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EXTREME VALUE INDEX ESTIMATION WITH APPLICATIONS

TO MODELING EXTREME INSURANCE LOSSES AND SEA

SURFACE TEMPERATURES

1. INTRODUCTION

1.1. EVT Background

Extreme value theory (EVT) is a branch of probability theory that provides methods for

modeling and analyzing extreme phenomena. Some of the mathematical tools used include

point processes, and regular variation. Statistical inference is based on point estimation,

hypothesis testing, simulation, and model diagnostics. Applications of EVT are found

in many areas including hydrology, meteorology, geology, and seismic analysis. A few

examples of problems relying on EVT include:

• 100 year flood level estimation

• value-at-risk determination in finance

• premium for excess of loss over high retention levels reinsurance treaties

EVT is a developing area, which over the last two decades has received a tremendous

amount of attention in the literature. The roots of the theory, however, began with the



2

early work of M. Fréchet (1927), R. Fisher and L. Tippett (1928), and R. von Mises (1936),

and B. Gnedenko (1943). This early work was focused on the possible (non-degenerate)

limiting distributions of the maxima of sequences of iid random variables. The statistical

theory was initiated by J. Pickands III (1975) and B. Hill (1975).

1.2. Statement of Problems and Organization of this Dissertation

Excess over thresholds play a fundamental role in many fields, and EVT suggests using

the generalized Pareto (GP) distribution with distribution function (d.f.)

Hξ,σ(y) =





1−
(
1 + ξy

σ

)−1/ξ
if ξ 6= 0

1− exp{−y/σ} if ξ = 0
(1.1)

where y ∈ [0,∞) when ξ ≥ 0 and y ∈ [0,−σ/ξ] when ξ < 0, to model excess over

thresholds. The shape parameter ξ, known as the extreme value index (EVI), characterized

the tail of H, which can be exponential (ξ = 0), bounded (ξ < 0), or power law (ξ > 0).

A tremendous amount of work is seen in the literature devoted to estimation methods for

ξ and applications.

In the case that ξ > 0, we have 1 −Hξ,σ(y) ∼ Cy−α where α = 1/ξ and ∼ indicates the

limit of the ratio of the two functions is equal to 1 as y → ∞. The term Cy−α is easily

recognized as the Pareto survivor function. The problem of how to estimate α in this case

is crucial in many applications. In Chapter 2 a new estimator for the tail index parameter

is proposed that is obtained by matching theoretical and empirical harmonic moments
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assuming a Pareto distribution above a random threshold. Asymptotic and robustness

properties of the estimator are worked out and the estimator is compared to others in a

simulation study. Applications to modeling insurance losses are also provided.

In Chapter 3 a new tail index estimator appropriate for grouped data is developed with

a focus on actuarial applications. The question of how to estimate α in the case that

ξ > 0 provides additional challenges if one is working with partitioned data. This is useful

because actuaries are sometimes required to work with grouped loss data, and must still

be able to make inference about the tail of the loss distribution.

In Chapter 4 the thermostat hypothesis for sea surface temperatures is discussed and

is looked at from an extreme value theory point of view. In particular, the thermostat

hypothesis is looked at as a question as to whether or not sea surface temperatures have

a distribution with a bounded tail. Recall that the tail of H in (1.1) is bounded in the

case that ξ < 0. Whether such a hypothesis holds is of interest to marine ecologists and

has important implications for the potential impacts of global warming on coral reefs.



4

2. A HARMONIC MOMENT TAIL INDEX ESTIMATOR

John B. Henry III

Abstract

A new tail index estimator is proposed that is obtained by matching general theoretical

harmonic moments with corresponding empirical moments. The estimator is shown to

be robust and works particularly well in small sample situations. A tuning parameter

θ is included that allows a tradeoff between efficiency and robustness of the estimator

to be made. The choice of θ that makes the estimator optimal in a mean squared error

sense is derived. A simulation study compares the estimator to other tail index estimators,

including the well known Hill estimator, which is shown to be a special limiting case of the

proposed estimator. Examples are provided using insurance loss data and a new threshold

selection approach is included.
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2.1. Introduction

Estimation of the Pareto tail index parameter is important in many applications including

insurance, finance, geology, and hydrology. See, for example, Embrechts et al (1997), Caers

et al (1999), and Katz et al (2002). There have been many tail index estimators proposed

since the early work of Hill (1975) and Pickands (1975). In this decade alone, some of the

estimators that have been proposed can be found in Brazauskas and Serfling (2000), Gomes

et al (2000), Fraga Alves (2001), Peng and Welsh (2001), Hsieh (2002), Groeneboom et al

(2003), Juarez and Schucany (2004), Seagers (2005), and Finkelstein et al (2006). These

estimators are typically functions of the largest k out of n order statistics. Some recent

estimators proposed by Bianchi and Meerschaert (2000), Frigessi et al (2002), and Fialová

et al (2004), make use of all order statistics. There are also tail index estimators for special

cases such as when one is working with censored data (Beirlant and Guillou (2001) and

Beirlant et al (2007)) or grouped data (Henry III and Hsieh (submitted)). A summary of

many existing tail index estimators and their properties can be found in Brazauskas and

Serfling (2000), Hsieh (2002) Beirlant et al (2004), Markovich (2007), and Gomes et al

(2008).

The estimator proposed in this work is applicable for distributions F in the maximum

domain of attraction of the Fréchet distribution. That is,

F̄ (x) ≡ 1− F (x) = `(x)x−α, for some α > 0, (2.1)

where `(x) is slowly varying at infinity. Note that `(x) satisfies `(tx) ∼ `(x) for any
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t > 0, with ∼ indicating the limit of the ratio of the two functions is 1 as x →∞. Many

commonly used distributions satisfy (2.1) including the Pareto, Burr, Fréchet, half T, F,

inverse gamma, and log gamma. It is worth noting here that distributions satisfying (2.1)

can be closely approximated by an exact Pareto distribution above high thresholds. In

particular, suppose X is a r.v. with d.f. F satisfying (2.1) and consider Y = X|X > u

for large u. Let G denote the distribution function of Y , y = tu, t > 1 fixed and u ∈ R+.

Then

Ḡ(y) =
F̄ (tu)
F̄ (u)

=
`(tu)
`(u)

t−α ∼ cy−α, u →∞, where c = uα.

Hence, for large enough x,

F̄ (x) = Ḡ(x)F̄ (u) ≈ cx−α, where c = F̄ (u)uα.

Note that the power law on the right hand side is the Pareto tail probability function. In

the development of the harmonic moment estimator below, it is assumed that there is an

exact Pareto tail beyond some high threshold u. That is,

∃u > 0 such that x > u ⇒ P (X > x) = cx−α, c, α > 0. (2.2)

The tail index parameter α is a measure of how heavy-tailed the heavy tailed distribution

is. In fact, E(Xk) is infinite for α < k. Examples of estimates for α are often observed in

insurance applications in the interval (0, 2). See, for example, McNeil (1997), and Hsieh

(1999).

Properties of the estimator being proposed here are derived in Section 2.2., and it is
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compared to the well known Hill estimator (Hill (1975)) given by

Hillk,n =

{
1
k

k∑

i=1

log

(
X(i)

X(k+1)

)}−1

, k ∈ {1, . . . , n− 1}, (2.3)

where X1, . . . , Xn is a sequence of independent copies of X and X(1) ≥ . . . ≥ X(n) denote

the descending order statistics. The Hill estimator is a conditional maximum likelihood

estimator (MLE) and it can be shown that Hillk,n
p−→ α and

√
k (Hillk,n − α) d−→ N(0, α2).

We note that Hillk,n has asymptotic variance (AVar) equal to α2/k, which is the Cramer-

Rao lower bound for the variance of any unbiased estimator of α. As a result, for an

estimator α̂ of α, one is often interested in the asymptotic relative efficiency (AREff) of

Hillk,n to α̂, limn→∞AVar(Hillk,n)/AVar(α̂). While this quantity cannot exceed 1, it is

shown that the asymptotic relative efficiency of the proposed estimator can be made as

close to 1 as one likes by adjusting a tuning parameter. More importantly, however, a

simulation study in Section 2.3. shows that for small sample sizes the proposed estimator

can outperform the Hill estimator in terms of bias, variance, and mean squared error

(MSE). This result is important because one often uses only a small number of the largest

order statistics when estimating the tail index.

The asymptotic contamination breakdown point (BP) of an estimator is one measure

of robustness. While the Hill estimator has asymptotic BP of zero, the new tail index

estimator described here has asymptotic BP in (0, 1/2] depending on the true value of α

and the choice of the tuning parameter θ. The gross error sensitivity (GES) is, for large

k, a measure of the maximum impact that the change in a single observation has on an

estimator. The GES of the proposed estimator is also given as a measure of robustness.
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A discussion is given on how a trade-off between efficiency and robustness can be made

by adjustment of θ. These robustness properties are derived and discussed in Section 2.2..

A more detailed discussion of BP’s and GES can be found in Maronna et al (2006).

A new diagnostic plot is described in Section 2.4. that aids in determining the number k

of upper order statistics to use in the estimator for α. This plot follows naturally from

the estimator being proposed here, and is compared to another diagnostic plot in a few

examples. Section 2.5. provides an example using the new estimator for α and diagnostic

plot with insurance data, followed by concluding remarks in Section 2.6..

2.2. The Harmonic Moment Estimator

For a moment, consider the case that X has an exact Pareto(α) distribution with d.f.

F (x) = 1 − (x/σ)−α, for x ≥ σ > 0, where α > 0 is unknown and σ is known. For

extremely heavy tailed Pareto distributions (0 < α < 1), estimators for α such as the

method of moments (MOM) and probability weighted moments (PWM) estimators do

not apply. One can instead consider the harmonic mean as another measure of location.

The harmonic mean for a random variable X is given by µh := {E(X−1)}−1. For a

Pareto(α) r.v. we have µh = σ(1 + α−1). Then one obtains an estimator for α, for a

sample for size n, by setting µh equal to the sample harmonic mean,
(

1
n

∑n
1 X−1

i

)−1, and

solving for α. It is interesting to note that using the same idea with the geometric mean

leads to the MLE estimator for α. Rather than looking at the first harmonic moment,
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however, one can consider general harmonic moments resulting in the estimator

α̂ =
1
n

∑n
i=1

(
σ
Xi

)1/θ

θ

(
1− 1

n

∑n
i=1

(
σ
Xi

)1/θ
) , θ ∈ R+. (2.4)

Now consider the case that X satisfies (2.2). Note that here we are assuming a Pareto

tail above a threshold u, but the form of F (x) is not specified for x < u. The above idea

leads to the following proposed estimator for α using the upper order statistics above a

random threshold X(k+1).

HMk,n(θ) :=
1
k

∑k
i=1

(
X(k+1)

X(i)

)1/θ

θ

(
1− 1

k

∑k
i=1

(
X(k+1)

X(i)

)1/θ
) , θ ∈ R+, k ∈ {1, . . . , n− 1}. (2.5)

Modified versions of HMk,n(θ) are given in Equations (2.19) and (2.20) below. It is shown

later how a choice of the tuning parameter θ influences the efficiency and robustness

of HMk,n(θ). A robust version of HMk,n(θ) is in Equation (2.12), while a minimal mean

squared error (MSE) version of HMk,n(θ) is given in Equation (2.18). The following lemma

will be useful in developing properties of this estimator.

Lemma 2.2.0.1 Given X(k+1) ≥ u, we have HMk,n(θ) d= θ−1Ȳk

(
1− Ȳk

)−1 where Y1, . . . , Yn

are iid Beta random variables, each with common d.f. FY (y) = yαθ, 0 ≤ y ≤ 1. Here

Ȳk := 1
k

∑k
i=1 Yi.

Proof Using Rényi’s representation theorem (Rényi 1953), it can be shown that

αi log
X(i)

X(i+1)

d= Ei, i = 1, . . . , k,
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where the Ei’s are independent mean one exponential random variables. Notice that

1
k

k∑

i=1

− log





(
X(k+1)

X(i)

)1/θ


 =

1
k

k∑

i=1

(1/θ)i log

(
X(i)

X(i+1)

)
d=

1
k

k∑

i=1

1
αθ

Ei.

