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Chapter 1 – Introduction

Low noise oscillators are universally needed in digital systems for clock genera-

tion and synchronization, and in radio-frequency communication front-ends for

frequency up- and down-conversion. Noise in oscillators causes timing jitter, and

limits the clock frequency of digital systems. In radio-frequency communication

systems, phase noise in oscillators lowers the signal-to-noise ratio of transmitters

and receivers, and degrades the overall bit-error-rate. Therefore, accurate simula-

tion and optimization of oscillator noise performance is of utmost importance.

The large-signal operation of oscillators causes noise translation to different

frequencies due to circuit nonlinearities. This makes the modeling and simulation

of noise in oscillators a difficult problem. Simplified noise models for hand cal-

culations use approximations that degrade accuracy. Circuit simulators with RF

capabilities can account for all noise frequency translation mechanisms and can

predict oscillator noise performance with high accuracy.

Today, methods for analyzing the large-signal performance of oscillators are

well established [1], [2], as are methods for predicting the noise performance [3], [4].

Important, yet less developed are methods for the sensitivity analysis of oscilla-

tor performance to design, process, or environmental parameters. A sensitivity

analysis of an oscillator’s periodic steady-state (PSS) solution, and its perturba-

tion projection vector (PPV) can provide useful guidance on how to improve the
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design of a circuit, predict the impact of local and global process variations, and

pave the way for automated circuit design optimization.

In a typical design flow, a designer determines the topology and the values of

circuit parameters that result in a desired circuit performance. However, conven-

tional analyses available in circuit simulators solve the inverse problem. For a given

circuit topology and parameters, these analyses determine the performance of a

circuit without accounting for the design specifications. The conventional analyses

have to be used in an iterative manner to improve a design in order to achieve the

desired specifications. Therefore, a new design-oriented approach to circuit anal-

ysis is needed to find the values of circuit parameters such that the performance

of a circuit meets a set of desired objectives. This analysis is also the basis for

constrained circuit optimization.

The contribution of this dissertation is on advancing automated analysis, design

and optimization of low noise oscillators.

Specifically, sensitivity analysis for oscillators is presented, whereby, sensitivi-

ties of the PSS solution and the PPV to design, process, or environmental param-

eters can be computed. In forced circuits, a change in a circuit parameter only

affects the shape of the PSS solution waveform. The PSS solution period does not

change as it is defined by the periodic input. Oscillators have no external time

reference, and therefore, a change in a circuit parameter could affect the oscilla-

tion frequency. As a result, sensitivity analysis techniques for forced circuits can

not be used to analyze oscillators. The PSS sensitivity analysis presented in this

dissertation accounts for changes in the oscillation frequency due to a change in



3

a parameter [5], [6], and overcomes the problem inherent in previous techniques.

The PPV sensitivity analysis is novel and does not have a corresponding equivalent

analysis in forced circuits.

Also, the design-oriented circuit analysis technique is proposed. This is an ele-

gant and efficient approach for solving problems with equality constraints, whereby

nominal design specifications, or intermediate design goals can be met. The new

analysis also has applications in accurately predicting the impact of parameter

variations. The largest acceptable parameter variations for which the circuit per-

formance remains within some boundaries, specified by equality constraints, can

be determined.

Finally, a new gradient-based technique for automated design and optimization

of low-noise oscillators is presented. It relies on a circuit simulator to accurately

predict noise performance, and employs the proposed sensitivity analysis for oscil-

lators to obtain directions for rapid design improvement. The new optimization

technique is general and applicable to all types of oscillators, independent of circuit

topology.

1.1 Dissertation Outline

The dissertation is organized as follows. Chapter 2 presents an analysis for calculat-

ing sensitivities of an oscillator’s periodic steady-state and perturbation projection

vector to design, process, or environmental parameters. Chapter 3 presents new

design-oriented circuit analysis that is augmented with design constraints. Chap-
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ter 4 presents a technique for automated design and optimization of low noise

oscillators. The dissertation is concluded in Chapter 5.
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Chapter 2 – Sensitivity Analysis for Oscillators

Low noise oscillators are universally needed in digital systems for clock genera-

tion and synchronization, and in radio-frequency communication front-ends for

frequency up- and down-conversion. Noise in oscillators causes timing jitter, and

limits the clock frequency of digital systems. In radio-frequency communication

systems, phase noise in oscillators lowers the signal-to-noise ratio of transmitters

and receivers, and degrades the overall bit-error-rate. Therefore, accurate simula-

tion and optimization of oscillator noise performance is of utmost importance.

Today, methods for analyzing the large-signal performance of oscillators are

well established [1], [2], as are methods for predicting the noise performance [3], [4].

Important, yet less developed are methods for the sensitivity analysis of oscilla-

tor performance to design, process, or environmental parameters. A sensitivity

analysis of an oscillator’s periodic steady-state (PSS) solution, and its perturba-

tion projection vector (PPV) can provide useful guidance on how to improve the

design of a circuit, predict the impact of local and global process variations, and

pave the way for automated circuit design optimization.

Standard small-signal analyses (AC, noise, sensitivity) are based on the as-

sumption that small input perturbations lead to small output changes. These

analyses are applicable to most forced circuits, but not to autonomous circuits.

In oscillators, small input perturbations may result in arbitrarily large output



6

changes. For this reason, small-signal noise [3] and AC [9] analyses have been

developed specifically for oscillators. Similarly, PSS sensitivity analyses for forced

circuits [11], [12], [13] are not applicable to autonomous circuits. Therefore, an

alternative sensitivity analysis formulation is required for oscillators [5], [6].

In this chapter, sensitivity analysis for oscillators is presented, whereby, sen-

sitivities of the PSS solution and the PPV to design, process, or environmental

parameters can be computed. In forced circuits, a change in a circuit parameter

only affects the shape of the PSS solution waveform. The PSS solution period

does not change as it is defined by the periodic input. Oscillators have no exter-

nal time reference, and therefore, a change in a circuit parameter could affect the

oscillation frequency. As a result, sensitivity analysis techniques for forced circuits

can not be used to analyze oscillators. The PSS sensitivity analysis presented in

this chapter accounts for changes in the oscillation frequency due to a change in

a parameter [5], [6], and overcomes the problem inherent in previous techniques.

The PPV sensitivity analysis is novel and does not have a corresponding equivalent

analysis in forced circuits.

The PSS of an oscillator and its PPV are reviewed in Section 2.1. In Sec-

tion 4.2.2, continuous-time descriptions of an oscillator’s PSS and PPV sensitivi-

ties are presented and their properties are discussed. In Section 3.3 a discrete-time

oscillator sensitivity representation suitable for computer simulation [14] is pre-

sented. Based on this representation the time-domain finite difference, shooting,

and monodromy matrix methods for oscillator sensitivity analysis are presented.

Sensitivities of the PSS and the PPV of a ring oscillator are analyzed in Section 3.4.
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It is shown how the oscillator sensitivity analysis can be used as an aid in appli-

cations such as oscillator design optimization, macromodeling, and predicting the

impact of process variations.

2.1 Fundamental Oscillator Characteristics

In this section, the periodic steady-state and the perturbation projection vector

of oscillators are defined. A continuous-time mathematical description of these

fundamental oscillator characteristics is presented.

2.1.1 Periodic Steady State (PSS)

Any nonlinear oscillator circuit can be modeled as a set of m differential-algebraic

equations (DAEs) in x(t) given by

d

dt
q
(
x(t)

)
+ f
(
x(t)

)
+ b = 0 (2.1)
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where

t ∈ R : time, independent variable,

x : R → R
m : oscillator state variables,

q : R
m → R

m : contribution of reactive components,

f : R
m → R

m : contribution of resistive components,

b ∈ R
m : independent sources.

The T -periodic solution x(t) of the DAEs in (2.1) is called the PSS solution if it

satisfies x(t) = x(t + T ). This periodicity constraint can be expressed as

x(0) = x(T ) (2.2)

Notice that if x(t) is a PSS solution, then x(t + ∆t), ∀∆t is also a valid PSS

solution. A unique isolated solution can be selected by imposing a phase condition

ϕ
(
x(0)

)
= 0, ϕ : R

m → R (2.3)

One possible phase condition is to let a component of x(0) be a fixed value.

The oscillator PSS is uniquely defined by (2.1), (2.2), and (2.3), resulting in
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the continuous-time equations for the oscillator in the steady-state







d
dt

q
(
x(t)

)
+ f
(
x(t)

)
+ b = 0

x(0) = x(T )

ϕ
(
x(0)

)
= 0

(2.4)

This is a periodic boundary value problem (BVP) in x(t) and T , a special case of

a two-point BVP [15]. The PSS solution xs(t) can be found by solving (2.4) in

the time domain by the finite difference, or shooting methods, as well as in the

frequency domain by the harmonic balance method [1], [2].

2.1.2 Perturbation Projection Vector (PPV)

The oscillator perturbed by a small time-dependent noise bn(t) : R → R
p modu-

lated by a state-dependent function B(x) : R
m → R

m×p can be modeled by a set

of m DAEs

d

dt
q
(
x(t)

)
+ f
(
x(t)

)
+ b + B

(
x(t)

)
bn(t) = 0 (2.5)

The noisy solution xn of (2.5) can be expressed in terms of the noiseless PSS

solution xs of (2.1) as [3]

xn(t) = xs

(
t + α(t)

)
+ a(t) (2.6)
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where

a : R → R
m : orbital deviation that remains small

α : R → R : phase deviation that can grow unbounded

The phase deviation α(t) is the solution of the following nonlinear DAE

d

dt
α(t) = vT

1

(
t + α(t)

)
B
(

xs

(
t + α(t)

))

bn(t) (2.7)

where v1 : R → R
m is a T -periodic vector, known as the perturbation projection

vector. The time-dependent PPV quantitatively describes how additive noise is

converted by the oscillator into phase deviation.

Consider a system of m linear DAEs in x(t)

d

dt

(
C(t)x(t)

)
+ G(t)x(t) = 0 (2.8)

with T -periodic coefficients

C(t) ≡ C
(
xs(t)

)
=

dq(x)

dx

∣
∣
∣
∣
xs(t)

, C : R → R
m×m (2.9)

and

G(t) ≡ G
(
xs(t)

)
=

df(x)

dx

∣
∣
∣
∣
xs(t)

, G : R → R
m×m (2.10)

known as the capacitance and conductance matrices, respectively. The system

in (2.8) is obtained by differentiation of (2.1) with respect to x at the PSS solution.
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The corresponding adjoint system of m linear DAEs in y(t) is given by

CT (t)
d

dt
y(t) − GT (t)y(t) = 0 (2.11)

The adjoint system is satisfied by any linear combination of its eigenmodes

vk(t)e
−µkt, k = 1, . . . , r, where r = rank(C), µk are the characteristic exponents,

and λk = eµkT are characteristic multipliers of the original linear system in (2.8).

Assuming that the oscillator circuit has one asymptotic orbitally stable PSS solu-

tion, the PPV v1(t) is the only periodic and nonzero eigenmode. It corresponds

to the oscillatory characteristic multiplier λ1 = 1. The rest of the eigenmodes

are either zero, or decay quickly as time decreases, as |λk| < 1, k = 2, . . . , r, and

λr+1 = . . . = λm = 0.

Any scaled version of the PPV satisfies the adjoint system. A properly scaled

PPV is selected by requiring that

−vT
1 (t)C(t)ẋs(t) = 1, ∀t (2.12)

The oscillator PPV is defined by the system of linear DAEs in y which ensures

that the solution v1(t) satisfies the adjoint system, is periodic, and is properly

scaled 





CT d
dt

y − GT y = 0

y(0) = y(T )

−yT Cẋs = 1, t = 0

(2.13)

The PPV is found by solving (2.13) directly [8], or by reducing it to an initial value
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problem (IVP) [7].

The IVP approach is based on integration of the adjoint system in (2.11), start-

ing from an initial condition v1(0) that is properly scaled and results in a T -periodic

solution v1(t). The initial condition v1(0) for the IVP is the right eigenvector of the

monodromy matrix M ∈ R
m×m [7], corresponding to the oscillatory eigenvalue1

λ1 = 1. The monodromy matrix is the state-transition matrix Ω(t, 0) of the adjoint

system evaluated at time T

M = Ω(T, 0) (2.14)

Any solution of the adjoint system with initial condition y(0) can be expressed in

terms of the state-transition matrix as

y(t) = Ω(t, 0)y(0) (2.15)

The state-transition matrix Ω can be found as a solution of the adjoint system

with the identity matrix I ∈ R
m×m as the initial condition

CT (t)
d

dt
Y (t, 0) − GT (t)Y (t, 0) = 0, Y (0, 0) = I (2.16)

Therefore, the IVP, or the monodromy matrix based formulation for the PPV,

1The nonzero eigenvalues of the monodromy matrix M = Ω(T, 0) are reciprocals of the char-
acteristic multipliers of (2.8), λ−1

k , k = 1, . . . , r. For simplicity, for the rest of this section, and in
Section 4.2.4 we will use λ1 instead of λ−1

1 to denote the oscillatory eigenvalue of M .
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is given by 





My(0) = λ1y(0)

−yT (0)C(0)ẋs(0) = 1

CT d
dt

y − GT y = 0

(2.17)

The PPV v1(t) is found from (2.17) by finding the oscillatory eigenvector of M ,

properly scaling it, and using it as the initial condition for integration of the adjoint

DAEs.

2.2 Oscillator Sensitivity Analysis

An oscillator’s PSS and PPV can change in response to a change in the design,

process, or environmental parameters of an oscillator. In this section, the sensitivi-

ties of these fundamental oscillator characteristics to the parameter are defined. A

continuous-time mathematical description for oscillator PSS and PPV sensitivities

is derived. This is accomplished by differentiating the continuous-time oscillator

equations presented in Section 2.1 with respect to the parameter.

Let γp ∈ R be an oscillator design parameter, such as MOSFET geometry

parameters WM , LM , values of passive components R, L, C, process parameters,

or environmental parameters, such as temperature, power supply voltage, etc.

The oscillator component contributions q, f , their derivatives C, G, independent

sources b, oscillation period T , PSS and PPV waveforms xs, v1 are now functions
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of γp. For example, the PSS solution and PPV are now defined as

T (γp) : R → R

xs(t, γp) : R × R → R
m

v1(t, γp) : R × R → R
m

The sensitivity of the oscillation period with respect to γp, evaluated at a

specific value of γp = γ∗
p , is the rate at which the period changes with respect to a

small change ∆γp in γp and is given by

dT (γp)

dγp

∣
∣
∣
∣
γ∗

p

= lim
∆γp→0

T (γ∗
p + ∆γp) − T (γ∗

p)

∆γp

(2.18)

Consider a T -periodic waveform s(t, γp), which can be the PSS waveform xs,

or the PPV waveform v1. The sensitivity of this waveform with respect to γp is

given by

ds(t, γp)

dγp

∣
∣
∣
∣
γ∗

p

= lim
∆γp→0

∆ts

∆γp

, ∀t (2.19)

with

∆ts = s(t, γ∗
p + ∆γp

)
− s(t, γ∗

p) (2.20)

As shown in Figure 2.1, a small change ∆γp may alter the oscillation frequency,

and result in a large, non-periodic difference ∆ts. It follows that in general the
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Figure 2.1: PSS waveforms and their difference in absolute time. The difference
∆ts is large for small ∆γp and not periodic.

limit in (2.19) does not exist.

Let us define a normalized time as

τ ≡ t/T (γp), τ ∈ R (2.21)

This allows us to define a difference waveform

∆τs = s
(
τT (γ∗

p + ∆γp), γ
∗
p + ∆γp

)
− s
(
τT (γ∗

p), γ
∗
p

)
(2.22)

that is small for small ∆γp, and periodic in τ with a period of 1. Two periodic

waveforms s and the corresponding difference ∆τs are illustrated in Figure 2.2.

The sensitivity of s with respect to γp in the normalized time
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Figure 2.2: PSS waveforms and their difference in normalized time. The difference
∆τs is small for small ∆γp and periodic.

ds
(
τT (γp), γp

)

dγp

∣
∣
∣
∣
∣
γ∗

p

= lim
∆γp→0

∆τs

∆γp

, ∀τ (2.23)

is periodic in τ with a period of 1, and exists for any τ . For a given normalized

time τ this sensitivity relates a pair of points at different absolute time instances

τT (γ∗
p) and τT (γ∗

p + ∆γp). These time instances correspond to a fixed fraction τ

of a varying oscillation period T (γp).
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Let us redefine the absolute time t, and the d/dt operator as

t ≡ τT (γp) (2.24)

and

d

dt
≡ 1

T (γp)

d

dτ
(2.25)

and use the normalized time τ as the independent variable in the oscillator sensi-

tivity analysis.

With the new definition of time t, the sensitivity of a T -periodic waveform

s(t, γ∗
p) should be interpreted as

ds(t, γp)

dγp

∣
∣
∣
∣
γ∗

p

≡ ds
(
τT (γp), γp

)

dγp

∣
∣
∣
∣
∣
τ = t

T (γ∗

p)
, γ∗

p

= lim
∆γp→0

s
(
τT (γ∗

p + ∆γp), γ
∗
p + ∆γp

)
− s
(
τT (γ∗

p), γ
∗
p

)

∆γp

= lim
∆γp→0

s

(

t
T (γ∗

p + ∆γp)

T (γ∗
p)

, γ∗
p + ∆γp

)

− s
(
t, γ∗

p

)

∆γp

(2.26)

which is a T -periodic function of the absolute time t.

Thus, the oscillator PSS and PPV sensitivity analyses find the oscillation pe-

riod sensitivity dT/dγp as in (2.18), and periodic sensitivities of PSS and PPV

waveforms dxs/dγp and dv1/dγp as in (2.23) or (2.26).



18

2.2.1 Periodic Steady-State Sensitivity Analysis

The oscillator steady-state equations in (2.4) with parameter γp are given by a

periodic BVP in x and T







d
dt

q
(
x(t, γp), γp

)
+ f
(
x(t, γp), γp

)
+ b(γp) = 0

x(0, γp) = x
(
T (γp), γp

)

ϕ
(
x(0, γp)

)
= 0

(2.27)

The PSS sensitivity is obtained by a differentiation of the PSS equations in (2.27)

with respect to the parameter γp at the steady-state solution where x = xs. Recall

that not only x, and T but also q, f , b, t, and d/dt are functions of γp.

The contribution of the resistive circuit components to (2.27) at the steady-

state xs

f
(
xs(t, γp), γp

)
= f

(

xs

(
τT (γp), γp

)
, γp

)

(2.28)

depends on γp directly, as well as indirectly through the PSS waveform xs and

period T that are affected by γp. Therefore, the total derivative of f with respect



19

to γp is composed of three terms

d

dγp

[

f
(

x
(
τT (γp), γp

)
, γp

)]

=
∂f

∂γp

+
∂f

∂x
· dx

dγp

+
∂f

∂x
· dx

dT
· dT

dγp
︸ ︷︷ ︸

3

=
∂f

∂γp
︸ ︷︷ ︸

1

+ G · dx

dγp
︸ ︷︷ ︸

2

+ 0

︸︷︷︸

3

(2.29)

which have the following interpretations:

1. Direct effect of parameter γp on f . Resistive circuit components that directly

depend on γp, such as a resistor with resistance being the parameter γp ≡ R,

contribute to this term.

2. Chain effect of parameter γp on f caused by a change in the PSS waveform xs.

Resistive circuit components, such as a resistor, or a MOSFET, contribute

to this term.

3. Chain effect of parameter γp on f caused by a change in the oscillation period

T . This term is zero because a change in the period alone causes the PSS

waveform xs to stretch or shrink in the absolute time t, without affecting the

value of x in the normalized time

dxs(τT, γp)

dT
= 0 (2.30)

Consequently, f is not affected in the normalized time.
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The contribution of the reactive circuit components to (2.27) at the steady-state

is

d

dt
q
(
xs(t, γp), γp

)
=

1

T (γp)

d

dτ
q
(

xs

(
τT (γp), γp

)
, γp

)

(2.31)

and its total derivative with respect to γp is composed of three terms as well

d

dγp

[
1

T (γp)

d

dτ
q
(

x
(
τT (γp), γp

)
, γp

)]

=
d

dτ

(
∂

∂γp

q

T
+

∂

∂x

q

T
· dx

dγp

+
∂

∂x

q

T
· dx

dT
· dT

dγp

)

=
d

dτ

( ∂q
∂γp

T − dT
dγp

q

T 2
+

1

T

∂q

∂x
· dx

dγp

)

=
1

T

d

dτ

∂q

∂γp

− 1

T 2

d

dτ
q · dT

dγp

+
1

T

d

dτ

(
∂q

∂x
· dx

dγp

)

=
d

dt

∂q

∂γp
︸ ︷︷ ︸

1

+
d

dt

(

C · dx

dγp

)

︸ ︷︷ ︸

2

− 1

T

dq

dt
· dT

dγp
︸ ︷︷ ︸

3

(2.32)

where (2.30) was used. The interpretation of the first two terms in (2.32) is similar

to the corresponding terms in (2.29), and term 3 represents the chain effect of

parameter γp on dq/dt caused by a change in the oscillation period T . A change in

the period causes the waveform xs and, consequently, q to stretch or shrink in the

absolute time t. As a result, the slope dq/dt is decreased or increased accordingly.

