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TOPOLOGICAL VECTOR SPACES AND THEIR
INVARIANT MEASURES

I. INTRODUCTION

Ina series of three papers, 1917-1920, P. J. Daniell initiated

the investigation of integration from the point of view of positive lin-

ear functionals U on a vector lattice (Riesz space) satisfying

"(L) if
f1

(p) > f2
(p) > ... and fn(p) = 0 for all p,

lim U(fn) = 0" (Daniell, 1917, p. 280). He also required that the

functions in the Riesz space be bounded. In his second paper, Daniell

(1918) produced the first examples of integrals for functions defined

on an infinite dimensional space which do not reduce to an infinite

series or to an integral over a finite number of dimensions. Banach

(1937) generalized Daniell's first example by considering as the

domain of the functions the unit ball in a separable Hilbert space.

The more standard approach to integration is the Lebesgue

theory: a countably additive set function on a sigma ring or sigma

algebra is given, the integral is defined on linear combinations of

characteristic functions, the integral is then extended by taking

sup s or inf's over a set of previously defined integrals. Bochner

(1939) produced a Riemann integration theory with respect to positive

finitely additive set functions on an algebra of sets by considering

limits of partitions.



Tolstov (1962) showed that the Daniell approach to integration

theory lead to Lebesgue integrals when the function space included all

bounded Borel functions. The necessity for (L) holding in order

that a positive linear functional U on the bounded continuous func-

tions be represented by Lebesgue integration with respect to a posi-

tive Baire measure had been shown 11 years earlier by Glicksberg

(1951). In the same paper, Glicksberg proved that for a completely

regular space E, every positive linear functional on the space of

bounded continuous functions is represented by a Baire measure if

and only if E allows no unbounded continuous functions. This is

obviously not the case when E is a Hausdorff topological vector

space. This clarified the result of Hewitt (1950), who studied the

representation for positive linear functionals I on the space of all

continuous functions on a completely regular space. He discovered

(Hewitt, 1950, p. 168) that I would then be represented by a Baire

measure, with respect to which every continuous function is bounded

except on a set of measure zero. In a later paper (Hewitt, 1952), he

returned to the more general setting of Daniell: the investigation of

positive linear functionals I on some Riesz space L of functions.

By using the bounded functions in the Riesz space he found a finitely

additive measure which represented I for some functions in L.

But he did not succeed in finding reasonable necessary and sufficient

conditions in terms of I alone for the representation to hold for all
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bounded functions in L (Hewitt, 1952, paragraph 3.8).

Glicksberg's 1951 paper and Hewitt's 1952 paper highlighted the

difficulties in investigating Riesz spaces of unbounded functions.

The investigation of the Riesz space generated by the dual space

of a locally convex Hausdorff topological vector space was initiated

by Choquet (1962), who introduced the ideas of conical measures and

affine measures. Choquet (1969) proved that conical measures on the

complete weak spaces E(X), X denumerable, were localizable by

Radon measures. He discovered rotationally invariant conical and

affine measures on pre-Hilbert spaces.

Umemura (1965) emphasized the importance of investigating

measures--not necessarily sigma additive--on function spaces, both

for the theory of stochastic processes and for quantum mechanics.

He proved the existence of a continuum of quasi-invariant Borel

measures on infinite-dimensional vector spaces, and asked about the

existence of essentially different invariant measures.

This thesis is concerned with investigating this question using

translation groups, from the Daniell point of view, and seeing how

the properties of the resulting measures depend upon properties of

the topological vector space structure. We first consider some new

properties of a topological vector space, and see how the measures

are affected by this structure.

Chapter II recalls and assembles the notation and basic facts
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needed concerning topological vector spaces and partially ordered

sets. We introduce the concept of co-initialness and observe a simple

property of it.

Chapter III relates characteristics of the topology of a vector

space to certain properties of related posets. There is introduced

the equivalence relation .e. and the partial ordering .a. on the

equivalence classes, and classifies spaces according to lc-type.

Chapter IV uses .e. to show that every Hausdorff locally con-

vex space is (vectorially) normizable.

Chapter V begins with a representation theorem for Riesz

spaces. Although the theorem must be known to at least a few people,

neither its statement nor its proof seem to have ever been published.

A similar statement could probably be made for the other theorems in

the first section. In particular, the proof of Theorem 3 is too short

to be unknown. Theorem 4 arose out of an attempt to simplify some

of the arguments in Hewitt's 1950 paper. The method of proof reap-

pears in Proposition 4; it also appears in Choquet's 1967 paper and

throughout Chapter 8 of his 1969 book. In the second section, The-

orem 6 was stated but not proved by Choquet. Theorem 13 was

announced by Courrege (Bony and Courrege, 1964). The other results

are all original. We show that no non-zero affine measure has an

extension which is translation invariant for any translation group.

We show that every positive invariant measure on a complete weak
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space E(X), X denumberable, is a non-localizable extension of a

localizable conical measure. We show that invariant measures are

not zero as conical measures without being identically zero. We

show that although invariant measures are plentiful, they correspond

to no even finitely additive set function on a subset of the Baire sets.

We show that ever conical measure has a unique translation invariant

extension, and produce two characterizations (Theorems 15 and 17)

of invariant measures. Finally, for weak spaces E(X), X denumer-

able, we produce an integral representation.



II. TVS PRELIMINARIES

TVS

The present section recalls and assembles notation and basic

facts from the theory of topological vector spaces which are used in

this paper. The reader who is familiar with the basic facts of the

theory may skip this section and refer to the Notational Index if con-

fronted with any unfamiliar or unusual terminology or notations

appearing in the remainder of the paper. For further elucidation of

the assembled notations, the reader is referred to Choquest (1969,

Chapters 5, 6), Horvath (1966), or Schaefer (1966). The section ends

with some terminology from lattice theory.

We shall deal exclusively with topological vector spaces over

the reals R. Let us recall that a topological vector space (TVS) is

a set E equipped with a real vector space structure as well as a

topology such that the vector space operations, addition EX E~E

and scalar multiplication R X E E, are both continuous. E*

denotes the vector space of all linear maps from E into R (the

algebraic dual). E' denotes the vector space of all continuous lin-

ear maps from E into R (the topological dual).

If F is a second TVS and if f E F is an algebraic iso-

morphism which is also a homeomorphism, we shall call f a

6
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toplinear isomorphism and say that E and F are toplinearly

isomorphic.

A base for the neighborhood system at the origin is called a

0-neighborhood base. Let A, B be subsets of E. We say A

absorbs B provided there exists a t > 0 such that B C sA for

in R, I s I > t. A is called absorbing provided A absorbs

{x} for all x in E. A is called balanced provided sA C A

for s I <1. The subset A of E is bounded provided every

0-neighborhood absorbs A. If A is absorbing, the gauge of A,

g(x) = inf {t > 0:x E tA}.

If E has a 0-neighborhood base of convex sets, it is called

locally convex. We say that E is an LCS provided it is a locally

convex hausdorff TVS.

Suppose A is balanced, convex and absorbing. Then gA

is a semi-norm. We let EA denote the vector space E furnished

with the topology determined by the semi-norm gA.

A TVS is called locally bounded provided it possesses a bounded

0-neighborhood.

Suppose E is a vector space and F is a subspace of E*.

Then the o-(E, F)-topology for E is the initial topology with re-

spect to the set of maps F.

An LCS E is called a weak space provided its topology is

identical with cr(E, E'). Notice that in general, o-(E,E') is a



weaker topology. On any vector space E it is clear that the finest

weak topology is cr(E,E*).

For any set X, let E(X) = RX furnished with the product

topology. E(X) is a (complete) weak space whose dual E(X)' =R(X).

Actually, it is well known that E is a complete weak space if and

only if E is toplinearly isomorphic to some E(X). Given E,

a complete weak space, let X be a Hamel basis for 2. Then the

map i:E E(X) given by point evaluation: i(y)(x) = x(y) for x

in X and y in E is the required toplinear isomorphism.-1/

Posets

We shall also have need of some elementary notions concerning

partial orderings. Suppose (S, <) is a poset (i.e., a partially

ordered set) a subset T of S is said to be left filtering for

provided for every u, v in T, there exists a w in T such

that w < u and w < v. If S has an element u such that

u < s for all s in S, then S is said to have a zero element

0 = u. If S has an element w such that s < w for all s in

S, then S is said to have a unit element 1 = w.

We define u V v = sup(u, v) = the zero element of the poset

{w ES:u <w and v < w}, when it exists. We define

8
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u A v = inf(u, v) = the unit element of the poset {w S:w < u and w < v},

when it exists. A semilattice is a poset in which either of the follow-

ing two conditions hold:

Every two elements has an inf.

Every two elements has a sup.

If (S, <) is a poset and T is a subset of S, then we say

that T is co-initial in S provided s E S implies there exists a

t T such that t < s.

If S is left filtering and T is co-initial in S then T is

also left filtering. For let s and t be elements of T. Since

S is left filtering there exists an element u of S such that

u < s and u < t. By the co-initialness of T there exists an ele-

ment w E T such that w < u and therefore such that w < s and

w < t.

The next chapter relates characteristics of the topology of a

TVS to certain properties of related posets. For a presentation of

other uses of posets to the investigation of TVS, see Birkhoff (1966).



III. POSET DESCRIPTIONS OF TVS E

E is a TVS

In this section let E be a TVS, and let B be a fixed

0-neighborhood base consisting of balanced sets. In B we introduce

the following relations: for U and V in B, let U .a. V

provided U is absorbed by V; for U and V in B, let

.e. V provided U .a. V and V .a. U.