As a result,

1
k

k∑

i=1

(
X(k+1)

X(i)

)1/θ
d=

1
k

k∑

i=1

exp
{−Ei

αθ

}
.

It is easy to check that exp
{
−Ei
αθ

}
d= Yi, i = 1, . . . , k are i.i.d. with d.f. FY (y) = yαθ, where

0 ≤ y ≤ 1. Hence 1
k

∑k
i=1

(
X(k+1)/X(i)

)1/θ d= Ȳk and HMk,n(θ) d= θ−1Ȳk

(
1− Ȳk

)−1
. 2

Before discussing efficiency and robustness note that g(Ȳk)
d= HMk,n(θ) where g(t) :=

θ−1t(1− t)−1. This function g will be referred to throughout the remainder of Section 2.

Corollary 2.2.0.1 For any fixed θ ∈ R+, the d.f. for HMk,n(θ) is

FHMk,n(θ)(t) = P (HMk,n(θ) ≤ t) = F k∗
(

θkt

θt + 1

)
, (2.6)

where F k∗ is the k-fold convolution of FY given in Lemma 1.

Proof The inverse of g is g−1(t) = tθ(tθ + 1)−1 and

FHMk,n(θ)(t) = P
(
g(Ȳn) ≤ t

)
= P

(
Ȳn ≤ g−1(t)

)
= Fn∗

(
θnt

θt + 1

)
. 2

2.2.1 Efficiency of the Harmonic Moment Estimator

Efficiency properties of the proposed harmonic moment estimator, HMk,n(θ), given in

(3.9), are described in the section. For notational convenience, define µ := E(Ȳk) = αθ
αθ+1 ,
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and τ2

k := Var(Ȳk) = αθ
k(αθ+1)2(αθ+2)

< ∞. Consistency of and asymptotic normality of

HMk,n(θ) are shown first.

Theorem 2.2.1.1 For any fixed θ ∈ R+,

HMk,n(θ)
p−→ α. (2.7)

Proof From the weak law of large numbers Ȳk
p−→ µ. The continuity of g then gives

HMk,n(θ) d= g(Ȳk)
p−→ g(µ) = θ−1µ(1− µ)−1 = α. 2

Theorem 2.2.1.2 For any fixed θ ∈ R+,

√
k (HMk,n(θ)− α) d−→ N

(
0,

α(αθ + 1)2

θ(αθ + 2)

)
. (2.8)

Proof From the CLT we have
√

k(Ȳk−µ) d−→ N(0, τ2). An application of the Mann-Wald

theorem yields

√
k (HMk,n(θ)− α) d=

√
k

(
g(Ȳk)− g(µ)

) d−→ N
(
0, {τg′(µ)}2

)
.

Note that {g′(t)}2 = θ−1(1− t)−2 so that {g′(µ)}2 = θ−2(αθ + 1)4. Hence

τ2{g′(µ)}2 =
(

αθ

(αθ + 1)2(αθ + 2)

)
(αθ + 1)4

θ2
=

α(αθ + 1)2

θ(αθ + 2)
. 2

From above we see that the asymptotic variance of HMk,n(θ) achieves the Cramer-Rao

lower bound as θ ↑ ∞. Also, from Theorem 2.2.1.2,

HMk,n(θ)± Φ−1(1− β)

√
HMk,n(θ)(HMk,n(θ)θ + 1)2

kθ(HMk,n(θ)θ + 2)
(2.9)
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is a level β asymptotic confidence intervals for α,where Φ is the distribution function of a

standard normal random variable.

Corollary 2.2.1.1 For any ε ∈ (0, 1), asymptotic relative efficiency of Hillk,n to HMk,n(θ)

is within ε of 1 by taking θ > (
√

1/ε− 1)/α.

Proof From Theorem 2.2.1.2, the asymptotic relative efficiency of Hillk,n to HMk,n(θ) is

lim
k(n)→∞

AVar(Hillk,n)
AVar(HMk,n(θ))

=
θα(αθ + 2)
(αθ + 1)2

= 1− (αθ + 1)−2. (2.10)

Then (αθ + 1)−2 < ε ⇔ θ > (
√

1/ε− 1)/α. 2

This corollary shows that the proposed estimator works very well in terms of efficiency for

large θ. However, as we will see in the next section, there is then a price to pay in terms

of robustness.

2.2.2 Robustness of the Harmonic Moment Estimator

Recall that while the asymptotic variance of the Hill estimator is equal to the CRLB,

the Hill estimator has asymptotic contamination BP of 0, and hence is not robust in this

sense. The following robustness result shows that the asymptotic contamination BP of

HMk,n(θ) is nonzero.

Theorem 2.2.2.1 The estimator HMk,n(θ) has asymptotic contamination BP of

ε∗ =
min{αθ, 1}

αθ + 1
∈ (0, 1/2] (2.11)
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for any fixed θ ∈ R+. Moreover, ε∗ achieves a maximum of 1/2 when θ = α−1.

Before proving Theorem 2.2.2.1, it is worth mentioning that the theorem says one should

choose a value of θ to minimize ε∗, that is a function of the unknown tail index α. Of

course this is impossible if α is unknown. One can however initially start with some

reasonable estimator, say α̂∗0 := HMk,n(1), and calculate θ∗1 = 1/α̂∗0. Use θ∗1 to determine

HMk,n(θ∗1). Call this α̂∗1 and repeat the process. In the simulation study given in Section

3, this iterative procedure is used resulting in the following robust estimator for α:

α̂ = HMk,n(θ∗) where θ∗ := lim
m

θ∗m. (2.12)

Proof The approach described by Maronna et al (2006) is used here. Defining ψ(y; µ) :=

y−µ, we see from (3.9) that HMk,n(θ) is the M -estimator corresponding to the estimating

equation
∑k

1 ψ(Yi;µ) = 0 (note that Yi = (X(k+1)/X(i))1/θ). From Maronna et al (2006),

the asymptotic contamination BP of HMk,n(θ) is

ε∗ =
min{−ψ(0;µ), ψ(1;µ)}

ψ(1;µ)− ψ(0;µ)
= min{µ, 1− µ} =

min{αθ, 1}
αθ + 1

∈ (0, 1/2].

It is easy to check that ε∗ attains a maximum of 1/2 when θ = α−1. 2

From above we see that the asymptotic contamination BP of HMk,n(θ) approaches 0 as

θ increases. The following shows that the Hill estimator is a special case of the harmonic

moment estimator if we allow θ ∈ R+ ∪ {∞}.

Corollary 2.2.2.1 As θ ↑ ∞, the estimator HMk,n(θ) becomes the Hill estimator. That
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is,

lim
θ↑∞

HMk,n(θ) = Hillk,n. (2.13)

Proof Let θ ↑ ∞ in (3.9). 2

The GES is another measure of robustness of an estimator and is a measure of the maximal

impact on an estimator that results from the change in a single observation. The GES for

the proposed estimator is given next.

Theorem 2.2.2.2 The GES of HMk,n(θ) is (αθ + 1) max
{
α, θ−1

}
.

Proof Let ψ be as in Theorem 2.2.2.1. From Maronna et al (2006), the GES then is

sup
y∈[0,1]

ψ(y; µ)∫ 1
0

∂
∂αψ(y; µ)dFY (y)

=
(αθ + 1)2

θ
sup

y∈[0,1]
y − αθ

αθ + 1
= (αθ + 1)max

{
α, θ−1

}
.

2

Taking the results of this section together suggest that θ should not be chosen too large

if robustness is a concern. Recall from the previous section, however that the efficiency

of HMk,n(θ) increases as a function of θ. The question of choosing θ is addressed in the

following section. It should be noted here that robust estimation of the Pareto tail index

parameter is also discussed in Brazauskas and Serfling (2000), Peng and Welsh (2001),

Juarez and Schucany (2004), and Finkelstein et al (2006).
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2.2.3 Investigating the Choice of θ

In the previous two subsections we have seen how a choice of the parameter θ allows one

to control the tradeoff between efficiency and robustness. In this section, we investigate

how θ can be chosen to obtain specified properties. The bias of HMk,n(θ) is investigated

first. An application of Jensen’s inequality tells us that E[HMk,n(θ)] ≥ α for any fixed

θ ∈ R+. The following lemma gives an approximation for the bias of HMk,n(θ).

Lemma 2.2.3.1 For any fixed θ ∈ R+,

E[HMk,n(θ)] = α +
α(αθ + 1)
k(αθ + 2)

+ O

(
1
k2

)
. (2.14)

Proof Expanding HMk,n(θ) d= g(Ȳk) in a Taylor series, we have

g(Ȳk) = g(µ) + g′(µ)
(
Ȳk − µ

)
+

1
2
g′′(µ)

(
Ȳk − µ

)2 + Op

(
1

k
√

k

)
, (2.15)

where we say Un is Op

(
nβ

)
if for each ε > 0 there exists a real number δ = δε > 0 and a

natural number m = mε such that for every n ≥ m

P
{
|Un/nβ| < δ

}
> 1− ε.

Taking expected values in (2.15) gives

E[HMk,n(θ)] = E[g(Ȳk)] = g(µ) +
1
2
g′′(µ)

τ2

k
+ O

(
1
k2

)
.

Noting that g′′(t) = 2θ−1(1− t)−3, we have

E[HMk,n(θ)] = α +
1
2

(
2(αθ + 1)3

θ

)(
αθ

k(αθ + 1)2(αθ + 2)

)
+ O

(
1
k2

)

= α +
α(αθ + 1)
k(αθ + 2)

+ O

(
1
k2

)
. 2
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From the above lemma and the asymptotic variance of HMk,n(θ) given in (2.8), the fol-

lowing theorem provides a choice of the parameter θ that makes HMk,n(θ) optimal in a

mean squared error sense.

Theorem 2.2.3.1 A choice of θ given by

θ =
√

k2 + 8k + k

2α
< ∞ (2.16)

minimizes

(
α(αθ + 1)
k(αθ + 2)

)2

+
α(αθ + 1)2

kθ(αθ + 2)
≈ [Bias(HMk,n(θ))]2 + Var(HMk,n(θ)) = MSE(HMk,n(θ)).

(2.17)

Before proving Theorem 2.2.3.1, notice that θ† depends on the true unknown α, and

therefore can never be determined exactly. The same procedure that was used to obtain

HMk,n(θ∗) in (2.12) can be used here to obtain a MSE optimal version of HMk,n(θ).

That is, start with some reasonable estimator of α, say α̂†0 := HMk,n(1), and calculate

θ†1 = 1/α̂†0. Use θ†1 to determine HMk,n(θ†1). Call this α̂†1 and repeat the process. In

the simulation study given in Section 3, this iterative procedure is used resulting in the

following estimator for α:

α̂ = HMk,n(θ†) where θ† := lim
m

θ†m. (2.18)

Proof The approximation for the variance and bias of HMk,n(θ) is from (2.8) and (2.14).

Calculus shows that θ from (2.16) minimizes the MSE in (2.17). 2
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It is worth noting that although θ† makes HMk,n(θ) optimal in a mean squared error

sense, θ† is O(k). Hence if robustness is a concern, the results from Section 2.2 can be

incorporated into the choice of θ. Corollary 2.2.1.1 can also be considered if one is looking

for a specific level of efficiency.

If desired, one can also choose to average over a range of θ values. That is, estimating α

by

HMk,n(θ) :=
∫

B
HMk,n(θ)f(θ)dθ, (2.19)

where f is a density function with support B ⊂ B(R+). In light of the bias term in (2.14),

a bias adjusted estimator given by

H̃Mk,n(θ) := HMk,n(θ)
(

1− θHMk,n(θ) + 1
k[θHMk,n(θ) + 2]

)
(2.20)

can also be used. Using the delta method, the variance of H̃Mk,n(θ) is approximately

(f ′[EȲk])2Var(Ȳk) = (f ′(µ))2τ2/k where f(t) := g(t)
(
1− θg(t)+1

k(θg(t)+2)

)
. This result can be

used to construct confidence intervals similar to Equation (2.9).

