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A B S T R A C T

Riparian vegetation along streams provides a suite of ecosystem services in rangelands and thus is the target of
restoration when degraded by over-grazing, erosion, incision, or other disturbances. Assessments of restoration
effectiveness depend on defensible monitoring data, which can be both expensive and difficult to collect. We
present a method and case study to evaluate the effectiveness of restoration of riparian vegetation using a web-
based cloud-computing and visualization tool (ClimateEngine.org) to access and process remote sensing and
climate data. Restoration efforts on an Eastern Oregon ranch were assessed by analyzing the riparian areas of
four creeks that had in-stream restoration structures constructed between 2008 and 2011. Within each study
area, we retrieved spatially and temporally aggregated values of summer (June, July, August) normalized dif-
ference vegetation index (NDVI) and total precipitation for each water year (October-September) from 1984 to
2017. We established a pre-restoration (1984–2007) linear regression between total water year precipitation and
summer NDVI for each study area, and then compared the post-restoration (2012–2017) data to this pre-re-
storation relationship. In each study area, the post-restoration NDVI-precipitation relationship was statistically
distinct from the pre-restoration relationship, suggesting a change in the fundamental relationship between
precipitation and NDVI resulting from stream restoration. We infer that the in-stream structures, which raised
the water table in the adjacent riparian areas, provided additional water to the streamside vegetation that was
not available before restoration and reduced the dependence of riparian vegetation on precipitation. This ap-
proach provides a cost-effective, quantitative method for assessing the effects of stream restoration projects on
riparian vegetation.

1. Introduction

Riparian areas provide critical ecosystem services and are subject to
degradation from natural and anthropogenic processes, especially in
arid and semi-arid rangelands where water is frequently limiting. A
riparian area can cool stream water through shading by streamside
vegetation, filter surface and ground water, and otherwise act as an
interface between uplands and waters (Gregory et al., 1991; Naiman
and Decamps, 1997). Riparian areas also support much of a region’s
biodiversity (Naiman et al., 1993; Sabo et al., 2005). These ecosystem
services, however, are sensitive to herbivory, disturbance (e.g., flood,
fire), and human activity. Degradation of riparian areas also can result

from stream incision or other forms of disconnection between streams
and their floodplains (NRC, 2002).

Degraded riparian areas are common targets of restoration projects
(Goodwin et al., 1997; Bernhardt et al., 2005), but evaluating restora-
tion effectiveness has long been a weakness in the field (Kondolf, 1995;
Walker et al., 2007; Gonzalez et al., 2015). Riparian restoration projects
are frequently underfunded (Ruiz-Jaen and Aide, 2005; Bernhardt
et al., 2007) and few projects budget for pre- and post-project mon-
itoring (Bernhardt et al., 2005; Gonzalez et al., 2015). Long-term
monitoring efforts are even rarer (Alexander and Allan, 2007; Gonzalez
et al., 2015) and monitoring data that do exist are seldom used to assess
the effectiveness of individual projects (Alexander and Allan, 2007).
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The development of metrics and standards for evaluating restora-
tion effectiveness (i.e., assessing whether or not restoration objectives
were met) has proven difficult (Bernhardt et al., 2007; Kondolf et al.,
2007) and rigorous evaluations have been even more difficult to im-
plement (Alexander and Allan, 2007; Gonzalez et al., 2015). Both
spatial (Hobbs and Norton, 1996; Gonzalez del Tanago and García de
Jalón, 2006; Aguiar et al., 2011) and temporal (Kondolf and Micheli,
1995; Trowbridge, 2007) scales prove challenging in evaluating effects
of restoration work. Stream or riparian restoration projects are gen-
erally implemented on a local scale (e.g., a meander bend of a river)
(Lake et al., 2007). However, environmental or ecological effects of
restoration often can be seen outside of project boundaries, including
upstream and downstream reaches and streamside areas (Aguiar et al.,
2011). Riparian vegetation in particular is characterized by hydrophilic
plants and thus inextricably linked to regional and local scale climate
and hydrology (Stromberg et al., 2007; Orellana et al., 2012; Boudell
et al., 2015). Riparian vegetation is strongly influenced by both long-
itudinal and lateral surface and subsurface connectivity to the flood-
plain (Gonzalez del Tanago and García de Jalón, 2006; Lake et al.,
2007). These linkages are even more pronounced in arid environments
such as rangelands (Patten, 1998; Perry et al., 2012).

