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[1] Solutions to the Boussinesq equation describing drainage into a fully penetrating
channel have been used for aquifer characterization. Two analytical solutions exist for
early- and late-time drainage from a saturated, homogeneous, and horizontal aquifer
following instantaneous drawdown. The solutions for discharge Q can be expressed as
dQ/dt = �aQb, where a is constant and b takes on the value 3 and 3/2 for early and late
time, respectively. Though many factors can contribute to departures from the two
predictions, we explore the effect of having permeability decrease with depth, as it is
known that many natural soils exhibit this characteristic. We derive a new set of analytical
solutions to the Boussinesq equation for k / zn, where k is the saturated hydraulic
conductivity, z is the height above an impermeable base, and n is a constant. The solutions
reveal that in early time, b retains the value of 3 regardless of the value of n, while in late
time, b ranges from 3/2 to 2 as n varies from 0 to 1. Similar to discharge, water
table height h in late time can be expressed as dh/dt = �chd, where d = 2 for constant k and
d ! 1 as n ! 1. In theory, inclusion of a power law k profile does not complicate
aquifer parameter estimation because n can be solved for when fitting b to the late-time
data, whereas previously b was assumed to be 3/2. However, if either early- or late-time
data are missing, there is an additional unknown. Under appropriate conditions, water
table height measurements can be used to solve for an unknown parameter.
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1. Introduction

[2] There are few tools available for deriving aquifer
characteristics at the field or watershed scale. An important
one which has received renewed attention, probably due to
its apparent simplicity, is the method of recession analysis
proposed by Brutsaert and Nieber [1977]. In the method,
stream flow recession data, or discharge Q, is related to the
time rate of change in discharge dQ/dt in order to eliminate
time as the reference. Brutsaert and Nieber [1977] noted
that several models for aquifer discharge can be expressed
as

dQ

dt
¼ �aQb; ð1aÞ

where a and b are constants. A similar relationship may
exist for the height of the water table h [e.g., Rupp et al.,
2004]:

dh

dt
¼ �chd ; ð1bÞ

where c and d are also constants.
[3] The model used most often for interpreting the

parameters in (1a) and (1b) is the Boussinesq equation for

an unconfined, horizontal aquifer draining into a fully
penetrating channel (Figure 1) [Brutsaert and Nieber,
1977; Brutsaert and Lopez, 1998; Parlange et al., 2001;
Rupp et al., 2004]. The Boussinesq equation is derived from
Darcy’s law and the Dupuit-Forchheimer assumption, and
by neglecting capillarity above the water table. Given these
assumptions, the flux q [L2 T�1] per unit aquifer width at
any horizontal position x in an aquifer is

q ¼ �kh @h=@xð Þ; ð2Þ

where k is hydraulic conductivity and h = h(x, t) is the water
table height. Applying the continuity equation in the
presence of a recharge rate N leads to

j
@h

@t
¼ @

@x
kh

@h

@x

� �
þ N ; ð3Þ

where j is the drainable porosity or specific yield.
Typically, k is moved outside of the derivative, as it is
assumed spatially constant in the down-slope direction, and
the result is referred to as the Boussinesq equation.
[4] Polubarinova-Kochina [1962, p. 507] presented an

analytical solution for (3) given constant k following
instantaneous drawdown of an initially saturated aquifer
where h(0, t) = 0. For this solution, b = 3 in (1a), and it
is applicable in ‘‘early time’’ when the no-flux boundary
at x = B is not yet affecting drainage at x = 0. The
solution was arrived at by using the Boltzmann transfor-
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mation and further substitutions to express the Boussinesq
equation in the form of the Blasius equation, for which
there are known analytical solutions [see also Heaslet and
Alksne, 1961; Hogarth and Parlange, 1999]. Lockington
[1997] derived a similar early-time solution using a
weighted residual method for the more general case
where h(0, t) 	 0 and is constant. For this latter solution,
recast as (1a), b = 3 also.
[5] For ‘‘late time,’’ when the no-flux boundary affects