Therefore, the oscillator PSS sensitivity equations are given by a system of
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linear DAEs that represent a periodic BVP in dx/dγp and dT/dγp







d
dt

(
C dx

dγp

)
+ G dx

dγp
− 1

T
dq
dt

dT
dγp

= −RPSS(t)

dx(0,γp)

dγp
− dx(T,γp)

dγp
= 0

∂
∂x

ϕ(x)
∣
∣
x(0,γp)

d
dγp

x(0, γp) = 0

(2.33)

where

RPSS(t) =
∂

∂γp

[dq

dt
+ f + b

]

(2.34)

is a periodic forcing term that depends on the choice of γp.

Computation of PSS sensitivity requires a PSS analysis to be first performed

to obtain the PSS waveforms xs, and the oscillation period T , along with dq/dt

in (2.33). Assuming that the underlying PSS analysis in based on the Newton-

Raphson method, the periodic matrix coefficients C, and G in (2.33) are also avail-

able. The partial derivatives in (2.34), i.e., ∂q/∂γp, ∂f/∂γp, ∂b/∂γp, are obtained

from device models at the steady-state xs.

Once assembled, the continuous-time PSS sensitivity equations in (2.33) can

be solved in the time domain by the finite-difference, or shooting methods, as well

as in the frequency domain by the harmonic balance method for dxs/dγp, and

dT/dγp.

In optimization problems, the gradient of an objective function ∇Fobj with

respect to a P -vector of design parameters [γ1, . . . , γP ]T is often needed. In this

case, (2.33) must be solved P times with different forcing terms RPSS to compute

PSS sensitivities with respect to all optimization parameters γp, p = 1, . . . , P . The
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periodic coefficients G, C, dq/dt, and T in (2.33) are properties of the periodic

steady-state, and do not depend on the choice of a parameter.

The PSS sensitivity DAEs in (2.33) are linear, and therefore, easier and faster

to solve than the nonlinear DAEs for the PSS in (2.4). Therefore, the proposed PSS

sensitivity analysis is more efficient compared to finding a numerical approximation

of PSS sensitivity, which requires an additional nonlinear PSS analysis with a

perturbed value of the parameter. With multiple parameters, this is a significant

benefit of the proposed PSS sensitivity analysis.

2.2.2 Phase Condition in Sensitivity Analysis

Figure 2.3(a) shows a simple steady-state orbit xs(τT, γ∗
p), and its perturbed ver-

sion xs(τT, γ∗
p + ∆γp) corresponding to a parameter variation ∆γp.

Due to the freedom in choosing the initial time reference, the problem of find-

ing the difference ∆τxs = [∆τx1, ∆τx2]
T that maps the original orbit into the

perturbed one does not have a unique solution for oscillators.

As discussed in Section 4.1.1, the initial point of the PSS solution is selected

by imposing a phase condition in (2.4). Let the initial point of the original orbit

be

xs(τ0T, γ∗
p) = [0.33,−0.94]T (2.35)

One way to select the initial point on the perturbed orbit is to apply the same

phase condition as in the original PSS solution. The initial point in (2.35) satisfies
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Figure 2.3: (a) The original and perturbed PSS orbits with a phase condition
that fixes x1, and (b) the corresponding PSS difference waveform components.
The arrows correspond to the difference in PSS waveform samples and depict how
the individual PSS orbit samples are affected by a change in the parameter. An
example for fixed x2 is shown in (c) and (d).

many phase conditions, and in particular

ϕ1 : x1(τ0T, γp) = 0.33
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and

ϕ2 : x2(τ0T, γp) = −0.94

The two versions of the PSS difference ∆τxs corresponding to ϕ1 and ϕ2 are

shown, respectively, in Figures 2.3(a) and (c) as arrows, and in Figures 2.3(b)

and (d) as waveforms. Note that although the two sets of arrows have different

magnitudes and directions, they describe the same change in the PSS orbit. Conse-

quently, in the time domain, the two versions of ∆τxs describe the same change in

the PSS waveform, although they have different amplitudes and phases, and gen-

erally may be of different shapes. It is difficult to favor one mapping over another,

because all of them are equally good in describing the change in the steady-state

due to ∆γp.

It follows that depending on the phase condition equation, a single steady-state

may have multiple valid PSS sensitivity waveforms dxs/dγp ≈ ∆τxs/∆γp. How-

ever, independent of the phase condition, PSS waveform sensitivities have the same

information. They describe the same change of the PSS orbit caused by a change

in γp. It is important to understand that while the waveform sensitivities dxs/dγp

may be different, the corresponding final results, such as sensitivity of power dis-

sipation, duty cycle, harmonic content of the PSS and PPV power spectrum, etc.,

as well as dT/dγp, are scalars and do not depend on the phase condition equa-

tion. Any phase condition suitable for PSS analysis can be used in the sensitivity

analysis.

In [9] it is shown that there is more than one solution in oscillator AC analysis,
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with a unique solution isolated by adding phase condition equations. In [10] it is

pointed out that many phase conditions result in non-smooth AC solutions, and a

smooth minimum norm AC solution is proposed.

A minimum norm PSS sensitivity can be obtained in a similar manner, by

applying a least-square solver to the first two equations in (2.33). However, due

to the time-invariant nature of the parameter variation ∆γp, all phase conditions

produce smooth, valid PSS sensitivities dxs/dγp. Thus there is no need for a least-

square solver in the oscillator sensitivity analysis. The use of the phase condition

equation is a general and systematic way to isolate a unique sensitivity solution in

a continuum of all valid sensitivities dxs/dγp.

2.2.3 Perturbation Projection Vector Sensitivity Analysis

The oscillator equations for the PPV in (2.13) and (2.17) with parameter γp are

given by linear DAEs in y







CT (t, γp)
d
dt

y(t, γp) − GT (t, γp)y(t, γp) = 0

y(0, γp) = y(T, γp)

−yT (0, γp)C(0, γp)ẋs(0, γp) = 1

(2.36)

and 





M(γp)y(0, γp) = λ1y(0, γp)

−yT (0, γp)C(0, γp)ẋs(0, γp) = 1

CT (t, γp)
d
dt

y(t, γp) − GT (t, γp)y(t, γp) = 0

(2.37)
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A PPV sensitivity analysis is based on differentiation of the PPV description

in (2.36), or (2.37) with respect to the parameter γp at y = v1. Differentiation

of (2.36) is given by







CT d
dt

dy
dγp

− GT dy
dγp

= −RPPV(t)

dy(0,γp)

dγp
− dy(T,γp)

dγp
= 0

[Cẋs]
T dy

dγp
= −v1

T d
dγp

[Cẋs] , t = 0

(2.38)

with

RPPV(t) =
dCT

dγp

dv1

dt
− 1

T

dT

dγp

CT dv1

dt
− dGT

dγp

v1 (2.39)

and

d

dγp

[Cẋs] =
dC

dγp

ẋs + C
dẋs

dγp

− 1

T

dT

dγp

Cẋs, t = 0 (2.40)

Not only y but also C, G, xs, T , t, and d/dt have to be treated as functions of γp

in order to obtain (2.38). The PPV sensitivity dv1/dγp is the solution of the linear

system of DAEs (2.38) that represents a periodic BVP in dy/dγp.

The total derivative of the capacitance matrix with respect to parameter γp is

expressed similar to (2.29) with the use of (2.30)

d

dγp

C
(

xs

(
τT (γp), γp

)
, γp

)

=
∂C

∂γp

+
∂C

∂xs

· dxs

dγp

(2.41)

with

∂C

∂xs

· dxs

dγp

≡
m∑

j=1

(
∂C

∂xj

· dxj

dγp

)

(2.42)

where xj is the j-th entry of xs. The expression for the total derivative of the
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conductance matrix with respect to γp is similar to (2.41). These derivatives are

obtained from device models at the steady-state xs.

The PPV sensitivity dv1/dγp can be found by solving (2.38) directly, or by

reducing it to an IVP. The IVP for PPV sensitivity is obtained by a differentiation

of the IVP for PPV in (2.37) with respect to γp at y = v1







dM
dγp

v1 + M dy
dγp

= dλ1

dγp
v1 + λ1

dy
dγp

, t = 0

[ẋsC]T dy
dγp

= −yT d
dγp

[Cẋs] , t = 0

CT d
dt

dy
dγp

− GT dy
dγp

= −RPPV(t)

(2.43)

Ideally, λ1 = 1 is insensitive to γp as an oscillator always has 1 as the oscillatory

eigenvalue of the monodromy matrix M . Let us remove dλ1/dγp from (2.43) and

rewrite its first m equations in the matrix form

[

M − λ1I

]
dy

dγp

= − dM
dγp

v1 , t = 0 (2.44)

Since λ1 is an eigenvalue of M , it follows that det
[
M − λ1I

]
= 0 and the left-

hand side matrix of (2.44) is singular. To make this matrix nonsingular, let us

augment it by introducing an extra equation and an extra unknown in (2.44). The

extra equation can be the scaling equation from (2.43). Keeping dλ1/dγp in (2.43)

allows us to have the extra unknown. The resulting linear system of DAEs that

represent the IVP, or the monodromy matrix formulation for the PPV sensitivity,
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is given by












M − λ1I v1

[Cẋs]
T 0











dy(0,γp)

dγp

dλ1

dγp




 = −






dM
dγp

v1

vT
1

d
dγp

[Cẋs]






CT d
dt

dy
dγp

− GT dy
dγp

= −RPPV(t)

(2.45)

The sensitivity of the monodromy matrix dM/dγp in (2.45) is defined as the

sensitivity of the state-transition matrix evaluated at time T

dM(γp)

dγp

=
Ω(T, 0, γp)

dγp

(2.46)

The sensitivity of the state-transition matrix is obtained from the adjoint system

in (2.16) differentiated with respect to γp at Y = Ω, with the zero matrix dI/dγp =

0 ∈ R
m×m as the initial condition

CT d

dt

dY

dγp

− GT dY

dγp

= −RΩ(t),
dY (0, 0, γp)

dγp

= 0 (2.47)

where similar to (2.39)

RΩ(t) =
dCT

dγp

dΩ

dt
− 1

T

dT

dγp

CT dΩ

dt
− dGT

dγp

Ω (2.48)

However, it is inefficient to compute the sensitivity of the monodromy matrix

explicitly. Instead, its matrix-vector product with v1(0, γp) should be computed.
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To do this, let us multiply all terms in (2.47) by v1(0, γp)

CT d

dt

[ dΩ

dγp

v1(0, γp)
]
− GT

[ dΩ

dγp

v1(0, γp)
]

= −RPPV(t) (2.49)

where RPPV(t) = RΩ(t) · v1(0, γp) was used in conjunction with (2.15). The un-

known in (2.49) is the matrix-vector product

dΩ(t, 0, γp)

dγp

· v1(0, γp)

and the initial condition for integration is zero. Finding the the solution of (2.49) at

time T concludes the assembly of the right-hand side of the linear system in (2.45).

Once the linear system in (2.45) is solved for the initial condition for PPV

sensitivity dv1(0, γp)/dγp, the IVP with DAEs in (2.45) can be solved for the PPV

sensitivity waveform dv1(t, γp)/dγp, where RPPV(t) from (2.49) can be reused.

The PPV sensitivity analysis requires the PSS solution, the PPV, and a PSS

sensitivity analysis. These provide elements of the PPV sensitivity equations such

as C, and G at the steady-state xs, as well as dT/dγp, dxs/dγp, v1, and M .

Similar to the PSS waveform sensitivity, the PPV sensitivity waveform depends

on the phase condition equation. Also, PPV sensitivity waveforms corresponding

to PSS solutions with different initial phases may not be simply phase-shifted

copies of each other. This is because the PPV sensitivity analysis uses the PSS

sensitivity waveform that possesses the same property.
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2.3 Numerical Methods

In this section, numerical methods for computing the oscillator PSS and PPV

sensitivities to parameter γp are presented.

Analysis of nonlinear oscillators using continuous-time equations is impractical.

For a numerical time-domain analysis, time is discretized and the time-derivative

operator is replaced by a finite-difference approximation. Let the continuous-time

waveform s(t) be sampled

si ≡ s(ti) (2.50)

with a constant timestep h = T/n resulting in n uniformly spaced timepoints per

oscillation period

ti = ih, i ∈ N (2.51)

and the d(·)/dt operator be replaced by the backward Euler formula

−·�
si = 1

h
(si − si−1) ≡ ds(t)

dt

∣
∣
∣
ti

(2.52)

for numerical integration forward in time, or

�·−
si = 1

−h
(si − si+1) ≡ ds(t)

dt

∣
∣
∣
ti

(2.53)

for numerical integration backwards in time.

The oscillator DAEs for PSS and PPV sensitivity are converted into algebraic

equations by applying the discretization rules in (2.50), (2.51), (2.52), or (2.53).
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The best choice of numerical methods for the resulting discrete-time oscillator

sensitivity analysis depends on the numerical methods used in the underlying PSS

and PPV analyses. For example, if the nonlinear BVP for the PSS in (2.4) was

reduced to a series of IVPs by applying the shooting method, the corresponding

linear BVP for PSS sensitivity in (2.33) should be solved by reducing it to an IVP

as well. It will be shown that using similar numerical methods allows the reuse of

certain data structures and computation routines.

2.3.1 Discrete-Time PSS Sensitivity Equations

A simple discrete counterpart of the PSS sensitivity equations in (2.33) for t ∈

(0, T ] is given by a system of nm+m+1 linear algebraic equations at timepoints ti,

i = 1, . . . , n







−·�
Ci

dxi

dγp
+Gi

dxi

dγp
− 1

T
q̇i · dT

dγp
= − ∂

∂γp

[ −·�
qi +fi + b

]

dx0

dγp
= dxn

dγp

∂ϕ(x)
∂x

∣
∣
∣
x0

· dx0

dγp
= 0

(2.54)

where the unknowns are the sensitivity of the oscillation period dT/dγp, and (n +

1)m samples dxi/dγp, i = 0, . . . , n of the PSS sensitivity waveform.

Computing the sensitivity of the oscillator PSS solution implies that a PSS

analysis is successfully completed. The time discretization of the PSS analysis

should be preserved for the PSS sensitivity analysis. In this case, sequences xi,

and qi are known. Furthermore, if gradient-based methods, such as the Newton-
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Raphson method, are used to find the PSS, matrices Ci, and Gi are known as

well.

2.3.2 Discrete-Time PPV Sensitivity Equations

It is numerically unstable to integrate the adjoint system in (2.11) and its deriva-

tives forward in time [7]. For the discrete-time PPV and PPV sensitivity analyses,

numerical integration is performed backwards in time, and (2.53) is used to ap-

proximate the d(·)/dt operator.

The discrete-time equivalent of the periodic BVP formulation for PPV sensi-

tivity in (2.38) along one period t ∈ [0, T ) is given by a system of nm + m + 1

linear algebraic equations for i = 0, . . . , n − 1







CT
i

�·−
dv1i

dγp
−GT

i
dv1i

dγp
= −RPPVi

dv10

dγp
= dv1n

dγp

dvT
10

dγp
C0

−·�
x0 +vT

10

d
dγp

[

C0
−·�
x0

]

= 0

(2.55)

with

RPPVi =
dCT

i

dγp

�·−
dv1i −

1

T

dT

dγp

CT
i

�·−
dv1i −

dGT
i

dγp

v1i (2.56)

and

d

dγp

[

C0
−·�
x0

]

=
dC0

dγp

−·�
x0 +C0

−·�
dx0

dγp

− 1

T

dT

dγp

C0
−·�
x0 (2.57)

In (2.55) the unknowns are (n + 1)m samples dv1i
/dγp, i = 0, . . . , n of PPV sen-

sitivity waveforms. This system is overdetermined since there are more equations
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than unknowns.

Next, the discrete counterpart of the IVP formulation for the PPV sensitivity

is presented. The linear system of equations from (2.45) that describe the initial

condition for the PPV sensitivity waveform is given by






M − λ1I v10
[

C0
−·�
x0

]T

0











dv10

dγp

dλ1

dγp




 = −






dM
dγp

v10

vT
10

d
dγp

[

C0
−·�
x0

]




 (2.58)

The discrete-time versions of the DAEs from (2.45) and (2.49) along one period

t ∈ [−T, 0) are given by

CT
i

�·−
dv1i

dγp

−GT
i

dv1i

dγp

= −RPPVi (2.59)

and

CT
i

[
�·−

dΩi

dγp

v10

]
− GT

i

[dΩi

dγp

v10

]
= −RPPVi (2.60)

for i = −1, . . . ,−n. The sensitivity of the monodromy matrix on the right-hand

side of (2.58) is given by2

dM

dγp

=
dΩ−n

dγp

≡ dΩ(−T, 0, γp)

dγp

(2.61)

2Note that since numerical integration is performed backwards, the monodromy matrix
in (2.58), and (2.61) is redefined as M = Ω(−T, 0), and its nonzero eigenvalues are the char-
acteristic multipliers of (2.8), λk, k = 1, . . . , r.
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2.3.3 Finite Difference Method for PSS Sensitivity Analysis

The finite difference method for PSS sensitivity analysis is efficient if the underlying

PSS analysis is based on the finite-difference method as well.

In this method, the sensitivity of the oscillation period dT/dγp and the sensitiv-

ities of the PSS waveform samples dxi/dγp, i = 1, . . . , n are found simultaneously

by solving the linear system in (2.62), derived from (2.54),
















1
h
C1 + G1 − 1

h
Cn − 1

T

−·�
q1

− 1
h
C1

1
h
C2 + G2 − 1

T

−·�
q2

. . . . . .
...

− 1
h
Cn−1

1
h
Cn + Gn − 1

T

−·�
qn

0 · · · 0 ∂ϕ(x)
∂x

∣
∣
∣
xn

0
















·















dx1

dγp

dx2

dγp

...

dxn

dγp

dT
dγp















= −















1
h

(
∂q1

∂γp
− ∂qn

∂γp

)
+ ∂f1

∂γp
+ db

dγp

1
h

(
∂q2

∂γp
− ∂q1

∂γp

)
+ ∂f2

∂γp
+ db

dγp

...

1
h

(
∂qn

∂γp
− ∂qn−1

∂γp

)
+ ∂fn

∂γp
+ db

dγp

0















(2.62)

Note that the periodicity constraint dx0/dγp = dxn/dγp is not explicitly present

in (2.62). The periodicity constraint equation was used to eliminate dx0/dγp from

the list of unknowns. The remaining nm+1 equations represent the finite difference

formulation of the PSS sensitivity analysis.

The matrix in (2.62) is the same as the Jacobian of the Newton-Raphson based
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finite difference method for the PSS analysis at the solution point. The linear solver

used for the Newton-Raphson iterations of the underlying PSS analysis should be

used again to solve the linear system in (2.62). If the solver is iterative [17], the

matrix-vector product computation routine can be reused. In case of a direct

solver, the LU -factors of the matrix are available from the PSS analysis.

Note that it is necessary to compute the derivatives of device contributions with

respect to the parameter γp on the right-hand side of (2.62). The device models

have to be extended to provide these derivatives.

The computation cost of the finite difference method for PSS sensitivity analysis

is comparable to the cost of one Newton-Raphson iteration of the underlying PSS

analysis.

2.3.4 Finite Difference Method for PPV Sensitivity Analysis

The finite difference method for PPV sensitivity analysis is efficient if the underly-

ing PPV analysis is based on finding the nullspace of the transposed unaugmented

finite difference Jacobian matrix.

The first nm + m equations in (2.55) can be written as a system of nm linear
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equations in matrix form

JT
fd ·












dv11

dγp

dv12

dγp

...

dv1n

dγp












=












RPPV1

RPPV2

...

RPPVn












(2.63)

Note that the periodicity constraint dv10
/dγp = dv1n/dγp is not explicitly present

in (2.63). The periodicity constraint equation was used to eliminate dv10
/dγp from

the list of unknowns.

The matrix JT
fd is singular. Similar to the underlying PPV computation tech-

nique [8], JT
fd is augmented by a row vector

[
[C1

−·�
x1 ]T , . . . , [Cn

−·�
xn ]T

]
and a column

vector [p1, . . . , pn]T chosen to make the matrix nonsingular. This is equivalent to

introducing an extra equation and an extra unknown in (2.63). The extra equa-

tion is given by a sum of the differentiated scaling equations for all PPV samples

along one period i = 1, . . . , n. It is equivalent to the last equation in (2.55) as

both equations serve the same purpose of properly scaling the PPV sensitivity

waveform. The extra unknown is ideally zero, and in practice it is small, similar

to the extra unknown in the underlying PPV analysis [8]. The resulting system of

nm + 1 linear equations (2.64) represent the finite difference formulation for the
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PPV sensitivity analysis,















1
h
CT

1 + GT
1 − 1

h
CT

1 p1

1
h
CT

2 + GT
2

. . . p2

. . . − 1
h
CT

n−1

...

− 1
h
CT

n
1
h
CT

n + GT
n pn

[
C1

−·�
x1

]T [
C2

−·�
x2

]T · · ·
[
Cn

−·�
xn

]T
0















·















dv11

dγp

dv12

dγp

...

dv1n

dγp

0















=

















RPPV1

RPPV2

...

RPPVn

−vT
10

n∑

i=1

(
dCi

dγp

−·�
xi +Ci

−·�
dxi

dγp
− 1

T
dT
dγp

Ci
−·�
xi

)

















(2.64)

Solving the linear system in (2.64) results in the sensitivities of the PPV waveform

samples dv1i
/dγp, i = 1, . . . , n.

The matrix-vector product computation routine for JT
fd is available from the

underlying PPV analysis. It can be easily extended to compute the matrix-vector

product of the matrix of the linear system in (2.64).

