .25; and the two expected proportions of
uncensored observations pf = .5 and 1. Six lower confidence limits

for the pth quantile

x, = exp(yp) = exp(9)

with nominal confidence level y = .90 were calculated for each

sample. For the non-randomized

NP = X(k)

and randomized

(k) R with probability ¢

X(k+1) R with probability 1-c

nonparametric procedures the integer k and randomization probability

¢ are determined such that

60 . .
» 60, i n-i
P = Pr{Xgy <X} = vizk (;)p (-p~ ~ > .90
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but Pk+1 < .90 and c = (.90 - Pk+l)/(Pk - Pk+l)'

Thus,
Pr{NP < Xp}_z Pr{RNP < Xp} = .90

Weibull lower tolerance limits are constructed from the asymptotic

~

7

normal distribution of 6

W
y

8 - 1.282-5/vn ,
as described in Section 3.1, and from £P = exp(é)
W= exp(8)+ {1-1.282.g//a}

The corresponding lognormal lower tolerance limits based on 6 = §p
and £p = exp(é) are denoted respectively as LNy and LNX . Newton's
method was used for iterative solution of the maximum likelihood equa-
tions_(see Elashoff, p. 63, 1975).

Thevproportion of the 500 samples for which the lower tolerance
limit is less than or equal to the value of the true pth quantile x;

(on x-scale) or 6° (on y-scale) then gives the empirical estimate Y

of the true coverage probability.

The empirical estimators vy of the true coverage probability are
given in Table 6. The values of the A.C.P.'s that are within two

standard error units, i.e.,

vy = 24(1-¥)/500 < A.C.P. < ¥ + 2-/4(1-y)/500
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are identified in Table 6 by * . Notice that the values of the
A.C.P.'s tend to give better approximations for the parametric proce-
dures developed from xp (x-scale) than that from 5 = ;p = Zn(;p)-
Also note that 45 out of the total 72 (12 cases x 6 procedures)
empirical values are less than the corresponding values of the A.C.P.'s.
Overall, we found for the sample size n = 60 that the A.C.P."'s give

reasonably accurate approximations for the true coverage probabilities.

(4.1).



Table 6. Empirical1 and Asymptotic Estimates (A.C.P.)
for the Probability of Coverage

(a) F0 = Extreme Value Distribution

p=0.05 ; xE=.05129 p=0.10 ; xp=.10536 p=0.25 ; xp=.28768
pf=1.0 pf=0.5 pf=1.0 pf=0.5 pf=1.0 pf=0.5
EMP. A.C.P. EMP. A.C.P. EMP, A.C.P. EMP. A.C.P. EMP. A.C.P. EMP. A.C.P.
NP .934 .954 .96 .954 .96 <947 .958  .947 .892 .914 .892  .914
RNP .872% .90 .916*% .90 .938 .90 .916*% .90 .868 .90 .876% .90
WX .90% .90 .926% .90 .90% .90 .878*% .90 .886*% .90 .884*% .90
Wy .82 .90 .854 .90 .854 .90 .824 .90 .846 .90 .858 .90
LN .55% <542 .842% ,832 .738% 774 .892% ,911 .948*% .958 .956*% .963
LNy .488 .542 774 .832 694  .774 .846  .911 .944% .958 .948% .963
1

Based on 500 independent samples of size n = 60 for each case

119



Table 6 (continued)

(b) F0 = Normal Distribution

p=0.05 3 x =.19304 ' p=0.10 5 x =.27760 p=0.25 ; x =.50940
pf=1.0 pf=0.5 pf=1.0 pf=0.5 pf=1.0 pf=0.5
EMP. A.C.P.  EMP. A.C.P. EMP. A.C.P.  EMP. A.C.P. EMP. A.C.P. EMP. A.C.P.

NP .958  .954 .972  .954 .946  .947 .954 947 .948  .914 .926  .914
RNP  .904% .90 .924 .90 .918% .90 .908% .90 .936 .90 .912% .90
W 1.00% 1.00 .964% .976 1.00% 1.00 .898% .927 .994  .966 .81%  .798
W 1.00% 1.00 .938  .976 1.00% 1.00 .864  .927 .964*% .966 .80%  .798
LN .878% .90 .852 .90 .904* .90 .856 .90 .914% .90 .918% .90
LN, .84 .90 .826 .90 .876% .90 .836 .90 .894% .90 .896% .90

49
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APPENDIX

Recall (3.11)

o—~1

z .
Ha(z) = I'(z; a)/T(a) = f t e—t dt/T(a)

¢}

and the root of

Ha(z) - P (A.1)

are required in Chapter 3 to evaluate the asymptotic variance ci for
the censored generalized gamma procedure. In general there is no
simple analytic treatment to find the root.  However, if a is a

positive integer, then Ha(z) becomes (see Johnson Kotz, 1972)

1 - exp(-z) * ail 213! (A.2)
j=0
and hence (A.l) can be solved numerically by iteration. Table 7 gives
the root for a =1, 2 and 4. Moreover, in Chapter 3 we have terms
like T'(q; o+1) , T"(q; o+l) where q is the root of (A.1). So a
general series expansions for these derivatives of the incomplete gamma

functions are developed. Recall that
RS
I’(x,A)=‘ft e dt , A>0,
0
By repeated use of integration by parts we have