flow, an analytical solution can also be derived for the
boundary condition h(0, t) = 0 by noting that the solution
h(x, t) is separable into the product of a function of x and a
function of t [Boussinesq, 1904; Polubarinova-Kochina,
1962, pp. 516–517]. In this case, b = 3/2 in (1a). In the
corresponding expression for water table decline (1b), d = 2.
[6] Parlange et al. [2001] provided an approximate

analytical solution for discharge that unites the early- and
late-time regimes.
[7] In natural basins and aquifers, there are many

factors that can lead to departures from the predictions
of outflow given by analytical solutions derived for the
instantaneous drawdown of the idealized ‘‘lumped’’ aqui-
fer depicted in Figure 1 [e.g., Hall, 1968; Singh, 1968].
Recent investigations have begun to quantify the effects of
some of these factors by relaxing some of the previously
mentioned assumptions. Szilagyi et al. [1998] examined
the robustness of the two analytical solutions discussed
above by including horizontal heterogeneity in saturated
hydraulic conductivity, complexity in watershed shape,
and mild slope in a numerical model. Others have
compared solutions of the one-dimensional Boussinesq
equation to the more general two-dimensional Laplace
equation for a horizontal aquifer. In particular, the assump-
tions of initial saturation and instantaneous drawdown
[van de Giesen et al., 2005], full and partial penetration
[van de Giesen et al., 1994; Szilagyi, 2003; van de Giesen
et al., 2005], and no unsaturated flow [Szilagyi, 2003,
2004] were addressed.
[8] One aspect that has not been well studied within the

context of the Boussinesq equation is the effect of saturated
hydraulic conductivity that varies with depth. Vertically
decreasing k has been observed in many soil types [e.g.,

Beven, 1984], particularly in forests [e.g., Harr, 1977;
Bonell et al., 1981]. Beven [1982a] observed that the power
law function k = k*zn fits well to existing data from five
previous studies. Where z is the height above a relatively
impermeable base and where k* and n are fitting parame-
ters, n ranged from 1.2 to 7.9, with correlation coefficients r
between 0.85 and 0.97. In response, Beven [1982b] intro-
duced a vertical k profile that is a power law of h into the
Boussinesq equation for a sloping aquifer [Boussinesq,
1877], but eliminated the second-order diffusive term to
arrive at a linear kinematic wave equation.
[9] We introduce a similar power law conductivity profile

into (3) and derive early- and late-time analytical transient
solutions for an initially saturated aquifer following instan-
taneous drawdown. We also present an analytical steady
state solution under constant recharge. For verification, the
analytical solutions are compared with numerical solutions
of the Boussinesq equation. Last, we discuss how k de-
creasing with depth may affect the derivation of aquifer
characteristics using the recession slope analysis method of
Brutsaert and Nieber [1977], or, in other words, how the
power law k profile affects the parameters in (1a) and (1b).

2. Analytical Solutions

[10] Let the saturated hydraulic conductivity k at an
elevation z above the impermeable base be described by

k zð Þ ¼ kD � k0ð Þ z

D

� �n
þ k0; ð4Þ

where D is the thickness of the aquifer, k(D) = kD and k(0) =
k0 are the constant values of k at the upper and lower
contacts, respectively, and n 	 0. The average horizontal
hydraulic conductivity corresponding to the entire saturated
thickness of the aquifer h, or k(h), is the vertical average of
k(z):

k hð Þ ¼ 1

h

Zh
0

kD � k0

Dn
zn þ k0

� �
dz ð5Þ

or

k hð Þ ¼ k*hn þ k0 ð6Þ

where

k* ¼ kD � k0

nþ 1ð ÞDn
: ð7Þ

2.1. Steady State Case

[11] We derive a steady state solution to (3) given (6)
because it serves both as a test here of the numerical model
and as a plausible condition when considering extended wet
periods. The steady state solution of (3) requires that (2) be
equal to a constant in time. Given a constant recharge rate N
applied uniformly across the water table, the conservation of
mass requires that the steady state flux at x is equal to the
recharge contributed up-gradient of x, or