The entries on the right-hand side of (2.64) require the sensitivities of matrices

G and C with respect to the samples of xs and γp, and can be computed from the

device models.
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2.3.5 Shooting Method for PSS Sensitivity Analysis

The shooting method for the PSS sensitivity analysis is efficient in conjunction

with an underlying PSS analysis that is based on the shooting method as well.

The last m + 1 equations in (2.54) represent a shooting formulation of the PSS

sensitivity analysis 




dxn

dγp
− dx0

dγp

∂ϕ(x)
∂x

∣
∣
∣
x0

· dx0

dγp




 =






0

0




 (2.65)

where dx0/dγp and dT/dγp are the unknowns. Given dT/dγp, dxn/dγp is obtained

by integrating the first nm equations in (2.54) starting from the initial condition

dx0/dγp. After the solution, dx0/dγp and dT/dγp, is found, the remaining PSS

waveform sensitivity samples dxi/dγp, i = 1, . . . , n are obtained from an additional

integration of the first nm equations in (2.54).

Let us rewrite the shooting method formulation in (2.65) as

F ′
shγp

(
dx0

dγp

,
dT

dγp

)

= 0 (2.66)

where F ′
shγp

is the same as the derivative of the underlying shooting PSS analysis

function Fsh with respect to γp. The shooting method applied to the linear BVP

in (2.54) finds the solution at the first iteration. The solution is found by solving

a linear system

Jsh






dx0

dγp

dT
dγp




 = −F ′

shγp
(0, 0) (2.67)



39

where

F ′
shγp

(0, 0) =






dxn

dγp

0




 (2.68)

and

Jsh =








∂ dxn

dγp

∂ dx0

dγp

− I
∂ dxn

dγp

∂ dT
dγp

∂ϕ(x)
∂x

∣
∣
∣
x0

0








=






∂xn

∂x0
− I ∂xn

∂T

∂ϕ(x)
∂x

∣
∣
∣
x0

0




 (2.69)

is the Jacobian matrix of F ′
shγp

, and I is the identity matrix. Note that Jsh is the

same as the Jacobian matrix of the Newton-Raphson based shooting method for

the underlying PSS analysis at the solution point.

Computing dxn/dγp for F ′
shγp

(0, 0) requires integration of the first nm equations

in (2.54). This is done iteratively for i = 1, . . . , n

[
1

h
Ci + Gi

]
dxi

dγp

=
1

T

−·�
qi · dT

dγp

+
1

h
Ci−1

∂xi−1

∂γp

−
[

1

h

(
∂qi

∂γp

− ∂qi−1

∂γp

)

+
∂fi

∂γp

+
∂b

∂γp

]

(2.70)

starting from the initial condition dx0/dγp = 0. Note that the first term on the

right-hand side of (2.70) vanishes since F ′
shγp

is evaluated at dT/dγp = 0. At any

iteration i = 1, . . . , n, the matrix in (2.70) is the same as the Jacobian at the

corresponding timepoint of the final transient analysis of the shooting method for

the underlying PSS analysis.

The sensitivities of PSS waveform samples along one period are found from (2.70)
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iteratively with the initial condition dx0/dγp, obtained by solving (2.67). This time,

the first term on the right-hand side of (2.70) needs to be taken into account since

dT/dγp found from (2.67) is not necessarily zero.

Matrix-vector product computation routines or LU -factors for the matrices of

linear systems in (2.67) and (2.70) are available from the underlying PSS analysis.

The computation cost of the shooting method is similar to the computation cost

of one Newton-Raphson iteration of the underlying PSS analysis.

2.3.6 Monodromy Matrix Method for PPV Sensitivity Analysis

The monodromy matrix method for the PPV sensitivity analysis is efficient if the

underlying PPV analysis is based on the eigenvalue decomposition of the mon-

odromy matrix.

First, equations in (2.60) are integrated backwards in time. This is done itera-

tively for i = −1, ...,−n

[
1

h
CT

i + GT
i

]
dΩi

dγp

v10
=

1

h
CT

i

dΩi+1

dγp

v10
+ RPPVi (2.71)

starting from the initial condition dΩ0/dγp · v10
= 0. The solution at i = −n is the

sensitivity of the monodromy matrix multiplied by v10

dM

dγp

v10
=

dΩ−n

dγp

v10
(2.72)

It is used to form the right hand side of (2.58).
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The solution of the linear system in (2.58) is the initial condition for the

PPV sensitivity waveform v10
/dγp, and the sensitivity of the oscillatory eigenvalue

dλ1/dγp. The eigenvalue sensitivity is ideally zero but the numerical solution is

normally a small nonzero value.

Finally, the periodic sensitivity dv1i
/dγp of the PPV waveform along one period

i = −1, ...,−n is found by integrating equations in (2.59) backwards in time. This

is done iteratively for i = −1, ...,−n

[
1

h
CT

i + GT
i

]
dv1i

dγp

=
1

h
CT

i

dv1i+1

dγp

+ RPPVi (2.73)

starting from the initial condition v10
/dγp found from (2.58). Note that RPPVi is

available from (2.71) for all i.

The matrix-vector product computation routines or LU -factors for the matrices

of the linear systems in (2.71) and (2.73) are available from the underlying PPV

analysis employing the monodromy matrix method. Moreover, if the eigenvalue

decomposition of the monodromy matrix M is done based on an Arnoldi iterative

process, the matrix-vector product computation routine for matrix M is available.

This routine can be easily extended to compute the matrix-vector product for the

matrix in (2.58).
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2.4 Examples and Results

We have implemented PSS and PPV sensitivity analyses in our Matlab-based

circuit simulator, and in Berkeley Design Automation’s RF FastSPICE. In this

section the sensitivity of a ring oscillator to control voltage and device geometry

is analyzed. It is shown that the PSS and PPV sensitivities can provide valuable

information for applications such as oscillator design optimization, macromodeling,

and predicting the impact of process variations.

The oscillator under consideration is a differential four-stage ring oscillator in

Figure 2.4 that consists of four identical Maneatis delay cells [16]. The schematic

1onx

1opx

2onx

2opx

3onx

3opx

4onx

4opx

Figure 2.4: Block-diagram of the differential four-stage ring oscillator.

of the first delay cell is shown in Figure 2.5. An active biasing circuit in Figure 2.6

provides a dynamically changing voltage xbn for the delay cells. We use x to denote

nodal voltages (such as xctrl), and V to denote the nominal values of voltage sources

(such as Vctrl). The delay of a cell, and consequently, the oscillation frequency

f0 = 1/T is set by the voltage at the control node xctrl. A Vdd-referred control

voltage Vctrl makes the circuit a voltage controlled oscillator (VCO).

All the simulation results for the presented sensitivity analysis were verified

and are in good agreement with the results of a finite-difference based numerical

sensitivity analysis method.
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Figure 2.5: Schematic of the Maneatis delay cell with symmetric loads.

ctrlx

ctrlV

ddV
bnx

ddx

+

−

1.8 V

1.0 V
−

+

Figure 2.6: Block-diagram of the active biasing with a half-cell replica.

2.4.1 Sensitivity to the Control Voltage

In a phase-locked loop (PLL) [18], the VCO is operating at different frequencies,

set by the control voltage. The oscillator sensitivities with respect to the control

voltage are presented and discussed next. It is shown how these sensitivities can

be postprocessed and used to compute the VCO gain, and the sensitivity of the

power consumption, as well as to generate an accurate quadratic model of the VCO
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transfer curve f0(Vctrl) that maps the control voltage to the oscillation frequency.

A PSS sensitivity analysis with γp ≡ Vctrl finds sensitivities of the oscillation

period and PSS waveforms with respect to the control voltage. The sensitivities

are computed at the PSS solution with a nominal control voltage of V ∗
ctrl = 0.8 V,

corresponding to an oscillation period of T = 0.7903 ns.

The sensitivity of the oscillation period provided by the PSS sensitivity analysis

is

dT

dVctrl

= −3.2660
ns

V

This sensitivity allows us to compute the VCO gain, KV CO, as

KV CO =
df0

dVctrl

=
d 1

T

dVctrl

= − 1

T 2

dT

dVctrl

= 5.2298
GHz

V

This is in good agreement with the VCO gain of 5.2186 GHz/V, computed based

on the PPV later in this section, which validates the sensitivity of the oscillation

period provided by the PSS sensitivity analysis.

Next consider the output voltages xop1, xon1 from the first delay cell and the

voltage at the control node xctrl in Figure 2.7(a). The sensitivities of these wave-

forms with respect to the control voltage are provided by the PSS sensitivity anal-

ysis (Figure 2.7(b)). In this example, the phase condition (2.3) is imposed by fixing

the initial value of xop1 at 1.4 V. Consequently, the sensitivity of the initial point

of dxop1/dVctrl is zero.

Ideally, the outputs of a Maneatis delay cell swing between xctrl and Vdd as in

Figure 2.7(a). The PSS sensitivities in Figure 2.7(b) predict that this property
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Figure 2.7: (a) The PSS solution and (b) PSS waveform sensitivities with respect
to the control voltage.

is preserved while the control voltage varies around V ∗
ctrl. For example, at time

τ = τpeak, shown in Figure 2.7,

dxon1

dVctrl

≈ 0 and
dxop1

dVctrl

≈ dxctrl

dVctrl

This indicates that the highest level of xon1 remains nearly unchanged at Vdd, and

the lowest level of xop1 follows the xctrl voltage.

The PSS sensitivities allow us to find an approximation of the PSS waveforms

for any value of the control voltage that is sufficiently close to V ∗
ctrl. For example,

given the control voltage of V ∗
ctrl + ∆Vctrl, the predicted steady-state waveform x
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is given by

x(V ∗
ctrl + ∆Vctrl)

︸ ︷︷ ︸

predicted PSS

≈ x(V ∗
ctrl)

︸ ︷︷ ︸

original PSS

+

parameter
difference
︷ ︸︸ ︷

∆Vctrl ·

PSS
sensitivity
︷ ︸︸ ︷

dx

dVctrl
︸ ︷︷ ︸

predicted PSS difference

The accuracy of this prediction depends on how linear the dependence of the output

PSS waveform on the control voltage is, and on how large ∆Vctrl is.

Figure 2.8 shows the PSS waveforms and the predicted PSS waveform differ-

ences corresponding to a change of ∆Vctrl = 50 mV in the control voltage. This is

0 1/2 1

1

1.4

1.8

Normalized time τ
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xctrl

                          

Figure 2.8: The PSS solution and the predicted PSS differences due to a difference
of ∆Vctrl = 50 mV in the control voltage. The arrows depict how the individual
PSS waveform samples are affected by the change in the control voltage.

another way of illustrating the PSS waveforms and their sensitivities in Figure 2.7.

Again, it is seen that while the control voltage changes around V ∗
ctrl, the output

waveforms swing nearly between xctrl and Vdd.

Often it is more convenient to represent oscillator characteristics in the fre-

quency domain. Figure 2.9 shows the magnitude spectra |X(f)| of PSS waveforms.
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The sensitivities of the individual magnitude spectrum components d|X(f)|/dγp

shown in Figure 2.9 are computed as

d|X|
dγp

=
Re(X) · Re(X ′) + Im(X) · Im(X ′)

|X|

where X ′ is the spectrum of dx/dγp.
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Figure 2.9: Magnitude spectra of the PSS waveforms in Figure 2.8 and their sen-
sitivities with respect to the control voltage.

Let us take a closer look at Figure 2.9. The frequency-domain sensitivities

predict that given ∆Vctrl, the DC components of the output waveforms change

nearly by half of ∆Vctrl and stay in the middle of the ideal swing interval. The

sensitivities of the magnitude components at the fundamental frequency frequency

are less than 0.5 V/V. This means that the output peak-to-peak swing is going

to be less than the maximum possible as Vctrl increases. This is an expected
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result, as for higher control voltages the circuit oscillates at higher frequencies,

and the output swing is limited by the rate of charging and discharging the output

capacitances.

Next, consider the power consumption of the oscillator

Pc = − 1

T

∫ T

0

VddxVdd
(t)dt = −Vdd · DC(xVdd

) = 6.3192 mW

where xVdd
is the current flowing out of the oscillator into the power supply voltage

source Vdd and DC(·) denotes the DC or average value. The PSS sensitivity analysis

provides data for computing the sensitivity of the power consumption to the control

voltage

dPc

dVctrl

= −Vdd · DC

(
dxVdd

dVctrl

)

= 32.185
mW

V

In general, the voltage xdd − xss across a power supply voltage source V may

depend on a parameter, i.e., V = V (γp). In this case, a general expression for the

power consumption sensitivity should be used

dPc

dγp

= −DC

([
dxdd

dγp

− dxss

dγp

]

xV +
[

xdd − xss

]dxV

dγp

)

The power consumption sensitivity combined with the VCO gain results in the

rate at which the power consumption changes with respect to a small change in

the oscillation frequency

dPc

df0

=
dPc

dVctrl

· 1

KV CO

= 6.1543
mW

GHz
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Next, consider the PPV v1Vctrl
in Figure 2.10 corresponding to the equation

for the control source xdd − xctrl − Vctrl = 0. This PPV describes how much of a

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
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v1Vctrl
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ctrl) ∆Vctrl
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1
]

 

 

                                   

Figure 2.10: The PPV for the Vctrl equation and the predicted change in the PPV
due to a change ∆Vctrl = 25 mV in the control voltage. The arrows depict how
the individual PPV waveform samples are affected by this change in the control
voltage.

perturbation in the voltage at the control node projects into the oscillator phase

deviation. The DC component of the PPV

DC(v1Vctrl
) = −4.1240 V−1

allows us to compute the VCO gain based on (2.6), and (2.7)

KV CO = −f0 · DC(v1Vctrl
) = 5.2186

GHz

V

The PPV sensitivity analysis with γp ≡ Vctrl provides sensitivities of the PPV

waveforms with respect to the control voltage. The PPV difference in Figure 2.10

shows how the PPV v1Vctrl
would change, given a change of ∆Vctrl = 25 mV in

the control voltage. It is seen from Figure 2.10 that an increase in the control
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voltage decreases the magnitude of the DC component of the PPV, and therefore,

the oscillator phase sensitivity to a DC voltage perturbation at the control node

is decreased. The sensitivity of the DC component of the PPV is

d DC(v1Vctrl
)

dVctrl

= DC

(
dv1Vctrl

dVctrl

)

= 12.202
V−1

V

This carries information about the curvature of the VCO transfer curve f0(Vctrl)

around V ∗
ctrl

d2f0

dV 2
ctrl

=
dKV CO

dVctrl

= −d
(
f0 · DC(v1Vctrl

)
)

dVctrl

= 6.0801
GHz

V2

Figure 2.11 shows that the slope and curvature descriptions, KV CO and dKV CO

dVctrl
,

allow us to generate an accurate quadratic model of the VCO transfer curve that

provides a good approximation to f0(Vctrl) around V ∗
ctrl for a wide range of frequen-

cies around f ∗
0 .

The above analysis demonstrates that the PPV sensitivity analysis can be used

to refine existing PPV-based oscillator macromodels [19], and extend their appli-

cation to a wider range of control voltages around V ∗
ctrl.

2.4.2 Sensitivity to Widths of Input Devices of Delay Cells

The geometry of individual MOSFET devices can change due to local process

variations and result in mismatches in the differential structure of the oscillator,

as well as in mismatches between delay cells. The effect of these mismatches on
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Figure 2.11: (a) VCO transfer curve f0(Vctrl), its linear, and quadratic approxima-
tions. (b) Errors of linear, and quadratic approximations εlin, and εquad.

oscillator signals can be predicted by an oscillator sensitivity analysis.

The PSS sensitivity analysis with respect to γp ≡ Wip1 can be used to predict

differences in PSS waveforms that correspond to a variation of ∆Wip1 = 10 µm in

the width of Mip1. These differences, as well as the PSS waveforms of output and

common source voltages of all delay cells are shown in Figure 2.12. The sensitivity

analysis shows that the mismatch between the input devices of a delay cell results

in a change of the output duty cycle. It also shows an increase in the source voltage

of Mip1 when the device is turned on.
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Figure 2.12: The PSS solution and the predicted PSS difference due to a difference
of ∆Wip1 = 10 µm in the width of Mip1. The arrows depict how the individual
PSS waveform samples are affected by the change in the width of Mip1.

Next, consider the case with the parameter being the widths γp ≡ Wip1 = Wip2

of both input devices of the first delay cell. The PSS waveforms and the differences

corresponding to a variation of ∆Wip1 = ∆Win1 = 10 µm are shown in Figure 2.13.

The PSS sensitivity analysis shows that if the input devices of the first delay cell

are different than the input devices of other cells, the common source voltage xcs1

of the first delay cell is increased, and there is nearly no change in the output

waveforms.
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Figure 2.13: The PSS solution and the predicted PSS difference due to a difference
of ∆γp = 10 µm in the widths of Mip1 and Min1. The arrows depict how the
individual PSS waveform samples are affected by the change in the widths of Mip1

and Min1.

2.4.3 Sensitivity to Widths of Control Devices

One possible objective in optimizing an oscillator, is to achieve the best possible

power supply noise rejection. The PPV v1Vdd
corresponding to the Vdd equation is

a measure of how much noise from the power supply is projected into the phase

deviation. Therefore, a design with the smallest PPV magnitude has the best

power supply noise rejection. PPV sensitivities with respect to various design

parameters provide the direction of the steepest descent and lead to a design with

a higher power supply noise rejection.

It is known that ring oscillators with the Maneatis delay cell reject the dynamic
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component of the power supply noise best when the load is symmetric, i.e., when

the load devices Mc and Md are equal. Next it will be shown that given a non-

optimal oscillator design with non-symmetric loads, the PPV sensitivity analysis is

able to guide a designer or an optimization loop in the direction of a better design.

Let the parameter γp be the widths of all control devices Mc, including Mcp0 in

the half-cell replica in Figure 2.6

γp ≡ Wcp0 = Wcp1 = . . . = Wcp4 = Wcn1 = . . . = Wcn4

These are the load devices with gate terminals connected to the control node.

Figure 2.14(a) shows the PPV for the power supply voltage given symmetric loads

with γ∗
p = 30 µm. As an illustration, consider a design with non-symmetric loads.

Let the sizes of the control devices γ∗
p = 45 µm be 50% larger than the sizes of

the diode-connected devices. The PPV for this case is presented in Figure 2.14(b).

This PPV is larger than the PPV for the optimal design. The PPV sensitvity to

γp shows that the larger widths should be decreased in order to obtain a design

with a PPV of smaller magnitude. Figure 2.14(b) shows the predicted difference

in the PPV corresponding to a change of −5 µm in the sizes of the larger load

devices. Similarly, Figure 2.14(c) illustrates that the PPV sensitivity analysis

correctly predicts that the sizes of the control devices should be increased when

they are 50% smaller (15 µm) than the optimal value (30 µm).
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Figure 2.14: PPV for the Vdd equation for (a) optimal, (b) large, and (c) small
values of the widths of the control devices, γ∗

p , and the predicted PPV differences
for the non-optimum cases. The arrows depict how the individual PPV waveform
samples are affected by a change in the widths of the load devices Mc.



56

Chapter 3 – Analysis of Circuits with Design Equality Constraints

In a typical design flow, a designer determines the topology and the values of circuit

parameters that result in a desired circuit performance. However, conventional

analyses available in circuit simulators solve the inverse problem. For a given

circuit topology and parameters, these analyses determine the performance of a

circuit without accounting for the design specifications. The conventional analyses

have to be used in an iterative manner to improve a design in order to achieve the

desired specifications.

This chapter focuses on a new design-oriented approach to circuit analysis.

The capability of conventional analyses is extended to finding the values of cir-

cuit parameters such that the performance of a circuit meets a set of desired

objectives. The new analyses handle specifications given by design equality con-

straints (DECs). The design objectives are met by performing a single analysis

with constraints and circuit parameters being included in the analysis as additional

equations and unknowns.

The design-oriented analysis is an elegant and efficient approach for solving

problems with equality constraints, whereby nominal design specifications, or in-

termediate design goals can be met. The new analysis also has applications in

accurately predicting the impact of parameter variations. The largest accept-

able parameter variations for which the circuit performance remains within some
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boundaries, specified by equality constraints, can be determined.

In prior work [23], the DC operating point of an amplifier is obtained together

with optimal device sizing by solving the circuit Kirchhoff laws and the design

constraints as one system of equations. However, the design constraints for opamp

performance are topology-specific approximations, and must be provided by an

experienced designer. In [20], [21], a single oscillator parameter is tuned to obtain

a desired oscillation frequency. The application of the periodic steady-state (PSS)

analysis in [21] is limited to analyzing oscillators with a single constraint, i.e., a

specification for the oscillation frequency.

A generalized formulation is presented in this chapter. It is capable of work-

ing with various design specifications and is independent of the circuit topology.

The new analysis can simultaneously adjust multiple circuit parameters to satisfy

several design specifications. Furthermore, the new design-oriented approach to

circuit analysis with DECs is applicable to a range of basic analyses, such as PSS,

DC and transient.

The design problem is defined as a set of nonlinear equality constraints in

Section 3.1. A traditional search-based technique for solving the design problem is

reviewed. The general theoretical formulation for the new design-oriented analysis

is presented in Section 4.2. As an example, the PSS analysis augmented with

design equality constraints (PSS-DEC) is presented. Time-domain finite-difference

and shooting methods, as well as the frequency-domain harmonic balance method

for the PSS-DEC analysis are described in detail in Section 3.3. In Section 3.4,

the PSS-DEC analysis is used to demonstrate the efficiency of the new approach
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through examples. Simulation results for several circuits, including a voltage-

controlled ring oscillator (VCO) and a two-stage operational amplifier, are given.