I'(x,A) = eXP(-A)‘XA/A' {1+ x/(A+1) + x2/(A+1) (A+2) + ...} .
(A.3)

Also,
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0

P'(x,A)7=: [# tA—l et fnt dt
! o
By direct partial differentiation w.r.t. A in (A.3)
aT _ 1 ggp(-A)*xA- X x2
3a = (bnx-) T (x,8) - =220 D A mn e Gt d W
where
c, = z ;;%5 », 1=1, 2, 3,
Moreover,
I"(x,A) = Jx A et atpar , Ao

By again direct partial differentiation in (A.4)

%gﬁ% I (x,4) +T" (x,A) (£n x—:’i) - exp('ﬁ) o { (Ai‘l) c, +(A+}]§(A+2)C2+' .}
(A.5)
_ exp E-A).XA{X‘di"(zi_l)+x2 ?ﬁ@%ﬁﬁ +o )
But
i (;;_ll-] = -2/(a+1)3
i ((A+1)(A4Cé)...(A+i) ) = (A+1)(A+§)...Y(A+i)[DJ’\.-'C§j , 1=2,3...



57

where
1 1 1 1
D, = = 4., £ -
;- @+3 D GaT A+2) + ( -2 Gi2 ~ a1
(A.6)
1 '
+---+1—((A+k A+k+1) when i=2k, k=1, 2, ... and
1 1 1 1.1 1
= + = +... . -
1+73 DG A+2)+( 7t 12D @EE T D
FoAE Iy ) when 1= 2k+l , kel,2
k  k+17 Atk A+k+l ? O

Therefore, after substituting (A.6) in (A.5) and combining terms, we

have
a2r 1
"—zaA = Xz' I'(x,A) +

~2x ., 2x?
L (A+1)°  (A+1(a+2)

In Chapter 4, we have to compute
I'""(u,l) .

'"'(u,1) . As for T'""(u,1) and

A
I'(x,A) (fn x - i-)_(gn x - i)zﬁ'(x,A)- egp(;A)-x .

(A.7)

2y X . x_ [
+ {(Dz )+ @303 31+ \}}}}

I"(lhl) sI‘"(u3l) ,I""(u,l) and

We can use (A.4) and (A.7) to compute TI'(u,l) and

T""'(4,1) , another representation of

incomplete gamma function based on the Taylor expansion of exp(~t)

is used

(A.8)

From (A.8) we direct differentiate w.r.t. A four times and found
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' © (él)n anA
I'(x,4) = In x-T(x,4) _‘nzo o (n+h) 2
© (_l)n xn+A
I'(x,A) = 2°4n x°T'(x,A) - (Ln x)2:T(x,A) + 2 n-—z-o n! (n+A) 3
(A.9)
r'"(x,A) = 3°fn x°I"(x,A) - 3(£n x)2 T'(x,A) + (Ln x)3 T'(x,A)
S o SRR

-6 ngo nt (oHA)

I""(x,A) = 4 £n x T'"(x,A) - 6(&n x)2 T"(x,A)

+ 4(&n x)3 T'(x,A) - (Ln x) T'(x,A)

+
® (_1)n xn A

+24 n£0 an (n+A) >

When equations (A.3), (A.4), and (A.7) are used to compute the incom—
Plete gamma function and its first and second derivatives, it is found
that the first 12 digits of the values obtained by using the first 50,
100, 150, 200 terms in the series expansion(A.3), (A.4), and (A.7)
are the same. On the other hand; the error can be bounded analytically
for (A.9) because in an alternating decreasing series, the error for
the n terms approximation to the whole series will be less than the

absolute value of the next term. That is, for example

n+A
Error < -—Tji——q
n! (ntA)
where
Error = s-s

k



and

ntA _ m (_l)n Xn+A

’ s - '
n! (nt+A) k 0=0 n. (n+A)



.05
.10
.15
.20
.25
.30
.35
<40
.45
.50
«55
.60
.65
.70
.75
.80
.85
.90
.95

Table 7.

Roots of the function Hu(z)—pf for a =1, 2, 4
a =1 a = 2 a, = 4
.0512932943 .3553615108 1.366318398
.1053605157 .5318116084 1.744769594
.1625189295 .6832386131 2,039099548
.2231435513 .8243883188 2.296786806
.2876820725 .9612787632 2.535320212
.3566749493 1.097330533 2.763711043
;4307829161 1.235033575 2,987644562
.5108256380 1.376420537 3.211322778
.5978370008 1.523380674 3.438315333
.6931471806 1.678340731 3.672056688
.7985076962 1.843566915 3.916215561
.9162907319 ©2.022313143 4.175262726
1.049822124 2.218842854 4.454679274
1.203972804 2.439198247 4.762227200
1.386294361 2.692634523 5.109414292
1.609437912 2.994308082 5.514995322
1.897119985 3.372432505 6.013458699
2.302585093 3.889720139 6.680764999
2.995732274 4.743816045 7.753574496
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