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Skeletal muscle is the largest organ in the body by mass, comprising roughly 40% of total 

bodyweight in adults. It plays diverse and unique roles that include movement, locomotion, and 

support for posture and internal organs, among others. The structural foundation for all skeletal 

muscle in adults is formed early in development, emphasizing the importance of understanding 

the mechanisms of skeletal muscle development. This is especially important since adult skeletal 

muscle is limited in its ability to regenerate, but the regeneration mechanism reactivates certain 

developmental pathways. 

Skeletal muscle formation in the vertebrate forelimb occurs in distinct phases during 

embryogenesis. Beginning around embryonic day (E) 10.5 in mice, embryonic myogenic 

progenitor cells (EMPCs) express the gene Pax3, which triggers migration into the limb bud. Once 

settled, between E10.5 and E12.5, embryonic myoblasts fuse with each other to form embryonic 

myotubes. Between E12.5 and E17.5 fetal myoblasts fuse with both embryonic myotubes, and 

each other, to form fetal myofibers, which serve as the structural foundation of all skeletal muscle 

in the forelimb. Not much is known regarding the molecular mechanisms behind this process, 

except that they significantly overlap with the mechanisms responsible for skeletal muscle 

regeneration in adults. Knowledge gained about myogenesis can also be applied to muscle 

regeneration in adults, to both accelerate wound healing, or reverse muscle-wasting diseases, 

called myopathies. Two sequence specific transcription factors, Pitx2 and Pax3, are fundamental 

to skeletal muscle development. Mice carrying locus specific alterations for both genes are used 

to molecularly dissect the skeletal muscle formation in time and space. 



 

Pitx2 is required for the embryonic to fetal transition of skeletal muscle formation. ChIP-Seq 

(Chromatin-Immunoprecipitation followed by sequencing) approach was used to compare the 

chromatin state of E12.5 embryonic myoblasts from mice in which Pitx2 was present or had been 

deleted. ChIP-seq data were integrated with previous gene expression profiling data of the 

forelimb transcriptome to identify changes in the chromatin state of embryonic myoblasts at Pitx2-

target genes. We observed significant disruption in the chromatin state of genes related to 

neurogenesis and cytoskeletal organization, implying Pitx2 regulates the cytoskeletal 

rearrangements during myogenesis. 

Pax3 marks all skeletal muscle myoblasts as they migrate into the forelimb, beginning at E9.5 in 

the mouse. Whole-transcriptome profiling of pure forelimb isolated myoblasts was performed, via 

fluorescence activated cell sorting (FACS), from Pax3Cre|RosaEGFP mice. Myoblasts were isolated 

at 4 embryonic states (E11.5, E12.5, E13.5, E14.5), bracketing the embryonic to fetal transition 

during myogenesis.  The increased expression of genes involved in cell-adhesion, angiogenesis, 

and immune system during fetal myogenesis, implying there is communication between different 

organ systems even when limited to what was thought to be a myogenic lineage. Additionally, 

coexpression network analysis revealed two distinct subnetworks present during all stages of 

myogenesis, but both expressed highest during fetal myogenesis. One network was enriched in 

genes that are involved in cell-adhesion, and the second was enriched in genes involving the 

immune-response, suggesting consistent interplay between the immune system and skeletal 

muscle. Our studies emphasize the complexity of myogenesis, with multiple different systems 

developing and communicating in parallel, and will serve as a base for future studies to explore 

the effect of specific perturbations during forelimb myogenesis. These perturbations will result in 

knowledge and techniques that can be used to enhance or reactivate skeletal muscle 

regeneration in mature muscle. 
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Abstract 

Gene regulatory networks, in which differential expression of regulator genes induce differential 

expression of their target genes, underlie diverse biological processes such as embryonic 

development, organ formation and disease pathogenesis. An archetypical systems biology 

approach to mapping these networks involves the combined application of (i) high-throughput 

sequencing-based transcriptome profiling (RNA-seq) of biopsies under diverse network 

perturbations and (ii) network inference based on gene-gene expression correlation analysis. The 

comparative analysis of such correlation networks across cell types or states, differential 

correlation network analysis, can identify specific molecular signatures and functional modules 

that underlie the state transition or have context-specific function. Here, we review the basic 

concepts of network biology and correlation network inference, and the prevailing methods for 

differential analysis of correlation networks. We discuss applications of gene expression network 

analysis in the context of embryonic development, cancer, and congenital diseases.  
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Introduction 

One of the most fundamental scientific advancements of the early 21st century has been the 

sequencing of the human genome (Lander et al., 2001). Knowledge of the sequence and location 

of genes in the genome has revolutionized biomedical research and diagnostics. Genetic 

mutations responsible for congenital diseases can now be physically linked to specific positions 

in the genome, enabling the systematic mapping of the molecular basis of polygenic diseases 

and other traits. To fully understand the mechanistic basis of a polygenic trait or biological 

process, it is necessary to account for interactions such as gene expression correlation or genetic 

epistasis among the individual trait-associated genes. Gene networks are an intuitive and useful 

abstraction for representing the totality of such gene-gene interactions for a trait. 

The advent of relatively low-cost quantitative transcriptome profiling (first by microarray 

hybridization and more recently, by high-throughput sequencing or RNA-seq (Lister et al., 2008; 

Mortazavi et al., 2008)) was key to enabling the systematic mapping of networks of genes whose 

expression levels are correlated across biological samples, i.e., gene expression correlation 

networks. Because eukaryotic gene regulation is thought to be hierarchically organized with 

regulated genes' protein products in turn regulating the expression of other genes, gene-gene 

correlation networks provided the first genome-scale view into gene regulation in diverse contexts 

such as embryogenesis, hematopoiesis, oncogenesis, and inflammation. 

Although gene-gene interactions were the earliest biological network type to be analyzed on the 

whole-organism scale (Lee et al., 2002), network analysis has since found broad utility in 

understanding interactions among cellular molecular constituents of all types, with protein-

metabolite networks and protein-protein interaction (PPI) networks being particularly widely used. 

The network abstraction has proved to be applicable across the scale of biological complexity; for 

example, on the organismal level, where each organ is a separate module that interacts with other 

organ(s) to form a functional organism, or organelles functioning together within a cell. The 

discovery that the structure of large-scale molecular interaction networks is functionally related to 

the networks' emergent properties such as robustness, which cannot be easily predicted based 

on knowledge of the functions of the network's individual components in isolation, led to the 

development of systems biology, a holistic and quantitative approach to biology. The heart of 

systems biology is the use-and refinement based on experimental challenge-of quantitative 

models that are grounded in knowledge of molecular interactions. 

Another advantage of grappling with biological complexity from a network perspective includes 

https://paperpile.com/c/Jce6B3/ov1JM
https://paperpile.com/c/Jce6B3/Spv6u+koFnh
https://paperpile.com/c/Jce6B3/Spv6u+koFnh
https://paperpile.com/c/Jce6B3/NFDcR
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the condensation of a large amount of data into a simpler, visually intuitive format. For example, 

in a network, evolutionarily recurrent structural elements such as feedback loops (Alon et al., 

1999), feed-forward loops (Bornholdt, 2005; Ideker et al., 2001; Kirschner, 2005; Kitano, 2002), 

and asymmetric positive feedback loops (Ratushny et al., 2012)are evident (Milo et al., 2002; Prill 

et al., 2005). On the larger scale, analysis of biological networks has provided insights into critical 

genes or molecules that are essential for function (Jeong et al., 2001) and evidence for selection 

for hierarchical modularity (Ravasz et al., 2002), and formed the basis for dynamical models of 

system function (Li et al., 2004). Comparative analysis of biological networks derived from 

different biological states (such as different environmental conditions, genetic backgrounds, or 

stages of development), i.e., differential network analysis, has proved particularly useful for 

uncovering mechanisms in diverse contexts such as cancer biology (Creixell et al., 2015; 

Grechkin et al., 2016) and organ development (Földy et al., 2016; Reyes-Bermudez et al., 2016).  

Here, we review differential network analysis, with a particular emphasis on its application to gene 

expression correlation networks. In this context, differential correlation expression network 

analysis (DCENA) has been used to identify a three-gene combination able to diagnose glioma 

(Wu et al., 2016), and identify gene regulatory networks involved in mouse embryonic fibroblast 

development (Treutlein et al., 2016), among others.  

 

Basic properties of biological networks 

It is axiomatic that a complete understanding of a cell biological system requires a complete 

understanding of the molecular networks within a cell. Such networks can be modeled as a series 

of points, called nodes (which might be gene-specific types of RNA or protein, or other cellular 

molecular constituents), connected via edges (representing interactions) to each other. Each 

edge can be either directed or non-directed, meaning the biological information (or in some 

network contexts, substrate) flows from one node to the other. Directed networks imply co-

dependence between connected nodes, whereas undirected networks assume that only one node 

is dependent on the other.  

The discovery that biological networks followed a scale-free degree distribution invigorated the 

field of biological network analysis. A scale free degree distribution means that the probability that 

any node in the network, P(k), is attached to k other nodes, decays as a power law P(k) ~ k -λ 

(Barabási and Albert, 1999). Interestingly, this property is shared by many different types of 

https://paperpile.com/c/Jce6B3/wVX6T
https://paperpile.com/c/Jce6B3/wVX6T
https://paperpile.com/c/Jce6B3/yenIs+nz7bs+JkeXD+iMRz8
https://paperpile.com/c/Jce6B3/tFvvE
https://paperpile.com/c/Jce6B3/HGfFy+SQ2Gz
https://paperpile.com/c/Jce6B3/HGfFy+SQ2Gz
https://paperpile.com/c/Jce6B3/P3jM6
https://paperpile.com/c/Jce6B3/z0bOv
https://paperpile.com/c/Jce6B3/2dIFo
https://paperpile.com/c/Jce6B3/hAYK4+ayloC
https://paperpile.com/c/Jce6B3/hAYK4+ayloC
https://paperpile.com/c/Jce6B3/sLlkS+B5XOQ
https://paperpile.com/c/Jce6B3/R7Djv
https://paperpile.com/c/Jce6B3/KLobX
https://paperpile.com/c/Jce6B3/u1ixQ
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networks that are the product of organic growth rather than up-front complete design, including 

paper citations, social networks, and the internet (Barabási and Albert, 1999). Following the scale 

free property, most nodes have only a few edges while a small number of nodes, called hubs, are 

highly connected. These hubs are disassortative (i.e., they tend to not share the same neighbors), 

and are rarely directly connected to each other (Barabási and Albert, 1999). These features 

appear to endow biological networks with a robustness to disruptions of random nodes (Albert et 

al., 2000). On the other hand, they are more susceptible (compared to random networks that are 

not scale-free) to disruptions that specifically target hubs (Albert et al., 2000). The observed scale-

free degree distribution of many biological networks appears to be a generic consequence of two 

assumptions regarding the growth of networks over evolutionary time, random growth with 

preferential attachment (Barabási and Albert, 1999). 

One of the most powerful network analysis paradigms stems from the guilt by association 

principle, where nodes that are spatially close to each other often perform similar functions, or are 

related in some way (Hou et al., 2014). A node that is in close network proximity to another node 

that is directly associated with a disease is likely to be implicated in either the creation or 

maintenance of the disease state (Hou et al., 2014). Spatially proximate nodes also tend to cluster 

into highly connected clusters, where each cluster performs a specific function (Barabasi and 

Oltvai, 2004). These clusters, termed modules (Hartwell et al., 1999), are fundamental units of 

biological networks (Figure 1.1). Modules can identify novel functions and/or pathway 

associations of known genes and are often conserved between different biological systems (Mitra 

et al., 2013). Conserved modules are likely to represent biologically significant processes 

conserved by evolution and their identification can help answer fundamental questions of 

biological regulation (Mitra et al., 2013).  

Module identification is one of the classic analysis tasks in network biology, in which genes of 

unknown function can be associated with the function of the module, assuming enough annotated 

genes are also present. At best, modules can identify novel gene-gene interactions that function 

as drug targets. As condition-specific global measurements of protein post-translational 

modifications, gene-level epigenomic profiling, and gene expression have become commonplace, 

particular emphasis has been placed on the identification of active modules, which are modules 

with a context-dependent function (Mitra et al., 2013). Unfortunately, there is no clearly defined 

optimal method for module identification (although MCODE (Bader and Hogue, 2003) is one of 

the most popular, likely due to its ease of use) and instead a variety heuristic approaches are 

used. 

https://paperpile.com/c/Jce6B3/u1ixQ
https://paperpile.com/c/Jce6B3/u1ixQ
https://paperpile.com/c/Jce6B3/wTgbX
https://paperpile.com/c/Jce6B3/wTgbX
https://paperpile.com/c/Jce6B3/wTgbX
https://paperpile.com/c/Jce6B3/u1ixQ
https://paperpile.com/c/Jce6B3/wD38g
https://paperpile.com/c/Jce6B3/wD38g
https://paperpile.com/c/Jce6B3/SPRtL
https://paperpile.com/c/Jce6B3/SPRtL
https://paperpile.com/c/Jce6B3/daZYr
https://paperpile.com/c/Jce6B3/2ZJ8l
https://paperpile.com/c/Jce6B3/2ZJ8l
https://paperpile.com/c/Jce6B3/2ZJ8l
https://paperpile.com/c/Jce6B3/2ZJ8l
https://paperpile.com/c/Jce6B3/POUSw
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Here, we describe three standard classes of methods used to identify active modules. One such 

class of method is called significant-area-search (Mitra et al., 2013). Significant-area-search 

methods first annotate all edges and nodes with scores that represent their independent activity. 

Then aggregate scores are computed for different combinations of spatially close and connected 

nodes and assigned to each subnetwork. The highest scoring subnetworks are then identified as 

modules. While this method works, it has significant drawbacks. The algorithm is complex, the 

computations are time intensive, and it requires multiple user-defined thresholds that can 

complicate reproducibility and are a challenge for non-expert users. A second class of methods 

is known as diffusion flow (Enright et al., 2002). Diffusion flow-based methods are based on the 

concepts of fluid and heat transfer dynamics. On a basic level diffusion flow methods assume that 

the flow of biological information within a network diffuses from nodes of interest outwards along 

the edges of a network and accumulates in other nodes of interest. These methods are less 

computationally intensive, but are most often used in cancers or diseases where original genes 

of interest are known. The third type of methods used are biclustering-based methods (Reiss et 

al., 2006). Biclustering-based methods simultaneously cluster both interactions in the network 

and the biological conditions in which the interactions occur, called biclustering. This determines 

both the strength of network connectivity and the correlation between sample conditions. 

Biclustering based methods have the advantage that they can be applied to almost any type of 

biological data. 

Despite the existence of several well-established algorithmic methods, in practice, module 

detection retains subjective characteristics. This is especially true for clustering-based methods, 

where some hard value threshold is needed to define module boundaries. Functional 

classification or analysis of modules is often accomplished using gene ontology (GO) term 

enrichment techniques. GO term enrichment analysis involves taking a list of genes (often from 

the identified module) and using publicly available annotated functions to search for enrichment 

of specific functions in the gene list. The premise of GO term enrichment analysis for module 

classification is essentially guilt-by-association, i.e., that if a module is enriched in genes from a 

specific biological function, any unknown genes also in the module are likely to be involved in the 

same process. 

Despite its promise for elucidating biological mechanisms, large-scale biological network analysis 

has several inherent limitations. The most obvious is that it necessarily entails a dramatic 

simplification of biological systems, for example, ignoring constraints, kinetic rate constants, and 

context-dependent subcellular localization (Barabasi and Oltvai, 2004; Ideker and Krogan, 2012; 

https://paperpile.com/c/Jce6B3/2ZJ8l
https://paperpile.com/c/Jce6B3/lQqyP
https://paperpile.com/c/Jce6B3/PHQRY
https://paperpile.com/c/Jce6B3/PHQRY
https://paperpile.com/c/Jce6B3/2ZJ8l+SPRtL+0pMtU
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Mitra et al., 2013). Another key limitation is presented by the dynamic nature of living systems; 

accounting for dynamics in network modeling is more complex and can involve generating 

multiple static networks of the same biological system over different conditions. These 

considerations have led to the use of differential network techniques, as described below. 

 

Differential networks 

Differential network analysis is a powerful technique for identifying pathways or modules with a 

context- or condition-specific activity or function, for example, in diseased vs. healthy tissue, 

different time points in embryonic development, or in tissues with and without a specific molecular 

or genetic perturbation (e.g., a gene knockout). Differential networks are generated by comparing 

static networks from the same biological system over different conditions and are used to 

determine the parts of a network that are context-specific (Ideker and Krogan, 2012; Mitra et al., 

2013) (Figure 1.2). Differential networks encode the changes in connections among nodes 

between the conditions or states. Nodes that change their connection between different network 

states are considered to be rewired, and are of significant biological interest (Hou et al., 2014). 

Under the principle that nodes that are functionally involved in the change of state rewire more 

frequently than uninvolved nodes, "guilt by rewiring" can be used to identify nodes or modules 

responsible for creating and/or maintaining different states (Hou et al., 2014).  

For both gene co-expression networks and condition-specific PPI networks, differential network 

analysis serves as a powerful complement to other forms of quantitative expression analysis, 

specifically differential expression analysis  (Ideker and Krogan, 2012). Differential expression 

analysis detects nodes that change between conditions, but does not reveal interactions between 

the nodes. Therefore, nodes with interaction but not expression changes will only be revealed in 

a differential network analysis (Ideker and Krogan, 2012). Similarly, node interactions that are 

present in both conditions can be assumed to be unaffected by the perturbation, even if the node 

is differentially expressed between conditions (Ideker and Krogan, 2012). Thus, differential 

expression analysis has the potential to be more sensitive and specific than standard node-based 

differential expression analysis for detecting context-specific molecular interactions. 

Rewiring has different biological meanings depending on the components of the network. In PPI 

networks, rewiring represents the gain and loss of direct physical interactions between the 

proteins, which could occur due to changes in the protein post-translational modification state or 

https://paperpile.com/c/Jce6B3/2ZJ8l+SPRtL+0pMtU
https://paperpile.com/c/Jce6B3/2ZJ8l+0pMtU
https://paperpile.com/c/Jce6B3/2ZJ8l+0pMtU
https://paperpile.com/c/Jce6B3/wD38g
https://paperpile.com/c/Jce6B3/wD38g
https://paperpile.com/c/Jce6B3/0pMtU
https://paperpile.com/c/Jce6B3/0pMtU
https://paperpile.com/c/Jce6B3/0pMtU
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sub-cellular localization. In transcriptional networks, rewiring between nodes represents 

functional consequences of the change in cell or tissue state between conditions (Ideker and 

Krogan, 2012). These functional consequences could be changes in the co-expression patterns 

of genes caused by disruption of the regulator that mediates the genes' co-expression. Due to the 

ubiquity and archetypical role of transcriptome profiling as a systems approach, for the remainder 

of this review, we will discuss differential analysis of transcriptional co-expression networks. 