2.3. Simulation Study

2.3.1 Description

In this section HMk,n(θ) given in (3.9) is compared to some other well known estimators.

Besides the Hill estimator already mentioned (see (2.3)), the following tail index esti-

mators are also included in the simulation study: method of moments (MOM), method
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of probability weighted moment (PWM), and DEdH proposed in Dekkers and de Haan

(1989). The simulation was done in R, and the function fitgpd function found in the POT

package (see Ribatet (2006)) was used to calculate the MOM and PWM estimators. Two

different distributions were simulated from, a Pareto distribution with tail index α = 2.5:

F (x) = 1− x−2.5, x ≥ 1, (2.21)

and a Burr distribution with tail index α = 2:

F (x) = 1−
(

1 +
√

x

2

)−4

. (2.22)

The MOM, PWM, DEdH, and Hill estimators were chosen because, like HMk,n(θ), they

are also moment estimators in some sense. Although there are many natural ways of

arriving at the Hill estimator, it can be obtained in the same way as HMk,n(θ) by using

the geometric mean instead of the harmonic mean. See Embrechts et al (1997), pages

330−336, for three other ways of arriving at the Hill estimator. The number k of upper

order statistics was chosen to be small (relative to the sample size n) purposefully, since

one working in extreme value theory often finds themselves working with few observations.

2.3.2 Results

Table 2.1 summarizes how the HMk,n(θ) compares to some other tail index estimators in

terms of bias, standard deviation (SD), and root MSE, using the distributions in (2.21)

and (2.22). As we can see in Table 2.1, the Hill estimator and harmonic moment (HM)

estimator outperform (with regards to bias, SD, and MSE) the MOM, DEdH, and PWM

estimators.
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Comparison of HMk,n(θ) with other estimators: Bias, SD, and MSE

number k of number k of
upper order statistics upper order statistics

Estimator 5 10 15 20 Estimator 10 20 50 100
MOM 0.149 0.086 0.150 0.014 MOM 0.002 0.018 0.013 0.010
DEdH 0.140 0.011 0.062 0.446 DEdH 0.369 0.001 0.037 0.078
PWM 0.241 0.004 0.043 0.012 PWM 0.010 0.072 0.042 0.022
Hill 1.000 1.000 1.000 1.000 Hill 1.000 1.000 1.000 1.000
HM(θ∗)a 1.129 1.129 1.127 1.125 HM(θ∗) 1.118 1.114 1.150 1.597
HM(θ†)b 1.114 1.071 1.052 1.041 HM(θ†) 1.069 1.040 1.019 1.016

(a) (d)
number k of number k of

upper order statistics upper order statistics
Estimator 5 10 15 20 Estimator 10 20 50 100
MOM 0.002 0.000 0.001 0.000 MOM 0.000 0.000 0.001 0.008
DEdH 0.002 0.000 0.001 0.001 DEdH 0.002 0.000 0.002 0.008
PWM 0.003 0.000 0.001 0.000 PWM 0.000 0.001 0.002 0.008
Hill 1.000 1.000 1.000 1.000 Hill 1.000 1.000 1.000 1.000
HM(θ∗) 0.832 0.857 0.861 0.865 HM(θ∗) 0.860 0.863 0.866 0.868
HM(θ†) 1.018 1.005 1.002 1.001 HM(θ†) 1.005 1.001 1.000 1.000

(b) (e)
number k of number k of

upper order statistics upper order statistics
Estimator 5 10 15 20 Estimator 10 20 50 100
MOM 0.002 0.000 0.001 0.000 MOM 0.000 0.000 0.001 0.008
DEdH 0.003 0.000 0.001 0.001 DEdH 0.002 0.000 0.002 0.008
PWM 0.003 0.000 0.002 0.000 PWM 0.000 0.001 0.002 0.008
Hill 1.000 1.000 1.000 1.000 Hill 1.000 1.000 1.000 1.000
HM(θ∗) 0.853 0.870 0.871 0.872 HM(θ∗) 0.874 0.871 0.870 0.870
HM(θ†) 1.027 1.009 1.005 1.003 HM(θ†) 1.009 1.003 1.001 1.000

(c) (e)

aRobust version of HMk,n(θ). See Theorem 2.2.2.1 and the algorithm leading to (2.12)
bθ is chosen to minimize the asymptotic MSE of HMk,n(θ). See Theorem 2.2.3.1 and the algorithm

leading to (2.18)

TABLE 2.1: In (a), (b), and (c), n = 100 Pareto r.v.’s with d.f. given in equation (2.21)
were generated m = 100, 000 times. In (a) ((b), and (c), respectively), the sample bias
(SD in (b), and root MSE in (c), respectively) was calculated for each of the 6 estimators,
for each shown value of k upper order statistics. The table shows the absolute value of the
sample bias (SD in (b), and root MSE in (c), respectively) of the Hill estimator divided
by the absolute value of the sample bias (SD in (b), and root MSE in (c), respectively) of
each other estimator. In (d), (e), and (f), the same is done using a Burr distribution with
d.f. given in equation (2.22). In (d), (e), and (f), n = 1, 000 was used.
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In Table 2.1(a), the simulated distribution is Pareto and the bias of the Hill and HM

estimators can be compared. The bias of the Hill estimator was 12-13% higher than the

bias of HM for θ = θ∗, and 11.4%, 7.1%, 5.2%, and 4.1% higher than the bias of HM for

θ = θ† and k = 5, 10, 15, and 20.

A more interesting result is seen in Table 2.1(d), where generated values are from the Burr

distribution. If too many upper order statistics are included, tail index estimators become

biased. In the case of an exact Pareto distribution, of course there is no such thing as too

many upper order statistics. Table 2.1(d) illustrates robustness of HM; i.e., when θ = θ∗

the bias of the Hill estimator grows faster than the bias of the HM estimator.

The SD of the Hill and HM estimators are almost identical when simulating from the

Pareto (Table 2.1(b)) and Burr (Table 2.1(e)) distributions for θ = θ†, at each value of

k. For the more robust version of HM, when θ = θ∗, the SD of the Hill estimator was

roughly 14% less than the SD of the HM estimator.

Because of the small bias of both the Hill and HM estimators, the root MSE of these esti-

mators is roughly equal to the SD of the estimators. Therefore the results in Table 2.1(c)

and (f) are roughly the same as those in Table 2.1(b) and (e).
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2.4. Threshold Selection: A new Sum Plot

In order to estimate the tail index parameter above a threshold X(k+1), one needs to

determine an appropriate value of k. There exist a variety of diagnostic plots that aid in

threshold selection include the Sum, Zipf, Hill, and empirical mean-excess plots. Other

threshold selection procedures can be found in Hall (1990), Dekkers and de Haan (1993),

Dupuis (1999) and Hsieh (1999).

The Sum Plot proposed by de Sousa and Michailidis (2004) is made up of the points

{(k, Sk) : k = 1, . . . , n− 1}, (2.23)

where Sk :=
∑k

i=1 i log X(i)

X(i+1) , for k ∈ {1, . . . , n − 1}. Then conditional on X(k+1) > u in

Equation (2.2), Sk has a Gamma distribution with mean k/α and the above plot should

be linear in a k-range of upper order statistics where the Pareto assumption holds. After

identifying a region of upper order statistics where the plot is linear, one may use these

order statistics to estimate the tail index parameter. Sousa and Michailidis (2004) provide

an algorithm for choosing k from the Sum Plot.

A similar technique is proposed here. Define Rk :=
∑k

i=1

(
X(k+1)/X(i)

)1/θ
, k ∈ {1, . . . , n−

1}. Then conditional on X(k+1) > u in Equation (2.2), we have E[Rk] = k
(

αθ
αθ+1

)
. Then,

as with Sum Plot given in (2.23), the plot

{(k, Rk), k = 1, 2, . . . , n− 1} (2.24)

should be linear in the appropriate region of upper order statistics.
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Next, the two sum plots in Equations (2.23) and (2.24) are compared in a few examples

using the following distribution:

F (x) =





1− e−γx, if x ≤ D,

1− cx−α, if x ≥ D.
(2.25)

This distribution was designed so that the threshold beyond which one should estimate

Comparison of Sum Plots
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FIGURE 2.1: Let ρ := (α, γ, 1−F (D)) in Equation (2.25). Above plots show {(k, Sk)}n−1
1

and {(k,Rk)}n−1
1 for n = 1, 000 simulated values from F in Equation (2.25) with Left: ρ

= (2, 1, 0.2); Center: ρ = (1, 3, 0.4); and Right: ρ = (3, 1/3, 0.6). A fixed value of θ ≡ 1
was used for each Rk. The plots should break linearity around k = 800 (left), k = 600
(center), and k = 400 (right).

α is known, and equal to D. Note that F is exponential below D and Pareto above D.

For the plots to be a useful diagnostic tool, they should be linear in the region of upper



23

order statistics greater than D, and one should be able to easily estimate the number k

of order statistics greater than D.

In Figure 2.1, D was chosen as the 0.8 (left), 0.6 (center), and 0.4 (right) quantiles of

F . For example, for the simulated values from F in the plots on the left, we expect that

20% of the values were greater than D. We can see clear breaks from linearity in all three

of the {(k,Rk)}n−1
1 plots. Furthermore, {(k,Rk)}n−1

1 seems to be at least as useful as

{(k, Sk)}n−1
1 for helping to choose k.

2.5. Applications in Insurance

Extreme value theory is often used when modeling large insurance losses. See, for example,

Beirlant and Teugels (1992), McNeil (1997), Embrichts et al (1999), Beirlant et al (2001),

and Cebrián et al (2003). In particular, loss distributions with heavy tails are common,

and so estimation of the tail index parameter becomes an important problem. In this

section the Secura Belgian Re automobile data, looked at in a case study in Beirlant et

al (2004), is used to illustrate the proposed harmonic moment tail index estimator. See

Beirlant at al (2004) for a more detailed analysis.

The 371 automobile claims, from 1988 until 2001, in this data set are all greater than

1,200,000 Euro, and have been adjusted for inflation and other things. In Beirlant at

al (2004), estimation of the net premium of an excess-of-loss, above a retention level R,
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reinsurance contract is of interest. This net premium is denoted Π(R). Letting X be the

claim size r.v., the net premium is given by

Π(R) = E {(X −R)|X > R}P (X > R)

and can be estimated by

Π̂(R) =
R

α̂k − 1

(
R

X(k+1)

)−α̂k k

n
, for R ≥ X(k+1). (2.26)

In Figure 2.2 several diagnostic plots are shown for the Secura Belgian Re automobile
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FIGURE 2.2: Diagnostic plots for the Secura Belgian Re automobile claims data. The
vertical line shows the number of upper order statistics chosen (k = 95) by in Beirlant et
al (2004).

data that aid in choosing the number of upper order statistics to use. The Pareto quantile
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Estimates for Π(R)

R θ = θ∗ θ = 1 θ = θ†

3,000,000 154,727.7 162,699.6 163,812.0
3,500,000 100,498.8 107,279.7 108,230.8
4,000,000 69,154.6 74,789.7 75,584.4
4,500,000 49,731.1 54,405.6 55,068.3
5,000,000 37,028.6 40,928.1 41,483.7
7,500,000 11,901.4 13,686.1 13,945.5

10,000,000 5,319.2 6,291.2 6,434.6
TABLE 2.2: Estimates of net premium, Π(R), in Equation (2.26) using HMk,n(θ) to
estimate α with different choices of θ. See (2.12), and (2.18), for definitions of θ∗ and θ†.
θ = 1 corresponds to the standard harmonic moment estimator.

plot (upper left) should be ultimately linear for distributions satisfying Equation (2.1). In

the Hill plot (upper right), we look for the largest k where the plot appears stable. The

sum plots (bottom) were discussed in Section 4. The dotted vertical lines correspond to

the k value of 95 that was chosen in Beirlant at al (2004), and is used here also.

Using k = 95, different versions of HMk,n(θ) were determined and used for α̂k in Equation

(2.26). The results are given in Table 2.2, and are similar to those given in Beirlant at al

(2004).