The comparison of the new design-oriented analysis and the conventional search-

based technique in terms of speed and convergence properties is summarized in

Section 3.5. The new analysis approach is several times faster than conventional

search-based techniques.

3.1 Design Problem and Search-Based Method

In this section, the design problem is defined as a set of nonlinear equality con-

straints. It is shown that this formulation is suitable for applications in nominal

circuit design, and for analysis of marginally acceptable circuit operation. It is

also shown that a conventional circuit analysis is incapable of solving this design

problem. A traditional search-based technique for solving the design problem is

reviewed.

3.1.1 Design Problem

For a given circuit topology, the values of circuit parameters are determined to

meet the nominal design specifications, or to achieve intermediate design goals.
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These design specifications are often given as equalities, such as

duty cycle = 50 %

unity gain frequency = 40 MHz

oscillation frequency = 2.4 GHz

MOSFET drain-source voltage = 0.4 V

In the presence of process variations, different loading characteristics, and vari-

ous input signals, the design performance deviates from the nominal. It is useful to

find the range of parameter variations, e.g., acceptable ranges of capacitive loads

or input signals, such that the performance remains within acceptable margins.

The marginal circuit operation can be specified as equalities as well, e.g.,

duty cycle = 50 ± 2 %

phase margin = 60 ± 5◦

To determine the values of design or environmental parameters, such that the

circuit has a desired nominal or marginal performance, we can formulate the con-

straint equations as









g1

(
XC , [γ1, . . . , γE]T

)

...

gE

(
XC , [γ1, . . . , γE]T

)









=









0

...

0









(3.1)
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where g1, . . . , gE represent the individual specifications in terms of the circuit re-

sponse XC , and the tuning parameters γ1, . . . , γE. The circuit response XC can

be the DC operating point, the transient response, periodic steady-state wave-

form, its period, etc. The tuning parameters can be design parameters, such as

MOSFET geometry parameters WM , LM , values of passive components R, L,

C, process parameters, or environmental parameters, such as temperature, power

supply voltage, excitation parameters, load capacitance, etc. The specifications ge

may be nonlinear.

An example of a DEC is a specification for the total harmonic distortion (THD).

For a DEC that requires a THD of 1%

g1

(
x(t), ΓE

)
= THD

(
x(t)

)
− 1% (3.2)

Note that the THD is evaluated based on the harmonic content of the output signal

in x(t). Analytical expressions for GE in terms of the circuit parameters ΓE are

not required.

Let ΓE = [γ1, . . . , γE]T and GE = [g1, . . . , gE]T , then the design problem can be

written using vector notation as

GE(XC , ΓE) = 0 (3.3)

In this work, we focus on the design problem in (3.3), with an equal number of

parameters and constraints (E) that has an isolated solution.
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3.1.2 Conventional Circuit Analyses

Conventional circuit analyses are not capable of solving the design problem in (3.3).

Only the circuit performance XC is determined without incorporating the design

specifications.

ΓE → Analysis → XC(ΓE) (3.4)

For example, a PSS analysis may find the PSS solution x(t) with an output duty

cycle of 40%, while the design specification is 50%.

A conventional circuit analysis finds the circuit response XC based on the anal-

ysis equations

FC(XC , ΓE) = 0 (3.5)

Given the values of circuit parameters in ΓE, these equations are solved nu-

merically for the circuit response XC . With a Newton-based method, an initial

guess X
(0)
C is iteratively refined X

(1)
C , . . . , X

(N
C

)

C until convergence is achieved. At

iteration k + 1, the equations that are solved are

∂FC

∂XC

∣
∣
∣
∣
X

(k)
C

·
[

X
(k+1)
C − X

(k)
C

]

= −FC

(

X
(k)
C , ΓE

)

(3.6)

3.1.3 Conventional Search-Based Technique

In a traditional design approach, the solution to the design problem in (3.3) is

obtained by searching for a suitable set of parameters ΓE. Given an initial de-

sign Γ
(0)
E , the values of circuit parameters are updated manually by a designer,
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or automatically, in an iterative manner Γ
(1)
E , . . . , Γ

(K)
E . At each search iteration

k = 0, . . . , K a conventional circuit analysis provides the circuit response XC(Γ(k))

necessary to evaluate the DECs GE

Γ
(0)
E → Analysis → XC(Γ

(0)
E )

Γ
(1)
E → Analysis → XC(Γ

(1)
E )

...

Γ
(K)
E → Analysis → XC(Γ

(K)
E )

(3.7)

The search process stops when GE

(

XC(Γ
(K)
E ), Γ

(K)
E

)

= 0, and the desired specifi-

cations are met.

In case of an automated design, the Newton-Raphson method is applied directly

to the DECs in (3.3). The values of the circuit parameters are obtained from

dGE

dΓE

∣
∣
∣
∣
Γ

(k)
E

·
[

Γ
(k+1)
E − Γ

(k)
E

]

= −GE

(

XC(Γ
(k)
E ), Γ

(k)
E

)

(3.8)

where

dGE

dΓE

=
∂GE

∂XC

· dXC

dΓE

+
∂GE

∂ΓE

(3.9)

and the sensitivity of the circuit unknowns dXC/dΓE with respect to the circuit

parameters γ1, . . . , γE is obtained from E sensitivity analyses

∂FC

∂XC

∣
∣
∣
∣
Γ

(k)
E

· dXC

dΓE

∣
∣
∣
∣
Γ

(k)
E

= − ∂FC

∂ΓE

∣
∣
∣
∣
Γ

(k)
E

(3.10)

This system of equation is obtained by differentiation of (3.5) with respect to ΓE
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at the current Newton iteration where ΓE = Γ
(k)
E .

A good initial guess X
(k+1)
C for the next analysis can be predicted using the

sensitivity information dXC/dΓE

X
(k+1)
C = X

(k)
C +

dXC

dΓE

∣
∣
∣
∣
Γ

(k)
E

·
[

Γ
(k+1)
E − Γ

(k)
E

]

(3.11)

3.2 Design-Oriented Circuit Analysis

In this section, an elegant and efficient solution to the design problem in (3.3) is

proposed. A general formulation of the new design-oriented analysis, that handles

the design specifications, is described first. Then, the design-oriented PSS-DEC

analysis is presented as an example.

3.2.1 General Formulation

A design-oriented circuit analysis is formulated by combining the conventional

analysis equations in (3.5) and DECs in (3.3) together, while having XC , and ΓE

as the unknowns of the new system of equations






FC (XC , ΓE)

GE(XC , ΓE)




 =






0

0




 (3.12)

Once the design goals are specified as equality constraints, and a suitable set of

circuit parameters is defined, a single design-oriented analysis adjusts the values
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of the parameters ΓE, such that the design goals are met, while simultaneously

finding the corresponding circuit response XC that satisfies the specifications

Analysis

g1 = 0

...

gE = 0

→

XC

γ1

...

γE

(3.13)

A Newton method is applied to (3.12). An initial guess [X
(0)
C , Γ

(0)
E ]T is iteratively

refined until convergence, k = 1, . . . , N
DEC

according to

J ·






X
(k+1)
C

−X
(k)
C

Γ
(k+1)
E

−Γ
(k)
E




 = −






FC

“

X
(k)
C

,Γ
(k)
E

”

GE

“

X
(k)
C

,Γ
(k)
E

”




 (3.14)

with the Jacobian matrix

J =






∂FC

∂XC

∂FC

∂ΓE

∂GE

∂XC

∂GE

∂ΓE






∣
∣
∣
∣
∣
∣
∣
X

(k)
C

, Γ
(k)
E

(3.15)

The upper-left square block of (3.15) is the same as the Jacobian of the conven-

tional analysis in (3.6). The upper-right columns of J are the same as the right-

hand side for the sensitivity analysis in (3.10). These sensitivities are obtained

from the device models. The bottom rows of J are obtained by differentiating

the expressions for the equality constraints GE with respect to the conventional

analysis variables XC , and the circuit parameters ΓE. These derivatives are the
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same as the components for the Jacobian of the search-based method in (3.9).

The solution of (3.12) [XC , ΓE]T simultaneously satisfies the equations of the

conventional analysis in (3.5), and the design problem in (3.3).

Newton method has local convergence, and therefore, the initial guess must be

close enough to the solution. The values of the tuning parameters ΓE, and the

response XC(ΓE) of the original circuit is a reasonable initial guess for the new

design-oriented analysis with DECs.

There may be no solution to the design problem with DECs in (3.3), which

means that the design specifications can not be satisfied by tuning the values of

the selected parameters. Selection of a suitable set of parameters requires a good

understanding of the design, and is delegated to a designer.

Numerical methods that are employed in the conventional analysis for solv-

ing (3.5), are also applicable to the augmented system of equations in (3.12). As

shown in Section 3.5 a single analysis augmented with DECs solves the design

problem faster than a conventional search-based technique.

It is important to note the following features of the new analysis. First, the

design specifications must be expressed as equalities that can be nonlinear. Second,

the specifications must be expressed in terms of the solution of the conventional

analysis XC , and parameters ΓE. Performance specifications that are not directly

available from a conventional analysis, can not be handled by the design-oriented

analysis. For example, specifications for noise performance can not be handled by

the PSS-DEC analysis, as the noise performance is not directly available from a

conventional PSS analysis.
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The design-oriented circuit analysis approach is applicable to conventional anal-

yses, such as DC, transient, and PSS. In this chapter we focus on the PSS analysis.

3.2.2 Design-Oriented Periodic Steady-State Analysis

As an example, we present a detailed description of the design-oriented periodic

steady-state analysis augmented with design equality constraints. We call it the

PSS-DEC analysis.

Any nonlinear circuit can be modeled as a set of m differential-algebraic equa-

tions (DAEs) given by

d

dt
q
(
x(t), ΓE

)
+ f
(
x(t), ΓE

)
+ b(t, ΓE) = 0 (3.16)

where

t ∈ R : time, independent variable,

x : R → R
m : circuit variables,

q : R
m × R

E → R
m : contribution of reactive components,

f : R
m × R

E → R
m : contribution of resistive components,

b : R × R
E → R

m : excitations and independent sources.

The T -periodic solution x(t) of the DAEs in (3.16) is called the PSS solution
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if it satisfies x(t) = x(t + T ). This periodicity constraint can be expressed as

x(0) = x(T ) (3.17)

For oscillators, the excitation b does not vary with time, and the period T

is an unknown. If x(t) is a PSS solution, then x(t + ∆t), ∀∆t is also a valid

PSS solution, whereby there are several possible phase-shifted solutions. A unique

isolated solution can be selected by imposing a phase condition

ϕ
(
x(0)

)
= 0, ϕ : R

m → R (3.18)

One possible phase condition is to let a component of x(0) be a fixed value.

The PSS x(t) and the oscillation period T of an oscillator are uniquely defined

by (3.16), (3.17), and (3.18)







d
dt

q
(
x(t), ΓE

)
+ f
(
x(t), ΓE

)
+ b(ΓE) = 0

x(0) = x(T )

ϕ
(
x(0)

)
= 0

(3.19)

The description in (3.19) is a periodic boundary value problem (BVP) in x(t) and

T , a special case of a two-point BVP [15].

A design-oriented PSS-DEC analysis is based on the PSS formulation in (3.19)
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augmented with the DECs












d
dt

q
(
x(t), ΓE

)
+ f
(
x(t), ΓE

)
+ b(ΓE)

x(0) − x(T )

ϕ
(
x(0)

)

GE (x(t), T, ΓE)












=












0

0

0

0












(3.20)

Note that ΓE is now included in the list of unknowns.

In forced circuits, a Tin-periodic excitation b(t, ΓE) uniquely defines the initial

phase and the steady-state period. As shown in [22], the PSS-DEC analysis for

forced circuits is based on a simplified version of (3.20) with the initial phase

condition equation removed and T set to the known period Tin. Here we focus on

a PSS-DEC analysis for autonomous circuits.

3.3 Numerical Methods for the PSS-DEC Analysis

The numerical methods applicable to the DAEs in (3.19) are also applicable to the

PSS-DEC formulation in (3.20). In this section, finite difference, shooting and the

harmonic balance methods for computing the periodic steady-state in the presence

of design equality constraints are presented.
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3.3.1 Discrete-Time Circuit Description

For numerical time-domain PSS analysis, time is discretized and the time-derivative

operator is replaced by a finite-difference approximation. As an example, using uni-

formly spaced timepoints ti = ih, i ∈ N and applying the backward Euler method,

a simple discrete counterpart of (3.20) for t ∈ (0, T ] is



















q̇1 + f1 + b

...

q̇n + fn + b

x0 − xn

ϕ(x0)

GE (x0, . . . , xn, T, ΓE)



















=



















0

...

0

0

0

0



















(3.21)

where

q̇i = 1
h
(qi − qi−1), xi ≡ x(ti),

qi = q(xi, ΓE), ti = ih,

fi = f(xi, ΓE), h = h(T ) = T/n,

bi = b(ti, ΓE).

The discrete-time description in (3.21) is a square system of nm + m + 1 + E non-

linear algebraic equations. The equations are written in terms of (n + 1)m PSS

waveform samples x0, . . . , xn, the oscillation period T and E circuit parameters
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γ1, . . . , γE.

3.3.2 Finite Difference Method for the PSS-DEC Analysis

Jfd =

























1
h
C1 + G1 − 1

h
Cn − 1

h

(
q1

T
− qn

T

)

− 1
h
C1

1
h
C2 + G2 − 1

T
q̇2

. . . . . .
...

− 1
h
Cn−1

1
h
Cn + Gn − 1

T
q̇n

dϕ
dx

∣
∣
xn

∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xn

∂g1

∂T

...
...

...
...

∂gE

∂x1

∂gE

∂x2
· · · ∂gE

∂xn

∂gE

∂T

1
h

(
∂q1

∂ΓE
− ∂qn

∂ΓE

)
+ ∂f1

∂ΓE
+ ∂b

∂ΓE

1
h

(
∂q2

∂ΓE
− ∂q1

∂ΓE

)
+ ∂f2

∂ΓE
+ ∂b

∂ΓE

...

1
h

(
∂qn

∂ΓE
− ∂qn−1

∂ΓE

)
+ ∂fn

∂ΓE
+ ∂bn

∂ΓE

)
+

∂g1

∂ΓE

...

∂gE

∂ΓE

























(3.22)
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The equations in (3.21) can be written in the following form



















1
h
(q1 − qn ) + f1 + b

1
h
(q2 − q1 ) + f2 + b

...

1
h
(qn − qn−1) + fn + b

ϕ(xn)

GE (x1, . . . , xn, T, ΓE)



















=



















0

0

...

0

0

0



















(3.23)

Note that the periodicity constraint x0 = xn is not explicitly present in the above

system. The periodicity constraint equation was used to eliminate x0 from the list

of unknowns. The remaining nm + 1 + E equations represent a finite-difference

formulation of the PSS-DEC analysis.

The Jacobian matrix of the finite-difference method for the PSS analysis aug-

mented with DECs is given by (3.22),

Jfd : R
m × . . . × R

m

︸ ︷︷ ︸

n

×R × R
E → R

(nm+1+E)×(nm+1+E).

The Jacobian matrix is defined in terms of Ci and Gi, the capacitance and con-

ductance matrices

Ci =
∂qi

∂xi

=
∂q(x, ΓE)

∂x

∣
∣
∣
∣
xi

, Ci : R
m × R

E → R
m×m (3.24)

Gi =
∂fi

∂xi

=
∂f(x, ΓE)

∂x

∣
∣
∣
∣
xi

, Gi : R
m × R

E → R
m×m (3.25)
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3.3.3 Shooting Method for the PSS-DEC Analysis

The last m+1+E equations in (3.21) represent a shooting formulation of the PSS

analysis 







xn(x0, T, ΓE) − x0

ϕ(x0)

GE (x0, T, ΓE)









=






0

0




 (3.26)

where the unknowns are x0, T , and ΓE.

Given ΓE, xn is obtained from a transient analysis for the interval t ∈ [0, T ]

with an initial condition x0 using the first nm equations in (3.21). After the

solution x0 and T are found, the remaining PSS waveform samples xi, i = 1, . . . , n

are obtained from an additional transient analysis.

The Jacobian matrix of the shooting method for the PSS analysis augmented

with DECs is given by (3.27), Jsh : R
m × R × R

E → R
(m+1+E)×(m+1+E),

Jsh =















∂xn

∂x0
− I ∂xn

∂T
∂xn

∂γ1
· · · ∂xn

∂γE

∂ϕ
∂x

∣
∣
x0

dg1

dx0

∂g1

dT
dg1

dγ1
· · · dg1

dγE

...
...

...
. . .

...

dgE

dx0

dgE

dT
dgE

dγ1
· · · dgE

dγE















(3.27)

where I is the identity matrix.

Computation of the Jacobian requires differentiation of the first nm equations
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in (3.21) with respect to x0, T and ΓE

[
1

h
Ci + Gi

]
∂xi

∂x0

=
1

h
Ci−1

∂xi−1

∂x0

(3.28)

[
1

h
Ci + Gi

]
∂xi

∂T
=

1

h
Ci−1

∂xi−1

∂T
+

1

T
q̇i (3.29)

[
1

h
Ci + Gi

]
∂xi

∂ΓE

=
1

h
Ci−1

∂xi−1

∂ΓE

−1

h

(
∂qi

∂ΓE

− ∂qi−1

∂ΓE

)

− ∂fi

∂ΓE

− db

dΓE

(3.30)

The derivatives ∂xn/∂x0, ∂xn/∂T , and ∂xn/∂ΓE are obtained from (3.28), (3.29),

and (3.30) iteratively for i = 1, . . . , n starting from the initial conditions ∂x0/∂x0 = I,

∂x0/∂T = 0, and ∂x0/∂ΓE = 0.

Note that the constraints GE are written in terms of x0. The rest of the PSS

waveform samples x1, . . . , xn are expressed in terms of x0 as, e.g., xn(x0, T, ΓE), and

they can still be used in specifying the DECs, such as the amplitude of oscillation.

Therefore, the total sensitivities of the DECs with respect to x0, T , and ΓE in (3.27)

are computed with the use of the chain rule and the sensitivities dxi/dx0, dxi/dT ,

and dxi/dΓE from (3.28), (3.29), and (3.30), respectively

dGE

dx0

=
∂GE

∂x0

+
n∑

i=1

∂GE

∂xi

· dxi

dx0

(3.31)
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dGE

dT
=

∂GE

∂T
+

n∑

i=1

∂GE

∂xi

· dxi

dT
(3.32)

dGE

dΓE

=
∂GE

∂ΓE

+
n∑

i=1

∂GE

∂xi

· dxi

dΓE

(3.33)

3.3.4 Harmonic Balance Method for the PSS-DEC Analysis

Jhb =























jΩΓ









C0

. . .

Cn−1









Γ−1 + Γ









G0

. . .

Gn−1









Γ−1 j
Ω

f0

Γ









q0

...

qn−1









· · · ∂ϕhb

∂X−2

∂ϕhb

∂X−1

∂ϕhb

∂X0

∂ϕhb

∂X1

∂ϕhb

∂X2
· · · 0

· · · ∂g1

∂X−2

∂g1

∂X−1

∂g1

∂X0

∂g1

∂X1

∂g1

∂X2
· · · ∂g1

∂f0

...
...

...
...

...
...

· · · ∂gE

∂X−2

∂gE

∂X−1

∂gE

∂X0

∂gE

∂X1

∂gE

∂X2
· · · ∂gE

∂f0

jΩΓ









∂q0

∂ΓE

...

∂qn−1

∂ΓE









+ Γ









∂f0

∂ΓE

...

∂fn−1

∂ΓE









+









0

∂b
∂ΓE

0









0

∂g1

∂ΓE

...

∂gE

∂ΓE























(3.34)

The n-periodic discrete-time waveforms xi can be uniquely represented as an n-
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periodic sequence of impulses in the frequency domain at multiples of the oscillation

frequency f0 = 1/T . Given the DECs, the harmonic balance method for the

PSS-DEC analysis finds the oscillation frequency f0, parameters ΓE, and n Fourier

coefficients Xk, Xk ∈ C
m, k = . . . ,−1, 0, +1, . . . of the PSS solution waveform















...

X−1

X0
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x0
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



(3.35)

where Γ : R
m × . . . × R

m

︸ ︷︷ ︸

n

→ C
m × . . . × C

m

︸ ︷︷ ︸

n

represents the discrete-time Fourier

transform operator, defined by

Xk =
1

n

n−1∑

i=0

xie
−j2πki/n (3.36)

After the Fourier coefficients Xk are found, the inverse Fourier transform Γ−1 is

used to get the time-domain PSS solution

xi =
n−1∑

k=0

Xke
j2πki/n (3.37)

where n-periodicity of Xk was used.

The harmonic balance method for the PSS-DEC analysis can be formulated as
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a system of nm + 1 + E nonlinear equations
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ϕhb(. . . , X−1, X0, X1, . . .)
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



(3.38)

where the unknowns are Xk, k = . . . ,−1, 0, +1, . . . , f0, and ΓE. The first nm

equations in (3.38) correspond to the first nm equations in (3.21). Notice that

the equations in (3.38) are algebraic. The time-domain differentiation in (3.21) is

replaced by a frequency domain multiplication with jΩ,

jΩ : C
m × . . . × C

m

︸ ︷︷ ︸

n

→ C
m × . . . × C

m

︸ ︷︷ ︸

n

such that 







q̇0

...

q̇n−1
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(3.39)
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with

Ω = 2πf0


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



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
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

. . .

−I

0

I

. . .
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
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









(3.40)

where I is the identity matrix, I ∈ Rm×m, and 0 ∈ Rm×m.

