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Chapter 1: Introduction

The Kalman filter is named after Rudolph E. Kalman, who published his paper in 1960

[1] [2]. The filter is essentially a set of mathematical equations that implement a two

stage estimator built from a predictor and corrector [2]. This estimator is optimal in the

sense that it minimizes the estimated error covariance. The Kalman filter has proven to

be a useful tool for estimating the variables of a wide range of processes, including the

process variables used in system control [3] [4]. Although the filter is originally developed

for use in spacecraft navigation systems, it is now widely used in many other systems

including satellite navigation systems, computer vision applications, and object tracking

software [5] [6] [7].

This thesis is divided into three sections: discussion of a standard Kalman filter,

effect of nonlinear function on Gaussians, and discussion of an extended Kalman filter.
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Chapter 2: The Standard Kalman Filter

A linear system is simply a process that can be described by the following equations [3] [4].

State Equation:

xk+1 = Axk +Buk + wk (2.1)

Output Equation:

yk = Cxk + vk (2.2)

In the above equations, A, B, and C are constant matrices, k is the time index, x

is the state of the system, u is the input to the system, and y is the measured output.

The variables w and v are defined as the process noise and the measurement noise,

respectively. The noise variables are in vector format containing more than one element.

Although the x vector contains all of the information about the present states of the

system, only some states can be measured and those states have noise. The measured

states are the elements of y vector.

The Kalman filter algorithm involves two stages: a prediction stage and a measure-

ment update stage. The standard Kalman filter equations for the prediction stage are

shown in the following [8]:

Kk = PkC
T (CPkC

T +R)−1 (2.3)

x̂k+1 = (Ax̂k +Buk) +Kk(yk − Cx̂k) (2.4)

Pk+1 = A(I −KkC)PkA
T +Q (2.5)

Where P is the estimation error covariance, R is the measurement noise covariance,

K is the Kalman gain, and Q is the process noise covariance. Equations (2.3), (2.4), and

(2.5) are the Kalman gain, the state estimation, and the estimation error covariance.

Examination of (2.3) illustrates the adaptive nature of the filter, where the value of K
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determines the accuracy of the measurement. If the measurement noise is large, R will

be large, so K will be small, indicating a large error in the next estimate. On the other

hand, if the measurement noise is small, R will be small, K will be large and the next

estimate is more accurate.

The state estimation equation given in (2.4) consists of two terms. The first term,

used to derive the state estimate at time k + 1, is A times the state estimate at time k

plus B times the known input (disturbance) at time k. This value would be the state

estimate if the measurement is unavailable. The second term of (2.4) is the correction

term, representing the amount by which to correct the updated state estimate due to

the available measurement.



4

Chapter 3: The Effect of Nonlinear Function on Gaussians

When a Gaussian distribution is mapped through a linear function, the output is always

a Gaussian [9].

For example, a Gaussian distribution with mean x̄ and covariance σxx can be written

as below:

x ∼ N(x̄, σxx)

A linear transformation y = Ax+ b is used to determine whether an output is still a

Gaussian, as supported in the following proof:

The mean of y:

ȳ = E{y} = E{Ax+ b} = AE{x}+ b = Ax̄+ b

The covariance of y:

σyy , E{(y − ȳ)(y − ȳ)T }
= E{[(Ax+ b)− (Ax̄+ b)][(Ax+ b)− (Ax̄+ b)]T }

= E{[A(x− x̄)][A(x− x̄)]T }
= E{A(x− x̄)(x− x̄)TAT }
= AE{(x− x̄)(x− x̄)T }AT

= AσxxA
T

y is defined as:

y ∼ N(Ax̄+ b, AσxxA
T )

Since the standard Kalman filter is a linear system and it has a Gaussian distribution

in its noise, it is imperative that the Gaussian distribution be maintained from input to

output as stated and proved above [4]. For a linear system, this criteria is met. However

for a nonlinear system, the output is no longer Gaussian. Therefore, the standard Kalman

filter algorithm is less accurate due to the fact that the output is no longer Gaussian.
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μx

μy

Figure 3.1: This figure shows the effect of a linear transformation. A Gaussian distribu-
tion is maintained when it is mapped through a linear function.