In Figure 2.3 estimated conditional tail probabilities are plotted along with empirical

probabilities. The conditional tail probabilities estimates are determined using

1− F̂u(x) ≡ P̂ (X > x
∣∣ X > u) =

(x

u

)−α̂
, for x > u, (2.27)

where k = 95, θ = 1, u = x(k+1) = 2, 580, 026, α̂ = HMk,n(θ) = 3.7.
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Model Fit
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FIGURE 2.3: Pareto tail fit to the loss data using k = 95 and θ = 1 in Equation (2.27).
The model fit is given by the solid line and the points are the empirical tail probabilities.

2.6. Conclusion

In this paper, a new family of tail index estimators given by

{
HMk,n(θ) : k, n integer; 1 ≤ k ≤ n− 1, θ ∈ R+ ∪ {∞}}

has been discussed. This set contains the popular Hill estimator, a MLE estimator for α;

an estimator with the easy interpretation as being obtained by matching theoretical and

empirical harmonic means (θ = 1), as well as more robust estimators of α (for example,

when θ = θ∗). The flexibility of the proposed estimator allows one to compare many

different estimates for α just by varying θ.
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The proposed estimator seems to work particularly well when k is small, and the robustness

properties should make it useful for distributions F satisfying Equation (2.1) when ` is

not constant. These features are illustrated in the simulation study when k is small, and

when `(x) =
(
1 + 0.5x−0.5

)−4 for the Burr distribution.

The new diagnostic sum plot given in (2.24) is based on the distributional properties of

the Yi’s in Lemma 2.2.0.1. While there are many diagnostic plots that can, and should, be

studied when choosing the number of upper order statistics to use in tail index estimation,

many existing plots can be unstable or hard to interpret. The new sum plot provides an

additional reliable tool to aid in threshold selection.
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3. EXTREME VALUE ANALYSIS FOR PARTITIONED
INSURANCE LOSSES

John B. Henry III and Ping-Hung Hsieh

Abstract

The heavy-tailed nature of insurance claims requires that special attention be put into

the analysis of the tail behavior of a loss distribution. It has been demonstrated that the

distribution of large claims of several lines of insurance have Pareto-type tails. As a result,

estimating the tail index, which is a measure of the heavy-tailedness of a distribution, has

received a great deal of attention. Although numerous tail index estimators have been

proposed in the literature, many of them require detailed knowledge of individual losses

and are thus inappropriate for insurance data in partitioned form. In this study we bridge

this gap by developing a tail index estimator suitable for partitioned loss data. This

estimator is robust in the sense that no particular global density is assumed for the loss

distribution. Instead we focus only on fitting the model in the tail of the distribution

where it is believed that the Pareto-type form holds. Strengths and weaknesses of the

proposed estimator are explored through simulation and an application of the estimator

to real world partitioned insurance data is given.
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3.1. Introduction

The heavy-tailed nature of insurance claims requires that special attention be put into the

analysis of the tail of a loss distribution. Since a few large claims can significantly impact

an insurance portfolio, statistical methods that deal with extreme losses have become

necessary for actuaries. For example, in order to price certain reinsurance treaties, it

is often necessary for actuaries to model losses in excess of some high threshold value,

i.e., to model the largest k upper order statistics. Beirlant and Teugels (1992), McNeil

(1997), Embrichts et al (1999), Beirlant et al (2001), Cebrián et al (2003) and Beirlant et

al (2004) provide additional examples where statistical methods were developed to deal

with extreme insurance losses.

Extreme value theory has become one of the main theories in developing statistical models

for extreme insurance losses. The theory states that the tail of a typical loss distribution

FX(x) can be approximated by a Pareto function. That is, 1 − FX(x) ≈ x−α, where

the parameter α is known in the literature as the Pareto tail index that measures the

heavy-tailedness of the loss distribution. See, for example, Finkelstein et al (2006). Many

distributions commonly seen in modeling insurance losses have Pareto type tails. They

include the Pareto, generalized Pareto, Burr, Fréchet, half T, F, inverse gamma, and log

gamma distributions. Following the theory, an actuary may assume that the tail of the

loss distribution, where extreme losses occur, can be approximated by a Pareto function

without making specific assumption on the global density. With an estimate of the Pareto
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index parameter, the actuary can then estimate quantities of interest that are related

to extreme losses, e.g., expected loss above a high retention limit. The approximation

of Pareto function has been demonstrated to be reasonable for many lines of insurance.

Numerous tail index estimators have also been proposed in the literature including ear-

lier contributions by Hill (1975) and Pickands (1975) in which the Hill estimator has

become somewhat of a benchmark to which later proposed estimators are compared. A

survey of existing estimators including their advantages and disadvantages can be found

in Brazauskas and Serfling (2000), Hsieh (2002), and Beirlant et al (2004).

Insurance loss data reported in partitioned form are common in practice. The frequen-

cies of losses occurred in certain loss intervals for numerious lines of insurance can often

be found in companys’ reports or in government publications. Individual loss data are

typically proprietary to the company and may not be available to its competitors in the

industry. Despite the number of tail index estimator proposed in the literature, many, if

not all, of them require the use of individual loss data, and thus, are inappropriate for tail

index estimation under the constraint of partitioned data. This article intends to expand

the horizon of tail index estimation by applying extreme value theory to partitioned loss

data. The main objective is to propose a robust tail index estimator for partitioned loss

data. The estimator is robust in the sense that no global density is assumed and the

Pareto function is used to approximate the tail of a large class of distributions commonly

used in modeling insurance loss data. This approach is advantageous because fitting a

global density to losses can lead to errors when making tail inference in the event that the
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true loss distribution does not have the assumed density. Instead, we rely on the extreme

value theory and focus only on fitting the tail of the distribution without assuming a

specific global density. In addition, we will demonstrate the loss of efficiency by using the

partitioned data versus individual data through simulation.

The remainder of the paper is arranged as follows. Several tail index estimators are

reviewed in Section 3.2.. Except for the Hill and Pickands estimators, both of which have

historical values and the former is served as a benchmark in our simulation, the rest of

the review intends to be a supplement to the excellent review of Brazauskas and Serfling

(2000), Hsieh (2002), and Beirlant et al (2004). The derivation of the proposed estimator

and an examination of its theoretical properties are worked out in Section 3.3.. In Section

3.4., a simulation study is conducted to assess the performance of the proposed estimator.

Two questions that guide the design of the simulation are (1) what is the efficiency lost by

using data in partitioned form? and (2) what is the penality of model misspecification?

The simulation results are discussed in Section 3.5.. Insurance applications are given

in Section 3.6. using actual grouped insurance losses, followed by concluding remarks in

Section 3.7..

3.2. Literature Review

In this section we consider tail index estimators for a loss random variable (r.v.) X taking

values on the positive real line R+ with nondegenerate distribution function FX . We
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assume that the loss distribution has a Pareto-like tail in the sense that

P (X > x) ∼ Cx−α, as x →∞, (3.1)

where α > 0 and ∼ indicates the limit of the ratio of the two functions is equal to one.

In this case the probability that a loss exceeds a level x can be closely approximated by

Cx−α when x is larger than some threshold D. Survival functions for random variables

satisfying (3.1) are often written as 1− FX(x) = `(x)x−α where α > 0 is the (upper) tail

index, and `(x) is a function slowly varying at infinity. Note that a Lebesgue measurable

function ` : R+ → R+ is slowly varying at infinity if limx→∞
`(tx)
`(x) = 1 for all t > 0. We

will denote the tail probability function by F̄X(x) := 1 − FX(x). Let {Xk : 1 ≤ k ≤ n}

be a sequence of independent copies of X and denote the descending order statistics by

X(1) ≥ X(2) ≥ . . . ≥ X(n).

In the following subsections, we discuss several estimators for the tail index α. Some note-

worthy estimators that are not discussed below are the method of moments, probability-

weighted moments, elemental percentile, Bayes estimator with conjugate priors and hybrid

estimators. A description of these can be found, for example, in Hsieh (2002) and the ref-

erences therein.

3.2.1 The Hill and Pickands Estimators

Hill (1975) proposed the tail index estimator
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α̂H =
k + 1

∑k
i=1 i log

(
X(i)

X(i+1)

) (3.2)

based on a maximum likelihood argument where k ∈ {1, 2, . . . , n− 1}. The Hill estimator

is closely related to the mean excess function e(u) = E{X − u | X > u}. In particular,

the empirical mean excess function is given by en(u) = [cardΛn(u)]−1 ∑
j∈Λn(u) (Xj − u) ,

where Λn(u) = {j : Xj − u > 0, j = 1, . . . , n}. Then, letting e∗n(u) denote the em-

pirical mean excess function of the log transformed variables, we have e∗n(logX(k+1)) =

1
k

∑k
i=1

(
logX(i) − logX(k+1)

)
. As a result, we see that α̂H = k+1

k e∗n(logX(k+1))−1. That

is, the Hill estimator is asymptotically equal to the reciprocal of the empirical mean excess

function of logX evaluated at the threshold logX(k+1).

An important feature of the Hill estimator to keep in mind is the variance-bias tradeoff

that occurs when choosing the number of upper order statistics to use. Choosing too many

of the largest order statistics can lead to a biased estimator while too few increases the

variability of the estimator. See Embrechts et al (1997) for a further variance-bias tradeoff

discussion and Hall (1990), Dekkers and de Haan (1993), Dupuis (1999) and Hsieh (1999)

for methods for determining the number of upper order statistics or threshold to use.

Properties of the Hill estimator can be found in Embrechts et al (1997) and the references

therein.

Pickands (1975) proposed an estimator that matches the 0.5 and 0.75 quantiles of the

generalized Pareto distribution with quantile estimates. More specifically, for a GPD r.v.
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X with distribution function

G(x; ξ, σ) = 1−
(

1 +
ξx

σ

)−1/ξ

1(0,∞)(x),

it is easy to show that

G−1(0.75)−G−1(0.5)
G−1(0.5)

= 2ξ.

Then denoting 0.5 and 0.75 quantile estimates by q̂1 and q̂2, respectively, we have

ξ̂ =
log

(
q̂2−q̂1

q̂1

)

log 2
.

Pickands proposed, for n independent copies of X, using q̂1 = X(m) − X(4m) and q̂2 =

X(2m)−X(4m) where n À m ≥ 1. Then noting that the tail index for a GPD r.v. is given

by α = 1/ξ, the resulting tail index estimate is, for X(k) ≥ D,

α̂P =
log 2

log
(

X(m)−X(2m)

X(2m)−X(4m)

) , (3.3)

where k ≥ 4m ≥ 4.

For consistency and asymptotic results, see Dekkers and de Haan (1989). While the

simplicity of the Pickands estimator is an attractive feature, it makes use of only 3 upper

order statistics and can have a large asymptotic variance. Generalized versions of the

Pickands estimator can be found, for example, in Seagers (2005). See Section 3.2.2.

3.2.2 Some Recent Tail Index Estimators

3.2.2.1 Censored Data Estimator

In the case of moderate right censoring, Beirlant and Guillou (2001) proposed an estimator

based on the slope of the Pareto quantile plot, excluding the censored data. This can be
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useful in situations when there has been a policy limit or when a reinsurer has covered

losses in the portfolio exceeding some well defined retention level. Letting Nc denote the

number of censored losses, the estimator is

α̂Nc(k) =
k −Nc∑k

i=Nc+1 log X(i)

X(k+1) + Nc logX(Nc+1)

X(k+1)

, (3.4)

where k ∈ {Nc+1, . . . , n−1}. This estimator is equivalent to the Hill estimator (except for

the change from k + 1 to k, which is asymptotically negligible) in the case of no censoring

(i.e., Nc = 0). It is argued by Beirlant and Guillou (2001) that typically no more than 5%

of observations should be censored for an effective use of this method.