 

Differential co-expression networks (DCEN) 

Differential co-expression networks are correlation networks based on gene expression data such 

that each node represents a gene, and each edge represents co-expression or interactions 

between the genes, such as activation or repression (Dong et al., 2015). The premise of 

differential co-expression network analysis is that differentially expressed genes (DEGs) 

represent functional changes in the biology of the system, and functionally work together at some 

level to alter the system (Dong et al., 2015). DCENs have been shown to have (i) a scale-free 

degree distribution, (ii) low clustering coefficients, and (iii) an unexpectedly high average all-pairs-

shortest-paths path length (Hsiao et al., 2016).  

The power of the DCEN analysis approach is its ability to highlight genes that drive molecular 

mechanisms behind specific biological processes (Dong et al., 2015). Additionally, DCENs have 

been used to identify the potential mechanisms involved in biological pathways, the pathways that 

are functionally involved in the system being studied, and the key regulators of identified pathways 

or modules (Dong et al., 2015). These mechanisms and regulators are often identified as new 

biomarkers for specific processes or diseases, leading to more accurate diagnosis. Most software 

that is mentioned in this review is freely available and can be found online (Table 1.1). 

An early example of differential correlation expression analysis was an applied form of hierarchical 

clustering analysis of time-course gene expression data from yeast Saccharomyces cerevisiae 

under a variety of culture perturbations and from serum-stimulated human fibroblasts (Eisen et 

al., 1998). This type of analysis clusters genes based on similar coexpression between the 

samples in an unsupervised manner. A weakness of this type of analysis is the poorly defined 

modules that it generates. Although clear patterns emerge, there is no hard threshold, and the 

identification of modules between the samples is highly sensitive to and based on the user-

specified cutoff. A more significant weakness of this algorithm is that it assigns each gene to one 

https://paperpile.com/c/Jce6B3/0pMtU
https://paperpile.com/c/Jce6B3/0pMtU
https://paperpile.com/c/Jce6B3/hBPRS
https://paperpile.com/c/Jce6B3/hBPRS
https://paperpile.com/c/Jce6B3/nDrCV
https://paperpile.com/c/Jce6B3/hBPRS
https://paperpile.com/c/Jce6B3/hBPRS
https://paperpile.com/c/Jce6B3/buinb
https://paperpile.com/c/Jce6B3/buinb
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and only one module. This singular assignment is a poor representation of biological systems 

wherein genes frequently participate in multiple processes or occasionally act alone. This method 

is still prevalent with heat maps but is now more often combined with other methods when used 

for module identification. 

The current, predominantly used methods for co-expression network inference fall into two broad 

categories, correlation-based and mutual information-based methods. The correlation-based 

methods for co-expression network inference involve the filtering of all-pairs Pearson correlation 

coefficients (PCC), nonparametric Spearman (SCC) correlation coefficients, or partial correlation 

coefficients to obtain the network adjacency matrix. The PCC and SCC are direct statistical 

measures of interdependence of two variables, whereas partial correlation coefficients are 

measures of interdependence of two variables' residual measurements after conditioning on one 

or more other explanatory variables (Butte and Kohane, 2000; Dong et al., 2015; de la Fuente et 

al., 2004). The related method of weighted gene co-expression network analysis (WGCNA) is 

based on correlation coefficients, but includes an additional rescaling before the filtering step 

(Langfelder and Horvath, 2008). Mutual information (MI)-based methods depend on higher-order 

moments of the joint pairwise distribution of gene expression measurements (rather than just the 

covariance), through the use of an information-theoretic measure of how informative one gene's 

expression level is for predicting the expression level of another gene (Basso et al., 2005; 

Margolin et al., 2006). MI-based methods have the benefit of being sensitive to potentially non-

monotonic relationships between the expression level of a regulator gene and a target gene, but 

the disadvantage of being computationally expensive to estimate in comparison to purely 

correlation-based methods.  

 

Correlation coefficient methods 

Correlation coefficient (CC) based methods involve the use of one of several statistical correlation 

measures to determine the dependence of one variable on another. The PCC and SCC are both 

pairwise correlation coefficients, but they differ in that the PCC is most sensitive to a linear 

relationship between variables while the SCC allows for a non-linear relationship. This difference 

stems from the fact that the SCC is computed using the ranked values for each variable, rather 

than the gene expression measurement values themselves. Relevant to DCENs, the correlation 

coefficient represents a proxy for the extent of co-regulation between two variables, or genes 

(Figure 1.3). 

https://paperpile.com/c/Jce6B3/hBPRS+foP3S+dABAX
https://paperpile.com/c/Jce6B3/hBPRS+foP3S+dABAX
https://paperpile.com/c/Jce6B3/6EDEL
https://paperpile.com/c/Jce6B3/t2q1V+4GVbg
https://paperpile.com/c/Jce6B3/t2q1V+4GVbg
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Because CC-based methods involve the calculation of correlation coefficients for all pairs of 

genes, naïve application of such methods to all 20,000 genes in the human genome would require 

the calculation 2×108 correlation coefficients, which is both time- and memory- intensive. In 

practice, pairwise correlations are calculated for a subset of genes that are selected for probable 

relevance to the biological process being studied, such as selecting for differentially expressed 

genes, or known genes of interest. This reduces computational time and memory but at least for 

the "known genes" approach, it can also miss unexpected correlations. Due to their simplicity, 

CC-based methods have been a popular tool to analyze DCENs. One significant advantage of 

CC-based methods is that they can be used with small sample sizes (n = 16), although increasing 

n adds more statistical power and will uncover weaker correlations with higher confidence.  

Frequently, CC-based methods are used to identify new putative biomarkers for different types of 

diseases. Recently, PCC-based methods were used to identify differentially correlated gene pairs 

in the prefrontal cortex between healthy patients and patients with Huntington’s disease (Guitart 

et al., 2016). Focusing on the gene ENT1 from a previous study, targeted analysis revealed that 

ENT1 gains over 60 correlations in samples from patients with Huntington’s disease, identifying 

ENT1 as a potential biomarker and drug target for neurodegeneration in the early stages of 

Huntington’s disease. Similarly, PCC-based methods were used to compare differentially 

correlated miRNA pairs from the plasma of healthy subjects and patients suffering from mild 

cognitive impairment (Kayano et al., 2016). The network of differentially correlated miRNA pairs 

was analyzed for known transcriptional regulatory interactions (based on the Ingenuity Pathways 

Analysis commercial database of gene regulatory interactions), suggesting that TP53 (p53) 

directly regulates all 11 correlated miRNAs in healthy patients. Additionally, in patients with mild 

cognitive impairment, gene expression changes of insulin-related genes (identified using 

Ingenuity Pathway Analysis) were associated with a loss in miRNA correlations, and could also 

serve as a new biomarker in early Huntington’s disease. 

CC-based methods have also been used in conjunction with gene ontology (GO)-based functional 

enrichment analysis. Southworth et al. used SCC-based methods to compare blood from old and 

young mice to examine the effect of aging on co-regulation of genes (Southworth et al., 2009). 

They found an overall decrease in gene co-expression in older mice, consistent with previous 

reports of transcriptional instability in older mice. When GO term enrichment was observed in 

differentially correlated modules, a stronger correlation existed among NFκβ direct target genes 

in young mice relative to old. It was concluded that old age may affect the stability of NFκβ 

expression and therefore affect its downstream targets. Similarly, proximal clustering on 

https://paperpile.com/c/Jce6B3/njsqH
https://paperpile.com/c/Jce6B3/njsqH
https://paperpile.com/c/Jce6B3/p80jW
https://paperpile.com/c/Jce6B3/zUeg1
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chromosomes of enriched genes in the differentially correlated modules was observed, implying 

that chromosomal degradation could be a contributing factor to gene expression variance.  

In the last decade, several CC-based methods (including methods for downstream analysis and 

module detection) have been implemented as documented software packages for use in the R 

statistical computing environment (Ihaka and Gentleman, 1996), whose free-software open-

source approach has spurred methods development and resource sharing in bioinformatics. One 

of the first of such software packages is CoXpress (Watson, 2006) combines PCC-based methods 

along with hierarchical clustering to identify differentially correlated modules between samples or 

conditions. Because CoXpress uses hierarchical clustering, it identifies modules rather than 

differentially correlated genes. A second limitation of CoXpress is that each gene is only assigned 

to one module and it requires a hard-arbitrary cutoff for the clustering analysis, which in turn 

decreases reproducibility. 

More recently, the DiffCorr (Fukushima, 2013) R package has been developed and released for 

DCEN analysis. It combines PCC-based methods with the Fisher Z-transformation to identify 

genes that are differentially correlated between conditions. DiffCorr is able to detect changes in 

sign or magnitude of the correlation coefficient for a gene pair between different conditions, and 

it can be applied to any form of normalized data, including metabolomics and lipidomics. 

DiffCorr has been used to identify differentially correlated genes and modules between healthy 

and pathogen-infected Arabidopsis samples (Jiang et al., 2016). DiffCorr analysis uncovered (i) 

the gene AT3G03440, which previously had no known role in pathogen response, as a hub in the 

correlation network from pathogen-infected samples; and (ii) 36 pathways whose gene-gene 

correlations were differentially rewired. Additionally, no significant correlation was detected 

between differentially expressed genes and differentially correlated genes, and only 40% of 

sequence-specific transcription factors that were differentially correlated were differentially 

expressed. These findings support the viewpoint that DCEN analysis supplements–rather than 

replaces–traditional one-gene-at-a-time differential expression analysis.  

A similar R package, R/Ebcoexpress, combines a CC-based approach with posterior probability 

calculations and a false discovery rate (FDR) cutoff (Dawson et al., 2012). R/Ebcoexpress has 

been used to detect differentially correlated genes and modules between human rectal 

adenocarcinoma and healthy tissue (Zuo et al., 2016), with the network analysis platform 

Cytoscape (Shannon et al., 2003) used for module detection. The network was constructed using 

nodes and edges from only differentially expressed genes calculated by edgeR (Robinson et al., 

https://paperpile.com/c/Jce6B3/97czZ
https://paperpile.com/c/Jce6B3/zspmc
https://paperpile.com/c/Jce6B3/XwH56
https://paperpile.com/c/Jce6B3/wpOAP
https://paperpile.com/c/Jce6B3/i8a1D
https://paperpile.com/c/Jce6B3/sO5mz
https://paperpile.com/c/Jce6B3/m2u5u
https://paperpile.com/c/Jce6B3/B37x7
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2010) and only edges with a CC of at least 0.6 were retained. Six hub genes (defined by 8 or 

more edges) were identified in the network with most unsurprisingly involved in cell adhesion. 

MCODE identified three modules in the network enriched in cell adhesion-related GO terms. 

When the network was combined with drug-to-transcriptome-response data from the Connectivity 

Map database (Ecker et al., 2012), several small molecules including the histone deacetylase 

inhibitor scriptaid and antiallergenic drug spaglumic acid were predicted to interact with the 

network. Thus the analysis identified potential biomarkers and new therapeutic approaches for 

rectal adenocarcinoma. 

Another differential correlation analysis R package, the Discordant method, uses PCC combined 

with binning to identify differentially correlated genes and modules (Siska et al., 2015). Using 

simulated data sets, the Discordant method outperformed R/Ebcoexpress in computational time 

and accuracy. When the Discordant method was applied to publicly available glioblastoma data 

sets, the hsa-mir-545 was identified as a candidate functional regulator in glioblastoma. The 

Discordant method assumes independence of the bivariate expression levels of gene pairs, which 

is biologically implausible but reduced the computational time required.  

One of the more comprehensive R packages released recently, differential gene correlation 

analysis (DGCA), uses CCs transformed into normalized Z-scores to identify differentially 

correlated genes and modules while performing downstream analysis, including data 

visualization, GO enrichment, and network construction tools (McKenzie et al., 2016). This 

method is similar to Discordant and DiffCorr while also including an FDR cutoff to control the type 

I error rate. Module identification is performed using the network alignment algorithm MAGNA 

(Saraph and Milenković, 2014). DGCA was found to outperform two other methods (DICER (Amar 

et al., 2013) and DiffCoEx (Tesson et al., 2010)) in speed and accuracy on simulated data sets. 

Furthermore, for larger numbers of samples (n > 50), DGCA outperformed R/Ebcoexpress and 

Discordant. 

A primary limitation of the DCEN analysis approach is the computational time and statistical power 

that it requires to apply to all genes in a higher eukaryote (~25,000 protein-coding genes). This 

limitation can be mitigated by performing DCEN on a collection of subsets of genes selected 

based on prior biological knowledge. These gene sets are essentially user-defined modules, and 

thus, the reduced computation time comes at the cost of introducing bias. One example of a tool 

using such an approach is DIfferential Network Analysis (DINA), which identifies differentially 

correlated gene sets between conditions (Gambardella et al., 2013). Publicly available data 

https://paperpile.com/c/Jce6B3/B37x7
https://paperpile.com/c/Jce6B3/yt38X
https://paperpile.com/c/Jce6B3/ffGOq
https://paperpile.com/c/Jce6B3/sodP8
https://paperpile.com/c/Jce6B3/eRiOU
https://paperpile.com/c/Jce6B3/pALxs
https://paperpile.com/c/Jce6B3/pALxs
https://paperpile.com/c/Jce6B3/fPAmN
https://paperpile.com/c/Jce6B3/y2kVj
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consisting of sequence specific transcription factor (SSTF)-pathway associations were combined 

with datasets comprising thousands of microarrays from different tissue types to identify 

coregulated pathways between tissue types in both mouse and human. The DINA analysis 

identified 22 pathways that were coregulated between the tissue types, including pathways that 

were not differentially expressed between tissues. DINA identified the pathways as being 

regulated by nuclear receptor family transcription factors and agrees with the literature. 

Interestingly, YEATS2, a little-studied protein, was predicted to be a negative regulator of 

metabolic pathways in hepatocytes, and subsequently validated through targeted experiments.  

Another challenge of DCEN analysis is identifying modules whose gene members have 

differential coexpression across more than two conditions. Some packages, such as DINA, are 

able to identify correlated modules, but require a gene list as input. A recent algorithm called 

Inference of Multiple Differential Modules (iMDM) was specifically created to work with more than 

two conditions (Ma et al., 2015). iMDM uses PCC-based methods to identify both unique and 

differentially correlated modules between multiple conditions. The algorithm was validated using 

RNA-seq transcriptome profiling data from mouse hearts in four different stages of hypertrophy, 

and identified multiple modules that are both unique and differentially correlated between 

conditions. 

 

Weighted gene co-expression network analysis (WGCNA) 

WGCNA, introduced above, is one of the most popular methods for CC-based DCEN analysis, 

owing in part to its availability as a point-and-click software application and an R software package 

(Langfelder and Horvath, 2008). A key benefit of WGCNA is that it identifies modules based on 

topological overlap and hierarchical clustering, and as such, does not require a hard threshold on 

the adjacency matrix for module detection (Langfelder and Horvath, 2008). While interpretation 

of the results of hierarchical clustering can be subjective, identified modules can be tested with 

GO term enrichment to verify whether the genes share a common function. WGCNA identifies 

differentially correlated genes and modules and performs subsequent downstream analysis 

including data visualization and GO term enrichment via other packages available in R. 

Use of WGCNA has led to the implication of a variety of genes and modules in specific biological 

contexts. For example, WGCNA analysis of T cells implicated the genes GABARAP and MPEG1 

in asthma (Troy et al., 2016). Combined with upstream regulator analysis, the cytokine genes IL2 

https://paperpile.com/c/Jce6B3/xXShl
https://paperpile.com/c/Jce6B3/6EDEL
https://paperpile.com/c/Jce6B3/6EDEL
https://paperpile.com/c/Jce6B3/Z2gQQ
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and IL4 were identified as drivers of the asthma response. WGCNA was also used to investigate 

gene regulation during the various stages of coral development (Reyes-Bermudez et al., 2016). 

Early developmental stage-specific modules were detected that are highly enriched in long non-

coding RNA (lncRNA), suggesting a lncRNA regulatory role in coral gastrulation. When WGCNA 

was applied to human brain development, significant rewiring of regulatory modules was detected 

between pre- and postnatal brain development [60], consistent with a model that brain 

development is organized into multiple stage-specific regulatory networks with little interstage 

overlap. Gene promoter sequence analysis identified specific SSTF binding sites uniquely 

enriched in each module, suggesting module-specific regulation. Finally, WGCNA analysis of skin 

transcriptomes from patients in a psoriasis study that were healthy or treated with a TNF-α 

inhibitor implicated a lncRNA-rich module via the guilt-by-rewiring principle (Ahn et al., 2016).  

WGCNA has also been used to analyze transcriptome datasets spanning multiple tissue types, 

for example in a study of Huntington’s disease (Scarpa et al., 2016) in which both human and 

mouse datasets were used. The analysis yielded multiple insights including the identification of 

an astrocyte-specific module and the identification of the transcription FOXO3 as a candidate 

regulator of the module.  

 

Modified weighted gene correlation network analysis (mWGCNA) 

Several network analysis algorithms in use are variants of WGCNA, of which the most popular 

and best known is DiffCoEx (Tesson et al., 2010). DiffCoEx follows the WGCNA method initially, 

but obtains the adjacency matrix as the difference of correlation matrices between the conditions. 

By design, DiffCoEx detects differentially correlated modules, not gene pairs. DiffCoEx's 

popularity is likely due in part to its inclusion of GO enrichment analysis functionality and the small 

number of tunable parameters required for its operation. 

Klein et al. (Oros Klein et al., 2016) combined WGCNA with a topological overlap matrix (TOM) 

by constructing the TOM of the matrix of gene-gene correlation coefficients and then testing for 

differences in the TOM between sample groups. This approach has high sensitivity for identifying 

differentially correlated gene pairs and modules, but requires user-defined parameters, some of 

which the authors report must be experimentally determined. In their application of the method to 

a transcriptome study of ovarian, lung, breast, and skin cancer samples with different TP53 (p53) 

mutations, Klein et al. detected differential correlation of KIR3DL2, identifying a novel gene in the 

https://paperpile.com/c/Jce6B3/sLlkS
https://paperpile.com/c/Jce6B3/tHIMB
https://paperpile.com/c/Jce6B3/BISfU
https://paperpile.com/c/Jce6B3/fPAmN
https://paperpile.com/c/Jce6B3/GtkRJ
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p53 pathway in cancer. 

In their Differential Correlation Regulatory Analysis (DGCA) approach, Zuo et al. (Zuo et al., 2016) 

combined WGCNA with genome location data (SSTF → target gene) in order to detect differential 

activity of transcriptional regulatory mechanisms. DGCA application to glioma transcriptomes 

identified three SSTFs, ZNF423, AHR, and NFIL3, with differential regulatory signal across tumor 

grades, providing three potential new prognostic indicators. 

 

Mutual information (MI)-based methods 

A third form of DCEN analysis, used mainly to infer transcriptional regulatory relationships, utilizes 

mutual information (MI)-based methods. MI is a measure of dependence between two random 

variables, and like the correlation coefficient, is generally applicable to any type of multivariate 

biological measurement. As with correlation-based networks, MI is sensitive to indirect regulatory 

relationships, introducing spurious edges into the regulatory network. Similar to the method of 

partial correlation coefficients, the use of conditional mutual information (CMI) [64] mitigates this 

problem by using the  mutual information between two variables conditioned on the value of a 

third variable, while also being able to detect direct or indirect relationships. 