q ¼ �N B� xð Þ; ð8Þ

Figure 1. Diagram of the right-hand side of a symmetrical
unconfined aquifer fully incised by a channel. Water table
profiles at t1 and t2 correspond to early and late times during
sudden drawdown of an initially saturated aquifer. The
channel discharge Q is the sum of the discharge from both
sides of the aquifer, or 2qL. The vertical axis is exaggerated
with respect to the horizontal axis, but in reality B 
 D.
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where B is the distance from the channel to the no-flow
boundary (Figure 1). Substituting (6) and (8) into (2) gives

N B� xð Þ ¼ k*hn þ k0ð Þh @h=@xð Þ: ð9Þ

Integrating the left side of (9) from x = 0 to x = x and the
right side from h(0) = h0 to h(x) = h yields an exact implicit
solution in x:

N 2Bx� x2
� �

¼ 2k*

nþ 2
hnþ2 þ k0h

2 � 2k*

nþ 2
hnþ2
0 þ k0h

2
0

� �
; ð10Þ

where h0 is the constant water level in the channel.
[12] In the following sections, two transient solutions to

the Boussinesq equation will be derived for the special case
where h0 = 0 and k0 = 0. Given these two boundary
conditions, the steady state solution can be expressed for
h explicitly:

h ¼ nþ 2ð Þ
2k*

N 2Bx� x2
� �� 	1= nþ2ð Þ

: ð11Þ

2.2. Early-Time Transient Case

[13] To arrive at analytical solutions for instantaneous
drawdown and without recharge, we let k0 = 0, so k* =
kD/[(1 + n)Dn] and (2) and (3) become, respectively

q ¼ �k*hnþ1 @h=@xð Þ ð12Þ

@h

@t
¼ k*

j
@

@x
hnþ1 @h

@x

� �
: ð13Þ

[14] A weighted residual method [Lockington, 1997] is
used to solve (13) for early time where the drawdown of the
water table is not yet subject to the influence of the no-flux
boundary at x = B (see Figure 1, curve t1). The aquifer can
then be treated as being ‘‘semi-infinite’’ and the initial and
boundary conditions are

h ¼ 0 x ¼ 0 t > 0 ð14Þ

h ¼ D x 	 0 t ¼ 0 ð15Þ

h ¼ D x ! 1 t > 0: ð16Þ

The substitutions f = x/
ffiffiffi
t

p
, H = h/D, and t = k*t/j reduce

(13) to the two-variable problem

�f
2

dH

df
¼ Dnþ1 d

df
Hnþ1 dH

df

� �
ð17Þ

with boundary conditions

H ¼ 0 f ¼ 0 ð18Þ

H ¼ 1 f ! 1: ð19Þ

Integrating (17) with respect to f yields

2Dnþ1Hnþ1 ¼
Z1
H

fdH
df
dH

ð20Þ

because dH/df vanishes at H = 1. H is a dummy variable of
integration.
[15] The following approximate function f* used by

Lockington [1997] for a homogeneous aquifer is proposed
for f:

f � f* ¼ l 1� H�mð Þ � 1½ �; ð21Þ

where l and m are constants with the same sign. As f* is
not an exact solution to (20), a residual function e(H) is
defined as

e ¼ 2Dnþ1Hnþ1 �
Z1
H

f* H
� �

dH
df
dH

: ð22Þ

The residual is weighted with 1 and (1 � H)m [Lockington,
1997] and integrated over the range of H to solve for l
and m:

Z1
0

edH ¼ 0 ð23Þ

Z1
0

1� Hð ÞmedH ¼ 0: ð24Þ

From (23)

l2 ¼ 1� mð Þ 1� 2mð Þ
m2

Dnþ1

nþ 2
ð25Þ

and from (24)