The periodicity constraint of (3.21) xn = x0 is not explicitly present in (3.38).

It is enforced by the periodic nature of the complex exponential basis functions of

the inverse Fourier transform in (3.37).

Similar to the phase condition equation in (3.21), the equation ϕhb = 0 in (3.38),

ϕhb : C
m × . . . × C

m

︸ ︷︷ ︸

n

→ R

is used to select a unique isolated solution among an infinite set of valid phase-

shifted solutions. A commonly used phase condition is to let the imaginary part

of the first Fourier coefficient of a component of the PSS solution be zero.

The Jacobian matrix of the harmonic balance method for the PSS analysis

augmented with DECs

Jhb : C
m × . . . × C

m

︸ ︷︷ ︸

n

×R → C
(nm+1+E)×(nm+1+E)

requires the sensitivities of the Fourier coefficients of qi and fi with respect to



78

Xk. These sensitivities can be calculated analytically for linear circuit components

and for devices which are defined in the frequency domain, such as delays and

transmission lines. The sensitivities of the nonlinear resistive device contributions

can be computed as

∂Γ
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
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∂
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



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G0

. . .
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







Γ−1 (3.41)

and require time domain evaluations of the conductance matrices Gi. The sensitiv-

ities due to the nonlinear reactive devices require the capacitance matrices Ci and

can be computed in a manner similar to (3.41). The harmonic balance Jacobian

matrix Jhb is given by (3.34).

3.4 Examples and Results

We have implemented the PSS-DEC analysis in a Matlab-based circuit simulator.

In this section, a differential four-stage ring VCO, a two-stage operational ampli-

fier [25], and a feedback circuit are used to demonstrate the application of the new
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design-oriented analysis.

The design-oriented PSS-DEC is used to adjust the device sizes in a ring VCO

for a desired duty cycle, output waveform symmetry, oscillation frequency, and

other specifications. The PSS-DEC is also applied to a nominal VCO design to

compute the effect of mismatches on the duty cycle. It is then shown how the

PSS-DEC analysis can handle commonly used op amp specifications. Constraints

for harmonic distortion, unity gain bandwidth, phase margin, and power consump-

tion are considered.

3.4.1 Design of a Ring Oscillator

The oscillator under consideration is a differential four-stage ring oscillator in Fig-

ure 3.1 that consists of four identical Lee-Kim delay cells [27]. The schematic of

1onx

1opx

2onx

2opx

3onx

3opx

4onx

4opx

Figure 3.1: Block-diagram of the differential four-stage ring oscillator.

the first delay cell is shown in Figure 3.2. A feed forward duty cycle corrector in

Figure 3.3 utilizes the 180◦ shifted output signals xop1 and xon1 to produce a 50%

duty cycle output xout [27].

In the original design, the widths of all p-channel and n-channel devices are

60 µm and 20 µm, respectively. An analysis is performed at the upper limit of the
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Mip1 Min1

Mdp1 Mdn1 Mcn1Mcp1

xctrl xctrl

xon1 xop1

xop4 xon4

xdd 1.8 V

Figure 3.2: Schematic of the Lee-Kim delay cell [27].

M3 M4

M1 M2 Mp1

Mn1

Mp2

Mn2

xop1

xon1

xout

xdd

Figure 3.3: Schematic of the feed forward duty cycle corrector.

tuning range (the oscillation frequency is 1 GHz), where the performance is the

most critical. The steady-state performance of the original design is obtained from
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a conventional PSS analysis

Vc = 1.47 V

WpMOS =60.00 µm

WnMOS =20.00 µm

→ PSS →

x(t)

T = 1.00 ns

Pc = 25.38 mW

Dout = 49.23%

Sup/Sdn =−3.97
∣
∣Xop11

∣
∣ = 0.63 V

LX = 1.11 V

where Pc is the power consumption, Dout is the duty cycle, LX is the intersect level

of the output voltages of the first delay cell xop1 and xon1, as shown in Figure 3.4(a).

Sup and Sdn are the slopes of the transition edges of the output of the duty cycle

corrector xout, as shown in Figure 3.4(b).

It is seen that for a control voltage of 1.47 V, the oscillation frequency is 1 GHz,

and the power consumption Pc, for both the oscillator and the duty cycle corrector,

is 25.38 mW. Note that the rising edge of xout is almost 4 times steeper than its

falling edge, resulting in asymmetric rise/fall times and higher phase noise [26].

Next it is shown that the PSS-DEC analysis can efficiently adjust the sizes of

all transistors to meet the following design specifications. The output waveform

xout should have a 50% duty cycle, as well as a symmetric rise and fall slopes Sup

and Sdn. The power consumption Pc should be reduced from 25.38 to 8 mW. The

oscillation period T should be kept at 1 ns while the control voltage Vc is reduced

from 1.47 to 1.4 V. The amplitude of the fundamental component of the delay cell

outputs should be increased from 0.63 to 0.7 V. Note that the delay cell topology
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Figure 3.4: (a) Output voltages of the first delay cell, and (b) the output voltage
of the duty cycle corrector for the original design. The output waveform xout has
asymmetric rise/fall times that result in higher phase noise [26].

provides higher swing for lower frequencies. Finally, the voltage intersect level LX

should be shifted from 1.11 V to the mid-supply at 0.9 V.

These specifications are achieved by adjusting the device sizes. To preserve the

differential structure of the cell, as well as to keep the cells identical, the sizes of

certain devices must be kept equal, e.g., Wip1 = . . . = Wip4 = Win1 = . . . = Win4.

The parameters for the PSS-DEC analysis are the width of eight input devices

Wi, eight controlling devices Wc, and eight cross-coupled devices Wd in the delay

cells, as well as the widths W2 = W4, Wp1 = Wp2, and Wp1 = Wp2 = W1 = W3 in

the duty cycle correction circuit. All devices have the same length of 0.5 µm.

These six tuning parameters are adjusted by the PSS-DEC analysis to satisfy
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six design constraints

Vc = 1.40 V →

PSS

g1 = 0

...

g6 = 0

→

x(t)

T = 1.00 ns

Pc = 8.00 mW

Sup/Sdn =−1.00

LX = 0.90 V
∣
∣Xop11

∣
∣ = 0.70 V

Dout = 50.00%

γ1: Wi = 8.19 µm

γ2: Wd = 12.06 µm

γ3: Wc = 20.08 µm

γ4: W2 = W4 = 30.92 µm

γ5: Wp1 = Wp2 = 20.83 µm

γ6:Wn1,n2 = W1,3 = 9.12 µm

g1(T ) = T − 1 ns g4(x) = Sup + Sdn

g2(x) = Pc − 8 mW g5(x) =
∣
∣Xop11

∣
∣ − 0.7 V

g3(x) = Dout − 50% g6(x, T ) = LX − 0.9 V

The steady-state waveforms of the new design obtained from the PSS-DEC

analysis are shown in Figure 3.5. It is seen that the PSS solution has the specified

properties.
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Figure 3.5: (a) Output voltages of the first delay cell, and (b) the output voltage
of the duty cycle corrector for the original design, and the design obtained from
the PSS-DEC analysis. The PSS-DEC analysis improves the symmetry and the
duty-cycle of the output waveform xout by adjusting the device sizes.

3.4.2 Mismatch Analysis for Ring Oscillator

In the ring oscillator of Section 3.4.1, parameter variations cause mismatch in

device sizes that result in deviation of the circuit performance from the nominal. In

case parameter variations cause the oscillation frequency to change, the feedback in

a phase-locked loop (PLL) can adjust the control voltage and bring the frequency to

the desired value. However, the feed forward type duty cycle corrector in Figure 3.3

can not compensate for device mismatches, and therefore, the duty cycle may
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change. It is important to verify the performance of the VCO in the presence of

mismatches.

A traditional Monte-Carlo approach generates random parameter variations

and provides their effect on circuit performance. This is done by performing a

conventional PSS analysis for each combination of parameter variations. However,

the Monte-Carlo analysis does not identify which devices are the most critical.

A sensitivity analysis for oscillators [5] can predict how individual devices af-

fect the duty cycle. However, this prediction is only suitable for small parameter

variations. For large parameter variations, the PSS-DEC analysis can be used.

PSS-DEC analysis is a large-signal analysis and therefore, it is accurate for

arbitrarily large parameter variations. It can be used to provide acceptable ranges

for individual parameter variations, such that the circuit performance remains

within the specified boundaries. For example, the PSS-DEC analysis finds the

smallest acceptable value for W2, such that the duty cycle is 48% as

W4 = 30.92 µm →
PSS

g1 = 0

g2 = 0

→
x(t)

γ1:W2 = 21.71 µm

γ2: Vc = 1.39995 V

g1(T, x) = Dout − 48%

g2(T ) = T − 1 ns

The PSS-DEC analysis is setup to adjust the control voltage Vc to compensate for

possible frequency deviations caused by a change in W2, as in the PLL operation.

In a similar manner, the upper boundary for W2 is found, such that the duty
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cycle is less than 52%. A pair of the PSS-DEC analyses indicates that the duty

cycle Dout ∈ [48, 52]% if W2 ∈ [21.71, 38.51] µm. Note that the sensitivity analysis

for oscillators results in an optimistic lower bound of 18.52 µm indicating the need

for a large-signal variational analysis.

The output waveforms xout with 48% and 52% duty cycles due to individual

variations in W2, W3, Wcn1, and Win1 are shown in Figures 3.6(a), (b), (c), and (d),

respectively. The PSS-DEC analysis indicates that variations in Win1 are the most
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Figure 3.6: Output voltages xout with 48 and 52 % duty cycles, due to a variation
in (a) W2, (b) W3, (c) Wcn1, and (d) Win1. Each range of parameter variations is
obtained from a pair of PSS-DEC analyses.

critical, as the acceptable range for Win1 is the smallest for the four parameters
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under consideration.

3.4.3 Harmonic Distortion

Consider a two-stage operational amplifier in Figure 3.7 connected in a feedback

arrangement as shown in Figure 3.8.

M1 M2

M3 M4 M6

M7M5M8

I1

Rz Cc Cl

xout
xipxin

xdd +5 V

5 Vxss

xss

Figure 3.7: Two-stage operational amplifier.

+
−

R

R

xout
xinput

Figure 3.8: Operational amplifier in a unity gain negative feedback.

Amplifiers cause unwanted distortion of an input signal due to inherent non-
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linearities. For example, given a sinusoidal input xinput(t) = Ainsin(2πfint), the

output voltage contains complex harmonics Xout2 , Xout3 , . . .. Harmonic distortion

is a measure of the signal distortion, and depends on both the input amplitude Ain

and the frequency fin [24]. The N th harmonic distortion HDN is defined as the

ratio of the magnitude of the N th harmonic to the magnitude of the 1st harmonic

(the fundamental) at the output HDN = |XoutN | / |Xout1|.

Given an input frequency and amplitude, harmonic distortion can be found

by a conventional PSS analysis that provides the output waveform xout(t) or its

frequency spectrum. An example is shown below for the op amp in Figure 3.8.

fin =1.00 MHz

Ain =4.00 V
→ PSS →

x(t)

HD2 = 7.39%

Alternatively, given a frequency fin, a designer is often interested in finding the

input amplitude Ain for which the harmonic distortion reaches a certain specified

level, e.g., HD2 = 1%. A single PSS-DEC analysis with one DEC and one parame-

ter, Ain, can solve this problem efficiently. An appropriate amplitude Ain is found

directly as depicted below.

fin =1.00 MHz →
PSS

g1 = 0
→

x(t)

HD2 = 1.00%

γ1: Ain = 3.28 V

g1(x) = |Xout2 | / |Xout1 | − 1%

The PSS-DEC solution x(t) satisfies the DEC equation, |Xout2| / |Xout1 | = 1%,
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which ensures that HD2 is exactly 1%. As expected, at a given frequency, a smaller

input signal exhibits less distortion.

The DEC g1 is written in terms of the output voltage xout(t). The derivatives

∂g1/∂xi must appear in the last row of the finite difference or harmonic balance

Jacobian matrices Jfd and Jhb, respectively. If the shooting method is used, these

derivatives are used in (3.31), (3.32), and (3.33). The derivatives of the excitation

∂bi/∂γ1 must appear in the last column of Jfd andJhb, or in (3.30) in case of the

shooting method.

The PSS-DEC analysis with constraints on harmonic distortion has applications

in analog filter design. The signal-to-noise ratio (SNR) of analog filters is normally

defined for the input level that results in a specified harmonic distortion. This

input level can be found efficiently from the PSS-DEC analysis as illustrated in

the above example.

3.4.4 Unity Gain Frequency and Phase Margin

Small-signal frequency-domain characteristics of an op amp are the gain A(f) =

Xout(f)/Xin(f)and the unity gain frequency fu, |A(fu)| = 1. Another characteris-

tic is the phase margin (PM), a measure of amplifier stability. The phase difference

between the input and output signals ∠Xin(f) − ∠Xout(f) must be less than 180◦

for all f ∈ [0, fu]. Otherwise in a feedback configuration, the system may become
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unstable, and unwanted oscillations occur. The phase margin is defined as

PM = 180◦ −
[
∠Xin(fu) − ∠Xout(fu)

]
(3.42)

The frequency response A(f) is traditionally computed by a fast small-signal

AC sweep, rather than by a large-signal PSS analysis. However, small-signal char-

acteristics can be verified by a conventional large-signal PSS analysis as well, given

a sufficiently small input amplitude, such that the output harmonics are negligible.

The harmonic-balance method for PSS analysis can handle this problem efficiently

by representing the PSS waveforms x(t) by a DC component and one complex har-

monic. Thus a PSS-DEC analysis with DECs for the phase margin and the unity

gain frequency is employed. Such a problem can not be handled by a traditional

small-signal AC analysis.

The op amp in Figure 3.7 is designed with the use of a compensation capacitor

Cc for a typical PM of 60◦, and a unity gain frequency of 40 MHz. The PM and

fu can be verified by a conventional large-signal PSS analysis.

fin = 40.00 MHz

Ain = 1.00 mV

Cc = 2.84 pF

→ PSS →
|A(fin)|= 1.00

fu =40.00 MHz

PM =60.00◦

In practice, due to parameter variations, the value of the on-chip compensation

capacitor Cc is not exactly the same as the nominal value of 2.84 pF. Consequently,

the phase margin and unity gain frequency deviate from the ideal values. Let
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the design specifications allow the PM and fu to vary from their ideal values by

at most ±5◦ and ±10 MHz, respectively. It is useful to know the bounds for

acceptable capacitor variations, and what design specification is violated first as

the Cc variation increases.

This problem can be solved by several PSS-DEC analyses. The Cc value that

results in fu = 30 MHz is found from a PSS-DEC analysis with one DEC and one

parameter.

fin = 30.00 MHz

Ain = 1.00 mV
→

PSS

g1 = 0
→

|A(fin)|= 1.00

fu =30.00 MHz

PM =67.27◦

γ1: Cc = 3.99 pF

g1(x) = |Xout| − |Xin|

The design equality constraint used in this example, |Xout| = |Xin|, ensures that

the output and input magnitudes are equal, and therefore, the gain is unity. The

value of 3.99 pF obtained from the PSS-DEC analysis corresponds to the upper

limit of the compensation capacitor, for the unity gain frequency to stay in the

specified bounds. The PSS-DEC analysis finds the lower limit Cc = 2.12 pF that

corresponds to fu = 50 MHz in a similar fashion. It can be seen from the above

results, as well as from Figure 3.9, that the phase margin specification is violated

first as Cc variation increases.

A tighter region of capacitor variations that simultaneously results in acceptable

fu and PM is found based on two PSS-DEC analyses, one for PM = 55◦ and one
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for PM = 65◦. The upper limit for Cc is found from a PSS-DEC analysis with two

DECs and two parameters.

Ain = 1.00 mV →
PSS

g1 = 0

g2 = 0

→

|A(fin)|= 1.00

fu =33.08 MHz

PM =65.00◦

γ1: Cc = 3.56 pF

γ2: fin =33.08 MHz

g1(x) = |Xout| − |Xin|

g2(x) = ∠Xin − ∠Xout − 115◦

The lower limit for Cc is found from an additional PSS-DEC analysis. Figure 3.9

shows that if Cc ∈ [2.30 pF, 3.56 pF], then PM ∈ [55◦, 65◦], and the unity gain

frequency is within the acceptable range as well.

55 60 65

30

40

50

Phase margin [deg]

f u
[M

H
z] Cc2.12

pF

2.30
pF

2.84
pF

3.56
pF

3.99
pF

acceptable range of Cc found from the PSS-DEC analysis

 

 

Figure 3.9: Values of the compensation capacitor Cc that correspond to the upper
and lower limits of the unity gain frequency, and phase margin, obtained from four
PSS-DEC analyses, and the region of acceptable values of Cc.

Note that in the previous PSS-DEC setup, the second parameter γ2 is the input
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frequency fin, and the steady-state period is not known beforehand. This example

shows the flexibility of the PSS-DEC analysis, and its ability to simulate forced

circuits in a similar manner to oscillators where the period of oscillation is one of

the PSS unknowns.

3.4.5 Power Consumption and Other Design Constraints

Next, consider an op amp at an intermediate stage of a design process. At this

design stage the response is computed by a conventional PSS analysis.

fin = 38.90 MHz

Ain = 1.00 mV

W1 = 75.00 µm

W6 = 17.00 µm

Rz = 591.22 Ω

I1 = 200.00 µA

→ PSS →

|A(fin)|= 1.00

fu =38.90 MHz

PM =52.07◦

Pc =10.11 mW

In this example, the power consumption Pc is computed as

Pc = −
[
Vdd · DC(xVdd

) + Vss · DC(xVss
)
]

(3.43)

where DC(·) denotes the DC or average value, Vdd, Vss are the values of the

power supply voltage sources, and xVdd
, xVss

are the currents through these voltage

sources.

Let the design goal be to achieve a 60◦ phase margin at 40 MHz unity gain
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frequency, as well as to reduce the power consumption by 20% to 8 mW by tuning

the design parameters. Other design considerations must be taken into account,

such as keeping the input pair devices same W1 = W2, preserving the width ratio

W6 = kW3 = kW4, k = 17/5, as well as adjusting the zero cancellation resistor

according to Rz = 1/gm6 if the size of M6 changes.

This problem can be solved by a PSS-DEC analysis with four DECs and four

parameters.

fin = 40.00 MHz

Ain = 1.00 mV
→

PSS

g1 = 0

g2 = 0

g3 = 0

g4 = 0

→

|A(fin)|= 1.00

fu = 40.00 MHz

PM = 60.00◦

Pc = 8.00 mW

γ1: Rz =361.02 Ω

γ2: W1 = 74.73 µm= W2

γ3: W6 = 57.66 µm= kW3,4

γ4: I1 =156.48 µA

g1(x) = |Xout| − |Xin|

g2(x) = ∠Xin − ∠Xout − 120◦

g3(x) = −
[
Vdd · DC(xVdd

) + Vss · DC(xVss
)
]
− 8 mW

g4(x, γ1, γ3) = Rz − 1/gm6

(
x,W6

)

The circuit parameters and performance measurements of the original design,

and the design obtained by the PSS-DEC analysis are shown in Table 3.1.

Describing W6, W3, and W4 by only one parameter γ3 results in a more compact

PSS-DEC problem, without including the relationships W6 = kW3 and W6 = kW4
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Table 3.1: Parameters and performance comparison of the original design and the
design obtained from the PSS-DEC analysis.

Units PSS PSS-DEC

fu [MHz] 38.90 40.00

PM [deg] 52.07 60.00

Pc [mW] 10.11 8.00

Rz [Ω] 591.22 361.02 (γ1)

W1 = W2 [µm] 75.00 74.73 (γ2)

W6 = kW3 = kW4 [µm] 17.00 57.66 (γ3)

I1 [µA] 200.00 156.48 (γ4)

as DECs. Note that the entries of the corresponding column of the Jacobian

matrices Jfd, Jsh, or Jhb must be computed as, e.g.,

∂q

∂γ3

=
∂q

∂W6

+ k
∂q

∂W3

+ k
∂q

∂W4

(3.44)

The relation for the input pair devices W1 = W2 is treated in a similar fashion.

The DEC g4(x, γ1, γ3) is written not only in terms of x(t) but also in terms of γ1

and γ3. Partial derivatives ∂g4/∂γ1, and ∂g4/∂γ3 must appear in the bottom-right

block of Jfd and Jhb, or in (3.33) in case of the shooting method.

The PSS-DEC analysis can also handle specifications for transient operation,

such as slew rate and settling time [22].
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3.5 Convergence of the Design-Oriented Analysis

In this section, the performance of the new analysis augmented with DECs, is com-

pared to the performance of the search method with a Newton update rule for ΓE

that employs a sequence of conventional analyses. It is shown that the new analysis

is several times faster, than a carefully implemented search-based method, while

having a comparable region of convergence (ROC). Finally, a globally-convergent

method for the design problem is proposed, that can be utilized in both techniques.

3.5.1 Computational Cost

The speed of the two approaches is compared based on the number of iterations

N
DEC

of the analysis with DECs (3.14) and the sum N
S

= ΣN (k)
C

of the conventional

analysis iterations (3.6) N (k)
C

at every iteration k = 0, . . . , N of the search-based

method. The analysis with DECs solves the linear system (3.14) that contains E

more equations than the system (3.6) of the conventional analysis. This cost is

balanced by E sensitivity analyses in (3.10) at each search iteration.