Among the widely-used CMI-based methods is Modulator Inference by Network Dynamics 

(MINDy) (Wang et al., 2009), which uses gene expression data from different conditions to identify 

SSTF-target interactions that change based on the expression of a third gene, the modulator. 

Wang et al. (Wang et al., 2009) applied MINDy to transcriptome data from B-cell lymphoma, 

identifying new modulators of the MYC protein. Like all MI-based methods, MINDy has the 

advantage of being sensitive to non-monotonic regulatory relationships. However, MINDy also 

has some limitations, including that it requires data from a large number of samples and is unable 

to detect if a SSTF switches from an activator to a repressor (or vice-versa). The R software 

package Driver-gene Inference by Genetic-Genomic Information Theory (DIGGIT) applies the 

MINDy algorithm to discover master regulator genes responsible for cell states or phenotypes 

(Alvarez et al., 2015). Since DIGGIT factors copy number variation in its calculations, it is best 

suited for cancer-related datasets. Another CMI-based algorithm is Conditional Inference of 

Network Dynamics (CINDy) (Giorgi et al., 2014). Similar to MINDy, CINDy calculates the CMI 

between SSTFs and their targets based on the expression of a signaling protein. In a side-by-

side comparison with MINDy using microarray data, RNA-seq data, and a validated PPI network, 

https://paperpile.com/c/Jce6B3/sO5mz
https://paperpile.com/c/Jce6B3/NR586
https://paperpile.com/c/Jce6B3/NR586
https://paperpile.com/c/Jce6B3/nUgtd
https://paperpile.com/c/Jce6B3/SmPPk
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CINDy outperformed MINDy in terms of both recall and precision and it required half the memory 

(but double the computational time) that MINDy required. Application of CINDy to B cell lymphoma 

transcriptomes revealed a CDK2-HMG1 regulatory interaction. The same CMI-intrinsic limitations, 

described above for MINDy, also apply to CINDy. Another method, CMI2NI (Zhang et al., 2015) 

makes use of a path consistency algorithm which gradually removes redundant edges in a 

network based on conditional dependences. By design, CMI2NI infers an undirected network of 

probable regulatory interactions, in contrast to MINDy and CINDy, which infer directed regulatory 

networks. 

One weakness of SSTF-gene CMI-based approaches (e.g., MINDy and CINDy) is that they 

require SSTFs and their target genes to be co-expressed across the full set of gene expression 

profiles, an assumption that does not hold for many SSTFs in many tissues and in various model 

species (Beer and Tavazoie, 2004). The algorithm Differential Multi Information (DMI) somewhat 

relaxes this biologically implausible requirement by assuming that the target genes of a TF are 

co-expressed if and only if the SSTF is expressed (Gambardella et al., 2015). DMI is 

computationally more efficient than MINDy, but also requires more input information. As such, 

DMI is a complementary tool to MINDy rather than a replacement.  

One of the most powerful CMI based algorithms to be developed recently infers correlated gene 

pairs based on the expression of a modulator, similar to CINDy and MINDy. ModulAted 

Gene/gene set InteraCtion (MAGIC) measures the difference in MI between sample groups to 

identify SSTF-target pairs that have sample group-dependent interactions (Hsiao et al., 2016). 

MAGIC can optionally make use of user-supplied gene lists, and thus it can be operated in either 

a targeted or untargeted mode. When applied to gene expression data from estrogen receptor 

(ER)± breast cancer cell lines, MAGIC revealed a novel ER-mediated FGFR1-FOXP3 interaction. 

From an algorithmic standpoint, MAGIC, which is implemented in MATLAB, is most similar to 

DIGGIT, but requires less computational time. MAGIC can be applied to and integrate multiple 

different types of data such as expression, DNA-methylation, and gene sets.  

 

Network analysis in single-cell RNA-seq 

One of the newest applications of DCENA is analysis of single-cell RNA-seq data. For example, 

DCENA was applied to single-cell gene expression profiles from mouse hippocampal cells from 

three different developmental states (Földy et al., 2016). The network was limited to cellular 

https://paperpile.com/c/Jce6B3/xBOyP
https://paperpile.com/c/Jce6B3/vHccE
https://paperpile.com/c/Jce6B3/E4hmI
https://paperpile.com/c/Jce6B3/nDrCV
https://paperpile.com/c/Jce6B3/B5XOQ
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adhesion, exocytosis, RhoGAP and RhoGEF related genes, and constructed from pairwise PCCs. 

Interestingly, the analysis revealed two distinct subnetworks with minimal overlap, with the first 

subnetwork corresponding to early-developmental expression, and the second subgraph 

corresponding to later-stage expression. Both subnetworks and their independence were highly 

conserved across all cell types, implying that a conserved network is responsible for different 

stages of hippocampal-cell development. In another case, DCENA was applied to single cells 

from different stages of mouse-embryonic fibroblast-derived neuronal cells (Treutlein et al., 2016). 

When filtered to only transcription factors, the analysis revealed three different subnetworks, each 

with high intraconnectivity, and each composed of genes specific to a certain stage. In the 

network, expression of the gene Ascl1 was highly correlated with transcription factors that were 

specific to the initiation and maturation subnetworks while strongly negatively correlated with 

those specific to the MEFs. This supports a previous discovery that Ascl1 maintains a chromatin 

state that enables induced-neuronal cell maturation. Due to the significant increase in sample size 

(in this case, the number of individual cells profiled) for correlation estimation that is made possible 

by single-cell RNA-seq, the technique promises to significantly advance the field of regulatory 

network inference and enable the development of new network reconstruction approaches 

(Gawad et al., 2016; Kolodziejczyk et al., 2015)).  

 

Conclusions and Future Directions 

For all its strengths, DCN as an analytical approach has several challenges that will need to be 

overcome in order for the full potential of the approach to be realized. The most pressing of these 

involves the statistical methods used, both for correlations and module identification (Ideker and 

Krogan, 2012). While there exists an agreed upon set of statistics (FDR, PCC, SCC) that most 

algorithms use, the set will need to be expanded as networks become more complex. This is 

especially true in the context of network inference using multi-omics datasets (e.g., gene 

expression, PPI, metabolomic, protein-DNA, expression quantitative trait locus, or DNA 

methylation data). A second challenge is delineating the "noise" contributions of (i) inherent 

stochasticity of molecular abundances (e.g., cell-to-cell variation in transcript or protein 

abundance due to "gene expression noise" (Elowitz et al., 2002)), (ii) biological variation between 

conditions or genotypes, and (iii) variation due to measurement error. Distinguishing these 

different sources of variation will require advances in methods for "ground-truth" measurement, 

methods for normalization of datasets to account for batch effects, and more mechanistically-

https://paperpile.com/c/Jce6B3/KLobX
https://paperpile.com/c/Jce6B3/oEj71+ZDwYi
https://paperpile.com/c/Jce6B3/0pMtU
https://paperpile.com/c/Jce6B3/0pMtU
https://paperpile.com/c/Jce6B3/K9JDJ
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based statistical models.  

The abundant new insights derived from the studies summarized in this review underscore that 

the analysis of biological networks, and especially differential correlation networks, has significant 

potential to generate new biological knowledge. While an inferred network by itself is a useful 

abstraction whose qualitative analysis can lead to insights, complex biological networks are most 

useful in the context of quantitative analysis to identify key regulators, modules, and functions. 

Most importantly, the amount of biological data we are able to generate continually increases. As 

sequencing costs decline and the amount of starting material required for sequencing is 

decreasing, the field of biological network profiling may approach a point where the limiting step 

in DCN analysis is the implementation and validation of the network analysis algorithms rather 

than the experimental assays (Barabási, 2009). 

  

https://paperpile.com/c/Jce6B3/ZklsV
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Figure 1.1 Basic biological networks. 

Biological networks are visually represented as a series of nodes (red dots), connected by edges 

(lines). Typically, a network represents a snapshot in time, for example, a specific cell state. As 

cells develop, differentiate, or respond to disease, the cellular network changes structure. The 

two networks shown represent a change in cell state. Edges can be directed or undirected, to 

represent direction of flow of biological information. Each node (red dot) has a degree k that 

represents the number of nodes it is connected to. An undirected network has an average degree 

equal to twice the number of edges divided by the number of nodes. The average degree 

represents the average length of the shortest path between any two nodes in the network. Nodes 

that are highly connected are referred to as hubs (blue dot), and in many biological network 

contexts often correspond to essential or functionally significant nodes. Frequently in biological 

networks, nodes cluster together topologically into groups known as modules (e.g., blue circle), 

for example, a group of genes that work together to perform a specific biological function. Nodes 

that mediate communication between modules are referred to as "bottleneck" nodes (green dot).   
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Figure 1.2 Basic differential network. 

Differential networks are generated by "subtracting" two static networks from each other, for 

example, a "baseline" tissue (or cell) state from a "disease" tissue state. 

(A) An example network from a control state. Nodes are shown as circles, and edges are lines, 

with weights representing how strong correlation between nodes is. 

(B) An example network from a disease state. Nodes gain and lose edges, creating a substantially 

different network topology. 

(C) Network B subtracted from network A. Red edges represent loss in correlation between two 

nodes, and green edges represent a gain in correlation. Differential networks allow simple 

visualization of correlation changes between nodes. Nodes that are "rewired" (i.e., that are 

connected in the differential network) are likely to be involved in the maintenance or creation of 

the change in cell state, a principle known as "guilt by rewiring".  
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Figure 1.3 Differential correlation between samples. 

Correlation between genes is determined by plotting normalized expression values of one gene 

vs. another across all biopsies within a biopsy group. Each dot represents a single biopsy and 

several biopsies represent a biopsy group. Correlation is determined by how well a line fits the 

plotted data, not by the slope of the line. SCC and p values (based on the Spearman test for 

independence based on 10,000 resamplings) for each correlation are shown on the plot. 

(A) Gene G1 and G2 show a strong negative correlation in healthy biopsies, but in the disease 

state G1 and G2 correlation becomes positive. RPKM, reads (for this gene) per kilobase per 

million mapped reads, represents normalized gene expression data. 

(B) Gene G1 and G3 show no correlation in healthy biopsies, and their correlation switches to 

strongly positive in the disease biopsies. 

(C) Genes G2 and G3 show positive correlation in healthy biopsies, and additionally stronger 

positive correlation in disease biopsies. Genes that change in correlation between the cell states 

are likely to be involved in creating or maintaining the difference in cell states, making them 

candidates for therapeutics and diagnostics. Blue lines represent best-fit linear regressions and 

indicate positive or negative correlations.  
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Table 1.1 Software used for DCENA 

 
Program Method Software Comments References 

CoXpress PCC R, https://sourceforge.net/projects/coxpress/ Arbitrary cutoff for 

module ID (Watson, 2006) 

DiffCorr PCC R, https://cran.r-

project.org/web/packages/DiffCorr/index.html 

Used for gene 

expression profiling, 

metabolomics, etc  

(Fukushima, 2013) 

MCODE CC http://baderlab.org/Software/MCODE Includes data 

visualization 

(Bader and Hogue, 

2003) 

R/Ebcoexpress CC R, 

http://bioconductor.org/packages/release/bioc/h

tml/EBcoexpress.html 

Has built in data 

visualization 

(Dawson et al., 2012) 

DGCA CC R, https://github.com/andymckenzie/DGCA Requires gene list as 

input (targeted) 

(McKenzie et al., 2016) 

DiNA CC http://dina.tigem.it/ Requires gene list as 

input (targeted) 

(Gambardella et al., 

2013) 

WGCNA CC R, 

https://labs.genetics.ucla.edu/horvath/Coexpres

sionNetwork/Rpackages/WGCNA/ 

Has built in data 

visualization, compatible 

with other R packages 

(Langfelder and Horvath, 

2008) 

iMDM CC Contact authors Meant for multiple 

conditions 

(Ma et al., 2015) 

DiffCoEx WGCNA R, based of WGCNA, see additional file 1 in 

publication 

Requires and uses 

WGCNA 

(Tesson et al., 2010) 

MINDy CMI http://wiki.c2b2.columbia.edu/workbench/index.

php/Home 

 (Wang et al., 2009) 

CINDy CMI http://califano.c2b2.columbia.edu/mindy2-cindy Based on MINDy (Giorgi et al., 2014) 

CMI2NI CMI http://comp-sysbio.org/cmi2ni/index.html  (Zhang et al., 2015) 

DMI CMI http://dmi.tigem.it/ Requires gene list as 

input (targeted) 

(Gambardella et al., 

2015) 

MAGIC CMI MATLAB, https://github.com/chiuyc/MAGIC  (Hsiao et al., 2016) 

DIGGIT CMI R, 

https://www.bioconductor.org/packages/release

/bioc/html/diggit.html 

 (Alvarez et al., 2015) 

 

 

 

 

  

https://paperpile.com/c/Jce6B3/zspmc
https://paperpile.com/c/Jce6B3/XwH56
https://paperpile.com/c/Jce6B3/POUSw
https://paperpile.com/c/Jce6B3/POUSw
https://paperpile.com/c/Jce6B3/i8a1D
https://paperpile.com/c/Jce6B3/sodP8
https://paperpile.com/c/Jce6B3/y2kVj
https://paperpile.com/c/Jce6B3/y2kVj
https://paperpile.com/c/Jce6B3/6EDEL
https://paperpile.com/c/Jce6B3/6EDEL
https://paperpile.com/c/Jce6B3/xXShl
https://paperpile.com/c/Jce6B3/fPAmN
https://paperpile.com/c/Jce6B3/NR586
https://paperpile.com/c/Jce6B3/SmPPk
https://paperpile.com/c/Jce6B3/xBOyP
https://paperpile.com/c/Jce6B3/E4hmI
https://paperpile.com/c/Jce6B3/E4hmI
https://paperpile.com/c/Jce6B3/nDrCV
https://paperpile.com/c/Jce6B3/nUgtd
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Abstract 

Genome-wide mapping reveals chromatin landscapes unique to cell states. Histone marks of 

regulatory genes involved in cell specification and organ development provide a powerful tool to 

map regulatory sequences. H3K4me3 marks promoter regions; H3K27me3 marks repressed 

regions, and Pol II presence indicates active transcription. The presence of both H3K4me3 and 

H3K27me3 characterize poised sequences, a common characteristic of genes involved in pattern 

formation during organogenesis. We used genome-wide profiling for H3K27me3, H3K4me3, and 

Pol II to map chromatin states in mouse embryonic day 12 forelimbs in wild type (control) and 

Pitx2-null mutant mice. We compared these data with previous gene expression studies from 

forelimb Lbx1+migratory myoblasts and correlated Pitx2-dependent expression profiles and 

chromatin states. During forelimb development, several lineages including myoblast, osteoblast, 

neurons, angioblasts, etc., require synchronized growth to form a functional limb. We identified 

125 genes in the developing forelimb that are Pitx2-dependent. Genes involved in muscle 

specification and cytoskeleton architecture were positively regulated, while genes involved in 

axonal pathfinding were poised. Our results have established histone modification profiles as a 

useful tool for identifying gene regulatory states in muscle development, and identified the role of 

Pitx2 in extending the time of myoblast progression, promoting formation of sarcomeric structures, 

and suppressing attachment of neuronal axons.  
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Introduction 

Muscle formation during development is a tightly regulated process. Non-committed mesoderm-

derived cells delaminate, migrate and fuse to form a mature muscle. This process is characterized 

by a series of developmental stages that are determined by a constellation of sequence specific 

transcription factors (SSTFs). Limb muscles originate from somites, the anatomical structures of 

the paraxial mesoderm that form in a rostral-caudal axis. The dermomyotome develops as a 

dorsal epithelium of the early somite and gives rise to skeletal muscles. The dermomyotome is 

subdivided into hypaxial and epaxial that give rise to the lateral trunk musculature and deep back 

muscles, respectively. Myogenic precursors in the dermomyotome express the paired 

homeodomain factors Pax3, Pax7 and the basic Helix-Loop-Helix transcription factor Myf5 

(Goulding et al., 1994; Jostes et al., 1990; Kiefer and Hauschka, 2001). The Pax3+ cells maintain 

their proliferative and undifferentiated status by external cues from the lateral plate mesoderm 

and surface ectoderm (Amthor et al., 1999). Limb myogenesis is initiated upon positive signaling 

by Wnt from the dorsal neural tube (Cossu et al., 1996) and Shh from the floor plate and notochord 

(Gustafsson et al., 2002). BMP signaling from the lateral plate mesoderm inhibits Myod while 

BMP signaling from the dorsal neural tube inhibits Myf5 (and thus myogenesis). In the limb, many 

cells co-express Pax3 and Myf5 as the progenitor cells that have entered the myogenic program 

need a more extended myoblast state before differentiation. Some of the Pax3+ cells remain as 

reserve cells and subsequently express Pax7, Myod, and Myogenin (Shih et al., 2007a). As cells 

enter the myogenic program, Pax3 regulates enhancer elements of Myf5. The transcription of 

Myf5 is regulated in a spatiotemporal manner by a large number of upstream enhancers 

distributed over 100kb (Carvajal et al., 2008). It has been shown that Pax3 regulates Myf5 

expression from two known cis regulatory elements, one in the hypaxial somite at -110kb and 

another in the limbs at -57.5kb (Carvajal et al., 2008). 

Pitx2 is a homeodomain transcription factor expressed in the lateral plate mesoderm, and in 

muscle anlagen during all stages of myogenic progression (Shih et al., 2007a, 2008). Pitx2 

somatic null mutants die between embryonic day (E) 12.5 and E14.5 due to arrest of organ 

development (Gage et al., 1999; Kitamura et al., 1999; Lin et al., 1999; Lu et al., 1999). Pitx2 is a 

competence factor required for the temporally ordered and growth factor-dependent recruitment 

of a series of specific co-activator complexes that prove necessary for Ccnd2 gene induction 

(Kioussi et al., 2002). Pitx2 contributes to specification of the anatomical context that surrounds 

the muscle, including the jaw (Shih et al., 2007b) and the abdominal wall (Eng et al., 2012). Pitx2 

regulates the relative amounts and types of cytoskeletal proteins that are produced as muscle 
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cells assemble into muscles and contributes to the higher order muscle assembly (Campbell et 

al., 2012a). 

Protein-DNA interactions comprise the genetic regulatory networks (GRNs) that exist in any cell. 

These GRNs are responsible for maintaining cellular identity and managing differentiation in 

response to internal or external stimuli (Davidson et al., 2002). They consist of a multitude of 

SSTFs interacting directly with DNA and each other in a highly regulated manner throughout the 

entire genome. Understanding these GRNs is required to understand the drivers of biological 

changes in a cell, and is enabled by sequencing of the chromatin (Chip-seq), which allows for 

mapping specific protein-DNA interactions across the whole genome (Park, 2009). 