Many restoration projects are assessed through metric trajectories,
or changes over time (Palmer et al., 2005; Gonzalez et al., 2015), yet
these evaluations require both baseline pre-restoration data and long-
term monitoring of the completed project. Although Kondolf & Micheli
(1995) recommend both a historical study of pre-restoration conditions
and a minimum of 10 years of post-restoration monitoring, Gonzalez
et al. (2015) found that just 16% of projects monitoring trajectories
included pre-restoration data, and only 22 of 169 total projects re-
viewed included more than six years of post-restoration monitoring.
The long-term effects of restoration will seldom be seen in such short
time frames (Trowbridge, 2007), especially in projects intended to
foster natural ecological processes like succession (Walker et al., 2007),
plant community development (Weisberg et al., 2013), and resilience
from natural disturbance (e.g., beaver, flood).

Satellite remote sensing has been used extensively to assess wetland
and riparian vegetation conditions at regional and local scales (Ozesmi
and Bauer, 2002; Goetz, 2006; Smith et al., 2014; Lawley et al., 2016).
Long-term remote sensing of riparian vegetation requires satellite ob-
servations of sufficient history and spatial resolution to characterize
both baseline conditions and trajectories with respect to natural and
anthropogenic change agents, such as climate, hydrology, and land

Fig. 1. General study area of Silvies Valley Ranch, and tributary creeks and study riparian areas.
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management (Dawson et al., 2016). Landsat is ideally suited to meet
these requirements due to its extensive and continuous archive (30+
years), overpass frequency (8–16 day), and spatial resolution (30m
pixel size) (Gutman and Masek, 2012; Huntington et al., 2016).

Since opening the Landsat archive, ecological applications of
Landsat data have exponentially increased (Wulder et al., 2012;
Kennedy et al., 2014). Software platforms such as Google Earth Engine
(Gorelick et al., 2017) now provide remote sensing and climate data
archive access and massively parallel cloud-computing capabilities.
This cloud-based access and processing has led to significant advance-
ments and data discoveries related to high resolution land cover and
water extent mapping, as well as visualizations that would not be
otherwise possible (Hansen et al., 2013; Pekel et al., 2016; Kennedy
et al., 2018). These new capabilities and advancements have changed
the paradigm of remote sensing and ecosystem monitoring over long
time histories and at high resolution.

Here we present a method and case study to assess the effectiveness
of riparian restoration using a freely available, on-demand, cloud-
computing web application to access, process, and download 30+ years
of Landsat and gridded precipitation data for restoration locations. We
compared statistical relationships between riparian vegetation vigor
and precipitation data for both pre- and post-restoration periods. The
approach we present overcomes some of the barriers in accessing large
geospatial datasets and provides a simple but rigorous quantitative
approach that can be used by scientists, practitioners, and managers to

assess the effectiveness of a restoration project for improving riparian
vegetation.

2. Materials and methods

2.1. Study site

This study focuses on streamside areas adjacent to three streams
tributary to the Silvies River, located on the Silvies Valley Ranch, in
eastern Oregon (Fig. 1). Streamside areas were identified as areas that
had the potential for inundation given their proximity to the channel,
slope, and topography (e.g., valley form). These areas were likely to
support riparian vegetation following restoration. Each stream had a
number of artificial beaver dams (ABDs) installed between 2008 and
2011, but none had pre-restoration vegetation or hydrologic data col-
lected and no systematic post-restoration data were collected (Davee
et al., 2017). ABDs are densely spaced, low-head weirs constructed from
rock and other materials that pond water up to the valley floor, thereby
raising water tables, slowing the movement of water through the
landscape, increasing valley bottom storage and shallow groundwater
levels, and promoting surface and groundwater interactions within re-
storation areas (Pilliod et al., 2018). Such changes ultimately lead to
replacement of upland shrubland vegetation (i.e., typical of sagebrush
steppe) with riparian vegetation and grasses, as well as increases in
vegetation vigor and evapotranspiration (Loheide and Gorelick, 2005;

Fig. 2. Delineated riparian study areas. (a) Upper (left) and Lower (right) reaches of Camp Creek. (b) Flat Creek (larger polygon) and Jack Andy Creek (smaller
polygon).
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Essaid and Hill, 2014).
The Silvies Valley Ranch encompasses the majority of a large allu-

vial valley, as well as some steeper, adjacent uplands in the headwater
reaches of the Silvies River, which drains to Malheur Lake. The land-
owner purchased the property in 2007 with the intent to establish a
sustainable grass-fed cattle grazing operation and eco-tourism resort.
Eager to return sparsely vegetated valley floors to productive grass-
lands, as well as to offer fishing and bird-watching to future guests, the
landowners set out to address the pervasive channel incision that had
dried upland valley floors, converting what was thought to have been
herbaceous wet meadows into sparse, upland species (e.g. Artemisia
spp., Chrysothamnus spp., Purshia tridentata, Festuca idahoensis).