This fundamental understand is very important for modelers because it separates those

who understand why and when to use the extended Kalman filter and those who don’t.

One solution to resolve this nonlinearity issue is to utilize local linearization, where

the basic concept is to take the best estimate value of a function and then linearize

around that best estimate, discussed further in the following section.



6

Chapter 4: The Extended Kalman Filter

4.1 Taylor Series Expansion

The key to nonlinear Kalman filtering is to expand the nonlinear terms of the system

equation in a Taylor series expansion [10] around a nominal point. A Taylor series

expansion of a nonlinear function can be written as [8]:

f(x) =
∞∑
n=0

f (n)(x̄)4 xn

n!
= f(x̄) + f ′(x̄)4 x+

f ′′(x̄)4 x2

2
+ ... (4.1)

Linearizing a function means expanding “first-order” Taylor series around some ex-

pansion point.

The first-order Taylor series expansion of a function f(x) is equal to:

f(x) ≈ f(x̄) + f ′(x̄)4 x (4.2)

This approximation is more accurate with smaller 4x.

4.2 The Linearized Kalman Filter

In the traditional linearized Kalman filter, a first-order Taylor series is used to expand

the state equation and output equation around a nominal state. The nominal state is a

function of time, so it’s sometimes called a trajectory. The nominal trajectory is based

on a guess of what the system behavior might look like. For example, if the system

equations represent the dynamics of an airplane, the nominal state might be the planned

flight trajectory. The actual flight trajectory may differ from the nominal trajectory

due to disturbances, and other factors. If the actual trajectory is close to the nominal

trajectory, the Taylor series linearization is reasonably accurate [8].

The linearized Kalman fiter can be derived using the concept of Taylor series. The

nonlinear system is matched to a linear system whose states represent the deviations from

a nominal trajectory of the nonlinear system. Then, the filter can be used to estimate
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the deviations from the nominal trajectory. This calculation indirectly gives an estimate

of the states of the nonlinear system. Below is a general nonlinear system model [8]:

State equation:

xk+1 = f(xk, uk) + wk (4.3)

Output equation:

yk = h(xk) + vk (4.4)

The state equation f(·) and the measurement h(·) are nonlinear functions. The

Taylor series linearization of the nonlinear system equation and output equations are

shown below [8]:

xk+1 = f(xk, uk) + wk ≈ f(x̄k, uk) + f ′(x̄k, uk)4 xk + wk (4.5)

yk = h(xk) + vk ≈ h(x̄k) + h′(x̄k)4 xk + vk (4.6)

4xk+1 = f ′(x̄k, uk)4 xk + wk (4.7)

4yk = h′(x̄k)4 xk + vk (4.8)

There are two important points to remember when using the linearized Kalman

filter [8]:

1. After the Kalman filter is used to estimate 4x, the estimate of 4x needs to be

added to the nominal state x̄ in order to get an estimate of the state x. This is

because 4x = x− x̄ [11].

2. If the true state x gets too far away from the nominal state x̄, then the linearized

Kalman filter will not give good results because neglected higher order terms be-

came more significant.
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4.3 The Extended Kalman Filter’s Algorithm

The traditional linearized Kalman filter derived above works for systems with a pre-

determined nominal trajectory. However, for systems where a nominal trajectory is not

known, this approach is not valid. An extended Kalman filter addresses this issue by

using an estimate of x as the nominal trajectory in the linearized Kalman filter [8].