2Dnþ1B nþ 2;mþ 1ð Þ ¼ l2m2 2þ m� 2mð Þ
1þ m� mð Þ 1þ m� 2mð Þ ; ð26Þ

where B(n + 2, m + 1) denotes the beta function evaluated
for n + 2 and m + 1. Substituting (25) into (26) gives

A ¼ 1� 2mð Þ 2þ m� 2mð Þ
1þ m� mð Þ 1þ m� 2mð Þ ; ð27Þ

where

A ¼ 2 nþ 2ð ÞB nþ 2;mþ 1ð Þ: ð28Þ

It can be shown by rearrangement that (27) is a quadratic
equation. The useful root m is that with real values of H (and
thus h)

m ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ag

q
2a

ð29Þ
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with

a ¼ 4� 2A ð30Þ

b ¼ 3A mþ 1ð Þ � 2m� 6 ð31Þ

g ¼ 2þ m� A mþ 1ð Þ2: ð32Þ

The value m = 1.251 has been suggested for constant k
[Lockington, 1997]. However, if m = 1, the effect of which
is discussed later, (29) becomes

m ¼ 4� 3A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 2Aþ 4

p
4� 2A

; m ¼ 1: ð33Þ

Finally, substituting (25) into (21) and solving for H, and
making the substitutions H = h/D and f* = x/

ffiffiffiffiffiffiffiffiffiffiffiffi
k*t=j

p
, yield

the approximate water table profile

h x; tð Þ ¼ D 1� 1þ m
xffiffi
t

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2ð Þ nþ 1ð Þj

1� mð Þ 1� 2mð ÞkDD

s !�1=m2
4

3
5:
ð34Þ

[16] The outflow from the aquifer is the flux at x = 0.
Evaluating (12) at f = 0, or

q ¼ �k*t�1=2Dnþ2Hnþ1 dH=dfð Þjf¼0 ð35Þ

gives, from (20),

q ¼ � k*D

2t1=2

Z1
0

f Hð ÞdH : ð36Þ

Substituting (21) and (25) into (36) and solving the integral
yields the early-time outflow

q tð Þ ¼ 1

2

1� 2mð Þ
1� mð Þ nþ 2ð Þ nþ 1ð Þ kDjD

3

� 	1=2
t�1=2: ð37Þ

2.3. Late-Time Transient Case

[17] A separation of variables is used to solve (13) for the
late-time case where the drawdown of the water table is
subject to the effect of the no-flux boundary at x = B
[Boussinesq, 1904; Polubarinova-Kochina, 1962] (see
Figure 1, curve t2). The boundary conditions are

h ¼ 0 x ¼ 0 t > 0 ð38Þ

dh=dx ¼ 0 x ¼ B t 	 0 ð39Þ

h ¼ D x ¼ B t ¼ 0: ð40Þ

We seek a solution for the free water surface h which is the
product of two variables, one dependent solely on time and
the other solely on the position:

h ¼ X xð ÞT tð Þ: ð41Þ

Substituting (41) into (13) and separating the variables
yields

1

Tnþ2

dT

dt
¼ k*

jX
d2

dx2
Xnþ2

nþ 2

� �
¼ �C; ð42Þ

where C is a constant. The boundary conditions are

X ¼ 0 x ¼ 0 t > 0 ð43Þ

X ¼ D x ¼ B t ¼ 0 ð44Þ

T ¼ 1 t ¼ 0: ð45Þ

Integrating the left and right sides of (42) give

T ¼ 1þ nþ 1ð ÞCt½ ��1= nþ1ð Þ ð46Þ

dx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k* nþ 3ð Þ

2Cj

s
Xnþ1dXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dnþ3 � Xnþ3
p ; ð47Þ

respectively. Integrating (47) again yields

x ¼ B

Bn

Zv
0

v�1= nþ3ð Þ 1� vð Þ�1=2
dv; v ¼ X=Dð Þnþ3 ð48Þ

where Bn is a beta function

Bn ¼ B
nþ 2

nþ 3
;
1

2

� �
: ð49Þ

The integral in (48) is an incomplete beta function. A
series expansion, for example, can be used to approximate
the inverse of the incomplete beta function [see, e.g.,
Abramowitz and Stegun, 1972, equation 26.5.4].
[18] The constant C subject to the boundary conditions is