Propostion 1. The following properties of elements U, V of

are equivalent.

U .a. V

U is a subset of tV for some t > 0.

Proof.

implies (b): by the definition of absorbing.

implies (a): because the elements of B are balanced;

C tV C tsV for I s I > 1. Therefore, U C XV for all

>t. Q. E. D.

If U C sV and V C tW then U C stW so that U .a. V

and V .a. W implies that U .a. W. With the transitivity of .a.

established, it is clear that .e. is an equivalence relation.

10



Corollary. The following properties of elements U, V of

B are equivalent.

U .e. V

U C sV C tV for some s, t >0.

Let [ :B B/.e. be the canonical surjection, so that for

U an element of B, [U] ={v E B:V .e. U}.

If U .e. U' and V .e. V' and U .a. V, then since

U' .a. U and V .a. V' it is the case that U' .a. V'. Thus, .a.

induces a partial order on BI.e. which will continue to be denoted

by .a. . Thus, [U] .a. [V] provided U .a. V for some U in

[U] and V in [V].

Proposition 2. B/.e. is a left filtering partial order.

Proof. It is clear that (B/.e., .a. ) is a partial order. Sup-

pose [U], [V] are elements of BI.e. Then since B is a

neighborhood base, there exists W in B such that W CU fTh V.

But then [W] .a. [U] and [W] .a. [V]. Q. E. D.

Proposition 3. If B is closed under finite intersections,

then B/.e. is a semilattice under A .

Proof. Let [U], [V] be elements of B/.e. . We show that

[U] A [V] = [U n V]. For, U rm V .a. U and U cm V .a. V so

11



that [U cm V] .a. [U] and [U V] .a. [V]. Now suppose

[W] .a. [U] and [W] .a. [V]. Then W C sU and W C tV so

that We sU tV C max(x, t)U rm V. Thus W .a. U rm V so

[W] .a. [U rm V]. Q. E. D.

Recall that a subset T of the poset (B/.e. , .a.) is co-initial

provided that for all [U] in B/.e. there exists [V] in T such

that [V] .a. [U].

Notice that B/.e. itself is co-initial, so that the set of all

co-initial subsets of B/.e. is nonempty. Let

lc(B) = minfcardinality T :T C B/.e. is 2/ The cardinals

are well-ordered, so that lc (B) is well defined. Indeed there must

exist a co-initial subset T such that lc(B) = the cardinality of T.

Proposition 4. Co-initial sets are left filtering.

Proof. This follows from Proposition 2, and the remarks at

the end of the preceding section. Q. E. D.

Theorem 1. If B' is another zero-neighborhood base of

balanced sets for E, then lc(B) = lc(B1).

Proof. Let T C B/.e. be co-initial in B/.e. .

12
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MC co-initial in is constructed as follows: Let

[U] E B/.e. . Since B' is a neighborhood base, we may choose a

V C U, V E B'. Let m([U]) equal [la the equivalence class in

137.e. of that chosen V. Performing this choice for every [U]

in B/.e. defines a map m:B/-e- B1/.e. . Let M m(T).

Then M is co-initial in B'/.e. . For let [W] be an element of

137.e. . Since B is a neighborhood base, there exists a U in

such that U C W. But then m([U]) .a. [U] .a. [W].

Since m: T M is surjective, the cardinality of

M < cardinality T. Thus, for each co-initial subset T of BI.e-

there exists a co-initial subset M of 137-e. of as low cardinality-

Thus, lc(B1) < lc(B). Since the argument with respect to B and

B1 is symmetric, also lc(B) < lc(131), and thus by the Schr6der-

Bernstein theorem, lc(B) = 1c(31). Q. E. D.

Thus, lc is independent of the choice of neighborhood base,

and so we may set lc(E) = lc(B), and consider lc as a function

of E.

Theorem 2. The following are equivalent statements about E.

lc(E) = 1.

The partially ordered set B/.e. has a 0 element.

E is locally bounded.



Proof. (i) implies (ii): Since lc(E) = lc(B), 13/.e. has a

co-initial subset {[U]}. So [U] .a. [V] for all [V] in B/.e.

This means that [U] is a 0 element for B/.e. .

(ii) implies (i): The 0 element furnishes a singleton co-

initial subset for B/.e. so lc(E) = lc(B) = 1.

implies (iii): Let [U] be the 0 element of B/.e. .

We show that U is a bounded neighborhood of the origin in E. Let

V be any neighborhood of the origin. Then there exists an element

V' of B such that V' C V. But [U] .a. [V] so that

U .a. V' .a. V and thus U is absorbed by V.

implies (ii): Let U be a bounded neighborhood of the

origin in E. Then there exists an element U' of B such that

U' C U. We show that [U'] is a 0 element of B/.e. Let

[V] be an element of B/.e. . Then U' .a. U .a. V so that

[U'] .a. [V]. Q. E. D.

Theorem 3. The following are equivalent statements about E.

lc(E) = 1 or lc(E) =

E has a countable zero-neighborhood base.

E is semi-metrizable.

Proof. (ii) implies (iii) and (iii) implies (ii) are well known

theorems.

Suppose E is semi-metrizable. Then there is a semi-metric

14



d :E X E R+ whose open balls form a base for the topology of E.

Then {{x E E :d(x, 0) < n} :n E N} is a countable zero-neighborhood

base. Now suppose that E has a countable zero-neighborhood base.

We sketch one possible construction of a semi-metric: Given a

countable neighborhood base B = {Bn:n E N}, form a sequence

{Vn:n E N} of balanced zero-neighborhoods inductively as follows.

Choose as
V1

any balanced zero-neighborhood such that
V1

C B.

Having chosen Vn-1, let Vn be any balanced zero neighborhood

such that Vn + Vn C Vn-1 Bn. Then {Vn:n E N} is a zero

neighborhood base, Vn + Vn C Vn-1, and Vn\ {o}. Define

d:EXE'R+ by

d(x, y) = inf { 2-n : x-y E V }
H E F(N) n EH n EH

where F(N) = {H C N:H finite}. The semi-metric d generates

the topology of E. For details see Schaefer (1966, p. 28-29).

(ii) implies (i): Suppose E has a countable zero-

neighborhood base. Then clearly 1 < lc(E) < Suppose T is

a co-initial subset of Bi.e. of finite cardinality.

T = {[U11, [U2], , [Un]}. There is some element V of B such

that V C n U. But then [V] .a. [U.] for all i 1, ,n.
i=1

Let [U] be an element of Bi.e. . Then for some i

15

[Ui] .a. [U] so that [V] .a. [U]. Thus, {[v]} is co-initial so
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lc(E) = 1.

(i) => (ii): Suppose lc(E) = 1. Then there exists a balanced

bounded zero-neighborhood C in E. So B' = EN} is

a countable zero-neighborhood base. For if U is a balanced zero-

neighborhood in E, then by the boundedness of C, C C tU for

some t >0. So n-1C C U for t < n. Suppose lc(E) =

and let {[Un]:n E N} be a co-initial subset in B'/.e. , where B'

is the collection of all balanced zero-neighborhoods of E. Then

B" {m-1Un:n EN, m E N} is a countable zero-neighborhood base

for E. For let U be a balanced zero-neighborhood. Then there

exists V E B' such that V C U. Also, there exists n such

that [U n] .a. [V] so [Un] .a. [U], and thus, U C tU for some
-1tE R So for m > t, m U r-

n U. Thus U a zero-

neighborhood implies there exists V E B" such that V C U. Now

suppose m-1Un, r-1Us E B". We need only show that there exists

q-1Ut E B" such that q-1Ut C m-1Un r-1Us to conclude that

B" is a zero-neighborhood base. By Proposition 4, there exists

[Ut such that [Ut n t s t] .a.] and [U] .a. [U]. Thus, U C MUn
- -and U SUs

for some M, S E N. So (mM)1 Ut C m1 Un

and (rS)-1Ut C rUs. Let q = max(mM, rS). Then

-1
q Ut C m-1Un r-1Us.

Thus if lc(E) = 1 or lc(E) , there exists a countable

base B". Q. E. D.



In the proof of the preceding theorem, we have shown the fol-

lowing: if 1 < lc(E) <, then 1c(E) = 1 or lc(E) so
0

that lc(E) never equals 2, 3, 4, etc. Are there any other

cardinals which lc(E) avoids? The answer to this question is no,

as shown by the following.

Theorem 4. Suppose X is a set of cardinality > Then

there exists an LCS E such that lc(E) = cardinality of X.

Proof. Because of Theorems 2 and 3, we need only assume that

cardinality (X) > tko. Let E = E(X), that is, RX, equipped

with the product topology. We have seen in the preceding chapter that

E is locally convex Hausdorff, and that its topology corresponds to

cr(E,EI). Let B' =S E F(X), n E N} where
`BS, n

F(X) = {SC X :S is finite} and

- .-1
B = {f E E: -n1 < f(s) < + n for all s E S}.S, n

B' is a zero-neighborhood base for the topology of E. Now

BS, n .a. BA A if and only if S D S. so
S, n

[B] = {BA :BA A .e. B } {BA = = {B j E 1\1}.S, n S, n 5, n S,n S, n 5,3

If we set B = [BS then B' /.e. = {Bs : S E F(X)}. Clearly, n

cardinality (B'/.e.) = cardinality F(X). But as is well known,

17
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00

cardinality (F(X)) = cardinality (X). For let us write F(X) = i Fn(X)
n= 1

where Fn(X) = {A C X :A has exactly n elements}. This is a

countable disjoint union of sets of cardinality the same as that of X.

For clearly cardinality (X) < cardinality (Fn(X)) < cardinality (X11)

cardinality (X). So indeed cardinality (F(X)) = cardinality (X).

