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A MODIFICATION OF VETO LOGIC FOR A COMMITTEE OF
THRESHOLD LOGIC UNITS AND THE USE OF 2-CLASS

CLASSIFIERS FOR FUNCTION ESTIMATION

I. INTRODUCTION

In the late 50's and early 60's many people did research in

automatic pattern recognition, mainly investigating methods for build-

ing pattern classifiers from combinations of threshold logic units,

TLUs, and designing iterative algorithms for training the classifiers

(see, for instance, the bibliography at the end of [7] ). The most

notable success was the discovery of a convergent iterative algorithm

for training a single TLU to recognize all the patterns in a linearly

separable problem. The classifiers built from combinations of TLUs

were able to solve more complex problems than could be solved by a

single TLU, but the algorithms for training the classifiers--for the

most part extensions of the iterative algorithm for training a single

TLU--were not proven to converge to a solution when a solution

existed. Nilsson [24] gives a fairly complete and clear summary of

this re search.

Some research is still being done on the design of classifiers

from TLUs, leading occasionally to new techniques but more usually

to the modification or extension of known techniques. Kaminuma and

Watanabe [15], for instance, have modified and improved the iterative

algorithm for training a TLU; Chang [6] has generalized the structure
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of piecewise linear discriminant functions; and Mueller [23] has

improved Ridgway's [26] algorithm for training a committee of TLUs.

Extensions of the local adjustment algorithm for training a single TLU

to local adjustment algorithms for training a network of TLUs have

been given only under restrictive conditions. Francalangia [9] trains

networks at only a single level, and Holderman [12] needs to use a

global criterion to determine the adjustments to be made in response

to a misclassified pattern.

A single TLU and a network of TLUs are suitable for solving

2-class problems; and piecewise linear discriminant functions, for

solving many-class problems. By application of the theory of paired

comparisons, the use of 2-class classifiers has been extended to

include the solution of many class problems, but the use of classifiers

does not seem to have been extended to include the solution of prob-

lems of function estimation. There are, of course, many techniques

for function estimation, the most well-known being linear and non-

linear regression; all are unrelated to classification techniques.

Investigators have noted that the inputs to many pattern

recognition problems are binary [10] and that replacing non-binary

variables by binary variables can simultaneously increase recognition

rates and decrease storage requirements [30]. Replacing non-binary

by binary variables can greatly increase the number of variables

needed to describe a pattern, but the number can be decreased by
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using a method of feature selection, for instance that described in

[22]. Apparently no examples have been presented in the literature

in which the introduction of binary variables has enormously improved

the recognition rate of a classifier.
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II. CLASSIFICATION

2.1 The Problem of Classification

A doctor learns to diagnose the diseases of his patients; a

meteorologist learns to predict tomorrow's weather; we all learn to

recognize the letters of the alphabet, even when written by different

people in different scripts. These are examples of what is called

pattern recognition, and we would like to imitate the recognition

process on a general purpose digital computer.

If we wish to imitate a doctor, we might begin by describing

each patient as a vector in Rn. The first component of the vector

could be the number of heart beats per minute; the second, the weight

in pounds; the third, the temperature in degrees Fahrenheit; etc. We

collect the vectors of a large number of patients, place the vectors in

classes according to the diseases they represent, and index the

classes from one to the number of diseases p. Next we define a

family of functions, called classifiers, from Rn to {l, , If

X E Rn is a vector representing a patient with the i-th disease and

if f is one of the classifiers, then we say that f classifies X

correctly if f(X) = i. We try to write an algorithm to search the

family of classifiers for one that classifies a large percentage of

vectors correctly. Usually the family is infinite, the search is not
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exhaustive, and there is no guarantee that we will find the best

classifier.

We use the classifier we find to diagnose new patients. But if

the percentage classified correctly is not sufficiently high, we can

re-examine the imitations looking for ways to improve it. Perhaps

our description of a patient included misleading information, contained

many highly correlated pieces of information which then assumed a

disproportionate importance, or lacked necessary information.

Perhaps we encoded the information poorly, made the scale of some

components too large and other too small. Perhaps we tried to learn

from a collection of vectors that was too small or did not include

representative examples of all the diseases likely to be encountered in

patients. Perhaps the family of classifiers included no members

capable of classifying a large percentage of the vectors correctly, or

the search algorithm did not find the good classifiers that were

present.

We should realize that there is no single automatic technique for

solving all pattern recognition problems, that some problems are

trivially easy and others impossibly difficult. In this chapter we

restrict our attention to pattern recognition problems in which there

are two classes and use what is called a local adjustment algorithm to

search families of classifiers called networks of threshold logic units.

If we are able to solve 2-class problems, we can use a number of
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2-class classifiers simultaneously to solve an N-class problem. The

best way to use a number of 2-class classifiers to solve an N-class

problem is treated extensively in the statistical theory of paired com-

parisons.

2.2 Preliminaries

We begin by introducing some terminology.

2.2.1 Pattern, sample. A pattern, also called a sample, is a

point in Rn. A set of patterns will be denoted by the letter S.

2.2.2 Classifiers. A classifier is a function whose domain is

and whose range is a finite subset of the integers.

2.2.3 Response. The value of a classifier at a pattern is

called the classifier's response to the pattern.

2. 2. 4 Class. If Cl, C2, . ,C is a partition of S,

P
S= ...)\ C. and C. r- C. if i j,

. 1 1
.11=1

then C. is called the i-th class. The partition defines a function

on S called class, where

class(X) = i if X E C.
1
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When the partition consists of two classes, we denote the classes by

A and B and let

class(X) =
f-1 if X E A

+1 if X E B .

2.2.5 Correct, incorrect. The response of a classifier

a pattern X is correct if

f(X) = class(X),

otherwise it is incorrect.

2.2.6 Recognize, misclassify. A classifier recognizes a

pattern if the response is correct, otherwise it misclassifies the

pattern.

2.2.7 Recognition rate, error rate. The percentage of patterns

recognized is called the recognition rate, the percentage misclassified

the error rate.

2.2.8 Discriminant function. A discriminant function f is a

function whose domain is S and whose range is the real numbers R.

If S is partitioned into p classes and if dl, d2, ... ,d
P

are dis-

criminant functions, then for p > 2, a classifier f can be defined by

f(X) = max{i:d.(X) > d.(X) for all j with 1 < i, j < p }.

If p = 2, then f can be defined by



where
f(X) = sgn(d2(X)-di(X)),

if x < 0
sgn(X)

+1 if x > 0 .

8

As mentioned in Section 2.1 to imitate human pattern

recognition we need an algorithm to search the family of proposed

classifiers for a classifier with a high recognition rate. We now give

a formal definition of a local adjustment search algorithm and of some

related concepts.

2.2.9 Training sequence, training set. Let T be a finite

subset of S. A training sequence is a sequence

00Tx c M{(X., lass(Xii_o

where each X. is in T and each pattern in T appears infinitely

many times as a first component in the training sequence. T is

called a training set.

2. 2.10 Local adjustment algorithm. Let F be a family of

classifiers defined on S, let f E F, and let (X., class(X.)) be a

term of some training sequence. A local adjustment search algorithm,

or local adjustment algorithm for short, is a function h of the form

ch(f,X., class(X.)) = (f',
1,

X.
+1

, lass(Xj+1)), (2. 2. 1)
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cwheref' E F and (X1.
+1

, lass(X i+1 )) is the next term in the

training sequence.

Typically, the classifiers in the set F differ from each other

only in the values of some parameters. If Pf and Pf' denote the

tuples whose components are the parameters defining the classifiers

f and ft respectively, then a common strategy used in designing

the local adjustment algorithm of line (2. 2. 1) is to let

P f =

if f(X.) class(X.)
1 1

Pf .6(f, X., class(X.)) if f(X,) class(X.) ,

(2. 2. 2)

where A(f, X., class(X.)) is a tuple and is a function of f, X. and
1 i i

.class(X,) In other words, f' and f are equal if f classifies
i

X. correctly, otherwise f' is obtained from f by incrementing
1

the parameters of f. The tuple Ls(f, X., class(X.)) is chosen so that

f' either recognizes X. or will do so if the norm of

)A(f,Xi, class(X.) is increased sufficiently.

2.2.11 Local adjustment. The tuple A(f, Xi, class(Xi)) is

called a local adjustment to f due to Xi.

2.2.12 Classifier search sequence. Let TX be a training

sequence, f
0

E F, and h be a local adjustment algorithm. The

sequence

CSS(T ,f ) = ff. : (f., X., class(X.)) = h(f. , X. class(X. )) }ccX 0 1 1 1 1 1-1 1-1' 1-1 1=1
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is called a classifier search sequence.

2.2.13 Effective local adjustment algorithm. A local

adjustment algorithm is effective if for every pair (T
X

,f
0

) the

classifier search sequence CSS(T
X

,f
0

) converges in a finite number

of steps to a classifier recognizing all the patterns in T, provided

such a classifier exists. (We say a sequence converges in a finite

number of steps if for some N all terms after the N-th are

equal.)

2.2. 14 Minimal local adjustment algorithm. A local adjustment

algorithm is minimal if for every pair (T
X

,f
0

), where T is a

singleton set, CSS(T
X

,f
0

) converges in a finite number of steps to a

classifier recognizing the single pattern in T, provided such a

classifier exists.

When the local adjustment algorithm is defined by the equation

on line (2.2. 2), it is minimal if and only if for every pair (X, f0),

where X is a pattern and f
0

misclassifies X, a finite number

of successive local adjustments to f
0

due to X results in a

classifier recognizing X, provided such a classifier exists. As

successive adjustments due to X are not necessarily identical, the

effect of m successive local adjustments due to X is not

necessarily the same as a single local adjustment due to X multi-

plied by m.
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A heuristic consideration supporting the use of local adjustment

algorithms is that adjusting a classifier, i.e. , generating a new

classifier, in response to the demands of one pattern at a time results

in a classifier that satisfies the demands of a large number of patterns

simultaneously, where the demand of a pattern is that it be classified

correctly. In general it is very hard to determine whether a local

adjustment algorithm is effective) and for most of the numerous local

adjustment algorithms presented in the literature, it is not known if

they are effective, or it is known that they are not. It is considerably

easier to determine if a local adjustment algorithm is minimal; most

appear to be so, and we will show that the local adjustment algorithms

discussed in this chapter are minimal.

There are several rather similar effective local adjustment

algorithms for searching a family of classifiers called threshold logic

units, see Section 2.3 . When it is not known whether a local adjust-

ment algorithm is effective, its merits can be demonstrated by simu-

lating it on a digital computer. Even if a local adjustment algorithm is

effective, computer simulations can give information on how quickly

it converges and on how it performs when nc classifier in F is able

to recognize all the training patterns. Before the simulation begins,

a training sequence and initial classifier are defined. The computer

then generates some initial portion of the classifier search sequence

and computes the error rate on the training set for some of the
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classifiers generated. The error rate on subsets of S other than

the training set can also be computed. These other sets are called

test sets. Hopefully, the error rate decreases as the index of the

classifiers in the search sequence increases.

2.2. 15 Capacity, solution. A family of classifiers F has the

capacity to recognize a training set T if some classifier in F

recognizes all the patterns in T. Such a classifier is called a

solution.

2.3 Threshold Logic Units

If a set of patterns S is a subset of Rn, then every

hyperplane in Rn defines a 2-class classifier on S as follows:

assign all the patterns on one side of the hyperplane to the first class

and the remaining patterns to the second class. Analytically, the

classifier defined by a hyperplane can be described by the function

f(X) = sgn(X W-0),

where X is a pattern, W is in Rn, 0 is in R and the hyper-

plane is defined by the equation X W = 0. When the components of

each pattern are binary, such a classifier is easily realized by a

hardware device called a threshold logic unit, abbreviated TLU, see

Figure 2.3. 1 , and it has become a common practice to call the
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classifier a threshold logic unit also. The components of the pattern

are called inputs to the TLU, W a weight vector and 6 a threshold.

If each pattern X is augmented by an (n +l) -st component equal to

one to give a pattern X' and if W is augmented by an (n+1)-st

component -e to give a vector W', then

f'(X') = sgn(X' WI) = f(X), and the classifier determined by a hyper

plane in arbitrary position in Rn is equivalent to a classifier deter-

mined by a hyperplane through the origin in Rn+1. The TLU

corresponding to f' has n+1 inputs and a threshold of zero. For

notational reasons and, as we have just seen, without loss of generality

we now adopt the convention that the last component of all patterns is

one and that the threshold of all TLU's is zero. Hence, a TLU will be

completely defined by specifying its weight vector.

X, 0

X2 0

xn

pattern

w
2

weights summer threshold response

Figure 2.3.1. A threshold logic unit.
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A set of patterns is said to be linearly separable if there exists

a TLU recognizing every pattern. We now describe a well known local

adjustment algorithm for searching a family of TLUs [24]. Let TX

be an arbitrary training sequence defined on S, and let {

be a bounded sequence of positive numbers for which the sum of every

subsequence diverges. Prior to the first local adjustment let the

weight vector W be arbitrary, and let the i-th local adjustment

be defined by:

W - ciTLU(Xi)Xi if TLU(X.) class(X.)
W

if TLU(X.) = class(X.) ,

(2.3.1)

where TLU(X.) denotes the response of the TLU to X. prior to

the adjustment. Block [3] has shown that the algorithm is effective.

Previously a number of people had shown in different ways that the

algorithm is effective when c. = 1 for all i [2, 21, 27].

2.3.1 Certainty. The certainty of a TLU at X is defined as

X WI , where W is the weight vector defining the TLU

It is easy to show that the algorithm is minimal. Let W and

W' denote the weight vector before and after the i-th adjustment,

and suppose that X. is misclassified before the adjustment. If

=class(X.) -1, then
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WX. >0

and

X. = X. W c.X. X. < X. W.
1 1 1 1 1

If class(Xi) = +1, then

WX. < 0
1

and

X. W' = X. W + c.X. X. > X. W
1 1 1 1 1 1

In both cases the effect of an adjustment is either to change the

response of the TLU at Xi or to decrease the certainty of the TLU

at X.. As each c. is positive and the sum of the c. 's diverges,

the response of the TLU to a pattern is changed by a finite number of

successive adjustments to the TLU due to the pattern. What is

remarkable about the algorithm is that adjusting the TLU in response

to the patterns taken in an arbitrary and perhaps changing order is

sufficient to insure that the TLU eventually responds correctly to all

the patterns, provided of course that the problem is linearly separable

and there are a finite number of patterns.

We now outline an alternative method for finding the weight

vector of a TLU [10], [19]. Let E be some criterion, called the

error, which we wish to minimize. For instance,

E = E{(1)(X)} (2. 3. 2)
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.4)(X) = class(X)(1X WI class(X)X W)2/1117V.11 2 (2.3.3)

OX) = class(X)(class(X)-sgn(X W))2 , (2.3.4)

E is the expected value taken over all samples,

where

or

(w
1
, w2, wn-1 w.), and is a component of W. Now

is a function of W, and we can use a gradient technique to try to

find the value of W which minimizes E. If {c.}.
oo

1
is as

=1

described above and if the initial value of W is arbitrary, at the

i-th iteration let

aEw w c. aw w . (2. 3. 5)

If aw-P-E cannot be computed, an approximation can be used. When

is suitably restricted and the patterns are linearly separable, an

arbitrary weight vector W converges in a finite number of itera-

tions to a value which minimizes E [10]. Minimizing the criterion

defined on lines (2.3.2) and (2.3.3) minimizes the average squared

distance between misclassified patterns considered as points in Rn-1

(remember the n-th component of all patterns is one) and the hyper-

plane in R
n-1 defined by the vector W and constant -wn.

Minimizing the criterion defined on lines (2.3.2) and (2.3.4) minimizes

the number of samples misclassified.
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Each adjustment to W on line (2.3.5) is determined by all the

patterns simultaneously and is called a many-at-a-time adjustment.

Application of the local adjustment

w w ci w
(2. 3. 6)

once for each pattern X in S approximates a single many-at-a-

time adjustment, and hopefully convergence to a solution, i.e., to a

value of W which minimizes E, is more rapid using local

adjustments [19]. If

(1)(X) = class(X)1X WI X W, (2.3.7)

then the local adjustments on lines (2.3.1) and (2.3.6) are the

same [19].

When the patterns are not linearly separable, the methods of

adjustment described above may or may not yield a sequence of weight

vectors converging to a weight vector which is in some sense optimal,

e. g. , a weight which minimizes some error criterion. The danger to

avoid is that successive adjustments yield weight vectors whose

measure of goodness in terms of some criterion oscillates wildly.

The size of the oscillations can sometimes be reduced by properly
oochoosing the sequence {c.}. , for example by choosing a sequence

1.1=1

which converges to zero or in which c. is a function of X., X. W
1 1
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Euclidean norm. The size of the oscillations can sometimes be

reduced by periodically multiplying W by a scalar to keep the length

of W within some predetermined bounds. While the methods

employed to reduce oscillation may yield adjustment algorithms

deemed good on the basis of their performance in a number of pattern

recognition problems, only some of which are linearly separable, it

may not be known if the algorithms are effective. A few of the

algorithms proposed for iteratively adjusting a weight vector are

described in [8, 14, 15, 17, 28, 29, 31].

Mueller [23] gives a striking example of the effect of the
00sequence {c.}

1.1 =1
on the local adjustment algorithm of line (2.3. 1).

The example, illustrated in Figures 2.3.2" and 2.3.3, is from [23].

In each figure the letters a and b represent samples of classes

A and B respectively. The lines labeled H , Hi, H2, ... are

hyperplanes corresponding to a sequence of weight vectors

Wp, W1, W2, ... with W being the initial weight vector. The

problem is not linearly separable. Figure 2.3.2 shows the result of

using the adjustment of line (2. 3. 1) with c. 1 for all and

Figure 2.3.3 shows the result of using the same adjustment with

1
c (.= a+

py d2 Xi
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Figure 2.3.2. Local adjustment algorithm with ci = 1.
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where a, p and y are positive constants and d. = X. X.W. Duda

and Singleton [8] give another striking example (see Figure 2.3.4).

A TLU is trained on a set of linearly separable patterns using the

local adjustment algorithm of line (2. 3. 1). During training, 1/8th of

the adjustments are randomly made incorrectly, i.e. , class(X.)

.isreplaced by class(X.). This causes the recognition rate of the

TLU to oscillate wildly when c. = 1 for all i, but if the sequence
oo

{c.}. decreases, the recognition rate does not oscillate. If
1=1

1
is the sequence of weight vectors obtained by letting ci = 1

oofor all i and {A.}. is a sequence of weight vectors with
1=1

A. = W./i, then A = W1 , and A. can be obtained by succes-
J

j=1
sive adjustments to Al with c. (i-j+1)/i for j < i. It is for

oothe sequence of weight vectors {A.}.
1=1

that the recognition rate does

not oscillate.

The ease with which a TLU properly classifying every sample of

a linearly separable problem can be found is offset by the fact that

generally only a small fraction of the possible dichotomies of a set

can be realized by a TLU. In particular, let S be a set of p

patterns each with binary components and with the last component

constantly one. Nilsson [24] has shown that the fraction of all possible

dichotomies that are linearly separable is



F(p, n

n+11-p p-1E ( ) if p >n
i

i=0

if p <n .
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As the number of samples is usually much larger than the dimension

of the space, F(p, n) is usually about zero. Problems that are not

linearly separable can sometimes be made so by changing the system

of variables to include not only the original variables but new vari-

ables which are functions of the original variables [20].

Despite these limitations, threshold logic units have been

widely used. Even when a problem is not linearly separable, a TLU

may be used as a classifier, the disadvantage of errors in classifica-

tion being offset by the simplicity of the device. Rosenblatt [27]

investigated networks of TLUs as a model of brain functioning, the

adjustment technique of line (2. 3. 1) being considered a possible model

of learning. Further, the ease with which a TLU may be realized as

a hardware device has added to its importance historically, and some

people have built complex networks of TLUs [5], although most

investigators prefer to simulate networks of TLUs on digital com-

puters.
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2.4 Networks of TLUs

If a TLU is used as a classifier in a 2-class problem which is

not linearly sepable, some patterns are misclassified. As indicated

in the last section, the addition of new variables may make the prob-

lem linearly separable or at least reduce the number of samples

misclassified. Alternatively, a more powerful classifier may be

obtained by combining several TLUs in a network similar to that

shown in Figure 2.4.1 [24], where each circle represents a TLU,

and where there are no loops in the network, i.e., directed paths in

the network that begin and end at the same TLU. The number of TLUs

and the way in which they are interconnected can be varied. The

inputs to each TLU consist of a subset of the original variables, a

subset of the responses of the other TLUs in the network, plus the

constant one. Only the last TLU in the network needs to have a

threshold element.

Given a 2-class problem, the question naturally arises whether

there exists a network recognizing all the patterns in the problem.

Figure 2.4.2 indicates a network capable of realizing any Boolean

function of n-1 binary variables [20]. Each of the 2n-1 TLUs in

the first layer corresponds to one of the distinct (n-1)-tuples with

components chosen from the set {-1, 1}. For a pattern X. whose

first n-1 components are chosen from the set {-1, 1} and whose
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n -th component is the constant one, the weight vector W, of the

i-th threshold logic unit TLUi is defined by

x, . if j 1, . . . n-1
13

W..
-n+ 1 if j = n

so that
-1 if X Y x.

1
(TLU. X) = sgn(X Wi) =

+1 if X = X.
I

.

The components of the weight vector V of the threshold logic unit

TLU
V

in the second layer depend on the problem, and

v.

isX. i in A

isX. i in B

if i= 2n 1 + 1 ,

where the union of the disjoint sets A and B contains the 2n-1

possible patterns. The response of the networks to a pattern in A

is -1 and to a pattern in B is +1, so the network classifies

every sample correctly.

For patterns whose components can be any real numbers,

Ablow and Kaylor [16] have shown how to construct a two layered net-

work capable of performing an indicated dichotomy of a finite set of

patterns S. In the construction both the first and second layer depend

on the problem; the first layer may contain as many TLUs as there
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are patterns in S, and the second layer contains a single TLU.

Each of the TLUs in the first layer has a threshold element, so that

each responds either -1 or +1 to a pattern.

The network of Figure 2.4.2 is suggestive of the conjunctive

normal form of a Boolean function, and generally is not the optimum

realization of a 2-class classifier, where an optimum network is one

for which the number of inputs summed over all the TLUs is minimum.

For any particular problem there may be many better networks con-

taining more than two layers. There is no known algorithm for find-

ing an optimum network for problems that are not linearly separable,

nor are there algorithms that are known to be effective for training a

network. Minsky and Papert [20], who prove so many interesting and

elegant theorems about a single TLU, consider networks of TLUs to

be "monsters of vacuous generality" for which theoretical exposition

of behavior is impossible. Nevertheless there has been some success

in designing and training useful networks of TLUs (we do not consider

the constructions just mentioned to be useful), but the networks and

the adjustment algorithms proposed are quite restricted.

Nilsson [24] surveys the techniques knk_ Arn in 1965 for designing

and training networks. Research since then has improved and

extended these techniques, for instance [6, 9, 12, 23].

Given an arbitrary network and an arbitrary 2-class problem,

one scheme for training the network is to find a natural extension of
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the local adjustment algorithms used to train a single TLU. Such an

extension might converge in a finite number of steps to a solution

whenever a solution exists and to a configuration with a low percentage

of error whenever a solution does not exist. Here is a rather obvious

extension of the local adjustment algorithm used to train a single

TLU: If a pattern is classified correctly by the network, leave the

weights of the TLUs in the network unchanged. If a pattern is mis

classified, either adjust the weight of the last TLU in the network, in

the manner described on line (2. 3. 1) or (2.3.6), or adjust the weights

of one or more of the last TLU Is predecessor, or do both, where we

call TLU1 a predecessor of TLU
2

if the response of TLU
1

is an

input to TLU2. If a predecessor to the last TLU is to be adjusted,

this too is done in the manner described on line (2.3.1) or (2.3.6).

Alternatively, instead of adjusting the weight vector of the predecessor,

we can adjust the predecessor's predecessors, and so on. There are

numerous small variations, but whatever the precise scheme of

adjustment, the idea is to change the weights in the network so that a

finite number of adjustments to the network due to a pattern changes

the response of the network to the pattern, a happens with a single

TLU. The fact that this rather obvious scheme for adjusting a network

is not described in the literature raises the suspicion that perhaps it

does not work well, and as we shall see shortly, it does not.
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We now describe in detail a local adjustment algorithm of the

type we have been discussing. We begin with some definitions.

2.4.1 Initial TLU. A TLU all of whose inputs are components

of a pattern is called an initial TLU.

2.4.2 Response. Let X be the input to some network; let

W be the weight of some threshold logic unit TLU0 in the network;

let Y. = (yryz, . ,ym) be the inputs to TLU0, where for

i = 1, ...,m-1, yi is a component of X or the response of a

predecessor of TLU
0 rnand where = 1. The response of TLU0

to X is

{TLU
0

(X) =
W if TLU has no threshold element

sgn(Yx W) if TLUo has a threshold element.

The response of the network to X, denoted NET(X), is the

response of the last TLU in the network to X.

2. 4. 3 Certainty. The certainty of TLU0 at X is I Yx WI

2.4.4 Rank. The rank of an initial TL J is one. The rank of

any other TLU is one larger than the rank of its highest ranking

predecessor.

2.4.5 Local adjustment. Let W be the weight vector of



30

TLUo. Let

P = {TLU : TLU is a predecessor of TLU0 and changing

the sign of TLU(X) reduces the certainty of TLU0

at X or changes the sign of TLU0(X) } .

If P = a local adjustment to TLU0 due to X is said to be of

the first type and is a change in W defined by

W W c sgn(Yx W)Yx (2.4.1)

where c > 0 is a constant. If P 4, then a local adjustment to

TLU
0

due to X is said to be of the second type and is a local

adjustment to that member of P that is least certain.

A local adjustment to a network due to X leaves all the

weights in the network unchanged if NET(X) = class(X), otherwise

it consists of a local adjustment, as just described, to the last TLU

in the network.

2.4.6 Antecedent. TLU
1

is an antecedent of TLU2 if it is a

predecessor of TLU
2

or if it is the antecedent of a predecessor of

TLU2.

2.4.7 Simple network. A network is simple if no threshold

logic unit has predecessors which are antecedents of each other or

which have common antecedents.



We now prove that the local adjustment algorithm described in

Definition 2.4.5 is minimal when applied to a simple network.

Go2. 4. 8 Theorem. Let {c.}.
1=1
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be a sequence of positive num-

bers for which the sum of every subsequence diverges. Then after a

finite number of local adjustments to a simple network due to X,

with the constant c = c. on the i-th adjustment, the network

recognizes X.

Proof. Let X be given; let TLU0 be some threshold logic
, oounit in the network; let {cl.co be a subsequence of ic}. with

1 =1 i 1=11

c = c! on the i-th adjustment to TLUo Let
1

Yx = (yii, yi2, , yim) be the input vector to TLU0,

W,
1

= (wit, ,wi2 ...,w. ) be the weight vector of TLU , and P.im 0 1

be the value of P, see Definition 2.4.5, after the i-th adjust-

ment to TLU
0

due to X.