Histone modifications control both gene repression and transcription, including CRM activity 

(Birney, 2012). The chromatin mark Histone H3 lysine 4 trimethylation (H3K4me3) is associated 

with open chromatin, promoter regions carried out by the Trithorax (trxG) activator protein 

complex, and frequently found in the presence of RNA polymerase II (Pol II). The modification 

Histone H3 lysine 27 trimethylation (H3K27me3) is associated with closed chromatin and gene 

repression, carried out by the Polycomb (PcG) repressor protein complex (Guenther et al., 2007). 

However, H3K4me3 and H3K27me3 often co-occur and bivalently mark chromatin, most often in 

promoter regions (Bernstein et al., 2006). Genes under bivalent promoters tend to show low levels 

of transcription, but are poised before being activated once the cell commits itself to a lineage 

(Mikkelsen et al., 2007a). Identification of bivalent chromatin is an important factor for decoding 

gene regulatory networks in development. 

The chromatin states of mouse E12 forelimbs from control and Pitx2 somatic-null mice were 

analyzed for H3K4me3, H3K27me3 and Pol II signatures. Correlation studies were performed for 

the sequences marked with different signatures. Differential enrichment of histone marks and Pol 

II were observed around a number of Pitx2 target genes identified in Lbx1EGF/+ migratory 

myoblasts (Campbell et al., 2012a). Quantitative real-time PCR assays (qPCR) assessed gene 

expression and revealed that the H3K27me3 chromatin mark best predicted relative gene 

expression. Collectively, these studies suggest that Pitx2 dynamically regulates the chromatin 

state of genes involved in the myoblast proliferative state and axonal path finding in the developing 

forelimb. 

  

Materials and Methods 
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Mice 

All research was conducted according to the protocols reviewed and approved by the Oregon 

State University Institutional Animal Care and Use Committee. The Pitx2+/Z mouse line was 

maintained on an outcrossed ICR background. Noon on the day of a vaginal plug was considered 

embryonic day (E) 0.5. Yolk sacs of embryos were used for genotyping. 

 

Gene Expression Arrays in Mouse Forelimb Migratory Myoblasts 

Pitx2 target genes in mouse Lbx1+ migratory muscle cells from E12.5 Lbx1EGFP/+/Pitx2+/+ (WT) [27] 

and Lbx1EGFP/+/Pitx2Z/Z (MT) mice (Campbell et al., 2012b) forelimbs, the dataset GSE31945 NCBI 

Gene Expression Omnibus and subsets of GSM791677, GSM791678, GSM791683, and 

GSM791684 were used (Table 2.S1). All data analysis was done in R using the Bioconductor 

package and its components (Gentleman et al., 2004). GEO data was first imported into R using 

the GEOquery package (Davis and Meltzer, 2007). The Simpleaffy package was used to 

normalize all datasets based on the RMA algorithm. Subsequent analysis and comparison was 

performed using the Limma Packageactive (Smyth, 2005). Relevant Pitx2 target sequences were 

identified as coding sequences with a significant fold-change difference between WT and MT of 

an adjusted P value < 0.1 (Benjamini-Hochberg FDR). 

 

Chip-Seq Data Analysis 

ChIP seq data was analyzed from dataset GSE49010 representing day E12.5 forelimbs from 

Pitx2+/+ (WT) and Pitx2Z/Z (MT) mouse as described previously (Eng et al., 2014). WT data was 

obtained from our previous GSE49010 while MT data was newly generated and deposited in 

NCBI GEO under GSE71128 (Campbell et al., 2012a). Fastq files along with their inputs were 

aligned to the mouse genome (mm10/NCBI38) reference assembly using Bowtie2 version 2.2.3, 

with default parameters (Langmead and Salzberg, 2012). Samtools version 1.0 was used to 

convert the aligned.sam files into sorted.bam files (Li et al., 2009). The bedtools version 2.12.0 

command bamToBed was used to convert the sorted.bam files into.bed files. The peak-calling 

algorithm MACS version 2.1.0 was used to identify regions of the mouse genome significantly 

enriched in the ChIP-seq samples over the controls (Zhang et al., 2008). MACS2 was run with 

the following parameters: “-f BAM -B --SPMR --broad --broad-cutoff 0.1 -g 1.87e9 –shiftsize 80.” 
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The function annotatepeaks.pl from Homer version 4.7 was used for annotation and comparison 

of called peaks (Heinz et al., 2010). Peaks were assigned to genes if the gene nearest to the peak 

was less than 2,000 bp away from the gene’s TSS. The function mergepeaks.pl with “-d given” 

was used to determine overlapping peaks of different chromatin marks within each sample, and 

to identify genes with different chromatin states between WT and MT. The annotatepeaks.pl 

function was used separately with the -hist option to generate bins of ChIP fragment density 

centered around the transcription start sites of known transcripts. The output bed and bedgraph 

files were converted to bigbed and bigwig, respectfully. The resulting files were visualized with 

the UCSC genome browser (Karolchik et al., 2003). Raw sequences from MT forelimbs was 

deposited in the NCBI Gene Expression Omnibus GSE71128. 

 

Results 

Pitx2-dependent chromatin state of mouse forelimbs 

Muscle forelimbs are distorted and fail to form higher order muscle assembly in the absence of 

Pitx2 (Campbell et al., 2012a). The altered expression profile of numerous gene families is the 

result of changes in the chromatin state due to the absence of Pitx2 functional protein in muscle 

cells. To correlate gene expression and chromatin state, ChIP-seq analyses for H3K4me3, 

H3K27me3 and Pol II in WT and MT E12 forelimbs were performed and their signatures 

compared. Mouse E12 forelimb harbors several muscle lineages and, to maximize fidelity, the 

current analysis is focused on the Pitx2 target sequences in the Lbx1 lineage (Campbell et al., 

2012a, 2012b). 

The R Bioconductor package and components were applied as described in the materials and 

methods section. The Pitx2-regulated 125 protein-coding transcripts identified by microarray 

(Campbell et al., 2012b), will be referred to as Pitx2 targets from herein. However, chromatin 

marks based on the peak-calling algorithm were exhibited only in the promoter region (0-2,000bp) 

or gene body domains (exons, introns, and 5’ and 3’ un-transcribed sequences), called loci from 

herein, of 101 Pitx2 target transcripts in WT and 103 in MT (Table 2.1). Pitx2 targets were grouped 

based on the combinations of H3K4me3, H3K27me3, and Pol II present at loci using Homer tools 

mergepeaks. No loci were marked with only Pol II, or with both H3K27me3 and Pol II. Summing 

loci for each mark resulted in 35% occupied by Pol II in WT (35/101) and 28% in MT (29/103). 

Likewise, 18% of the loci were occupied by only H3K4me3 in WT (18/101) and 22% were 
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https://paperpile.com/c/ScUj8x/RvBFS+xU25K
https://paperpile.com/c/ScUj8x/RvBFS+xU25K
https://paperpile.com/c/ScUj8x/xU25K
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occupied in MT (23/103), while only 13% (13/101) and 12% (12/103) were occupied only by 

H3K27me3 in WT and MT respectively. Pol II promoter occupancy is correlated with active gene 

expression in the presence of H3K4me3 (Guenther et al., 2007). The majority of Pitx2 targets 

were occupied by both H3K4me3 and H3K27me3, 36% in WT (36/101) and in 37% in MT 

(38/103), while the trivalent state, H3K4me3, H3K27me3 and Pol II occupancy, represented 13% 

of the targets in WT (13/101) and 7% in MT (7/103). Venn diagrams illustrate the overlap of 

chromatin marks (Pol II, H3K27me3, and H3K4me3) in WT and MT (Figure 2.1). Bivalently 

marked loci are found at higher frequency in embryonic stem cells (Bernstein et al., 2006) than in 

committed postmitotic cells (Mikkelsen et al., 2007b). The presence of numerous poised, inactive 

(bivalent) loci at E12 forelimbs, in both WT and MT mice, suggests that genes involved in 

patterning and organ development are stalled to allow the next set of genes to be activated and 

establish the next developmental state of the mitotic cells. The strong increase of solely H3K4me3 

(22%) activated loci in combination with the decreased poised trivalent loci (54%) in MT suggests 

that Pitx2 negatively regulates the transcription of its targets. 

 

Mapped read distribution around Refseq TSSs 

The confirmed changes in chromatin state in Pitx2 target transcripts was followed by analysis of 

the patterning changes in the chromatin distribution. Homer tools v4.7 was used to generate tag 

density plots (Figure 2.2A-D) in different sequence sets. The detected tag density for all three 

marks were in accord with all sequences in the genome (Figure 2.2A), (Barski et al., 2007). The 

overall tag density was higher in the WT biopsies relative to the MT. This follows for all marks and 

persists despite the normalization of tag density for mapped reads. Examination of tag densities 

around the Pitx2 target transcripts (Figure 2.2B) showed a similar pattern. All curves appeared 

slightly less sharp due to the smaller sampling size (20K total transcripts vs. 125 Pitx2 target 

transcripts). The density of H3K27me3 tags became increasingly noisy, but the two-peak 

distribution remained visible. The tag density of H3K4me3 and Pol II was decreased, while tag 

density of H3K27me3 was increased in both WT and MT. These data imply that chromatin was 

more condensed around identified Pitx2 target transcripts, relative to all transcripts in both WT 

and MT. When compared to all identified Pitx2-target, non-SSTF transcripts (Figure 2.2C), an 

almost identical pattern emerged (Figure 2.2C). This pattern remained the same in the Pitx2 target 

SSTFs but was noisy due to the smaller transcript number (Figure 2.2D). In summary, embryonic 

forelimb chromatin for all genomic sequences was marked for H3K4me3 and Pol II, with dynamic 

https://paperpile.com/c/ScUj8x/pM7Z7
https://paperpile.com/c/ScUj8x/aui3D
https://paperpile.com/c/ScUj8x/YI8Y2
https://paperpile.com/c/ScUj8x/SEtqa
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changes between WT and MT. Chromatin was rich for H3K4me3 marks, and for H3K4me3 and 

H3K27me3 for SSTF targets, suggesting that SSTF chromatin harbors active and inactive 

domains to determine distinct cell lineages as myogenesis progresses.  

 

Chromatin state of Pitx2 target genes 

To investigate the link between chromatin state and gene expression, the chromatin state around 

Pitx2 target genes in the Lbx1 lineage was visualized in detail (Table 2.1). Chromatin profiling for 

H3K4me3, H3K27me3 and Pol II in coding, and 5’ and 3’ non-translated sequences identified 

active and repressed domains (Figure 2.3). Analysis indicated that 23 transcripts (Table 2.1, 

indicated as bold) including Pitx2 exhibited differential chromatin marks. These genes are 

involved in organogenesis (Pitx2, Rfx8, Ebf1, Acta2), neurogenesis and axon path-finding (Astn1, 

Mab21l1, Tubb3, Dcx, Nrcam, Cadps, Lin7, Zswim5), transport (Ddah1, Slco3a1, Atp1b1), cell 

cycle (Csrnp3), cytoskeleton and organelle organization (Hook1, Cntn2, Crmp, Stmn2, Nol4, 

Lamp5), myogenesis (Fstl5) and osteogenesis (Skor1). 

Genes were clustered in six groups based on the chromatin signature of the WT myoblasts. 

Genes that exhibited H3K4me3, H3K27me3 and Pol II presence, trivalent state (Figure 2.3A; 

Pitx2, Ebf1, Nol4, Slco3a1, Zswim5, Ddah1). Genes that exhibited H3K4me3 and Pol II presence, 

activated state (Figure 2.3B; Atp1b1, Mab21l1, Astn1, Csnrp3, Hook1). Genes that exhibited 

H3K4me3 and H3K27me3 presence, bivalent state (Figure 2.3C; Lin7). Genes that exhibited only 

H3K4me3 presence, open chromatin (Figure 2.3D; Hook1). Genes that exhibited only H3K27me3 

presence, closed chromatin (Figure 2.3E; Scor1). Genes that did not exhibit any chromatin 

signature in the WT (Figure 2.3F; Fstl5). 

Pitx2 mutants were generated by ablation of the homeodomain located between exon 4 and 5. 

ChIP-seq analysis indicated the expected absence of signature in the ablated sequences that 

was used as a technical control (Figure 2.3A). The Pitx2 locus was trivalent in WT while the Pol 

II signature was missing in MT due to the truncated protein. Ebf1, a helix-loop-helix transcription 

factor, is involved in B-cell lymphopoiesis (Hagman et al., 1993) in positioning the mesenchyme-

derived ulna and radius and connective tissues surrounding tendons (Mella et al., 2004) and 

adipogenesis (Jimenez et al., 2007). While Elf1 was in the trivalent state in WT forelimbs, it was 

in an active state in the MT, suggesting that Pitx2 represses its activity towards the adipogenic 

and cartilage formation pathways. 

https://paperpile.com/c/ScUj8x/BGQp8
https://paperpile.com/c/ScUj8x/8gQxn
https://paperpile.com/c/ScUj8x/htFY3
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The solute carrier organic anion transporter family member 3a1 (Slco3a1), associated with 

pathways that transport glucose, bile salts, organic acids, metal ions and amino acids, was 

inhibited by Pitx2 (Figure 2.3A). The dimethyl arginine dimethylaminohydrolase (Ddah1) plays a 

role in nitric oxide generation by regulating cellular concentrations of methylarginines, which in 

turn inhibit nitric oxide synthase activity, and is highly expressed during forelimb development 

(Breckenridge et al., 2010). While Ddah1 is in a trivalent state in WT, it is activated in the MT 

suggesting that Pitx2 acts as a repressor at this locus (Figure 2.3A). 

The sodium/potassium-transporting ATPase subunit beta-1 (Atp1b1), an integral membrane 

protein responsible for establishing and maintaining the electrochemical gradients of Na and K 

ions across the plasma membrane, was active in WT with open chromatin in MT (Figure 2.3B), 

suggesting that Pitx2 regulates  Na transport during limb development. Mab21l1 is a downstream 

target of transforming growth factor beta (TGFß) signaling (Mariani et al., 1999) and is involved 

in development of several organs including limb, neuronal and vascular systems (Heanue and 

Pachnis, 2006; Wong and Chow, 2002). Mab21l1 exhibited domains with a trivalent signature in 

MT while the H3K27me3 inactivation signature was missing in WT (Figure 2.3B). Mab21l1 is 

expressed in similar tissues with Pitx2, and Mab21l1 mutants are characterized by axial turning 

and abdominal malformations similar to Pitx2. The chromatin signature in the forelimb suggests 

that Pitx2 promotes Mab21l1 activation. Astrotactin, Astn1, is a neuronal adhesion molecule that 

acts as a ligand for glial-guided migration of neuroblasts (Adams et al., 2002). Astn1 domains 

enriched for H3K4me3 and Pol II were located close to the TSS (Figure 2.3B). The absence of 

the Pol II signature in MT suggests that its active transcription is Pitx2-regulated. Cysteine and 

Glycine-Rich Protein 3 (Csrnp3) promotes myogenic differentiation by acting as a cofactor of 

Myod, myogenin and MRF4 to increase their interactions with specific DNA regulatory elements 

(Kong et al., 1997). Csrnp3 also acts as a scaffold protein that promotes the assembly of 

macromolecular complexes along sarcomeres and cytoskeleton (Arber et al., 1997). The Csrnp3 

locus was active in MT with H3K4me3 and Pol II occupancies, while in WT the Pol II signature 

was missing (Figure 2.3B). The Csrnp3 locus harbored active regulatory regions just downstream 

of the TSS suggesting that Pitx2 regulates Csrnp3 active regulatory regions and extends the 

myoblast state before their commitment to specified lineages. 

Lin7, plays a role in establishing and maintaining the asymmetric distribution of channels and 

receptors at the plasma membrane of polarized cells, and in stabilizing the cell junctions (Bohl et 

https://paperpile.com/c/ScUj8x/0w6JR
https://paperpile.com/c/ScUj8x/NtwVe
https://paperpile.com/c/ScUj8x/cxbUR+u767K
https://paperpile.com/c/ScUj8x/cxbUR+u767K
https://paperpile.com/c/ScUj8x/af5Pa
https://paperpile.com/c/ScUj8x/57b1l
https://paperpile.com/c/ScUj8x/j0I9z
https://paperpile.com/c/ScUj8x/yLWlL
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al., 2007). Lin7 was characterized by a bivalent chromatin state in WT and open chromatin in MT, 

suggesting that Pitx2 regulates cell polarization during limb development. 

Hook homologue 1, Hook 1, is expressed in tubular endosomes and facilitates the directed 

recycling of clathrin-independent endocytosis cargo proteins, such as CD98 and CD147, through 

its interaction with microtubules and their cytoplasmic sequences on sorting endosomes 

(Maldonado-Báez et al., 2013). This sorting provides a means to monitor protein quality control 

of cell surface proteins. The Hook1 locus was active to transcription in MT, occupied by H3K4me3 

and Pol II, while the Pol II mark was missing in WT (Figure 2.3B). This chromatin change suggests 

that Pitx2 influences the activity of this locus and the ability of myoblasts to segregate and rapidly 

recycle proteins, an activity that is carefully regulated in tissues during development. 

The Ski family transcriptional corepressor 1, Skor1, interacts with Lbx1 and cooperatively 

represses transcription and acts as a transcriptional corepressor for Lbx1 in regulating cell fate 

determination in the spinal cord (Mizuhara et al., 2005). Skor1 interacts with general 

transcriptional corepressors, such as Hdac1, Ctbp and Grg1. Skor1 represses TGFß signaling 

through inhibition of transcriptional activity of Smad proteins and negative regulation of the bone 

morphogenetic proteins (BMPs) (Arndt et al., 2007). BMPs serve multiple functions in many cell 

and tissue types including proliferation, apoptosis, differentiation, chemotaxis, angiogenesis and 

matrix production during embryogenesis (Luo et al., 2004). The Skor1 locus was poised in MT 

and repressed in WT (Figure 2.3A) suggesting that Pitx2 represses the Skor1-mediated 

repression cascade involved in specification of the osteogenic lineage during development. 

Folistatin like 5, Fstl5, a calcium binding protein, is involved in axonal guidance of DRG neurons 

during development (Masuda et al., 2009). The H3K4me3 occupancy in the Fstl5 locus was 

exhibited only in the MT (Figure 2.3F), suggesting that Pitx2 represses Fstl5 activity in myoblasts 

as they migrate along with peripheral neuronal axons. 