The next construction shows that by removing sets from F(X), we

are not in danger of lowering cardinality so long as X remains

covered.

Let T be a co-initial subset of B'/.e. of minimal lc-

value. Then clearly cardinality (T) < cardinality (B'/.e.)

= cardinality (X). So to conclude the proof of the theorem we need

only show that cardinality (X) < cardinality (T). Because in that

case cardinality (X) = cardinality (T) = lc(B') = lc(E).

Let E = {S C X :Bs E T}. Clearly

cardinality (Z) = cardinality (T). Also

Because by the co-initialness of T, for all x E X there exists

B E T such that Bs .a. [B{x}, 11 which is the case if and only if

X E S.

For each S eZ construct a map fs: N X as follows.

Enumerate S so that S = , sn}. Then let



Clearly

fs(N) = S

Now we can consider the map p: )< N X defined by

p(S, n) = f (n).

By (*) and (**) p is surjective. So

cardinality (X) < cardinality (Z X N) = max( cardinality (Z)).

But < cardinality (X), so
0

cardinality (X) < cardinality (Z) = cardinality (T). Q. E. D.

E is an LCS

We shall now suppose in this section that E is an LCS, and

that B is a fixed 0-neighborhood base consisting of convex balanced

sets and closed under finite intersection.

Proposition 1'. The following properties of sets U, V E B

are equivalent:

U .a. V

U C XV for some X in

idthe identity map E
EV is continuous, where E

19

if 1 < j < n

fS(i)
sr if n < j



is the seminormable locally convex space on the set E

generated by the gauge of U, gu.

Proof. (a) implies (b): by Proposition 1.

implies (c): Suppose (b) holds. Consider the map

idE E . Because g(x) < X for all x in id(U), id is
V

bounded on the unit ball of E , so that id is a bounded linear

mapping of normed spaces, and thus (c) follows.

implies (a): if id is continuous then id(U) is bounded

inV so id(U) .a. V and thus U .a. V. Q. E. D.

Corollary to the Proposition. The following properties of sets

U, V in B are equivalent:

U .e. V

U C V C X2I-1 for some
X.1, X2

in

E
EV

as topological vector spaces.

Theorem 2'. The following are equivalent statements about E.

lc(E) = 1.

Bi.e. is a semilattice under A with 0.

E is normable.

Proof. (iii) implies (ii): Suppose E is normable. Then the

norm is the gauge of a bounded zero-neighborhood, say C. Thus

C .a. V for every zero-neighborhood V. There exists U C C

20
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such that U E B. Then [Ul is the 0 of Bi.e. . So by Propo-

sition 3, (ii) holds.

(ii) implies (i): Follows from Theorem 2.

(i) implies (iii): By the statement preceding Theorem 1, we

may choose a co-initial set of minimal cardinality, say {[C']}.

Let U be any zero-neighborhood, and V in B such that

V CJ U. Then [C] .a. [V], so that C' .a. V .a. U, and thus

C' a. U so that C' is bounded. Choose a zero-neighborhood W

which is balanced convex and absorbing, such that W C C'. The

identity map E
EW is continuous because W is a zero-

neighborhood. The inverse map Ew E is continuous since W

is bounded. Therefore E is toplinearly isomorphic to the normed

space Ew. Q. E. D.

Recall that there exists nonlocally convex spaces E for which

lc(E) = 1 but condition (iii) of Theorem 2' does not hold. For instance,

let E LP[O, where 0 <p < 1. Then

1

U = {f E E : f(x) Pdx < 1}
0

is a bounded zero-neighborhood in the topology generated by the

pseudo-norm
1

f f(x) Pdx.
0



So lc(E) = 1. But E is not locally convex. Indeed, E' is

empty. So E is not normable. Thus, Theorems 2 and 2' are

essentially different.

E is a Separable Space

This section will be concerned with separable spaces.

Theorem 5. Suppose E is a separable Hausdorff topological

0vector space. Then lc(E) < 2 .

Proof. Suppose D is dense in E, and cardinality

(D) = . Let P(D) = {A:A C D} = the power set of D. Let F
0

be an open zero-neighborhood base. For each A E P(D) let

F(A) = {G E :G D = A}. Let A = {A E P(D):F(A) For

each X. E A choose a Uk E F(X). Finally, let B' = {Uk: E A}.

Then cardinality (131) < cardinality (A) < cardinality (P(D)) = 2°.
Moreover, Bi is a zero-neighborhood base. For suppose V is an

open neighborhood of the origin. Then there exists a G Er such

GC GC V because Hausdorff topological vector spaces are regu-

lar. For X = G D there exists a U E 13/. But

UC'TCGCV. The first inclusion holds because any open set
X

not containing a point of X cannot meet Uk, since their inter-

section would be an open set without a point from D. So 13° is,

indeed, a zero-neighborhood base. Therefore
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lc(E) = lc(B4) < cardinality (BI) < 2 ". Q. E. D.

That the conclusion of the previous theorem cannot be strength-

ened may be seen from the following example of a separable Hausdorff

locally convex space E, with lc(E) = 2

Let E = E( [0,1]). By Theorem 4, lc(E) = 2 Ko, so that E

is certainly nonmetrizable. Because it is possible to pass a poly-

nomial through any finite set of points in the plane, it is clear that the

continuous functions C([0,1]) are dense in E. Now C([0,1])

is separable with respect to the stronger uniform topology, so a

fortiori is separable with respect to the weaker relative topology.

For the possibility of set theory of the real line without the

continuum hypothesis, see Geidel (1964). The following proposition

may present a stronger result than the preceding paragraph.

Proposition 5. Let X C [0,1] be such that

cardinality (X) > ,;() Then E(X) is a nonmetrizable separable

Hausdorff locally convex space with lc value equal to the cardinality

of X.

Proof. Theorems 3 and 4 establish all but the separability of

the space. Let D be a countable dense subset of E( [0,1]). Let

Dx {f Rx :f = glX for some g E D}. We claim that Dx = E(X).

Now B = {Bs, n(f) :f E E(X), n E N, S C X finite} is a base for the

1



topology of E(X), where

-1
B5 = fg E E(X) : g(s) - f(s) < n for all s E S).

So let BS, n(f)
B. Choose any T E E( [0, 1] ) such that 71 S = f I S.

Then since D is dense in Ed 0, 1]), there exists a dED such
-1

that Id(s) - 7(s)I < n for all s S. Therefore dIX E
DX

and dIX EB5, n(f).
Q. E. D.

Theorem 6. Suppose E is a complete weak space. Then

is separable if and only if E is toplinearly isomorphic to some

E(X) where cardinality of X < 214°.

Proof. By our remarks in the preceding chapter and the pre-

vious theorems, it is sufficient to show that E(X) is separable

0whenever cardinality (X) < 2 o. Suppose cardinality (X) < 2

Then there exists an injection i :X [0, 1]. Choose D a count-

able dense subset in E( [0, 1] ). Let

DX = E E(X): there exists d E D such that d i = f}.

Clearly, cardinality (Dx) < cardinality D = Consider any

B (co) C E(X), where S is finite, n E N, EE (X), and
S, n

-1
BS, n(cp)

= {f E E(X) : I f(s) - cp(s)1 < n for all s ES).

To conclude the proof, we need only find an element of DX
lurking

24



in B (cp). There exists a d ED such that
S, n

I c(i(s)) - yo(s)I < n-1 for all s E S. So let d = d i. Then

d E Dx and

E B (c0)S, n

id(s) - go(s)1 < n for all s E S so that

Bornology

Let E be a TVS.

We shall now consider the .a. relation on the power set of

E; that is, on all subsets of E. We shall denote the power set of

E by P(E).

If A, B E P(E), then A .a. B provided A is absorbed by

B. A .e. B provided A .a. B and B .a. A. We use [ ] again

for the canonical surjection

[]:P(E)~ P(E)/.e.

Let C P(E) be the set of all balanced zero-neighborhoods

of E. Let p c P(E) be the set of all bounded subsets of E.

Proposition 6. A subset X of E is bounded if and only if

[X] is a lower bound for [y] in the poset (P(E)/.e. , .a. ).

Proof. X is bounded iff X .a. V for all V E iff

[X] .a. [V] for all [V] E [y]. Q. E. D.

Q. E. D.
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[Y] sits in P(E)/.e. as an "upper segment. " That is,

[G] E [y], [H] E P(E)/.e. and [G] .a. [H] implies that [H] E [y].

[13] sits in P(E)/.e. as a "lower segment. " That is,

[X] E [13], [y] E P(E)/.e. and [Y] .a. [X] implies that [Y] E [13].

We may define other notions from the theory of topological vec-

tor spaces in terms of this partial order. The subset A of E is

absorbing if and only if [A] is an upper bound for {[x]: x E E}.

A is bornivorous if and only if [A] is an upper bound for [P]. An

LCS E is bornological if and only if every balanced convex set G

satisfies the following property, (P):[G] E [y] if and only if [G]

is an upper bound for [13].

Let us consider spaces E which satisfy (P) but which are

not necessarily locally convex.

Call a subset X of E a C-set provided X + X C XX

for some X > 0. Taking X = 2, we see that every convex set is a

C-set. Call a TVS a C-space provided it has a zero-neighborhood

base of balanced C-sets. By Theorem 2 of Chapter III, if lc(E) = I

then E is a C-space.