C ¼ k*Dnþ1

2 nþ 3ð ÞjB2
B2
n; ð50Þ

which is used to arrive at (48) above. From (41), (46), and
(48), the water table height is

h x; tð Þ ¼ DW

1þ B2
n

2 nþ3ð Þ
kDD
jB2 t

h i1= nþ1ð Þ ; ð51Þ

where W(x/B) = X/D. Examples of water table profiles for
various values of n at t = 0 are shown in Figure 2.
[19] The outflow from the aquifer can be found from (12)

evaluated at x = 0:

q ¼ �k*Tnþ2X nþ1 dX=dxð Þ x¼0j ð52Þ
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Combining (47) with (52) and letting X = 0 gives

q tð Þ ¼ BnkDD
2

nþ 3ð Þ nþ 1ð ÞB 1þ B2
n

2 nþ3ð Þ
kDD
jB2 t

h inþ2
nþ1

: ð53Þ

3. Discussion

[20] For permeability that varies as a power function with
depth, both the early-time (equation (37)) and late-time
(equation (53)) solutions for discharge can be expressed in
the form given by (1a). Taking the derivative of (37) with
respect to time and recasting the result as a function of
discharge instead of time, the recession constants a and b
for the early-time solution are

a1 ¼ F1

nþ 1ð Þ
kDjD3L2

ð54Þ

b1 ¼ 3 ð55Þ

where

F1 ¼
1� mð Þ nþ 2ð Þ
2 1� 2mð Þ : ð56Þ

Values of F1 for various values of n are given in Table 1.
Note also that the discharge Q in the channel is assumed to
be the cumulative outflow from all upstream aquifers such
that Q = 2qL (see Figure 1).
[21] Defining the width of the aquifer B as the character-

istic distance from channel to divide, the aquifer area A is
given by A = 2LB. The recession parameters for the late-
time solution (53) can then be expressed as

a2 ¼ F2

4kDDL
2

nþ 1ð ÞjA2

nþ 1ð ÞA
4kDD2L2

� 	nþ1
nþ2

ð57Þ

b2 ¼ 2nþ 3ð Þ= nþ 2ð Þ; ð58Þ

where

F2 ¼
nþ 2

2 nþ 3ð ÞB
2
n

nþ 3

Bn

� 	nþ1
nþ2

: ð59Þ

See Table 1 for values of b2 and F2 for various values of n.
[22] Unlike for discharge, the Boussinesq equation does

not predict a power law relationship between dh/dt and h in
early time. However, the late-time solution (51) can be
expressed in the form of (1b) with constants

c ¼ B2
n

2 nþ 3ð Þ nþ 1ð Þ
kD

jDnB2Wnþ1
ð60Þ

d ¼ nþ 2: ð61Þ

[23] The analytical solutions derived above were com-
pared to output from a numerical model of (23) using a
fourth-order Runge-Kutta finite difference method with 250
equally spaced nodes in the x-direction. Numerical outflow
hydrographs were generated for various values of n, kD, and
D. The data were plotted as log(�dQ/dt) versus log(Q), as
proposed by Brutsaert and Nieber [1977] (see also Rupp
and Selker [2005] for discussion on the numerical approx-
imation of log(�dQ/dt) versus log(Q) from discrete data).
Plotted in log-log space, the analytical solutions appear as
straight lines with slope b and intercept a. Three numeri-
cally generated recession curves are given as examples in
Figure 3.
[24] The early-time slope b for discharge of the numerical