Genes involved in cell growth, organogenesis, lineage specification and cytoskeleton organization 

were characterized with inactive chromatin domains in the absence of Pitx2. Genes involved in 

axonal pathfinding and muscle differentiation were characterized with active regulatory chromatin 

domains in the absence of Pitx2. Pitx2 might regulate chromatin regions involved in different areas 

of myoblast integrity, specification and muscle formation. Chromatin signatures indicated a 

complex gene network required at each developmental stage as several lineages intermingle to 

form a functional organ. 

https://paperpile.com/c/ScUj8x/yLWlL
https://paperpile.com/c/ScUj8x/8yhmz
https://paperpile.com/c/ScUj8x/JPsA5
https://paperpile.com/c/ScUj8x/55BCQ
https://paperpile.com/c/ScUj8x/8rEoR
https://paperpile.com/c/ScUj8x/JtRnH
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Discussion 

Genome wide association studies like chromatin profiling are useful tools to map regulatory 

activity in the genome, and when combined with gene expression data, a much more precise 

model of regulatory networks can be developed. In this study, we combined gene expression data 

from lineage-specific Lbx1EGFP/+ E12 mouse forelimb myoblasts with ChIP-seq data of histone 

modifications in E12 forelimbs to identify regulatory sequences influenced by Pitx2. Several 

transcripts were differentially expressed in WT and MT migratory myoblasts using new packages 

in R to re-analyze our previous micro-array data (Campbell et al., 2012b). Many of the identified 

transcripts with known functions play a role in the development of nervous system and/or 

cytoskeletal organization of the myofibers, further supporting previous observations (Campbell et 

al., 2012a, 2012b) that Pitx2 regulates higher order architectural assembly of the developing 

muscle. 

The chromatin states around Pitx2-regulated transcripts exhibited a two-fold greater frequency of 

trivalent poised target transcripts in MT relative to WT (13% vs. 7%). This increase in inactive but 

poised target transcripts could imply that ablation of Pitx2 at this stage in the embryonic forelimb 

created a time-shift,“stalled cells”, during development. Transcripts that are normally “repressed” 

were switched to “poised” due to deposition of excessive H3K4me3, thus priming them for later 

activation. The temporal shift is further supported by the 22% increase in transcripts marked solely 

with H3K4me3 in MT. 

Even though the Pitx2 targeted transcripts were identified from Lbx1+ lineage myoblasts, changes 

in the chromatin state of many target transcripts in the whole forelimb were also identified by 

MACS2. The whole forelimbs contain vascular, bone, and other cell types, which generate noise 

in the data sets, likely to be responsible for disagreements between the expression profiling data 

and chromatin state. Additionally, Homer tools was used to create tag-density plots around 

different subsets of transcripts in the E12 mouse genome. The average H3K4me3 signal was 

decreased in both WT and MT around all target transcripts relative to all transcripts, especially 

the SSTFs, suggesting that at this developmental stage the target transcripts are less active than 

all other transcripts, on average. This observation was supported by the exact same trend in the 

Pol II occupancy data, and the large increase in H3K27me3 signal density. In general, the WT 

tag density was greater than the MT tag density despite normalization per million reads. This 

https://paperpile.com/c/ScUj8x/xU25K
https://paperpile.com/c/ScUj8x/RvBFS+xU25K
https://paperpile.com/c/ScUj8x/RvBFS+xU25K
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persisted with the target transcripts for both the SSTFs and non-SSTFs data. An increase in 

H3K4me3 tag density around target transcripts in MT was expected, but the opposite was 

observed. Because this pattern is seen in every case, it is most likely an artifact of the 

normalization method. Homer tools does not have the option to generate tag-density plots relative 

to the input controls, which further exacerbates the difference. Increased WT signal strength is 

not significantly shown in the bigwig visualization with the UCSC genome browser, which takes 

the fold enrichment over input controls into account. 

 

Conclusion 

Genes regulated by Pitx2 in mouse embryonic forelimb are involved in neuronal, muscular and 

bone development. Pitx2 promotes myogenesis by extending the myoblast state while 

maintaining the availability of genes involved in axon pathfinding and osteogenesis in a poised 

state.  
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Figure 2.1 Chromatin state changes in Pitx2 Mutants 
Venn diagrams illustrating the co-occurrence of enriched regions around identified Pitx2 target 
sequences in WT and Pitx2 MT forelimbs, respectively. The MT data are represented by darker 
shades. Green represents H3K4me3; red represents H3K27me3; and gray represents Pol II in 
each sample. Homer v4.7 was used to match each identified target sequence to its nearest peaks.   
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Figure 2.2 
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Figure 2.2 Constant tag density in Wild-Type and Pitx2 Mutants 
(A) Normalized tag densities around each known Refseq TSS for all three marks in WT and MT. 
Homer v4.7 annotatePeaks.pl was used to count the number of aligned reads around Refseq 
TSSs by scanning in 5bp bins. The average number of reads per bin per sequence is plotted on 
the y axis against the distance of the bin from the TSS. 
(B) Normalized tag densities around only the 125 Pitx2 target sequences identified. 
(C) Normalized tag densities around only the subset of SSTFs from (B). 
(D) Tag densities around all sequences not in (C).  
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Figure 2.3 
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Figure 2.3. Pitx2-dependent chromatin state of mouse embryonic forelimbs 
UCSC genome browser visualization of selected gene loci. Genes were selected based on strong 
H3K27me3 marked chromatin, and/or high relative fold changes determined from the GSE31945 
array data. WT and MT tracks of the same mark are overlaid. H3K4me3 is represented by green, 
H3K27me3 red, and Pol II gray. MT tracks are illustrated by the darker shades. 
(A) Trivalent, poised genes H3K4me3/H3K27me3/Pol II. 
(B) Activated genes (H3K4me3/Pol II). 
(C) Bivalent genes (H3K4me3/H3K27me3). 
(D) Genes with open chromatin (H3K4me3). 
(E) Genes with close chromatin (H3K27me3). 
(F) Genes with no significant chromatin signature.  



45 

 

Table 2.1 Pitx2 Target Genes in Migratory Myoblasts 

Gene name Gene Symbol Adjusted 

P. Val 

FC 

MT/WT 

Function Chr Chromatin State 

WT 

Chromatin State 

MT  

Paired-like homeodomain transcription factor 2 Pitx2 6.21E-105 -29.06 organogenesis, cell cycle 3 K4|K27|Pol II K4|K27 

T-box 1 Tbx1 1.72E-04 -2.17 organogenesis 16 K4|K27 K4|K27 

LSM12 homolog (S. cerevisiae) Lsm12 3.96E-04 -2.11 RNA processing 11 K4|Pol II K4|Pol II 

Fibroblast growth factor 15 Fgf15 3.92E-03 -1.94 organogenesis 7 K4|K27 K4|K27 

Phosphatidylinositol 4-kinase, catalytic, beta 

polypeptide 

Pi4kb 3.76E-03 -1.94 phospholipid metabolism 3 K4|Pol II K4|Pol II 

SRY-box containing gene 6 Sox6 3.92E-03 -1.94 cartilage development 7 NA NA 

Zinc finger protein 64 Zfp64 4.88E-03 -1.92 promotes osteogenesis 2 K4|Pol II K4|Pol II 

TRAF3 interacting protein 3 Traf3ip3 4.65E-03 -1.92 autophagy 1 NA NA 

DPH5 homolog (S. cerevisiae) Dph5 5.00E-03 -1.91  3 K4|Pol II K4|Pol II 

Golgi transport 1 homolog B (S. cerevisiae) Golt1b 1.12E-02 -1.85 vesicle transport 6 K4|Pol II K4|Pol II 

Polyadenylate binding protein-interacting protein 1 Paip1 1.12E-02 -1.85  13 K4|Pol II K4|Pol II 

Rho GTPase activating protein 29 Arhgap29 1.12E-02 -1.85 tubulogenesis 3 K4|Pol II K4|Pol II 

Potassium large conductance calcium-activated 

Channel, subfamily M, alpha member 1 

Kcnma1 1.46E-02 -1.83 synaptic transmission,  14 K4|K27 K4|K27 

Coiled-coil domain containing 141 Ccdc141 1.88E-02 -1.81 neural induction 2 K4 K4 

Kelch-like 4 (Drosophila) Klhl4 2.03E-02 -1.81  X NA NA 

Cathepsin S Ctss 3.05E-02 -1.77 endopeptidase activity 3 NA NA 

Endonuclease domain containing 1 Endod1 4.03E-02 -1.75 apoptosis – KEGG 9 K4|Pol II K4|Pol II 

Sushi-repeat-containing protein, X-linked 2 Srpx2 3.98E-02 -1.75 synaptogenesis  X NA NA 

Actin, alpha 2 Acta2 4.79E-02 -1.73 vasculogenesis  19 K4|Pol II NA 

Regulatory factor X 8 Rfx8 5.16E-02 -1.72 pancreas development 1 K4|Pol II K4 

Reprimo Rprm 5.68E-02 -1.71 cell cycle  2 K4 K4 

Actinin alpha 3 Actn3 5.97E-02 -1.71 muscle contraction 19 K4|Pol II K4|Pol II 

Lymphatic vessel endothelial hyaluronan receptor 1 Lyve1 6.30E-02 -1.71 polysaccharide catabolism 7 NA NA 

Hydrolethalus syndrome 1 Hyls1 7.32E-02 -1.69 ciliogenesis 9 K4|Pol II K4|Pol II 

Complement component 3a receptor 1 C3ar1 8.99E-02 -1.67 locomotion  6 NA NA 

Myomesin 2 Myom2 9.36E-02 -1.67 muscle contraction 8 NA NA 

Zinc finger, SWIM domain containing 5 Zswim5 9.68E-02 1.67 CNS 4 K4|K27|PolII K4 

Lectin, galactoside binding-like Lgalsl 9.02E-02 1.67 carbohydrate binding 11 K4|Pol II K4|Pol II 

Astrotactin 1 Astn1 8.15E-02 1.68 neuron migration/adhesion 1 K4|Pol II K4 

Homeo box D4 Hoxd4 8.57E-02 1.68 pattern specification 2 K4|K27 K4|K27 

Lipid Phosphate Phosphatase-Related Protein Type 1 Lppr1 7.43E-02 1.69 neurite outgrowth 4 K4 K4 

Bruno-like 5, RNA binding protein (Drosophila) Celf5 7.43E-02 1.69 myotonic dystrophy 10 K4|K27 K4|K27 

Dimethylarginine dimethylaminohydrolase 1 Ddah1 7.48E-02 1.69 amino acid transport  3 K4|K27|PolII K4|PolII 

RIKEN cDNA 4933400N17 gene Rbfox1 7.72E-02 1.69 myotonic dystrophy 16 K4 K4 

Fatty acid binding protein 7, brain Fabp7 7.32E-02 1.69 Neuromuscular process 10 NA NA 

Family with sequence similarity 57, member B Fam57b 7.32E-02 1.69 inhibition of adipogenesis 7 NA NA 

Transcription factor AP-2, alpha Tfap2a 6.96E-02 1.7 direct regulator of Bmp2, 4 13 K4|K27|PolII K4|K27|Pol II 

Solute carrier family 32 member 1 Slc32a1 5.94E-02 1.71 neurotransmitter transport 2 K27 K27 

Myosin, heavy polypeptide 7, cardiac muscle, beta Myh7 5.97E-02 1.71 muscle contraction 14 NA NA 

Coxsackie virus and adenovirus receptor Cxadr 4.79E-02 1.73 cell junction, myogenesis 16 K4|Pol II K4|Pol II 

Fasciculation and elongation protein zeta 1 (zygin I) Fez1 4.77E-02 1.73 microtubule organizing  9 NA NA 

Peroxisome proliferative activated receptor, gamma Ppargc1a 4.35E-02 1.74 insulin signaling – KEGG 5 K4 K4 

CUGBP, Elav-like family member 4 Celf4 4.51E-02 1.74 spliceosome assembly 18 K4|K27 K4|K27 

Hook homolog 1 (Drosophila) Hook1 4.13E-02 1.74 cytoskeleton 4 K4 K4|Pol II 

Microtubule-associated protein 2 Map2 4.35E-02 1.75 axonogenesis 1 K4 K4 

RAS oncogene family member 3C Rab3c 3.67E-02 1.75 exocytosis 13 K4 K4 

Follistatin-like 5 Fstl5 3.45E-02 1.76 muscle growth 3 NA K4 

Homeo box D3 Opposite Strand Hoxd3os1 3.36E-02 1.76  2 K4|K27 K4|K27 

Early B-cell factor 1 Ebf1 3.52E-02 1.76 adipogenesis 11 K4|K27|Pol II K4|Pol II 

Calcium channel, voltage-dependent, alpha 2/delta 

Subunit 2; similar to Cacna2d2 protein 

Cacna2d2 3.13E-02 1.77 muscle synaptic transmission 9 K4|K27 K4|K27 

Transcription factor 21 Tcf21 3.11E-02 1.77 organogenesis 10 K27 K27 

Homeo box B5 Opposite Strand Hoxb5os 3.10E-02 1.77  11 K4|K27 K4|K27 

Neural proliferation, differentiation and control gene 1 Npdc1 3.05E-02 1.77  2 K4|K27 K4|K27 

Homeo box B2 Hoxb2 3.05E-02 1.77 pattern specification 11 K4|K27|PolII K4|K27|PolII 

Cysteine-serine-rich nuclear protein 3 Csrnp3 3.09E-02 1.77 apoptosis 2 K4 K4|Pol II 

Solute carrier organic anion transporter 3a1 Slco3a1 2.82E-02 1.78 organic anion transport 7 K4|K27|PolII K4 

Runt-related transcription factor 1 Runx1t1 2.86E-02 1.78 fat cell differentiation 4 K4|Pol II K4|Pol II 

Basonuclin 1 Bnc1 2.41E-02 1.79  7 K4|K27 K4|K27 

Meis homeobox 2 Meis2 2.58E-02 1.79 organogenesis 2 K4|K27|PolII K4|K27|PolII 

Mab-21-like 1 (C. elegans) Mab21l1 1.89E-02 1.81 neurons 3 K4|Pol II K4|K27|PolII 

Protocadherin 8 Pcdh8 1.52E-02 1.83 cell adhesion, muscle 14 K4|K27 K4|K27 

Neurexin III Nrxn3 1.26E-02 1.84 synapse organization  12 NA NA 

lin-7 homolog A (C. elegans) Lin7a 1.24E-02 1.84 synaptic transmission 10 K4|K27 K4 

Synaptosomal-associated protein 91 Snap91 1.12E-02 1.85 immune system 9 K4|K27 K4|K27 

Mab-21-like 2 (C. elegans) Mab21l2 1.17E-02 1.85 neurons 3 K4|K27|Pol II K4|K27|Pol II 

Nucleolar protein 4 Nol4 1.12E-02 1.85 organelle 18 K4|K27|Pol II K4|K27 

Guanine nucleotide binding protein, gamma 3 Gng3 1.21E-02 1.85  19 NA NA 

Paired box gene 3 Pax3 2.23E-02 1.86  1 K4|K27 K4|K27 

Doublecortin Dcx 3.45E-02 1.88 CNS development X K4 NA 

Bold genes represent the ones with different chromatin marks in WT and MT biopsies; K4, H3K4me3; K27, H3K27me3 
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Table 2.1 Continued 

Pitx2 Target Genes in Migratory Myoblasts 

 

Gene name Gene Symbol Adjusted 

P. Val 

FC 

MT/WT 

Function Chr Chromatin State 

WT 

Chromatin State 

MT  

Synaptosomal-associated protein 25 Snap25 7.82E-03 1.88 neurotransmitter secretion 2 NA K4 

Neuron-glia-CAM-related cell adhesion molecule Nrcam 8.46E-03 1.88 axon guidance, adhesion 12 K4 K4|K27 

RNA binding protein, fox-1 homolog 3 Rbfox3 8.00E-03 1.88  11 K4|K27 K4|K27 

neurexin I Nrxn1 8.46E-03 1.88 synaptogenesis  17 NA NA 

Ca2+-dependent secretion activator Cadps 6.36E-03 1.9 catecholamine secretion 14 K4|K27 K4 

Inter-alpha (globulin) inhibitor H5 Itih5 4.65E-03 1.92 polysacharide metabolism 2 K4 K4 

Solute carrier family 1 (glial high affinity glutamate 

transporter), member 2 

Slc1a2 4.00E-03 1.93 glucose transport 2 K4|K27 K4|K27 

SOGA family member 3 Soga3 3.76E-03 1.94  10 K4|K27 K4|K27 

ATPase, Na+/K+ transporting, beta 1 polypeptide Atp1b1 3.92E-03 1.94 ATP biosynthesis 1 K4|K27|Pol II K4 

RIKEN cDNA C130071C03 gene C130071C03Rik 1.48E-02 1.95  13 K27 K27 

Contactin 2 Cntn2 3.42E-03 1.95 neurons, cytoskeleton  1 K27 K4 

Cerebellin 2 precursor protein Cbln2 2.87E-03 1.96  18 K4|K27 K4|K27 

Contactin 1 Cntn1 2.74E-03 1.97 cell adhesion 15 K4 K4 

Prior incubation determinant 1 Pid1 2.56E-03 1.97  1 K4 K4 

Homeo box C8 Hoxc8 2.63E-03 1.97 pattern specification process 15 K4|K27 K4|K27 

Claudin 9 Cldn9 2.28E-03 1.98 cell adhesion 17 NA NA 

UNC homeobox Uncx 2.18E-03 1.98 cartilage condensation 5 K27 K27 

Solute carrier family 17, member 6 Slc17a6 1.18E-03 2.02 synaptic transmission 7 K27 K27 

Suppression of tumorigenicity 18 St18 1.18E-03 2.02  1 NA NA 

Kinesin family member 5C Kif5c 1.18E-03 2.03 axonogenesis, guidance 2 K4|Pol II K4|Pol II 

Myocardial infarction associated transcript Miat 1.05E-03 2.04 neuron differentiation 5 K4|K27 K4|K27 

Myelin transcription factor 1 Myt1 9.91E-04 2.04 cell cycle 2 NA NA 

Secretogranin III Scg3 8.78E-04 2.05  9 NA NA 

Homeo box B3 Hoxb3 1.87E-02 2.06 pattern specification  11 K4|K27 K4|K27 

Fibroblast growth factor 5 Fgf5 7.94E-04 2.06 organogenesis 5 K4|K27 K4|K27 

RUN and FYVE domain containing 3 Rufy3 1.20E-02 2.06 chromosome partitioning,  5 K4|Pol II K4|Pol II 

Hydroxyprostaglandin dehydrogenase 15 (NAD) Hpgd 5.01E-04 2.09 fatty acid metabolic process 8 K4 K4 

Neurogenic differentiation 6 Neurod6 4.83E-04 2.09 neurogenesis 6 NA NA 

Sorbin and SH3 domain containing 2 Sorbs2 4.34E-04 2.1  8 K4 K4 

ELAV-like 2 (Hu antigen B) Elavl2 1.44E-03 2.12  4 K4|K27|Pol II K4|K27|Pol 

II/K27 

Glutamic acid decarboxylase 1 Gad1 2.25E-04 2.15 synaptic transmission 2 K27 K27 

Homeo box D3 Hoxd3 8.17E-05 2.21 pattern specification  2 K4|K27 K4|K27 

Zinc finger protein of the cerebellum 1 Zic1 4.00E-04 2.22 pattern specification  9 K4|K27 K4|K27 