Theorem 7. A C-space E satisfies (P) for every balanced

C-set G, if and only if for every TVS F such that lc(F) = 1,

every linear map f: E F taking bounded sets into bounded sets

is continuous.
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Proof. (=>): Suppose E is a C-space satisfying (P) for

balanced C-sets. Let V be a balanced C-set zero-neighborhood in

F. Let A be a bounded set in E. Then f(A) bounded implies

A .a. f-1(V). So [f-1(V)] is an upper bound for [p]. Also,

f-1(V) is a balanced C-set, since

-1 -1 -1
f (V) + f (V) f (V+V) C f (X.V) = (V).

Therefore, by (P), f-1 (V) E

(<=): Now let V be a balanced C-set of E such that [V]

is an upper bound for [p]. Then E is a TVS such that
V

lc(E) = 1. Let f: E Ev be the identity map. Then f(V) = V

is bounded in E so that by assumption f is continuous. There-

fore V = f (V) E Thus, (P) is satisfied for V. Q.E.D.



rLetting E(T) = if : T R : f > 0),

Considering E(T) with the Riesz space structure of F(T,R), we

see that E(T) is the cone of positive elements in E(T). If

x, y E E(T) then x < y if and only if y - x E E(T)+ if and only if

x(U) < y(U) for all U E T.

Proposition 1. x. 0 in E if and only if n(x.) 0 in

E(T).

Proof. Suppose x. 0. Let e E T. We want to find
1

such that i > j implies that n(x.)G < E. There exists a J such
1

IV. VECTOR VALUED NORMS

For any LCS, we characterize its topology by considering its

image in a complete weak space.

Let E be an LCS, B a zero-neighborhood base of balanced,

convex sets, a subset T of B such that {[U] : U E T} is a co-

initial set of minimal cardinality in Bi.e. .

Consider the map n : E E(T) defined by

n(x) = (gU(x))U ET

that i > J implies x. EEG and therefore n(x.)
1 iG

So n(x.) 0.
1

it is clear that n(E) C E(T)+.

X.) <E.1 -
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Suppose now that n(x.) 0 and G is a zero-neighborhood in

E. We want to find j such that i > j implies x. K G. Let

U E T be such that U .a. G, so that X.0 C G for some k >0.

~n(x.) 0 implies n(x.)= g (x.) -" 0. Therefore there exists J
U Usuch thatXi> J implies g (x.) < implies x. U C G. Q. E. D.

U

Corollary. x. x if and only if n(xi-x) 0.

Proposition Z. n is continuous.

Proof. Suppose x. x in E. Will show that for all

G E T, g (x.) gG(x).
But I g (x.)-g (x)1 < g

(xi
-x) 0 by the

G G

corollary. Q. E. D.

Proposition 3.

n(x) 0 if and only if x = 0,

n()x) = X.1n(x) for all E R.

n(x+y) < n(x) + n(y)

Proof. (a) follows from the definition. Alternatively, notice

that Propositions 1 and 2 imply (a).

(b) follows from the definition of n and scalar multiplication

in E(T):

n(x) = (gG(kx))G ET = (1k1 gG(x))G ET

= (gG(x))G ET = n(x).
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(c) follows from the fact that g (x+y) < g (x) + g (y) and

the order structure of E(T). Q. E. D.

Proposition 4. n is uniformly continuous.

Proof. Let U be a zero-neighborhood in E(T). Want to

find a zero-neighborhood G in E such that x- ye G implies

n(x) - n(y) E U. By definition of the weak topology on E(T), U

contains a set If E E(T): I f(G)I < E, 1 < i < n} where E > 0 and

{G. :1 < i < C T. Let G = n G.. Then EG is the required
1 1

neighborhood.

For, x - y E EG implies gGi(x-y) < gG(x-y) < E for

i = 1, ,n, which implies that I g (x)-g (y)1 <6 for
Gi Gi

= 1, ,n, which implies that n(x) - n(y) E U. Q. E. D.

Thus, n enjoys all the properties associated with a continuous

norm except real-valuedness. The following two theorems highlight

the relationship between n and continuous seminorms on E.

Theorem 1. Let f be a positive linear form on E(T). That

is, suppose f E E(T)' and f(E(T)+) C R+. Then f o n is a con-

tinuous seminorm on E.

Proof. Let f be a positive linear form on E(T). Then

(T)since E(T)1 = R ,
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m(x) <a

i=1

where a. >0, and . (G.)E(T)R evaluation at G., G. E T.

Then

f n(x) = /aigG.(x).
i=1

So f o n is clearly an element of the cone of continuous semi-norms

on E. Q. E. D.

A partial converse is the following.

Theorem 2. For every continuous semi-norm m on E,

there exists a continuous semi-norm g on E such that

(i) g = f o n for some f E E(T)', and (ii) m(x) < g(x) for all

x E E.

Proof. If m is a continuous semi-norm on E, then

(x)

with a > 0 and, we may assume, G. E T. (This is well-known.

For instance, see Horvath (1966 p. 97).) Let
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f o n(x) =

i= 1

where 1.(G.) is as in Theorem 1. Then clearly

i=1

is a semi-norm which satisfies (i) and (ii). Q. E. D.

Notice that n is a scalar valued norm if and only if lc(E) = 1

if and only if E is normizable.
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V. INVARIANT MEASURES

Rie sz Space Representation

We shall assume the basic properties of Riesz spaces, which

can be found, for instance, in Bourbaki (1965, Chapter II) or even

Daniell (1917, Chapter 1). If L is a Riesz space, L+ designate s

the cone of positive elements of L. x v y = sup(x, y).

x Ay = inf(x, y). L = (L ) = E L : f(L+) C R+1, where

is the algebraic dual of L.

If E is a topological space, we let F(E,R) be the set of all

real valued functions on E. F(E,R) is a Riesz space which is also

an algebra. Let B(E) be the subalgebra of continuous bounded functions.

Let E be a TVS. Then h(E) designates the Riesz sub-

space of F(E,R) generated by the elements of E', the topological

dual of E. Theorem 1 in the present section will show us that

h(E) = {V a. - V b. : a., b. E El. The elements of h(E)*+ are
1 1 1

1= 1 1 1=1

called conical measures (Choquet, 1962, 1969).

Let E' + R be the set of all continuous affine functions;

b(E) be the Riesz subspace of F(E,R) generated by E' + R con-

sisting of all bounded functions. We shall see by Theorem 1 that
n n

b(E) = { V a. - V b. E B(E) : a., b. E E` + R}. The elements of
1

1= 1 1= 1*+
b(E) are called affine measures.
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We shall be dealing with lattices generated by certain vector

subspaces of F(E,R). It would be convenient to have a general

representation theorem.

Theorem 1. (General Representation Theorem). Let R be
a Riesz space and S C R a vector subspace. Then the vector

{ V a. -=lattice generated by S is L(S) V b. : a., b. E s}.
1 V 1 1 1

1=1 1= 1

Proof. First it is shown that L(S) is a vector space. Let

n n m m_
V a. - V b., V a. - V 1;. E L(S).

i=l i=1 j=1 3 j=1 3

Then

V a. - V b. + V a. - V 1-3-.
. .
1=1 1=1 j=1 3 j=1

m
( V a.) + ( V a.) - ( V b.) - ( V b. )

1
.

=1 j=1 1=1 j=1 3

m
V(a.+Va.)- V(b.+Vb.)

1 j
i=1 j=1 i=1 j=1

(n, m) (n, m)
= V (a-4-a.) V (b.+17).)

(i,j)=.(1,1) 1 (i,j)=(1,1) 1 3

is in L(S) since S is closed under addition. Let X. ER.

Suppose X. >O. Then
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=X(V - V b.) X V a. - X V b.
1=1 1=1 1=1 1=1

V Xa.LVkb. E (S)
1=1 1=1

since S is closed under scalar multiplication. Suppose X < 0.

Then

X ( V a- - V b.) = (4)( V b. V a.)
. .

i=1 1=1 i=1 1=1

= V (-X)bi - V (-)ai E L(S).
1=1 1=1

So L(S) is a vector space.
1 1

Clearly, S C L(S) because aES=>a= Va- V OEL(S).
1=1 1=1

Since x A y = V -y), in order to show that L(S) is

closed under sup's and inf's, it is sufficient to show that

x, y E L(S) => xVy E L(S).
m

Let x V a. - V b., y = V a. - V b.1
i=1 1=1 j=1 j=1 j

m
( V a. - V

11
b.) V ( V a. - V b.)

1 1
i=1 =

n
= ( V a. -

1=1
1

_1 m
..._

a.) - V b. =
3]

3
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1
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where

n m m n m n_
=i( V ai + V b.) V ( V a. + V b.)1- V b, - V b.

i=1 j=1 3 j=1 3 i=1 1 j=1 3 i=1 I

(n, m) (n, m) m n

1( V aid- 1;.) V( V a.+ bil- V b. - V b.
(i, j)=(1, 1) 3 (i, j)=(1,1) 3 I j=1 3 i=1 1

(n, m, 2)
V ai, 3, k . j .

-VT-Vb
(i, j, k)=-(1, 1, 1) 3=1 1=1

a.
1,

Because every V s. = V s. -V 0 belongs to L(S) whenever
1 .

i=1 1=1 1=1

S. E S, the fact that L(S) is a vector space shows that (4'4(4) be-

longs to L(5). Q. E. D.

Theorem 2. Let F(E, R) be the real algebra of all functions

from E into R. Let A C F(E, R) be a real subalgebra. Let

I be a positive linear functional on A; that is, I E A+. Sup-

pose there exists an f in A such that f(x) > 1 for all x E E,

and I(f) = 0. Then I = 0.

Proof. Let (p E A.