3.2.2.2 Location Invariant Estimators

It is pointed out by Fraga Alves (2001) that, for modeling large claims in an insurance

portfolio, it is desirable for an estimator of α to have the same distribution for the excesses

taken over any possible fixed deductible. For this reason, location invariance is clearly a

desirable property for an estimator of α. Fraga Alves (2001) introduced a Hill-type esti-

mator that is made location invariant by a random shift. The location invariant estimator

is

α̂ k0, k =
k0∑k0

i=1 log X(i)−X(k+1)

X(k0+1)−X(k+1)

, (3.5)

where k0 is a secondary value chosen with k0 < k. An algorithm is included in Fraga Alves

(2001) to estimate the optimal k0, and to make a bias correction adjustment to α̂k0,k.
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Generalized Pickands estimators described in Seagers (2005) are also location invariant

and are linear combinations of log-spacings of order statistics. In particular, let Λ denote

the collection of all signed Borel measures λ on (0, 1] such that

λ((0, 1]) = 0,

∫
log(1/t)|λ|(dt) < ∞, and,

∫
log(1/t)λ(dt) = 1.

Then for λ ∈ Λ and 0 < c < 1, the generalized Pickands estimators are given by

α̂ k(c, λ) =

(
k∑

i=1

[
λ

(
i

k

)
− λ

(
i− 1

k

)]
log

(
X(1+bcjc) −X(i+1)

))−1

. (3.6)

See Seagers (2005) for examples using different measures λ and theoretical properties of

the generalized Pickands estimators. See also Drees (1998) for a general theory of location

and scale invariant tail index estimators that can be written as Hadamard differentiable

continuous functionals of the emperical tail quantile function.

3.2.2.3 Generalized Median Estimator

A class of generalized median (GM) estimators were proposed by Brazauskas and Serfling

(2000) with the goal of retaining a relatively high degree of efficiency while also being

adequately robust. The GM estimator is found by considering, for X(k) ≥ D and r ∈

{2, . . . , k}, the median of a kernal h evaluated over all
(
k
r

)
subsets of X(1), . . . , X(k). The

GM estimator is then given by

α̂r = med{h(X(i1)), . . . , h(X(ir))}, (3.7)
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where {i1, . . . , ir} corresponds to a set of distinct indices from {1, . . . , k}. Examples of

kernals h, properties of the GM estimators, and comparison between the GM estimators

and several other estimators can be found in Brazauskas and Serfling (2000).

3.2.2.4 Probability Integral Transform Statistic Estimator

Finkelstein et al (2006) describe a probability integral transform statistic (PITS) estimator

for the tail-index parameter of a Pareto distribution. They develop the PITS estimator

through an easily understandable and sound probabilistic argument. The PITS estimator

is shown to be comparable to the best robust estimators. Consider first a random sample

of Pareto random variables X1, . . . , Xn, each with common distribution function F (x) =

1− (D/x)α for x ≥ D where D > 0 is known and α > 0. Then defining

Gn,t(β) =
1
n

n∑

i=1

(
D

Xi

)βt

,

where t > 0, observe that

Gn,t(α) =
1
n

n∑

i=1

F̄ (Xi)t d=
1
n

n∑

i=1

U t
i ,

where U1, . . . , Un are i.i.d Uniform(0,1) random variables. Applying the Strong Law of

Large Numbers yields

Gn,t(α)
p−→ E(U t

1) = (t + 1)−1.

Using the idea of method of moment estimation, the PITS estimator is the solution of

the equation Gn,t(β) = (t + 1)−1. The tuning parameter t > 0 is used to adjust between

robustness and efficiency. See Finkelstein et al (2006) for details. In the case D is unknown,
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one can consider

Gn,t,k(β) :=
1
n

k∑

i=1

(
X(k+1)

X(i)

)βt

,

for k ∈ {1, 2, . . . , n− 1} and use the same approach to arrive at a PITS estimator for the

tail-index α.

3.3. Tail Index Estimator for Partitioned Data

Let {Xk : 1 ≤ k ≤ n} be a sequence of independent copies of a loss random variable

X satisfying (3.1). Suppose that losses are grouped into classes {Ii = (ai, ai−1]}i=1,...,g,

where ∞ = a0 > a1 > . . . > ag > 0. Assuming the loss distribution has the Pareto-

type form above a threshold D, we take 0 < D ≤ ak without loss of generality for some

k ∈ {2, 3, . . . , g}. We let N1, . . . , Ng denote the frequencies with which (X1, . . . , Xn) take

values in {Ii = (ai, ai−1]}i=1,...,g. That is, Ni = card{j : ai+1 < Xj ≤ ai, 1 ≤ j ≤ n},

i = 1, . . . , g. The likelihood function is then defined as

L1 =
n!∏r

i=1 ni !

g∏

i=1

(∫ ai−1

ai

fX(x)dµ(x)
)ni

,

where fX is the density of X with respect to Lebesgue measure µ. Hence

L1 ∝
g∏

i=1

(
F̄X(ai)− F̄X(ai−1)

)ni .

Then setting F̄X(x) equal to Cx−α for x ≥ ak ≥ D, we consider the conditional likelihood

function L(α|n1, . . . , nk) proportional to

Lk(α) =
k∏

i=1

(
F̄X(ai)− F̄X(ai−1)

F̄X(ak)

)ni

=
k∏

i=1

(
a−α

i − a−α
i−1

a−α
k

)ni

. (3.8)
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The proposed tail-index estimator is given by

Gk := arg maxLk(α) (3.9)

where k ∈ {2, 3, . . . , g}. The lemma below shows that Gk exists and is a unique maximum

likelihood estimator for α. As a result, one is able to obtain maximum likelihood estimates

for tail probabilities and mean excess loss by using the invariance property of maximum

likelihood estimators. These formulas are given in Section 6.

Lemma 3.3.0.1 Gk in (3.9) exists and is unique.

Proof

Define bi := log(ai/ak) for i = 1, . . . , k and ui := ai/ai−1 for i = 2, . . . , k. Using equation

(3.8), consider the log-likelihood function

log Lk(α) = αn1 log(ak/a1)−
k∑

i=2

ni log

(
a−α

i − a−α
i−1

a−α
k

)
.

Then it is easy to show using calculus that

∂ log Lk(α)
∂α

= −n1b1 −
k∑

i=2

ni

(
bi

1− uα
i

+
bi−1

1− u−α
i

)
.

Noting that ui < 1 for each i and bi > 0 for i ≥ 2, we have

∂ log Lk(α)
∂α

−→





−∑k
i=1 nibi < 0, α ↑ +∞,

+∞, α ↓ 0.
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The result follows by noting that bi > bi−1 implies

∂2 log Lk(α)
∂α2

=
(bi − bi−1) log ui

(2sinh(α log(ui)/2))2
< 0.

2

3.4. Performance Assessment

In this section, we conduct a simulation to study the performance of the proposed tail

estimator Gk. The two key questions guiding the design of the simulation are: (1) what is

the efficiency lost due to the use of partitioned data? and (2) how robust is the proposed

estimator with respect to model misspecification?

Specifically, m samples of size n are generated from a distribution F (x) with the mean

µ < ∞, standard deviation σ and x ≥ 0. The domain of F (x), R+, is partitioned

into g non-overlapping intervals, I1, . . . , Ig. That is, Ii ∩ Ij for 1 ≤ i 6= j ≤ g and R+

= ∪g
i=1Ii. The individual observations in each sample are then grouped with respect

to the partition, and frequencies ni in each interval, i = 1, . . . , g, are recorded. In this

article, we report the simulation results obtained from using m = 1000 (sample), n =

1000 (observations), g = 15 (intervals), and the partition Ii = (F−1(pi), F−1(pi−1)),

where {pj}15
0 = {1.00, 0.995, 0.99, 0.98, 0.975, 0.95, 0.90(0.1)0.00} for i = 1, 2, . . . , g, and

F−1(p) = inf{x : F (x) ≥ p}. We consider four distributions commonly used in modeling

insurance losses. They include the Pareto with a parameter α, generalized Pareto with

parameters γ and σ, Burr with parameters λ, θ, and τ , and the half T distributions with
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degrees of freedom φ. The parameterizations of these distributions are given in Table 3.1.

With simulated data in two different formats, the exact values as well as in partitioned

form, we compare the performance of the proposed estimator Gk using frequencies in

the intervals Ii where inf Ii ≥ D to that of the Hill estimator using all xi ≥ D, as

well as to that of the maximum likelihood estimator using all frequencies ni or all xi.

In Figures 3.1(a)−3.1(d), we report the loss in efficiency due to the use of partitioned

data. The Hill estimates for α in the jth box-plot, from left to right, are calculated using

the largest n1 + . . . + nj order statistics. The estimates from the proposed estimator

in the jth box-plot, from left to right, are calculated using (3.9) with k = j + 1, for

j = 1, 2, . . . , 14. We notice that in Figures 3.1(a)−3.1(d) the proposed estimator behaves

similar to the Hill estimator. In addition, we take the tail estimates that comprise each

box-plot to calculate the root mean squared error (RMSE). That is, for the jth box-plot,

RMSEj = m−1
∑m

i=1(α̂ji − α)2, where m = 1000, the true tail index α = 1.50, and

α̂ji represents the ith tail index estimate in the jth box-plot. The dash line in each panel

represents the true tail index parameter value. To quantify the loss of efficiency, we further

define efficiency (EFF) as the ratio of RMSEj obtained from the proposed estimator to

RMSEj obtained from the Hill estimator. The results are reported in Table 3.2.

To examine the robustness of the proposed estimator against model misspecification, we

compare the proposed estimator using frequencies in top 5 and 6 intervals, which corre-

spond to the 90th and 80th percentiles of the true underlying distribution, to four maximum

likelihood (ML) estimators using all 15 frequencies n1, . . . , n15. These four ML estimators
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(a) F is Pareto (α = 1.5, D = 1)
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(b) F is GPD (γ = 1/1.5, σ = 1)
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(c) F is Burr (λ = 1.2, θ = 4/2, τ = 3/4)
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(d) F is half T (φ = 1.5)

FIGURE 3.1: Performance of Hill (top) and Gk (bottom) estimators for underlying dis-
tributions (see Table 3.1) each with a true tail index of 1.5. Hill estimates use all order
statistics above F−1(p) where F is the distribution function of the underlying distribu-
tion. Tail index estimates using grouped data are found using equation (3.9) for the given
number of upper interval counts k. Sample size = number of replications = 1000.

differ in the assumed underlying distributions. They include Pareto (ML Pareto), gener-

alized Pareto (ML GPD), Burr (ML Burr), and half T (ML T). Following our simulation

design, it allows one of the four ML estimates to be the target estimate since this par-

ticular estimate is obtained by assuming the correct underlying distribution and by using

the entire sample (all 15 frequencies) in estimation. The performance of the Hill estima-

tor using observations above the 90th and 80th percentiles of the true distribution is also
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compared to those of the four similarly defined ML estimators that use the entire sample

in estimation. With the tail estimates, we then calculate the expected loss exceeding the

95th percentile of the true distribution, e(q.95) = E{X − q.95|X > q.95}. The resulting
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(b) F is GPD (γ = 1/1.5, σ = 1)
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(c) F is Burr (λ = 1.2, θ = 4/2, τ = 3/4)
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(d) F is half T (φ = 1.5)

FIGURE 3.2: Estimation of Mean Excess Value e(q.95). ML estimates are calculated
under the assumption of the specified distributions (see Table 3.1). Each distribution F
has a tail index of 1.5. The top plot uses all data, and the bottom plot uses grouped
data. The Hill q.90 and Hill q.80 use all order statistics larger than q.90 = F−1(.90) and
q.80 = F−1(.80). The G5 and G6 use the counts from top 5 and 6 intervals. Sample size
= number of replications = 1000.

expected losses are reported in Figures 3.2(a) − 3.2(d). In addition, we quantify these

figures by calculating RMSE and EFF (see Table 3.3). Note that EFF in this table is
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defined as the ratio of RMSE of an estimator to that of the ML estimator that assumes

the correct underlying distribution. Hence, if the true underlying distribution is Pareto,

then EFF = 1 for ML Pareto.