Both of the computation costs N
DEC

and N
C

account for evaluation of the DECs

in (3.8) and (3.14), their sensitivities in (3.9) and (3.15), and the sensitivities of

the conventional analysis equations with respect to the tuning parameters in (3.10)

and (3.15).

Next it will be shown that the new analysis with DECs is faster than the
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search-based method. The speed improvement is expressed as the ratio

speedup =
N

S

N
DEC

=
ΣN (k)

C

N
DEC

(3.45)

The simulation results are summarized in Table 3.2. For a given relative tol-

Circuit Specifications N
DEC

N
S

= ΣN (k)
C

ΣN
(k)
C

N
DEC

OA

HD2 6 13 = 3 + 3 + 3 + 2 + 2 2.17

fu 6 16 = 4 + 3 + 3 + 3 + 3 2.67

PM 5 13 = 4 + 3 + 3 + 3 2.60

Pc, fu, PM, Rz = 1/gm6 8 25 = 4 + 6 + 5 + 4 + 3 + 3 3.13

Pc, fu, PM, Rz = 1/gm6 (W
(0)
1,2 = 75 µm) 7 31 = 3 + 6 + 7 + 5 + 4 + 3 + 3 4.43

VCO
T , Pc, Dout, Sup/dn,

∣
∣Xop11

∣
∣, LX (λ = 1

3
) 6 20 = 4 + 4 + 4 + 3 + 3 + 2 3.33

Dout 6 16 = 5 + 4 + 4 + 3 2.67

Table 3.2: Summary of speed performance of the DEC analysis and a Newton-
based search method.

erance of ǫrel =10−3, the new analyses with DECs are 2 to 4 times faster than a

carefully implemented Newton-based search method. The solutions obtained by

the two techniques agree within the simulation tolerance.

It is also shown that the new analysis has an adequate region of convergence.
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Figure 3.10: (a) The ROC of the PSS-DEC analysis, and (c) the ROC of the
Newton-Raphson search method for the plane W1 × W6 that corresponds to an
initial guess Rz = 591.22 Ω, and I1 = 200 µm from Table 3.1. The corresponding
ROCs for the solution plane where Rz = 361.02 Ω, and I1 = 156.48 µm are shown
in (b) and (d). The numbers are the iteration count N

DEC
and N

S
of the PSS-DEC

analysis and the search-based method, respectively. The darker regions indicate
the initial guesses that converge to the solution in fewer iterations.

3.5.2 Region of Convergence (ROC)

Both techniques under consideration employ the Newton-Raphson method, and

therefore have quadratic convergence in close proximity with the solution. The

convergence far from the solution depends on the type of the circuit and the non-
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linearities in the DECs GE. Since the equality constraints are handled differently

in the new analysis augmented with DECs than in a search-based analysis, it is

important to ensure that the new method converges to the solution from various

initial guesses.

An iterative method converges to a solution if the initial guess lies in the region

of convergence (ROC) of that solution. Given a nonlinear problem, different nu-

merical methods may have different ROCs. While looking for the values of circuit

parameters ΓE, a method with a larger ROC may find a well-performing design

even when the initial design is far from meeting the specifications.

The ROCs of the PSS-DEC and search-based analyses are studied for the op-

erational amplifier in Figure 3.7. As described in Section 3.4.5, the amplifier is

tuned to comply with four design specifications using four circuit parameters. The

region of convergence for the circuit parameters ΓE ≡ [Rz,W1,W6, I1]
T lies in the

four-dimensional space R
4.

Figures 3.10(a) and (b) show the ROC of the PSS-DEC analysis, and Figures

3.10(c) and (d) show the ROC of the Newton-based search method. For each

analysis method, a pair of planes W1 × W6 that slice through a four-dimensional

space are shown. Figures 3.10(a) and (c) show the plane corresponding to the

initial guess Rz = 591.22 Ω, and I1 = 200 µm for the example in Table 3.1. The

plane in Figures 3.10(b) and (d) corresponds to the solution Rz = 361.02 Ω, and

I1 = 156.48 µm.

The data in Figure 3.10 is obtained from a number of PSS-DEC and search-

based analyses with various initial guesses for ΓE. For every value of ΓE, a DC
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solution is taken as the initial guess for the circuit state unknowns x(t). The

numbers in Figure 3.10 are the iteration counts N
DEC

and N
S

of the PSS-DEC

analysis and the search-based method, respectively. The darker regions indicate

the initial guesses that converge to the solution in fewer iterations. It is seen that

for a given example, the PSS-DEC and the search-based analyses have comparable

regions of convergence, while the new PSS-DEC analysis is several times faster.

In this example, both techniques use the classical Newton-Raphson method.

In practice, the convergence properties of both techniques can be improved by

employing globally convergent continuation methods.

3.5.3 Globally Convergent Continuation Method

In the ring VCO example in Section 3.4.1, the initial design is far from meeting the

specifications. Particularly, the initial power consumption Pc is 25.38 mW, while

the desired value is 8 mW. Neither the PSS-DEC analysis, nor the search-based

method can converge to the solution with a classical Newton method.

One way to meet the tight specifications is to improve the design performance

gradually [23]. In the VCO design example, the circuit is first tuned to consume

20 mW, then 14 mW, and finally 8 mW. Each of the three steps enroute to the

final design are easily handled by both the PSS-DEC analysis, and the search-based

method.

Mathematically, this approach can be described as a continuation method.
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Consider the design problem in (3.3) rewritten in the following form

GE(XC , ΓE) = (1 − λ)G
(0)
E (3.46)

where λ ∈ [0, 1] is the continuation parameter, and G
(0)
E ∈ R

E is the residual

DEC error in (3.3) corresponding to the initial design. For the VCO example,

g
(0)
2 = 25.38 − 8 = 17.38 mW. Therefore, the initial design satisfies (3.46) with

λ = 0, and when λ = 1, (3.46) is the same as (3.3). The intermediate values of λ

represent relaxed design specifications that are tighter for larger λ.

Figure 3.11 illustrates the continuation method applied to the ring VCO ex-

ample in Section 3.4.1. The specifications are met as λ is increased from 0 to 1 in

three equal steps.

Given the initial design, a single PSS-DEC (Figure 3.11(a)) or a single search-

based method (Figure 3.11(d)) can only solve a design problem with relaxed design

specifications for any λ ≤ 0.5. For larger λ, both techniques fail. However, the

design problem with λ = 1/3 can be solved easily as a first step towards the desired

performance. After the first step, the relaxed specifications (3.46) with λ = 1/3

are satisfied, and an additional PSS-DEC analysis (Figure 3.11(b)) or search-based

method (Figure 3.11(e)) is performed to meet a tighter set of specifications with

λ = 2/3. Finally, the desired performance with λ = 1 is within the reach of a

single PSS-DEC analysis (Figure 3.11(c)) or search method (Figure 3.11(f)).

Note that both techniques are comparable in converging to a given relaxed

specification, while the new design-oriented PSS-DEC analysis is about 3 times
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Figure 3.11: Continuation method for the ring VCO design problem from Sec-
tion 3.4.1 finds the solution from a remote initial guess, for which both the
PSS-DEC and Newton-Raphson search approaches fail. Starting from the orig-
inal design, λ = 0, the desired design, λ = 1, is found by gradually tightening the
design specifications, λ = 1/3, λ = 2/3, λ = 1.

faster.

A similar constraint stepping technique can be employed to solve a minimiza-

tion problem. For example, the power consumption constraint can be gradually

tightened. This power minimization process is continued until a local minimum is

found, the values of circuit parameters become non-physical, or some other con-
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sideration, such as power tradeoff for noise performance becomes important.
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Chapter 4 – Automated Design and Optimization of Low Noise

Oscillators

Oscillators are autonomous systems that require no external excitation to produce

a periodic output. They are commonly used to generate stable frequency references

that translate data to the desired frequency band in transceivers, and clock signals

that trigger events in digital circuits. Noise in oscillators appears in the form of

phase noise or timing jitter and limits the number of non-interfering channels in

communication systems, or the speed of digital systems. Therefore, the design and

optimization of low-noise oscillators is an important aspect of circuit design for a

wide range of applications [4].

The large-signal operation of oscillators causes noise translation to different

frequencies due to circuit nonlinearities. This makes the modeling and simula-

tion of noise in oscillators a difficult problem. Simplified noise models for hand

calculations use approximations that degrade accuracy. Circuit simulators with

RF capabilities can account for all noise frequency translation mechanisms and

can predict oscillator noise performance with high accuracy. Accurate phase noise

computations are based on a perturbation projection vector (PPV) analysis [3]

that describes how the oscillator converts the noise from circuit components and

power supply into phase noise. The impulse sensitivity function (ISF) [4] is similar

to the PPV in describing the conversion of noise.
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Several techniques for automated oscillator optimization have been developed

in recent years. Geometric programming (GP) has been applied to optimize LC

oscillators in [29]. This approach is fast, and finds the global optimum. However,

the GP method is topology-dependent, requires an expert designer to formulate the

problem in a special form suitable for optimization, and relies on an approximation

of the phase noise performance. The CYCLONE tool [30] employs simulated an-

nealing (SA) for synthesis of optimal LC oscillators. This approach uses a circuit

simulator to accurately evaluate phase noise and relies on an electromagnetic sim-

ulator [31] for accurate estimation of the on-chip inductor losses. However, SA is

a heuristic that is stochastic in nature as it relies on random decisions. It requires

high computational power to perform extensive simulations. Gradient-based meth-

ods for automated circuit design and optimization [32], [33], [34] take advantage

of circuit sensitivity information that describes directions for design improvement.

The gradient-based methods find a local optimum and require a reasonably good

initial design. The initial design can be provided by a designer, or obtained after

several steps from a stochastic technique.

Recent advances in the sensitivity analysis for oscillators [5] pave the way for

efficient gradient-based oscillator optimization. The optimization technique pro-

posed in this dissertation relies on a comprehensive phase noise sensitivity com-

putation. The periodic steady-state (PSS) sensitivity guides minimization of the

oscillator noise intensities, and the PPV sensitivity provides directions for improv-

ing an oscillator’s immunity to noise. No closed-form expressions for phase noise

performance are needed, and therefore, the new optimization technique is general
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and applicable to all types of oscillators, independent of the circuit topology.

A new design-oriented approach to circuit analysis [22], [21] is employed in the

proposed optimization technique to handle the design constraints. The PSS-DEC

analysis [22], a design-oriented PSS analysis augmented with design equality con-

straints (DEC), is used to find the values of circuit parameters, such that several

design constraints are satisfied. This analysis encapsulates the PSS constraints

and reduces the optimization problem to an optimization problem. A new design-

oriented modification of the sensitivity analysis for oscillators [5] provides tradeoffs

between circuit parameters that define feasible directions for design improvement.

This sensitivity analysis is a generalization of the sensitivity analysis for oscilla-

tors with a specification for the oscillation frequency [21], [35]. The design-oriented

approach to circuit analysis facilitates gradient-based oscillator design and opti-

mization in the presence of design constraints. Design specifications that can not

be included in the PSS-DEC analysis [22] are handled by general-purpose methods

for constrained optimization.

In Section 4.1 a technique for phase noise computation in oscillators that em-

ploys the perturbation projection vector (PPV) is reviewed. Section 4.2 presents

design-oriented periodic steady-state and sensitivity analyses that facilitate auto-

mated oscillator optimization. In Section 4.3 a simple optimization example is

considered to highlight the key ideas of the proposed optimization technique. A

general formulation of the optimization method is given in Section 4.4. Phase noise

optimization examples are given in Section 4.5.
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4.1 Phase Noise Computation in Oscillators

Computation of phase noise in oscillators relies on the perturbation projection

vector (PPV). The PPV quantitatively describes how noise generated by circuit

components at the periodic steady-state (PSS) or noise from a power supply is

converted by an oscillator into a phase deviation. An understanding of the PSS,

PPV, and phase noise is crucial for oscillator design and optimization. An LC

oscillator in Figure 4.1 is used to illustrate the contribution of transistor M1 to the

phase noise. First, a brief overview of the PSS solution and the PPV calculation

is provided.

M1 M2

xop

xcs

Vbn

+

−

Mb

Cx

xon

xctrl

xdd 1.5 V

Mc1 Mc2

Lp Ln

Figure 4.1: Schematic of a differential LC VCO.
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4.1.1 Periodic Steady State (PSS) Solution

Any nonlinear oscillator circuit can be modeled as a set of m differential-algebraic

equations (DAEs) in x(t) given by

d

dt
q
(
x(t)

)
+ f
(
x(t)

)
+ b = 0 (4.1)

where

t ∈ R : time, independent variable,

x : R → R
m : circuit unknowns,

q : R
m → R

m : contribution of reactive components,

f : R
m → R

m : contribution of resistive components,

b ∈ R
m : independent sources.

The T -periodic solution x(t) of the DAEs in (4.1) is called the PSS solution if it

satisfies x(t) = x(t + T ). This periodicity constraint can be expressed as

x(0) = x(T ) (4.2)

Notice that if x(t) is a PSS solution, then x(t + ∆t), ∀∆t is also a valid PSS

solution. A unique isolated solution can be selected by imposing a phase condition

ϕ
(
x(0)

)
= 0, ϕ : R

m → R (4.3)
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One possible phase condition is to let a component of x(0) be a fixed value.

The oscillator PSS is uniquely defined by (4.1), (4.2), and (4.3), resulting in

continuous-time equations for the oscillator in the steady-state







d
dt

q
(
x(t)

)
+ f
(
x(t)

)
+ b = 0

x(0) = x(T )

ϕ
(
x(0)

)
= 0

(4.4)

This is a periodic boundary value problem (BVP) in x(t) and T , a special case of

a two-point BVP [15]. The PSS solution xs(t) can be found by solving (4.4) in

the time domain by the finite difference, or shooting methods, as well as in the

frequency domain by the harmonic balance method [2] as depicted below

PSS →
xs

T
(4.5)

The steady-state voltages xop, xon, and xcs of the LC oscillator in Figure 4.1

are shown in Figure 4.2 (a) for one period, t ∈ [0, T ].

4.1.2 Perturbation Projection Vector (PPV)

The oscillator perturbed by a small time-dependent noise bn(t) : R → R
p modu-

lated by a state-dependent function B(x) : R
m → R

m×p can be modeled by a set
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Figure 4.2: (a) The PSS solution for terminal voltages of M1, (b) the PPV at the
drain and source nodes of M1, (c) spectral density of the channel thermal noise
of M1, and (d) the thermal noise of M1 projected into the phase noise for one
oscillation period.

of m DAEs

d

dt
q
(
x(t)

)
+ f
(
x(t)

)
+ b + B

(
x(t)

)
bn(t) = 0 (4.6)
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The noisy solution xn of (4.6) can be expressed in terms of the noiseless PSS

solution xs of (4.1) as [3]

xn(t) = xs

(
t + α(t)

)
+ a(t) (4.7)

where

a : R → R
m : orbital deviation that remains small,

α : R → R : phase deviation that can grow unbounded.

The phase deviation α(t) is the solution of the following nonlinear DAE

d

dt
α(t) = vT

1

(
t + α(t)

)
B
(

xs

(
t + α(t)

))

bn(t) (4.8)

where v1 : R → R
m is a T -periodic vector, known as the perturbation projection

vector. The time-dependent PPV quantitatively describes how additive noise is

converted by the oscillator into phase deviation.

Consider a system of m linear DAEs in x(t)

d

dt

(
C(t)x(t)

)
+ G(t)x(t) = 0 (4.9)

with T -periodic coefficients

C(t) ≡ C
(
xs(t)

)
=

dq(x)

dx

∣
∣
∣
∣
xs(t)

, C : R → R
m×m (4.10)
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and

G(t) ≡ G
(
xs(t)

)
=

df(x)

dx

∣
∣
∣
∣
xs(t)

, G : R → R
m×m (4.11)

known as the capacitance and conductance matrices, respectively. The system

in (4.9) is obtained by differentiation of (4.1) with respect to x at the PSS solution.

The corresponding adjoint system of m linear DAEs in y(t) is given by

CT (t)
d

dt
y(t) − GT (t)y(t) = 0 (4.12)

The adjoint system is satisfied by any linear combination of its eigenmodes

vk(t)e
−µkt, k = 1, . . . , r, where r = rank(C), µk are the characteristic exponents,

and λk = eµkT are characteristic multipliers of the original linear system in (4.9).

Assuming that the oscillator circuit has one asymptotic orbitally stable PSS solu-

tion, the PPV v1(t) is the only periodic and nonzero eigenmode. It corresponds

to the oscillatory characteristic multiplier λ1 = 1. The rest of the eigenmodes

are either zero, or decay quickly as time decreases, as |λk| < 1, k = 2, . . . , r, and

λr+1 = . . . = λm = 0.

Any scaled version of the PPV satisfies the adjoint system. A properly scaled

PPV is selected by requiring that

−vT
1 (t)C(t)ẋs(t) = 1, ∀t (4.13)

where ẋs ≡ dxs/dt.

The oscillator PPV is defined by the system of linear DAEs in y which ensures
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that the solution v1(t) satisfies the adjoint system, is periodic, and is properly

scaled 





CT d
dt

y − GT y = 0

y(0) = y(T )

−yT Cẋs = 1, t = 0

(4.14)

The PPV is found by solving (4.14) directly [8], or by reducing it to an initial value

problem (IVP) [7].

The PPV components v1op and v1cs along one oscillation period, t ∈ [0, T ], are

shown in Figure 4.2 (b). They describe how the currents injected into the nodes

op and cs of the LC oscillator are projected into the phase deviation at different

time instances in one period.

4.1.3 Phase Noise

In the frequency domain, the spectrum of a purely periodic xs is given by a se-

quence of impulses at DC, the oscillation frequency f0 = 1/T , and its harmonics.

In practice, noise from circuit components, substrate, and power supply cause fre-

quency instabilities. The spectrum of a noisy oscillator has sidebands around the

oscillation frequency f0. These are generally referred as the phase noise sidebands.

In the frequency domain an oscillator’s instabilities are characterized by a single

sideband (SSB) noise spectral density, phase noise, L(fm) : R → R in dBc/Hz as

a function of an offset frequency fm. L(fm) is the power in a 1 Hz band around

f0 + fm frequency, normalized to the total power around the frequency of oscilla-
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tion. Phase noise depends on the noise intensities of circuit components, substrate

and power supply, as well as the susceptibility of an oscillator to the noise.

A simple expression for the oscillator phase noise L(fm) due to all white noise

sources for a range of offset frequencies πf 2
0 cw ≪ fm ≪ f0 is given by [3]

L(fm) ≈ 10 log10

((
f0

fm

)2

cw

)

(4.15)

where cw is the white noise constant. It captures the contributions of all white

noise sources to the phase noise

cw =
1

T

∫ T

0

vT
1 (τ)B

(
xs(τ)

)
BT
(
xs(τ)

)
v1(τ)dτ (4.16)

where B(x) : R
m → R

m×p represents the connectivity and state-dependent mod-

ulation of p uncorrelated white Gaussian noise sources bn(t) : R → R
p with rms

values of 1 A/
√

Hz at all frequencies. The phase noise due to colored noise sources

is computed in a similar manner [36].

Consider the device M1 of the LC oscillator and its channel thermal noise

source in Figure 4.3. The thermal noise intensity of M1 depends on the device

width W1 and length L1, as well as on the voltages xop, xon, and xsc in Fig-

ure 4.2 (a). The T -periodic voltages result in a T -periodic noise current spectral

density i2thermal/∆f in Figure 4.2 (c). During circuit operation, the channel re-

sistance and transconductances of M1 vary with time, and therefore, the spectral

density of the channel noise i2thermal/∆f varies with time as well [37].

The channel noise sources of M1 inject equal and opposite amounts of current
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xop

xcs

xon
ithermal M1

Figure 4.3: MOSFET M1 and its channel thermal noise source.

into the drain and source nodes. Therefore, the amount of channel noise projected

into phase noise is described by the difference between the drain and source PPV in

Figure 4.2 (b). The thermal noise modulated by the drain-source PPV difference

is shown in Figure 4.2 (d). It is seen that a large amount of thermal noise does

not contribute to phase noise when the drain-source PPV difference is small. The

spikes near t = 1/T and t = T in Figure 4.2 (d) correspond to the time instances

when both the noise intensity and the PPV difference are large.

The contribution of the M1 thermal noise to phase noise is described by a noise

constant

cw1 =
1

T

∫ T

0

(
v1op − v1cs

)2 · i2thermal dτ (4.17)

The white noise constant in (4.16) can be expressed as a sum of the noise

constants of p individual noise sources

cw =

p
∑

i=1

cwi (4.18)

Form this discussion it follows that for phase noise minimization, not only the
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individual noise intensities but also the PPV needs to be shaped in such a way

that the resulting phase noise is reduced.

4.2 Design-Oriented Analysis for Oscillators

In the constrained oscillator optimization, the PSS specifications that can be writ-

ten as equalities can be efficiently handled by a design-oriented PSS-DEC anal-

ysis [22]. In this section, the PSS-DEC analysis is reviewed, and the sensitivity

analysis for oscillators [5] is generalized to account for design constraints, similar

to [35]. The new design-oriented formulation of the sensitivity analysis, in con-

junction with the PSS-DEC analysis, facilitates gradient-based oscillator design

and optimization. These analyses can guide oscillator improvement while ensur-

ing that additional performance specifications are not compromised during the

optimization.