If the i-th adjustment to TLU0 is of the first type, then

(2. 4. 2)Y= Y ,
X X

i-1

i -1 i-1
= c. sgn Y (2. 4. 3)

X

i 1YX Wi = Y
X

W.

i- i-
= YX

l
W.1-1

1
W. )- sgn(Y

X -1 X YX
1 (2. 4. 4)



and the sign of TLU1(X) is changed or the certainty is reduced by

the amount

i-1 i-1 > c' .c!Y Y
X X
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(2. 4. 5)

We now prove by induction on the rank of TLU0 that

(i) an adjustment to TLU
0

changes the sign of TLU
0
(X) or

does not increase the certainty of TLU
0

at X, and

(ii) after some undetermined but finite number of adjustments to

TLUo, the sign of TLUo(X) changes.

The theorem is an immediate consequence of condition (ii).

Suppose the rank of TLU
0

is one. Then every adjustment is of
oo

the first type, and c.' = 00 and lines (2.4.2) to (2.4.5) imply that
i =1

conditions (i) and (ii) are true.

Suppose that (i) and (ii) are true whenever the rank of TLU0 is

less than n, and suppose the rank of TLU0 is n. We now show

that (i) is true. If the i-th adjustment is of the second type, then it

involves a predecessor of TLU0 call it TLU1,

and assume WLOG, i.e., without loss of generality, that the response

of TLU
1

is the first component of the input vector to TLUo As the

rank of TLU
1

is less than the rank of TLU0, condition (i) holds for

TLU
1,

and after the i-th adjustment to TLU0,

I Yu < l Yi_ 1, 11 or sgn(Yil) sgri(Yi-1, 1) (2. 4. 6)



As the network is simple,

for j = 2, ...,m,Yij Yi- 1, j

and as the adjustment is of the second type,

W. = W. .
L

Wi
®1

(2.

(2.

4.

4.
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7)

8)

TLU
1

is in P i- 1 because changing the sign of the product

.Yi- 1, 1 w 1-1, 1 decreases the magnitude or changes the sign of
i- 1

Y
X

W
1.

. Decreasing the magnitude of the product-1

w.yi- 1, 1 1-1, 1 also decreases the magnitude or changes the sign of
i- 1

L

Y
X

W.
-1 . Hence, by lines (2.4.6) to (2.4.8),

or

sgn(Yxi

Y
1-1

W.
X 1-

i) sgn(Yx1 Wi_i) .

(2.4. 9)

Condition (i) now follows from lines (2.4.2) through (2.4.5) and from

line (2. 4. 9).

We now show that (ii) is true. If the i-th adjustment is of the

second type, involving the predecessor TLUi, then the adjustment

does not increase the certainty of TLU1 or it changes the sign of

TLU 1(X); and because of the simplicity of the network, the adjust-

ment has no effect on the response of any other predecessor of TLUo



Hence,

P.P.=
1 1

or P. = P. -1 ....{TLU
1

}
1- 1

As the rank of every predecessor of TLU
0

is less than

34

(2.4.10)

n, after a

finite number of successive adjustments of the second type, (1) the

sign of TLU0(X) will change, or (2) P will be empty, and there will

be an adjustment of the first type. Suppose that none of the adjust-

ments to TLU0, up to and including the i-th adjustment, changes

the sign of TLU0(X). None of these adjustments of the second type

increases the certainty of TLU0, and all of the first type decrease

the certainty by an amount at least as large as c', where j is the

index of the adjustment, see lines (2.4.2) to (2.4.5). As there can be

only a finite number of adjustments of the second type before there is
ooone of the first type and as the sum of every subsequence of fc.},
1=1

diverges, the sign of TLU0(X) changes after a finite number of

adjustments. This proves (ii) and the theorem. 0

As the following example illustrates, if the network is not

simple, we can no longer prove Theorem 2.4.8. Figure 2.4.3 illus-

trates two states of a network of three threshold logic units, labeled

TLU0, TLU1 and TLU2. The input to TLU2 is a pattern X with

two components; the inputs to TLUi are TLU 2(X) and the constant

one; and the inputs to TLU are in this order TLU 2(X), TLU 1(X)
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W
1

= (-1, 0)

Part (a)

W
1

= (-1, 0)

Figure 2.4. 3. An oscillating network.
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and the constant one. Let W0, W1 and W2 denote the weight

vectors of TLUo, TLU/ and TLU2 respectively. Suppose that, in

the sequence {c.}. ci = 1 for all i and that we wish to train

the network to respond with a +1 to X = (1, 1). If the initial values

of the weight vectors are WO = (1, 1, -1), Wi = (-1,0) and W2 = (1,0),

the response of the network to X is -1, see part (a) of Figure

2.4.3. An adjustment to the network due to X is an adjustment to

TLUO, is of the second type and involves TLUi. An adjustment to

T LU
1

is also of the second type and involves TLU2. An adjustment

to TLUz is of the first type; after the adjustment, W2 = (0, -1); and

the response of the network to X is still -1, see part (b) of Fig-

ure 2.4.3. A second adjustment to the network due to X again

results in an adjustment of the first type to TLU2; after the adjust

ment, W2 = (1,0); and the response of the network to X is -1,

see part (a) of Figure 2.4.3. So we see that, no matter how many

adjustments are made, the response of the network to X will never

be +1.

Even if a network is simple, the local adjustment algorithm,

though appearing reasonable, is not satisfactory. In Section 5.1 we

will describe the results of computer simulations of the algorithm on

a two-layered network in which there were three TLU's in the first

layer. As the performance of the algorithm was unsatisfactory, it

seemed pointless to perform simulations on more complex networks.
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In a seminar on pattern recognition conducted at Oregon State

University in the spring of 1971, two modifications of the local adjust-

ment algorithm were also found to be unsatisfactory. (It is misleading

to call the algorithms tested in the spring of 1971 modifications of the

algorithm described here as they predated this algorithm.) In both

modifications an adjustment to a TLU consisted of:

(1) a change in the TLU `s weight vector as defined on line

(2.4.1), and

(2) if the response of the TLU was not changed by the adjust-

ment, then the set P, see Definition 2.4.5, was deter-

mined and in the case of the first modification the least

certain element of P was adjusted, while in the case of

the second modification all the elements of P were

adjusted.

A local adjustment to a network due to X left all the weights

in the network unchanged if NET(X) = class(X), otherwise, it con-

sisted of a local adjustment, as just described, to the last TLU in the

network. If a network is simple, both modifications are minimal.

2.5 Committee Machines

It is probably because of difficulties like those described in

Section 2.4 that a particularly simple type of network, called a

committee, has received attention. A committee has an arbitrary
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number of initial TLUs, each with a threshold element so that its

response to a pattern is -1 or +1, and a final TLU whose inputs

are the responses of the initial TLUs plus, of course, the constant

one. The network of Figure 2.4.2 is an example of a committee; and

as we saw in Section 2.4, every two class problem containing a finite

number of patterns can be solved by some committee, although con-

taining perhaps as many initial TLUs as there are patterns. The

initial TLUs are called committee members, and the response of each

member is called its vote. The final TLU is called the vote-taking

TLU, and its weight vector determines what is called the logic of the

committee.

Committees can be trained using a local adjustment algorithm.

The logic is fixed beforehand, and the weights of the committee mem-

bers are adjusted during training. The actual scheme of adjustment

depends on the logic of the committee. Although a training algorithm

would be potentially more powerful if the logic could also be changed

in some beneficial way during training, there do not seem to be any

algorithms described in the literature for doing this, perhaps because

of the difficulties encountered in using the local adjustment algorithm

of Definition 2.4.5.

Given a 2-class problem the question arises as to what will be

the logic of the committee of minimum size recognizing all the pat-

terns in the problem. Kaylor [16] conjectures that if the components
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of each pattern are binary, among the committees of minimum size

there is one called a majority committee. The logic of a majority

committee is defined by letting the components of the weight vector of

the vote-taking TLU be

1 if i = 1, ... p
v. =-

1.

0 if i p+1
(2. 5. 1)

where for this and all committees the i-th input to the vote-taking

TLU is the response of a member if i = 1, ...,p and the constant

one if i = p+1. The response of a majority committee is +1 if

and only if the response of at least half of the members is +1.

Mueller [23] shows that, if the patterns do not have binary components,

Kaylor 's conjecture is false: he exhibits a problem which can be

solved by a three member veto committee, but not by a three member

majority committee. On a veto committee, the components of the

weight vector V of the vote taking TLU are

(2. 5. 2)

so that the response of a veto committee is +1 if and only if the

response of each member is +1.

Because in later sections we will present a new logic for a

committee and a local adjustment algorithm for training it, for
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contrast we now describe two local adjustment algorithms due to

Ridgway [26], the first for training a majority committee, and the

second for training a veto committee. We need only define the local

adjustment used in each case. Denote the i-th member of the com-

mittee by MMBRi, its weight vector by W., and its response to a

where i = 1, ,p andpattern X by MMBRi(X), or by yi,

p is the number of committee members. Let Yx = (y1, y2, ..., yp,1)

be the input to the vote-taking TLU and COM(X) denote the response

of the committee to X.

2.5.1 Local adjustment to a majority committee. A local

adjustment to a majority committee due to X is defined as follows.

If COM(X) = class(X), none of the weights in the network are

changed. If COM(X) 1 class(X), let

MMBR.
,MMBR. , , MMBR. be the committee members whose

11 12 1

q
response to X is the same as that of the committee, and assume

WLOG that X W. I < X W. I j = 1, , q-1. Let k be the
1. li+1

smallest integer such that changing the responses of

MMBR. ,MMBR. , - , MMBR.
11

12
k

mittee. For j = 1, , k let

changes the response of the com-

W. W. c MMBR. (X)X,
1. 1. 1.
J 3 3

where c > 0 is a constant. The weights of the remaining

(2. 5. 3)
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committee members are unchanged.

The local adjustment algorithm defined by Definition 2.5.1 is

minimal. If COM(X) class(X), then a local adjustment to a

majority committee due to X either changes the sign of MMBR. (X)
3

or decreases I X. W. I for j = 1, , k. Neither the response
1.

of a majority committee nor its certainty, defined as IYx..VI, is

necessarily changed by a single adjustment due to X; however, after

a finite number of adjustments, the responses of individual committee

member s change, 1 Y v 1 decreases, and eventually the response

of the committee to X changes.

2.5.2 Local adjustment to a veto committee.. A local adjust-

ment to a veto committee due to X is defined as follows. If

COM(X) = class(X), none of the weights in the network are changed.

If COM(X) class(X), let MMBR. ,MMBR. . ,MMBR.
12

1

described in Definition 2.5.1. If COM(X) = +1, let

W W. c MMBR. (X)X,W.
1

be as

(2. 5. 4)

with c > 0, and let the weights of the remaining committee mem-

bers be unchanged. If COM(X) = -1, for j = 1, ...,q let

W. a W. c MMBR. (X)X, (2. 5. 5)
1. 1. I.

3
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and let the weights of the remaining members be unchanged. On

lines (2.5.4) and (2.5.5), c is a positive constant.

The local adjustment algorithm defined by Definition 2.5.2 is

minimal. If COM(X) I class(X) and COM(X) = +1, successive

adjustments due to X are to MMBR. and after a finite number
11

of adjustments, the response of MMBR. changes from +1 to -1
1

and so does the response of the committee. If COM(X) I class(X)

and COM(X) = -1, after a finite number of successive adjustments

due to XX,MMBR. (X) +1, j = 1, ... , q, and COM(X) = +1.
1.

Note that in both algorithms the number of committee members

is determined before training begins, and there is no provision for

changing the number of committee members during training. If the

committee has too few members, the committee is not able to

recognize all the patterns. Even if the committee has the minimum

number of members needed to solve the problem, there are instances

in which the adjustment algorithms above do not yield a solution [24].

Experience also shows that the training is more likely to converge to

a solution if the number of members is larger than the minimum

number needed [24]. For a given problem, however, there is no way

of knowing in advance how many members to place on the committee.
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2.6 Modified Veto Committee

In this section we describe a new logic for a committee called

modified veto logic. The choice of the name and the meaning will

become clear as we proceed.

2. 6. 1 Modified veto logic. For an arbitrary partition of the

set {v. v. a component of V and i = 1, into two subsets,

where p is the number of committee members, we say that the

component vl and all components in the same subset as vl are

of the first type and the remaining components are of the second type.

For i = 1, ,p let

and let

v. =

R. = {v. j < i and v. is of the first type},

T. = {v. j < i and v. is of the second type},
1

if i = 1

1 + E v. if v. is of the first type (2. 6. 1)
v. T. 3

J 1

v. if v. is of the second type ,
V. E R.

3 1

i.e. for i > 1, if v. is of the first type, its value is one larger

than the sum of all v., j < i, of the second type; and if v. is of
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the second type, its value is equal to the sum of all v., j < i, of the

first type. The last component of V is

v v. v. .p+1 j

v. E T v. ER
J p J P

For example, if there are five committee members with every second

one, starting with the first, of the first type, then V = (1, 1, 2, 3, 5, -4).

2. 6. 2 Ignored. We say that the response of a committee mem-

ber is ignored if the response is +1 and the member is of the first

type or if the response is -1 and the member is of the second type,

where the type of MMBRi is defined to be the type of v..

Then

2. 6. 3 Theorem. Given a modified veto committee, let

= max{i: i = 0 or MMBRi(X) is not ignored}.

+1 if = 0
COM(X) =

(MMBR., X) if i' 0 .

Proof. For a pattern X let

Xk= max{i: = 0, or MMBR.( ) is of the first type and

not ignored},



and let

= max{i:i = 0, or MMBRA ) is of the second type and

not ignored }.

The value of COM(X) depends on the value of

Y X V = + vi vi

i=1 V. E T v. E R
J p p

(1+y.)v. + (y.-1)v.
3 3 J

V. E T v, ER
J p J p
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(2. 6. 2)

Note that on line (2. 6.2) each term of the first sum is 2v, or zero

and of the second sum zero or -2v. as y.

respectively. Also note that v. > 0 for
J®

If k > f, then by line (2. 6. 2)

j =

Yx V < (1+y.J )v.
J

+ (y.J -1)v.

v. E T v. ER
k 3 p

V. E T
j k

is +1 or

1, ... p.

as j > k and . of the second type
v3

imply j >I and = -1
y3

(1+y.)v.
J

- Zvk

as each term of the second sum is less



than or equal to zero, as yk = -1 and

as

2v. - 2v
k

v. E T
3 k

vk E Rp

as 1+y. <2
J

< 2v - 2(1+ v. )

v. E T v. E T
3 k 3 k

by line (2. 6. 1)

< -2 .

Hence, COM(X) = -1. As i' = k, MMBR.,(X) = -1 also.

If k < 1, then by line (2. 6. 2)

YX
V > / (1+y)v. +

J J
v. E T

J p

2u1 -

as

V. E R
/

j

(y.-1)v.

and v. of the first type

imply 3 >k and
y

. = +1.
J

2v,

V. E R
J /

as each term of the first sum is greater

than or equal to zero, as y1 = +1 and

as v E Tp
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> 2 v. 2v.
J J

V. E R V. E R
/ /

by line (2. 6. 1)

> 0.
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Hence, COM(X) = +1. As = f, MMBR.,(X) = +1 also.

If k = Q = 0, then for all v. of the first type
YJ .

+1, for all

v. of the second type
y

= -1, and by line (2. 6. 2) Yx V = 0.

Hence COM(X) = +1.

2.6.4 Member making the decision. If 0 in Theorem

2.6.3, then MMBR., is said to be the member making the decision.

If = 0, the decision is said to be made by default, and we make

the convention that the decision is made by a non-existent member,

MMBR0, of the second type whose response to all patterns is +1.

Stated informally, Theorem 2. 6. 3 says that responses of +1

by committee members of the first type and -1 by committee mem-

bers of the second type are ignored. The response of the committee

is the last response not ignored. If all responses are ignored, the

response of the committee is +1. Thought of in another way, some

members vote YES or abstain and others vote NO or abstain. If all

abstain, the committee decides YES, otherwise the vote of the highest

ranking, i.e., highest index, member prevails.
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2.7 Capacity of Modified Veto Committee

In this section we show that any 2-class problem containing a

finite number of patterns whose components are binary can be solved

by a modified veto committee. First we prove the result for a veto

committee. For a veto committee, the result is so obvious that

undoubtedly many people have proved it before, and the proof is

included here only because it does not seem to be in the literature.

The proof is constructive and the number of committee members

equals the number of samples in the first class, even if many fewer

members would be sufficient.

2.7.1 Lemma. Let S be a set of patterns whose components

are ±1, let A n B = d and A v B S, and let p equal the

number of elements in A. Then there exists a veto committee of p

members such that

-1 if X is in A
COM(X) =

+1 if X is in B.

Proof. Let X. = (x.
1 1' 1

x. 2' xin)
i = 1, . , p, be the

distinct patterns in A, and let W. = (w w. , ,w. )il 12 in

weight vector of MMBRi, where

be the



and

-x.. if j = 1, . . . , n-1
13

w.. =-
13 n-2 if j = n .

If X = then
I

X °IV,. = n.-2 +
1

n-1

j=1

-x2 < 0.ij

If X I X., there exists k, 1 < k < p, such that

i.e., xk = -x ,ik

*AAT. = n-2 +
I

n-1

j=1

- X X

k-1

> n-2 +(

>

Hence for all i = 1, p,

and

J 13

2

13

2+ xk +.

j=k+1

MMBR.(X) =
-I 1 if X = X.

i
1

+1 if X V X.
i

=

-1 if X E A
COM(X)

+1 if X E B .

49
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The name modified veto logic is suggested by the following

consideration. If a modified veto committee has q members of the

first type and if the members of the second type respond -1 to each

pattern, then the committee is equivalent to a committee containing

just the q members of the first type and voting by veto logic. If,

on the other hand, members of the first type respond +1 to all pat-

terns, the committee responds +1 regardless of the responses of

the members of the second type.

2. 7.2 Lemma. If T
p

logic are the same.

then modified veto logic and veto

Proof. As T = 4, then by line (2. 6. 1)

if i = 1, ...,p

if i = p+1

which is the definition of veto logic.

2.7.3 Theorem. Let S be a finite set of patterns whose

components are ±1, let A rm B= 4 and A e...) B= S, and let

p equal the number of elements in A. Then there exists a modified

veto committee with p members such that

COM(X) =
{ +1 if X is in B .

-1 if X is in A
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Proof. The theorem is an immediate consequence of Lemmas

2. 7. 1 and 2. 7. 2.

2. 8 An Informal Description of a Local Adjustment Algorithm
for Training a Modified Veto Committee

In this section we describe an intuitively appealing local

adjustment algorithm for training a modified veto committee. In

broad outline, the algorithm is as follows: Before training begins, a

training sequence is defined, and the committee starts with a single

member of the first type, whose weight vector is

W 1 (wl 1, w12 w1n)' where

0 if j = 1, . , n-1
w . =lj

1 if j = n.

For any pattern X, X W1 = 1, MMBR 1(X) = +1, the response is

ignored as MMBR1 is of the first type, the decision is made by

default, and COM(X) = +1. The committee classifies all the patterns

in class B correctly and misclassifies all the patterns in class A.

After many local adjustments to MMBR1 of the type described on

line (2. 3. 1), MMBR1 and hence the committee recognizes all the

patterns in the problem, or the recognition rate of MMBR1 stops

improving. In the latter instance further adjustment to MMBR1 is

pointless, and a new member is added to the committee.
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Assuming that we have reached a point where there are i 1

committee members, that patterns are still misclassified, and that

further adjustments to the committee do not improve the recognition

rate, we add a new member, MMBR., to specialize in responding

to those patterns misclassified while ignoring those already classified

correctly. If MMBR1 is of the first type, the components of Wi

are initially

if j = 1, ..., n-1
w,. =

1 if j = n

MMBR.( X) = +1 for every pattern X, the response is ignored, and

the response of the committee to X is unchanged. Local adjust-

ments to MMBR. of the type described on line (2.3.1) due to pat

terns in A still misclassified by the committee increase the

recognition rate for patterns in A while perhaps causing some

patterns in B previously classified correctly to be misclassified.

Any attempt to adjust MMBRi so that the newly misclassified pat-

terns in B are again recognized may decrease the recognition rate

on A. Hopefully, W, attains a value that makes for the greatest

possible improvement in the recognition rate of the committee, at

which time further improvement can be obtained by adding yet another

member to the committee. If MMBR. is of the second type, the

components of Wi are initially



w.. =
ij

-1 if j = n

0 if j = 1, . . . , n-1
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XMMBR.( ) = -1 for every pattern X, the response is ignored, and

the response of the committee to X is unchanged. MMBRi is

adjusted to respond +1 to those patterns in B still misclassified

without causing too many additional patterns in A to be misclassi-

fied. Additional members continue to be added until the recognition

rate is 100%, there has been a certain number of adjustments, or the

committee has reached a certain size.

The local adjustment algorithm is slightly more complex than

that just outlined, and if a pattern in the training sequence is mis-

classified, several members already on the committee and a new

member to be added are considered for adjustment. The problem of

deciding which member to adjust, the new member or an old member,

the changing of whose response would change the response of the

committee, is solved by assigning an age to each member. When a

member is first added, it is given some initial age which is incre-

mented by one every time the member is adjusted. Among the mem-

bers who can change the response of the committee, the one for which

the product of certainty and age is least is adjusted. In this way

members recently added to the committee tend to be most active, their

age is small though their certainty may be large; older members are
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adjusted only due to patterns very close to the hyperplane defined by

their weight vector. The value of the initial age assigned to new

members determines how readily new members are added. If the

initial age is small, after a few adjustments to a member, its age is

many times that of a new member, and a new member is likely to be

added.

A difficulty with local adjustment algorithms is that, when the

algorithm does not converge to a solution, successive adjustments can

cause wild oscillations in the recognition rate of the classifier, see

Figures 2.3.2 and 2.3.4, and it becomes important to stop the train-

ing at the right instant. One way to avoid the difficulty is to stop the

training periodically, compute the recognition rate, and save the

parameters defining the current configuration of the classifier if the

recognition rate is the largest to date. Such a solution entails a lot of

additional computation. An alternative is to use an algorithm that is

not sensitive to excessive adjustments, see Figures 2.3.3 and 2. 3. 4.

Figure 2.3.4 illustrates that, if the size of successive adjustments

decreases, the recognition rate of a single TLU oscillates little, even

when the TLU is adjusted in response to the conflicting demands of

patterns that are not linearly separable. The same technique is bene-

ficial in the algorithm for training a modified veto committee, and the

age of a member not only helps determine which member to adjust but

is also used to determine the size of an adjustment. The size of an
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adjustment to a member is inversely proportional to the member's

age. The algorithm should be insensitive to excessive adjustments for

a second reason. Hopefully, the members first added to the committee

make the decision on most samples, while later members are added

and trained to respond to fewer and fewer patterns still misclassified.

If training continues too long, members continue to be added,

specializing in a few troublesome patterns, and there is little effect on

the overall performance of the committee. When training is com-

pleted, the members last added can be taken off the committee. In

contrast, on a veto committee an adjustment due to a pattern which is

incorrectly vetoed, i.e. , some member responds -1 to a pattern

in B, will be an adjustment to every member responding -1,

even if the performance of these members is on the whole satisfactory

and further adjustment to them has a bad overall effect.

A veto committee can also have additional members added as

needed during training. When first added a new member would

respond +1 to all patterns, leaving the response of the committee

unchanged, and would be trained to veto some patterns. On the other

hand, adding a member to a majority committee changes the response

of the committee to many patterns, so one must fix the number of

members before training begins.

A second difficulty with local adjustment algorithms and with

complex classifiers is that after training, the recognition rate is much



56

higher on the training set than it is on a test set, a phenomenon

Bongard [4] calls prejudice. Prejudice increases as the learning

scheme becomes more complex and as the size of the training set

decreases. Larson [18] performed a relevant experiment. Five

groups of patterns were generated in R32, each group contained 33

patterns, each component of each pattern was a random number and

randomness was confirmed using the F-test. Each group was divided

into a training set of 22 patterns and a test set of 11 patterns. Dis-

criminant analysis was applied to the samples in the training set to

find the four mutually orthogonal directions in the pattern space in

which the ratio of between class variance to within class variance was

greatest. The mean of each group of training patterns in this four

dimensional space was computed, and a 5-class classifier, called the

distance-to-mean classifier, was defined by assigning a pattern to the

class whose mean was closest. The experiment was repeated 15

times. The overall recognition rate in the training set was 85% and in

the test set 19%. As there were five classes, assigning a sample to a

class at random would have given an expected recognition rate of 20%.

We see that the results in the training set were completely misleading.

If the distance-to-mean classifier were to be used as above but with

the means computed in the original system of 32 variables, because of

the randomness of each variable, we would expect the recognition rate

to be 20% in both the training and the test set. In the above example
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the prejudice is not due to inadequacies in the distance-to-mean

classifier but to using a complex method to choose a new measurement

space based on the information contained in very few training pat-

terns. By the central limit theorem, one can expect that in general

the class means determined from a training set are relatively unpre-

judiced estimates of the true class means.

To see how a local adjustment algorithm can cause prejudice,

we compare the solution of a simple 2-class problem obtained by using

the distance-to-mean classifier with the solution obtained by using

the local adjustment algorithm of line (2. 3. 1), see Figure 2.8. 1.

Class A consists of the _Is and B of the +Ts. The training

patterns in each class are circled. The distance-to-mean classifier,

as determined from the training set, is defined by the hyperplane H1,

misclassifies one training pattern, and is an excellent classifier for

the problem as a whole. Because the training patterns are linearly

separable, the local adjustment algorithm yields a classifier,

defined by hyperplane H2, classifying all the training samples cor-

rectly but performing poorly for the problem as a whole. The local

adjustment algorithm suffers from the defect that it will tolerate no

errors in the training set without taking corrective action.
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local adjustment

distance to mean

Figure 2. 8. 1. Local adjustment algorithm and prejudice.

The algorithm for training a modified veto committee is complex

and is a local adjustment algorithm, so we expect prejudice; however,

two things have been done to lessen the effects of prejudice. First,

successive adjustments to a member are smaller and smaller, so that

a position reached in response to many patterns is not easily changed

if the member is adjusted in response to a small number of atypical

patterns. Second, as a committee member ages, it is less likely to

be adjusted, and the position reached in response to many patterns is

again protected from the effects of adjustments due to atypical pat-

terns. Atypical patterns cause adjustments to the committee, but to

new members which ignore all but the few patterns that have called
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them into existence. So it is hoped that only the later members added

to the committee will learn prejudice and that improvements to the

recognition rate in the training set will not come at the expense of a

reduction in the recognition rate on the problem as a whole, as hap-

pens in Figure 2. 8. 1. Computer simulations described in Section 5. 3

seem to encourage this hope.

2.9 A Local Adjustment Algorithm for Trainin a Modified
Veto Committee

We now give a precise definition of the local adjustment

algorithm described in the previous section.

2. 9. 1 Adjustment to a member. Let W be the weight vector

of a committee member MMBR, and let II w II = 1.

to MMBR due to X is a change in W defined by

a'- a + 1

X
W W a Q MMBR(X)

11 X 11

W w / II w II

An adjustment

(2.9.1)

(2. 9. 2)

(2.9.3)

where a , called the age, has some initial value a
0

> 0 before

the first adjustment and where p , a0 > p > 0, is a constant.