Below is the extended Kalman filter’s algorithm [8]:

State equation:

xk+1 = f(xk, uk) + wk (4.9)

Output equation:

yk = h(xk) + vk (4.10)

At each time step, compute the following derivative matrices, evaluated at the current

state estimate:

Ak = f ′(x̂k, uk)

Ck = h′(x̂k)

Execute the following Kalman filter equations:

Kk = PkC
T
k (CkPkC

T
k +R)−1 (4.11)

x̂k+1 = f(x̂k, uk) +Kk(yk − h(x̂k)) (4.12)

Pk+1 = Ak(I −KkCk)PkA
T
k +Q (4.13)

4.4 The Extended Kalman Filter for a Motor State Estimation

To illustrate the use of the extended Kalman filter, a two-phase permanent magnet

synchronous motor is modeled, where the filter is used to estimate the speed and position

of the rotor by only using measurements of the motor voltages and currents [8] [12].
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The system equations are [8] [12]:

İa =
−R
L
Ia +

ωλ

L
sin(θ) +

ua +4ua
L

(4.14)

İb =
−R
L
Ib +

ωλ

L
cos(θ) +

ub +4ub
L

(4.15)

ω̇ =
−3λ

2J
Iasin(θ) +

3λ

2J
Ibcos(θ)−

Fω

J
+4α (4.16)

θ̇ = ω (4.17)

y =

[
Ia

Ib

]
+

[
va

vb

]
(4.18)

Nomenclature

Ia and Ib are the current in the two windings

θ is the angular position of the rotor

ω is the velocity of the rotor

R is the motor winding’s resistance

L is the motor winding’s inductance

λ is the flux constant of the motor

F is the coefficient of viscous friction that acts on the motor shaft and its load

J is the moment of inertia of the motor shaft and its load

ua and ub are the voltage that are applied across the two motor windings

4ua and 4ub are noise terms due to errors in ua and ub

4α is a noise term due to uncertainty in the load torque

y is the measurement.

The model assumes that the two winding currents can be measured. The measure-

ments are distorted by measurement noises va and vb, which are caused by events such

as electrical noise, and quantization errors in the microcontroller [8].

In order to apply the extended Kalman filter to the motor, first step is to define the

states of the system. If a variable is differentiated in the system equations, that quantity
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is a state. From (4.14)-(4.17), the system has four states and the state vector x can be

defined as:

x =


Ia

Ib

ω

θ

 (4.19)

xk+1 = f(xk, uk) + wk (4.20)

The system equation is obtained by “discretizing” the differential equations to obtain

(4.21) below where 4t is the step size used for estimation in the microcontroller or DSP.

xk+1 = xk + f(xk, uk)4 t+ wk 4 t (4.21)

xk+1 = xk +
−R
L xk(1) + λsinxk(4)

L xk(3) + 1
Luak

−R
L xk(2) + λcosxk(4)

L xk(3) + 1
Lubk

−3λsinxk(4)
2J xk(1) + 3λcosxk(4)

2J xk(2)− F
J xk(3)

xk(3)


∗ 4 t+
4uak
L
4ubk
L

4α
0

4 t

(4.22)

yk = h(xk) + vk (4.23)

y =

[
xk(1)

xk(2)

]
+

[
vak

vbk

]
(4.24)
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To use the filter, compute the derivatives of f(x̂k, uk) and h(x̂k) with respect to x̂k.

The vectors Ak and Ck as can be written as:

Ak = f ′(x̂k, uk) =


∂f1
∂x̂1

∂f1
∂x̂2

∂f1
∂x̂3

∂f1
∂x̂4

∂f2
∂x̂1

∂f2
∂x̂2

∂f2
∂x̂3

∂f2
∂x̂4

∂f3
∂x̂1

∂f3
∂x̂2

∂f3
∂x̂3

∂f3
∂x̂4

∂f4
∂x̂1

∂f4
∂x̂2

∂f4
∂x̂3

∂f4
∂x̂4

 (4.25)

Ck = h′(x̂k) (4.26)

Simulink Model

The Simulink model that illustrates the use of the extended Kalman filter for the

state estimation of a permanent magnet synchronous motor is shown in Fig. 4.1.

u

x

y

Random Process

y

u

xhat

EKF

u

Input

Figure 4.1: Simulink model of the extended Kalman filter. The Input represents the

voltages ua and ub. The Random Process represents the real states of the dynamic

system (Ia, Ib, ω, θ). For modeling purposes, noise is added to these real states to become

the measured states (Ia + vak, Ib + vbk) available to the extended Kalman filter. Finally,

the EKF represents the extended Kalman filter’s algorithm that estimates the system

states (Îa, Îb, ω̂, θ̂).