4.2.1 PSS Analysis with Design Equality Constraints

The oscillator specifications can often be given as equalities [22]

power consumption = 5.0 mW

oscillation frequency = 2.4 GHz

duty cycle = 50 %

output amplitude = 1 V
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These design equality constraints (DECs) can be written in a vector form as

GE(x, T, ΓE) = 0 (4.19)

where GE represents E PSS-based design specifications, and ΓE ∈ R
E is a vector of

E circuit parameters, such as the MOSFET geometry parameters WM , LM , values

of passive components R, L, C, process parameters, or environmental parameters,

such as temperature, power supply voltage, etc.

The PSS-DEC analysis finds the PSS waveform xs(t) and the oscillation period

T while adjusting the values of E circuit parameters in ΓE, such that a set of E

design specifications in (4.19) are satisfied [22], as depicted below

PSS

GE = 0
→

xs

T

ΓE

(4.20)

The mathematical description of the PSS-DEC analysis is obtained by aug-

menting the PSS equations in (4.4) by E additional DECs in (4.19). The PSS

unknowns are augmented by E circuit parameters in ΓE. This results in a square

system of equations that has an isolated solution [22]







d
dt

q
(
x(t)

)
+ f
(
x(t)

)
+ b = 0

x(0) = x(T )

ϕ
(
x(0)

)
= 0

GE(x, T, ΓE, ΓP ) = 0

(4.21)
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The solution xs, T , and ΓE obtained by solving the periodic BVP in (4.21)

simultaneously satisfies the equations of the PSS analysis in (4.4), and the design

constraints in (4.19). There may be no solution to (4.19) and (4.21), which means

that the design specifications can not be satisfied by tuning the values of the

parameters in ΓE. For instance, a specification for the oscillation frequency of

an LC oscillator can be achieved by tuning the tank parameters. Other circuit

parameters have very little or no control on the oscillation frequency, and result in

a singular or badly conditioned PSS-DEC Jacobian matrix. Selection of a suitable

set of parameters requires a good understanding of the design, and is delegated to

a designer.

4.2.2 Sensitivity Analysis with Design Equality Constraints

An oscillator’s PSS, PPV, and phase noise can change in response to a change in

the design, process, or environmental parameters of the oscillator. Let γp ∈ R be a

design parameter. The PSS sensitivity dxs/dγp can assist in minimizing the noise

intensities, and predict the change in the oscillation period dT/dγp. The PPV

sensitivity dv1/dγp can guide the improvement of an oscillator’s noise rejection,

and predict the change in the VCO gain [5].

In this section, a modification of the sensitivity analysis for oscillators is pro-

posed. It is a generalization of the sensitivity analysis for oscillators with a speci-

fication for the oscillation frequency [21], [35]. The new design-oriented sensitivity

analysis accounts for DECs in (4.19) and provides feasible directions for design
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improvement. The tradeoffs between two or more circuit parameters can be made,

such that one or more design feasibility conditions remain satisfied.

It is shown in [5] that the impact of a parameter change on an oscillator can

be decomposed into a change in the oscillation period T and a change in the PSS

and PPV amplitudes. The change in xs and v1 is computed in a normalized time

τ ,

τ ≡ t/T (γp), τ ∈ R (4.22)

such that dxs/dγp and dv1/dγp are small and periodic in τ with a period of 1.

The normalized time τ is the independent variable in the sensitivity analysis for

oscillators. The absolute time t, and the d/dt operator in the PSS-DEC and PPV

descriptions in (4.21) and (4.14) are redefined as

t ≡ τT (γp) (4.23)

and

d

dt
≡ 1

T (γp)

d

dτ
(4.24)

The design-oriented PSS sensitivity analysis for oscillators finds the sensitivity

of the PSS-DEC solution with respect to a circuit parameter γp /∈ ΓE. For a given

value of parameter γ∗
p , the PSS-DEC analysis finds the solution as

γ∗

p
→

PSS

GE = 0
→

xs(γ
∗

p)

T (γ∗

p)

ΓE(γ∗

p)

(4.25)
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A small change ∆γp can be compensated by a corresponding change ∆ΓE, such

that the design constraints remain satisfied

γ∗

p + ∆γp →
PSS

GE = 0
→

xs(γ
∗

p)+
dxs

dγp

∣
∣
∣
GE ,γ∗

p

∆γp

T (γ∗

p)+
dT

dγp

∣
∣
∣
GE ,γ∗

p

∆γp

ΓE(γ∗

p)+
dΓE

dγp

∣
∣
∣
GE ,γ∗

p

∆γp

︸ ︷︷ ︸

∆ΓE

(4.26)

where the three sensitivities dxs/dγp|GE
, dT/dγp|GE

, and dΓE/dγp|GE
in (4.26) rep-

resent the oscillator PSS sensitivities in the presence of design equality constraints.

The presence of the DECs is indicated by the subscript GE as in dT/dγp|GE
.

Though ∆γp and ∆ΓE compensate for each other to keep the constraints sat-

isfied, the PSS solution changes. The PSS solution sensitivities dxs/dγp|GE
and

dT/dγp|GE
in (4.26) are different from the conventional PSS solution sensitivities

dxs/dγp and dT/dγp in [5]. For instance, if the value for the oscillation period T

is specified as a DEC, then dT/dγp|GE
= 0, while the conventional period sensi-

tivity may not be zero. The proposed sensitivities are related to the conventional

sensitivities with respect to ΓE and γp as

dxs

dγp

∣
∣
∣
∣
GE

=
dxs

dγp

+
dxs

dΓE

· dΓE

dγp

∣
∣
∣
∣
GE

(4.27)

with similar expressions for dT/dγp|GE
and dv1/dγp|GE

.

Let us combine the parameters as Γ ≡ [γp ΓT
E]T . Then the design-oriented
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sensitivity can be interpreted as the rate at which the oscillator characteristics

change given a small change in circuit parameters Γ along a feasible direction sp,

dxs

dγp

∣
∣
∣
∣
GE

= lim
∆γp=0

xs

(
Γ∗ + sp · ∆γp

)
− xs

(
Γ∗
)

∆γp

(4.28)

where the feasible direction is given by

sp =






1

dΓE

dγp




 (4.29)

A small change in the parameters Γ along sp preserves the design feasibility, i.e.,

the design constraints remain satisfied, dGE/dγp|GE
= 0.

Therefore, the design-oriented sensitivity analysis provides the feasible direc-

tion, and the sensitivities of the oscillator characteristics along this direction. These

sensitivities, such as phase noise sensitivity dL(fm)/dγp|GE
, can guide design im-

provement, while meeting the design constraints. This makes the design-oriented

sensitivity analysis well-suited for constrained oscillator optimization.

In further discussions, the subscript GE is omitted, and the presence of DECs

is implied.

4.2.3 PSS Sensitivity Analysis with DECs

The PSS sensitivity in the presence of DECs is obtained by a differentiation of the

PSS-DEC equations in (4.21) with respect to the parameter γp at the steady-state
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solution where x = xs. Note that according to (4.23) and (4.24) t and d/dt must

be treated as functions of γp during the differentiation.

The contribution of the resistive circuit components to (4.21) at the steady-

state xs

f
(

xs

(
τT (γp), γp

)
, ΓE(γp), γp

)

(4.30)

depends on γp directly, as well as indirectly through the PSS waveform xs, period

T , and parameters ΓE that are affected by γp. Therefore, the total derivative of f

with respect to γp is composed of four terms

d

dγp

[

f
(

x
(
τT (γp), γp

)
, ΓE(γp), γp

)]

=
∂f

∂γp

+
∂f

∂ΓE

· dΓE

dγp

+
∂f

∂x
· dx

dγp

+
∂f

∂x
· dx

dT
· dT

dγp
︸ ︷︷ ︸

4

=
∂f

∂γp
︸ ︷︷ ︸

1

+
∂f

∂ΓE

· dΓE

dγp
︸ ︷︷ ︸

2

+ G · dx

dγp
︸ ︷︷ ︸

3

+ 0

︸︷︷︸

4

(4.31)

which have the following interpretations:

1. Direct effect of parameter γp on f . Resistive circuit components that directly

depend on γp, such as a resistor with resistance being the parameter γp ≡ R,

contribute to this term.

2. Chain effect of parameter γp on f caused by a change in the PSS waveform xs.

Resistive circuit components, such as a resistor, or a MOSFET, contribute

to this term.
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3. Chain effect of parameter γp on f caused by a change in parameters ΓE. The

change in ΓE compensates for the change in the parameter γp to keep the

DECs satisfied.

4. Chain effect of parameter γp on f caused by a change in the oscillation period

T . This term is zero because a change in the period alone causes the PSS

waveform xs to stretch or shrink in the absolute time t, without affecting the

value of x in the normalized time

dxs(τT, γp)

dT
= 0 (4.32)

Consequently, f is not affected in the normalized time.

The contribution of the reactive circuit components to (4.21) at the steady-state

is

1

T (γp)

d

dτ
q
(

xs

(
τT (γp), γp

)
, ΓE(γp), γp

)

(4.33)

and its total derivative with respect to γp is composed of four terms as well

d

dγp

[
1

T (γp)

d

dτ
q
(

x
(
τT (γp), γp

)
, ΓE(γp), γp

)]

=
d

dt

(
∂q

∂γp

+
∂q

∂ΓE

· dΓE

dγp

+ C · dx

dγp

)

− 1

T

dq

dt
· dT

dγp
︸ ︷︷ ︸

4

(4.34)

where (4.32) was used. The interpretation of the first three terms in (4.34) is

similar to the corresponding terms in (4.31), and term 4 represents the chain

effect of parameter γp on dq/dt caused by a change in the oscillation period T .
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A change in the period causes the waveform xs and, consequently, q to stretch or

shrink in the absolute time t. As a result, the slope dq/dt is decreased or increased

accordingly.

Therefore, the oscillator PSS-DEC sensitivity equations are given by a system

of linear DAEs that represent a periodic BVP in dx/dγp, dT/dγp, and dΓE/dγp







d
dt

(
C dx

dγp

)
+ G dx

dγp
− 1

T
dq
dt

dT
dγp

+ ∂
∂ΓE

[
dq
dt

+ f + b
]

dΓE

dγp
= − ∂

∂γp

[
dq
dt

+ f + b
]

dx(0,γp)

dγp
− dx(T,γp)

dγp
= 0

∂
∂x

ϕ(x)
∣
∣
x(0,γp)

d
dγp

x(0, γp) = 0

∂GE

∂x
· dx

dγp
+ ∂GE

∂T
· dT

dγp
+ ∂GE

∂ΓE
· dΓE

dγp
= −∂GE

∂γp

(4.35)

which reduces to the conventional PSS sensitivity formulation [5] when there are

no additional DECs and dΓE/dγp = 0.

The new PSS sensitivity analysis requires a PSS-DEC analysis to be first per-

formed to obtain the PSS waveforms xs, the oscillation period T , parameters

ΓE, and dq/dt. Assuming that the underlying PSS-DEC analysis is based on

the Newton-Raphson method, the periodic matrix coefficients C, and G are also

available. The partial derivatives of q, f , and b with respect to ΓE and γp are

obtained from the device models at the steady-state xs.

Once assembled, the continuous-time PSS-DEC sensitivity equations in (4.35)

can be solved in the time domain by the finite-difference, or shooting methods,

as well as in the frequency domain by the harmonic balance method for dxs/dγp,

dT/dγp, and dΓE/dγp.
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In optimization problems, the gradient of an objective function ∇Fobj with

respect to a P -vector of design parameters ΓP = [γ1, . . . , γP ]T is often needed. In

this case, (4.35) must be solved P times with different right-hand side terms to

compute PSS sensitivities with respect to all optimization parameters γp, p =

1, . . . , P . The left-hand side coefficients G, C, dq/dt, ∂
[

dq
dt

+ f + b
]
/∂ΓE, and T

in (4.35) are properties of the periodic steady-state, and do not depend on the

choice of parameter γp.

4.2.4 PPV Sensitivity Analysis with DECs

A PPV sensitivity analysis with design equality constraints is based on differen-

tiation of the PPV description in (4.14) with respect to the parameter γp at the

steady-state where y = v1, in the normalized time τ . The PPV sensitivity dv1/dγp

is the solution of the linear system of DAEs in dy/dγp







CT d
dt

dy
dγp

− GT dy
dγp

= −
[

dCT

dγp

dv1

dt
− dGT

dγp
v1

]

dy(0,γp)

dγp
− dy(T,γp)

dγp
= 0

[Cẋs]
T dy

dγp
= −

[
dC
dγp

ẋs + C dẋs

dγp
− 1

T
dT
dγp

Cẋs

]T

v1

(4.36)

where the last equation is written for time t = 0. The total derivative of the

capacitance matrix with respect to parameter γp is given by

d

dγp

C(x, ΓE, γp) =
∂C

∂γp

+
∂C

∂x
· dx

dγp

+
∂C

∂ΓE

· dΓE

dγp

(4.37)
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with

∂C

∂x
· dx

dγp

≡
m∑

j=1

(
∂C

∂xj

· dxj

dγp

)

(4.38)

where xj is the j-th entry of x. The expression for the total derivative of the

conductance matrix with respect to γp is similar to (4.37). These derivatives are

obtained from device models at the steady-state xs.

The PPV sensitivity analysis requires the PSS-DEC solution, its sensitivity,

and the PPV. These provide elements of the PPV sensitivity equations such as

C, and G at the steady-state xs, as well as dxs/dγp, dT/dγp, dΓE/dγp, and v1. If

dΓE/dγp = 0 and the conventional PSS sensitivities are used, the PPV sensitivity

description in (4.36) reduces to the conventional PPV sensitivity formulation in [5].

Once the BVP in (4.36) is assembled, the PPV sensitivity dv1/dγp is obtained

by solving it directly in the time or frequency domains, or by reducing it to an

initial value problem (IVP) [5].

4.2.5 Phase Noise Sensitivity Analysis

As shown in Section 4.1.3, the single-sideband phase noise L(fm) can be determined

based on the PPV and the oscillator noise source intensities computed at the

steady-state xs. The sensitivity analysis for oscillators provides all the necessary

components for accurate computation of the phase noise sensitivity dL/dγp.

The sensitivity of the white noise constant in (4.16) with respect to the param-
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eter γp is given by

dcw

dγp

=
1

T

∫ T

0

d

dγp

(

vT
1 BBT v1

)

dτ (4.39)

The PPV sensitivity dv1/dγp is available from Section 4.2.4, and the sensitivity of

noise contributions is

d

dγp

[

B
(
x(t, γp), ΓE(γp), γp

)]

=
∂B

∂γp

+
∂B

∂ΓE

· dΓE

dγp

+
∂B

∂x
· dx

dγp

(4.40)

where the PSS waveform sensitivity dxs/dγp and parameter sensitivity dΓE/dγP

from Section 4.2.3 are used. This phase noise sensitivity consists of the direct effect

of the parameter γp on B, chain effect of parameter γp on B caused by a change in

the PSS waveform xs, and chain effect of γp on B caused by a change in ΓE, such

that the DECs are satisfied.

The sensitivity of the phase noise expression in (4.15) is given by

dL(fm)

dγp

≈ 10

f0cw ln(10)

(

2cw
df0

dγp

+ f0
dcw

dγp

)

(4.41)

which reduces to

dL(fm)

dγp

≈ 10

ln(10)
· dcw

dγp

(4.42)

for oscillators with a specified oscillation frequency [21] as df0/dγp = 0 in this

case. Note that the sensitivity of the phase noise due to white noise sources is
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independent of the offset frequency fm. The sensitivity of the phase noise with a

contribution from colored noise sources [36] is obtained in a similar manner.

The sensitivity dL/dγp accurately captures the impact of a circuit parameter

alteration on the phase noise through the change in the PSS-dependent noise in-

tensities, and also through the change in the PPV. It describes the change in the

phase noise given a small change in the circuit parameters γp and ΓE along the

feasible direction sp.

4.3 Phase Noise Minimization Example

In this section, a phase noise minimization example in the presence of specifications

for the oscillation frequency and power consumption is considered. This highlights

the key ideas of a new optimization method. The theoretical formulation of the

new optimization technique for oscillators is presented in Section 4.4.

The oscillator under consideration is a differential four-stage ring oscillator in

Figure 4.4 that consists of four identical Maneatis delay cells [16]. The schematic

1onx

1opx

2onx

2opx

3onx

3opx

4onx

4opx

Figure 4.4: Block-diagram of the differential four-stage ring oscillator.

of the first delay cell is shown in Figure 4.5. An active biasing circuit in Figure 4.6

provides a dynamically changing voltage xbn for the delay cells. We use x to denote
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xdd 1.8 V
symmetric load 

xon1

xop4

xop1

xon4

xcs

xbn
Mb1

Mip1 Min1

xctrl

1 V
Mdn1Mcn1Mcp1Mdp1

Figure 4.5: Schematic of the Maneatis delay cell with symmetric loads.

nodal voltages (such as xctrl), and V to denote the nominal values of voltage sources

(such as Vctrl).

ctrlx

ctrlV

ddV
bnx

ddx

+

−

1.8 V

1.0 V
−

+

Figure 4.6: Block-diagram of the active biasing with a half-cell replica.

Let the design objective be minimization of the phase noise Fobj ≡ L(fm) at

an offset frequency of fm = 1 MHz for an oscillation frequency of f0 = 1 GHz.

The power consumption is limited to be at most 6 mW. This limitation can be

represented as an equality constraint Pc = 6mW as higher power consumption

results in lower phase noise.
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To preserve the symmetry of the loads, and keep the delay cells identical dur-

ing optimization, the sizes of several transistors are described by a single circuit

parameter. The widths of all tail bias, input, and load devices, including those in

the half-cell replica, are represented by three circuit parameters, Wb, Wi, and Wl,

respectively.

This phase noise minimization problem is written as

min
Γ

{Fobj(Γ) : T = 1 ns, Pc = 6 mW} (4.43)

where Γ is the three-dimensional design space

Γ ≡ [Wb,Wi,Wl]
T (4.44)

Figure 4.7 shows that all designs with the desired oscillation frequency, and

all designs with the desired power consumption are given by two surfaces in the

three-dimensional design space. The intersection of the two surfaces is a feasible

design curve representing all designs that meet both specifications.

Instead of exploring the entire three-dimensional design space space Γ, the

optimum point along a single dimension of the feasible curve Hfeasible is searched,

as shown in Figure 4.7. Starting from an infeasible design Γ = [20, 45, 30] µm with

Pc = 6.73 mW and T = 0.89 ns the PSS-DEC analysis [22] is used first to adjust
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Figure 4.7: Design space Γ ≡ [Wb,Wi,Wl]
T with two surfaces that represent de-

signs with T = 1 ns and Pc = 6 mW. Darker areas indicate higher phase noise.
The feasible curve is given by the intersection of the two surfaces, where both
the specifications for oscillation period T and power consumption Pc are met.
When applied to an infeasible design Γ = [20, 45, 30] µm with Pc = 6.73 mW and
T = 0.89 ns, the method of Lagrange multipliers improves the phase noise while
gradually meeting the feasibility criteria. In contrast, the proposed optimization
technique first employs the PSS-DEC analysis [22] to make the design feasible,
and then proceeds along the feasible curve in the direction of lower phase noise.
Therefore, the design feasibility is maintained at all optimization steps.

Wi and Wl, such that the design specifications are met,

Wb →
PSS

T=1 ns

Pc=6 mW

→
Wi(Wb)

Wl(Wb)
(4.45)
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In further discussions, the feasible design obtained in this manner is referred to as

the initial design. It serves as a reference for monitoring the phase noise improve-

ment for equal Pc and T that meet the specifications.

As seen from (4.45), the PSS-DEC analysis encapsulates the specifications for

T and Pc, and makes Wb the only independent optimization parameter that de-

termines Wi(Wb) and Wl(Wb). Thus, the problem in (4.43) is simplified to an

unconstrained optimization problem in a single variable, Wb

min
Wb

{Fobj(Wb)} (4.46)

The independent optimization parameter Wb is updated iteratively, such that

the phase noise is improved, while Wi and Wl are changed accordingly to maintain

the design feasibility, as shown in Figure 4.8. At optimization step k, the design

point moves along the tangent to the feasible curve dWi/dW
(k)
b in the direction of

lower phase noise. The design deviates from the feasible curve due to its curvature.

It is then shifted back onto the feasible curve by adjusting Wi. The PSS-DEC

analysis uses the predicted value Ŵ
(k+1)
i as the initial guess and produces the

corrected value W
(k+1)
i . Parameter Wl is predicted/corrected in a manner similar

to Wi.

The PSS-DEC analysis also provides the steady-state solution for the PPV-based

phase noise computation and the sensitivity analysis for the subsequent optimiza-

tion step k+1. The new design-oriented sensitivity analysis for oscillators described

in Section 4.2.2 computes the feasible search direction sp, tangent to the feasible
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Figure 4.8: Optimization trajectory for Wb and Wi is shown. The search directions
are tangent to the feasible curve. After a step is taken, the design point slightly
deviates from the feasible curve due to its curvature. A subsequent PSS-DEC
analysis [22] adjusts Wi to shift the design point back onto the feasible curve.

curve

sp =

[

1 dWi

dWb

dWl

dWb

]T

(4.47)

The sensitivity analysis also provides the sensitivity of the objective function

dFobj

dWb

∣
∣
∣
∣ T=1 ns

Pc=6 mW

= lim
∆Wb→0

Fobj(Γ
∗ + sp · ∆Wb) − Fobj(Γ

∗)

∆Wb

=
∂Fobj

∂Wb

+
∂Fobj

∂Wi

· dWi

dWb

+
∂Fobj

∂Wl

· dWl

dWb

=∇Fobj · sp (4.48)
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which describes the rate at which the phase noise Fobj changes given a small change

in the design parameters along the feasible curve, at the point where Γ = Γ∗. This

sensitivity provides the direction along the feasible curve in which the design point

Γ should be moved to reduce the phase noise. The sensitivity in (4.48) is computed

by a single sensitivity analysis directly, as described in Section 4.2.5, without the

need to compute the three entries of the gradient

∇Fobj =

[

∂Fobj

∂Wb

∂Fobj

∂Wi

∂Fobj

∂Wl

]

(4.49)

The step ∆Wb can be determined from a range of optimization methods, such

as the steepest descent method, or quasi-Newton method, based on (4.48). The

corresponding prediction step in the three-dimensional space is obtained as shown

in Figure 4.8 according to

∆Γ = sp · ∆Wb (4.50)

The described technique enables fast gradient-based optimization of low noise

oscillators that can efficiently handle the design equality constraints. To emphasize

the role of the new design-oriented sensitivity and PSS-DEC analyses, consider the

method of Lagrange multipliers [38]. This method for constrained optimization

can be applied to (4.43) with conventional PSS and sensitivity [5] analyses for

oscillators.