3.5. Discussion on Simulation Results

The simulation conducted in the previous section illustrates the loss of efficiency in using

partitioned data. There is no doubt that efficiency is lost with the use of partitioned data

simply because fewer data points are used in maximizing the likelihood function. This is

evident from those box-plots in the far left in Figures 3.1(a) − 3.1(d) and from the EFF

measures in the first few columns in Table 3.2 when only observations exceeding the 95th

percentile are used in estimation. For example, as shown in Table 3.2, when the underlying

distribution is Pareto, the RMSE for the Hill estimator using observations exceeding the

99th percentile and the RMSE for the proposed estimator using the frequencies from the

top two intervals are 0.90 and 3.49, respectively, giving EFF = 3.89. This implies that

parameter estimation error, measured in RMSE, can be 3.89 times higher with the use

of partitioned data than with the use of individual data. However, the amount of error

quickly diminishes. With only the top three frequencies (N1, N2, and N3) in use, the EFF

is below 1.20 for all four distributions. Using the top five frequencies or more, the EFF

never exceeds 1.10 and quickly approaches 1.01. The parameter estimation error between

the use of partitioned data and of individual data becomes negligible.
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Figures 3.1(a) − 3.1(d) also reveal a typical problem in tail index estimation. Taking

only few data points in estimation, the resulting estimates exhibit large variance; whereas

taking more data points than necessary, the bias of the estimates seems evident. This

variance-bias tradeoff suggests the development of a threshold selection process to deter-

mine a threshold above which the assumed Pareto functional form holds. In other words,

we should not include any data points that are below the threshold in estimation to avoid

bias because the assumed Pareto form is no longer valid. In addition to the diagnostic

plot approach described in the next section, we may also consider an analytic approach to

selecting the threshold for a given sample. We may start with the frequencies N1 and N2

in the first two intervals I1 and I2, and sequentially include frequencies in the adjacent

intervals by testing whether the assumed Pareto form holds. We could perhaps make

use of the fact that, conditional on
∑k

i=1 Ni =
∑k

i=1 ni, Nj ∼ Binomial(
∑k

i=1 ni, pjk(α)),

where pjk(α) =
(
a−α

j − a−α
j−1

)
/a−α

k .

If the underlying distribution is known, then the ML estimator is a common choice for

parameter estimation. The ML estimate and the quantities derived from the estimate,

e.g., the mean excess value e(u), possess desirable statistical properties. However, the

true underlying distribution is typically unknown in practice, and the penality of model

misspecification and possibly subsequent misinformed decisions may not be negligible.

Our simulation results shown in Figures 3.2(a) − 3.2(d), and in Table 3.3 illustrate the

robustness of our proposed estimator and the penality of model misspecification. It is clear

from Table 3.1 that a reliable estimate of the tail index is crucial for estimating the mean
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excess function e(u). The estimation error of e(u) can be substantial without a reliable

tail index estimator. For example, as reported in Table 3.3, when the true distribution is

Pareto, the estimation error of e(u), measured as RMSE, for the four ML estimators using

individual data and partitioned data ranges from 1.45 to 18.59, and from 1.47 to 20.23,

respectively. ML Pareto, not surprisingly, has the lowest RMSE because it assumes the

correct underlying distribution and utilizes the entire sample. However, if the distribution

is mistakenly assumed, then the RMSE can be 3, 4 or even 13 times higher than that of

ML Pareto. In contrast, the RMSEs of the proposed estimator and the Hill estimator,

despite using only a fraction of the data, stay relatively close to the best RMSE across all

four assumed distributions, providing the robustness against model misspecification.

Table 3.3 also highlights a problem often encountered in practice: the ML algorithm may

not converge properly leading to abnormal estimates. This is evident from the ML GPD

column where the ML algorithm did not converge in several iterations resulting in insen-

sible estimates, and thus, large RMSE.

Finally, the Hill and Gk estimators largely underestimate e(q.95) when the true underlying

distribution is half T (Figure 3.2(d).) This is the result of the variance-bias tradeoff

previously discussed. By using frequencies in the top 5 or 6 intervals, we have taken data

from the area of distribution that the Pareto tail approximation does not hold. Once again,

a threshold selection method is necessary to identify the optimal number k of frequencies

to be used in Gk.
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3.6. Applications to Insurance

In this section we apply the proposed tail index estimator to actual insurance data available

only in a partitioned form. The observed losses, summarized in Table 3.4, are taken from

Hogg and Klugman (1984) and consist of Homeowners 02 policies in California during

accident year 1977 supplied by the Insurance Services Office (ISO). Losses were developed

to 27 months and include only policies with a $100 deductible.

TABLE 3.4: Homeowners Physical Damage
Fire

j aj aj−1 1− Fn(aj)a x̄j
b α̂j

c

1 50100 ∞ 1.21 78278 NA
2 25100 50100 3.03 35486 1.3286
3 10100 25100 5.83 16419 0.8779
4 5100 10100 9.00 7135 0.759
5 1100 5100 30.85 2256 0.7902
6 850 1100 37.99 974 0.7938
7 600 850 49.65 715 0.7873
8 500 600 57.55 555 0.7905
9 400 500 66.68 452 0.7684
10 350 400 71.91 378 0.7478
11 300 350 77.70 328 0.7203
12 250 300 83.69 278 0.6812
13 211 250 88.64 233 0.6435
14 200 211 89.90 207 0.6303
15 175 200 93.46 191 0.6026
16 156 175 95.61 167 0.5753
17 150 156 96.11 154 0.5653
18 125 150 98.92 141 0.5258
19 100 125 100.00 117 0.4743

n = 7534

aProportion of losses observed greater than aj (given as a percentage).
bAverage of losses between aj and aj−1.
cEstimator given in equation (3.9) using k = j.



51

To determine the threshold above which to fit the Pareto tail and estimate the tail-index,

we look for a range in which the α estimates are stable. We use a plot similar to the Hill

plot (see, for example, Embrichts et al (1997) and Drees et al (2000)), but modify it to be

applicable for partitioned losses. Under our general framework, we consider the plot

{(k,Gk) : k = 2, . . . , g}, (3.10)

where k is the number of top groups used to find Gk, and look for a range of k values where

the plot is approximately linear. This plot is given in Figure 3.3 for the above insurance

example. Notice that the plot is roughly linear for thresholds between 500 and 1100 (see

also Table 3.4). We use ak := 500 (k = 8) as the threshold and obtain Gk = 0.7905. This

tail index suggests no finite mean for the loss distribution.

Next, we consider some important quantities in modeling large insurance claims such

as, extreme tail probabilities, extreme quantiles, mean excess loss, given that losses are

available only in partitioned form. Under the setup described in Section 3, F̄ (x) = P (X >

x) can be approximated by

̂̄F (x) =





F̄n(ak) (x/ak)
−Gk if x > ak

F̄n(x) if x ≤ ak,

(3.11)

where Fn is the empirical d.f. for the losses X1, . . . , Xn. In Figure 3.4 this approximation

is illustrated for the above Fire loss data with x > ak = 500. Notice how closely the fitted

tail probabilities are to the emperical tail probabilities.

Similarly, one can also approximate the conditional tail probability P (X > x|X > ak) by

(x/ak)−Gk . An extreme quantile of the loss distribution, qp, is defined by the relationship
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FIGURE 3.3: Tail Index Estimation for Fire Loss Data. The estimates for α using equation
(3.9) are stable in the range 5 ≤ k ≤ 8. This suggests to choose the cutoff a8 = 500 as the
threshold and to use the observed counts in top 8 intervals in equation (3.9).

F̄ (qp) = 1− p where p is close to 1 (say, Fn(ak) < p < 1). Setting ̂̄F (x) equal to 1− p and

solving for qp in (3.11) yields the following estimate for the extreme quantile qp

q̂p = ak

(
1− p

F̄n(ak)

)−1/Gk

. (3.12)

As an example, we estimate the .99 quantile to be q̂.99 = $57, 315 using the above Fire loss

data. The mean excess loss above a high threshold is important in premium determination

and is given by e(u) = E{X − u X > u}. For u > ak, the mean excess loss can be

approximated by

ê(u) =
u

Gk − 1
, (3.13)
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FIGURE 3.4: Comparison of Empirical and Fitted Tail Probabilities for Fire Loss Data.
F̄n(x) is given by open circles and ̂̄F (x) by the dashed line where α̂ = 0.7905 and ak = 500.
Note that the x axis is on log scale.

for Gk > 1. In this example, however, ê(u) is not available because that Gk ≤ 1.

3.7. Summary and Conclusion

It has been shown that losses for many lines of insurance posses Pareto-type tails. For this

reason, tail index estimation, which is a measure of the heavy-taildness of a distribution,

is an important problem for actuaries. Most estimators, however, cannot be used when

loss data are available only in a partitioned form. The proposed estimator possesses the
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attractive features of (1) being applicable when loss data are available only in a partitioned

form, and (2) being robust with respect to a large class of distributions commonly used in

modeling insurance losses. We also showed that tail index estimates can be misleading if

one misspecifies the distribution when trying to fit a global density. We have demonstrated

that the proposed estimator compares favorably to the Hill estimator that uses individual

data, and provided an example showing its effectiveness using actual insurance loss data.
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4. MODELING SEA SURFACE TEMPERATURE EXTREMES: A
LOOK AT THE THERMOSTAT HYPOTHESIS

John B. Henry III

Abstract

The implications of the thermostat hypothesis for sea surface temperature (SST) are of

interest to marine ecologists and have important ramifications for coral reef ecosystems.

The thermostat hypothesis is considered here from an extreme value theory point of view

resulting in an estimated SST upper bound approaching 31.2◦ − 32.0◦C (depending on

latitude) as time →∞. This estimate is obtained from a generalized Pareto model fit to

SST data from the western Pacific warm pool and compared to estimates obtained via

physical models.
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4.1. Introduction

The increase in sea surface temperature (SST) extremes over the last few decades has

greatly impacted many marine ecosystems (Richardson and Schoeman (2004)). In partic-

ular, increasing SST is believed to play a major role in a rise in the frequency and severity

of coral reef bleaching events (Hoegh-Guldberg et al (2007), Berkelmans et al (2004)). It

is thought that reefs in warmer regions, possibly with SST extremes already near an upper

thermal limit, may be less exposed to SST increases than reefs in other regions (Kleypas

et al (2008)). As coral reefs are among the most diverse and productive communities on

earth, which have functions ranging from providing food and shelter to fish and inverte-

brates to protecting the shore from erosion, this question of whether or not there is some

maximum SST is valuable.

4.1.1 The Thermostat Hypothesis

The famous 1991 Ramanathan-Collins “thermostat” hypothesis states that SST is largely

regulated by strong negative feedback of cirrus clouds induced by deep convection, and that

these mechanisms act to depress SST warming beyond a certain temperature (Ramanathan

and Collins 1991). In particular, Ramanathan and Collins assert the following:

Observations made during the 1987 El Niño show that in the upper range of sea
surface temperatures, the greenhouse effect increases with surface temperature
at a rate which exceeds the rate at which radiation is being emitted from the
surface. In response to this ‘super greenhouse effect’, highly reflective cirrus
clouds are produced which act like a thermostat shielding the ocean from solar
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radiation. The regulatory effect of these cirrus clouds may limit sea surface
temperatures to less than 305 K (31.85◦C).

This notion of an ocean thermostat has not been accepted by all. For example, Wallace

(1992) argues that:

. . . although cirrus clouds reduce the solar insolation at the Earth’s surface
in regions of deep convection, they would not necessarily prevent SSTs from
exceeding 305K (31.85◦C) in the face of extensive greenhouse warming.

Similarly, Fu et al (1992) argue that changes in the properties of cirrus clouds do not seem

to be related to changes in SSTs.

The term “thermostat hypothesis” was coined by Ramanathan and Collins to describe one

of the SST feedback mechanisms: the increase in cloud cover due to SST-driven convection.

However, if the ocean thermostat really exists, it is likely caused by a combination of feed-

back mechanisms. In particular, besides (1) the cloud-SST feedback or cloud shortwave

radiative forcing, Kleypas et al (2008) discuss (2) latent heat flux or evaporation-wind-

SST feedback and (3) ocean dynamics and heat transport as other main processes that

have been proposed to limit open ocean SSTs. These mechanisms are included in the net

heat flux at the ocean surface, given by

QN = QS − (QI + QH + QL), (4.1)

where N , S, I, H and L refer to net heating, absorption of solar radiation by the ocean,

net loss of infrared radiative energy from the ocean surface, loss of sensible heat through
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turbulent fluxes at the ocean surface, and net loss of latent heat through the evaporation

of water from the surface, respectively (Weare et al (1981)).