2.9. 2 Adjustable member. A committee member is

adjustable in response to a pattern X if changing the response of
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the member to X changes the response of the committee to X.

Three kinds of committee members are adjustable in response

to a pattern X. First, a new member of the appropriate type is

adjustable. If COM(X) = +1, the new member should be of the first

type with all components except the last zero and the last one.

Initially, the response of the new member to X is +1, which is

ignored, but if the response of the new member changes to -1, so

does the response of the committee. Similarly, if COM(X) = -1,

the new member should be of the second type. Second, members of

larger index and a different type than the member making the decision

are adjustable. Currently the responses of these members are being

ignored; changing the response of any one of them will cause that one

to make the decision, and, as it is of a different type than the member

currently making the decision, the response of the committee will

change. Third, the member making the decision is sometimes

adjustable. Suppose MMBRk 0, makes the decision; then

changing its response causes its response to be ignored, and it is

adjustable if and only if the member of next highest index not ignored

is of a different type. Members of lower index than the member mak-

ing the decision are not adjustable as their responses do not effect

the response of the committee.

2. 9. 3 Resistance. The resistance of a member with weight
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vector W and age a at a pattern X is

rest(X) = IX WI (a+y) (2.9.4)

where y > -a
0

is constant.

2.9.4 Local adjustment to a modified veto committee. A local

adjustment to a modified veto committee due to a pattern X is

defined as follows. If COM(X) = class(X), none of the weights in

the network are changed. If COM(X) class(X), then the least

resistant adjustable member is adjusted.

2. 9. 5 The local adjustment algorithm for training a modified

veto committee. Let TX be a training sequence; let a
0

> 0,

P > 0, and y > -a0 be constants. Form a modified veto committee

having a single member of the first type with weight vector

W1 = (0,0, ..., 0, 1). Taking the samples of the training sequence in

turn, for each pattern make a local adjustment to the committee. If

at any point a new member is added to the committee, let the initial

value of the weight vector be (0, 0, ... , 0, 1) if the member is of the

first type and (0,0, -1) if the member is of the second type.

Adjustments continue until the recognition rate is 100%, or a certain

number of adjustments have been made, or the committee has reached

a certain size.

If line (2.9.3) were omitted, the adjustment described in
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Definition 2.9.1 would, like all the adjustments to a TLU described

so far, be of the form

W W c TLU(X)X . (2. 9. 5)

The effect of line (2. 9. 3) is to normalize the length of the weight

vector to one after each adjustment. If such a normalization has been

used before, it does not seem to be mentioned in the literature. We

now give the heuristic reasons for the normalization.

First, Nilsson [24] reports that, during computer simulations of

the local adjustment algorithm for training a majority committee,

sometimes a member stops being adjusted because its weight vector

becomes much longer than the weight vector of any other member,

making its certainty at all the training patterns larger than the cer

tainty of other members. Should this happen when the weight vector

has assumed a value that prevents a solution of the problem, further

training becomes futile. Fortunately, on a committee using modified

veto logic a single member cannot block all further improvement in

the recognition rate of the committee, but it can cause an excessive

number of members to be added. Normalizing the weight vectors after

adjustments eliminates this problem.

Second, there is the companion difficulty, not mentioned by

Nilsson, of the weight vector of a member becoming so short that the

member receives an inordinate number of adjustments. Figure 2.9.1
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illustrates a circumstance in which the weight vector of a TLU

becomes shorter with successive adjustments. The -'s and +'s

denote pattern vectors in classes A and B respectively. All the

patterns are on the line y = 1 as the last component of each pattern,

in this instance the second component, is one. A TLU trained by the

local adjustment algorithm of line (2.3.1) might be expected to reach

quickly the position illustrated, with the weight vector W lying on

the x-axis and the hyperplane through the origin defined by W being

the line x = 0. The two circled patterns Q and 0 are classified

incorrectly, and an adjustment due to 0 has the form

W"W-c0

and due to 0 the form

W W + c 0 .

Suppose that successive adjustments become smaller, as is the case

if adjustments are defined by lines (2.9. 1) and (2. 9. 2); then the sum of

alternate adjustments to W due to 0 and lies approximately

along the x-axis, but in the opposite direction as W. W gets shorter

and shorter with little change in direction until it points in the opposite

direction, at which time 0 and 0 are classified correctly and the

remaining patterns are misclassified. Further adjustments cause W

to point again in its original direction but also make W still shorter.
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So there would seem to be the danger that adjustments to a committee

member due to the conflicting demands of patterns that are not linearly

separable may cause the weight vector to become shorter and shorter.

Normalizing the length of a weight vector after each adjustment

eliminates this problem.

Figure 2.9.1. An inseparable 2-class problem.

Third, the effect of an adjustment to a member depends on the

relative length of the adjustment vector and the weight vector. If the

length of the weight vector is constant, then adjustments as defined

on lines (2.9.1), (2.9. 2), and (2. 9. 3) not only become successively

smaller, but also the ratio of the length of the adjustment vector to

the length of the weight vector becomes smaller, and successive

adjustments have a diminishing effect on the weight vector. If on the

other hand the weight vector is allowed to become arbitrarily short,
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adjustments can cause dramatic and drastic changes in the response

of the member, see Section 5.2 for an example.

Fourth, if II W II = 1, then the certainty at X, I X WI , equals

the distance from X to the hyperplane through the origin defined by

W, and the resistance at X is the product of age and distance.

(We explain later the significance of the constant y on line (2. 9. 4).)

Fifth, when the length of a weight vector W is normalized

after each adjustment, the effect on W of an adjustment due to X

depends inversely on lx wl. In Section 2.3 we cited Mueller 's

work [23] showing the advantage of making the size of an adjustment

depend inver sely on IX WI, see Figures 2.3.2 and 2.3.3 and the

accompanying discussion. If the length of W before and after an

adjustment is one, the only effect of an adjustment is to change the

angle between X and W in a direction that decreases the cer-

tainty. The amount the angle changes and the amount the certainty

decreases depend inversely on I X WI For instance, when X and

W are close to orthogonal, i.e., I X WI is close to zero, the

change is greatest; and when X and W are close to being scalar

multiples of each other, i. e. , I X WI is close to

change is smallest.

Normalizing the weight vector after each adjustment has two

disadvantages. First, the amount of computation increases. Second,

when training a single TLU, if the pattern vector is a scalar multiple

II XII IIWII, the
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of the weight vector, successive adjustments due to the pattern do not

change the response, so even if the patterns in a problem are linearly

separable, the local adjustment algorithm may not converge to a

solution.

We now examine the effect of varying the constants ao, p, and

y. The length of the vector added to W decreases with each adjust-

ment, and it is possible to choose a
0

and p so that the lengths

of the first and m-th vector added to W are p /q and r /s

respectively, where p/q > r/s > 0 and p/q, r/s are rational

numbers. Let

k = rm/(sp-rq) ;

then

kp /(kq +m) Is .

If I = kp and a0 = kq, then the length of the first vector added is

Pia° p/q ,

and the length of the m-th vector added is

P/(ao+m) = kp/(kq+m) = r /s

Before the first adjustment the resistance of a member is the product

of the certainty and (a
0

+y), and after the m-th adjustment the

resistance is the product of the certainty and (a
0
+m+y). Then for
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any a > 1,

if

(a
0
+m+y)/(a

0
+y) = a

Y (1 -a)+1n) /(a-1),

and it is possible to control how quickly the resistance of a member

increases with age. The requirement that y be greater than -a0

means that

(a0(1-a)+m)/(a-1) > -ao ,

i. e . , that

(a0(1-a)+m) > a0(1-a),

which is always true.

2.10 Successive Adjustments Due to X

In order to show that the algorithm for training a modified veto

committee is minimal, we now examine the effect on a single member

and then on the committee as a whole of successive adjustments due to

a fixed pattern X. If line (2.9.3) of Definition 2.9.1 is omitted, it

is easy to show that a finite number of adjustments due to X changes

the response of a member to X; but with line (2.9.3) included, this

becomes more difficult and is established in Lemma 2.10.3.
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If the criterion for choosing which member to adjust depended on

certainty rather than resistance, we would be assured that, after a

finite number of adjustments to the committee due to X, the

response of the committee would be changed. The first adjustment

would be to the least certain adjustable member, an adjustment to

this member would either change its response or reduce its certainty,

and all successive adjustments to the committee would also be to this

member until, after a finite number of adjustments, the response of

the member and the committee changed. As the criterion for choos -

ing which member to adjust depends on resistance and as the resist-

ance of a member at X may be larger after an adjustment than

before, each adjustment to the committee may effect a different mem-

ber or require the addition of a new member. Hence, if the first

adjustment to a member is not large enough to change the member's

response, the response of the committee may never change, no matter

how many adjustments are made and how many members are added.

In Lemma 2.10.4 we show that, if -y is sufficiently large, an

adjustment decreases the resistance of a member, and in Theorem

2.10.5 we show that, if y is sufficiently large, the response of the

committee changes after a finite number of adjustments. In Theorem

2.10.6 we express the y of Lemma 2.10.4 and Theorem 2.10.5 in

terms of a0, p , and the dimension of the pattern space.
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Let LABC denote a triangle with vertices A, B, and C;

let AB denote the side connecting A and B; and let ,Z_ABC

denote the radian measure of the angle with vertex at B and with

sides AB and BC.

2.10.1 Lemma. Let LA 1B1C 1
and LA2B2C2 be plane

triangles; let A1131 A2132, let B1 C
1

=B2 C2 , let / A
2

C
2
B2

be obtuse, and let ZA2, B2 C
2 1

> Z.. A B C Then

z_:.B2A2C2 >G'B1A1C1 .

Proof. We refer to Figure 2.10.1. As LA2B2C2

there is a point D on AzCz such that LA2B2D

As A2C2132 is obtuse, B2D > B2C2, and there is a point E

on B 2D such that B 2E = B C
2 2.

LA
1
B

1
C

1
and as B

2
A

2
C

2
>

ZB2A2C2 >/B1 A1C1

2

As LA 2
B

2
E is congruent to

, then

Figure 2.10.1. Two triangles.
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002.10.2 Lemma. Let {AA.B.C.}. be a sequence of plane
1=1

triangles; for all i let ZA.0 B be obtuse, let A.B. let

/A.B.Ci = where P
1

and'
00 co

B.C. = co.
1 I

Then /Z_B.A.C. =
i 1 1

00.

i =1 i =1

Proof. By the law of sines

so that

B.C.
1 1

A.C.
1 1

sin z_B.A.C. sinZ_A.B. C.
1 1 1 1 1

are constants, and let

-1 BiCi sin
2B.A.C. = sin

1 1 1 A.C.
1 1

> sin A.B.
1

B.C. sing
-

B.1 C.
1

sin
2

The lemma follows immediately.

2.10.3 Lemma. After a finite number of adjustments to a

member due to a pattern X, the response of the member to X

changes, provided that X is not a scalar multiple of the member's

weight vector.

Proof. Let W denote the weight vector. If W is not a
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scalar multiple of X, then adding a multiple of X to W changes

the angle between X and W in a direction that decreases IX- WI

or changes the sign of X W. We show that, after a finite number of

adjustments, the angle changes sufficiently to change the response to

X. If X and W are orthogonal, then a single adjustment changes

the response.

We refer to Figure 2.10.2. Assume that X and W are not

orthogonal and the response is not changed by a finite number of

adjustments. Let W
0

and Wi denote the initial value of the

weight vector and the value after the i-th adjustment respectively.

Let a1 denote the age after the i-th adjustment, and let

=
PMMBR(X)

I a1II XII

(Note that W
0

does not necessarily equal the value of the weight

vector of a new member as the member may have been adjusted prior

to the moment we are speaking of. Similarly, a' does not neces

sarily equal a0.) Let µ = sgn(X W0). As X, W
0

and W. lie in

the same plane and as sgn(X Wi) = sgn(X W0), then for all

Off ) ( x ) w < Tr / , (2. 10. 1)

where Z is the zero vector and (V) denotes the head of a vector

V. As
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Figure 2.10.2. Adjustments to W due to X.



(wo)(z)(wi) =
j=1

line (2. 10.1) implies

(lArj-1 )(Z)(W.)
3
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oo

(2.10.2)((W1.) Z)(W.) < Tr 2.-1
i=1

With the aid of Lemma 2.10.1 we now show that

(
i

ZZ(W.
1-1

) Z)(W) >(W
0 0

)(Z)(W -X.X)
1

and with the aid of Lemma 2.10.2 that

oo

)(Z)(w
i=1

X) =

(2. 10.3)

(2.10.4

Hence, the inequality in line (2. 10.2) and the assumption that the

response is not changed by a finite number of adjustments will be

shown to be false.

We now establish the inequality on line (2. 10.3). As we are

assuming that the response is not changed by any number of adjust-

ments and as the effect of each adjustment further decreases the cer-

tainty, given that X is not a scalar multiple of Wo, then



1r/2 >Z(X)(Z)(W.) >(x)(Z)(
W

) > 0 if X-W >0,
L 1-1 o

and

1r/2 <Z(X)(Z)(Wi) <Z(X)(Z)(Wi_i) < Tr if X X < 0,

which implies

7/2 >Z..(11X)(Z)(Wi) >/(p.X)(Z)(Wi l) >

=Z_(1.tX)(Z)(W.) L(Z)(W.)(W. -PC),

then

74

1r/2 >Z.(Z)(Wi)(Wi-µX) >Z__.(Z)(Wi_1)(Wi..1-11X) > 0, (2. 10.5)

which implies

(Z)(1.V. )(W. -µX) >Z(Z)(W )(W -p.X). (2. 10.6).-

Now

Z(Z)(W.)(W.-1.1.X) =Z(Z)(W. -X.X)(W.
1 1

and the complement of

is

=Z(z)(w.
-)

x)(w.
i

x),
1-1 i 1-1

Z(Z)(W. -x
i
x)(w. X.X -X.X)1-1 1- 1 1

(Z)(W. -X.X)(W. -X X+X X) = Z(Z)(W. -X.X)(W.1- 1 1-1 1 1 1-1 1-1

so by line (2. 10.5)



Tr >Z(Z)(Wi_ -XiX)(Wi_i) > Tr /2.

Referring to Lemma 2.10.1, we let

Al = A2 = (Z),

B
1

= (W0), B
2

= (W. 1),

C
1

= (W
0 i

-X X), C
2

= (W. -X.X).
1-1 1
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(2. 10.7)

By lines (2. 10.6) and (2. 10.7) and as 11 W011 = 11Wi_ 11
the

hypotheses of Lemma 2.10.1 are satisfied and the inequality on line

(2. 10.3) follows.

Now we establish the equality on line (2.10.4). By line

(2.10.7) and as
1

<
1,

Tr >Z(Z)(W - IX) (W ) > Tr 2.

Referring to Lemma 2.10.2, we let

A. = (Z),

B. = (W0),

C = (W
0

-X.X).

0.

(2. 10.8)

By line (2. 10.8) and as = , the hypotheses of Lemma 2.10.2/Xi 00

L =1

are satisfied, and the equality on line (2. 10.4) follows.

2.10.4 Lemma. If X is not a scalar multiple of the weight
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vector of a member and if y is sufficiently large, see line (2. 9.4),

then, until the response changes, each adjustment to the member due

to X decreases the resistance at X.

Proof. By Lemma 2.10.3 the response to X changes after a

finite number of adjustments due to X. Let k be the index of the

adjustment which changes the response. Each adjustment preceding

the k-th decreases the certainty. Let 5 denote the smallest of

these decreases, a' and W
0

the age and the weight vector

respectively prior to the first adjustment due to X, and a! and

W. the age and the weight vector respectively after the i-th adjust-'

ment due to X. If i e k, then the difference in the resistance

before and after the i-th adjustment is

Hence, if

IX .W. 1(a' +y) I x w.1(01+y)i1 -1i 1

IX Wi_ ( 1+Y) X Wi I (°-;._ 1+1+Y)

IXWil) IXWil

> (cto'+Y)6
IX.w0I

5
- a'0 ,

the resistance decreases.
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Note that in Lemma 2.10.4, y depends on IXW
0

I, 6 and

aO, while 5 depends on the quantities aO, p and the angle

between X and W
0. Of the three only p is independent of the

previous history of adjustments to the member. If the member is new

at the time of the first adjustment due to X, then y depends on

only ao, (3 and the angle between X and the vector (0,0, , 0, 1).

If in addition each component of X equals ±1 , we can express

in terms of a0, p

Theorem 2. 10.6.

and the dimension of the pattern space, see

2.10.5 Theorem. The response of a modified veto committee

to X is changed after a finite number of adjustments due to X

with the addition of at most one new member to the committee, pro-

vided that X is not a scalar multiple of (0, 0, . 0, 1) and that

y is sufficiently large.

Proof. Let y be large enough to insure that Lemma 2.10,4

applies to a new member adjustable in response to X. Each of the

successive adjustments due to X is made to the least resistant

adjustable member. Suppose that at some point a new member is

chosen for adjustment. Each adjustment to the new member reduces

its resistance at X, Lemma 2.10.4, and it will continue to be the

least resistant adjustable member until, after a finite number of

adjustments, its response and consequently the response of the
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committee change, Lemma 2.10.3.

If a new member is never added, after a finite number of

adjustments the response of one of the adjustable members already

on the committee changes, Lemma 2.10.3, and so does the response

of the committee.

2.10.6 Theorem. Let MMBR be a new member and let X

be a pattern of n components, each equal to ±1. If

-47P > and
NTT a0 Nrri

then, until the response changes, each adjustment to MMBR due to

X decreases the resistance at X.

Proof. Let a
0

and W
0

be the initial values of the age and

the weight vector respectively; and let a., Wi, and rest.(X) be

the values of the age, the weight vector, and the resistance respec-

tively after the i-th adjustment. For notational simplicity and

WLOG we assume that every component of X and the last com-

ponent of W
0

is +1. Assume that the response is changed by the

k-th adjustment and that i < k. Then for some a > 0,



1-1 , -a, , -a, 1-a

X ° W. = 1 na > 0,1-1

rest. (X) = (1-na)(a. + ),
11-1

and for some b > 0,

W. = (-b, -b, , -b, 1 -b),

XW;= 1 -nb >0,

resti(X) = (1-nb)(ai+y) .
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(2. 10. 9)

The difference in the resistance before and after the i-th adjustment

is

rest.
1-1 1

(X) rest.(X) = nb(a.+y) na(a. -1 +y) - 1

and is positive if

1b >a + n(a.+y) (2. 10. 10)

We now determine the conditions needed to establish the

inequality on line (2.10.10). As the i-th adjustment consists of

subtracting a scalar multiple of X from W. , for some scalar
1-1

c > 0, followed by a normalization of the resulting vector, then for

c )

b = (a+c)/{(n-1)(a+c)2+(1-a-02 1 2

Now



{(n-1)(a+c)2+(l-a-c)211/2 > 1

implies

n(a+c) > 2

implies

X (-a-c,..., -a-c, 1-a-c) = 1 n(a+c) < 0

implies

<W. 0

which contradicts line (2.10.9). Hence,

b > a + c.

If

then

and

R >; and

P 1

-ya.Nrri (a.+ )

c P
ai lix

p
a0

1

aifn >
(a.+-y)
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(2.10.11)

(2. 10. 12)

The inequalities on lines (2. 10. 11) and (2. 10. 12) imply that the

inequality on line (2. 10. 10) is true and that the resistance is

decreased by the i-th adjustment.
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III. ESTIMATION

3.1 The Problem of Estimation

A more general problem than multiclass classification is that of

function estimation. Let R be the set of real numbers, let f be

a function from a subset of Rn to R, and let TR = {(T.,y.J )}._,

be a set of observations, called the training set, where T. is in

the domain of f and is in R. The relationship between
yi

and f(T.) is

3rJf(T.)= (T.) + e., j = 1,...,NI
J J

where the e.'s are some unknown errors introduced during the

process of making observations and hence can be expected to have

Y.

mean zero and have some unknown variance uncorrelated to the .1 s
YJ

The problem of estimation is to infer from the training set a function

g which estimates f well, i. e . , for which is small for

some function norm. As the function f is not known, otherwise

there would be no problem, the criterion 11 g-fll , though ideal,

cannot be used, and instead 11(Y.r Wr eTT II is used for some

vector norm. Because of its convenience in statistical analysis, the

norm is usually chose to be the Euclidean norm. It is important that

the training set be representative of the function f and that the
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process of inference not produce a complex function which is valid on

the training set but not elsewhere. A measure of the generality of g

is given by 11 (zi)j1\4_1 (g(Spr,111, where TE = {S., z.}. is some
J J J=1

test set drawn from the same population as the training set.

If the form of f is known, i.e. , only the values of some

f(T.)need to be determined, if y. = (T.) for all j, and if

N' is sufficiently large, it may be possible to find g f, within the

limits of computational accuracy. For example we can find f

directly if f is a polynomial, using Lagrange's interpolating poly-

nomial; or if f is a linear transformation, we can find f indi-

rectly using a gradient technique. Of course as the deviate
Y3

from the f(T.)'s, g deviates from f. If the points in the training

set do not fit any function of the proposed form, there may be statisti-

cal techniques for finding the function g of the proposed form which

best fits the training data in some sense (e. g. , linear and non-linear

regression).

Suppose the form of f is not known. If {kpi}i7,1 is a set of

orthonormal functions spanning a space of functions which can reason-

ably be expected to include f, then g may be set equal to the

linear combination of
i
Is which best fits the training data.

Alternatively, for any point X in the domain of f, g(X) can be

y.'sequal to a weighted average of the .1 (e.g. , linear interpola-
YJ

tion). A very simple scheme for choosing weights is to let the weight
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of the yi for which T. is closest to X equal one and all other

weights equal zero. For this scheme if f is continuous, if the

domain f(T.),of f is closed and bounded and if y. = f(T.) then for any
J J

N1L
P P

-norm 11 g-f II goes to zero as {T3 .}.
3=1

becomes dense in the

domain of f. A technique which computes g(X) as a weighted

average of y.'s becomes impractical as N' increases unless there

is a method for summarizing the information contained in the training

data.

In this chapter we show how 2-class classifiers can be used to

summarize the information in the training set and how this summarized

information can be used to construct an estimate g of f that is a

weighted average of points in the range of f. The estimate g will

be statistical in an indirect sense inasmuch as the 2-class classifiers

are statistical, but not directly as are linear and nonlinear regres-

sion, both of which find the estimate of some pre-defined form that

fits the training data best in the least-squares sense. Because

2-class classifiers can be trained without a priori information about

the form of f, g is independent of the form of f. Theorems will

be proven describing conditions under which g is continuous and

converges to f. Also the effect on g of small changes in the

2-class classifiers will be examined.



3. 2 Kernel Functions

Here and throughout the chapter all integrals will be Lebesgue

integrals, the norm of a vector in Rn will be the Euclidean norm,

h will denote a positive real number, and for a > 0 and X in

Rn let Aa (X) = {z : 11 Z -X II > a} and B a (X) = RnA
a
(X). A con-

tinuous and bounded function k from Rn to the nonnegative real

number s R+ for which k(Z)dZ = 1 will be called a kernel
Rn

function. When n = 1 and we wish to draw attention to the fact,

we will use the letter / rather than the letter k to denote a

kernel function. Several properties of kernel functions that will be

useful later are:

(i) (iihn)k((z_x) /h)dz, k(Z)dZ
Rn Rn

(ii) (1 ihn)k((Z -X) /h)dZ = sc (1 ihn)k(Z /h)dZ
Aa (X) Aa (0)

k(Z-X)dZ = k(Z)dz ;
Aa/h (X) a/h

(iii) (1 ihn)k((Z -X) /11)dZ = (1 ihn)k(Z /1-1)dZ
Ba(X) B

a(0)

k(Z-X)dZ =
B a/h(X) 13 a/h (0)

k(Z)dZ

84
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(iv) lim J k(Z)dZ = lim
0 A (0)a/h

lim k(Z)dZ = lim
h--" 0 B a/h (0) oo

(0)
k(Z)dZ 7- 0 and

k(Z)dZ = 1 ;

a/h(0)

(v) kh(Z) = (1 ihn)k(Z /h) and k
X, h(Z) = (1 ihn)k((Z -X) /h)

(vi)

(vii)

define kernel functions;

if f is a continuous and bounded function from Rn to R,

then the convolution of f and kh converges pointwise to

f as h converges to zero; if f is uniformly continuous,

the convergence is uniform;

0
(1/h)/((z-x)/h)dz (1 /h)1(z/h)dz

-co -co

(viii) when a > 0,

-a
lim (1/11)/(z/h)dz = lim

0 -00 h--- 0

a
lim (l/h)/ (z/h)dz = 1 ;

0 -a

(ix) if a > 0 and if y > 0, where

( 1 /11)1 (z/h)dz = 0 and

= min S ° /(z)dz, (z)dz} ,

0
then
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lim (1/11)/ (z/h)dz > y/2 , and
h 0 -a

lim (1/11)1(z/h)dz > y/2 .
,S1

0 0

Because the techniques involved will be useful later, we now

indicate the usual proof of (vi), see [10] for instance. Let E > 0

and X be given and let 6 > 0 be sufficiently small to insure that

f(X)-f(Z)1 < E /2 whenever II X-Z II < 6. If f is uniformly con-

tinuous, the choise of 6 does not depend on X. If

b = supflf(X)I : X in Rill, let h be sufficiently small to insure

that (1,0)k(z,h)dz< E / ( 4b ) Then
A6(0)

f(X) f(Z)(1 ihn)k((Z -X) /h)dZ

f(X)-f(Z) (1 ihn)k((Z -X)/h)dZ
A6(X)

I f(Z)-f(Z) I (1 /hn)k(Z -X) ih)dZ
B (X)

< 2bY k(Z)dZ + (E /2) S k(Z)dz

A6 /h(0)
B

5
(0)

./h

< E .
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Henceforth, when confusion seems unlikely, we will write

J k(X, h) and .,5 ,(x,h) for s (1 ,iin)k((z_x)/h)dz and

Si S2 S1

S(1 ,,,((z_.)/h)dz respectively, where SI is a Lebesgue
S2

measurable subset of Rn and S2 of R.

It will strengthen our intuitive understanding of what follows to

think of the kernel function k(Z) as a nonincreasing function of

11 Z 11 , maximum at the origin and decreasing to zero as II Z 11

diverges to infinity. Under these circumstances kX, h(Z) is a non-

increasing function of II Z -XII, maximum at X and decreasing to

zero as 11 Z diverges to infinity. If we think of k(X,h) as
S

a measure of the "attraction between a point X and a measurable

subset S of Rn, then (iv) above implies that, as h converges

to zero, the attraction of X to S converges to one whenever X

is an interior point of S and converges to zero whenever X is an

interior point of the complement of S.

3.3 The First Method of Estimating f

By statement (vi) of Section 3. 2 the convolution of f and kh

converges pointwise to f as h converges to zero whenever f is

a continuous, real valued, bounded function defined on Rn. (From

the proof of (vi) it can be seen that the result also holds when the

domain of f is a proper subset of Rn at points X interior to the
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gi(x)

where
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b.1 u.(X) (3. 3. 1)

i=1

k(X, h) , (3. 3. 2)
R.

b. is in the range-of f, R. is a subset of the domain of f on

which f(Z) is close to b., and the R.'s are pairwise disjoint.