ELAV-like 4 (Hu antigen D) Elavl4 3.37E-05 2.31  4 K4|Pol II K4|Pol II 

Neuron navigator 2 Nav2 2.84E-06 2.43  7 K4|K27|PolII K4|K27|PolII 

Inhibitor of DNA binding 4 Id4 3.32E-02 2.44 neuroblast proliferation 13 K4|Pol II K4|Pol II 

LIM homeobox protein 1 Lhx1 2.85E-02 2.5 neuron specification  11 K4|K27 K4|K27 

Stathmin-like 3 Stmn3 5.10E-04 2.52 cytoskeleton organization 2 K27 K27 

Lysosomal-associated membrane protein family, 5 Lamp5 7.03E-07 2.52  2 K4|K27 K27 

Collapsin response mediator protein 1 Crmp1 7.03E-07 2.52 neuron, cytoskeleton  5 K4|K27 K4|K27  

Glycoprotein m6a Gpm6a 1.54E-04 2.61  8 K4 K4 

Cell adhesion molecule with homology to L1CAM Chl1 5.46E-08 2.68 axonogenesis, guidance 6 K4|K27 K4|K27 

Thrombospondin, type I, domain containing 7A Thsd7a 1.35E-09 2.92  6 K4|Pol II K4|Pol II 

Roundabout homolog 3 (Drosophila) Robo3 8.22E-10 2.96 neuron migration  9 K27 K27 

Neurocan Ncan 2.15E-06 3.06 adhesion, synapsis  8 K27 K27 

Tubulin, beta 3; tubulin, beta 3, pseudogene 1 Tubb3 9.40E-12 3.25 axon guidance 8 K4 K4|K27 

Reticulon 1 Rtn1 3.52E-12 3.32 inhibition of axonal growth 12 K4|K27 K4|K27 

Nescient helix loop helix 2 Nhlh2 1.75E-12 3.36 physical activity behavior 3 K4|K27 K4|K27 

Insulin-like growth factor binding protein-like 1 Igfbpl1 1.82E-13 3.52 regulation of cell growth 4 K4|K27 K4|K27 

Homeo box B6 Hoxb6 3.63E-14 3.63 pattern specification process 11 K4|K27 K4|K27 

Homeo box B9 Hoxb9 1.73E-19 4.45 pattern specification process 11 K27 K27 

Stathmin-like 2 Stmn2 2.12E-13 4.49 cytoskeleton organization 3 K27 NA 

Microtubule-associated protein tau Mapt 1.12E-19 4.49 microtubule organization  11 K4|K27|Pol II K4|K27|Pol II 

Internexin neuronal intermediate filament protein, alpha Ina 9.15E-14 4.93 cytoskeleton organization 19 K4|K27 K4|K27 

Deleted in colorectal carcinoma Dcc 8.20E-21 5.7 neuron migration, apoptosis 18 K4|K27 K4|K27 

SKI family transcriptional co-repressor 1 Skor1 3.77E-52 10.96 BMP inhibitor  9 K27 K4|K27 

Bold genes represent the ones with different chromatin marks in WT and MT biopsies; K4, H3K4me3; K27, H3K27me3 
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Supplementary Information 

Table 2.S1 Data Sets Used for Analysis  

GSE GSM Tissue, E12.5 Mouse Line Assay Sample Reference 

GSE31945 GSM791677 GFP+ flow-sorted FL Lbx1EGFP Microarray RNA Campbell, et al 2012 

GSE31945 GSM791678 GFP+ flow-sorted FL Lbx1EGFP Microarray RNA Campbell, et al 2012 

GSE31945 GSM791683 GFP+ flow-sorted FL Lbx1EGFP|Pitx2Z/Z Microarray RNA Campbell, et al 2012 

GSE31945 GSM791684 GFP+ flow-sorted FL Lbx1EGFP|Pitx2Z/Z Microarray RNA Campbell, et al 2012 

GSE49010 GSM1192095 Whole FL  ICR ChIP-seq H3K4me3 Eng et al., 2014 

GSE49010 GSM1192096 Whole FL ICR ChIP-seq H3K27me3 Eng et al., 2014 

GSE49010 GSM1192097 Whole FL ICR ChIP-seq IGG-Input Eng et al., 2014 

GSE49010 GSM1192099 Whole FL ICR ChIP-seq RNA Pol II Eng et al., 2014 

GSE71128 GSM1827869 Whole FL Pitx2Z/Z ChIP-seq IGG-Input Eng et al., 2014 

GSE71128 GSM1827875 Whole FL Pitx2Z/Z ChIP-seq H3K4me3 Eng et al., 2014 

GSE71128 GSM1827877 Whole FL Pitx2Z/Z ChIP-seq H3K27me3 Eng et al., 2014 

GSE71128 GSM1827880 Whole FL Pitx2Z/Z ChIP-seq RNA Pol II Eng et al., 2014 
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Abstract 

Fluorescence activated cell sorting (FACS) is a technology that has been used for more than 40 

years to isolate specific cell populations, based on fluorescence or size parameters. In the context 

of developmental biology, coupling FACS with transgenic mice has been a boon. By choosing 

specific mouse lines with genetic mutations and perturbations marked with fluorescent proteins, 

it is possible to isolate hyper-specific populations for further downstream analysis. Here, we 

present a full method to isolate EGFP-positive myoblasts from embryonic mouse forelimbs.  
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1 Introduction 

Fluorescence activated cell sorting (FACS) is a laboratory technique that has existed since the 

early 1970’s, and is used to isolate specific cell populations based on physiological and 

fluorescent characteristics (Herzenberg et al., 1976). Single cells in a suspension are fed into the 

machine where they are isolated as individual droplets and interrogated by a laser. Size and 

fluorescence parameters are detected by sensors, and an electron gun charges the droplets 

based on user-defined threshold settings. As the droplets pass by electrically charged plates, they 

are separated and collected in individual containers that represent isolated cell populations 

(Herzenberg et al., 1976). Initially FACS was limited to only one color, but recent technological 

advances have enabled sorting cells with up to 12 (De Rosa et al., 2001), and even 17 colors 

(Perfetto et al., 2004) by using multiple lasers, sensors, and bandwidth filters. 

Initially used to probe the biological relevance of subsets of cells in the blood and different organs 

(Herzenberg et al., 2002), the functionality and purposes of FACS have greatly expanded. Since 

its invention, the primary use of FACS has been for mostly immunological purposes. Single cell 

sorting based on specific parameters has enabled isolation and cloning of rare cell types, 

including hybridomas for monoclonal antibody production (Parks et al., 1979). Another early 

application of FACS was to determine the specific ratio of T lymphocyte populations in patient 

whole blood samples, which enabled a new method of testing for HIV infections (Bofill et al., 

1992). Application of multi-color FACS to whole blood samples discovered that hundreds of 

different, unique cell types exist in the peripheral blood at any time (De Rosa and Roederer, 2001). 

More recent advances have used fluorescent nanoparticles to sort and purify specific bacterial 

sub-populations, despite their small size of 1-3 microns (Zahavy et al., 2012). 

Outside the field of immunology, FACS has been applied to systems in developmental biology. 

One of the earliest applications was to isolate primordial germ cells for tissue culture applications 

from mouse embryos (Abe et al., 1996). Since these cells are viable, they can be used for 

downstream applications such as gene expression analysis. In this context, FACS has been 

applied to many different cell types as diverse as mouse neuroprogenitor cells (Abramova et al., 

2005), human pancreatic cell (Dorrell et al., 2011), and mouse smooth muscle cells isolated from 

the colon (Peri et al., 2013). Here, we describe a complete protocol to isolate forelimb myoblasts 

from transgenic mice expressing extra-green fluorescent protein (EGFP), and extract high-quality 

RNA. 

2 Materials 
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2.1. Equipment 

1. Sony SH800 cell sorter 

2. Fluorescent Dissection Microscope 

3. Benchtop Centrifuge 

4. Dissection tools (forceps, scissors) 

5. 1.5 mL eppendorf tube heat block 

6. 6 cm tissue culture plates 

7. Micropipettes (10µL,100µL,1000µL) 

8. Tips 

2.2 Supplies 

2.3 Media and Reagents 

1. E11.5, E12.4, E13.5, E14.5 Pax3Cre|ROSA26EGFP transgenic mice 

2. DMEM/F12 medium 

3. HBSS without HEPES  

4. 5 mM EDTA 

5. 2 mg/mL Collagenase type I [Worthington Biochem] (0.2%) 

6. 10 U DNAse I [Worthington Biochem] (added fresh) 

7. PBS 

8. Ethanol 100% and 70% 

9. 6 cm cell culture dishes 

10. Ice 

11. 1.5 mL tubes 

12. 15 mL tubes 

13. 12x75 mm polystyrene tubes 

14. 30 µm Nitex mesh 

15. Glass syringe, or 

16. Falcon 5mL round bottom tube with cell strainer cap [Product #352235] 

 

 

3 Methods 

3.1 Embryonic forelimb dissection 

1. Dissect mouse embryos at E11.5, E12.5, E13.5, and E14.5. 
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2. Remove yolk sac, transfer embryos to 6 cm cell culture plate filled with PBS over 

ice. 

3. Genotype embryos via fluorescence microscopy. Pax3 transgenic embryos will 

fluoresce green in brain, neural tube and somites. 

4. Dissect and isolate forelimbs from both transgenic and non-transgenic embryos. 

5. Pool all non-transgenic forelimbs by litter in a 1.5 mL tube (see Note 1). 

6. Pool transgenic forelimbs by litter in 1.5 mL tubes, with a maximum of 12, 10, 6, 

and 4 forelimbs per 1 tube from E11.5, 12.5, E13.5, and 14.5, respectively (see 

Note 2). 

7. Centrifuge all samples 3 min @ 2,300xg at 4oC. 

8. Remove supernatant from sample tubes. 

9. Store samples over ice for a few hours until further processing. 

 

3.2 Embryonic forelimb dissociation 

1. Add 750 µL of dissociation buffer to the sample to be dissociated. 

2. Place sample in heat block, incubate at 37C for 3 min. 

3. Using 1mL tip from 1mL micropipette, gently pipette sample up and down ten times 

for E11.5 and E12.5 forelimbs, and fifteen times for E14.5 forelimbs (see Note 3) 

4. Repeat steps ii and iii once if samples are E11.5, E12.5, and E13.5, and twice if 

they are E14.5 forelimbs. 

5. Centrifuge 1 min @ 5,000 rpm at room temperature. 

6. Remove the supernatant, re-suspend cells in 200-400 µL PBS (see Note 4) 

7. Pass cells through glass syringe fitted with 35 µm mesh, filter into a 12x75 mm 

polystyrene tube. 

8. Load tube into cell sorter. 

 

3.3 Flow sorting of embryonic myoblasts 

1. Load non-fluorescent cell sample into the cell sorter to set gates (see Note 5). 

2. Set sample pressure to three, aim for targets events per second (EPS) between 

1000-3000 and start the sort (see Note 5). 

3. Create a forward scatter area (FSCa) vs side scatter area (SSCa) density plot 

4. Adjust gain on FSC and SSC until the visible cell population is as spread out as 

possible, but still on screen (Figure 1A). 
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5. Create a gate (R1) containing the whole population minus the debris in the lower 

left hand corner (Figure 1A). 

6. Create a FSCa vs FSC-height (FSCh) density plot gated on A. 

7. Create a gate (B) containing only the top cluster of cells (Figure 1b), representing 

droplets with single cell.s 

8. Create a Fluorescence II-area (FL2a) vs FSCa density plot, gated on B (Figure 1C) 

(see Note 6). 

9. Create a FL2a histogram plot (Figure 1D). 

10. Stop the sample flow, unload the sample, and load the first fluorescent sample. 

11. Set sample pressure to three, aim for targets events per second (EPS) between 

1000-3000 and start the sort. 

12. Pause the sort between 20k-40k recorded events. 

13. Set a gate (C) on the FL2a vs FSCa plot that contains the fluorescent cell population 

(see Note 7), (Figure 1C) 

14. Load a 15 mL tube filled with 200µL PBS into the collection chamber of the cell 

sorter. 

15. Set the sort logic from gate C into the collection tube. 

16. Resume the flow and start the sort. 

17. Monitor the sample volume, and sort until virtually no sample is left (see Note 8) 

18. Stop the sort, unload the sample, then load a 15 mL tube filled with ddH2O. 

19. Set sample pressure to ten and start the sample flow, to wash the sample line. 

20. When the triggered EPS is consistent and close to zero, stop the flow and unload 

the water. 

 

3.4 Purity check 

1. Load the newly sorted sample into the machine, and run at sample pressure five for 

a purity check (see Note 9). 

2. Stop flow rate after 1000 triggered events and record data as sort purity. 

 

3.5 Spin down cells 

1. Centrifuge sample at 3700 rpm for five minutes at 4oC. 

2. Remove supernatant and process cells (see Note 10). 
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4 Notes 

1. These non-transgenic forelimbs will be used to set the gain on FSC and SSC. Each 

stage will have a slightly different gain based on cell size. 

2. It is important not to overcrowd the eppendorf tube during the dissociation process. 

Too many forelimbs leads to excessive density and greatly reduces the efficiency 

of the dissociation.  

3. While pipetting, be careful not to be too forceful and spill the sample 

4. Re-suspend cells to a density between 1-10e6 cells/mL quench. A higher cell 

density run at a lower sample pressure results in a more efficient yield. 

5. Events per second (EPS) is based on both the sample flow rate and density. 

Running at a lower EPS takes longer, but increases efficiency. It should be 

adjusted based on the needs at the time. 

6. This plot will be used to check the extent of autofluorescence in the non-fluorescent 

population. It is normal for the autofluorescence to shift when samples are 

changed, but this plot serves as a good starting point. 

7. This plot will be used ultimately to determine the population that is sorted and 

collected. Create a gate that encompasses the fluorescent cell population. There 

is a trade off of purity and yield that should be adjusted based on the needs of the 

user. 

8. Be sure to monitor the sample closely. If the sample run when nothing is left in the 

tube air will get into the fluidics system and the sorter alignment will have to be 

redone. 

9. The pressure may need to be adjusted based on the amount of cells sorted. Aim 

for 1000 events, it is sufficient to determine the purity of the sorted population. 

10. If RNA-seq is the goal, cells should be lysed immediately and kept over ice. Extract 

the RNA from all samples in parallel. Freezing the samples after lysis results in 

dramatic decrease in RNA quality and yield. 
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Figure 3.1 
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Figure 3.1 isolation of mouse embryonic myoblast by FACS 
(A) First scatter plot showing all cells from E11.5 forelimbs, with forward scatter (FSC) on the x-
axis, and side scatter (SSC) on the y-axis. The bright spot in the bottom left hand corner 
represents cellular debris and organelles from the dissociation process. Gate R1 covers all non-
cellular debris. 
(B) Second scatter plot, derived from gate R1, showing FSC-area on the x-axis and FSC-height 
on the y-axis. Plotting area vs height is used for “doublet discrimination,” where droplets that 
contain two or more cells (doublets) are gated out. Doublets generate a signal with large area 
relative to height and should be filtered out. Gate R2 selects only singlets. 
(C) Third scatter plot, derived from R2, showing EGFP fluorescence area (EGFP) on the x-axis 
vs FSC on the y-axis. Cells separate into two distinct population based on EGFP intensity. Gate 
R3 selects only EGFP-positive cells, which are then sorted into collection tubes. 
(D) Count histogram derived from R2. EGFP intensity on the x-axis vs cell count on the y-axis. 
Complementary to (C), it shows distinct cell populations based on fluorescence intensity. 
Histograms are used primarily as a visualization tool, and not to determine gates.  
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ABSTRACT 

Skeletal muscle is the largest organ in the body by mass, comprising roughly 40% of total body 

weight. Disruptions in skeletal muscle lead to muscle-wasting diseases that lead to muscle 

breakdown, and an overall loss in quality of life. Skeletal muscle in the forelimb develops in distinct 

phases during embryogenesis, including embryonic and fetal. During fetal myogenesis, 

embryonic myotubes fuse into both each other and fetal myotubes, to from fetal myofibers, which 

ultimately serve as the foundation for skeletal muscle that will continue to develop. Taking 

advantage of advances in DNA sequencing technologies, we performed whole transcriptome 

profiling via RNA-Seq of lineage-traced myoblasts during embryonic and fetal myogenesis. By 

isolating the same myogenic lineage at different developmental stages, we compared gene 

expression changes of a single cell population over time, and observed an upregulation of genes 

related to angiogenesis, cell adhesion, and the immune system, during fetal myogenesis. 

Coexpression analysis also revealed an immune-related gene subnetwork that exists during all 

stages of myogenesis, but is expressed at higher levels later in myogenesis. Our work will serve 

as a foundation for future studies that observe the effects of different perturbations on forelimb 

myogenesis.  
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INTRODUCTION 

Skeletal muscles contract, cause movement and maintain homeostasis in the body. Forelimb 

muscles are derived from somites, which are anatomical structures derived from the paraxial 

mesoderm. Somites segment themselves into the myotome, sclerotome, and dermomyotome. 

The dermomyotome is divided into the epaxial and hypaxial dermomyotome, from the latter of 

which all skeletal muscle of the trunk and back derive (Burke and Nowicki, 2003; Christ and 

Ordahl, 1995). Around E10.5, embryonic myogenic precursor cells (EMPCs) express the 

homeobox sequence specific transcription factor (SSTF) Pax3, which triggers migration and 

delamination from the ventrolateral lip of the hypaxial dermomyotome into the limb bud (Bladt et 

al., 1995; Dietrich et al., 1999; Goulding et al., 1994; Hayashi and Ozawa, 1995). Ablation of Pax3 

results in a forelimb deficient of skeletal muscle (Bober et al., 1994; Daston et al., 1996). Once 

colonized in the limb bud, skeletal muscle forms in distinct, successive stages (Tajbakhsh, 2005). 

Between E10.5 and E12.5, embryonic myoblasts fuse into embryonic myotubes. Between E12.5 

and E14.5, fetal myoblasts fuse with both each other and embryonic myotubes to form fetal 

myofibers that serve as the foundation of future skeletal muscle. During this process, significant 

changes occur in gene expression (Biressi et al., 2007) and the underlying gene regulatory 

networks (Buckingham and Rigby, 2014; Messina et al., 2010), but not much is known about the 

driving molecular processes. Since skeletal muscle in the forelimb is derived from Pax3-positive 

progenitor cells, the Pax3 lineage offers an great tool to uncover the molecular processes during 

forelimb myogenesis. 

Network analysis is a field that has existed for close to 20 years (Barabási and Albert, 1999), 

aiming to observe biological systems as individual parts working and interacting together 

(Barabasi and Oltvai, 2004; Kirschner, 2005). Recent advances in technology combined with a 

decrease in price for next-generation sequencing have resulted in frequent use and development 

of network analysis techniques, especially in development and disease (Singh et al., 2017). 