To reverse this conversion, the landowners built 376 ABDs in six
intermittent tributary drainages over the course of six years. The ear-
liest in-stream structures were installed in the winter of 2008, and in-
stallation in the four study areas continued through 2011. The struc-
tures are maintained periodically by both the landowner and the
resident beaver populations, with the majority still operating as initially
designed. In the valley bottoms on either side of the structures, sage-
brush and other upland species were mechanically removed, and have
been replaced by a mix of grasses. Cattle are now regularly grazed in
the valley bottoms alongside the treated areas, and the areas are hayed
seasonally. The landowners report large increases in hay production
since installing the structures (Davee et al., 2017). Whereas the pre-
installation channels had been incised up to 5m and went dry most
years, the post-installation channel is perennially wet and the water
level in some channels has risen by more than 3.5 m.

2.2. Study areas and data retrieval

Riparian areas for this study were selected based on the length of
time since the installation of the ABDs, with the most recent ABDs in-
stalled at least five years previously. After a field visit to the ranch to
identify potential study areas, we selected four study areas: Upper
Camp Creek, Lower Camp Creek, Flat Creek, and Jack Andy Creek
(Fig. 2). In each study area, a riparian area polygon was delineated on
the basis of high resolution background imagery (e.g. National Agri-
culture Imagery Program).

Analyses were based on the relationship between the satellite-de-
rived normalized difference vegetation index (NDVI) and precipitation.
NDVI is a measure of pixel greenness, or vegetation photosynthetic
potential. NDVI has been used as a proxy for ecosystem performance in
forests (Wylie et al., 2008, 2014) and rangelands (Wylie et al., 2012;
Rigge et al., 2013b), and changes in NDVI over time have been used to
examine the effect of best management practices on riparian vegetation
in rangelands (Rigge et al., 2013a). In the Great Basin, NDVI is used
extensively for quantifying vegetation vigor, plant cover, and con-
sumptive water use of groundwater dependent vegetation (McGwire
et al., 2000; Devitt et al., 2011; Huntington et al., 2016; Carroll et al.,
2017). Summer (June, July, and August; JJA) NDVI was chosen to
maximize the vegetation signal derived from shallow groundwater
(Dawson and Pate, 1996; Huntington et al., 2016), whereas water year
precipitation was chosen because it is a good indicator of shallow
groundwater levels and groundwater discharge (i.e. baseflow) during
this period (Huntington and Niswonger, 2012; McEvoy et al., 2012;
Abatzoglou et al., 2014).

We used Climate Engine (ClimateEngine.org), a freely available
remote sensing and climate cloud-computing application (Huntington
et al., 2017) powered by Google Earth Engine (Gorelick et al., 2017), to
process and download spatially and temporally averaged Landsat 4, 5,
7, and 8 derived annual NDVI values for each polygon from 1984 to
2017. NDVI was computed within Climate Engine using U.S. Geological
Survey (USGS) Landsat at-surface reflectance product collections hosted
by Google Earth Engine (USGS, 2018a,b). Climate Engine automatically
applies cloud masks provided by Landsat at-surface reflectance collec-
tions (Zhu and Woodcock, 2012; Foga et al., 2017) for data masking.

Spatially and temporally averaged NDVI values were computed within
Climate Engine and downloaded for respective polygons as median
values for Landsat images acquired in the summer (JJA) of each year.

Daily precipitation data from METDATA (Abatzoglou, 2013) was
aggregated to water year totals (October 1– September 30) and
downloaded for each study area via Climate Engine. METDATA is a
hybrid of daily North American Data Assimilation System (NLDAS)
(Mitchell et al., 2004; Xia et al., 2012) and monthly Parameter Re-
gression on Independent Slopes Model (PRISM) data (Daly et al., 2008),
and is available at a 4 km grid resolution. Two of the study areas were
contained entirely within a single METDATA grid cell; in those cases,
the total precipitation over the water year for respective cells were
used. The Upper and Lower Camp Creek study areas each spanned two
different METDATA cells, and the mean water year precipitation over
the two cells was used for these study areas.

2.3. Statistical analyses

Using the pre-restoration (1984–2007) NDVI and precipitation data,
we examined the relationship between precipitation and NDVI using
linear regression to determine a best-fit regression line for each study
area. Using MATLAB’s Curve Fitting Toolbox (MathWorks, Natick,
Massachusetts), we determined the 95 percent confidence intervals, the
95% prediction interval, the R2, F-statistic, and p-value for the linear
regression. We then compared post-restoration data (2012–2017) to
pre-restoration (1984–2007) regressions. If the post-restoration data fit
the pre-restoration relationship, the residuals between the post-re-
storation observations and the pre-restoration regression would be
normally distributed with a mean of zero. We tested this hypothesis
with a single-sample t-test on post-restoration residuals. This test shows
whether the post-restoration relationship between NDVI and pre-
cipitation is statistically significantly different from the pre-restoration
relationship.