For example let {Ii}Ni=1 be a set of pairwise disjoint intervals

whose union includes the range of f, where for later convenience

we adopt the convention that interval I, is to the left of interval

I i+1, i = 1, , N-1; let each

and let each

f-1R. = (I.) ;

(r.+s.)/2 if -00 < < 00
1

c if r
1

= -00

+c if sN = °°

(3. 3. 3)

(3. 3. 4)

where r., s.
1

are the left and right end point respectively of Ii

and where c is a positive constant. Li is an estimate of f of the



N
form suggested at the end of Section 3.1. If LJ R. is a proper

i=1 I

subset of Rn, then

i=1

.(X) =.S.1 k (X, h)

L) R.
i =11=1

(3. 3. 5)
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may be less than one, and g 1(X) may not be a weighted average of
N

stheb.' . However, if X is interior to L.) R. ,I i
N i=1

Xlimui ( ) = 1, and g
1
(X) approaches a weighted average ofh 0

i=1

stheb.' .

When we wish to estimate f, we are unlikely to have the

information needed to determine the f
-1 (I.)Is, while the information

we are likely to have is the value of f at some points in the domain

of f. Suppose then that we are given an N-class classifier and a set
N'of pair s {(T y.)}.
J=1

satisfying y. f(T.) and yi ,
J J

j= 1, ...,N'-1. Let

f.

IT .1.1
3=1 +1i-1

be the training samples for the i-th class, where

(3. 3. 6)

=
0

0, IN = N' and / <
1+1' i = 1, . . , N-1,

(3.3.7)



and let each

where
i
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b.
1

= 4J.(
Y

.:j = 1, .. , (3.3.8)
1 3

is some function of its arguments, for instance the

median of the numbers ly.,j + , . After training, the

classifier defines a partition of Rn, and if the partition is Lebesgue

measurable, let

R. = :class(Z) = (3. 3. 9)

N
As see line

(3.3.5). For instance, the nearest-neighbor -classifier [10] defines

regions

1.
,Rinn(T.)

j=ii-1+1
3

where for j = 1, ...,

nn(T.) = {ZIMZ-T- II < 11Z-TkIl

{Z 11Z = 11Z

(3.3.10)

for all k j}

for all k < j} . (3.3.11)

Given N-1 2-class classifiers instead of one N-class

sclassifier,let the b.' be as defined on line (3.3.8), and let the

training samples of the i-th 2-class problem be
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(3.3.12)

for the first and second class respectively. After training, the

classifiers define sets

A. = {Z classi(Z) = i = 1, ..., N-1, (3.3.13)

Zwhereclass.( ) is the decision of the i-th 2-class classifier.

In addition let

If the A.'s

AO = and AN = R

are measurable, let

(3.3. 14)

Xu.( ) = k(X, h) k(X, h). (3.3. 15)
Ai

1 1-1

Xu.( ) = 1 for all X, and whenever A. C
1

A. +1' i = 1, , N-1,

i=1
each ui(X) is nonnegative for all X From the sets Ai, sets

Al can be defined for which A! C A!

insuring that

A! = v A. ,

j=0

for instance by letting

Xu.( ) = S k(X, h) k(X, h)
`)A!Ai Ai -1

(3. 3. 16)

(3.3.17)
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is nonnegative for all X.

To compute gi(X) it is necessary to evaluate integrals over

subregions of R11, and this can be done by evaluating the equivalent

multiple integrals. A simpler computational scheme is possible if

each 2-class classifier is defined by a discriminant function d.,

i = 1, ...,N-1. For i = 1, ...,N-1, let

A. = {Z :di(Z) < 0}. (3.3.18)

Then d. maps A. into (-00,0) and X to d.(X), which

suggests letting

0 0

Xu.(X)= (d.( h) (di -1(X), h)
-co -co

(0, h)

-di(X)

(0, h) ,

(X)

(X)

/ (0, h)

(3.3.19)

Xwherei = 1, , N, d
0

(X) = 00 and d (X) = -00. u.( ) = 1, and

i =1

if di_1(X) _> di(X), then ui(X) is nonnegative. In the definition of

u X.( ) we have replaced a term expressing the attraction of X

A. by a term expressing the attraction of d.(X) (-00,0). Even

if the kernel functions k and I are the same nonincreasing
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function of the Euclidean norm of their argument, there is no reason

to suppose that k(X, h) equals f (d. (X), h), but it is reason-
A.

able to hope that the value of the two integrals is highly correlated.

From the functions d., functions d! can be defined for which
1 1

d.' (X) > d.'(X), for instance by letting1-1

insuring that

di(X) = min{d.(X) : j = 1, ..., i}, (3. 3. 20)

-d.'(X)

Xu.1( ) = (0, h)
-d' (X)1-1

(3.3.21)

is positive for all X.

3.4 The Second Method of Estimating f

Computer simulations testing the effectiveness of the estimate

gl indicate that, for those values of h which minimize the differ-

ence between f and g simultaneously at a number of different

points in the domain of f, where f is concave upward g tends

to be greater than f and where f is concave downward less. We

now examine a simple example that reveals the probable reason for

this phenomenon.

Let 1k' Ik+1' Ik+2 be three contiguous intervals of equal

length in the range of f, and suppose that f :R R is continuous,
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increasing and concave upward on f
-1

(I
k k+lk-J

I
k+2

) Then

f -1
(I

k),
f -1

(I
k+1

), f -1
(I

k+2)
are three contiguous intervals in the

domain of f, and the length of f
-1

(I
k)

is greater than the length of
-1 -1f (Ik+1) which in turn is greater than the length of f (Ik+2). Let

the kernel function be

1(z) =
1 - Izj if Izl <

0 otherwise ,

and suppose we wish to estimate f at the point x which separates
-1 -1f (I

k)
from f (Ik+1 ) using Equations (3. 3. 1), (3. 3. 2), (3.3. 3)

and (3.3.4). Figure 3.4.1 summarizes these assumptions and also

indicates the graph of (1 /h)1((z-x)/h) and the attraction of x to

the intervals f -1
(Ik) and f 1 (Ik+1) Figure 3.4.2 is the same as

Figure 3.4.1 except that h is larger and the attraction of
-1

f (I
k+2

) is nonzero. In Figure 3.4.1 the attractions of x to

-1 -1f (I
k)

and f (Ik+1) are both 1/2, and

1 1g 1(x) = bk + bk+i

= f(

as the intervals Ik' Ik+1' I
k+2

are of equal length and

are their respective midpoints. In Figure 3.4.2 thebk' bk+l'bk+2

attractions of x to f -1
(I

k
) f -1

(I
k+1

) and f -1
(I

k+2
) are 1/2,
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k+2

bk+1

bk

A.*

Figure 3.4.1. Attraction when h is small.

I I

+1) f 1(I )k+2

k+2

bk+1

I I

k+1
) 1f (I )k+2

Figure 3.4.2. Attraction when h is large.
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(1/2) - a and a respectively, and

1
g1

2
(x) = b

k
+ (-1 -a)bk+1 + abk+2

2

=
2

bk +
2

b
k+1

+ a(b
k+2

-b k+1)

= f(x) + atb, (3.4. 1)

where Lb = b
k+2

-
k+1 = bk +l bk. At x, g1 overestimates f

by the amount atb. Similar examples can be constructed if f is

decreasing and concave upward, increasing and concave downward, or

decreasing and concave downward.

We now propose an estimate g2 of f that has less the

tendency to over and underestimate f when f is concave upward

and downward respectively. In the rest of the chapter we will assume

that b
i

< b. i = 1, ..., N-1. Let X be in Rn ; for i = 1,..,N
1+1'

let u. be as defined in any of the several ways mentioned in Section

(3. 4. 2)

3. 3; let

let

let

u
0

=- 0

v . (X) =

Xw.1( ) =-

j=0

(X), i = 0, , N; (3. 4. 3)

i- 1
Il ( 1 -v ( X ) )

j=o

N
H v.(X) , i = 1, . . . , N; (3. 4. 4)

i=i



and let

g2(X) =

N

i=1

13.1 w.1 (X) / .(X)

i= 1
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(3. 4. 5)

N

whenever w.1 (X) 0. For each of the definitions of the u.
1

ts

i=1
given in Section 3. 3, 0 < vi(X) < 1, implying that each w.(X) > 0

and that g2(X), swhendefined, is a weighted average of the b.' .

We now examine the circumstances under which

N

3. 4. 1 Theorem. wi(X) = 0 if and only if

i =1
(i) there are indices ji and iJ2 Jl < i 2Jwith i

v. (X) = 1 and v. (X) = 0 or
.31 J2

(ii) v
N

(X) = 0.

N

i=1

.(X) = 0.

such that

Proof. Suppose (i) is true. For i < j2, wi(X) is a multiple

of v. (X), and for
J2

Hence, each w.(X) = 0.

j1, wi(X) is a multiple of 1 - v. (X).

Suppose (ii) is true. Each w.(X) is a multiple of v
N

(X)

and equals zero.

XConversely,suppose that (i) and (ii) are false. If any v.( )= 1,

let = minfi:vi(X) = 1 }. As (i) is false, w1 (X) 0. If no v.(X)= 1,

let 1 = maxli:v.(X) = 0 }. As (ii) is false, < N and w/+1 (X) 0.
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When each ui(X) is nonnegative, then v,1 (X) < v.
1+1

(X) for
N

all X, and w.1 (X) = 0 if and only if vN(X) = 0. When the ui st

i=1
are defined by Equation (3. 3. 2), vN(X) = ck(X, h). If

..,

N
R =

i=1

then vN(X) = 1; and if v R. C Rn, then for X interior to
i=1 1 4

N
v R.,
i=1 I

Rn,

v
N

(X) = 1 for all sufficiently small h. When the u, Is are

defined by Equation (3. 3. 15), (3. 3. 17), (3. 3. 19) or (3. 3..21), then

vN(X) = 1.

The definition of g2 is suggested by the following considera-

tion. Suppose that El' E2, ... , EN are independent events, that F.

is the complement of E. and that pi is the probability of event
i

N N
E.. The probability of event n G. is II r., where

I 1i=0 I. i=0

Pi if G. = E.

1 pi if G. F:
1 1

i-1 N
i = 1, N, is the payoff associated with event n Fk Ek,

k=0 k=i
then the expected value of the bi's is

E{b} =

N N
(Eb. II 1-p.) II p.

i =1
1 k=0 1 k=1

1

N N
E H (1-p.) II p.

i=1 Ic=0 l k=i

(3. 4. 6)
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If we draw a parallel between E. and A.' of line (3. 3. 16)

and between p. and v. (X) = k(X, h), then Equations (3.4.5)
A!

and E.'s(3.4.6) are similar. We ignore the fact that the E.' are inde-
i

pendent events while the A! 's are not independent "events". Cor -
i-1

responding to the event rTh Fk cm E is the set
k=0 k=i

i -1
(Rn

k 0
\Ak' )

k
n

i
A' -= R. , .where R. = A'

k Ai -1==
sandwe can interpret g2(X) as being a weighted average of the 13.1

with the weight of each b. being the "probability" that X is in R..

We return now to the example discussed at the beginning of the

section and illustrated in Figures 3.4.1 and 3.4.2. For the situation

illustrated in Figure 3.4.1,

and

0 if i = 0, , k-1

vi( x) = 1/2 if i = k

if i = k+1, , N,

1

0 if i = 0, ..., k-1

w.(x ) = 1/2 if i = k, k+1

0 if i = k+2, , ,

1 1

g2(x) = bk + bk+l = f(x).



and

For the situation illustrated in Figure 3.4.2,

if i = 0, . , k - 1

1/2 if i = k

1 - a if i = k+1

1 if i = k+2, ., N,

xw.( ) =

0

1
-z (1 -a)

1 a
2

0

if

if

if

if

w.(x) = 1

i= 1

a
2'

i = 0, . . , k -1

i = k, k+1

i = k+2

i = k+3,

1 1
g 2(x) = (

2
(1 -a)b

k
+

2
(1-a)bk+1 +

2
abk+2) / (1- a

)

1 1 3atb
= b + b +

2 k 2 k-1 2(2-a)

= f(x) + 3aLb
2(2-a)

3abb
At x, g2 overestimates f by the amount 2(2-a) '

100

(3.4.7)

compared to

aLb for gl, line (3.4.1) . The length of the interval f (Ik+2) is

less than the length of the interval f
-1 (Ik+i), so the value of a is

less than 1/8. Therefore, the amount by which g2 overestimates
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f at x on line (3.4.7) is between 20% and 25% less than on line

(3.4. 1). The improvement is not great and comes at the cost of addi-

tional computation. Section 5.5 summarizes the results of several

computer simulations that compare the effectiveness of the g1 and

g2 . The results in Section 5.5 indicate that g2, in addition to pro-

viding a more accurate estimate of f then gl, is less sensitive

at the best values of h to changes in the value of h.

3.5 Properties of the Estimates g1 and g2

In the remainder of this chapter, we will examine some of the

properties of the estimates gl and g
2.

gl is defined at all points

of Rn, but there may be points at which g2 is not defined. It will

be an implicit assumption throughout the rest of the chapter that when-

ever we describe the behavior of g2 we are restricting our attention

to that subset of R
n on which g2 is defined.

Fir st, we show that gl and g2 are continuous functions not

only of X, but also of other parameters. When each

u.(X) = k(X, h), these other parameters are the R.'s, k, h and,
R.

of course, the b.'s. In Section 3.6 we define a metric for each

parameter and show that
g1 and g2 are continuous from the

product space, called U1' of these metric spaces and of the space
-1

fofX to the real numbers. When each R. = (I.) and b. is in
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I1 , then it is appropriate to consider g1 and g2 as functions of

the I.'s rather than of the R.'s and b.'s. In Section 3.7 we
i i 1

7define a metric for the 1.'s, form a product space
2

similar to

except that the metric space of the Ii's replaces the metric

sspacesof the R.1 's and bi ' , and prove that g
1

and g2
are

continuous from j
2

to R whenever (i) f is continuous, (ii) the

inverse image under f of every singleton set has measure zero,

and (iii) each b. is a continuous function of I.. The scheme of
1 1

Section 3. 7 is repeated in Section 3. 8, with each R, by
1

NIan N-class classifier trained on the training set {(TJ. y.)}. and
3 3'1

each b. a function of some subset of the Defining a metric
3r3

on the T.'s, we get- a product space T 3 The continuity of g
1

and g2 on the space rl 3
depends on 1-he degree to which the

classifier is effected by small changes in the training set. In Section

3.8 we assume that (i) the classifier is the nearest-neighbor-

classifier, (ii) y. = f(T.), (iii) f is continuous and (iv) b. is a

continuous function of a fixed subset of the y. s. Finally in Section
-d.1 (X)

X3.9,we let each u.( ) =

1

)2(0, h), where the d. 's are con-
X-d.-1 ( )

d.'sdiscriminant functions. Defining a metric for the d.' and

sreplacingthe metric space of the R.' in cl
1

by the metric space

of sfthe di' s, we get a space 7 4 on which gl and g
2

are

continuous.
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Second, we will describe the circumstances in which g1 and

converge to f, from which we can deduce the behavior of the

least-square error between g1 and f and between g2 and f.

Let E be a measurable subset of R n , m(E) > 0, and let p

be a nonnegative measurable density function, i.e. , S p = 1. If f
Rn

and g are measurable, if g is an estimate of f, if the domain

of each includes E and if p 0, then the least-square error
E

between f and g conditioned by the density function p is

1/2
LSE(f, g, E, p) = a-g) P P -

E E
(3. 5.1)

If a and p are points in a metric space, if ga is a measurable

estimate of f whose domain includes E and if lim g = g
a-4- p

in the uniform norm, then lim LSE(f, ga, E, p) = LSE(f, g, E, p),
a-13

which equals zero if g ;.=. f.

g2

We now summarize the results on the convergence of g
1

and

to f. Let

(i) {R.}.
1

be pairwise disjoint measurable subsets of Rn,

0(ii) R. be the interior of R.,

(iii) R. = {Z :Ba(Z)C where a > 0



(iv) Xu.( ) = k(X, h),
R.

(v) D be the domain of f,

(vi) M. = supfl f(Z) -b, : Z E 1, .

(vii) of = max{,d, : i = 1, ...,N}, and

(viii) q =

N
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where
R.

is the characteristic function of the set R.. In Section
1

3.10 we show that, when h converges to zero, g
1

and g2 con-
N N

verge to q pointwise on L.) R. and to q uniformly on L_, Ri
i

i=1 i=1
If in addition of converges to zero, then g and g2 converge

N 0 N
f pointwise and uniformly on D n L.) Ri and D rm L.) R.

a

N 0'i =1 i =1 I

respectively. At some points of ( v R.) , a set which includes
N 0 1=1 I

Li R1 . , the limit as h converges to zero of g
1

and
g2 may

i=1
not exist; however, in Section 3.12 we show that, under the additional

hypothesis of f continuous and bounded, g1 and g2 converge to

f pointwise on D n (v R 0 and to f uniformly on every closed
1 =1 N a

and bounded subset of D (l) R.) as h and of converge to
1 =1

zero. Sections 3.11 and 3.13 are similar to Sections 3.10 and 3.12
-d. (X)

respectively, except that u X.( ) = f (0, h).
1

1
-d. (X)-1
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Third, in Section 3.14 we will examine the effect of changes in

the discriminant functions d0, di., dN on the values of g1 and

-d.(X)

g2 when ui(X) = J 1 ,f (0, h). The discriminant functions are
1- (3 X. ( )-1

NIdetermined from the training set {(T., y.)}
J J

procedure, and a change in the training set means that discriminant

by some training

functions do' , di, . , di'\T will result

d
N

= dl
N

= -co

Of course, d0 = d' = co and
0

sbutotherwise we can expect the d.' to be different

d!(X)
than the d! 's. Let u.'(X) = y 1 ,(0,h), and let

1 1 -d! (X)
1-1

be the estimates determined by the u! 's. As
1

u!(x)-u.L (x)I
-d.(X)

1(0,h) - I /(0,h)I
-d! (X) -d. (X)

1-1 1-1

-cili(X)
/ (0, h)

-d.(X)

di -1(X)/(0,h)1 ,

di -,(X)

it will be convenient to analyze the difference between

and between g2 and g' in terms of
2

diI(X)
Xe.( ) = (0, h),

-d.(X)

g

and

(3. 5. 2)

1
and gI

3. 5. 3)

i = 0, . , N. Note that ei(X) < (1 /h) sup( I) I di(X) -dl(X) I As

already mentioned, gl and g2 are continuous functions of the



d.'s, a result which will be established in Lemma 3.9.2. From

Lemma 3.9.2 it can be seen that, as the e.(X)'s simultaneously

converge to zero, g1(X) and g2(X) converge to (X) and

g(X) respectively.

The measure we use for the difference between gl and

and between g2 and g2 at X is

and

Error(gi(X)) = Igi(X)-ei(X)I / (bN-bi)

Error(g2(X)) = 1g2(X)-g(X)I / (bN-bi) .

106

By finding bounds for Error(g1(X)) and Error(g2(X)) expressed

in terms of the ei(X)1s, we get a measure of the stability of gi

sandg2 with respect to the d.' . We will prove that if

d.
1-1 (X) < di(X) and d -1 (X) < di(X) for all i and X, then

1

Error (gi (X)) < e(X), where e(X) = max{I ei(X) I : i = 0, . , N}.

Error(g2(X)) does not seem to have any easily expressed yet reason-

able bound, not surprisingly considering the complexity of g2 in

terms of the u.'s. But when e.(X) = u.(X) = 0, i = 0, ...,k-2 and

i = k+1, N for some index k and when the kernel function is

symmetric about the origin, then

Error(g1(X)) < 2e(X) / (N-1)

and



Error(g2(X)) < 2e(X) /{(N-1)(.75-e(X))},

3.6 Continuity of gi and gz on .J
1

Let
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provided .75 > e(X).

be the metric space of N-tuples (R.). , of
i=.1.

measurable subsets of Rn,

where

and let the metric be

d
1

((R i i=)N 1' i i=(R1)
N 1) = max{d

2
(R i' i

R'):i = 1,

d2(Ri, R.') = min{c, m(R.AR.11 )}
1

R.AR! is the symmetric difference of R. and R!, m(S) is the
1 1

Lebesgue measure of a set S, c is a positive constant, and R.

and R! are considered equal if m(RiARi') For notational

simplicity, we shall sometimes omit writing the bounds of indices

when the omission does not seem likely to cause confuction, for

instance writing (Ri) insteady of (R.)1. . Also there will be a
I. =1

number of different distance functions being used, and we will denote

them all by the letter d.

Let RN, Rn and R + = tz:z > 01 be the metric spaces of

B = (b.), X and h respectively with the Euclidean metric. Let

be the metric space of the kernel function k, and let the

metric be
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d(k, =
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k(Z)-0Z)IdZ. (3.6.3)

= * RN * R * R
+

, (3.6.4)

where "*" denotes the Cartesian product. Let each

ui(X) = .5? k(X, h).
R.

g
1 1

is defined on all of 7 and g
2

at all points of rjt
1

for which .s., Xw.( )

1
0. We now show that g1 and g

2
are con-

i= 1

tinuous at all points ((R.), B, X, h, k) of their domains. The scheme

is to prove a number of lemmas establishing the continuity of u.,

j = 1, N, in each variable when all but that variable is held fixed.

A function of several variables continuous in each separately is not

necessarily continuous; however, for u. the lemmas are estab-
J

lished in such a way that the continuity of u, follows. The continu-
J

ity of g1 and g2 is an immediate consequence of the continuity of

the u. s The same scheme will be followed in proving the continuity

of g1 and g2 on 72, 113 and ey4.

3. 6. 1 Lemma. For every E > 0, there exists 8 > 0 such

that l u ( ( R ,

/
) , B, X, h, k) - u.R!), B, X, h, k)I < E whenever

1

d((R.), (R fi.)) < 5. 5 is independent of j, B, X and dependent on

h, k.



Proof.

B, X, h, k) u.((R!), B, X, h, k)I
J 3 1

< k(X, k(X,
JR. R

3

k(X, h)

J 3

< (sup(k)/lan)m(R.LR1.)
3

< (sup(k)ihn)d((R.), (R?))
1 1

< c
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if we assume WLOG that m(R:AR!) < c,
J J

where c > 0 is the constant previously

defined in conjunction with the distance

function

whenever d((R.), (R:)) < 5 and
1 1

5 = (hnisup(k))E .

3.6.2 Lemma. For every E > 0 there exists 8 > 0 such

that

whenever

lu.((R.),B, X, h, u.((R.), B, X', h, k) I < E
3 1 j

II x-x' II < 5.

5 is independent of j, (R.), B and dependent on h, k.



Proof.

u.3 ((R.), B, X, h, k) u.3 ((R.), B, X', h, k) I

1 1.

, (,,hn)r. , zx z_xi-k( )1c1Z

R.

ihn)ik( ZhX ZX -X)1c1Z
Rn

where X = (X'-X)/h

< k(Z)-k(Z -7) IdZ

SI k(Z)-k(Z -X) I dZ
Aa(0)

I k(Z)-k(Z I dZ
Ba(0)

for any a > 0.
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(3. 6. 5)

(3. 6. 6)

We will now show that for a sufficiently large a, whose

value depends on h and k, the integral on line (3. 6. 5) is less

than E /2. For this a there exists 5 > 0 such that the integral

on line (3. 6. 6) is less than E /2 whenever II < 5. From this,

the lemma will follow.

The integral on line (3. 6. 5) is less than or equal to
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k(Z)dZ + S k(Z -X)dZ
Aa(0) A a(0)

k(Z)dZ + k(Z)dZ
Aa(0) A (0)

provided that a >11(X ' -X) /1-1 II and where

Y = a 11(XLX)/1111, as whenever Z

is in A (0) then Z-7 is in A (0)
a Y

gk(Z)dZ
A (0)

< E /2

as A (0) D Aa (0)

whenever y, and hence is

sufficiently large.

As k is continuous, it is uniformly continuous on the closure

of B 2a(0). So there exists 5 > 0 such that 11 (X -X) /h II < 51

implies Ik(Z)-k(Z -3)1 < Eig 4dZ for all Z and Z -3e in
Ba(0)

B2a (0) and consequently for all Z in B a(0) (note that

a > II (XC-X)/h11 from above). Therefore, the integral on line 3. 6. 6)

is less than or equal to

4dZ dZ < E /2
Ba(0) 13a(0)

whenever II X-X111 < 5 and 5 = h5
1

.
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3. 6. 3 Lemma. For every pair h' > 0 and E > 0 there

exists 5 > 0 such that I u.((R.), B, X, h, k) u.((R.), B, X, h', k) < E
3 1 3 1

whenever I h-11.' I < 5. 5 is independent of j, (Ri), B, X and

dependent on k.

Proof.

110(R.), B, X, h, k) u.((R.), k) I
J 3 1

< S ,k(x,h)_k(x,hi) 1

<
A a (X)

I k(X, h) -k(X, h') I

+ S I k(X, h) -k(X, F1') I
Ba(X)

for every a > 0.

(3. 6. 7)

(3. 6.8)

We now show that for a sufficiently large a, whose value

depends on h' and k, the integral on line (3. 6. 7) is less than

E /2. For this a there exists 5 > 0 such that the integral on line

(3. 6. 8) is less than E /2 whenever I h-h' I < 5. From this the

lemma will follow.

The integral on line (3. 6. 7) is less than or equal to



k(0, 1) + J k(0, 1)
A cith

(0) Aa/h (0)

< S k(0,1)
A (0)

< E/2

113

where WLOG we assume that 6 will be

sufficiently small to insure that I <

implies h >111/2 and where y = 2a/h

whenever y, and hence a, is

sufficiently large.

As k(Z) is uniformly continuous on the closure of B a(0),

there exists 5 > 0 such that I < 5 implies

I (1 ihn)k(Z /h) (1 /01)k(Z /hi) I < E 4dZ whenever Z is in
Ba(0)

Ba(0). Therefore, the integral on line (3. 6.8) is less than or equal to

.11 I (1 ihn)k(Z /h) (1 /11111)k(Z /hi)! dZ
Ba(0)

< E /2

on making a change of variables

whenever I < 5.

3.6.4 Lemma. For E > 0 there exists 5 > 0 such that

u.((R.), B, X, h, k) - uMR.),B, X, h, k') I < E whenever d(k, k') < 5.
3 1 3 1

5 is independent of j, (Ri), B, X and h.



Proof.

luj((Ri:), B, X, h, k) uj((Ri), B, X, h, k 1)1

< Ik(X, h ) - k'(X, h)
Rn

< I k(0, 1)-k '(0, 1)1
Rn

< E
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whenever d(k, kt) < 5 and 5 = E

3. 6. 5 Lemma. For j U. is a continuous function

from 71 to R.

Proof. Let ((R;.), B 1, Xl, hl, kl) in rj
1

and E > 0 be given,

,and
let ((R.) B, X, h, k) be any other point in rj1. Then

upy, B', X', hi, - u.((R.), B, X, h, k) I

< ju.((R!), B', X', h', k') u,((R.), B', X', h', k') I
j J I

+ I
u.((R.), B', X', h', k') u.((R.), B, X', hI, kl)1
J j

+ I ui((Ri), B, X', h', k') upRi), B, X, h', k')1

B, X, la', k') u.((R.), B, X, 11, 101
J j 1

+ B, X, h, k') u.((R.), B, X, h, k)1 .
3 1 3 1

By Lemma 3. 6. 1 there exists 5
1

> 0 such that (R.)