Then since for all n E N, 0 < (q-n)2 =2 - 2ncp + n2 we have

2
0 < cp 2ncp + n f so
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2 2
2n(p < + n f

1 2 n
7 f

Therefore
1 2 n 1 2

I(q,) < I(ç) + I(f) = I(cp )

Since the above inequality is true for all n E N

1(0 <0 for all go in A. (*)

Therefore II A+ = 0, by the positivity of I. On the other hand,

0 < (co+1)2 = cp2 + 2(p + 1 < + 2cp + f

So

0 < I((p2) + 2I((p) + I(f) 2I((p),

since co E A .

Therefore,

0 < I(9). (**)

From (*) and (4":4), it is clear that I(p) = 0. Q. E. D.

Notice that if there exists any g in A such that

inf g(x) > 0 and I(g) = 0,
X EE

1then the hypothesis is satisfied with f g-inf g
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But,

The proof of the theorem is easier, of course, if it is the case

that A consist only of bounded functions, or when A = A+ - A+

which occurs when A is a Riesz space.

Notice that all we have used in the proof of the theorem is the

closure of the vector space A under the taking of squares. But

this characterizes an algebra, since

(f+g)2-f2-g2
fg

2

Theorem 3. Suppose A is a Riesz subspace of F(E,R) and

I E A is a Daniell integral.-3/ Then if I(f) = 0 for some f E A

such that f(x) > 1 for all x E E, then I = 0.

Proof. Let co E A+. When (p(x) < n, nf(x) A (p(x) = (p(x).

Therefore, it is clear that cp (nf A co) converges monotonically to

zero pointwise. So

I( co (nf A (p)) = I(q) - I(nf A (p)\ 0

I(nf A co) I I((p)

I(nf A go) < I(nf) = nI(f) = 0.

3/Recall, this means that I satisfies the property:
(pn

E A+,

q' decreases to zero pointwise, implies that I(p) \ 0.
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Therefore I(co) = 0, so II A+ = 0. Since in a Riesz space

A = A+ - A+, this implies that I = 0. Q. E. D.

That the hypothesis that I be a Daniell integral cannot be

relaxed may be seen from the following example.

Let A = a(R), the Riesz space generated by the affine func-

tions in R. That is, co E A if an only if (I) is a continuous

"piecewise linear" function: there exist real numbers x1
< <xn

such that y9I (-00, x1], cp I [x x 2], . . . , [x 1, xn] and yo [xn, +00)

are all "linear" (affine). Let I:A R be defined as follows. If

E A and ca I [x, +00) = [x, + 00) where f(t) = at + b, let

I(p) = a. That is, I(y9) is the slope of the last piece of (P. It is
*+

easily verified that I is well defined, E
A+, I is zero on the

constants, and yet I 0, since, e.g., I(f) = 1 for f(t) = t. By

the previous theorem, it is not necessary to verify that I is not

Daniell.

A condition which ensures that an algebra be a Riesz space is

the following.

Theorem 4. Suppose A and B are real algebras of real-

valued functions such that the set of positive elements of A, A+, is

closed under taking square roots. Let L.p :A B be an algebra

homomorphism. Then 4,(A) is a Riesz space and 4, is a lattice

homomorphism. In particular, A is also a Riesz space. (Take
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= identity map.)

Proof. It is sufficient to show that for all f in A,

0 I fl ) Of) I

because in that case

4)(fVg) = (f+g-/- If-g1)) = -}(iP(f)+00+ liP(f-g) )

1
= (4)(f)+Lp(g)+1 Lp(f)-Lp(g)1 ) = Lp(f)vip(g)

and

1 1

L1J(fAg) = LP( (f+g If-g 1 )) =
2(Lp(f)+Lp(g)- I Lp(f)-Lp(g) 1 ) = Lii(f)Atp(g).

So let f be an element of A. Ifl = N/ f2 E A by hypothesis.

Because 4i is an algebra homomorphism, it is order pre-

serving. For A+is in if and only if there exists h in A+

such that g h2 in which case 4i(g) = Lp(hh) = kii(h)4i(h) = q(h)2 > 0.

Since If I 2 f2, Lp(If 1 )2 = Lp(f)2. So 1 Lp( I f 1)1 = 1 Of) 1 But

by the order preserving property of LP, LP( I fl ) is positive. There-

fore

= ILp(f)I. Q. E. D.

Notice that the only properties of Lp that were used in the

proof were that Lp should be linear and preserve squares. Thus:
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Theorem 5. Suppose A and B are real algebras of real-

valued functions such that the set of positive elements of A is

closed under the taking of square roots. Let tp:A B be a linear

transformation such that p(f2) = Of)z for all f in A. Then

Lii(A) is a Riesz space and qi is a lattice homomorphism.

Characterizations of Invariant Measures

Let E be a locally convex topological vector space. Let I

be a positive measure-4/ on E. Suppose I is invariant under some

translation operators, and every functional in E' in integrable with

respect to I. We shall study properties of this I. If it were the

case that I give rise to a finitely additive measure on a ring of sub-

sets of E, it would be sufficient to require that I E (L(Er)) ; i.e.

that I be a positive linear functional on the Riesz space generated

by the continuous linear functionals (see Hewitt, 1952).

If p E E, define T : F(E, R) F(E, R) by T f(x) = f(x+p)

for x E E.

In the remainder of this chapter, we shall consider a fixed sub-

group G of E, GO.
Let a(E) be the smallest Riesz subspace of F(E,R) con-

taining E' and closed under the operation of translation in G; that

4/See page 45.



is, such that p E G, f E a(E) implies that T f E a(E). Such a

space certainly exists. a(E) = {F C FC F(E, R), F a Riesz

space, T F C F, V p E G}.

Proposition 1. a(E) contains the constants.

Proof. Choose a w E E' such that G ker w. This is

certainly possible by the Hahn-Banach theorem. Then w(p) 0 for

some p E G. Without loss of generality, we may assume that

w (p ) = 1. w E E' C a(E) => T w E a(E). Therefore,

Tw-wEa(E).

But (T w-w)(x) = w(x+p) - w(x) = w(p) = 1 for all x E E.

Thus, 1 E a(E). Q. E. D.

Proposition 2. a(E) = L(EI+R), so that the set is independent

of G.

Proof. By the previous proposition, E' + R C a(E). Since

a(E) is a Riesz space, this implies that L(ELFR) C a(E). On the
n n

other hand, if V a. - V b. E L(El+R), where a., b. E E' + R,
1 . 1 1 1i=1 1=1

then

T(
a.1

- V b.) T ( V a.) T( V b.)
P i=1 i=1 1 P i=1 P i=1 1

= V (T a.) - V (T b.) E L(El+R).
i= 1

p
1=1

p
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Thus, E' C L(EI+R) C F(E,R), L(E1-1-R) is a Riesz space, and

T L(ELFR) C L(El+R) for all p E G. So a(E) C L(ELI-R).

Therefore a(E) L(El+R). Q. E. D.

So by the General Representation Theorem,

a(E) = { V a. - V b. : a., b. E Et + R}.
1=1 1=1

We also have the following representation theorem for a(E), which

is modeled after Choquet (1969, Theorem 30.2(ii)).

Theorem 6. Every f E a(E) has an affine decomposition: E

may be written as a finite union of finite intersections of affine half

spaces Ei, 1 < i < m, such that the intersection of two distinct

E. is a subset of an affine hyperplane, and for each i there exists

f. E E' + R such that f I E. = f. I E..
1 1 1 1

Proof. First, supposing affine representations exist for
m

f, g E a(E), we show it true for f - g. Let E = v E.,
i=1 1

n
flE. = f.IE. a gndE = v F., IF. = g.! F. where f., g. E E' + R,

1 1 1
3 J 3 J 1 j

j=1 (m, n)
and E., F. satisfy the hypothesis. Let E = E. where

I j (i,j)=(1,1) li
E.. = E. rm F.. Then E., F. being finite intersections of affine

13 1 3 1 j

half spaces imply the same about each E... Since

E.. r, C E. r- E., F. -m F.
1 j

two distinct E.. intersect
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Let

r {EA: : E+. 9/} {E7 SO.
J 3 3 J

E =

Each element of is a finite intersection of affine half spaces.

Any two distinct elements of meet in an affine hyperplane since

E. n E. C {x E E :ak+1 (x) - a..(x) = 0)

+ + _ + - - + _and if j1 j2, E. n E. , E. n E. , E. n E. , E. n E.
31 J2 31 J2 31 32 31 J2

+ 1 +are all subsets of E. cm E. , and fIE. = a
Ji J2 3 k+1 3
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in either two distinct E. or two distinct F., so that their inter-
1

section is in an affine hyperplane by hypothesis. Moreover,

f - g E.. f. -g. I E.. and f. g. E E' + R. Therefore, our initial
13 1 3 13 1 3

assertion has been proven. So by the previous proposition, we need

only prove the theorem for f V a. where a. E E' + R. The
i=1 1

proof is by induction on n. The assertion is trivial for n=1.
k+1

Suppose it has been proven for n = k and f = V a.. Let
i=1k 111

g = V ai have the decomposition E =UE., gIE. = a.IE.,
i=1 j=1 3

3 J J

a.EE' + R. Clearly f = g V ak+1. Let
J

E. = E. n E E :ak+1(x)-a.(x) > 0},
J J

E. = E. fx E E :a (x)-a.(x)
J J k+1 J



flE7 1E7.
J 33

Notice that this decomposition need not be necessarily unique,

since the representation of f = V a. -Vi .

b.i in terms of the affine
i=1 1=1

functions a. and b., is not necessarily unique.

*+
Definition 4. p. E a(E) is called a positive measure.

Q. E. D.

*+
If p. E a(E) and (T f) = i(f) for all p E G and

a(E), then p. is called a positive G-invariant measure.