Li et al (2000) provide a conceptual two-box model that contains dynamic coupling among

the Walker circulation, SST, and ocean thermocline and thermodynamic coupling, which

includes shortwave and longwave cloud forcing and latent and sensible heat fluxes at the

ocean surface. Their work provides a framework that combines the three SST-regulation

mechanisms discussed above (cloud-SST feedback, evaporation-wind-SST feedback, and

ocean dynamics and heat transport). They find that cloud shortwave radiation forcing

makes the largest contribution to limiting SSTs in the WPWP, followed by the effects of

surface evaporation, and ocean dynamics. The find that all three mechanisms are essential

in limiting SSTs.

4.1.2 WPWP SST Data

While analysis of SST usually involves modeling means (Huang and Liu (2001), for ex-

ample), few [any?] have conducted an analysis focusing their attention on SST extreme.

Because information on extreme temperatures is lost when averages are taken over large

time scales, daily SST records are used here to investigate the thermostat hypothesis.

More specifically, daily time series records from buoys1 located at 156◦e and 8◦n, 5◦n,

2◦n, 0◦n, 2◦s, and 5◦s in the western Pacific warm pool (WPWP) are used. The earliest

1 These buoys are part of the TAO-TRITON (Tropical Atmosphere Ocean - Triangle
Trans Ocean Buoy Network) array. The author would like to acknowledge the TAO Project
Office of NOAA/PMEL. More information can be found at http://www.pmel.noaa.gov/
tao/.



59

time series records used here start in 1991 and the last measurements used here end in

2002. SST records are in units of degrees centigrade and were taken at a depth of 1m.

4.1.3 Organization of paper

Extreme value theory (EVT) methods have been commonly used in hydrology (Katz et

al (2002)), meteorology (Smith (1999)), geology and seismic analysis (Caers et al (1999)),

but not typically used to estimate upper bounds. A background of basic EVT, including

motivation for using the generalized extreme value (GEV) distribution and/or general-

ized Pareto (GP) distribution is given in Section 4.2. In Section 4.3., EVT methods are

described that are used here to model SST extremes. Analysis of SST extremes and re-

sults are provided in Section 4.4.. In this section an estimate for the SST upper bound

is provided that is a function of space and time. Standard error calculation and model

selection methods are described and diagnostic plots are provided. A discussion of results

and their implications is provided in Section 4.5., along with a comparison of estimated

SST upper bounds obtained physical models and the EVT model.

4.2. EVT Background

4.2.1 Method of Block Maxima

The Fisher-Tippett-Gnedenko theorem (Fisher and Tippett (1928), Gnedenko (1943))

is the basis of classical extreme value theory. The theorem provides us with the only
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possible (non-degenerate) limiting distribution for normalized maxima of an independent

and identically distributed (iid) sequence of random variables, the generalized extreme

value (GEV) distribution. More specifically, for an iid sequence of random variables

{Xk}n
1 , there exist sequences of constants {an} > 0 and {bn} such that

P

(
max{X1, . . . , Xn} − bn

an
≤ y

)
→ G(y) as n →∞ (4.2)

for a non-degenerate distribution function (d.f.) G if and only if G is the GEV distribution

function

Gθ(y) =





exp
{
−

[
1 + ξ

(
y−µ

β

)−1/ξ
]}

if ξ 6= 0

exp
[
− exp

{
−

(
y−µ

β

)}]
if ξ = 0

, θ := (µ, β, ξ) (4.3)

defined on {y : 1 + ξ(y − µ)/β > 0} if ξ 6= 0 and R if ξ = 0. Here µ, ξ ∈ R, β > 0,

and R denotes the real numbers. Throughout the remainder of this paper, the notation

W ∼ GEV(θ) will mean that the random variable W has a GEV d.f. as in (4.3).

The three parameter in (4.3) represent location (µ), scale (β), and shape (ξ). The shape

parameter ξ sometimes called the extreme value index is the most important in character-

izing the GEV distribution. In particular, the GEV distribution can take three different

forms depending on the value of ξ: (1) a bounded (or Weibull) distribution if ξ < 0,

(2) a light-tailed (or Gumbel) distribution if ξ = 0, and (3) a heavy-tailed (or Frechet)

distribution if ξ > 0. Temperature readings typically correspond to the Weibull type (see

Brown and Katz (1995) for example).

In many applications, the Xi represent daily phenomena (sea level, mean temperature, ect)

so that n = 365 and Mn := max{X1, . . . , Xn} represents an annual maxima. One typically
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FIGURE 4.1: GEV Densities for different parameters ξ, µ = 0, and β = 1 in (4.3).

works with a sequence of block (say, annual) maxima Mn,1, Mn,2, . . . when fitting the GEV

model. In practice, the problem of not knowing the normalizing constants {an} > 0 and

{bn} is not troublesome due to the fact that if (Mn − bn)/an is approximately GEV(θ)

distributed, then Mn is approximately GEV(θ′) distributed, where θ 6= θ′. Since estimates

of the parameters of the GEV distribution are usually required anyway, estimating θ′

rather than θ provides no additional work.
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4.2.1.1 Parameter Estimation

Maximum likelihood (ML) estimation is a common choice for estimating the parameters

in the GEV distribution. Given a collection of iid GEV random variables y = (y1, . . . , yn),

the ML estimator is given by

θ̂ := arg max
θ∈Θ

L(θ;y), (4.4)

where L(θ;y) =
∏

i gθ(yi). Here L is the likelihood function, g is the GEV density function,

and Θ is the appropriate parameter space. Because no closed form solution exists for the

estimator in (4.4), numerical methods must be used. ML estimation has an advantage

over many other types of estimation approaches in the way that covariates can easily be

included. Including covariates can make use of relevant information and relaxes the iid

assumption. See Coles (2001) and Katz et al (2005) for examples. Problems can occur in

ML estimation of the GEV parameters when using small samples and/or when ξ ≤ −1/2

(Smith (1985)). Other estimation methods can be found in Embrechts et al (1997).

4.2.2 Threshold Models

Rather than only making use of maxima, as in the previous subsection, one often is

interested in observations of a phenomena exceeding some high threshold. Also, it is

also more efficient to consider threshold models even if the ultimate interest is in block

maxima. The generalized Pareto (GP) distribution turns out to be the analogue of the
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GEV distribution in this situation. The GP d.f. is given by

Hξ,σ(y) =





1−
(
1 + ξy

σ

)−1/ξ
if ξ 6= 0

1− exp{−y/σ} if ξ = 0
(4.5)

where y ∈ [0,∞) when ξ ≥ 0 and y ∈ [0,−σ/ξ] when ξ < 0.
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FIGURE 4.2: GP Densities for different parameters ξ and σ = 1 in (4.5).

The GP distribution is closely related to the GEV distribution. In particular, according

to Pickands Theorem (Pickands (1975)), an iid sequence of random variables {Xk}n
1 , each

with d.f. F , are in the maximum domain of attraction of the GEV distribution (that is,

satisfy (4.2) with G as in (4.3)), with parameter ξ ∈ R, if and only if

lim
u→xF

sup
0<x<xF−u

|P (X − u ≤ x|X > u)−Hξ,σ(u)(x)| = 0
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for some positive function σ(u). Here

xF = sup{x ∈ R : F (x) < 1} (4.6)

denotes the right endpoint of F . Roughly speaking, Pickands Theorem tell us that if Mn

can be closely approximated by the GEV distribution with parameter ξ, then (X−u)|X >

u can be closely approximated by the GP distribution with the same shape parameter ξ.

It is important to notice above that σ in GP distribution is dependent on the threshold u

that is used.

Fitting the GP distribution is done by using the sequence {Yi}nu
1 , where Yi = (Xi−u)|Xi >

u and nu is the number of Xi greater than u. Like the GEV distribution described in

Section 4.2.1, the GP distribution is flexible in the sense that it can have a power-law tail

(ξ > 0), exponential tail (ξ = 0), or bounded tail (ξ < 0). Negative estimates of ξ that

are significantly different than 0, suggest that the underlying distribution of the Xi’s has

a bounded tail, in which case an estimate for the upper bound in Equation (4.6) is given

by

x̂F = u− σ̂u/ξ̂. (4.7)

This is obtained by setting the d.f. in (4.5) to 1, in the case ξ < 0, solving for x, and

replacing parameters with their estimates. This idea of an estimated upper bound will be

important in examining the thermostat hypothesis using the SST data from the WPWP

in Section 4.3. - 4.5.
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4.2.2.1 Parameter Estimation

Because of the importance of the parameter ξ, a considerable amount of attention has

been put into different methods of estimating. ML estimation can be done in the same

way that was described for the GEV distribution for ξ ∈ R. Hsieh (2002) provides a

summary of many estimators for ξ in the case when ξ > 0. Other estimation methods can

be considered such as method of moment estimation (Dekkers et al (1989)) if ξ < 1/2, and

method of probability-weighted moments (Hosking et al (1985)) if ξ < 1. As mentioned

in Section 4.2.1 however, ML estimation is usually the only approach that extends easily

to models including covariates. For this reason, ML estimation is used to model SST

extremes in Section 4.3.

4.2.2.2 Threshold Selection

Using the GP distribution to model excess above high thresholds requires a choice of a

threshold, above which the GP assumption is reasonable. While there do exist automatic

threshold selection algorithms, careful consideration is usually (and should be) taken when

selecting a threshold. If an extremely high threshold is used, one may feel comfortable

with assuming a GP distribution beyond that threshold. However, this may result in the

availability of few large order statistics for parameter estimation. On the other hand,

choosing a low threshold provides more order statistics to use, but can introduce bias

in parameter estimates if the GP assumption is inappropriate. There are several useful

diagnostic plots that can aid in choosing a threshold. For example, a plot of the sample
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mean excess over thresholds u is expected to be linear in u with slope ξ/(1 − ξ) when

the GP assumption is valid. In particular, we expect this plot to increase if 0 < ξ < 1,

decrease if ξ < 0, and be roughly constant if ξ is near 0. Note that the mean excess does

not exist for ξ > 1.

4.3. Methods

The GP distribution is used to model excess over a threshold, rather than the method of

block maxima, of extreme SSTs in the WPWP. This is done, in part, to make the most

use of the the limited number of years of data available. Because of the non-stationarity

of the SST time series, the first steps here are to model trend and seasonality components.

After removing these from the SSTs, residual exceedances over high thresholds will be

assumed to follow a GP distribution. For each location, the first daily SST corresponds

to t = 1.

4.3.1 SST Extremes: Trend and Seasonality

A trend term is fit to each location using the WPWP data. In particular, because only

upper extremes are of interest here, the trend term for each location is fit only to those

SST points that were above the mean SST for each location. A trend process of the form

Mi(t) = ai − bie
−cit, ai, bi, ci ≥ 0, i = 1, . . . , 6, (4.8)
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is assumed for each of the six locations in the WPWP. Here location i = 1, . . . , 6 corre-

sponds to latitude values of {8◦n, 5◦n, 2◦n, 0◦n, 2◦s, 5◦s, } and a longitude of 156◦e. In the

GP model defined in (4.13) latitude, s, is treated as continuous for −5 ≤ s ≤ 8.
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FIGURE 4.3: SST trends are estimates of equation (4.8) for each location and shown by
the green lines. The means SSTs are shown by red lines, and the solid black lines are
constant (= 31◦) for references.

From here on M̂ will denote the trend process in (4.8) with (a, b, c) replaced by (â, b̂, ĉ).

While different functional forms of M can (and were) considered, the trend given in (4.8)

was chosen so that estimated upper bounds (provided ξ̂ < 0, see Section 4.4.2) approach

a finite limit as t →∞.

We see in Figure 4.3 that the largest observed SSTs have occurred in the most recent
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years. Notice also that the mean SST and the number of extremes increases moving from

8◦n to 5◦s.
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FIGURE 4.4: The SST seasonality component is given by estimates of equation (4.9).
Here M̂ + Ŝ is shown by the green lines for each location. The means SSTs are shown by
red lines, and the solid black lines are constant (= 31◦) for references.