(3.

(3.

(3.

(3.

(3.

(3.

in

6.

6.

6.

6.

6.

6.

9)

10)

11)

12)

13)

14)

B
5

((R!)) implies the expression on line (3. 6. 10) is less than E /5.
1



115

As the value of u, is independent of B and B', the

expression on line (3. 6. 11) is zero.

By Lemma 3.6.2 there exists 52 > 0 whose value is

independent (R.) and B such that X in B
5

(X') implies the
2

expression on line (3. 6. 12) is less than E /5.

By Lemma 3.6.3 there exists 63 > 0 whose value is

independent of (Ri), B and X such that h in B6 (h') implies
3

the expression on line (3.6.13) is less than E /5.

By Lemma 3.6.4 there exists 64 > 0 whose value is

(R.), B, X and h such that k in Bb (k')
4

independent of

implies the expression on line (3.6.14) is less than E /5.

For each of the Lemmas 3. 6. 1, 3. 6. 2, 3. 6. 3, and 3. 6. 4 the

value of delta depends on some of the arguments of u, and does not
J

depend on the others. In breaking the expression on line (3. 6. 9) into

the sum of five terms, care has been taken to do it in such an order

that the lemmas apply. Hence for every point of

B5 ((Ril))*Bi(B1)*B62(X') ;1/4 BS (h') BS (k')
1 u3-

the expression on line (3. 6.9) is less than E .

3. 6. 6 Theorem. g
1

and g
2

are continuous functions from

rl
1

to R.
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Proof. The theorem is an immediate consequence of Lemma

3.6.5.

3.7 Continuity of g and g2 on rpf2

Let I
N

1
be the metric space of all N-tuples (I) . ofIf

I.=

disjoint intervals whose union includes the range of f and for which

I. is to the left of I Let the metric be

where

d 1((I.), = max{d (I
i
,I.1): i = 1, ...,N},

d
2

(Ii, I') = min{c, m(I. AI!)}
i

for some constant c > 0. Let

Let

'(1 2 = If
N *Rn *R +

(3.7.1)

(3. 7. 2)

(3. 7. 3)

da((Ri), (R.')) = max{m(RiARil r Ba(0)) . (3.7.4)

Let each ui(X) = k(X,h), R. = (lad, and belong to I.
R.

3.7.1 Lemma. Let

(i) A be a closed and bounded subset of R ,

(ii) f be continuous,
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(iii) the domain of f be closed, and

(iv) m(f -1(y)) = 0 for every y in the range of f.

Then for every y in the range of f

lim -1 B (y)) rm A) = 0
6~0

Proof. Let y in the range of f and E > 0 be given. As

m(f -1(y)) = 0, there exists an open set U containing f
-1(y)

whose measure is less than E. If we can show that there exists

5 > 0 such that f-1(B 5(y)) (m A C U, we are through.

On the contrary, assume that no such 5 > 0 exists. Then for

k = 1, 2, 3, , there exists a point Zk in f
-1(B1 /k(y)) rm A that

is not in U. As A is closed and bounded, the sequence {Z }°°k k=1

has a convergent subsequence {ZIk k=1 whose limit point Z is

contained in A. As f is continuous, f(Z) = urn f(Zk) = y, so
k "co

that Z is in U, and U contains infinitely many points of

But this contradicts the way in which the sequence {Z{ZOcck=1.
q k k=1

is constructed. Hence there exists 5 > 0 such that

f
-1 (B 5(y)) r, A C U.

3. 7. 2 Lemma. Let

(i) f satisfy the constraints of Lemma 3.7.1 and

(ii) a > 0 be an arbitrary constant.

Then
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lim da((Ri), (Ri')) = 0,
(1) (V)I I

where R. and R.' equal 1
(1.) and f (Id respectively.

Proof. For i = 1, ..., N let ri and s. denote the left
Iand r.' and s!
i i i

those of I. With the possible exceptions of r1, r'i, sN and sN ,Ii.

all
i

(Ii)converge to (I!)

it is necessary that r1 and r 11 both be finite or both be infinite.

Hence WLOG we assume that both are finite or both are infinite.

For the same reason we assume that both sN sand are finitesN

or both are infinite. For i = 1, ...,N let

if
1

r
1,

r
1

are infinite

Si = r
N

-r
N

if N' s
N

are infinite

max{ r. -r ! , s. -s.' } otherwise ,

s

I

and let 6 = 2 max{6,}. For notational convenience we make the con-

vention that B5(00) = B5( -00) =

As for i = 1, ...,N,

-R.AR! = f -1(LAI!) C f 1
(B

6
(r!)) f -1 (B6(s)) ,

then



lim da((Ri.), (R'))
(I. ) (I)

1

N

< lim (R. AR!) rThB a (0)}
(Ii)

where Ba(0) is a subset of R
N

< lirn f -1
(B

6
(r.T))(mB a(0)] + m[f -1(B

8
(s!)),-3 a (0)]

)
1

(I. .

1 =1

< lirn 2N max{m[f -1(B
6

(r!)rm A], m[f -1(B
6 1
(0)(-- All

(I.1 ) (I!)

n
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whe re A is the closure of Ba(0)

= 0 by Lemma 3.7.1 as

Urn 5 = 0.
(I.) ---

3.7.3 Lemma. Let the constraints of Lemmas 3.7.1 be

satisfied. Then for every (Ii) and E > 0 there exists 5 > 0

such that I u.3 (a.
3

), X, h, k) u.((I!), X, h, k) I < E whenever

d((I.), (Ii)) < 6. 5 is independent of

Proof.

and dependent on X, h, k.

u.J ((I.), X, h, k)
3 1

u.((I.I), X, h, k)I
1

< I k(X, h) - .51 k(X, h) I
R. Et!



< k(X, h) +
R.

+ I J k(X, h)
R.
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k(X, h) (3. 7. 5)
Et!

- J k(X, h) (3. 7. 6)

11!J
where for a set S, S = S rm Aa(X) and

S =Sn B a(X), a > O.

The expression on line (3.7.5) is less than or equal to

k(X, h) < E /2 for some sufficiently large a dependent
Aa (X)

on k, h.

For this a the expression on line (3.7.6) is less than or equal

to

k(X, h)
R.AR!

< (sup(k)/hn)m(RJ ..,R!rmB (X))
J a

< (sup(k) ihn)d
a+p((R.), (R.')) (3. 7. 7)

as every point of Ba(X) is in Ba+P(0)

where = 11)0

Lemma 3.7.2 applies and there exists 6 > 0 dependent on X, h, k

such that the term on line (3. 7. 7) is less than E /2 whenever

d((Ii), (I'd) < 6.
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3.7.4 Lemma. Let the constraints of Lemma 3.7.1 be

satisfied. Then for j = 1, , N, u. is a continuous function from

Vz to R.

Proof. Let ((Ili), Xl, hl, kl) in fj2 and E > 0 be given,

and let ((I.), X, h, k) be any other point of rj 2. Then

ui((Ii'), X', h', k') - u.((I.), X, h, k)I
3

< Xl,h1,101
3

+ lu.((I.),X1,hl,k1) u.(a.),x,IC,101
3 1 3 1

+ u.((I.), X, h',10 u.((I.), X, h,101
3 1 3 1-

+ lu.((I.), X, h, k') u.((I.), X, h, k)1
3 1 3 1

(3. 7. 8)

(3.7.9)

(3. 7. 10)

(3.7.11)

(3.7.12)

By Lemma 3.7.3 there exists 51 > 0 such that (I.) in

B ((I.')) implies the expression on line (3. 7. 9) is less than /4.
51 i

By Lemma 3.6.2 there exists 52 > 0 whose value is inde

(R.) and B and consequently of (I.) such that X inpendent of

B5 (X ') implies the expression on line (3. 7. 10) is less than
2

E /4.

By Lemma 3.6.3 there exists 63 > 0 whose value is inde-

pendent ,ndentof (R.) B and X and consequently of (I.) and X such

that h in B5 (h') implies the expression on line (3. 7. 11) is less
3

than E /4.

By Lemma 3.6.4 there exists 54 > 0 whose value is inde-

pendent of (R.) B, X and h and consequently of (I.), X and h
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such that k in B6
4

(k') implies the expression on line (3. 7. 12) is

less than E /4.

Hence, the lemma is true.

3. 7. 5 Theorem. Let

(i) f be continuous,

(ii) the domain of f be closed,

(iii) na(f
-1(y))

= 0 for every y in the range of f,

(iv) lim b. = b.', i = 1, .. , N.
I.

Then gl and g2 are continuous functions from 72 to R.

Proof. The theorem is an immediate consequence of Lemma

3.7.4 and of condition (iv) above.

3.8 Continuity of g1 and g2 on (-11
3

Let N'et T be the metric space of all N'-tuples (T.).
1=1

of

points in the domain of f and let the metric be

Let

d((T.), (V)) = maxqT.-VII a i = 1,

NI n +
3= Tf * R R * j\e

For measurable subsets A, B and C of Rn let

(3.8.1)

(3. 8. 2)
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dc (A, B) = m((A6.13)(ThC) (3.8.3)

/i
XLeteach u.( X) = k(X,h), let R. = L} nn(T.), see line

i i JR.
1.

j=/ +1i-1
(3. 3. 10), and let b. be a continuous function of the y. 's,

i

lj
- 1

+ , , Q .

3.8.1 Lemma. Let

(i) X, X', Y, Y' be points in Rrl,

(ii) A be .a measurable subset of R of finite diameter con-

taining X, X', Y, Y', and

(iii) C {z Z-XII II },

= {z : z -x ' II z ' },

II < II or <

Then lim d
A (C

'
CI) = 0.

(X, Y)-~ (X', Y')

Proof. WLOG

where R.- can mean

(a) let the components of X' and Y' be

0 if i < n
x! =

a if i = n
and

yi

0 if i < n

-a if i = n ,

where a > 0,

(b) let A = B a (0), where a > 0, and

(c) let the n-th components of X and Y be greater than

zero and less than zero respectively.
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Condition (c) is allowed because (X, Y) is assumed to converge to

(X', Y'), and it insures that xn > yn

Let H' be the hyperplane of points equidistant from X' and

Y'. If t = sup {d(P,H')}, where d(p, H') is the per -
P E (CA C')Em A

pendicular distance from P to H', then t is finite and

d
A(C,CI) = m((CACI)(mA

< 2ta.

We now show that t converges to zero as (X, Y) converges

to (X', Y'). For any point P of CAC', the distance from

to H' is I pnl If P is in C and not in C', then

IIP-XII IIP-YII and II P 'XIII > II P'Y' II , which implies

n-1

--[(X-Y) (X+Y) - 2 Pi xi-Yi) /2()cn ) < Pn < 0.
i= I

Similarly if P is not in C and is in C', then

{(X-Y) (X+Y)

Hence

n-1

i=1

Ipi(xi-yi) /2(xn-yn) > pn > 0.

n-
t < sup I (X-Y) (X+Y) I + 2

PE (CACI)r-A
n - 1

< I (X-Y) (X+Y) I + 2

i=1

I- /2(xn-yn) ,

II pi (Xi yi) I /2
i=1

P

n n
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from which we see that t converges to zero as (X, Y) converges

to (Xl, Y1). #

3.8.2 Lemma. Let (T. N.

J -1
and (T!).

N

J -1

points taken from Ba(0) C Rn, a > 0. Then

(T.)- (V)
3

d ((R.), (Rb.)) = 0a 1

Proof. As for i = 1, N,

R A.,6 C nn(T.) nn(T!) ,
1 1 _ j=/. +11-1

be N'-tuples of

the lemma will follow if we establish that for j = 1, N'

where

lim da(nn(T.), nn(T!)) = 0.

(T )N' NI
h h=1 (Th)h=1

For j, k = 1, . N' and for j k let

It". II

cik = {z : II z-TjH II z-Tk11}

Cik = {Z: II -T II Z }

means "<" if j < k and <" if j > k.

Then for j = 1,



N' N'
nn(T.) = n C. and nn(T!) = r, C!k.

3 k=1 3k k=1 3

k4j k4j

For j = ,

Z EZ E nn(T.) nn(T!))
J J JA J

Z E nn(ri)A Z V nn(Ti!) => (Z E Cii.(ali k 4 DA ( k 4 j3 Z siClik)

=>g kVjSZ e Cikk,Cilk .

Hence

AZ6 1 nn(T.) Z E nn(T!) => k V E C. a Ctjk jk

N'
nn(T.) A nn(T!) C

k=1
k 1 j

Hence for j = , N'

C.jk

lira da(nn(Ti), nn(T!))
(Th ) h(T1)

< lirn
(T

= 0

by Lemma 3.8.1.

d (C. , )a jk jk

126
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3.8.3 Lemma. For every set of points (T!). and for
1=1

every E > 0 there exists 5 > 0 such that

u.j ((T.), X, h, k) u.((T!), X, h, k) I < E whenever d((T.),(T.11 )) < 5.
1 j 1

5 is independent of j, j = 1, ...,N, and dependent on X, h, k.

Proof. The proof is identical to the proof of Lemma 3.7.3

except that (i) on line (3. 7. 7)

P = max{max {II + 1 }, II XII

by Lemma 3. 8. 2. 0

is replaced by

and (ii) Lemma 3.7.2 is replaced

3.8.4 Lemma. For j = 1, .. , N, u. is a continuous

function from rT
3

to R

Proof. The proof is so similar to that of Lemma 3.7.4 that it

is omitted. 0

3. 8. 5 Theorem. Let

yi = f(T.), j = 1, ,

(ii) f be continuous, and

(iii) b. be a continuous function of the y.'s,
j

see line (3. 3. 7), for i = 1, , N.

Then g
1

and g
2

are continuous functions from r-I3 R.

Proof. The theorem is an immediate consequence of Lemma

3.8.4 and of conditions (i), (ii), and (iii) above. 0



3.9 Continuity of gi and g2 on

Let be the metric space of (N+1)-tuples (c1,). of
L=0

continuous discriminant functions, where d
0

= 00 and d
N

= -00.

Let the metric be

where
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d
1

((d
i
), (di)) = max{d (d., d.') : i = 0, . . , (3. 9. 1)

d2 (di, di) = minfc, sup{I di(Z)-di(Z) I : Z E Rn }}

for some positive constant c. We make the convention that

and that

d
2

(d 0' d0) d

-d (X)

Soo

N' dN)

(0, h) = 0.

(3.9.2)

Let 1( , as defined in Section 3.6 with n 1 and Rn = R, be

the metric space of the kernel function Let

Let each

N n +r-j' 4 =30'*R *R *R

-di(X)
Xu.( ) = / (0, h).

-d.
1

(X)
-1

(3. 9. 3)
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3.9.1 Lemma. For every pair X' in Rn and E > 0

there exists 5 > 0 such that I u.((d.I ), B, X, h, ) - u ( ( d
I
),B,X ,P) <

j j

whenever 11)C-X111 < 6. 5 is independent of B and dependent on

j, (di.), h,

Proof.

I u.((d.1 ), B, X, h, ) u.((d.), B, X', h, I

3 3 1

-d.(X) -d.(X')
(0, h) (0, h)I

-d. (X) -d. (X')3-1 3-1

X<(1 /h)sup(1 ){1d.( )-d.(X`)1-1- Id.
3-1

(X)-d.
1

(X ') I }

< E

whenever II x-XI II < 6 and S is small enough to insure that

'Id.(X)-d.(XI)I and Id. (X) -d. (X )1 are less than
3 J J-1 d3-1

hE /(2 sup(1 )). Such a 6 exists as d . and d. are continuous..
J -1 J

3. 9. 2 Lemma. For every E > 0 there exists 6 > 0 such

that I u.((d.), B, X, h, ) u.((d!), B, X, h,1 ) I < E whenever
3 1 3 1

d((d.), < 6. 6 is independent of j, B, X and dependent on

h,



Proof.

u.((d.1 ), B, h, 1)
1

B, h, 1)1
3 3

-d.(X) -d!(X)
< I J 3 1(0, h) 1(0, h)I

d. (X) -d! (X)
3-1

-dj _1(X)
< I 1(0, h)I + I 1(0, h)

d'. (X) -d 1(X)j -1

X<(1 /h) sup(1){1d.( )-d'.(X) I + 1 d. (X)-d'. (X) 1}
J-1 3-1

< E

whenever d((d.), (d.')) < 5 and

5 = hE /(2 sup(1)).
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3. 9. 3 Lemma. For every pair hl > 0 and E > 0 there

exists 5 > 0 such that I u.((d.), B, X, h, /) - u.((d.), B, X, h', 11)1 < E
J 1 j 1

whenever 1 h-h' 1 < S. b is independent of j, (d.), B, X and

dependent on f.

Proof.

u.((d.), B, h, .e) u.((d.), B, hI, 1)1
3 1

-dj (X)
< 1(0, h) - 1(0, hid

X-d.( )

J

11(0, h)-1(0, h') I + 1/(0, h)-1(0,11.1)1
A a(0) B a (0)

for every a > 0.
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The proof now proceeds as in Lemma 3.6.3.

3.9.4 Lemma. For every E > 0 there exists 5 > 0 such

that jui((di), B, X, h , 1 ) updi), B, X, h,1 < E whenever

') < 5. 5 is independent of j, (di), B, X, h.

Proof.

uj((di), B, X, h,1 ) u.((d.), B, X, h,
j

-d4(X)
< 1 (0, h) - 11(0, h)1

-d. (X)3-1

< J 11(0,1)-1,(0,1),
_00

< E

whenever d(1,1 ') < 5 and 5 = E .

3.9.5 Lemma. For j=-- 1, . u. is a continuous function

from fT4 to R.

Proof. The proof is so similar to the proof of Lemma 3.6.5

that we omit it.

3.9.6 Theorem. gl and g
2

are continuous functions from

to R.
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Proof. The theorem is an immediate consequence of Lemma

3. 9. 5. 0

3.10 Convergence of g1 and g2 to f and q when ui(X) =s k(X,h),
First Proof R.

s3.10.1Theorem. Let the u.' be as defined on line (3.3.2)
N

and let q = L biR Then as h converges to zero,

i=1

(a) gl and g2

(b) g1 and g2

0converge pointwise to q on v R. , and
i=1 I

N
converge uniformly to q on L) R.

.
1=1

Let D be the domain of f. As h and a, converge to zero,
0

(c) g
1

and g2 converge pointwise to f on D n v R. , and
i =1

N a
(d) gl and g

2
converge uniformly to f on D L.) R.

i=1

N
Proof. (a) Let X in R. R. be given, and WLOG assume

i =1 I
0

X is R. for some index between 1 and N. There exists
0

> 0, whose value may depend on X, such that B
5
(X) C R, As

u.(X) = k(X, h)
R.

> y k(X, h)
BEI (X)

> S k(0,1)
B

5
(0)
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and as for all i

then

u.(X) < ir k(X, h)
A

5
(X)

< .5 k(0, 1),
A5 /h (0)

lirn u.(X)
0 1

if i j

if i = j

From the definitions of g1 and g2 it now follows that

lira gi(X) = lim g2(X) = q(X).
0 h 0

(b) Note that the value of h needed to insure that u.(X) is

within some E > 0 of its limit depends on 5, only indirectly on

X, and not on i. Hence, the value of h needed to insure that

g 1(X) and g 2(X) are within some E > 0 of q(X) depends on 5

N a
and only indirectly on X. On v R. , 5 can be chosen inde-

i=1 1

pendently of X, and g1 and ga converge uniformly to q.
N

(c, d) On D v R., If(X)-q(X)1 < of,, so that parts (c)
i=1

and (d) of the theorem follow from parts (a) and (b).

Theorem 3.10.1 describes the behavior of g1 and asas

N 0h and a converge to zero, at all points of v R. In Theorem
i=1 1
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N 03.12.1 we will extend the results of Theorem 3.10.1 to ( v R.)
i= 1

I.

There will be some difficulty establishing the extension, because as

we shall now see, gl and
N 0
v R.
i=1 1

Let (i)

g2
can behave badly at points outside

1/2 if Ix I < 1
k(x) =

0 otherwise

be a kernel function defined on R,

(ii) N = 2,

(iii) b1 = 1, 132 = 0, and

(iv) RI = [2-2n-1,2-2n]
n=0

R
2

= [ -1, 1] \R1 .

Then for x in [-1,1]

g (x) = g2(x) = 131 k(x, h) +b2 k(x, h)
R1 R2

= k(x, h)
R1

= (1 /(2h))m(R [ -h+x, h +x])

as

and



Hence

1/(2h) if I (y-x) /h I < 1
(1 /h)k((y-x) /h) =

2n 1 4
2 2n 3

g
1
(0) = g2(0)

2n 1 4
2

2
n+1 3

otherwise .

if h= 1 and n = 0, 2, 4, ...
2n

h = 1if and n= 1, 3, 5, ...
2n

c". 1 4

2n 3

as m(R1,Th [ - 1 /2n, 1 /2n])
1 4

2n+1
3

1
if h = and n = 0, 2, 4, ...

3 2n

1 1
if h = and n = 1, 3, 5, ... ,

2n
3
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if n = 0, 2, 4, ...

if n= 1, 3, 5, .

and lirn gi(0) and lira g2(0) do not exist. Notice that zero
h 0 h 0

0 0 0is not in R1 or R2 but is in (R1 R2)

Now k is not continuous; however,

r1 /2 if x I < c

k'(x) = (1 /2)I(d-x)/(d-c)I if c < I x I < d

otherwise,0

_

where c = 11 /12 and d = 13 /12, is continuous, and



I S k(0, h) -k'(0, h)1 < (d-c) /2
R1

< 1/12

136

for all h > 0. Hence, if g1 and g2 are defined in terms of k

instead of k,

g 1(0) = g2(0)
> 7/12 if h = 1/2n and n = 0, 2, 4, ...

>5/12 if h = 112n and n = 1, 3, 5, ... ,

and lim gi(0) and lim g ( ) do not exist.
0 0

3. 11 Convergence of g1 and g2 to f and q when
-d.(X)

.0 X( ) ic 1 (0, h), First Proof
1

-d. (X)

Let d0, d
1'

, d
N

be discriminant functions with d = 00

d = -00 and d. (Z) > d.(Z) for all Z. Let
N 1-1

A. = {Z1di(Z) < 0 }, i = 0, , N,

R = A.1 \ A.
,

i 1, , N,
1-1

0

1
ZR= {Z1d. -1 ( ) > 0 and d. (Z) < 01, i = 1, , N, and

a
R {Z id. (Z) > a and d.(Z) < a), i = 1,

1-1

where a > 0 is some constant. As d. (Z) > d.(Z) for all Z,1-1

then Ai-1 Ai , R.'sR.' are, pairwise disjoint, and



N
R. = Rn. Each R. can also be characterized by

i =1

{R.= Z I d.
1-1

(Z) > 0 and di(Z) < .

0There is no particular relationship between OR. and R. and

between
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a
R.

a
and R. , but if the discriminant functions are con-

1. 1

0 0tinuous, then R. C R. .
1 1

3.11.1 Theorem. Let

(i) d0, d1, , dN be discriminant functions with d0 = 00,
0

d = -co and d. (Z) >d (Z) for all Z,N 1-1 i

s(ii)the u. I be as defined on line (3. 3. 19), and

(iii) q =

N

Then as h converges to zero,
N

0(a) g1 and gz converge pointwise to q on v R. , and
i=1 l

(b) g
N

and g2 converge uniformly to q on v a
R.

1 =1

Let D be the domain of f. As h and of converge to zero,

(c) g1 and

(d) g1 and

g2 converge pointwise to f on D r-N v OR. and
i=1

N a
g2 converge uniformly to f on D n v R.

i=1
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0Proof. (a) Let X in v R. be given, and WLOG assume
i=1

X 0R.R. for some index between 1 and N. For i j

the interval (-di_ i(X), -di(X)) does not contain the origin, while for

i = j the interval does. Hence

-di(X)
urn u. (X) = lim / (0, h) =

0 0 -d.
1

(X)-1

From the definitions of g
1

if i t j

if i = j

and g2, it now follows that

lira gi(X) = lim g2(X) = q(X)
0 h 0

(b) If X is in aR., then

/(0,h) if i = j
-a

Xu.( ) -a oo

/ (0, h) + J 1 (0, h) if i j .

_oo a

XThelimit as h converges to zero of u.( ) is one if i = j and

zero otherwise. The value of h needed to insure that u.(X) is

within some fixed distance of its limit depends on a and not at all

on X. Hence, there exists h' > 0, whose value is independent of

X, such that gi(X) and g2(X) are within some E > 0 of q(X)

whenever h < h'. This proves part (b).
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N
(c, d) On D n v R., if(X)-q(X)I < a, so parts (c) and (d)

i =11=1

follow from parts (a) and (b).

3.12 Confergence of g1 and g2 to f when ui(X) k(X, h),
Second Proof R.

3.12.1 Theorem. Let f be continuous and bounded on its

domain D, and let the u. is be as defined on line (3. 3. 2). Then

as h and a converge to zero,
N

(a) g1 and g2 converge pointwise to f on D n (v R)0, and
i=1

(b) g
1

and g2 converge uniformly to f on every closed and
N

bounded subset of D n (v R.)a .
i=1

Proof. In part (A) below we prove the theorem for g1. The

proof does not seem to extend to g2. In part (B) we introduce a

second approach to proving the theorem, first proving the theorem for

g1 in part (C) and then for g2 in part (D).
N

(A. a) Let X in D n ( v R.) 0 and E > 0 be given.

Suppose that

tf < E /4 .

There exists 8 > 0 such that

f (X) -f(Y)1 < E /4 whenever 11X-Y11 < 5 (3. 12.2)

and

(3. 12. 1)



N
B

5
(X) C k__.) R. .

i=1

For i = 1, . , N let
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(3. 12.3)

Ri = R. n A5(X) and R. = R. r-, B 6(X). (3. 12.4)
1

For i = 1, . , N if Ri cf, then

I f(X) -bi I < I f(X) -f(Y) I + I f(Y)-bi I

where Y is in R.1
< E /4 + Lf.

1

< E /2

by lines (3. 12. 1) and (3. 12. 2

Now

I f(X)-g(X) I < I f(X) - bi k(X, h)

i=1 R.

< I f(X) k(X, h) +
A6(X)

k(X, h)

5(X)

N

J bi sr k(X, h) + k(X, h) I

i=1 Ri R.
i



< b k(X, h) + b S N k(X, h)
.A

6
(X) v R.

.

1=1

+ If(X) k(X, h)

6
(X)

i=1
B

k(x,h), ,

R.
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(3. 12. 6)

(3. 12. 7)

where b = max{ sup {I f(X) I }, max {I b. I }}
X E D 1

The expression on line (3. 12. 6) is less than or equal to

213S. k(X, h)
.A

5
(X)

N
as v R. C A (X) by line (3. 12.3)

i=1 I

< 213 er k(0, 1)
.A 6/h (X)

< E /2

whenever 0 < h < h' and h' is sufficiently small. The value of

h' depends on b and 6 and only indirectly on X.