Nodes, representing genes, are connected to each other via edges, representing any sort of 

interaction. When applied to data on a large scale, it becomes possible to visualize complex 

interactions in an intuitive format. Coexpression networks are a type of biological network created 

from transcriptomics data and observe patterns of gene expression in biological systems (Dong 

et al., 2015). Coexpression networks have been used to identify changes in regulatory interaction 

responsible for cell-state phenotypes (Hsiao et al., 2016), and cell-type specific patterns of gene 

expression during development (Földy et al., 2016), among other uses. Applying coexpression 

analysis to Pax3 lineage traced myoblasts provides a model system to observe and decode the 
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mechanisms behind embryonic and fetal myogenesis, in the forelimb. In this study, we use next 

generation RNA sequencing (RNA-Seq) to perform differential expression and coexpression 

analysis during distinct stages of forelimb myogenesis. We discover the upregulation of 

vascularization and immune-related genes during fetal myogenesis, including a distinct immune-

related subnetwork, implying an active role of the immune system in forelimb myogenesis. 

 

MATERIALS AND METHODS 

Forelimb Isolation and Dissociation  

Female ICR mice were plugged on consecutive days by male Pax3Cre|RosaEGFP mice. At 11.5, 

12.5, 13.5, and 14.5 days post vaginal plug, the female mice were euthanized, and embryos 

collected in PBS over ice. Rapidly, embryos were genotyped using fluorescent microscopy. 

Forelimbs were dissected between the caudal edge of the shoulder and the lumbar region. 

Isolated forelimbs from each litter were pooled in Dulbecco's Modified Eagle Medium (DMEM) 

with 4.5 g/L glucose and no other additives, based on Pax3Cre|RosaEGFP positive (G) and negative 

(W) genotypes; then pooled again based on both the father and time point. Dissociation of 

embryonic forelimbs was carried out as described previously (Campbell et al., 2012) with the 

following modifications. DMEM was removed, and dissociation buffer (HBSS without CaCl2, 

MgCl2, MgSO4 [Gibco], 2 mg/mL Type I Collagenase [Worthington Biochem], 5mM EDTA) were 

added to pooled forelimbs at ~6 forelimbs per 1 mL buffer for E11.5 and E12.5, and ~2 forelimbs 

per 1 mL buffer at E13.5 and E14.5. Forelimbs were incubated for 3 minutes at 37°C. Forelimbs 

were then pipetted 10 times through a 1 mL pipette tip to promote dissociation. Forelimbs were 

incubated and pippeted once more at E11.5, E12.5, and E13.5, and twice more at E14.5. After 

the final dissociation step, each pooled sample was then centrifuged at 5000 rpm for one minute 

in a benchtop centrifuge. The media was aspirated off before re-suspending the cells in PBS by 

pipetting 15 times, to a final concentration between 1x106 and 1x107 cells/mL. Cell suspensions 

were transported to the flow cytometry facility and passed through a 35 µm nitex filter again, 

before they were sorted. 

 

 

Fluorescence assisted cell sorting 

Prepared cell suspensions were sorted using a Sony SH800 cell sorter [Sony Inc]. EGFP+ (G) 

https://paperpile.com/c/Lsq3Q3/pN7sy
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cells were sorted directly into PBS. Once the full samples has been sorted, each tube (G) was 

spun at 3,800 rpm for 15 minutes at 4°C. PBS was aspirated off the cell pellets, and cell pellets 

were lysed with 350 µL Buffer RLT with added βMe [Qiagen]. Lysates were kept over ice until all 

samples were sorted. 

 

RNA Preparation 

RNA was extracted using RNAeasy mini kit [Qiagen] following the manufacturer's protocol. RNA 

was tested for quality and degradation using the AATI Fragment Analyzer [AATI]. RNA libraries 

were sequenced on a 100 bp single-end run on the Illumina Hiseq 4000 [Illumina]. Library 

preparation was done by trained technicians at the GC3F core facility using the Kapa Biosystems 

Stranded mRNA-seq Kit [Kapa]. 25 libraries were created and sequenced, corresponding to six, 

four, nine, and six biological replicates from each time point, respectively (E11.5, E12.5, E13.5, 

E14.5). 

 

RNA Sequencing and Analysis 

Primary Illumina data image analysis, base calling, and read-quality filtering were done using the 

Casava pipeline version 1.8.2 [Illumina]. Each sample was processed and analyzed with the same 

methods. After filtering low quality reads TopHat version 2.1.0 was used to align all reads to the 

mm10 genome with default parameters and to identify splice junctions (Kim et al., 2013; Trapnell 

et al., 2009). HTseq was used to create count tables from tophat2 aligned reads (Anders et al., 

2015). DEseq2 was used to calculate differential gene expression between time points (Love et 

al., 2014) using an FDR adjusted cutoff of p ≤ 0.05, with a fold change ≥ 1.5, between any two 

consecutive time points. Principal component analysis was performed using the prcomp function 

in R software (Ihaka and Gentleman, 1996). Heatmaps were generated using the pheatmap 

package in R software (Kolde, 2012). Signed difference ratios (SDR) were calculated similar to 

(Ramsey et al., 2008), except the average for each gene across all samples was subtracted from 

each sample. 

 

Immunohistochemistry and Whole Mount Antibody Staining  

Immunohistochemistry and PECAM and neurofilament staining was performed as done 
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previously (Ma et al., 2013). 

 

Coexpression Network Construction and Analysis 

Coexpression networks were constructed following the protocol from (Dong et al., 2015). Pairwise 

correlation coefficients were calculated between each of 4269 identified DEGs, in all samples, 

using an adjusted fdr cutoff of p ≤ 5e-15. The coexpression network was visualized in Cytoscape 

(Shannon et al., 2003), and modules were identified via markov clustering  (Enright et al., 

2002)using the package MCL in R software. GO term enrichment in modules was determined by 

Panther GO (Mi et al., 2013, 2017).  

 

 

RESULTS AND DISCUSSION 

Isolation of Pax3-lineage traced myoblasts 

In order to trace gene expression patterns during different stages of myogenesis in the forelimb, 

we developed a transgenic mouse model that combined a Pax3Cre driver (Engleka et al., 2005) 

with a ROSA26 EGFP tracer (Mao et al., 2001). Pax3 is a homeodomain SSTF that is known to 

mark all somite-derived skeletal muscle in the forelimb. In Pax3-null mice, myogenic progenitor 

cells fail to migrate and delaminate from the somite, which ultimately leads to little or no skeletal 

muscle in the forelimb (Bober et al., 1994; Daston et al., 1996). When both genotypes were 

combined into one mouse, EGFP expression was continuously induced in every cell that 

expressed Pax3 at one point, including any and all daughter cells (Figure 4.1A). This lineage 

tracer system enabled us to track the same myogenic population over time in the mouse forelimb 

as it developed and differentiated. We chose to profile the time points of E11.5, E12.5, E13.5, and 

E14.5, to trace development starting from the beginning of embryonic myogenesis, when the 

dermomyotome-derived cells had already entered the myogenic lineage, to the onset of fetal 

myogenesis, when the myoblasts started to form myotubes. Mouse embryos at each stage 

showed strong EGFP expression, especially noticeable in the forelimbs (Figure 4.1A) Individual 

digits and muscle groups developed in the forelimbs over time, seen clearly at E14.5. 

Fluorescence activated cell sorting (FACS) (Herzenberg et al., 1976) was used to isolate EGFP 

expressing cells (Pax3EGFP myoblasts), representing myoblasts during different stages of 

myogenesis. Density-based scatter plots that represent EGFP fluorescence intensity vs cell size, 
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revealed two distinct cell populations in each stage (Figure 4.1B). Visualization via histogram 

presented a more clear image of the two distinct cell populations present at each stage. The Pax3-

derived myogenic lineage was represented by the EGFP-positive cells (highlighted in green), and 

the non-myogenic EGFP-negative population was displayed as the gray peaks (Figure 4.1C). 

Surprisingly, Pax3EGFP myoblasts comprises 92% of the whole cell population of the forelimb at 

E11.5 and E12.5 (Figure 4.1B). This agreed with the strong EGFP-fluorescence seen by 

microscopy (Figure 4.1A). At E13.5, the Pax3EGFP myoblast population dropped to 68% even 

though the fluorescence signal in the forelimb still looked strong (Figure 4.1A, B). While it was 

likely that other non-Pax3-derived cell populations were proliferating and differentiating, ultimately 

this drop was due to a decrease in dissociation efficiency. The onset of fetal myogenesis occurs 

between E12.5 and E13.5, when embryonic myofibers fuse with fetal myoblasts to form fetal 

myofibers that ultimately serve as the foundation for skeletal muscle. The cytoskeletal 

rearrangements that occurred between the cells imparted resistance to the enzo-mechanical 

dissociation process we used (see Materials and Methods). When the cells were passed through 

a 35 micron mesh, cell clumps were filtered out, including dense skeletal muscle that failed to 

dissociate. This was consistent with the decrease in Pax3EGFP myoblasts observed from E13.5 to 

E14.5. 

A more vigorous dissociation process would likely increase efficiency, but runs risk of changing 

gene expression in the cells. A previous study found few transcriptomics changes after 

dissociating and FACS of mouse adipocyte tissue (Richardson et al., 2015), which indicated the 

overall effect of dissociation and FACS may be relatively small. Our gene expression results 

(Figure 4.2B) were also similar to the results obtained from a previous study of sorted myoblasts, 

indicating replicability between the systems (Biressi et al., 2007). Recently, it has shown that 

adding the transcriptional inhibitor actinomycin d to each stage of dissociation and sorting of 

neuronal cells preserved the transcriptome of the cell state, despite the accumulated stress (Wu 

et al., 2017). This method would need to be verified in embryonic myoblasts first, but could 

potentially be used to increase dissociation efficiency without downstream side effects. Cell 

populations were sorted to a purity ranging from 97% to 99% (data not shown). 

Transcriptomics analysis of Pax3-derived myoblasts 

After sorting, total RNA from each sample was extracted, and tested with the Bioanalyzer for 

quality control. Only samples with an RIN above 7.0 were retained for library preparation and 

sequencing. Sequenced reads were aligned to me mm10 genome, and differentially expressed 
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genes were calculated between consecutive time points, using an FDR ≤ 0.05. Additional quality 

control was performed via principal component analysis (PCA) (Ringnér, 2008). The PCA plot 

(Figure 4.2A) showed distinct clustering of samples by stage. Interestingly, the samples followed 

a developmental trajectory. Samples from E11.5 clustered in the bottom left, and followed a 

horizontal parabola-like trajectory until E14.5, suggesting that time of conception is a significant 

factor in our analysis. Initially a surprise, the trajectory can be explained by the frequency of plug 

checks. Plugs were checked only once per day in the morning. Since vaginal plugs in mice are 

reported to last between 8-24 hours, each sample could be up to 12 hours apart, while still marked 

at the same stage. With more biological replicates and more stringent time points, in theory it 

would be possible to determine specific gene expression patterns that correspond to unique 

stages of myogenesis, at hourly intervals. The PCA plot also demonstrated the variability between 

biological replicates in our system, and emphasized the value of ample biological replicates for a 

study like this. 

A heatmap was generated from the 4269 identified differentially expressed (DE) genes, based on 

the signed difference ratio from log2-normalized reads (see Materials and Methods) (Figure 4.2B). 

Genes formed distinct clusters based on their expression patterns in each stage. Of interest were 

the clusters marked with red, green, blue, and purple boxes, on the left. Genes from the red cluster 

were expressed specifically at E11.5, implying they are early embryonic myogenesis markers. 

Gene ontology (GO) term enrichment analysis of the red cluster revealed an overrepresentation 

of genes associated with pattern specification, CNS neuron differentiation, and digit 

morphogenesis (Figure 4.2C). Example genes in these categories were primarily homeodomain 

SSTFs represented by the Hox family. This agreed with previously reported studies that show the 

Hox gene family members, mostly the c and d, regulate patterning and digit formation in the 

embryonic limb (Martin, 1990; Pineault and Wellik, 2014; Raines et al., 2015).  

Genes in the green cluster were expressed at E11.5 and E12.5, meaning they are markers of 

embryonic myogenesis. GO term enrichment analysis indicated that genes involved in epithelial 

tube morphogenesis, central nervous system (CNS) development, mesenchyme development, 

and cardiac outflow tract morphogenesis are overrepresented, suggesting that formation of the 

vascular system and CNS are both taking place during embryonic myogenesis. Since Pax3EGFP 

myoblasts represent the skeletal muscle lineage in the forelimb, it was surprising to find so many 

non-myogenic genes. To biologically validate these findings, we performed 

immunohistochemistry on sectioned Pax3EGFP forelimbs at E11.5 and E12.5, using antibodies 

against EGFP (green), Pitx2 (red), and Myog (blue) (Figures 4.2D, E). EGFP represented the 
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Pax3EGFP lineage, Pix2 expressed in all muscel anlagen and Myog expressed in cells committed 

to the skeletal muscle lineage (Buckingham and Rigby, 2014). At both stages, there were clear 

pockets of green cells with no other colors overlayed, which represented non-myogenic 

populations within the Pax3EGFP lineage. Previous studies have shown a small subset of Pax3EGFP 

cells in the forelimb express Foxc2, which differentiate into vascular epithelial cells (Lagha et al., 

2009). This could also explain the enrichment in vascular system related genes that is observed. 

To probe further, we performed neurofilament (Figures 4.2F, G) and PECAM staining (Figures 

4.2H, I) on forelimbs at E11.5 and E12.5 to observe the developing nervous and vascular systems, 

respectively. Staining showed that both systems started to develop at E11.5 with development 

becaming much more pronounced at E12.5. There have been other studies that showed 

communication between the nervous system and skeletal muscle during development (Deries 

and Thorsteinsdóttir, 2016; Jostes et al., 1990). In addition, a population of smooth-muscle 

endothelial cells derive from Pax3-positive progenitor cells (Young et al., 2016). 

Immunohistochemistry using known angioblast, neuron, and myogenic markers could further 

elucidate the location of non-myogenic Pax3EFGP cell populations in the forelimb. It is likely that 

other non-myogenic populations derived from the Pax3 lineage will continue to be discovered as 

more studies are performed. 

Genes in the blue cluster showed high expression levels at E13.5 and E14.5 which coincideded 

with the onset of fetal myogenesis. They were enriched in the functions of angiogenesis and 

negative regulation of cell proliferation and differentiation (Figure 4.2C). Example genes included 

known angiogenesis markers such as Angpt2, Anpep, and negative markers of cell proliferation, 

Ar and Dpt. The presence of such markers suggests that Pax3EGFP myoblasts stop proliferating 

while angiogenesis is continuing during fetal myogenesis. Multiple labs have demonstrated that 

expression of certain angiogenesis-related genes can increase the rate of muscle regeneration in 

adult skeletal muscle (Borselli et al., 2010; Mofarrahi et al., 2015). Though no studies focusing on 

the forelimb during development have been done, it has been shown that skeletal muscle 

regeneration in adults shares many of the same mechanisms as myogenesis including the 

activation of skeletal muscle-specific SSTFs (Yusuf and Brand-Saberi, 2012). Taken together, 

these imply that angiogenesis and myogenesis are interrelated in the forelimb, but studies have 

yet to prove so definitively. 

The purple cluster of genes was expressed explicitly at E14.5 and unexpectedly, genes involved 

with the inflammatory response and immune system are overrepresented (Figure 4.2C). Example 

genes are interleukin receptors and CD antigens such as Ccl6, Cd44, Il20rb, and Ciita. Similar to 
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angiogenesis, there is little research on the interaction between skeletal muscle and the immune 

system during myogenesis. To bolster our results, we compared our differentially expressed 

genes with those from Biressi et al. (Biressi et al., 2007), and found a similar list of immune-related 

genes such as Anxa1, Cd44, and Myb, among others. This supports the expression of immune-

related genes during fetal myogenesis. 

An alternate explanation of the expression of immune-related genes during fetal myogenesis 

could be the non-specificity of GO terms. GO term enrichment analysis is inherently biased to 

some degree because it only takes into account the known and annotated functions of genes. 

Most genes have multiple, if not dozens of different biological functions, that can be context 

dependent based on tissue type or other variables. Some genes were only studied in one system 

with incomplete information in regard to their other functions. Additionally, certain GO terms, such 

as “immune response,” are contextually broad and poorly defined. Taken together, a GO term 

enrichment analysis could include the wrong context of one or more genes, and bias the results 

in a way that does not reflect the true underlying biology. More stringent biological validation such 

as immunohistochemistry with known lineage markers, or transgenic mouse KO studies is 

required to truly determine whether immune-related genes are expressed during fetal 

myogenesis. 

Recent studies though have brought awareness to communication between the immune system 

and muscle regeneration Macrophage infiltration and inflammation occur during satellite-cell 

mediated skeletal muscle regeneration (Costamagna et al., 2015; Saclier et al., 2013). It should 

be noted that these genes were mostly expressed at the later stage E14.5 after the onset of fetal 

myogenesis, unlike the angiogenesis markers. Since cells were sorted to a final purity between 

97-99% (data not shown), upregulation of these genes is unlikely to be caused by non-Pax3EGFP 

cells. We cannot say if the enrichment is due to a sub-population of non-myogenic Pax3EGFP cells, 

or is expressed by myogenic cells communicating with the immune system. As mentioned 

previously, a third explanation could be that the expressed, enriched immune-related genes could 

have a non-immune related function in the context of myogenesis. Immunohistochemistry using 

known immune-response markers combined with mouse KO models could help to answer this 

question. 

 

Construction of coexpression network during myogenesis 
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To complete the DE analysis, we performed coexpression analysis, to identify coexpressed genes 

and modules during myogenesis. A single coexpression network was constructed from pairwise 

correlation coefficients between each of 4269 DE genes, using all samples (see Materials and 

Methods). We opted to construct a single network for all samples, rather than stage-wise 

individual networks, to increase the power of our analysis. This approach lead to slightly biased 

results, since the resulting significantly correlated gene pairs were coexpressed consistently 

across all stages. This resulted in a coexpression network that existed across all observed stages 

of myogenesis. We focused on genes that were differentially expressed between consecutive 

stages. This provided several advantages, (1) it reduced computational time and intensity and (2) 

it limited the results to genes that are likely biologically relevant during myogenesis. Upon 

calculating pearson correlation coefficients (PCC) in a pairwise manner, we needed to choose an 

FDR cutoff for significant correlation. Since the node-degree distribution of biological networks 

has been shown to closely follow a scale-free distribution (Barabási and Albert, 1999), the p-value 

choice needed to reflect that. When the p-value cutoff vs the R2 of a best-fit power line was plotted 

for the resulting node-degree distribution (Figure 4.3A), a p-value cutoff of 5E-15 was chosen, 

and resulted in an R2 value of 0.9, which indicated that the coexpression network followed a scale-

free topology. The node degree vs the number of nodes with that degree was plotted (Figure 

4.3B) and confirmed the fit. Ultimately, a network with 740 nodes and 4,481 edges was generated, 

with an average node degree of 12.11. 