A seasonality term of the form

Si(t) = vi sin
(

2πt

365.25

)
+ wi cos

(
2πt

365.25

)
, vi, wi ∈ R, i = 1, . . . , 6, (4.9)

is also fit to each location using the WPWP data. The seasonal component is fit to each

location after the estimated trend has been removed. Estimated trend and seasonality

terms are shown in Table 4.1 in Section 4.4.1. In Figure 4.4 the estimated seasonality

term Ŝ (obtained by replacing (v, w) with (v̂, ŵ) in (4.9)) is added to the estimated trend
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M̂ for each location.

4.3.2 Residuals and Excess

Residuals are obtained by removing the trend and seasonal components at each location.

The residual SST process at each location is defined as

SSTi(t)−Mi(t)− Si(t) := Ri(t). (4.10)
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FIGURE 4.5: Residuals described in (4.10) are shown. Threshold ui (see (4.11) and
(4.12)) are shown (dashed lines) above which the GP model is fit.

The residual processes defined in (4.10) and shown in Figure 4.5 are assumed to be sta-

tionary and have mean zero. From these residuals, conditional excesses,

(Ri(t)− ui) |Ri(t) > ui := Ei(t), (4.11)



70

are used in Section 4.3.3 to construct a GP model from which estimated SST upper bounds

are obtained. For location i, the 0.9 sample residual quantile is used for the threshold ui

in (4.11). More specifically,

(u1, . . . , u6) = (0.318, 0.267, 0.333, 0.383, 0.361, 0.367). (4.12)

4.3.3 GP Model for SST

With the trend and seasonal components removed from the SST processes, we assume

that the excess given in Equation (4.11) satisfies

E(s, t) ∼ GP(ξ, σ(s)) (4.13)

where log σ(s) = β0+β1s. That is, we assume that E(s, t) has distribution function Hσ(s),ξ

where H was defined in (4.5). Here s denotes latitude values, s ∈ [−5, 8]. The location

subscript i in (4.11) is dropped and the spatial differences in the excesses are modeled

through the continuous scale parameter σ(s) in the GP distribution.

Notice here that ξ does not depend on either s or t. The assumption of a constant shape

parameter ξ over space is commonly made in environmental applications. For example,

Buishand (1991) assumes the distributions of rainfall at different locations have the same

upper tail thickness; that is, the distributions share a common EVI ξ. Smith (1989) makes

the same assumption across all basins in a regional flood frequency analysis.

As can be seen in Figure 4.3, clusters of SST extremes are not uncommon in time. This

temporal dependence of extremes is still seen in the residuals (see Figure 4.5) obtained by
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removing trend and seasonal components. While the common practice when performing

POT modeling2 is to do some kind of declustering, the suggestion of Fawcett and Walshaw

(2007) is followed here, and all exceedances of a high threshold are used. The reason

declustering methods are commonly used is because of the lack of independence (in time)

in clusters of extremes. Fawcett and Walshaw (2007) argue that declustering can cause

serious bias to occur in the estimation of GP parameters. One method of declustering is

known as runs declustering. See Gilleland and Katz (2005) for more on runs declustering.

Coles (2001) notes that results can be sensitive to the arbitrary choices made in cluster

determination.

Besides the obvious temporal dependence of extreme SSTs, there is also spatial depen-

dence that needs to be addressed. Buishand (1991) looked at modeling extreme rainfall by

combining data from several sites and Smith (1989) conducted a regional flood frequency

analysis. In this work, latitude is included by modeling residual excesses using the scale

parameter σ(s) in the GP distribution. Maximum likelihood estimation is used to esti-

mate the parameters β0, β1, and ξ in (4.13), but rather than using the usual asymptotic

properties of MLEs to obtain standard errors for the estimates, standard errors are ob-

tained through resampling. See Figure 4.3.3. Katz et al (2002) Section 3.3 provides more

details on standard errors, resampling, and residuals in this type of setting.

2 Fitting a GP distribution to excess over high thresholds is often referred as peaks over
threshold (POT) modeling.
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FIGURE 4.6: Sampling distributions (from 5000 bootstrapped estimates) of β̂0, β̂1, and
ξ̂ obtained from GP model fit to excesses.

4.4. Results

4.4.1 Trend and Seasonality

Estimated trend and seasonal terms are summarized in Table 4.1. For each location,

a, b, and c in (4.8) were significantly different from 0 at a 0.05 level. All but one of the

coefficients in (4.9) were significantly different from 0 at a 0.05 level.
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8n 156e 5n 156e 2n 156e
estimate SE estimate SE estimate SE

a 29.498 0.0098 29.722 0.0070 29.858 0.0062
b 0.903 0.3622 0.296 0.0827 0.434 0.0649
c 0.013 0.0034 0.002 0.0007 0.002 0.0004
v -0.181 0.0116 0.113 0.0067 0.060 0.0071
w 0.122 0.0114 0.154 0.0075 0.023 0.0076

0n 156e 2s 156e 5s 156e
estimate SE estimate SE estimate SE

a 29.916 0.0095 30.021 0.0086 30.040 0.0066
b 0.306 0.0572 0.277 0.0379 0.368 0.1766
c 0.001 0.0004 0.001 0.0003 0.015 0.0075
v -0.181 0.0116 0.113 0.0067 0.060 0.0071
w 0.122 0.0114 0.154 0.0075 0.023 0.0076

TABLE 4.1: Estimates and SEs of a, b, and c in (4.8) and v and w in (4.9).

4.4.2 Estimated Upper Bound

The GP model described in Section 4.3.3 fit to residual excess using the WPWP data

results in parameter estimates in (4.13) of (β̂0, β̂1, ξ̂) = (−1.587,−0.019,−0.154). The

sampling distributions of these estimators, as shown in Figure 4.3.3, obtained via resam-

pling, results in 95% confidence intervals of (−1.663,−1.509) for β0, (−0.031,−0.008) for

β1, and (−0.207,−0.109) for ξ. Figure 4.7 provides a diagnostic plot for checking the fit

of the model. The probability plot consists of the points

{(
Hξ̂,σ̂(u)(x(i)),

i

n + 1

)
: i = 1, . . . , n

}

where H is the GP distribution function given in (4.5) and x(1) ≤ . . . ≤ x(n) are the

ordered excesses from (4.13).
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FIGURE 4.7: GP fit to WPWP data assuming (4.13) using maximum likelihood estima-
tion.

The quantile plot consists of the points

{(
H−1

ξ̂,σ̂(u)

(
i

n + 1

)
, x(i)

)
: i = 1, . . . , n

}

The probability and quantile plots show that Hξ̂,σ̂(u) is a reasonable model if the points

lie close to the unit diagonal. This appears to be the case in Figure 4.7.

Assuming (4.13), and noting that ξ̂ < 0 is significantly different from 0, the SST upper

bound has the form

xF (s, t) = M + S + u− σ(s)
ξ

, (4.14)

where trend M , seasonality S, and thresholds u were given in (4.8), (4.9), and (4.12).

The estimated SST upper bound is obtained by replacing M , S, and (β0, β1, ξ) with their
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estimates. This estimated SST upper bound is shown in Figure 4.8 varying in space

(latitude) and time.
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FIGURE 4.8: Estimated upper bound using (4.14) is shown in red along with the limiting
upper bound from (4.15) in green. See Table 4.2. The solid black lines are constant
(= 32.1◦) for references.

The limiting SST upper bound is defined here as

xF (s, t) = lim sup
t

xF (s, t), (4.15)

becomes

u + a + c(v, w)− exp {β0 + β1s}
ξ

where c(v, w) maximizes v sin
(

2πt
365.25

)
+ w cos

(
2πt

365.25

)
. Note that be−ct → 0 as t → ∞.

The estimated limiting SST upper bound, x̂F (s, t), is shown in Figure 4.8, and is constant
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in time and increasing as we move south in latitude. These estimates are summarized in

Table 4.2.

Estimated Limiting SST Upper Bound

s 8 5 2 0 -2 -5

x̂F (s, t) 31.18 31.39 31.54 31.73 31.87 32.03

TABLE 4.2: Estimates of the limiting SST upper bound in (4.15).

4.5. Discussion and Conclusion

Rather than removing trend and seasonal components before modeling residual excess

above a threshold, trend and seasonal terms could have been included in the shape and

scale parameters of the GP distribution. For example, a constant threshold u could have

been used (or perhaps u = u(s)) along with a scale parameter of the form σ = σ(s, t) that

would have resulted in the same type of upper bound as in (4.14). A similar technique

was used in Katz et al (2002) using the GEV distribution for precipitation maxima.

The SST upper bound estimates summarized in Table 4.2 are comparable to the 31.85◦C

proposed originally proposed in Ramanathan and Collins (1991). While this work provides

evidence of the distribution of SSTs having a bounded tail, this analysis is done using a

very limited number of years worth of SST data in the WPWP, and so any inference as

to an SST upper bound is limited only to a small region of space and time.
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Since Ramanathan and Collins, maximum SST values have been suggested from 27-32◦C

(Wilson and Opdyke (1996)), 28-32◦C (Pearson et al (2001)), 30-33◦C (Wilson et al

(2002)), and 30.4◦C (Li et al (2000). However, temperatures derived from the paleon-

tological record provide conflicting evidence of a thermostat. In a multiple proxy and

model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentra-

tions, Bice et al (2006) obtain temperatures between 33 and 42◦C. The estimates obtained

in this work are obtained using extreme value theory, are are meant to compliment the

others mentioned above.

There is room for improving the GP model proposed here for modeling SST extremes

from which SST upper bound estimates are obtained. Incorporating cloud-SST feedback,

evaporation-wind-SST feedback, and ocean dynamics and heat transport (the three SST-

regulation mechanisms) into the model could result in a more accurate (albeit more com-

plex) spatial model from which an estimated SST upper bound could be obtained. Longer

SST time series along with measurements from more locations would also be beneficial.
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5. GENERAL CONCLUSIONS

The extreme value index (EVI) ξ links the generalized extreme value (GEV) distribution

(see (4.3)) and the generalized Pareto (GP) distribution (see (1.1)). These two distribu-

tions are fundamental in extreme value theory (EVT), with the GEV distribution being

the only possible non-degenerate limiting distribution of properly normalized maxima of

iid random variables, and the GP distribution appearing as the limit distribution of scaled

excesses over high thresholds.

A new family of estimators for ξ−1 = α, in the case ξ > 0, is given in (2.5). These esti-

mators include the popular Hill estimator (see (2.3)), an estimator obtained by matching

theoretical and empirical harmonic means (θ = 1 in (2.5)), as well as more robust estima-

tors of α (for example, (2.18)). Theoretical properties such as convergence in probability

(Theorem 2.2.1.1), asymptotic normality (Theorem 2.2.1.2), asymptotic contamination

breakdown point (Theorem 2.2.2.1), and gross error sensitivity (Theorem 2.2.2.2) are

developed in Chapter 2. The usefulness of the new harmonic moment estimators are

highlighted in Sections 2.3-2.5 through simulations and applications.

An estimator for ξ−1 = α > 0 is given in (3.9) in the case one is working with grouped

data. Existence and uniqueness of the estimator is given in Lemma 3.3.0.1. The focus of

Chapter 3 is on using this estimator in insurance applications when exact claim amounts

are unknown, but the number of claim amounts within certain intervals is known. The
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proposed estimator in this chapter is shown (Section 3.4) to be robust with respect to a

large class of distributions commonly used in modeling large insurance losses, and com-

pares favorably to the Hill estimator that uses individual data.

In Chapter 4 the thermostat hypothesis for sea surface temperature is considered by

investigated at the sign of ξ. A GP model that includes latitude and time as covariates is

used to obtain a sea surface temperature upper bound estimate of 31.2◦ − 32.0◦C in the

western Pacific warm pool. However, this result is based on a limited number of years of

SST data and only six different spatial locations. The three SST-regulation mechanisms

discussed are discussed in Section 4.1.1, which are not included in the GP model. The

methodology used in this chapter has the advantage over some others in that the dail SST

records were used, rather than monthly or yearly averages, where information on extremes

is lost. Also, extreme value theory is used to obtain upper bound estimates, rather than

regression or other methods that focus on expected values.
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