Let m(E) = a(E)*+.
*+

Let mG(E) fp. E a(E) :p.(T f) = p.(f) for all p E G, for all f E a(E)}.

Remarks. Since h(E) = L(EI) C L(El+R) = a(E) and

b(E) a(E) B(E) C a(E), every positive measure is both a coni-

cal measure and an affine measure.

An example of a positive measure is the I presented after

the proof of Theorem 3. Notice that I E mR(R). We shall soon

prove a representation theorem for all I E

MR(R)

Theorem 7. Suppose I E mG(E). Then b(E) = 0.

Proof. It is sufficient to show that I(1) = 0. Because if

f E b(E) then -M < f < +M for some M E R. Then by the posi-

tivity of I, I(-M) < I(f) < I(M) so -MI(1) < I(f) < MI(1). So

0 < I(f) < 0.
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Let w E E' be as in Proposition 1. That is, w(p) = 1 for

some p E G. Then I(1) = I(T w-w) I(T w) - I(w) = 0. Q. E. D.

Corollary 1. If I E MG(E) is a Daniell integral. then I = 0.

Proof. This clearly follows from the preceding theorem corn-

bined with Theorem 3. Q. E. D.

Corollary 2. If I E MG(E), I 0, then I cannot be

localized.

Proof. Recall, I is said to be localized if there exists a
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compact set K C E and apositive Radon measure i. e M+(K) such

that I(f) 1.1.(flK) for all f E a(E).

Suppose fn E a(E) and
fn monotonically converges to zero

pointwise then fn K monotonically converges to zero pointwise

uniformly by Dini's Theorem. Therefore, since Radonfn I K \

measures are continuous for the uniform topology, I.J.(fniK) \ 0.

Thus, Vfn) (f 1K)0. Therefore, I would be a Daniell

integral. This is not allowed, by the previous corollary. Q. E. D.

Remarks. Theorem 7 is actually a nonlocalizability condition.

Suppose I E mG(E), and f1, f2 E a(E),
f11 = f2 EK for

some compact set K. Then I(f1) = I(f2). Because
f1 f2

is

continuous, and non-zero only on the compact K. It is therefore



bounded. So f1 - f2 E b(E). Therefore I(f1-f2) = 0 implies

I(f1) = 1(f2).

The previous theorem and its corollaries show that I E mG(E)

behaves differently than affine measures. The theorem states that

invariant measures are zero as affine measures. Hence no nontrivial

affine measure has an extension as a G-invariant measure for any

subgroup G of E, G 0.

Let us now examine the situation when E is a complete weak

space, so that E = E(X) for some set X. These spaces were

considered in detail in Chapter III. On these spaces the behavior of

I is essentially different from its restriction Ilh(E) as a conical

measure. For E = E(X), h(E) is Daniell (Choquet, 1969, The-

orem 38.13). Corollary 1 states that a G.-invariant extension of this

conical measure, Ilh(E), to all of a(E) remains Daniell only

when I = 0. When cardinality X <0, Ilh(E(X)) is localizable

(Choquet, 1969, Theorem 38.8). So Corollary 2 implies the following

Proposition 3. Let E E(X) where cardinality of X < .

Then every positive invariant measure on E is a nonlocalizable

extension of a localizable conical measure.

Let us now return to the situation where E is any locally

convex TVS. Then Corollary 1 immediately shows that a non-zero

invariant measure is not an integral with respect to a o--additive
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measure on a o--algebra of Baire sets in E. Actually, the theorem

implies that a non-zero invariant measure cannot have an integral in

any of the usual ways--Lebesgue Theory or Riemann Theorywith

respect to even a finitely additive measure on an algebra of subsets

of E. For if I is generated by a set function p. on an algebra

in E, and A E then 0 < I(xA) < I(1) = 0, where XA

is the characteristic function of A. Thus p.(A) = 0 for all

A E (see Hewitt, 1952).

The following is a more constructive proof of Corollary 1. Let

p E G, p 0. Let F = Rp = {X.p X E R} and consider
Tr1

:F R

by71P) E F', so it may be extended by the Hahn-
(X X

Banach theorem to a map Tr E E'. For a < b in R, let
b 1

Tr [ (TT-a) A 1] V O. Clearlya b-a

Tra(Y) =

, for y in the closed half space
E E : Tr(y) < a} = Tr-1(-00, a]

71(y)-a -1
, for y E Tr [a, b]b-a

We shall construct
fn E a(E)+ such that

fn
/ 1 pointwise but

I(fn) = 0 for all n E N. Let fn = Tr1-n . Then
fn are increas-

ingsince It < Tr
-n -n-1

for y in the closed half space
(+)

{y E :Tr(y) > b} = [b,+)

a
E a(ir).



For if Tr(y) < -n-1 then 11-(y) < -n so

0 < Tr1-n(y)< Tr1-(n+1)(y) 0 by (+)-n -(n+1)

If -n-1 < Tr(y) < -n then

0 =
1 - n

( y ) < Tr1-(n+1)(y)
Tr(y)+n+1

=-n -(n+1) 1

If -n < Tr(y) < -n+1 then

Tr(y)+n1-(n+1)(y)Tr (y) < = 1.Tr(y) + n = =
1-n

Tr
1 -n -(n+1)

If -n+1 < Tr(y) then

1 -=
1-n (y) < Tr1-(n+1)(y) = 1.-n -(n+1)

Thus, fn is, indeed, increasing. Let x E E. Then fn(x) 1

when n> 1-x; that is, when 1-n < x, so fn 1. Also,

Tpfn = fn+1 so that T f = f . Thus I(fm) = I(Tmpfl) = 1(f1)mp 1 m+1 1

for all m E N.

Now let gn = Trnn+1 = T-2npfn. We can similarly show that the

g. are decreasing and gn\60. If I were Daniell then

I(gn) \ 0. But each I(gn) = I(T_2npfn) = I(f1). So

I(gn)\ 0 => I(f1) = 0 ==> I(1) = 0. We now see how an invariant meas-

ure depends upon its restriction as a conical measure.
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So

Theorem 8. Suppose I E mE(E) and II h(E) = 0 then I = 0.

Proof. Since a(E) is a Riesz space, a(E) a(E) - a(E) .

So it is sufficient to show that II a(E)+ = 0 in order to conclude that

I = 0.

Let f E a(E)+, f = V a. - V b. where a., b. E E' + R.
1 1

i=1
1

i=1
1

Always in a Riesz space

n n
0 < V ai g V aivV -a. = V (ai V -ai) = V I a.!.

i=1 i=1 i=1 1=1 i=1

o < f < If! < IV ail + I V bi I = V I ai I + V Ibi
i= 1 i= 1 i= 1 i= 1

Therefore,

0 <1(f) < a. +I(Ibil)
i=1

If=weshow that each Ia.! T a, Ibi = T p. where
x. 1 Y.. 1

1
1

a., p. E h(E) and x., y. E E, then the theorem will have been
1 1 1 1

proven. Because

i=1

0 < I(f) <T a.) + I(T =x. 1
1 Yi

i=1

+ I(pi) = 0

the last equality holding by the hypothesis on I. Without loss of
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with x. -x, !Txal 1,

Theorem 9 Let G be a non-zero subgroup of R. Then

there is a one to one correspondence between
mG(R) and R+ X R+.

Proof. There exists p E G. p i 0.

Recall that f E a(R) if and only if there exist real numbers

x < x < xn < +00 and functions f. where2

al Tx al
1

such that 1. I , x. [xi, xi
+1]

for
1 1+1

x1) = - 00 xi] and

f [xn + fl[ u°).

Let (p, q) E R+ X R+.

Define q) :a(E) R by 1.1.(p,q)(f) aop + anq.

We will show that p.( p, q) is a well-defined func tion. For sup

pose f has a second affine decomposition:

-.(z) < v < y < . . . < ym < +co, functions g. where gi(t) = c.t+d.,
J J

0 < <m, where

Q. E. D.
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generality we shall show this only for al, assuming that al is

not constant. (For I is zero on constants. ) Consider the affine

hyperplane E1 {x E E :
a1(x) 0}. Choose some x E El; then

3 ince Tx(a1)(0) 1' (x) 0, Txal E E'. SO

Tx(a1)1 = Tx(a1) V - (Tx(al) E h(E). But ITx(a1)1 = Txiall. So

1.(t) at b., 0 < i < n
1 1, 1

i = 1 . . n-1 and
0



Then

and

gj [Yj' Yj+11 = f [Yj' Yj+11

go y1 = f (-00, y

gm [Ym, +3°) = f [Ym, +3*

Then

fl YlA xi] - go I YlA xi] = f0 ("c' Y1 Axl

Therefore c0
= a0.

Also,

fl [ymV xn, +00) gm I [YmV xn, +00) = fn I ( -00, ymV xn]

Therefore dm = an.

So
a0P ancl cOP dmq' and thus 1.1.(p, q) is well defined.

Clearly F.s.(p, q) E
mG(R) since it is positive, linear and invari-

ant. Also, the map i : R+ X R+ mG(R) is injective. For suppose
- +q)(f) =(p, q)(f) for all f E mG(R). Let x ,x :R R by

x+(t) =

0,

t >0

t <0

t > 0

t <0

q = p.(p, q)(x ) = q)(x) = q
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=(p, q)(x- ) = q)(x) = p.