N
By line (3. 12. 3) B6(X) = v Ri , so that the expression on

i =1
line (3. 12.7) is less than or equal to

N

i=1

(f(X) -b.) k(X, h)1 < E /2
R.
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by line (3. 12.5).
N

0(A. b) For any X in D n (v R.) the proof of part (A. a)
i=1 1

depends on X only inasmuch as the choise of a 5 > 0 small enough

to satisfy the conditions on lines (3. 12. 2) and (3. 12.3) may depend on
N

X. If X is in a closed and bounded subset E of D n ( v R.)
i=1 1

then, as f is uniformly continuous on E, a 5 > 0 may be

chosen, independent of X, such that the condition on line (3. 12. 2)

is satisfied. If in addition 5 < a, then the condition on line

(3. 12. 3) is also satisfied.

N
0(B. a) Let X in D n (v R.) and E > 0 be given.

i =1
Suppose that

tf < E/8. (3.12.8)

There exists 6 > 0 such that

I f (X) -f( Y) I < E /8 whenever < 5 (3. 12.9)

and

N
B

5
(X) C v R.

i =1

Let = Min {ilR and
1 < i <N

b' = bi, and b" = b. . Then

i I I

(3. 12. 10)

max fi I R. ; let
1< i <N



R. = B
5

(X) and b' < b. < b"
i =i'
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(3. 12. 11)

for i = i" (remember that b. < b i+1' i = 1, , N-1).

and

Hence

and

Let Y' and Y" be in R., and R. respectively. Then

lb'-f(x)1 < I b'-f(r)I + If(Y')-f(x)1

< E 14 by lines (3. 12.8) and (3.12.9),

b"-f(X)1 < b"-f(Y")I + If(Y")-f(X)1

< E 14 by lines (3. 12.8) and (3.12.9).

b"-b' < 12, (3. 12. 12)

- E /4+131 < f(X) < b"+ /4. (3.12.13)

In part (C) we will show that, for a sufficiently small h' > 0,

- E 14+bl < g (X) < b"+ /4, (3. 12. 14)

whenever 0 < h < h'. Combining lines (3. 12. 13) and (3. 12. 14)

yields

-E /2 -(b " -b') < f(X) g, (X) < (b"-b')+E /2,

and hence by line (3. 12. 12)

I f(X) -gi (X)I < E.



In part (D) we will show that, for a sufficiently small h' > 0,

-E /414b1 < g2(X) < b"+E /4

whenever 0 < h < h' and consequently that

If(X)-g2(X)1 < E
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(3. 12. 15)

(B. b) In parts (C) and (D) it will be seen that the choice of a

h' > 0 needed to satisfy the inequalities on lines (3. 12. 14) and

(3. 12. 15) depends on b = max{lbil +1} and on 5 and only indi-

rectly on X. Therefore g
1

and g2 converge uniformly to f

N a
on every closed and bounded subset D n (v R.)

1 =1 1

(C) Let h' > 0 be sufficiently small to insure that for all

0 <h < h'

k(0, 1) < E /(8Nb) and k(0, 1) < 1-E /(8b),
A

5/11(0)
B5/11(0)

(3. 12. 16)

where WLOG we assume that E /(8b) < 1 and where

b = maxt b.! 4. Note that the value of h' depends on b and 5

and only indirectly on X.

For all i i', .. , i", R. so that
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Xu.( ) = k(X,
R.

k(X, h)
A

8
(X)

J k(0, 1)
A (0)

8/h

< E /(8Nb) (3. 12. 17)

whenever 0 < h < h' by line (3. 12. 16).

and

Also, for all 0 < h < h'

U.(X) < 1,

U =1( X

i /I

k(X, h) + k(X, h) -
R. R.i =i'

> .r k(X, h)
B

8
(X)

by line (3. 12.11)

> k(0,1)

BS /h (0)

> 1-E /(8b)

(3.12.18)

by line (3. 12. 16). (3. 12. 19)

From lines (3. 12. 18) and (3. 12. 19) it follows that



and

Similarly,

As

131(1-E /(8b)) < b' ui(X) if b' > 0,

i=i'

b' < b' > u. (X) if b' < 0,
i=i'

b'-/8 < b' Xu.( ).

i= 1'

b" u.,(X) < b"+E /8.

i=i'

g 1(X) =

N

i=1

then for all 0 < h < hl

-(N-k)b
8Nb

b.u.(X),
1
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(3. 12. 20)

(3. 12.21)

b.u.(X) < g
1
(X) <

1 1
b.u.(X) + (N-k)b if-JD

'
i=i''

by line (3. 12. 17), where k = in-i' +1
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-E + b' i(X) < (X) < b"

i=i' i=i'

U.1 (X) + E /8,

by line (3. 12.11)

-E /4 + b' < g1(X) < b" + E

by lines (3.12.20) and (3.12.21).

(D) For all i = 1, , (i1-1), R. = d, so that

remember

For all

k(0, 1),

6/11(0)

see line (3. 12. 17), and lirn u.(X) = 0. As

vi(X) = ill (X).

1=0

u0-;0, then lira v. (X) = 0 whenever i = 1, , (C-1).
h 0 1

i = in, , N, D 135(X), see line (3. 12. 11),
=1

vi(X) = 1 i k(X, h)
R

1=1

k(X, h)
B

5
(X)

k(0, 1),
B5 /h(0)
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and lira v. (X) = 1. Hence, for all i ,

h 0

him w.(X) = 0, (3.12.22)
h--'0

and there exists h, > 0 such that

w.(X) < E /(8Nb(2N) ),
1

(3. 12. 23)

where b = max {Ibi I +1}, whenever 0 < h < hl.
1

Let h
2

> 0 be sufficiently small to insure that

k(0, 1) > 1 /2 whenever 0 < h < h . Then for 0 < h < h2
2

4.135/h (0)

max {u.
1
(X)} > 1 /(2N), as

< i< in

i(X) h)
R;

k(X, h)
B

5
(X)

by line (3. 12.11)

> k(0,1)
B /h (0)

> 1 /2.

Let / < f < i ", be any index at which of (X) > 1/(2N). Then for



i = 1, , -1), (1-vi(X)) > 1/(2N), and for i = 1, , N,

vi(X) > 1/(2N). Hence, w/ (X) > (1 /(2N))N as

N

(X) > (1 /(2N) )N

i=1

whenever 0 < h < h
2.

Let min{hi, h2}. Then for all 0 < h <

Clearly)

(x) /

i =i'

w.( ) /
i=i

N

i=1 iiC,...,i"

1-v0(x) 1
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and

(3. 12. 24)

Xw.(X)/ .( )

i=1

> 1
(N-k)E /(8Nb(2N)N)

(1 /2N)N

by lines (3. 12. 23) and (2.12.24)

where k = i"-i1+1

> 1 - E /(8b) (3.12.25)

.(X) < 1.

i=1

From lines (3. 12. 25) and (3.12.26) it follows that

- E 18 < b' w. (X) /

i=il i=1

(3.12.26)

(X), (3. 12.27)



and

wi.(X) /

i=i'

N

N

i= 1

As g2(X) = b.w.(X) /
1 1

i=1

. (X) < b" + E /8.

i=1
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(3. 12. 28)

. (X), then for all 0 < h < h'

biwi(X)
(N-k)bE /(8Nb(2N)N) i=i'

N N
w.(X) E wi(X)

1=1 i=1

b.w. (X)
1=11

1 1

(N-k)bE /(8Nb(2N)N)

w. (X)
(

w. X)
. 1
1=1 i=1

E /8 +

< g2(X)

by line (3.12.23)

i=i'

< X.( ) /

i=i' i= 1

i=1

i(X) g2(X)

.(X) E /8 ,

by line (3.12.24)

- E 14 g2(X) < b" + E /4,

by lines (3. 12. 27) and (3.12.28).
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-d.(X)
3.13 Convergence of g1 and to f when ui(X) = 12(0, h),

1
(X)Second Proof. -d1

3.13.1 Corollary. Let

(i) f be continuous and bounded on its domain D,

(ii) d0, d1, dN be discriminant functions with d0

d -co
N

(iii) _c_ Ai, Ri = AiN A. i = 1, , N, see line

(3. 3. 18),

(iv) the u. Is be as defined on line (3.3.19),

(v) d.(X) < -q(6) if 135(X) C Ai , and

di( X) > q(6) if B (X) C B.
'

= and

where 8 > 0, iR1, ..., N-1, q is a function from the positive real

numbers to the positive real numbers and B. =
0

(vi) = 2 min .S1 1(0,1), 1(0,1) > 0.
1

_oo

Then as h and of converge to zero,

(a) g
1

and g2 converge pointwise to f on D, and

(b) g1 and g2 converge to f on every closed and bounded

subset of D.

Proof. The proof is very similar to the proof given in parts (B),

(C) and (D) of Theorem 3.12.1. We now describe the modifications to
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these parts needed in the present situation. All of part (B. a) of

Theorem 3.12.1 applies, but the set relationships on lines (3. 12. 10)

and (3. 12. 11) are not needed here. The remarks of part (B. b) remain

valid except that the choice of a h' > 0 now depends on b and

a = q(6), rather than on b and 5, and still only indirectly on X.

Part (C) followed from the relationships on lines (3. 12. 17),

(3. 12. 18) and (3. 12. 19). For the present situation we will establish

equivalent relationships on lines (3. 13. 3), (3. 13.4), (3. 13.5) and

(3. 13. 6). Part (D) followed from the fact that

0 if i = 1, ..., (i'-1)
lim v.(X) =

h"- 0 I 1 if i = .. , N ,

where the value of h > 0 needed to insure that (X) was within

some E > 0 of the limit depended on 5 and only indirectly on X,

and from the fact that there existed /,

dependent on 5 such that

and

1 < < N, and h' > 0

1-v.(X) > 1/(2N) if i = 1, ..., -1)

vi(X) > 1/(2N) if i . , N

whenever 0 < h < h'. We will establish equivalent relationships on

lines (3. 13. 7), (3. 13.8), (3. 13.9) and (3. 13. 10).
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Let h' > 0 be sufficiently small to insure that for all 0 < h <

ic-a1 (0, h) + J Q (0, h) < E /(8Nb)
-oo a

1 (0 , h) > 1 E /(8b),
-a

(3. 13. 1)

(3. 13.2)

where WLOG we assume that E /(8b) < 1 and where a = q(6).

Note that the value of h' depends on b = max flbil+11 and on a

and only indirectly on X.

For all i = 1, ..., (i'-1), B5(X) c Bi and di(X) > a. Hence,

for all 0 < h <

-d.(X)
10)01 < 1(0, h) I

ti-d.
1

(X)
-1

1(0, h)

< E /(8N13) (3. 13. 3)

For all i = in, ...,N, B5(X) C Ai Xanddi( X) < -a. Hence

for all i = (ill+1), ...,N and for all 0 < h < h',

< / (0, h)
a

< E /(8Nb). (3. 13.4)



As B (X) B
5 i'-1 and as B (X) C A

5 i"

,andc. (X) < -a . Hence for all 0 < h < h'

u.( ) = v. (X) v. ,
1

(X)

i =i'

(X)
(0, h)

i'-1 (X)

1(0, h)
-a

> 1 - E /(8b)

Also, for all 0 < h < h',

u.(X) < 1.

i =i'

For i = 1, ,

and hence

B (X) C B., d .

1
( X ) > a ,

1
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then di, (X) > a

by line (3. 13.2). (3. 13.5)

-di(X) -a
vi(X) = (0, h) < 1(0, h),

_oo _oo

lim v.(X) =
0

(3. 13. 6)

(3. 13. 7)



For i = i" . , N B (X) C Ai, d
i
(X) < -a,

and hence

v. (X) < (0, h),S-oo

lirn v.(X) = 1.
h---" 0

Let y > 0 be defined by

{ / (0
00

y = (1/2)min S , 1), 5' /(0, 1.4 .

-oo 0
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(3. 13.8)

Let / = min {i I X in A. and 1 < i < N}. For i = 1, , (1-1), X

is not in A., d. (X) > 0, and

oo -di(X)
1-vi(X) = .Q (0, h) (0, h)

I (0, h)
-d.(X)

>S (0, h)
0

> y whenever 0 < h < hi. (3. 13.9)

For i = 12, N, X is in A. (as A. C A. , i = 1, , N-1),
1+1

d. (X) < 0, and



156

d.(X)
v. (X) = 1 / (0, h)

_00

Co
(0, h)

_00

> y whenever 0 < h < ht.. (3.13.10)

3.14 Stability of g
1

and g
2

with Respect to the Discriminant
Functions

Let

(i) d. and d! be discriminant functions for i 0, .

(ii) d
0 0

=d' 00 and d
N

= dl =
N

(iii) d.
1-1 (X) > d. (X) and d!

-1 (X) > d!(X) for all X and for1
i= 1, , N,

-d. (X)
(iv) u.(X) = 1 / (0, h),

-d. (X)1-1

-Cri(X)
u.'(X) = (0, h),

-d!
1
(X)1-

(v) g1, g2 and el., g21 be the estimates determined by the

su.' and 's respectively,

(vi) Error(g1(X)) = (X)-gi.(X)1 /(bN-bi),

Error(g2(X)) = I g2(X)-g2(X) I i(bN-b1),
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-d1.(X)
(vii) Xe.( ) =

1
1 / (0, h), and
X-d.( )

e(X) = max{I ei(X) I : i = 0, , N}.

The condition d. (X)> d. (X) and d! (X) > d ?(X) for all i and1-1 I 1-1 i

X insures that g2 and ,g2 are defined on all of Rn, see

Theorem 3.4.1 and the discussion following the theorem.

3.14.1 Theorem. Error (g (X)) < e(X).

Proof.

N

g (X)1 = I
b. (u. (X)-0X)) I

i=1

N

i=1

13.1 (e.00 -e.
1

(X)) I
1

-e0(X)b

N-1

by line (3.5.2)

N-1

i=1

.(X)(b.
1
-bi+1

)+e
N

(X)b
N

I

I

ei(X)(bi-bi+1)

as

< e(X) I bl -b NI

i=1
(X) = e

N
(X) = 0

(3. 14. 1)
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Hence Error(g1(X)) < e(X).

For i = 1, ,N, let XE.( ) = wi'(X) w.(X), where w!

and w. are derived from u! and u. in the manner defined on

lines (3. 4. 3) and (3. 4.4). Let E (X) = max {I i(X) I : i = 1, , N}.

Let e(x)= (E.(x))N. w(x)= (w.(X))N. B = (b. )N B = (b )N.
1=1' 1=1' 1=1' 1 1 1=1

and B' = (B-B
1
)/(b

N
-b

1
). And for any m-tuple

of real numbers let [Q] denote

of B' are between zero and one.

3. 14. 2 Theorem.

i=1

Q (qv qm)

qi . Note that the components

1 (X) B' -[E (X)]((g2(X)-b1) /(bN-bi ))
Error(g2(X)) <

[W(X)+E(X)] I
(3. 14.2)

Proof. For convenience we write W, W', E for W(X),

W'(X), E (X) respectively.

I g (X) g2 (x) I =

Hence

B WI B W
I [lAr] [w]

I

B (W-1-) B WI
I [ATA] [147]

([W]-[6]W) B
[W+E][W]

([W]E-[]W) ((b
N

-b
1

)131-1-B1)

[W+E][W]



Error g (X)) < (EW j[wlj]liVw) BI

(iWJE -[E}W)
[W+C[W]

131-[E]

+I
([W] -[]W) B1
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[W+6][W]
/ (b

N
-b

1
)

as [W]E -131 = [W][]131 = [E]W- B1

(B-B )
[w] b

N
-b

1

E B'-[E]((g2(X)-b1)/(bN-bi))

Ew+El

The bound for Error(g2(X)) on line (3. 14.2) is expressed in

terms of (X) rather than E(X) = (e.(X)).
0

We now express each

XE.( ) in terms of the Xe.( rs. As d. (X) > d
i
(X) and

1 1

di'(X), then

d. (X)
vi(X) = Xu.( ) = \

r
I (0, h) ,

%)-00j=0

-d.'(X)
I / (0, h) ,

and vi(X)-vi(X) = ei(X). To maintain readability we write v v.',
1

e., w., E. instead of v.(X), e.(X), w.(X), E.(X)
1 1 1 1 1 1 1 1

respectively.



E . = W w.

i-1 N
11

(l -v') wi
k=0 k=i

i - 1

(1-v
k

-e
k

) II (v
k

-e
k

wi
k=0 k=i

j-1
sgn(j-i) (l-vk)) e. v -1-0/(e2) - w.

3 .
k=0 k=i+1

k
j=0

j-1 N
sgn(j-i)( n (1-v

k
)) e. v

k +01e2)
k=0 k=3+1j=0

As 0 < vk, (1 -vk) < 1, k = 0, . , N, then

I E i(X)I < (N+1)e(X) +01e2).

160

(3. 14.3)

(3. 14.4)

The expressions on lines (3. 14.2) and (3. 14.3) are too complex

i(X)be easily interpreted, and the bound for I E.( )1 on line (3. 14.4)

is unaesthetically large. We now make some simplifying assumptions

in an attempt to find an easily interpreted bound for Error(g2(X))

3.14.3 Theorem. In addition to the assumptions made at the

beginning of the section let

s(i)the b.' be equally spaced and bb = b. b.

(ii) d
k -1

(X) > 0 > dk (X) for some index k, and
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(iii) ei(X) = 0, i = 0, , k-2 or i = k+1, . , N. Then

Error(gi(X)) < 2e(X)/(N-1). (3. 14.5)

If in addition

X(iv)u.1 ( ) = 0, i = 0, ... , k-2 or i = k+1, ... , N, and

(v) the kernel function is symmetric about the origin, then

Error(g2(X)) < 2e(X) /{(N-1)(. 75 e(X))} (3. 14.6)

provided . 75 > e(X).

Proof. By (iii) above and line (3. 14. 1),

Error(gi(X)) < lek_i(X)(bk_rbk)+ek(X)(bk-bk+1)1/(bN-bi)

< 2e(X)Ab/(bN-b1)

< 2e(X)/(N-1),

which establishes the inequality on line (3. 14. 5).

It is more difficult to prove the inequality on line (3. 14. 6). By

(iv) above and the condition d,
1

(X) > di(X) i = 0, . , N,
1-

0 if i = 1, , k-2
v.(X) =

1 if i=k+1, , N,

and

(3. 14. 7)
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wi(X)

0

vk-lvk
(1 -vk)vk

(1-vk-1)(1-v )

if

if

if

if

i = 1, ...,k-2

i = k-1

i = k

i = k+1,

or i = k+2, .. ,N

(3. 14.8)

where the argument X is implicitly assumed when writing vic_i

and v
k

By lines (3. 14.3) and (3. 14. 7)

xE.( ) =
ek- lvk +vk -lek

ek-lvk+(l-v )ek-1 k

if i = 1,...,k-2 or i =

if i = k-1
(3. 14.9)

if i =

e k-1 (1-v
k)-(1-vk-1)ek if i = k+1

if we ignore the term C9/(e2). The absolute value of the numerator of

the fraction on the right of inequality (3.14.2) equals

(bk-
1
-c)+E

k
(b'

k - 1 k
c)+E

k+1
(bk+1' -c)I

where bk-1'
'

bk+1 are componentsle

of B' and where c (g2(x)-bi)/(bN-bi)

< I (ek-1 v
k

+vk-1e
k

)(bk' -1-c) (-ek-lvk+(l-vk-dek)(bk-c)

(-ek-1(1-vk" 1 -vk_ dek)(bk' -c)1

by line (3. 14. 9)



< 1(e
k-1 v

k
+(l-vk-1)ek)Abl+ek-1 (1-v

k
)(bk+1 -c)

+ vk-1 e
k (c-bk-1 )1
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(3.14.10)

obtained by rearranging terms, multiply-

ing by -1, and letting Ab' be the dis-

tance between any two contiguous 13! 's.

< e{volD'+(l-vk_i)Abl+(l-vk)(bk+1-c)+vk-1(c-i-1)}

< e{v
k

Llo'+(1-yk-1)Abl+(l-v )(2Abl-a)+v
k

where a = c b'k-1

< e{3,61pLa-Ab'(v +v )+a,(v +v
k k-1 k k-1

< e{3Ab'-a-(AbI- :a )(v +v )}k k-1

< e{2,61)'+(Abl-a)-(.6331-0(vk+vk-1)}

< e{20131-(Abl-a)(v
k

+vk-1 -1)} .

Now

c = (g2(X)-bi)/(bN-131)

(bk-lwk-l+bkwk+bk+lwk+1)/(wk-l+wk+wk+1)

On line 3. 14.11), Ab'-a > 0 implies

c-b' < 613'k-1

(3. 14. 11)

(3. 14. 12)
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implies b' < c < b'
k -1 k

implies
wk -1 > wk+1 by line (3. 14. 12)

implies vk_ivk > (1-vk-1 ) by line (3. 14.8)

implies 0 > 1 -vk -vk

implies (4b1-a)(vk+vk 1-1) > 0.

Similarly, LW-a < 0 implies (4131-a)(vk+vk_1-1) > 0. If = 0,

then (4b'-a)(v
k

+vk-1 -1) = 0. Hence, the expression on line (3. 14. 11)

is less than or equal to

< 2e/(N-1) (3.14.13)

which is a bound for the numerator of the fraction on the right side of

inequality (3.14.2).

The absolute value of the denominator of the fraction on the right

side of inequality (3. 14. 2) is

1[W+El = Iv v + (1-v )v +(l-v )(1-v )+[E]l
k -1 k k-1 k k-1 k

by line (3. 14.8)

= 11-vk_1(1-vk)+[]1

as vk-1 vk
+(l-vk-1 )v

k
+(l-vk-1 )(1-vk )

+v
k- 1

(1-v
k

) = 1



= 11-vk-1 (1-v
k

)+vk-1 e
k

-ek-1 (1-v
k

)1

by line (3. 14. 9)

> 11-vk_1(1-vk)1-e(vk_i+(l-vk))

> . 75 e
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(3. 14. 14)

(3. 14.15)

as conditions (ii), (iv), (v) assure that

0 < vk-1 and (1-v
k

) < 1/2.

Combining lines (3. 14. 13) and (3. 14. 15) establishes the

inequality on line (3. 14. 6).

Table 3.14.1 shows the values of

1g
1 1
(X)-gi (X)1 = Error(g

1
(X)) (N-1)

and

1g2(X)-g(X)1 = Error(g2(X)) (N-1)

computed from Equations (3.14.1) and (3. 14.2) respectively for a

situation in which all the constraints of Theorem 3.14.3 are satisfied.

The function f(x) = x is estimated at the points

x
1

= ( k-1 +b
k

) /2

x2 = (bk_1 +3bk)/4

x3 = bk

= (3b +b ) /4 and
k k+1

x5 = (bk+bk+1) /2.



The kernel function is

if Izi < 1
1(z) =

0 otherwise .

The meaning of each column of Table 3.14.1 is as follows:

x the value at which the estimates

k-1

rek 1
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and g2 are being

made;

the size of ek-1(x) for the various values of x when

dk-
1
(x) = dk-1(x) - . 1;

the size of ek-1(x) for the various values of x when

dk
1
(x) = dk-1(x) +

1;

/ek similar to the column labeled lek-1'
re

k similar to the column labeled rek-1'
Hg1 gi the value of Igi(x)-gli(x)1 when ek - 1(x) and ek(x)

are determined from columns /e k-1 and iek

respectively.

_erg, - similar to Hg1 except that ek_1(x) and ek(x) are

determined from columns -fek-1 and re
k

respectively.

rig1 and rrgi obvious

if g2, .erg2, rig2 and rrg2 - similar to preceding column except

I g2(x)-g(x)1 replaces I g1(x)-gi(x)1.
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As can be seen from Table 3.14.1, I gi(x)-gi (x) I is approximately

equal to I g2(x)-g(x) I . In the worst case the error is as large as

the bound given on line (3. 14. 5) and never as large as the bound given

on line (3. 14. 6). Notice that the table considers the four possible

cases that occur as each error alternates between being positive and

negative.



Table 3. 14. 1. Computation of I gi(x)-gri(x) I and I g2(x) -g2(x) I .

x le
k -1 rek-1 / e

k
re

k

ii r ri rr
1 g2 g l g2 g

1 g 2 g
1 g2

xl -. 1 .1 0 0 -. 100 -. 100 - 100 -.100 . 100 . 100 . 100 . 100

x2 -.07 .08 -.03 .02 -.100 -.101 -.050 -.053 .050 .055 .100 .101
x3 -. 045 . 055 -. Q55 . 045 -. 100 -. 102 . 000 . 000 . 000 . 000 . 100 . 102

x4 -.02 .03 -.8 .07 -.100 -.101 .050 .053 -.050 -.055 .100 .101
x5 0 0 -. 1 .01 -. 100 -. 100 . 100 . 100 -.100 -.100 . 100 . 100
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IV. BINARY VARIABLES

4.1 Advantages of Binary Variables

Whether by choice or necessity, the inputs to recognition

networks are often binary [10, p. 111]. We give examples from the

work of other investigators showing that in some instances replacing

multi-leveled variables by binary variables is advantageous, while in

other instances at least it is not harmful.

Binary variables can simplify the implementation of a given

classifier. For instance, Bayes's criterion for classifying the pat-

terns in a 2-class problem can be implemented by a TLU when the loss

function is symmetric and the variables are binary and independent

[24]. As another example, a matrix inversion is usually required to

find the linear function which best approximates a given function in the

mean-square sense; however, if the variables are binary, matrix

inversion is unnecessary [10].

Shoenfelt et al. [30] state that binary variables can increase

the recognition rate of a classifier while simultaneously reducing

storage requirements, classification time, and the cost of making

measurements of a problem's environment. They also note that

distortions arising from differences in the scale of the variables

disappear. They base their remarks on experiments made on a speech

recognition problem. To put the discussion of the next two sections in
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proper perspective, it is useful to describe the experiments in some

detail [30];

These data were obtained by IBM for preliminary study
concerned with their Expo 70 word-recognition demon-
stration. The isolated Japanese word data set employed
in this study consisted of 4000 utterances-40 words, 5
speakers, and 20 repetitions per word per speaker.
Several confusable word groups are represented. For
example, Shichi, Shi, Nichi, Ichi, and Hachi are very
similar. Forty-nine feature measurements correspond-
ing to the outputs of a set of bandpass filters were
employed. Each feature used eight binary digits of
storage. It therefore took a total of 392 binary digits to
represent the 49 features. The 4000 utterances were
recorded in five different sessions; four repetitions per
word per speaker were recorded in each. The utterances
were divided into a training set and a test set. Each set
consisted of 10 repetitions of each of the 40 words by the
5 speakers.

Each of the multi-leveled variables (the variables had 256 levels

corresponding to the values 0, 1, . 255) was replaced in the usual

way by a number of binary variables. Each binary variable corres-

ponded to a threshold in the range of a multi-leveled variable and was

+1 for a pattern if the value of the multi-leveled variable at the pat-

tern was above the threshold, otherwise it was -1. The number of

binary variables used to represent each multi-leveled variable was the

smallest integer not less than the minimum of the rate-distortion

bound and of the average mutual information between the classes and

the multi-leveled variable. The number was one for each multi-

leveled variable. The rate distortion bound for a variable is
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1
R = log

2
s

2 N '

where SAN- is the variance of the class means divided by the average

within-class variance, and [30]:

The average mutual information between all classes and
some feature X

k
is defined as

I(Xk, C) =

L M

j=1 i=1

P(X trj1C.)
P (X =j1Ci)P(C. log2 k

P(X
k

=j)
, (4.1.1)

where M is the number of classes and L is the number
of feature levels.