The subsystems of “Random Process” and “EKF” are shown in Figs. 4.7 and 4.8,

respectively.

In this example, phase a and b voltages are represented in a “Input” block. The input

vector u is then sent to the “Random Process” block and outputs: 1) a state matrix x

which consists of the true currents Ia & Ib, the true rotor speed ω, and the true rotor
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position θ, 2) an output state matrix y which is the measurement of the currents Ia &

Ib that contaminated by noise.

Inputs that go to the extended Kalman filter “EKF” block are voltage vector u and

measurement current vector y. The filter outputs the estimated state x̂ that contains the

estimation of the current Îa & Îb, the estimation of rotor speed ω̂, and the estimation of

rotor position θ̂.

Table 4.1 shows the motor’s parameters with their values used in the model. A normal

(Gaussian) distributed random signal with zero mean and 0.05A standard deviation is

used for the measurement noise.

Table 4.1: Motor’s Variables
Parameter Description Value

R Resistor 2 Ω

L Inductor 3 mH

J Moment of Inertia 2e-3 kgm2

F Coefficient of viscous friction 1e-3

ContNoise Std dev of uncertainty in control inputs 1 mA

MeasNoise Std dev of measurement noise 50 mA

dt Simulation time step 0.2 ms

dT Measurement time step 1 ms

Simulation Results

Figs. 4.2 and 4.3 show the real and measured currents Ia and Ib. The measurements

of currents Ia and Ib are noisy but they follow the dynamic of the real currents.
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Time (s)
0 0.5 1 1.5 2 2.5

Ia
 (

A
)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Motor Winding Current (Ia) 

True
Measured

Figure 4.2: Real and measured motor winding current (Ia). The standard deviation of

measurement noise is 0.05A.

Time (s)
0 0.5 1 1.5 2 2.5

Ib
 (

A
)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Motor Winding Current (Ib) 

True
Measured

Figure 4.3: Real and measured motor winding current (Ib).
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The unique aspect of this example is the rotor position and velocity can be estimated

and they accurately matched the true values as shown in Figs. 4.4 and 4.5 without using

an encoder. The Simulink model also adds an additional function to keep the rotor

position between 0 and 2π. This method is a good practice because it allows the rotor

position to display within one graph.

It should be noted that the assumption is the sense resistors are used and the extended

Kalman filter is running on a microcontroller. With this filter, money can be saved from

avoiding an encoder.

Time (s)
0 0.5 1 1.5 2 2.5

S
pe

ed
 (

ra
d/

s)

-10

-8

-6

-4

-2

0

2

4
Rotor Speed

True
Est0p01
Est0p05
Est0p07
Est0p1

Figure 4.4: This figure shows the real and estimated rotor speed with different measure-

ment noise. As the standard deviation of the measurement noise becomes larger, the

estimated rotor speed is less accurate. For example, 0p1 means the standard deviation

of the measurement noise is 0.1A.
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Time (s)
0 0.5 1 1.5 2 2.5

P
os

iti
on

 (
ra

d)

0

1

2

3

4

5

6

7
Rotor Position

True
Est0p01
Est0p05
Est0p07
Est0p1

Figure 4.5: This figure shows the real and estimated rotor position. The Simulink model

has a subsystem that keeps the rotor position between 0 and 2π. The estimation is less

accurate as the measurement noise is stronger.