Thus, we need only show that [.1 is surjective . Let

I E mG(R). Let p = I(x) and q I(x+). Suppose E a(R),

with -00 < X < < X < +00, a., b. as before. Let F : R R by
n1 1 1

Fl (-00, mp] = Tmp(a0x- )1 (-00, mp]

F I [X ,X = 0mp sp

F [x , +00) = T (asp sp

where m, s E Z such that mp < < xn < sp. Clearly, F E a(R).

f - F (-00, mp] = bo + aomp

f - sp] is piecewise linear.

f - F I [sp, +00) = bn + asp

f - F, continuous on the compact set [mp, sp] is bounded there, so

f F E b(R). Therefore I(f-F) = 0 by Theorem 13. So I(f) = (F).

But

I(F) I(T (a x) + T ( a x+) )
nrip 0 sp n

= I(T (a x)) + I(T (a x+))mp 0 sp n

= I(Tni(a x-)) + I(Ts(a x+))
P ° p n

= I(a0x ) + I(a x+)
n

= a I(x ) + a I(x+)
0

a0P anci°

+ ,

)1 [SP' +)

Q. E. D.
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We see from the theorem, that the positive cone of R- invariant

measures on R has two generators. Each

(p,q) p(p.(1,0)) 4- q(p.(0, )). So the set {p.(1,0), p.(0.1))) generates

the cone and is obviously independent.

Also from the Theorem, we see that y.(x, -x) generates a

cone of invariants in m(R) - m(R) which vanish on E + R.

This cone of measures illustrates the fact that the kernal of an

invariant measure need not be a lattice.

Theorem 10. Let E be a locally convex topological vector

space, p 1 0, pE G C Rp C E. Then the (linear) dimension of

mG(E) 2 if and only if E is toplinearly isomorphic to R;

In general, the linear dimension of mG(E) > twice the linear

dimension of

Proof. By the previous theorem, it is sufficient to prove the

last statement.. Let I be a Hamel basis for E. Let x E I,

(p, GI) E X R+. Define p.(x; p, q) E m(E) by

p.(x;p,q)(f) p.(p, q)(fl Rx) for all f E a(E),

where l(p, q) is the invariant measure of the last theorem. It is

clear that

{p(x; 0, 1) : x E {p.(x; 1,0) : x E



are linearly independent. Also, y.(x; p, q)E m (E). We shall
Rx

see by Theorem 15 in the next section that this is enough to insure

that 1.1.(x;p, q) E mG(E). Modulo this result, the theorem is proved.

Q. E. D.

We shall now examine the existence of F-invariant measures

where F is any finite dimensional subspace of E. If

m (Rn) and F is n-dimensional, we may consider p. as
Rn

in mF(F) and define J. E m (E) by 11(f) (fl F).

Therefore, it is sufficient to consider m (Rn).
Rn

We sketch the construction of OS; p) c m n(Rn) where

S (e , , e) is an ordered basis for R and p E (R+)1.1.
1 n

Let f E a(E). f has an affine decomposition E E.,

f. E E' + R.
1 1 1 1

Let t1 E R+ be defined by

n
ti

'
i=1

where

t1 = inf {t >0:E. n (te1 +Re2
+ ...

+Ren) implies

E. (m (se1+Re2+ ... +Ren) ci for all s > t}.

E

t1
is well defined, since each E. projects onto Rel as an
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interval. Having defined t. for some 1 < j < n, define

n .

t+1 = v t ,
+jj 1

1=1

where

ti = inf{t > 0 :E. (tlel+ ...+t.e.+te. +. .+Re)
j+1 1 33 3+1 n

implies that E. (ti el+ . . . +t .e .+ se. +. . . +Ren)
33 3+1

for all s > t}

Thus we may define inductively t1, t2, , tn.

Considering fi t1e1+ en_ + Ren as an element of

n-ia(R),it is clear from the construction of tn that f is affine on

[tn, +00). That is

fit e +...
+tn-1 nen-1 + [t, +00)en

= fj itlel+ +tn- len- 1 n+ [t,
+00)en

for some affine f. in the decomposition of f. f. continuous

affine on R11 implies that

f.(x) = (x, a) + b for x in R

where a, b E Rn and ( is e.g., the usual inner product.

Then define 14S; p)(f) = (p, a).

We claim that p. = 1.1.(S;p) E m (R11). Let
Rn
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x = xlel + + xnen E R11.

It is easy to verify that p.(T f) p(f) for i = 1, ,n.x.e.
1 1

For here the value of p.(f) depends only upon the behavior of

fl Re., and our construction reduces to that shown in Theorem 9.

So

p.(Tx e + +x e f) = p.(Tx e (Tx e + +x e f))
1 1 n n 1 1 2 2 nn

Fi(T
f)xe+ ...+xen22 n

p.(Tx e
f) = p(f).

n n

The other properties that p. must have, its well-definedness,

linearity, may all be verified as in Theorem 9.

0(E) and Other Extensions

In the remainder of this chapter we shall show that every invari-

ant measure has a unique invariant extension to a subspace of

F(E, R) which contains a(E) properly.

Let 0(E) be the vector space a(E) + B(E) where B(E) is

the subalgebra of all continuous bounded functions in F(E,R).

Theorem 11. 0(E) is a Riesz space.

Proof. Since 0,(E) is a vector space, it is sufficient to show
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that f1 in 0,(E) implies that f+ = f V 0 E 01(E).

Then f- = (-f) V 0 E q(E) so that Ifl E 01(E). Letting

f = h + b, h E a(E), b E B(E),

f VU (h+b) V 0 = (h V -b) + b.

So it is sufficient to show that h V -b E 0,(E)

Since -b E B(E), there exists m, M E R such that

m < -b < M. Then hVm < hV (-b) < V M Now

{-M-m, h(x) <m <M

[hV M - h V m](x) = M-h, m < h(x) <M_ ..._

0, m < M < h(x)

But when m < h(x) < M, 0 < M - h(x) < M-m. So that always

0 <hVM- hVm <M-m.

h V (-b) = h V m + [h V (-b)-hv m],

with hVm E a(E) and 0 < h V (-b) - hV m < M-m so that

(h V -b) - (h V m) E b(E). Thus h v (-b) E 0,(E). Q. E. D.

Theorem 12. Every I E MG(E) has a unique extension to a
*+

G-invariant functional I E 0,(E) .

Proof. Let f E o,(E). So f = h + b where h E a(E) and

b E B(E).

Define T(f) = I(h). We shall show that T is well defined.
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Suppose f is also equal to h' + b' where h' E a(E), b' E B(E).

Then

h - = b - E B(E).

So m < h - h' < M for some constants m, M. But

0 = I(m) < I(h) - I(h') < I(M) = 0, so I(h) = I(h') = T(f). Thus, I

is well defined.

It is clearly linear.

Suppose f=h+bE 01(E)+. We shall find h' a(E)+,
);(4.

b' E B(E) such that f = h' + b'. Then, since I E a(E) ,

= I(h') >0.

Since h + b > 0, h > -b > -M for some M E R. So let h' = h + M,

b' = b - M. Then clearly, h' E a(E)+, b' E B(E) and f = h' + b'.

Thus, we have shown that 7 E 01(E)*+.

To conclude the proof, we need only show the uniqueness. Sup-

*+
pose 12 are G-invariant functionals in 01(E) and

Illa(E) = 121 a(E). We shall show that1 = I2 We can use the

proof of Theorem 13 to conclude that

I1
1B(E) =

I2
1 B(E) = 0

Let f=h+bE 01(E), h E a(E), b E B(E). Then

11(f) = I1(h+b) = 11(h) + 11(b) 11(h) I(h) =
I2

(h)= I2(h) + I2(b)= I2(h+b)= I2(f).

Q. E. D.
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Let

X E h(E) b(E)

Then x agrees with some elements of E' on polyhedral cones

through the origin of E. But x bounded implies x agrees with

the zero functional. Thus

h(E) rm b(E) 0. Q. E. D.
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We may employ the argument used in the proof of Theorem 11

to show that h(E) + b(E) is a Riesz space. For if we substitute

h(E) for a(E) and b(E) for B(E), the proof goes through,

mutatis mutandis. The sum of two Riesz spaces is not, in general,

a Riesz space; however, it is so when one of the Riesz spaces con-

sists of bounded functions.

Theorem 13. a(E) = h(E) b(E).

Proof. E' C h(E), R C b(E) so

E' + R C h(E) + b(E) C a(E)

L(El+R) C L(h(E)+b(E)) C L(a(E))

But since h(E) + b(E) and a(E) are Riesz spaces,

L(E'+R) C h(E) + b(E) C a(E) = L(El+R)

So

a(E) h(E) + b(E).



f E a(E) implies with h., k. E E' +R and then
1 1
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Theorem 14. If f E a(E) and d E E, then Tdf - f E b(E).

n n
Proof. It is sufficient to show thatbTd(Vh.) - V h. E (E)

i i
i=1 i=1

for h. E E' + R, 1 < i < n. Because if that is the case, then
I _ _

n n
f = V h. -V k''i 1

i=1 i=1
n n n n

Tdf - f = (Td
v

(\/ h.) - \ / h.) - (Td v
\/ k. - \ / k.) E b(E). So let

i V 1 i v i
i=1 i=1 i=1 i=1

f = V h., h. E Et + R.
i=1

Let x E E. Suppose

h (x) >h.(x) for all i a. (A)
a.

Td hP
(x) > Td

h.(x) for all i p (B).

ha(x) - TdhPoo = ha(x) - h (x) - h (d) + h(0)

This expression is greater than or equal to -h (d) + h(0) because,

by (A), ha(x) - hp(x) > 0. On the other hand, the expression is less

than or equal to ha(0) - ha(d) because, by (B),

Tdhp(x) - T h (x) > 0 so thatd a

h(x) + h(d) - h (0) < h (x) + h (d) - h (0).
a a a

Thus

h(0) - h (d) < h (x) -
Td hp

(x) < h (0) - ha(d).P - a
Therefore,

A h.(0) - h.(d) < V h. -T, V h. < V h.(0) - hi(d).
i=1 1

1 i=1 1 u i=1 i=i
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So T f - fE a(E) B(E) b(E). Q. E . D .