simulations was not perceptibly different from 3 regardless
of the value of n. It was observed, however, that the node
spacing had to be decreased for large n, or else b appeared
as less than 3 for very early times and gradually approached
a value of 3 (data not shown). Therefore the node spacing
was reduced by a factor of 10 to obtain just the early-time
data for the largest values of n. The number of nodes was
maintained at 250, as the early-time solution is not a
function of the position of the no-flux boundary at x = B.
[25] Following the sharp transition from the early- to late-

time regime, the numerically generated data show a slope b
that is equal to that predicted by the late-time solution (58)
(Figure 3). For late time, the initial node spacing was
adequate for all n.
[26] In addition to the slope b, the analytically and

numerically generated recession curves are nearly identi-

Table 1. Recession Coefficients for Various Vertical Hydraulic

Conductivity Profiles, k / zn

n

Early Time (b = 3) Late Time

F1 (56) (m = 1) F2 (59) b2 (58)

0 1.108 2.402 1.500
1
�
4 1.337 2.538 1.556

1
�
2 1.588 2.690 1.600

1 2.151 3.030 1.667
2 3.528 3.787 1.750
4 7.279 5.445 1.833
64 739.8 63.17 1.971
1 1 1 2.000

Figure 2. (left) Dimensionless late-time transient water
table profiles h(x, 0)/D in an unconfined aquifer with a fully
penetrating channel at x = 0. The water table heights shown
are calculated from the late-time solution (51) for t = 0 and
four vertical profiles of saturated hydraulic conductivity k
corresponding to n = 0, 1/4, 1, and 4. (right) Dimensionless
hydraulic conductivity k(z)/kD versus dimensionless height
z/D above the impermeable base.
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cally positioned in log-log space for late time (i.e., the
values of the parameter a2 are equal). There is a discrep-
ancy, however, in early time. Using a value of m = 1.251
for (24) [Lockington, 1997] to calculate a1 from (54), the
numerical and analytical solutions diverge for increasing n
(Figure 4). For small n (e.g., n � 1), this may not have
practical consequences. However, for the example show in
Figure 4a, the difference in a1 between the solutions is
about 15% for n = 4 and 40% for n = 32. The discrepancy
does not appear to be due to numerical error, as changing
the node spacing or the time step did not result in a
convergence of predictions. On the other hand, if we let
m = 1, the analytically and numerically derived values of
a1 show a much better match, with the difference being
about 1% for all n (Figure 4).
[27] Accurate estimates of F1 in (54) are known for n = 0,

so comparisons can be made to the value predicted by (56)
for this specific case. The most accurate value of F1, to the
fourth decimal place, is 1.1337 [see Parlange et al., 2001].
In comparison, for n = 0, (57) gives F1 = 1.1361 for m =
1.251 and F1 = 1.1076 for m = 1. Thus the value of m
proposed by Lockington [1997] is superior to m = 1 for very
small n, but performs poorly over all n. One might apply a
correction factor to (56) for m = 1 to improve the prediction
at n = 0, though this may not be justified for the purposes of
recession slope analysis in log-log space.
[28] It is remarkable that the recession parameter b retains

the value of 3 in early time regardless of the shape of the k
profile. The practical implication of this result for aquifer
characterization is that the shape of the early-time outflow
hydrograph alone gives no indication of vertical variability
in k, thus adding at least one unknown variable to the
parameterization problem. However, if late-time data are
also available, the late-time value of b supplies information
on the vertical variability in k (i.e., n), thus the problem of
parameterization is in theory no more complicated than for
the case of constant k with two equations and the same
number of unknowns. (If, however, the vertical k profile

were defined with an extra parameter, such as in (6), there
would be another variable for which to solve).
[29] Though the early- and late-time curves can be used