Fig. 4.6 below shows the trace of estimation error covariance. This plot reflects the

accuracy of the measurement currents Ia and Ib. For example, Est0p01 represents the

trace of estimation error covariance when the standard deviation of the measurement

noise is set to 0.01A. The estimation error covariance is more severe when the mea-

surement becomes noisy. It is interesting to note that between 0.3 and 0.4 seconds, the

error is stronger because of a rapid change in the dynamic system. Meanwhile, when the

system approaches the steady state, the presence of the error is reduced.
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Table 4.2: The Comparison Between the two Filters
The Standard Kalman Filter The Extended Kalman Filter

Kalman Gain

Kk = PkC
T (CPkC

T +R)−1 Kk = PkC
T
k (CkPkC

T
k +R)−1

Update the Estimate via Measurement

x̂k+1 = (Ax̂k +Buk) +Kk(yk − Cx̂k) x̂k+1 = f(x̂k, uk) +Kk(yk − h(x̂k))

Update the Error Covariance

Pk+1 = A(I −KkC)PkA
T +Q Pk+1 = Ak(I −KkCk)PkA

T
k +Q

Time (s)
0 0.5 1 1.5 2 2.5

×106

-1

0

1

2

3

4

5

6

7
Trace of Estimation Error Covariance

Est0p01
Est0p05
Est0p07
Est0p1

Figure 4.6: This figure shows the trace of estimation error covariance. When the standard

deviation of the measurement noise is small (e.g., 0.01A), labeled Est0p01, the estimation

error is also small. On the other hand, if the standard deviation of the measurement

noise is large (e.g., 0.1A), the estimation error is large.

It is important to recognize the limitations of the extended Kalman filter. This filter

only works if the sample rate and the measurement noise are small enough. In other

words, if the measurement data is poor and the sample rate is too big, it is impossible

for the filter to estimate the system state accurately.
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1

x1

u

2

y

x

u

f

f(xk,uk)

1

z

dt

C* u

x_in x_out

Mod Operation 

for Rotor Angle 

dt

ZOH

Noise

System Noise

Noise

Measurement Noise

Figure 4.7: This figure shows the Simulink model of the random process. This block takes
input u which represents the a and b voltages and models both system and measurement
noise. The outputs of this system are the true system states x and the measurement
states y.
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1

xhat

1

y

2

u

1

z

xhat

u

f

f(xhatk,uk)
Matrix
Multiply

xhat f '

f'(xhatk,uk)

ZOH

ZOH xhat_in xhat_out

Mod Operation 

for Rotor Angle

dT

f ' Gain

Kalman Gain

xhat xhat1_xhat2

Ia_est and Ib_est

Figure 4.8: This figure shows the Simulink model of the extended Kalman filter’s algo-
rithm. This block needs to know the measurement of currents Ia & Ib and true voltages
ua & ub in order to estimate all the states of the system.

4.5 A Comparision Between the two Filters

Table 4.2 shows a comparison between the two filters. A standard Kalman filter is

transformed to an extended Kalman filter by:

• Kalman gain: Replaced C by Ck

• Update the estimated state: Replaced Ax̂k + Buk by f(x̂k, uk) and Cx̂k by

h(x̂k)

• Update the error covariance: Replaced A by Ak and C by Ck
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Chapter 5: Conclusion

This thesis provides an in-depth explanation to how each filter works and a practical

example of an electrical engineering application. A standard Kalman filter which was

originally developed in the 1960s is used for applications that the systems are linear.

On the other hand, most applications, including the example of the permanent magnet

synchronous motor, have nonlinear systems. Therefore, a standard Kalman filter is no

longer valid for these nonlinear systems. Due to a great need to work with nonlinear

systems, the standard Kalman filter is modified by applying a linearization method based

on a Taylor series expansion and this filter is then known as the extended Kalman filter.

Both filter algorithms can be coded in various platforms. The Simulink model is chosen

because it provides a great visualization to illustrate the real process and the filter itself.
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