The placement of each threshold was determined by a modified mutual

information measure as follows [30]: the expression within braces on

line (4. 1. 1)

is the (discrete) contribution of a discrete feature value to
the average mutual information measure and can be written
as I(Xk=j,C). The average mutual information distribution
function D(.Q) can then be defined as

D(/) = I (Xk
=j, C),

j=1

where I < f < L. The modified mutual information
procedure used to select the thresholds is to place a
threshold at OA for each A = 1, 2, , 2B-1 where

1
D(O

A
) = A(-2 )

B
I(Xk' C)

and
B = min {R, I(Xk, C)1

1 1 indicates rounding to next higher integer.
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The distance-to-mean classifier as determined from the training set

had recognition rates of 82%, 88%, and 90% for 30, 40, and 49 binary

variables respectively; but when the experiment was repeated with the

multi-leveled variables, the recognition rates were 75 %, 85%, and

87% for 30, 40, and 49 multi-leveled variables respectively.

Duda and Fossum [7] found that replacing multi-leveled variables

by binary variables did not affect the recognition rate of a classifier

composed of linear discriminant functions. The data was obtained by

adding Gaussian random noise to 80 ten-dimensional prototype vectors

and forming 32 classes, each class containing one or more prototypes

and the patterns obtained by adding noise to these prototypes. Binary

variables were obtained by introducing ten equally spaced thresholds

into the range of each multi-leveled variable.

4.2 Additional Advantages of Binary Variables

In this section we describe additional advantages of using binary

variables. By Theorem 2.7.3 whenever the components of patterns

are binary, every 2-class problem in which the classes are disjoint

can be solved by a modified veto committee. The proof of Theorem

2.7.3 calls for as many committee members as there are patterns in

the smaller of the two classes; however, simulations to be described

in Section 5.3 show that when the local adjustment algorithm of Defini-

tion 2.9.5 is used, a committee of many fewer members is obtained.



173

When non-binary variables are replaced by binary variables in

the manner described in the last section, the improvement in the

recognition rate of a classifier can be much larger than the improve-

ment Shoenfelt [30] observed. The, two computer simulations whose

results are summarized in Figure 5.4.1 and Table 5.4.1 show that

when binary variables replace multi-leveled variables, a TLU is

capable of a high recognition rate on a problem for which is otherwise

would be totally unsuited.

The implementation of the estimates g1 and g2 can be

easier when binary variables replace multi-leveled variables. It was

pointed out in Section 3.3 that the simplest computational scheme for

computing g1 and g2 is obtained when

-di(X)
Xu.( ) (0, h), i = 1, , N.

`j
1

Xd.( )-1

Given 2-class classifiers which are TLUs, discriminant functions can

be determined easily. Binary variables increase the number of

instances in which TLUs can be trained to have a high recognition rate.

A discriminant function can be defined by a TLU as follows. Let W

be the TLU's weight vector, let X be a pattern, and let W and

X be the vectors obtained by dropping the last component of W and

X respectively. Let



d(X) =
X- W
10AT11
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(4. 2. 1)

We can interpret d(X) as the signed distance between X and the

hyperplane in X- -space defined by W Y wn = 0, where wn is the

last component of W.

4.3 Selection of Binary Variables

While the method outlined in Section 4.1 and used by Schoenfelt

[30] to replace a multi-leveled variable by a number of binary vari-

ables chooses the number of binary variables and the thresholds well,

it has the disadvantage of treating each multi-leveled variable

separately, perhaps creating a set of binary variables containing

redundant information, especially if the original variables contain

redundant information. It would be better to create a set of binary

variables which among the sets of that size contains the most infor-

mation possible .

Mucciardi and Gose [22] describe a method for choosing a "good"

subset of variables from a set of variables. They note that "the only

guaranteed technique for choosing the best subset of N properties

from a set of M is to try all (N) possible combinations" but that

"this is impractical for sets of even moderate size, so heuristic

techniques are required. " They might also have added that the subset

which is best for one classifier is not necessarily the best for another.
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We now give a brief description of their technique, called the weighted

sum or WS technique.

The variables are ranked, and those with the highest rank are

retained. The variable with the highest rank is that for which the

expected probability of error, POE, is smallest. Suppose the k-1

highest ranking variables have been chosen. For some variable with

index i that has not been chosen let

POE'
i POE -POE .max min

POE.-POE .min

where POE . and POEmaxmin are the smallest and largest values

of the probability of error when the probability is computed for each

variable and where POE. is the probability of error for variable

Let ACC. equal the average of the absolute values of the correlation

coefficients between variable i and the ones already chosen. The

k-th ranked feature is the one for which the weighted sum of POE!

and ACC. is smallest for some predetermined set of weights.

Using a set of data derived from EKG graphs, Mucciardi and

Gose found that for suitably chosen weights the WS technique com-

pares favorably with the Karhunen-Loeve expansion and the technique

of choosing at each step that feature which in conjunction with those

already chosen does most to improve the performance of the classi-

fier. The WS technique has the advantage that is is much easier to
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implement and is much faster than the other two.

For a 2-class problem, the WS technique is useful in choosing a

set of binary variables to represent a set of multi-leveled variables.

Given n multi-leveled variables, we introduce m equally spaced

thresholds into the range of each variable, use the method described

in Section 4. 1 to associate a binary variable with a threshold, and use

the WS technique to choose a "good" subset of these binary variables.

In Section 5.4, a simulation using data on cranial capacities confirms

the effectiveness of this scheme for choosing binary variables.
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V. RESULTS OF COMPUTER SIMULATIONS

5.1 Training a Network

A local adjustment algorithm for training a network was

described in Definition 2.4.5. We now describe the results obtained

when this algorithm is used to train a committee of three members to

recognize the 40 patterns shown in Figure 5.1.1 part (a), where "-"

and "+" denote a pattern of class A and B respectively. Each pattern

has a third component, constantly one, not shown. A variable a ,

called the age, is associated with each TLU in the network. Before

training begins, the age of each TLU is 100, and immediately prior to

an adjustment to a TLU the TLUIs age is incremented by one. The

value of the constant c on line (2.4. 1) is

10c =
Yx11

Also, before training begins, the weight vector of each committee

member is (0,0, -1). The training sequence is divided into groups of

40 patterns, and each group contains all the patterns in some random

order. Only by chance are the patterns in two different groups in the

same order.

Three simulations are performed, with the weight vector of the

vote-taking TLU having a different initial value in each simulation.



(a) The problem.

(c) Simulation 2.

178

(b) Simulation

(d) Simulation 3.

Figure 5.1.1. A 2-class problem for a network.
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The results are summarized in Table 5.1.1 with each column of the

table describing the results of a different simulation. The first row

shows the initial value of the vote-taking TLU; the second row shows

the amount the ages of the members and the vote-taking TLU,

indicated by VTT, increase during training; and the third row shows

the recognition rate when the training stops. As we can see in Table

5. 1. 1, the age of the vote-taking TLU does not change during training

and consequently neither does the committee's logic. In the first

simulation it is acceptable that the logic does not change, as after a

few adjustments the committee recognizes all the patterns. In the

second and third simulation, the algorithm, to be successful, should

change the logic of the committee. Meuller [23] proved that the logic

used in the second simulation, which, incidently is majority logic, is

not sufficient for solving the problem, and it is not hard to show that

neither is the logic used in the third simulation.

Table 5.1.1. Results of training a network.

Simulation 1 Simulation 2 Simulation 3

Initial value of the
logic vector (1,1,1,2.5) (1,1,1,0) (-1, 1, -1, 1)

Increase in age of TLUs
MMBR

1
4 4 1256

MMBR 2 16 70 0

MMBR3 4 1958 66
VTT 0 0 0

Recognition rate 100% 70% 83%
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Referring to Figure 5. 1. 1 parts (c) and (d), we now explain why

the logic does not change. Each line defines the decision boundary of

a committee member, and the number beside the line indicates which

member. The response of a committee member to a pattern is +1

if the pattern is on the same side of the line as the arrow attached to

the line, otherwise the response is -1. In part (d), as MMBR2

receives no adjustments and consequently responds -1 to every

pattern, the line defining the decision boundary of MMBR2 is not

shown. In part (c) we see that if training continues, the response of

the committee to a misclassified pattern can be changed by changing

the response of MMBR3, and this is the case regardless of the

position of MMBR3. As in addition the length of MMBR 3's weight

vector is much less than the length of MMBRi's and MMBR
2

weight vector, MMBR
3

is chosen for adjustment even if MMBR1

or MMBR
2

are also in the set P. After many additional adjust-

ments, MMBR 3's weight vector can be expected to remain by far

the shortest, as it will be adjusted due to the conflicting demands of

patterns that are not linearly separable. Hence, we can expect that

no matter how long training continues the logic will not change. A

similar explanation accounts for the outcome of the third simulation.
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5.2 The Need to Normalize the Weight Vectors

In Section 2.9, when describing the algorithm for training a

modified veto committee, we gave heuristic reasons for normalizing

the length of a member's weight vector after each adjustment to the

member. We now discuss four computer simulations of the algorithm

which confirm the need for the normalization. In particular we shall

see that, if the normalization is omitted, an adjustment can cause a

drastic change in the response of a member, and the length of a mem-

ber's weight vector may become so short that the member receives a

disproportionate number of adjustments.

The simulations are illustrated in the four parts of Exhibit 1

(following Chapter VI). The patterns are vectors in R3, and the

last component of each pattern is one. When the third component is

omitted, the patterns are as indicated in Exhibit 1 part (a) frame (1),

where "' " and "*" indicate a pattern of class A and B respectively.

In the first simulation, the training sequence consists of

successive groups, each containing all the patterns; the order of the

patterns within each group is the same and is illustrated in part (a)

frame (1). (The coordinate axis is shown only in frame (1). ) The

lines in the frames indicate the decision boundaries of committee

members, the number beside a line indicates the index of the corres-

ponding member, and the arrow point s in the direction of those
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patterns which a member does not ignore. A solid line represents a

member of the first type and a broken line a member of the second

type. When the position of a line makes it impossible to draw the line

within a frame, the inclination of the line is shown, and an ordered

pair indicates the x and y intercepts respectively of the line

(see for instance part (a) frame (6)). If the decision boundary cannot

be indicated by a line in R2, then the weight vector of the member

is shown preceded by a pair of humbers separated by a hyphen, where

the first number is the index of the member and the second the mem-

ber's type (see part (a) frame (3)). The successive frames of part (a)

show the successive patterns in the training sequence that are mis-

classified. The pattern labeled "1" in frame (1) is the first mis-

classified, the committee is adjusted, and MMBR1 assumes the

position shown in frame (2). The n-th pattern misclassified is the

pattern circled in frame (n), and the position of the committee mem-

bers after the adjustment is shown in frame (n+1).

In a similar way the frames in parts (b), (c) and (d) describe

the second, third and fourth simulations respectively. In parts (b) and

(c) the first frames are not shown. In Part (d), although, MMBR2 is

added to the committee in frame (3), its decision boundary can never

be indicated in R2, and it is only explicitly mentioned after receiv-

ing an adjustment, i.e., frames (3), (10), (14), (18), (22), (26).
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The results of the simulations are summarized in Table 5.2.1.

For each simulation, the table indicates: whether or not the weight

vectors are normalized after each adjustment; the initial values of

the parameters a0, p, and y; the recognition rate; and the mem-

bers on the committee with their type, increase in age, and final

length.

Referring to Exhibit 1 part (a), we see that without normaliza-

tion, adjustments can cause drastic changes in the response of a mem-

ber (see for instance the transition between frames (5) and (6), (7)

and (8), (14) and (15)). Even if the size of each adjustment is smaller,

there continue to be drastic changes in the response of a member (see

for instance part (b) frames (67) and (68), (69) and (70)). With

normalization, adjustments do not cause drastic changes (see part

(d)).

Referring to the third row of Table 5.2.1, we see that without

normalization a member's weight vector may become so short that the

member receives a disproportionate number of adjustments, in this

case all the adjustments. In the fourth row we see that MMBR1

receives a disproportionate number of adjustments; however, as the

weight vector is normalized after each adjustment, eventually new

members are added.



Table 5.2.1. Results obtained by the algorithm for modified veto logic without and with
normalization.

Simulation Normalized a0 Y

Recognition
Rate Member Type

Increase
in Age

Final
Length

1 no 6 1 0 100% 1 1 4 . 82
2 1 11 .21
3 2 5 .94

2 no 20 1 0 100% 1 1 25 . 79
2 1 49 .04
3 2 7 .91

3 no 20 1 0 63% 1 1 100 .02

4 yes 6 1 0 100% 1 1 26 1

2 1 6 1

3 2 7 1
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5.3 The Performance of Modified Veto Committees on Three
Sets of Patterns

Mueller [23] describes three 2-class problems which he used to

compare Ridgway's local adjustment algorithm for training a

majority committee [26] with his own improved version of the

algorithm. We now describe the problems and simulations performed

on the problems using the algorithm for training a modified veto com-

mittee.

The first problem consists of 294 hand printed letters collected

by Munson of Stanford University; the letters in one class being A's

and in the other class being R's. The letters were written on a

24 x 24 grid and were of approximately uniform size and position.

Thus each letter can be expressed as a vector of 576 zeros and ones,

with a component being one if and only if the letter passes through the

corresponding square in the grid. Mueller used just 19 of these com-

ponents to represent each letter, and we use the same 19, augmenting

as usual each pattern by the constant one. Mueller divided the pat-

terns into a training set of 240 patterns and a test set of 54 patterns.

We will call this division of the patterns AR1. Adding a duplicate of

three of the A's and three of the R's chosen at random, shuffling

the A's and shuffling the R's, we formed a training set of 240 pat-

terns and a test set of 60 patterns. We call this division of the pat-

terns AR2. Repeating the procedure a second time, we formed
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another division of the patterns which we call AR3. In the training

set of AR1 the two classes intersect, and every classifier must have

an error rate of at least 2% to 3% when judging the patterns, even if

every pattern that is not in the intersection is judged correctly. In

the test set the two classes do not intersect. For AR2, the minimum

error rate is 3% to 5% in the training set and 3% in the test set, while

for AR3 the minimum error rate is 2% to 3% in the training set and

2% in the test set.

Mueller's description of the second problem follows.

Given a 4 x 4 array of squares with each array containing
seven black squares. An array will be called disconnected
if the seven black squares are neither face-wise nor
corner-wise connected. A disconnected array will be
represented by a 17-dimensional vector with binary com-
ponents, a 1 standing for a black square, with the 17th
component equal to 1 for all samples. Thus a pattern
vector representing a disconnected array would be the
following.

X= (1,1,0,1,1,0,0,0,1,0,0,0,1,1,0,0,1)

An array will be called connected if the seven black
squares are all face-wise connected. Thus a pattern
vector representing a connected array would be the follow-
ing.

X = = (0, 1,0,0,0, 1, 1,0,0,0, 1, 1,0, 1, 1,0, 1)
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This data was randomly generated. . . . In the
experiment we have used 240 samples for the training set
and an equal number for a test set.

We call this set of patterns CONl Generating 360 more patterns in

each class, making a training set of 240 samples and a test set o,f 960,

we get a set of patterns we call CON2 Reversing the roles of the

training and test sets yields CON3.

In the third problem the patterns have 11 binary components, the

last component being one, and a pattern is in the first class if among

the first 10 components the string 1101 appears, otherwise it is in the

second class. We call the set of patterns used by Mueller, with 240

patterns in the training set and 240 in the test set, CODE 1. Gener-

ating 360 more patterns in each class, placing 240 patterns in the

training set and 960 in the test set, we get CODE 2, while reversing

the roles of the training and test sets we get CODE 3.

In all the simulations of the algorithm for training a modified

veto committee, the training sequence consists of groups of patterns,

each group containing all the training patterns; within each group every

second pattern is in the same class, and only by chance are the pat-

terns in different groups in the same order. Adjusting the committee

in response to the patterns in a group is called an iteration.

The results of several of the most successful simulations are

shown in the column labeled "Modified Veto Committee" of Table

5.3.1. The number preceding each hyphen is the recognition rate of
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a modified veto committee on a training set, and the other number is

the recognition rate on the corresponding test set. (Hyphenated num-

bers are used in all the tables of this section in a similar way, with

the first and second number being the recognition rate of some classi-

fier on a training and test set respectively.) In the column to the

right of each pair of hyphenated numbers is a number indicating the

number of members on the committee. The committees of various

sizes shown for a given set of patterns are all subcommittees of a

single committee, where a subcommittee is formed by dropping mem-

bers added most recently. The last three columns give the values of

the parameters ao, p and y. It is not significant that the param-

eters have values like 99, 401, -203 rather than 100, 400, -200

respectively as the algorithm is not sensitive to such small changes in

the values of the parameters. The numbers separated by colons in

the first column are the size of the training and test sets. The

recognition rates of the distance-to-mean classifier is shown in the

second column. The third and fourth columns show the results

obtained by Mueller When he used Ridgway's and his own algorithm

to train a majority committee with five members.

From Table 5.3.1 we see that in many instances the distance-to-

mean classifier, while not performing as well as the committees on

the training sets, performs just about as well on the test sets, indi-

cating that the committees are learning prejudice. As a pattern can
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be classified much more quickly by the distance-to-mean classifier

than by a committee, it is to be preferred when speed is important.

The distance-to-mean classifier can also be trained much more

quickly than a committee, but as training needs to be done only once,

the time it takes to train a classifier is not as important as the time

it takes for the classifier to classify a pattern. For the data sets

CON3, CODE 1, CODE 2 and CODE 3, the committees perform better

than the distance-to-mean classifier on the training and test sets,

When the training set is large, a modified veto committee performs

excellently on both the training and test sets. The performance on the

set CON3 might have improved if training had continued; however,

training stopped when the committee wished to add more members

than the computer implementation had allowed for.

Kay lor's conjecture [16], that for a problem in which the

patterns have binary components there is a majority committee among

the committees of minimum size, seems to be without practical sig-

nificance, as in all instances a modified veto committee with five

members performs better than a majority committee with five mem-

bers. Further, for the data sets CON and CODE the modified veto

committees with five members are subcommittees of larger commit-

tees and perhaps do not perform as well as modified veto committees

restricted during training to a maximum of five members. The fact

that subcommittees perform so well indicates that members added
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most recently to the committee specialize in recognizing a few

troublesome patterns without creating a prejudice that adversely

affects the performance of the committee on the problem as a whole.

Table 5.3.2 shows the behavior on the set CON2 of the

algorithm for training a modified veto committee. The first column

of each row shows the number of an iteration. The remainder of the

row shows under the heading "Number of Adjustments...", the number

of adjustments made to each member of the committee from the

beginning of training until the end of the current iteration and under

the heading "Number of Decisions...", the number of decisions made

by each member when, at the end of the current iteration, all the

training patterns are classified by the committee. Under the heading

"Number of Adjustments. rather than label each column according

to the type of member represented in the column, it is more conveni-

ent to let odd and even numbered columns represent members of the

second and first type respectively. The first column represents

MMBR
0

which, as MMBR
0

is never adjusted, naturally contains

zeros. Other columns containing zeros indicate the absence of a

member from the committee. The i-th column under both headings

refers to the same member. Although MMBR
0

is never adjusted, it

makes many decisions, i.e., every time the committee makes

decisions by default. The last column shows the recognition rate on

the training set. Tables 5.3.3 and 5.3.4 give the same information
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for CON3 as Table 5.3.2 gives for CON2.

Several things can be seen in Tables 5. 3.2, 5.3.3 and 5. 3.4.

Because a modified veto committee initially responds +1 to all

patterns, the first members added to a committee are of the first

type. Until a member of the second type is added, a modified veto

committee is a veto committee. Although the recognition rate does

not improve with each iteration (especially in the test set the recogni-

tion rate fluctuates), it does tend to improve as training continues.

The number of decisions made by a particular member fluctuates from

iteration to iteration, and old members receive just as many adjust-

ments as new members. For instance, in Table 5.3.3 between

iterations six and eleven the first three members on the committee

receive more adjustments than the last five. If the first three mem-

bers are being adjusted due to the conflicting demands of patterns that

are not linearly separable--which seems likely or otherwise they

would already have obtained suitable positions --it would be better for

the committee to add new members. Decreasing the value of y is

one way to encourage the committee to stop adjusting old members

and to add new members, but if y is too small, new members are

added too often. Alternatively, the algorithm can include a rule that

prevents adjustments to an old member once a certain number of

newer members have been added. All simulations which incorporated

this rule gave poor results. A less drastic alternative, namely to
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let the resistance equal the certainty times (a+y)
2, had little effect

on the performance of the algorithm although it did change the best

values of a0, p and N.

Tables 5.3.5 and 5.3.6 show the performance of subcommittees

of the committees described in Tables 5.3.2, 5.3.3 and 5.3.4. Each

time a member is dropped there is a small reduction in the recogni-

tion rate of the committee.

Tables 5.3.7 and 5.3.8 show the effect of varying the

parameters a0, p and y and of increasing the number of constant

components in a pattern. The number of constant terms is the number

appearing in the column headed "N.V." minus 16. Each line of the

tables shows the number of adjustments, etc., at the end of five

iterations for different values of the parameters. In Table 5.3.8 some

of the committees have so many members that the information on the

number of adjustments and decisions continues on a second line.

Comparing lines 2-3-4 and 6-7 of Table 5.3.7 and lines 2-3 of Table

5.3.8, we see that, if y is decreased while the other parameters

are held constant, new members are added more frequently. Mem-

bers are added less frequently when adjustments are smaller, (see

lines 4-5 of Table 5.3.7 and 3-4 of Table 5.3.8). The difference

between lines four and six of Table 5.3.7 is that the number of con-

stant terms in the representation of each pattern is different. When

more constant terms are added, fewer members are added to the
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Data

Distance-
to-Mean
Classifier

Majority
Committee
5- members
( Ridgway)

Majority
Committee
5-members
(Mueller)

Modified
Veto

Committee

Number
of

Members
a0

AR1 92-85 97-85 94-85 95-89 3 99 10 0
240:54 97- 98-87 3

98-85 4

AR2 91-87 95-93 4 99 10 0
240:60 96-88 5

AR3 91-88 92-92 3 99 10 0
240:60 97-92 5

98-90 5

CON1 90-71 90-80
240:240

CON2 8S-81 95-81 3
1

99 10 299
240960 98-81 5

100-82 6

CON3 84-86 86-84 4 401 41 -300
960:240 89-88 5

95-94 12

CODE 1 91-60 92-71
240:240

CODE 2 75-61 93 -78 5 301 29 -203
240960 99.6-80 7

100 -80 8

CODE 3 68-75 83 -85 4 499 10 -300
960:240 91 -93 5

97 -98 6

99.7-99.6

1
MMBR

1
initially equals the hyperplane separating the means, and there are 20 variables, the last

four being the constant one.



Table 5. 3. 2. 1 Training record showing number of decisions and adjustments:
a = 99; p = 10; y = 299.

CON2;

Number of Decisions Made by Each Member on
It.. Number of Adjustments to Each Member the Training Set R. R.

5 0 66 0 37 0 38 20 0 7 108 77 0 16 0 32 4 0 3 91 -
10 0 80 0 70 0 83 49 0 7 6 113 65 0 15 0 30 5 0 2 10 97 -
15 0 80 0 87 0 93 50 0 7 17 110 61 0 14 0 34 9 0 2 10 99. 5 -
18 0 80 0 93 0 93 50 0 7 17 109 61 0 15 0 34 9 0 2 10 100 -
1
MMBR1 initially equals the hyperplane separating the means of the two classes, and there are 20 variables, the last four being the constant one.

Table 5.3.3. Training record showing number of adjustments: CON3; a0 = 401; p = 41; y = -300.

It. Number of Adjustments to Each Member R. R.

1 0 38 0 48 0 40 0 37 1 0 3 84-85
2 0 65 0 75 0 74 0 63 4 0 25 1 87-84
3 0 77 0 98 0 89 0 93 20 0 38 20 2 90 -87
4 0 92 0 111 0 99 0 114 30 0 48 45 12 1 90-85
5 0 107 0 118 0 116 0 133 39 0 55 62 22 3 1 94-87
6 0 124 0 125 0 126 0 146 47 0 61 72 32 14 3 0 1 90-84
7 0 139 0 137 0 131 0 158 50 0 62 76 34 25 5 0 2 1 95-89
8 0 157 0 145 0 135 0 172 50 0 70 84 45 28 5 0 6 2 94 -90
9 0 171 0 146 0 140 0 180 55 0 70 86 SS 38 6 0 19 7 95-94

10 0 182 0 146 0 142 0 186 57 0 71 87 62 50 7 0 25 17 94 -91
11 0 182 0 146 0 142 0 186 57 0 71 87 62 50 7 0 25 18 1 9 5-9 1



Table 5.3.4. Training record showing number of decisions: CON3; a0 = 401; p = 41; y = -300.

It. Number of Decisions Made by Each Member or the Training and Test Sets R. R.

1 601 17 0 234 0 193 0 155 0 0 0 84-85
2 537 118 0 127 0 141 0 199 1 0 41 0 87-84
3 466 85 0 64 0 13S 0 112 45 0 66 227 0 90-87
4 469 123 0 75 0 55 0 161 37 0 41 228 11 0 90 -84
5 375 120 0 105 0 109 0 225 79 0 39 103 43 2 0 94-87
6 308 75 0 92 0 78 0 115 146 0 65 123 68 130 0 0 0 90-84
7 316 102 0 77 0 73 0 141 135 0 87 126 78 63 2 0 0 0 95-89
8 315 93 0 57 0 86 0 185 131 0 64 141 64 53 2 0 9 0 94 -90
9 258 97 0 54 0 56 0 211 146 0 62 88 106 85 4 0 26 7 95-94

10 229 67 0 42 0 76 0 133 147 0 65 110 93 62 3 0 62 111 94 -91
11 229 66 0 43 0 76 0 143 148 0 65 110 93 62 3 0 72 90 0 95 -91

Table 5.3.5. 1 Recognition rate of subcommittees: CON2; a0 = 99;
3 = 10; y = 299.

No. Number of Decisions Made by Each Member on the Training and Test Sets R. R.

1 672 528 86-81
2 621 494 0 85 90 -80
3 527 356 0 85 0 232 95-81
4 488 347 0 85 0 209 71 97-82
5 486 346 0 80 0 208 71 0 9 98-81
6 476 333 0 73 0 197 67 0 7 47 100-82

1
MMBR1 initially equals the hyperplane separating the means of the two classes, and there are 20
variables, the last four being the constant one.



Table 5.3.6. Recognition rate of subcommittees: CON3; a0 = 401; 1 = 41; y = -300.

No. Number of Decisions Made by Each Member on the Training and Test Sets R. R.