When the network was visualized with Cytoscape software (Shannon et al., 2003), we observed 

a single network composed of two mostly independent subnetworks (Figure 4.2C). Each node 

(circle) represented a transcript, and edges represented significant correlation between the 

transcripts. Node size was proportional to its degree. The top network was the larger network, 

consisting of 411 genes, compared to the smaller network with 196 genes. A quick GO term 

enrichment analysis revealed an overrepresentation of structural and cytoskeleton related genes 

in the top network, and immune response related genes in the bottom network. This was 

surprising, as little is known about the role of the immune system in myogenesis. It implies two 

different transcriptional coexpression networks co-exist during embryonic and fetal myogenesis 

with little interaction between them. As mentioned previously, a possible explanation could be the 

broad annotations of GO terms. Genes in the smaller subnetwork could have unannotated 

functions related to myogenesis. One other possible explanation could be that the immune 

system-related network reflects a sub-population of Pax3EGFP cells that are not related to the 

myogenic lineage. The discovery of smooth-muscle epithelial cells from the Pax3EGFP lineage 
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(Lagha et al., 2009) implies there may be other non-myogenic populations to be discovered. 

Another possibility could be that there are two separate networks expressed in the same cell type. 

Immunohistochemistry, and/or multi-color FACS, using markers for different hub genes in the 

smaller subnetwork, could be used in the future to determine which is the case. Similarly, 

conditional knock-out experiments using floxed transgenic mouse lines could be used to probe 

the function of identified immune-related genes in the context of forelimb myogenesis. 

Modules are clusters of highly interconnected nodes that together perform a specific biological 

function (Barabasi and Oltvai, 2004). Using the MCL package in R statistical software we 

performed markov clustering to identify modules (Van Dongen, 2001). Markov clustering identifies 

modules by simulating flow in networks, and determining the clusters in which the most flow 

accumulates. The weakness of this method is that it assigns each gene to only a single module, 

which rarely reflects the true underlying biology. 

Using a module size cutoff of nine, Markov clustering identified ten modules. Five modules (blue, 

orange, red, yellow, cyan) comprised the larger subnetwork, and four (green, gray, black, dark 

green) comprised the smaller subnetwork. The tenth module (purple) was observed to be a 

bottleneck, connecting the two distinct subnetworks (Figure 4.3C). Bottlenecks serve as bridges 

between seemingly unrelated genes and modules, imparting them with biological significance 

(Barabasi and Oltvai, 2004). GO term enrichment identified significant overrepresentation of 

extracellular matrix organization related genes in the orange module, and cell adhesion related 

genes in the blue module, implying that those modules are involved in the cytoskeletal 

rearrangements that occur during myogenesis. 

The green module was enriched in immune response related genes, and the black, gray and dark 

green modules were all enriched in leukocyte GO term-related genes. No significant GO term 

enrichment, except for “unclassified,” was observed in any of the other modules. The purple 

module is interesting since it serves as a bottleneck between the two subnetworks, but showed 

no significant GO term enrichment. This supports the conclusion that the analysis is limited by the 

non-specific context of GO terms. Upon isolating only the ten identified modules, we observed 

high intra-connectivity within each module, and some modules were inter-connected to various 

degrees (Figure 4.3D). The blue and orange modules were the two largest, with 167 and 55 

genes, respectively. 

 

Identification of module function and expression 
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Following module identification, we observed the individual gene expression levels in each 

module over time, to identify stage specific module expression. To acquire a more clear picture 

of the individual changes happening in each module, a heatmap was generated based on SDR 

values for each gene, relative to E11.5 (Figure 4.4A). This enabled us to trace gene expression 

within modules over time. We observed in the yellow module that half of the genes were increased 

in expression while the other half decreased, as stage increases. Modules are color-coded with 

a bar on the right. The extracellular matrix organization and cell-adhesion related modules were 

expressed at E12.5, relative to E11.5, but strongest expression was observed at E13.5 and E14.5. 

This differed from the immune-response related modules, in which strongest expression occurred 

at E14.5, the later stage of fetal myogenesis. This difference suggested that the cell adhesion and 

extracellular matrix-related modules were active during the onset of fetal myogenesis, whereas 

the immune-response related modules were most active after the onset of fetal myogenesis. The 

results from the cell-adhesion related modules were expected, supported by significant 

cytoskeletal rearrangement that occur during the fusion processes of fetal myogenesis. The later 

expression of the immune-related modules demonstrated they were likely to be more involved in 

the progression of fetal myogenesis. Observing gene expression of Pax3EGFP myoblasts at E15.5 

and later stages could clarify this, but more informative would be the conditional knock-out of 

immune related genes in the Pax3 lineage. These studies would further confirm whether an 

immmune-related Pax3-derived cell lineage exists in the forelimb, or whether the identified 

immune-related genes have an unknown function in the context of myogenesis. 

Upon observing the late stage expression of all modules, we wanted to observe more specifically 

what was happening during early myogenesis. We cross referenced our list of 4,269 DE genes 

with a list of SSTFs, and created a heatmap based on the SDR values of the 302 DE SSTFs 

(Figure 4.4C). The genes were separated into four overlapping clusters, based on the stages in 

which they were expressed. SSTFs expressed at E11.5 were comprised mostly of homeodomain 

SSTFs, and enriched in genes related to the skeletal, nervous, and hematopoietic systems. The 

large number of homedomain SSTFs agreed with both similar studies (Biressi et al., 2007) and 

previous literature, showing expression of homedomain SSTFs early in development of the 

forelimb (Buckingham and Rigby, 2014). SSTFs expressed at E12.5 were similarly involved in 

development of the skeletal, muscular, and hematopoetic systems. This occured in late embryonic 

myogenesis, when embryonic myoblasts fused to create embryonic myotubes. PECAM staining 

at E12.5 (Figure 4.2H, I) confirmed significant development of the vasculature system during this 

period. SSTFs expressed at E13.5 pertained to the muscular and vascular systems, and are 

https://paperpile.com/c/Lsq3Q3/XGyJ
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involved in growth and metabolism. This agreed with what is known about fetal myogenesis, when 

fusion events lead to significant changes in cytoskeletal organization while fetal myofibers are 

formed. SSTFs upregulated at E14.5 were related to the vascular and immune systems. This 

agreed with the overall gene expression data and the coexpression network analysis, implicating 

possible involvement of the immune system during fetal myogenesis. Future studies should 

confirm whether the identified immune-related genes are involved in myogenesis, or if they are 

artifacts from the GO term analysis. 

 

CONCLUSION 

This study used RNA-Seq on Pax3EGFP lineage-traced forelimb myoblasts isolated by FACS, to 

observe the transcriptional networks of embryonic and fetal myogenesis. Using differential 

expression analysis combined with GO enrichment analysis, we found stage-specific expression 

of gene groups. Patterning and CNS related genes are expressed during embryonic myogenesis, 

and angiogenesis, cytoskeletal, and immune-related genes are expressed during fetal 

myogenesis. Additionally, co-expression network analysis revealed two distinct subnetworks 

present during both embryonic and fetal myogenesis. The larger one is related to cell adhesion 

and extracellular matrix organization, and the smaller one is immune-response and leukocyte 

related. Both coexpression networks are present during both stages of myogenesis, but overall 

expression is higher during fetal myogenesis. Taken together, we have demonstrated that 

forelimb myogenesis is more complex than previously imagined. Even in the Pax3-lineage, which 

represents skeletal muscle in the forelimb, we have identified expression of non-skeletal muscle 

related genes, and subnetworks. More studies are needed to confirm the context specific function 

of the identified immune-related genes, in forelimb myogenesis. Our work will provide a 

foundational base for future studies to observe the communication between different cell types 

during forelim myogenesis. 
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Figure 4.1. EGFP expression in mouse embryonic forelimbs 
(A) Fluorescent microscopy showing  EGFP expression based on a Pax3Cre|Rosa26EGFP driver at 
stages E11.5, E12.5, and E14.5. 
(B) Scatter plots from FACS showing EGFP intensity on the x-axis, and forward scatter (FSC) on 
the y-axis. Gate R5 shows 92%, 92%, 68%, and 61% EFGP-positive cells in forelimbs at E11.5, 
E12.5, E13.5, and E14.5, respectively. 
(C) Histograms showing EGFP intensity on the x-axis vs cell number (count) on the y-axis. Green 
peaks represent EFGP-positive populations based on gating from R5. 
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Figure 4.2 
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Figure 4.2. Differential expression (DE) and Gene Ontology (GO) term analysis of RNA-Seq 
data from sorted, EGFP-positive cells. 
(A) Principal component analysis (PCA) and plot of all 25 samples. PCA shows good clustering 
of samples by biological time point, with variation between samples in the same group. Samples 
appear to follow a developmental trajectory as the stage increases. 
(B) Heatmap of signed difference ratio (SDR) based on all 4,269 DE genes between any two 
consecutive stages. Columns represent samples, and each row represents one DE gene. Yellow 
indicates high expression and blue indicates low expression, relative to the average expression 
of each gene between all samples. Red, green, blue, and purple bars on the left indicate clusters 
of DE genes expressed at E11.5, E11.5 and E12.5, E13.5 and E14.5, and E14.5, respectively. 
(C) Go term enrichment analysis of gene clusters shown in (B). GO term enrichment was 
calculated with Panther GO. The top four enriched “child” GO terms from each cluster, determined 
by p-value, are shown. 
(D, E) Immunohistochemistry staining of E11.5 (D) and E12.5 (E) forelimbs from Pax3EGFP 
embryos. EGFP is shown in green, Pitx2 is shown in red, and Myog is shown in blue. Note that 
not all green cells are blue, indicating non-myogenic cells that derive from the Pax3EGFP lineage. 
(F, G) Whole mount antibody Neurofilament staining in the forelimb at E11.5 (F) and E12.5 (G). 
Neural development starts in the forelimb around E11.5 and increases at E12.5. 
(H, I) Whole mount antibody PECAM staining of the forelimb at E11.5 (H) and E12.5 (I), indicating 
blood vasculature development.  
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Figure 4.3 
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Figure 4.3. Coexpression network construction and module identification 
(A) Plot showing p-value cutoff for significant pairwise pearson correlation coefficients (see 
materials and methods) vs R2 of a power-fit line. Node degree distributions in biological networks 
are known to follow a power law, so a p-value cutoff of 5E-15 was chosen, giving an R2 value of 
0.9. 
(B) Plot showing node degree on the x-axis vs the number of nodes with that degree on the y-
axis, shown on a log10 scale. A line fits the data with an R2 value of 0.9, showing that the 
generated network roughly follows a scale-free distribution. 
(C) The generated coexpression network was visualized in Cytoscape software. Nodes 
(transcripts) are shown as circles, with size proportional to the degree of the node. Ten modules 
with at least nine nodes were identified via Markov clustering, and are color-coded accordingly. 
The full coexpression network is comprised of two, mostly-distinct subnetworks. The upper 
subnetworks contains more nodes and is enriched in genes involved in extracellular matrix 
organization and cell adhesion. The smaller, bottom subnetwork is enriched in genes involved in 
the activation of immune response, and leukocyte-related activities. 
(D) Isolated identified modules, viewed in cytoscape. Modules show strong intra-connectivity, and 
additionally some interconnectivity with each other.  
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Figure 4.4. Expression of modules and SSTFs during myogenesis 
(A) The heatmap of all genes in modules based on SDR value relative to E11.5, sorted by module. 
Each column is a sample and each row is a gene. The colored bar on the right represents which 
module the genes belong to. Modules separate based on their expression pattern, and are 
expressed higher overall at E13.5 and E14.5. 
(B) The heatmap of only 302 differentially expressed SSTFs between any two time points, based 
on the SDR relative to all samples. Columns are samples, and rows represent individual SSTFs. 
SSTFs cluster distinctly, and show stage-specific expression patterns.  
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CONCLUSIVE REMARKS 

Organogenesis is well orchestrated spatiotemporal process that directs the formation and growth 

of organs during embryonic development. Genetic abnormalities at the molecular level manifest 

themselves as disorders with debilitating and/or lethal outcomes caused by malfunctions in 

developmental processes. Understanding how these processes affect organ development and 

formation can lead to the development of therapies and/or drugs that re-enable the developmental 

processes. We will be able to link developmental and regenerative processes by the common 

molecular mechanisms that they share. The emerging field of network analysis has exploited 

dynamic gene expression patterns to reveal functional modules, pathways and networks involved 

in organ development and disease. 

Though all cells begin with identical genetic material, the epigenome determines the pattern of 

gene expression, imparting each cell with its distinct characteristics, functions, and behaviors. 

During embryonic development cells differentiate into multiple types, each with its own biological 

functions to fulfill its niche. Cis-regulatory modules (CRM) are key to this process; by using specific 

CRMs that are comprised of multiple sequence specific transcription factor (SSTF) binding sites, 

a cell can either stay in the cell cycle, or can exit the cell cycle and enter the post-mitotic 

differentiation state. CRMs can act as switches to determine “availability” of associated loci for 

expression, initiate SSTF and lineage-specific gene expression programs, and change epigenetic 

regulation to help stabilize unique expression patterns.  

Forelimb myogenesis is a tightly regulated process, composed of multiple distinct phases, each 

with its own unique gene networks. In order to gain a full understanding of the molecular changes 

occurring during myogenesis, it is necessary to examine all properties of the cell, including the 

chromatin state and the whole transcriptome. Pitx2 is a homeodomain SSTF that plays a role in 

the transition from embryonic (E10.5-E12.5) to fetal myogenesis (E13.5-E17.5). In the embryonic 

forelimb, Pitx2 functions mostly as a repressor of its target genes (Chapter 2). Lack of Pitx2 in the 

forelimb at E12.5 results in an alteration of the chromatin state, especially around genes involved 

in neurogenesis and cytoskeletal adhesion (Figure 2.2). It is likely that this change in chromatin 

stage is responsible for the malformation of skeletal muscle anlagen in the forelimb found in Pitx2-

null mice.  

Pax3 is a paired-homeodomain SSTF that is responsible for the migration and delamination of 

embryonic myogenic precursor cells from the hypaxial dermomyotome into the limb bud. 

Transcriptional profiling of Pax3 lineage-traced myoblasts in the embryonic forelimb revealed high 
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expression of neurogenesis related genes during embryonic myogenesis, implying simultaneous 

communication between the nervous system and skeletal muscle during early myogenesis 

(Chapter 4). Additionally, expression of angiogenesis related genes and unexpectedly, immune-

response related genes during fetal myogenesis suggest that vascular and immune-system 

development are important during fetal myogenesis. Coexpression network analysis during all 

stages of myogenesis revealed two distinct subnetworks. GO term overrepresentation analysis 

revealed that the larger subnetwork was enriched with genes involved in cell adhesion, and 

extracellular matrix organization. The smaller network was enriched in genes related to the 

immune-response, indicating that an immune-related subnetwork exists during both embryonic 

and fetal myogenesis. Differential expression analysis confirmed that both subnetworks are 

expressed at higher levels during fetal myogenesis. The expression of the-cell adhesion related 

network increases at E13.5, which is the onset of fetal myogenesis. Expression of the immune-

related subnetwork is highest at E14.5, alleging the immune system plays a role later in fetal 

myogenesis. Altogether, we believe that forelimb myogenesis is a complex process that requires 

communication of multiple different networks corresponding to unique cell types, such as 

myoblasts, neurons, angioblasts, and leukocytes, working together in a spatio-temporal manner. 

As forelimb myoblasts continually differentiate and fuse together over time, drastic phenotypic 

changes occur on the cellular level. These phenotypic changes are ultimately the result of 

simultaneous changes in both the chromatin state, and gene coexpression patterns. Profiling the 

chromatin state of forelimb myoblasts at E12.5 revealed a stark change in the chromatin state 

around neurogenesis and cytoskeletal-related genes, caused by the ablation of a single gene, 

Pitx2. Focusing more specifically on gene expression patterns in forelimb myoblasts from the 

Pax3 lineage, we observed significant expression of non-myogenesis related genes. These genes 

were associated with the immune and vascular systems, and expressed highest at E13.5 and 

E14.5, later in fetal myogenesis. This was perplexing, since Pax3 is known to mark all skeletal 

muscle in the forelimb. Immunohistochemistry, using antibodies for known myogenic lineage 

markers, revealed the presence of non-myogenic cells in the forelimb at E11.5 and E12.5, further 

confirming the presence of at least one non-myogenic cell lineage derived from Pax3-positive 

embryonic myogenic progenitor cells. Taken together, our studies reveal insight into the 

complexity of mechanisms that overlap during embryonic and fetal myogenesis. 
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FUTURE DIRECTIONS 

With these preliminary data, optimized dissociation and FACS protocol, and the available Cre 

mouse strains available, we will interrogate the effect of genetic perturbations on embryonic and 

fetal myogenesis. Our Pax3Cre mouse is a knock-in that we could use to generate Pax3-null mice 

that replicate the splotch phenotype, a natural occured Pax3 mutation. Following the same 

procedure, we will isolate the deformed myoblast populations from embryonic forelimbs at 

different stages, and perform differential expression and coexpression analysis. We will then 

compare the generated co-expression networks, to identify differentially correlated genes and 

modules that are necessary drivers of myogenesis. Similarly, using the Pitx2Z mouse line 

available in our lab, we will cross Pax3Cre|RosaEGFP|Pitx2Z/+ male mice with Pitx2Z/+ females, to 

generate Pitx2Z/Z mutants within the Pax3 lineage. Following the same protocol, we will observe 

the effect of Pitx2 perturbation on gene expression and coexpression during myogenesis at E11.5, 

E12.5, E13.5, and E14.5. In these different perturbations we can also perform chromatin profiling 

via ChIP-Seq, or ATAC-Seq, to observe the chromatin state changes during myogenesis, and 

caused by perturbations. For Chip-Seq we would use antibodies for Histone H3 Lysine 27 

acetylation (H3K27Ac), Mediator 1 (Med1), and p300, all representing cis-regulatory modules 

(CRM). This analysis would allow us to match gene expression changes with non-coding regions 

of the genome during different stages and perturbations of myogenesis. 

Disruptions during myogenesis result in muscle-wasting diseases and myopathies after birth. By 

completing these studies, we will have a more full understanding of the regulatory mechanisms 

that occur during different stages of myogenesis. These regulatory mechanisms, identified by 

stage and perturbation, could be novel therapeutic targets either during myogenesis, or 

reactivated in adult skeletal muscle to enhance regeneration. The overall goal of this work is to 

be applied to regenerative medicine. As cells differentiate and become non-mitotic, their cell state 

changes. Each cell state has a unique signature of chromatin, and gene coexpression. By 

identifying these signatures in cell types, it becomes possible to apply reverse engineering, and 

force non-mitotic cells back to a mitotic state. This would ultimately be a boon for regenerative 

medicine, as embryonic myoblasts could be induced from a patient’s own adult skeletal muscle 

and used to regenerate muscle where needed. Our research will likely have implications beyond 

muscle-wasting disease, because many disease-associated mutations and single nucleotide 

polymorphisms (SNPs) are located outside of protein-coding exons, and a large proportion of 

human genes display expression polymorphism. Our research on the epigenetics of muscle-

wasting disease may shed light on other clinically relevant areas.  
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