The optimization steps of the method of Lagrange multipliers implemented

with a BFGS quasi-Newton method are also shown in Figure 4.7. Given the same
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infeasible design Γ = [20, 45, 30] µm, the method of Lagrange multipliers improves

the phase noise while gradually meeting the feasibility criteria. It does not guar-

antee a feasible design when far from optimum point. In contrast, the proposed

technique achieves feasibility at the first step and allows the designer to terminate

the optimization at any time after the phase noise has been sufficiently improved.

In both methods, the change in the design parameters ∆Γ is limited to 20 % of Γ

to ensure fast PSS/PSS-DEC convergence at all optimization steps.

The proposed technique searches for the optimum point in a single dimension

of the feasible curve, while the method of Lagrange multipliers performs the opti-

mization in five parameters [Wb,Wi,Wl, λPc
, λT ]T , where the latter two are the La-

grange multipliers that handle the two design specifications. At each optimization

point, the method of Lagrange multipliers performs three PSS and PPV sensitivity

analyses to compute the gradient in (4.49). The proposed technique requires one

PSS and PPV sensitivity calculation with respect to Wb, while the sensitivities of

device contributions to Wi and Wl are used in the underlying PSS-DEC analysis.

Table 4.1 shows the parameters and performance characteristics of the infeasible

design, the initial feasible design provided by the PSS-DEC analysis, and the

improved design. The optimization results in a 4.59 dBc/Hz improvement in phase

noise at a 1 MHz offset frequency over the initial feasible design. Figure 4.9 shows

the phase noise performance of the initial feasible and improved oscillator designs.
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Table 4.1: Parameters and performance of the infeasible design, initial design from
the PSS-DEC analysis, and improved design.

Units Infeasible Initial Improved

f0 [GHz] 1.12 1.00 1.00

Pc [mW] 6.73 6.00 6.00

L(1 MHz) [dBc/Hz] −83.45 −83.87 −88.46

Wb [µm] 20.00 20.00 369.77

Wi [µm] 45.00 49.61 57.71

Wl [µm] 30.00 26.71 30.31

10
5

10
6

10
7

10
8

10
9

−160

−140

−120

−100

−80

−60

Offset frequency fm [Hz]

P
h
a
se

n
o
is
e
L(

f m
)

[
d
B

c

H
z

]

 

 

initial design improved design

Figure 4.9: Optimization applied to the four-stage differential ring oscillator with
Maneatis delay cell results in a 4.59 dBc/Hz phase noise improvement at 1 MHz
offset frequency.
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4.4 New Optimization Technique

Based on the example presented in the previous section, we can generalize the new

optimization method.

Consider a constrained optimization problem

min
Γ

{Fobj(Γ) : GE(Γ) = 0} (4.51)

where

Γ ∈ R
P+E : vector of circuit parameters,

Fobj : R
P+E → R : objective function,

GE : R
P+E → R

E : design equality constraints (DECs),

where E is the number of equality constraints, and P + E is the number of cir-

cuit parameters that are adjusted during optimization. The objective function

Fobj represents the oscillator’s performance, such as phase noise, sensitivity to

power supply or substrate noise, etc. The DECs GE can represent PSS-based

design specifications [22] for power consumption, oscillation frequency, duty cy-

cle, or oscillation amplitude. The parameters Γ can be design parameters, such

as MOSFET geometry parameters WM , LM , values of passive components R, L,

C, process parameters, or environmental parameters, such as temperature, power

supply voltage, load capacitance.

A design is feasible if the specifications given by the DECs are met. A space
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of all feasible designs is given by

Hfeasible ≡ {Γ : GE(Γ) = 0} (4.52)

Let us split the parameters into two groups, ΓP and ΓE,

Γ =






ΓP

ΓE




 =

[

γ1 · · · γP γP+1 · · · γP+E

]T
(4.53)

such that the E design specifications in GE can be satisfied by adjusting E param-

eters in ΓE. This adjustment is done by the PSS-DEC analysis [22] in the following

manner

ΓP →
PSS

GE = 0
→ ΓE(ΓP ) (4.54)

such that

Γ(ΓP ) =






ΓP

ΓE(ΓP )




 ∈ Hfeasible (4.55)

Parameters ΓP are now the independent optimization variables, and ΓE is de-

fined by the PSS-DEC analysis for a given value of ΓP . Therefore, while handling

the equality constraints, the PSS-DEC analysis reduces the dimensionality of the

design space from P + E to P , and the optimization is performed in the space of

all feasible designs Hfeasible, rather than in the space of all designs. Therefore, the

minimization problem in (4.51) is simplified to an unconstrained optimization in
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a space of reduced dimensionality

min
ΓP

{
Fobj

(
Γ(ΓP )

)}
(4.56)

The proposed optimization technique performs optimization in P variables. It

explores P dimensions of the feasible space.

The design-oriented sensitivity analysis for oscillators, described in Section 4.2.2,

provides feasible directions for design improvement. The feasible directions are ob-

tained from P sensitivity analyses with respect to the independent optimization

variables in ΓP and are used to construct the matrix S = [s1, . . . , sP ],

S =
∂Γ

∂ΓP

=






I

∂ΓE

∂ΓP




 =



















1

. . .

1

∂γP+1

∂γ1
· · · ∂γP+1

∂γP

...
...

∂γP+E

∂γ1
· · · ∂γP+E

∂γP



















(4.57)

where each column represents a direction tangent to the feasible space Hfeasible,

and orthogonal to the gradient of the DECs,

[

∂GE

∂γ1
· · · ∂GE

∂γP+E

]

· S = ∇GE · S = 0 (4.58)

The columns of S represent P degrees of freedom for the feasible design space
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exploration while searching for the optimum point.

The new sensitivity analysis also computes the PSS and PPV sensitivities

dT/dΓP |GE
, dxs/dΓP |GE

, dv1/dΓP |GE
which are postprocessed to obtain the gra-

dient of the objective function in presence of the DECs

∂Fobj

∂ΓP

∣
∣
∣
∣
GE

=

[

∂Fobj

∂γ1

∣
∣
∣
GE

· · · ∂Fobj

∂γP

∣
∣
∣
GE

]

=
[

∂Fobj

∂γ1
· · · ∂Fobj

∂γP

]

· S

=∇Fobj · S (4.59)

where an individual entry

∂Fobj

∂γp

∣
∣
∣
∣
GE

= lim
∆γp→0

Fobj(Γ
∗ + sp · ∆γp) − Fobj(Γ

∗)

∆γp

(4.60)

is the rate at which Fobj changes given a small change in the circuit parameters

along a feasible direction sp for p = 1, . . . , P . Note that the gradient in (4.59) is

computed directly from P sensitivity analyses in the presence of DECs, and there

is no need for computing ∇Fobj itself, which would require P + E conventional

sensitivity analyses [5].

The proposed technique enables gradient-based oscillator optimization and han-

dles the design equality constraints efficiently. It can be integrated with any

gradient-based optimization method. For example, the optimization step ∆ΓP
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for the steepest descent method is given by

∆ΓP = −α · ∂Fobj

∂ΓP

∣
∣
∣
∣
GE

(4.61)

where α > 0 is the step size.

Once the method-specific change in the optimization variable ∆ΓP is deter-

mined, the corresponding change in the space of all design parameters is computed

as a linear combination of the feasible directions in (4.57)

∆Γ = S · ∆ΓP (4.62)

It is seen from (4.59) and (4.62) that ∆ΓP from (4.61) results in the steepest

feasible descent direction step ∆Γ, given by the projection of the objective function

gradient onto the feasible space

∆Γ = −αSST∇F T
obj (4.63)

Figure 4.10 shows the algorithm of the proposed optimization technique. Note

that in Step 3, the PSS-DEC analysis converges in a few iterations, since a good

initial guess Γ̂
(k)
E is provided from Step 8. A good initial guess for the PSS solu-

tion T and x(t) is computed based on the PSS sensitivity to ΓP . Also, note that

only P sensitivity analyses are performed at each optimization iteration at Step

5, as there is no need for computing the gradient ∇Fobj in P + E variables. The

PSS-DEC analysis in Step 3 also ensures that a feasible design that meets the spec-



142

1. provide initial design
[
Γ

(0)
P Γ̂

(0)
E

]T

2. initialize the counter k = 0

3. correct the design Γ̂
(k)
E → Γ

(k)
E by PSS-DEC analysis

4. evaluate F
(k)
obj and exit if performance is sufficiently improved

5. compute S(k) and
∂Fobj

∂ΓP

∣
∣
∣

(k)

GE

from P sensitivity analyses

6. compute ∆Γ
(k)
P and corresponding ∆Γ

(k)
E

7. update optimization parameters Γ
(k+1)
P = Γ

(k)
P + ∆Γ

(k)
P

8. predict feasible design Γ̂
(k+1)
E = Γ

(k)
E + ∆Γ

(k)
E

9. increase the counter k = k + 1 and proceed to Step 3

Figure 4.10: Algorithm of the proposed optimization technique.

ifications is available at each optimization iteration, and therefore the optimization

process can be stopped at any time after the objective function Fobj is sufficiently

improved. One possible strategy is to exit when an additional optimization step

insignificantly reduces the objective function, compared to the improvement from

the initial design, and does not justify the simulation time or change in the circuit

parameters.

The proposed optimization technique is general, and applicable to any oscil-

lator, independent of the type and topology. Accurate PPV-based evaluation of

phase noise performance and fast sensitivity computation form a foundation for

automated low-noise oscillator design and optimization. The PSS-DEC analysis

and the new sensitivity analysis efficiently handle the PSS-based design specifica-

tions given by equalities. Those design specifications that can not be included in
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the PSS-DEC analysis can be handled by general-purpose methods for constrained

optimization.

4.5 Examples and Results

We have implemented the above optimization technique in our Matlab-based cir-

cuit simulator. In this section, phase noise optimization examples are presented

for the LC oscillators in Figures 4.1 and 4.11.

M1

Mb

xdd 1.5 V

L

C1

C2

Vbn

+

−

Figure 4.11: Schematic of a Colpitts LC VCO.

Consider a Colpitts oscillator in Figure 4.11. As shown [28] and [39], there

exists an optimum capacitive divider ratio n = C1/(C1 + C2), for which the phase

noise is minimized. The described optimization technique is applied to find the

values of circuit parameters

Γ ≡
[

W1 C2 C1 Vbn

]T
(4.64)
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such that the phase noise at 100 kHz offset frequency is minimized,

Fobj ≡ L(fm), fm = 100 kHz (4.65)

Parameters ΓE ≡ [C1 Vbn]T are chosen to be adjusted by the PSS-DEC analysis to

meet the specifications for power consumption and oscillation period,

GE ≡






Pc − 40 mW

T − 1.1 ns




 (4.66)

Figure 4.12 shows the phase noise as a function of independent optimization

parameters ΓP ≡ [W1 C2]
T , as well as the initial feasible design, and the design

improved by the optimization. As seen from Figure 4.13 the phase noise at

fm = 100 kHz is reduced by 5.22 dBc/Hz. The values of circuit parameters and

performance of the infeasible, initial, and improved designs are summarized in

Table 4.2. The optimum capacitive divider ratio for this circuit is n = 0.31.

Next, consider the LC VCO of Figure 4.1. A capacitor Cx in parallel with the

tail current source Mb can be used to improve oscillator noise performance [40], [41].

In [40] is is shown that Cx shorts noise from Mb at frequencies around 2f0 to

ground, while in [41] the capacitor Cx is used to shape the tail current such that

noise injection from M1 and M2 occurs when the oscillator is less sensitive to noise.

As shown in Figure 4.14, adding Cx = 1 pF reduces the phase noise at 10 kHz

offset frequency by 6.65 dBc/Hz.

It is shown next that the new optimization technique can further reduce the
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Figure 4.12: Phase noise at a 100 kHz offset frequency of the Colpitts oscillator
is shown as a function of independent optimization parameters C2 and W1. The
specifications for the power consumption and oscillation frequency are satisfied
by adjusting Vbn and C1 in the PSS-DEC analysis. The optimization results in
5.22 dBc/Hz phase noise improvement.

phase noise by adjusting transistor sizes. Let the objective be minimization of

phase noise

Fobj ≡ L(fm), fm = 10 kHz (4.67)

subject to constraints for the power consumption and oscillation frequency

GE ≡






Pc − 1.5 mW

f0 − 4.0 GHz




 (4.68)

Consider an example where the phase noise optimization is performed by ad-
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Figure 4.13: Optimization applied to the Colpitts LC oscillator results in a 5.22
dBc/Hz phase noise improvement at 100 kHz offset frequency.

justing six circuit parameters

Γ ≡
[

Wb Lb W1,2 L1,2 Vbn Wc1,c2

]T
(4.69)

where the bias voltage and the width of tank varactors ΓE ≡ [Vbn Wc1,c2]
T are cho-

sen to be adjusted by the PSS-DEC analysis to satisfy the design constraints. The

sizes of the tail current source and the cross-coupled pair ΓP ≡ [Wb Lb W1,2 L1,2]
T

are independent optimization parameters.

As shown in Figure 4.14 the optimization results in the lowest phase noise from

1 kHz to 10 MHz with significantly reduced flicker noise and nearly unchanged

white noise contributions. The phase noise at 10 kHz offset frequency is reduced
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Table 4.2: Parameters and performance of the infeasible Colpitts LC oscillator
design, initial design from the PSS-DEC analysis, and improved design.

Units Infeasible Initial Improved

T [ns] 1.13 1.10 1.10

Pc [mW] 39.64 40.00 40.00

L(1 MHz) [dBc/Hz] −111.76 −111.98 −117.20

W1 [µm] 300.00 300.00 438.01

C2 [pF] 200.00 200.00 100.20

C1 [pF] 40.00 37.22 45.85

Vbn [mV] 700.00 702.55 703.05

by 4.91 dBc/Hz.

Table 4.3 shows the parameter values and performance characteristics of the

infeasible design without Cx, initial designs without and with Cx obtained from

the PSS-DEC analysis, and the improved design with Cx and optimized values of

circuit parameters.

The corresponding change in the PSS and PPV waveforms is shown in Fig-

ures 4.15 and 4.16. It is seen that with the introduction of the tail capacitor Cx,

the variation in the xcs voltage is reduced, and the magnitude of the PPV v1sc is

substantially decreased. This leads to an improvement of the oscillator’s rejection

of the noise from the tail current source Mb. Adjusting the circuit parameters in

ΓP and ΓE insignificantly changes the PSS and PPV.

Figure 4.17 shows the contributions of white and flicker noise from the tail

current source Mb, the transistors M1, M2, and the tank inductors Lp and Ln to
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Figure 4.14: Adding a capacitor Cx = 1 pF to the differential LC VCO results
in a 6.65 dBc/Hz phase noise improvement at 10 kHz offset frequency. Optimiza-
tion that adjusts device sizes results in an additional 4.91 dBc/Hz phase noise
improvement.

the phase noise at the offset frequency of fm = 10 kHz. It is seen that a major

reduction of the noise constant is due to a decreased contribution of the flicker

noise from the tail current source Mb.

Figure 4.18 shows the noise information for the tail current source Mb and

transistor M1 for the initial and improved designs. It is seen that capacitor Cx

significantly reduces the PPV v1cs (Figure 4.18 (b)) which improves the oscilla-

tor’s rejection of the noise from Mb. While the M1 drain-source PPV difference

(Figure 4.18 (a)) and the noise from M1 (Figure 4.18 (c), (e)) are reshaped by
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Table 4.3: Parameters and performance of the infeasible LC VCO design with-
out Cx, initial design without and with Cx from the PSS-DEC analysis, and the
improved design with Cx and optimum values of circuit parameters.

Units Infeasible Initial Initial Improved

with Cx with Cx

f0 [GHz] 4.07 4.00 4.00 4.00

Pc [mW] 1.55 1.50 1.50 1.50

L(10 kHz) [dBc/Hz] −67.01 −67.04 −73.69 −78.60

Cx [pF] 0.00 0.00 1.00 1.00

Wb [µm] 50.00 50.00 50.00 50.02

W1,2 [µm] 50.00 50.00 50.00 33.67

Lb [µm] 0.15 0.15 0.15 0.23

L1,2 [µm] 0.15 0.15 0.15 0.44

Vbn [mV] 500.00 497.43 496.65 548.58

Wc1,c2 [µm] 300.00 313.87 316.56 302.01

adding Cx, the contributions of M1 to the phase noise (Figure 4.17) is nearly

unchanged.

While the capacitor Cx improves the phase noise by improving the oscilla-

tor’s noise rejection, the optimization of circuit parameters helps to reduce the

noise intensities of the transistors Mb, M1, and M2. It is seen from Figure 4.18

that after optimization the flicker noise intensities of M1 (Figure 4.18 (e)) and Mb

(Figure 4.18 (f)) are significantly decreased.
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Figure 4.16: The PPV of the initial and improved LC VCO designs.
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Figure 4.17: (a) Contributions of white noise from the tail current source Mb,
transistors M1, M2, and the tank inductors Lp, Ln to the noise constant, and (b)
contributions of flicker noise from Mb, M1, and M2 to the noise constant at 10 kHz
offset frequency for the initial and improved LC VCO designs.
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Figure 4.18: The squared difference between the source and drain PPV for (a) M1,
and (b) Mb, thermal noise for (c) M1, and (d) Mb, flicker noise at 10 kHz for
(e) M1, and (f) Mb, thermal noise projected into the phase noise for (g) M1, and
(h) Mb, and flicker noise projected into the phase noise for (i) M1, and (j) Mb,
along one period, for the initial and improved LC VCO designs.
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Chapter 5 – Conclusions

In this dissertation several key aspects of automated low noise oscillator design

have been addressed. First, a continuous-time formulation and numerical meth-

ods for oscillator sensitivity analysis have been presented. The new sensitivity

formulation enables the calculation of the sensitivities of an oscillator’s PSS and

PPV with respect to design, process, or environmental parameters. It is shown

that the proposed analysis is more efficient than brute force finite difference based

approaches to sensitivity computation. The new analysis is a useful tool for design

optimization, macromodeling, and predicting the impact of process variations.

Then, a general theoretical formulation for a new design-oriented approach to

circuit analysis has been presented. The new analysis efficiently finds the values of

circuit parameters that result in a desired circuit performance, defined by equality

constraints. In contrast to a conventional design approach, there is no need for

performing a sequence of conventional circuit analyses. As an example, it was

shown how the design specifications can be handled in the periodic steady-state

analysis, PSS-DEC analysis. Existing numerical techniques, such as finite differ-

ence, shooting, and harmonic balance methods for the conventional PSS analysis

are also applicable to the new PSS-DEC analysis. Examples demonstrate usage

scenarios for the PSS-DEC analysis in nominal circuit design and in analysis of

marginally acceptable parameter variations. While having adequate convergence
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properties, the new design-oriented analysis is 2 to 4 times faster than a carefully

implemented Newton-based search method.

Finally, a novel gradient-based optimization technique for oscillators has been

presented that employs design oriented periodic steady-state and sensitivity analy-

ses. The PSS-DEC analysis encapsulates the design specifications and reduces the

dimensionality of the design space that needs to be explored. The new sensitiv-

ity analysis for oscillators provides the feasible directions for design improvement,

such that the design specifications are satisfied at each optimization step. The

optimization technique presented in this dissertation is general and applicable to

all types of oscillators, independent of the circuit topology.

Several extensions can be explored in future work. Inclusion of multiple objec-

tive functions for optimization is useful for several applications. One possibility is

to combine each objective into a single objective function by weighting the objec-

tives based on their importance. Alternatively, a set of Pareto-optimal designs in

terms of, e.g., phase noise, power supply noise rejection, and power consumption

can be made available to a designer.

For voltage controlled oscillator optimization, the transfer curve linearity spec-

ification can also be satisfied during optimization. In this case a set of PSS formu-

lations for various control voltages can be combined in a single system of equations,

augmented with the VCO specifications for linearity.

The sensitivity analysis for oscillators presented in this dissertation can be ap-

plied to oscillator macromodeling. Existing PPV-based VCO phase macromodels

can be used to extend the range of control voltages and frequencies of operation.
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Also, the effect of VCO parameter variations can be incorporated in the macro-

model. This eliminates the need for costly PPV re-extractions for different values

of control voltages and parameter variations.

In the design-oriented analysis, design specifications can be used as variables in

a sensitivity analysis. Then the resulting sensitivities provide information on how

the design parameters should be changed to satisfy a tighter design specification,

such as power consumption, while the remaining design equality constraints are

satisfied.

The work presented in this dissertation provides a solid foundation for these

future enhancements.
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