together to solve for an unknown parameter by combining
(54) and (57), it is likely that the predicted early-time
response will not be evident in discharge data. This is
because the assumption of sudden drawdown from an
initially flat water table may be inappropriate for the data
being analyzed [van de Giesen et al., 2005] or that obser-
vations during the early period of recession may still be
reflecting processes other than merely aquifer outflow
[Brutsaert and Nieber, 1977; Brutsaert and Lopez, 1998].
Furthermore, in the common case when only daily data are
available, the temporal resolution may be too coarse to
discern a relatively short lived early-time regime.
[30] From only the late-time data, estimating the charac-

teristics of an aquifer with a power law k profile requires
solving for six variables, which is two more than for the
case of a homogeneous aquifer (note that D falls out of (57)
for b = 3/2 or n = 0). When available, representative

Figure 4. Early-time recession parameter a from (1a) as
determined analytically (lines) from (55) with two values of
m and numerically (circles) for various vertical profiles of
saturated hydraulic conductivity. In Figure 4a, kD/D was
held constant as n was varied, with kD = 100 m d�1, D =
1 m, B = 100 m, j = 0.01, and L = 1 m. In Figure 4b,
kD/D

n was held constant at 100 m1�n d�1 as n was
varied, with D = 2 m, and B, j, and L as above.

Figure 3. Recession curves from three numerical simula-
tions using saturated hydraulic conductivities that decrease
with depth from kD = 100 m d�1 to k0 = 0 m d�1 slowly (n =
0.25), linearly (n = 1), and rapidly (n = 4). In each case D =
1 m, B = 100 m, j = 0.01, and L = 1 m. The analytically
derived values of b are shown for n = 0.25 and n = 4.
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transient water table data can constrain the parameter space
through the combination of (57) and (60) [e.g., Rupp et al.,
2004]. Water table observations may be especially useful for
determining if there is important vertical variability in k,
given that the parameter d in (61) corresponding to the
transient water table height is much more sensitive to n than
is the discharge parameter b2 in (58).
[31] It has been shown previously that three values of b

arise out of three analytical solutions to the Boussinesq
equation for a homogeneous aquifer [Brutsaert and Nieber,
1977]. As noted above, two of these values are b = 3 for
early time and b = 3/2 for late time. The parameter b also
takes on a third value of 1 for a solution resulting from a
linearization in h in (3). Given that actual streamflow
recession hydrographs show a range of values for b and
are thus not limited to 1, 3/2, and 3, there is interest in
finding theoretical solutions for basin discharge that give
other values of b.
[32] We have shown above how b may take on any value

between 3/2 and 2 and may also take on a value of 3 when
the saturated hydraulic conductivity decreases with depth as
a power law. It is interesting to compare our results to those
of Michel [1999], who used dimensional considerations to
arrive at an expression for aquifer discharge for any arbi-
trary value of b.
[33] Michel [1999] demonstrated that the three analytical

solutions for a homogeneous aquifer can all be expressed in
the form of (1a) through a single equation:

a ¼ �Y bð Þ 4kDL
2

jA2

A

4kD2L2

� 	b�1

ð62Þ

b ¼ 1; 3=2; or 3: ð63Þ

Though there are only three known theoretical values of the
coefficient Y, one each for b = 1, 3/2, and 3, Michel [1999]
and Brutsaert and Lopez [1999] suggest functional forms
for Y(b), so that one might use (62) for any value of b.
Brutsaert and Lopez [1999], for example, give