1 1009 191 62-64
2 752 132 0 316 79-77
3 676 129 0 244 0 151 83-80
4 533 121 0 113 0 133 0 300 86-84
5 415 111 0 102 0 121 0 271 180 89-88
6 349 111 0 97 0 117 0 242 170 0 114 89-87
7 331 111 0 56 0 102 0 218 161 0 90 131 9 1-9 0
8 284 109 0 56 0 88 0 201 150 0 79 121 112 92 -90
9 263 92 0 48 0 76 0 184 150 0 78 115 106 88 94-9 1

10 263 92 0 48 0 `76 0 184 150 0 78 11S 105 86 3 94 -91
11 231 78 0 46 0 76 0 159 149 0 66 113 103 86 3 0 90 93 -90
12 299 66 0 43 0 76 0 143 148 0 65 110 93 62 3 0 72 90 0 95 -91



Table 5.3.7. Effect of varying parameters: CONZ; five iterations.

Line a0 P y N.V. Number of adjustments to Each Member
Number of Decisions Made by Each Member on

the Training Set R. R.

1 599 59 400 17 0 196 0 48 101 118 0 21 83-
2 99 10 900 17 0 183 0 51 107 107 0 26 35-
3 99 10 201 17 0 152 0 29 0 3 4 113 86 0 36 0 3 2 90-
4 99 10 -1 17 0 132 0 21 0 9 0 9 7 0 1 120 78 0 22 0 7 0 11 2 0 0 94-
5 99 5 -1 17 0 154 0 30 0 10 3 116 97 0 24 0 3 0 89-
6 99 10 -1 20 0 203 41 15 75 117 22 26 87-
7 991 10 299 20 0 66 0 37 0 38 20 0 7 108 77 0 16 0 32 4 0 3 91-

'Initially
MMBR

1
is the hyperplane separating the means of the two classes.

Table 5.3.8. Effect of varying parameters: CON3; five iterations.

Line
a

0 Y
N.V. Number of Adjustments to Each Member

Number of Decisions Made by Each Member on
the Training and Test Sets R. R.

1

2

3

4

401

99

99

99

41

10

10

5

-300

-1

299

-1

17

20

20

20

0

0

0

0

107

0

316
38

631

796

0
55

0
32

0

0

118

62

132

0

105

123

0
22

0
3

83

104

116

3

114

7

0
1

109

1

113

26

39

0

375

376

359

637

120
0

68
284

553

389

0
39

0
5

0

0

105

103

111

0

112

174

0
43

0
0

116

0

109

2

104

10

0
0

131

0

225

121

79

0

94-87

87-84

85-85

83-80
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committee, because most of the adjustments to a member are of the

opposite sign to the initial value of the last component of the weight

vector and consequently the certainty at all patterns is reduced.

Tables for the other sets of patterns are so similar that there

seems little point in including them.

5.4 Replacing Multi-Leveled Variables by Binary Variables

In this section we describe three computer simulations which

test the effect of replacing multi-leveled variables by binary vari-

ables. The first and second simulations use artificially generated

data; and the third, data on cranial capacities.

The first simulation, involving a seemingly difficult 2-class

problem in R2, is illustrated in Figure 5.4.1 part (a); where

and "+" denote patterns in class A and B respectively. Assume

that the patterns in Figure 5.4.1 part (a) are located at the grid points

of a coordinate system, with the patterns in the lower left hand corner

and upper right hand corner having coordinates (0,0) and (14, 14)

respectively. The pattern at position (I, J) is mapped into a pattern

vector X with 30 binary valued components by

XIJ = (x
1

x2, , x29, 1),

where
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1 if i < I or 15 < i < 15+3

1 otherwise .

Parts (b), (c), and (d) of Figure 5.4.1 illustrate the performance of

the three indicated classifiers when they are trained on the binary

patterns obtained from part (a). In parts (b) and (c) the response of

the classifiers to a pattern is -1 if and only if the pattern is in the

hatched region of the figure, and the classifiers have recognition rates

of 80% and 90% respectively. In pard (d) the classifier, a modified

veto committee, recognizes all but the circled pattern. The hatched

regions in the four parts of Figure 5.4.2 include just those patterns

not ignored by the four members on the committee referred to in

Figure 5.4.1 part (d).

The second simulation involves five similar 2-class problems.

For

S = {XI J = 0, , 15} (5.4.1)

X = (x , x2, . . . x30, 1)IJ 1 2 3
(5.4.2)

1 if j < I or 15 < j < 15+J
x. = (5.4.3)

-1 otherwise

j = 1, , 30

f(x,y) = (x-7.5) 2 + (y-7.5) 2 (5.4.4)

(t1, t2, , t5) = (11.7,34.1,56.5,78.9,101.3), (5.4.5)



(a) MMBR1-first type

+ + + + + - - -
+ + + + + + + +-
+ + + + + + + + + - -
+ + + + + + + + + - -
+ + + + + + + + + - -

CIS
+ + + + + + - - - + + -

+ + + + + + - + + + +
- + + + + - - + + + +

(c) MMBR
3

-first type
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(b) MMBRz-second type

+ ++
+ + + + ++

+ + + + + + +
+ + + + + + ++

+ + + + + + + ++
+ + + + + - - +
+ + ++
+ + + +

+ +

+
±-

+ + ++
+ + + ++
+ + + + + +

+ + + + + +
+ + + +

(d) MMBR 4-second type

Figure 5.4.2. Decisions of each committee member.



let the i-th 2-class problem, i = 1, ..., 5, be

A = J) < ti }

B. =S\A..
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(5.4.6)

(5.4.7)

Table 5.4.1 shows, for each 2-class problem, the recognition rate of

the distance-to-mean classifier and the number of iterations needed of

the local adjustment algorithm for training a TLU before the TLU

recognizes all the patterns. For each 2-class problem, an iteration

consists in adjusting a TLU in response to each of the patterns in S,

and the initial weight of a TLU is that defined by the distance-to-mean

classifier.

Table 5.4.1. The recognition rate in five similar 2-class problems.

2-Class
Problem i

Number of
Patterns in
A. and B.

Recognition Number of Iterations
Rate of the Needed to Attain a

Distance -to -mean Recognition Rate
Classifier of 100%

1 1

1 32/224 89% 7
2 112/144 100% 0
3 172 /84 94% 4
4 232 /24 89% 1

5 252/4 92% 5

The third simulation also involves five similar 2-class problems.

The data come from a table of cranial capacities with associated dis-

tances and arcs collected by Hooke [13]. Hooke 's table contains
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measurements for 245 adult skulls; but because for many skulls some

measurements are missing, we select a subset of 110 skulls for which

the cranial capacity and ten other measurements are present. Table

5.4.2 lists the 110 skulls and the ten measurements selected. The

indices for the skulls and names of the measurements are those in

Hooke's table. The largest of the 110 skulls has a cranial capacity of

1632.5cc; and the smallest, a capacity of 1121. Occ. Five 2-class

problems are formed from the selected skulls by letting

t. = 1121.0cc + (2i-1)(1632.5cc-1121.0cc)/10

A. = {skulls with a cranial capacity less than t.}

B. = {skulls not in A. } ,

(5.4.8)

(5. 4. 9)

(5.4.10)

for i = 1, ..., 5. The components of the patterns in Ai and B.

are the ten measurements named in Table 5.4.2. The cranial capacity

is not a component, being used instead to define the 2-class problems.

A training and test set for each 2-class problem is defined by order-

ing the data for the 110 skulls by their cranial capacities and using

the data of every second skull as a training pattern and the remainder

as test patterns.
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Table 5.4.2. List of skulls and variables selected from Hooke's data.

Skulls Selected

2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 27, 28, 30,
31, 32, 33, 34,
64, 67, 69, 70,

35, 36, 37, 38,
71, 74, 83, 84,

40, 41, 42, 43,
85, 87, 88, 91,

44, 47, 48, 49, 52, 53, 58, 63,
93, 94, 95, 158, 161, 162,

163, 165, 166, 167, 176, 177, 184, 186, 188, 189, 190, 191, 192, 194, 196,
198, 199, 200, 201, 203, 204, 205, 206, 208, 209, 211, 213, 215, 216, 217,
218, 220, 221, 223, 224, 225, 227, 228, 229, 230, 231, 232, 236, 238, 239,
241, 242, 243, 244, 245

Variables Selected

L, B, B', H', OH, Q, S, S3, Si, Ti

The patterns are mapped to patterns with binary components

using the method outlined in Section 4. 3. Twenty equally spaced

thresholds are introduced into the range of each of the ten measure-

ments to give 200 binary variables, and the WS technique is used to

select a subset of 20 from these 200. Only the training patterns are

referred to during the selection process, and each of the five 2-class

problems is used in the selection of four of the 20 binary variables.

The weights for POE and ACC are three and one respectively. Table

5.4. 3 shows for each 2-class problem the measurements correspond-

ing to the four binary variables chosen by the WS technique. The

order in which the measurements are listed is the order in which the

corresponding binary variables are selected. Table 5. 4. 4, compiled

from Table 5.4. 3, shows how often each measurement corresponds to

a binary variable chosen by the WS technique and how often to a binary
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variable ranked first. Rao [25] points out that. "three important

measurements from which cranial capacity (C) may be predicted are

the glabella occipital length (L), the maximum parietal breadth (B),

and the basio bregmatic height (H'). From Tables 5.4.3 and 5.4.5

we see that L, B, and H' are also the measurements the WS tech-

nique identifies as being most important.

Table 5.4.3. Measurements selected by the WS technique.

2-Class
Problem Number

Name of Measurements Corresponding
to the Binary Variables Chosen by the

WS Technique

1 H' U B OH
2 H' H' U U
3 H' B Q U
4 B H' U S
5 L L S3 U

Table 5.4.4. Frequency with which each measurement is selected by
the WS technique.

B' H'Measurement L B OH Q S S3 S1 U

Number of times selected
by the WS technique 2 3 0 5 1 1 1 1 0

Number of times ranked
first by the WS technique 1 1 0 3 0 0 0 0 0 0

Selected by Rao 1 1 0 1 0 0 0 0 0 0
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Table 5.4.5. Recognition rate for skulls of the distance-to-mean
classifier.

2-Class
Problem
Number i

Number of Samples
in the Training Set

of Classes
A. and B.

I I.

Recognition Rate on the
Training Set

4 Real
20 Binary 4 Binary Variables
Variables Variables L, B, HI, ?

1

2

3

4
5

4/51
14/41
29/26
40/15
50/5

87% -- --
82% 95%
96% 96% 93%
84% 91%
91% -- --

The third column of Table 5.4.5 shows the recognition rate on

the training set of the distance-to-mean classifier for the five 2-class

problems when all 20 binary variables are used to represent a pattern.

The fourth column shows the recognition rate on the training set of a

problem when the patterns for that problem are represented using only

the four binary variables chosen in conjunction with that problem-

again the distance-to-mean classifier is used.

5.5 Testing the Estimates g1 and g2 Under Ideal Circumstances

As a and h converge to zero, g
1

and g2

the function f being estimated, but
g1

and g2

converge to

cannot be

expected to equal f for any particular values of their parameters.

To get a notion of how large the differences between

and between g2

g1

and f are likely to be in the best of

and
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circumstances, we perform a number of simulations in which

(u. X) = k(X, h)
R.

can be evaluated accurately. Throughout the section f has domain

and range

where

[0, 10], and

Xu.( ) = f /(x, h),
R.

R. = f -1
(I.)

1[0, 2] if i= 1

I
i

= [4. i-2 ] if i = 2, ... , 10

19

, 2[ 10] if i = 11.
'

/ is one of the functions

/1(z) =

(z)

3
(z) =

1 -z2 /2

if -1 < z < 1

otherwise

2
if -1 < z < 1

otherwise

(5. 5. 1)e

I ( +1)
2

0

3 ,

70-1z1+1)
1

0



1 if -1 < z < 1
I 4(z) =

0 otherwise

sTheb,' are

ib.= -1, i = 1, ..., 11.

The accuracy with which = 1, 2,
gJ

measured by

ERR(f,
gJ

.)

rn 2 \1/2

estimates f is

(f(x.)-g.(x.))
i=1 L

3 1
100

208

(5. 5. 2.)

where the sx.' are equally spaced points in [0, 10]. For all
N 0x E v R. , (itfollows from Theorem 3.10.1 hat n If(x)- . x)I

i =1 I gJh 0
is never greater than a and is close to zero when f(x) is close to

some b.. Hence, as h 0, ERR(f, is usually close to 50; and

for some values of h we can hope that ERR(f, .) is less than 50.
gJ

If the factor 100
of

is dropped from line (5. 5. 2), ERR(f, .) is an

approximation of LSE(f, p).
g.1

Tables 5.5.1, 5.5.2., and 5.5.3 summarize the results of

computer simulations which compute the value of ERR(f, g.). When

h is close to zero, we see from Table 5.5.1 that ERR(f, g2) is

close to 50; and for other values of h, ERR(f, g2) is considerably

less than 50. The best value of h depends on the form of f.
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Table 5.5.2 confirms the remark made in Section 3.4 that g2 is a

better estimate of f than For instance, when f(x) = x2g1. /10,

the smallest value of ERR(f, g2) is 19% less than the smallest value

of ERR(f, g1); and when f(x) = 4717, 30% less. Table 5.5.2 also

confirms that at the best values of h, g2 is less sensitive than g1

to changes in the value of h. Table 5.5.3 shows that the choice of the

kernel function is not critical, although the best value of h varies

with the choice of the kernel function. Table 5.5.4 shows that the

estimates are less accurate near the boundary of f's domain.

Table 5.5.1. ERR(f, g2) given / and test set
x = .2 to 9.6 step .32.

h

ERR(f, g2) when f(x) =

x x
2 /10 (x-5)2 /2.5 ,5 sin(X1T ) + 5

5

.01 54 52 56 50
.1 34 24 22
.3 18 16 12
.5 6 10 22 26
.7 8 30 44

1.0 16 12 48 42
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Table 5. 5. 2. Comparison of ERR(f, g1) and ERR(f, g2) given f
and test set x = . 5 to 9.49 step .31.

h
f(x) = x2/10

ERR(f, g1) ERR(f, g2) 1)4757;11.R(f,ERR(f, g1) g2)

.3 18.2 18.2 20.0 19.6

.4 14.0 13.8 14.6 13.0

.5 11.4 11.0 13.2 9.6

.6 10.4 9.2 14.8 9.2

.7 11.2 8.4 17.0 10.2

.8 13.2 8.4 19.4 11.4

.9 16.4 9.2 22.0 12.6
1.0 20.0 10.8 24.6 13. 6

Table 5. 5. 3. Smallest values of ERR(f, g2) for different
kernel functions given f(x) = x2/10 and test
set x = . 5 to 9.49 step . 31.

/1 i
2 f3 f4

ERR(f, g2) 8. 4 8. 4 8. 6 10. 0

Corresponding
value of h . 7 2.3 1. 4 1. 0

Table 5. 5. 4. Comparison of f g1 and f - g2 near the
boundary of the domain of f given iv
h = . 7, f(x) = x 2 /10.

x f(x) f(x) g i(x) f(x) g (x)

9.5 9.025 . 144 .070
9. 6 9. 216 - 197 . 116
9. 7 9. 409 . 261 . 176
9.8 9.604 .336 .252
9.9 9.801 .423 .342

10.0 10.000 . 522 .448
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5.6 Two More Tests of the Estimate g2

The simulations described in the previous section were

performed under ideal conditions. Here we describe two simulations

in which the function f is multi-variate; g2 is the estimate; and

-d.( )

Xu.( ) = 1 /
1 '
(0 h),

-d.
1

(X)-1

1
swhere

./ is defined on line (5.5.1) and the d.` are derived from

2-class classifiers in the manner shown on line (4. 2. 1). In the first

simulation

f
1
(x,y) (x-7.5)2 + (y-7.5)2 ,

and in the second f
2

is the function whose value is the cranial

capacity of a skull and whose arguments are the 20 binary variables

chosen by the WS technique (see the simulation using skulls described

in Section 5.4).

In both simulations, five 2-class classifiers are used. In the

first simulation the five 2-class problems are defined by lines (5.4. 1)

to (5.4.7), and the classifiers are the five TLU's referred to in the

last column of Table 5.4.1--each TLU has a recognition rate of 100%.

The training set for each classifier includes all the patterns in S

(see line (5.4.1)), and ERR(f, g2) is computed on the set {XII}I1_50 .
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The b. 's are

(b.= i-1)(22. 5), i = 1, , 6;

t.'sfor the t.' of line (5. 4. 5)

i
At. f/2 if i = 1

i

1

(b= ti_ +ti) /2 if i = 2, . . , 5 (5. 6. 1)

t
5

+ Af/2 if i = 6.

In the second simulation, which uses the data on skulls, the

five 2-class problems are defined by lines (5.4.8) to (5.4.10), and the

classifiers are the distance-to-mean classifiers whose recognition

rates are given in the third column of Table 5.4.5. As we explained

a few lines after line (5. 4. 10), the training set for each 2-class prob-

lem contains data on the same 55 skulls. ERR(f2, g2) is computed on

data satafor the remaining 55 skulls. The 13.1 are

b 1.= 121.0cc + 2(i-1)(1632.5cc-1121.0cc)/10, i 1, ..., 6;

so sofor the t.' of line (5.4.8), the bi's satisfy the equation on

line (5.6. 1).

Table 5. 5. 1 shows ERR(fl' g
2)

and ERR(f 2, g 2). It is

interesting to compare the accuracy of
g2 in predicting cranial

capacity with the accuracy of linear regression in predicting cranial

capacity. Rao [25] notes that it is reasonable to expect that cranial
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capacity C is a function of the measurements L, B, and H' and

that for suitably chosen parameters a , pi, 132, and 133

If

then

P
1

P2 133

C = aL B H' .

y = logo C

xl = log10 L

x2 = logo B

x3 = logo H' ,

y =
131x1 I32x2

133x3
'

and linear regression can be used to find values for

(5. 6. 2)

)33 Using data from 86 of Hooke's [13] skulls, Rao obtained

a = . 0 0 2 4 1

= .878

132 = 1.041

133 = . 73 3 .

These values are used in the formula on line (5. 6. 2). The last

column of Table 5.6. 1 shows the root-mean-square error obtained

when this formula is used to predict the capacity of 76 test skulls.

(Twenty-one of the test skulls are also in the training set of 86 skulls.)



For the sake of comparison with ERR(f2, g
2 ),

100error is multiplied by
oft

Table 5. 6. 1. ERR (fl, g2), ERR(f2' gz),

regression on skulls.

214

the root-mean-square

error for linear

ERR (fl' g
2

ERR(f2, g2)

Linear Regression on
Skulls, (Root -Mean-

100Square Error)
Af

2

Error 22 114 106

h .5 5
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6. 1 Networks

215

Every 2-class pattern recognition problem can be solved by a

network of TLUs. If the patterns are linearly separable a single TLU

will suffice; otherwise, a majority committee, containing perhaps as

many members as there are patterns, can be found [16]. Networks of

TLUs more complex than a committee offer the possibility of solving

complex pattern recognition problems while using fewer TLUs than a

committee.

The local adjustment algorithm for training a single TLU (see

line (2.3. 1)), which is convergent when the patterns are linearly

separable, has been extended to algorithms for training committees

of TLUs. Unfortunately, the existence of a solution does not insure

convergence, but none the less the algorithms have proven to be

useful in solving a variety of problems (see [21] and Section 5.3).

The attempts described in Sections 2.4 and 5.1 to extend the algorithm

for training a single TLU to an algorithm for training a network were

unsuccessful. Even when the structure of the network was restricted

to that of a committee whose logic was allowed to change, the

algorithm failed.

Other investigators have had some success in training networks

but they have been forced to introduce severe restrictions. For
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instance, Ridgway [26] fixes the number of members and the logic of a

committee before training begins. Francalangia [8] adjusts a network

at a single level. Holderman [11] allows the number of TLUs in a

network to change during training and adjusts all of the TLUs in the

network, but he fixes the order in which TLUs can be adjusted and

uses a global criterion to determine the adjustments. Networks may

indeed be "monsters of vacuous generality" [18] for which excellent

training algorithms may never be found.

6. 2 Modified Veto Committees

The modified veto committee with its local adjustment algorithm

for training is a new and useful addition to the theory of committees

of TLUs. A modified veto committee has the capacity to solve any

2-class problem in which the classes are disjoint and the variables

are binary, and the algorithm for training a modified veto committee

seems to converge to a solution in the cases tested. It is necessary to

say "seems to converge" as in two of the simulations summarized in

Table 5.3.1 training was stopped before a solution was reached. In

contrast, a majority committee is capable of solving any 2-class

problem in which the classes are disjoint,regardless of whether or not

the variables are binary, provided there are only a finite number of

patterns.
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When the variables are binary, Ridgway's [26] and Mueller's

[23] local adjustment algorithms for training a majority committee do

not seem to perform as well as the local adjustment algorithm for

training a modified veto committee (Table 5.3.1)- It could be that for

the problems used a five member modified veto committee has more

power than a five member majority committee, or it could be that the

algorithm for adjusting a modified veto committee is more powerful

than the algorithms of adjusting a majority committee. Because of the

nature of modified veto logic, the algorithm for adjusting a modified

veto committee can add new members as needed during training; and

when training ends, members most recently added can be dropped

from the committee at the cost of a reasonable reduction in the

recognition rate. Adding a member to or dropping a member from a

majority committee has a major effect on the logic of the committee,

and there is unlikely to be an algorithm for training a majority com-

mittee that allows the number of members to change during training.

If at the end of training it is decided a majority committee would per-

form better with a different number of members, then training must

start again from scratch.

The algorithm for training a modified veto committee requires

the normalization of weight vectors after each adjustment. The

heuristic reasons given for this normalization in Section 2.9 are sup-

ported by the results of the simulation in Section 5.3 (see the
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discussion at the end of Section 5.2).

As we discussed in Section 2.8 and illustrated in Figure 2.8.1,

prejudice is to be expected when a local adjustment algorithm is used,

especially when the classifier is complex. The hope expressed in

Section 2.8 that only the last members added Co a modified veto com-

mittee learn prejudice is confirmed by the simulations on CON2 and

CODE2; for dropping the last members of the committees decreased

the recognition rate on the training set much more than on the test set

(Tables 5.3.1 and 5.3.5). When the training set is large enough to be

representative of the test set, dropping members affects the recogni-

tion on the training and test set about equally (see CON3 and CODE3

in Tables 5. 3. 1 and 5. 3. 6).

The simulations summarized in Tables 5.3.7 and 5.3.8 show

that the algorithm for adjusting a modified veto committee is sensitive

to changes in the parameters a0' p, and and to the changes in

the number of constant terms in the representation of a pattern. This

sensitivity is unfortunate in that one has to search for a suitable set of

parameters and useful in that it enables the algorithm to obtain a high

recognition rate for different problems. Fortunately, we had no

difficulty finding suitable values for the parameters, first, because it

is possible to predict the effect of changing a parameter, and second,

because the algorithm performs well for a wide range of values of the

parameters.
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6.3 Estimation

The extension of the use of 2-class classifiers to problems of

function estimation appears to be a new contribution to the theory of

pattern recognition. The simulations described in Sections 5.5 and

5.6 show that g1 and g2 are reasonably accurate estimates for a

variety of functions. The estimates g1 and g
2

can be used

regardless of the number of independent variables and the form of the

function being estimated. The greatest difficulty encountered in using

g1 and g2 is in computing the discriminant functions d.. When

the 2-class classifiers are TLUs the discriminant functions can be

defined by line (4. 2. 1); and the number of problems that can be

handled satisfactorily by a TLU is extended by using binary variables.

Future research could investigate ways of defining discriminant func-

tions in terms of other classifiers.

We saw in Chapter III that the estimates g1 and g2 have

several nice properties. They are continuous on the product space

formed by their parameters and by X. Under reasonable conditions,

xtheyconverge to the function being estimated. When u.( ) is given

by
-d.(X)

u.(X) = (0, h),
-d1. -1X)(

stheng1 and g
2

are stable with respect to changes in the d.'
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The simulations described in Section 5.5. indicate limits on the

accuracy of g1 and g2. The simulations show that: g2 is more

accurate than g1; g2 is less sensitive than g1 at the best values of

h to changes in the value of h; the choice of the kernel function is not

critical; and near the boundary of the domain of the function being

estimated, g2 and g1 are less accurate than elsewhere.

The simulations in Section 5.6 are a more interesting test of the

accuracy of the estimate g2 than are the simulations in Section 5.5,

because u.'sin Section 5. 6 the u.' are defined in terms of the d.' s,

and the functions are multivariate. The estimation performed on the

function

f (x y) = (x-7.5)2 + (y-7.5)2

shows the performance of
g2 when the function being estimated is

"smooth" and the training data is accurate. The estimation performed

to predict cranial capacities shows the performance of g2 when the

function being estimated may not be "smooth" in the measurements

given. The effect, if any, of inaccuracies in the data is undetermined.

In predicting cranial capacity, g2 is nearly as accurate as

linear regression. As we can see from line (5.6.2), to use linear

regression we must be able to make a good guess about the form of the

function we are estimating and then be sufficiently ingenious to trans-

late this form to a linear form. We wonder: Would the accuarcy of



221

linear regression have been improved if the equation on line (5. 6. 2)

were changed? Would the accuracy of g2 have been improved if

more 2-class classifiers were used?

In retrospect we see from Table 5.4.5 that g2 might have

estimated cranial capacities more accurately if each 2-class problem

had been solved using only the four variables chosen for that problem

by the WS technique. If this had been done, each pattern would still

have been described by 20 binary variables, but each discriminant

function would have been evaluated in terms of just four binary vari-

ables. As a variable may contain useful information about patterns

that map to one part of a function's range and misleading information

about patterns that map to another part, it seems worthwhile to use

different variables for the different 2-class problems. Using differ-

ent variables for the different 2-class problems has the additional

sadvantage
of shortening the computation of the d.'

Further simulations testing the effectiveness of g2 and the

idea of using different variables for each 2-class problem are planned.

6.4 Binary Variables

In the first two simulations in Section 5.4, replacing multi-

leveled variables by binary variables permitted a distance-to-mean

classifier and a TLU to have a high recognition rate on problems they

otherwise could not handle. The third simulation in Section 5.4, on
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skulls, confirms Schoenfelt's [30] remarks that using binary variables

can increase the recognition rate for a problem while reducing

storage requirements, (see Table 5.4.5). The third simulation also

shows that the WS technique is an effective way to choose a "good"

subset of binary variables from a larger set as evidenced by the

recognition rates in Table 5.4.5). Moreover, it seems worthwhile to

note that the variables selected most often and ranked highest by the

WS technique are those considered most important by Rao [25] (see

Table 5.4.4).

A modified veto committee performs well when binary variables

are used; and replacing multi-leveled variables by binary variables

extends the range of application of the estimates g
1

and g2.

Further research could be done to determine the beneficial effect, if

any, on the performance of other classifiers when binary variables

are used.
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Exhibit 1. Training records of a modified veto committee
Part (a) a0 = 6, 1 = 1, y = 0 and weight vectors

not normalized.
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Exhibit 1. Part (a) continued.
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Exhibit 1. Part (b) a0 20,
not normalized.
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, y = 0 and weight vectors
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Exhibit 1. Part (b) continued.
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Exhibit 1. Part (c) a0 = 20, p = 1, y = 0 and weight vectors
not normalized.
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Exhibit 1. Part (d) a0 = 6, p = 1, Y = 0 and weight vectors
normalized.
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Exhibit 1. Part (d) continued.
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Exhibit 1. Part (d) continued.
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Exhibit 1. Part (d) continued.
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