Theorem 15. Let p. E m(E). Then the following statements

are equivalent:

p.
E mG(E )

for some subgroup G of E, G 0.

P. e mE (E

p.lb(E) = 0.

p.(1) = 0.

Proof. (b) =-> (a) and (c) => (d) are trivial. (d) (c) and

(a) => (c) have been demonstrated in Theorem 7.

But (c) => (b) follows from Theorem 14. Q. E. D.

Thus any G-invariant measure is automatically E-invariant,

and so we may refer to such measures simply as 'invariant measures.'

Theorem 16. Every conical measure has a unique extension to

an invariant measure.

Proof. Let p. E h(E) . Define I: a(E) R by

I(h4-b) Oh) for all h E h(E), b E b(E). By Theorem 13. I is

well defined on a(E). Clearly I I h(E) p. and II b(E) = 0 so

that by Theorem 15, I is an invariant measure. 0. E. D.

Notice that this yields an alternative proof to Theorem 8. Com-

bining the results of Theorem 12 with Theorem 15 we have
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*+
Theorem 17. Let p. E 0,(E) . Then the following statements

are equivalent:

p. is G-invariant on 01(E).

J. E mE(E).

p.lb(E) = 0.

PdB(E) =

p.(1) = 0.

Theorem 16 shows that all conical measures can become trans-

lation invariant at very little extra cost. That extra cost is spelled

out in the remarks following Theorem 7.

We close with some observations on the extension problem. We

have extended invariant measures to positive linear functionals on

01(E). Can we extend them much further? Theorem 2 immediately

implies that no nontrivial invariant measure may be extended to a

positive linear functional on all of C(E). (This, by the way, shows

us that the results of Choquet (1967) and Schwarz (1964) are not

applicable to the study of invariant measures. )

Let 0(E) = {f E C(E)+:f < g for some g E cp,(E)} where

C(E) C F(E,R) is the Riesz space of all continuous functions. Let

0(E) = 0(E) - 0(E). For E = R, 0(E) corresponds to the set of

continuous functions which are 0(x), that is, which are 'big oh of

x. The extension theorem of Choquet (1969, p. 289) shows that each

invariant measure has an extension to a positive linear functional on



64

0(E). However such an extension need not be either unique or invari-

ant, contrasting the situation in Theorem 12. We do have the follow-

ing

Proposition 4. Let I E mEE. Suppose I extends to a posi-

tive linear functional I on a vector space M where

a(E) C MC F(E,R). Then if f E M, T(f) >0 and h E F(E, R),

h > f2. Then h M.

Proof. Assume that h E M.

0 < f2 - 2nf + n2

2nf<f2 +n2 <h+n2

-12f < n h + n

-0 < 2I(f) < n-11(h) + I(n) n1 I(h)

for all n E N.

This cannot happen. Q. E. D.

Let V {M:M is a subspace of F(E,R), a(E) C M, and

every I E mEE has a positive linear extension

onto

V is clearly a non-empty poset under set inclusion. It is easy to

SO

SO



verify that V is inductively ordered. Therefore, by Zorn's

lemma we can find a maximal element M of V. The following

two facts may be verified.

f E M and 0 < g < f imply g E M.

If g E F(E,R)+, then g M if and only if there exists

0< f < g, f E M such that I(f)7 +00 for some
n n n

I E mE(E).

Integral Representation on Weak Spaces

In this section, we consider operations on invariant measures,

other than convex combinations.

Let E and F be LCS's, and let q:E F be a continuous

linear map. Let p, E mE(E). Define q(p.):a(F) R by

q(p.)(f) = 1.1.(f q). It is clear that q E a(F)+
. However,

q(p.)(1) p.(loq) = p.(1) = 0. Thus, by Theorem 15, q(p.) is an ele-

ment of mF(F). We see that the projection of an invariant measure

is an invariant measure.

Let A be a convex cone in an LCS E. For p. E mE(E) we

define p.A:a(E) R by

p.A(f) = inflp.(co): E a(E), (p > f on A)

for f E a(E)+. For f E a(E) let p.A(f) = p.A (f+) - p.A(f ). That
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is an element of a(E) follows from the Riesz decomposition

property applied to a(E) as well as from Proposition 11.2.1 of

Bourbaki (1965, p. 26). See Proposition 30.8 of Choquet (1965) in

which he applies the Riesz decomposition property to h(E) in order

to prove a very similar proposition.

We say that p. is carried by X provided if f E a(E) and

f 0 on X then p.(f) = 0. Notice that if .i is carried by X,

then if f E a(E), f> 0 on X then p.(f) >0. Because if f> 0

on X, then

0 = 1-1-(f+-f) = 11(f)- 1-1.(f),

So that

0 < p.(f+) =

Clearly, p. < p.. Also, pA. < p. if and only if p. is
A

carried by A. We can now show that
p.A

is an element of

mE(E). For

0 < p.
A

(1) < p.(1) = 0.

Thus, the restriction of an invariant measure to a convex cone re-.

mains invariant.

Let P P(E) = {p.(x; 1,0) : x E E}, where it will be recalled

from the proof of Theorem 10 that p.(x; 1,0)(f) = p.(1,0)(f Rx) for

in a(E). We shall always assume that P carries the initial
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topology defined by the set of maps {f f E a(E)} where f :P R

by f(i)= On- Notice that F1(x;1.0)Rx p.(x; 1,0) since p.(x; 1,0)

is carried by Rx.

Proposition 5. Let E be an LCS. Then for every compact

K C E, positive Radon measure v on K, and continuous map

p:K P the positive linear functional

= p(x)dv(x)
x E K

defined by

p.(f) = p(x)(f)dv(x)

is an invariant measure on E.

Proof Clearly f op is continuous on K, so that

x p(x)(f) is within the domain of v. Also, it is clear that
4.*

E a(E) by the positive linearity of each p(x). The invariance of

fl is also clear since each p(x) E mE(E):

p(x)(f)dv(x) = p(x)(T f)dv(x).

Q. E. D.
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Theorem 18. Let E be a complete weak space with

lc(E) < 0' and let p. E mE(E). Then there exists a compact

K C E, a positive Radon measure v on K, and a continuous map

p:K P(E) such that

p. = p(x)dv(x).
x EK

Proof. Let H:a(E) h(E) by H(h+b) = h where h E h(E)

and b E b(E). By Theorem 13, this projection is well-defined.

Since h(E) is localizable, there exists a compact K CE and a

Radon measure v on K such that

p.(h) = h(x)dv(x)

for all h in h(E). For each x E K let ex be the conical

measure evaluation-at-x, ex(h) = h(x) for all h in h(E). We

claim that ex0H = p.(x; 1,0) and that the map p:k P(E) defined

by p(x) ex0H for x in K is continuous.

For let f = h + b. Then

p.(x; 1,0)(h+b) = p.(1,0)(h+blRx) p,(1,0)(h Rx)

since b is eventually constant along R+x. But p.(1,0)(hlRx)

equals the slope of h on the ray R+x, which equals h(x), by
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identification of Rx with R in the construction of p.(p, q).

Therefore ex° H = 1.1.(x; 1, 0). To show that p is continuous, we

need only show that for all f in a(E) the map f p:K R is

continuous, where f p(x) = h(x) for f = h + b. But this is clear

since all of h(E) are continuous functions.

But then

so that

Lcx

P(x)(f)dv(x) =
x EK

H(f)(x)dv(x) = p.(H(f)) = p.(f)

p(x)dv(x)

Q. E. D.

This theorem clarifies Proposition 3 and its preceding remarks.
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NOTATIONAL INDEX

Page of
initial

Terms or symbols Hints or definition appearance

the field of real numbers 6

TVS topological vector space 6

E' topological dual 6

*
algebraic dual 6

toplinear isomorphism 7

absorbs 7

balanced 7

bounded 7

gA
gauge of A 7

LCS locally convex Hausdorff TVS 7

EA
(E, gA) 7

locally bounded 7

o-(E, F) 7

weak space cr(E, E') 7

(RX, cr(RX, R(X)))E(X) 8

po set partially ordered set 8

u V v sup (u, v) 8

u A v inf (u, v) 9

semilattice 9
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Terms or symbols

co-initial

left filtering

Hints or definition

.a. is absorbed by

.e.

in Bi.e.

lc (B)

lc(E)

B (f)S, n

(P)

C-set

C- space

n(x)

open sets

bounded sets

F(E, R)

B(E)

h(E)

conical measures

b(E)

x + x C

h(E)

Page of
initial

appearance

9

9

10

10

11

12

13

24

25

25

26

26

26

28

33

33

33

33

33

33

33
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Page of
initial

Terms or symbols Hints or definition appearance

affine measures

E' + R

L(S)

Daniell integral

a(E)

affine decomposition

positive measure

m(E)

mG(E)

*+
b(E)

translation by p

*+
a(E)

33

33

34

38

41

41

43

45

45

45

localization 46

Op, q) 51

p.(x; p, q) 54

(S; p) 55

01(E) a(E) + B(E) 57

C(E) continuous functions 65

0(E) big oh of E 65

q(i) projection of p. 65

A
restriction to A 65

carried 66
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Page of
initial

Terms or symbols Hints or definition appearance

P(E) {p.(x; 1,0) : x E E} 66

f 67