Y bð Þ ¼ �10:513þ 15:030b1=2 � 3:662b: ð64Þ

However, Brutsaert and Lopez [1999] recommend using
caution when interpreting the recession parameter a through
(62) and (64) for values of b different from 1, 3/2, and 3.
[34] It is of interest to compare (62) and (64) to the new

solutions for a nonconstant k profile. Noting that b � 1 =
(n + 1)/(n + 2), it is clear that (62) and the late-time
solution (57) for a power law k profile are nearly identical
in form. The late-time coefficient F2 could also be
expressed as function of b, as is Y. However, F2 is
functionally very distinct from Y (see also Table 1). In
fact, F2 ! 1 as b ! 2 (or as n ! 1), whereas as Y in
(64) has no such singularity. Moreover, though (62) for b
= 3 is also similar in form to the early-time solution (54)
for a power law k profile, the early-time coefficient F1 is
not a function of b at all. Given that our results do not
support the functional forms for the coefficient Y(b)
proposed by Michel [1999] and Brutsaert and Lopez
[1999], it appears that the use of (62) with an ‘‘empirically

derived’’ equation such as (64) without understanding why
b takes on a certain value is not justified.

4. Conclusion

[35] Recession hydrographs can differ in shape from
those predicted by existing analytical solutions to the
Boussinesq equation. In some cases, the initial and bound-
ary conditions used to arrive at the analytical solutions may
not be suited to the situation under analysis [e.g., van de
Giesen et al., 2005]. In other cases, the assumptions of the
Boussinesq equation may be inappropriate. In this study, we
investigated the effect of deviating from the assumption of
an aquifer with constant saturated hydraulic conductivity k.
[36] It was found that for a power law vertical conduc-

tivity profile, the recession discharge in early time can be
expressed as dQ/dt / Q3, which is the same as the case of a
homogeneous aquifer. In late time, however, the relation is
dQ/dt / Qb, where b is a function of the exponent n that
defines the k profile (k / zn). The value of b is 3/2 for a
homogeneous aquifer (n = 0) and increases to 2 as n
approaches 1. Observed values of b exceeding 3/2 thus
might be an indication of important decreases in k with
depth within an aquifer.
[37] The analytical solutions derived here for discharge

allow for the derivation of aquifer characteristics much in
the same way as that proposed by Brutsaert and Nieber
[1977], with only slightly more complexity. The addition of
transient water table data, analyzed in the same manner as
that of discharge, can address some of the added complex-
ity. It is acknowledged, however, that the analytical solu-
tions assume that k = 0 at the base of the aquifer and thus
may only be suitable for k(D) 
 k(0).

Notation

a, b general discharge recession constants.
a1, b1 early-time discharge recession constants.
a2, b2 late-time discharge recession constants.

A horizontal aquifer area, equal to 2LB.
B length of impermeable base of aquifer.

c, d late-time water table recession constants.
C constant of integration.
D aquifer thickness.
h water table height.
h0 water table height at channel (x = 0).
H dimensionless water table height, equal to h/D.
H dummy variable of integration.
k saturated hydraulic conductivity.
k0 saturated hydraulic conductivity at bottom of

aquifer.
kD saturated hydraulic conductivity at top of aquifer.
k* coefficient, equal to (kD � k0)/[(n + 1)Dn].
L channel or stream length.
m exponent in weight of residual; see (24).
n exponent in expression for vertical profile of

hydraulic conductivity.
N rate of aquifer recharge.
q aquifer discharge per unit width of aquifer.
Q aquifer discharge.
t time.
T arbitrary function of t only.
v transform, equal to (X/D)n+3.
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x horizontal coordinate.
X arbitrary function of x only.
z elevation above aquifer base.

a, b, g coefficients in quadratic equation.
A function of n, equal to 2(n + 1)B(n + 2, m + 1).

B(,) beta function.
Bn beta function evaluated for (n + 1)/(n + 2), 1/2.
e residual function, defined in (22).
f Boltzmann transform, equal to x/

ffiffiffi
t

p
.

f* approximate function for f, defined in (21).
F1 early-time discharge recession coefficient, de-

fined in (56).
F2 late-time discharge recession coefficient, defined

in (59).
l, m coefficients in function f*.

j drainable porosity, or specific yield.
t transformed time, equal to t = k*t/j.
W inverse of the normalized incomplete beta func-

tion, equal to X/D.
Y discharge recession coefficient for homogeneous

aquifer; see (62).
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