To provide control areas, we performed analyses on Flat Creek (an
ephemeral and intermittent stream) and Lower Camp Creek (a per-
ennial stream). Of the four areas evaluated, Flat Creek is the most de-
pendent on precipitation for streamflow and vegetative growth,
whereas Camp Creek is the least dependent. In these control analyses,
the pre-restoration data were split into two datasets: an early pre-re-
storation (1984–2002) and a late pre-restoration (2003–2007). The
same analyses were run on these two pre-restoration datasets, estab-
lishing a statistical relationship between precipitation and NDVI for the
early data and using the residuals for the later pre-restoration data to
assess whether those later pre-restoration data fit the earlier pre-re-
storation relationship. Following the control, the post-restoration re-
siduals (2012–2017) were also tested against the early pre-restoration
data. All analyses were conducted in MATLAB using a 0.05 alpha level
as a basis for statistical significance.

2.4. Restoration assessment

We used the statistical analyses to assess whether the riparian re-
storation was successful in each study area. Fig. 3 provides a conceptual
illustration using synthetic data. If NDVI were entirely dependent on
precipitation, the pre-restoration linear regression would perfectly
predict the value of NDVI in response to a year’s precipitation. Because
NDVI is also influenced by other factors, the observed values tend to be
scattered around the line with values both above and below the re-
gression line (Fig. 3a). If riparian restoration were unsuccessful (i.e., the
relationship between precipitation and NDVI remains unchanged), the
post-restoration data would continue to fit that pre-restoration pattern
(Fig. 3b). With a successful restoration, the post-restoration NDVI va-
lues would be greater than the values predicted by the pre-restoration
regression (Fig. 3c).

The statistical tests described above provide a quantitative basis for
the assessment of restoration effectiveness. We assessed riparian
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restoration as effective if two criteria were met: a) the post-restoration
NDVI values were greater than the values predicted by the pre-re-
storation relationship (indicating an increase in photosynthetic poten-
tial, or productivity), and b) the t-test showed a statistically significant
difference between the pre-restoration and post-restoration data (in-
dicating a change in the functional relationship between precipitation
and vegetation).

3. Results

For each study area, we found a statistically significant (p < 0.05)
linear relationship between pre-restoration precipitation and pre-re-
storation NDVI, although the slopes and intercepts of the various re-
lationships varied by a factor of 2 (Table 1; Fig. 4). In each study area,
we also found that post-restoration residuals were statistically distinct
from pre-restoration data (Table 2).

Fig. 5 shows data from the control areas at Flat Creek and Lower
Camp Creek, in which 19 years of pre-restoration data were used to
establish the pre-restoration relationship and the following 5 years (still
pre-restoration) were tested for a change in that relationship. In this
case, the 19 years of early pre-restoration data (1984–2002) were suf-
ficient to establish statistically significant relationships (Table 3a). T-
tests performed on the residuals of five years of late pre-restoration data
(2003–2007 control) showed that they were not from a statistically
distinct population (Table 3b). In contrast, we found that post-restora-
tion data (2012–2017) came from a statistically distinct population
(Table 3c).

4. Discussion

All four study areas showed statistically significant pre-restoration
relationships between precipitation and NDVI, indicating water-limited

vegetation. The strengths of those pre-restoration relationships varied,
likely influenced by topography, soils, local groundwater dynamics and
other geomorphic features of the study areas. We interpret the slope of
the pre-restoration regression equation as representing the strength of
precipitation dependence, and the pre-restoration intercept as in-
dicative of the availability of alternative sources of water. Lower Camp
Creek, for example, lies alongside the Silvies River and has the greatest
regression intercept (extrapolated NDVI at zero precipitation) of the
four study areas. The local water table in this study area is higher due to
the proximity of the perennial stream, and the vegetation in this area
can access more water than the vegetation in other study areas. In
contrast, Flat Creek is the study area most dependent on precipitation,
with both the greatest sensitivity to precipitation (as indicated by the
greatest pre-restoration slope) and the least access to other sources of
water (as indicated by the lowest pre-restoration intercept).
Precipitation explains more of the NDVI variance at Flat Creek than any
of the other study areas (R2= 0.521), and the significance of the cor-
relation between precipitation and NDVI is also greatest at Flat Creek
(p < 10−4).

In all four study areas, the post-restoration data were statistically
distinct from the pre-restoration precipitation-NDVI relationship, re-
gardless of the pre-restoration correlation, slope, or significance. In all
cases, the post-restoration precipitation data fall within the range of
data used to establish the pre-restoration relationship (Fig. 6). Just as
importantly, the control analyses of Flat Creek and Lower Camp Creek
did not indicate changes in the riparian community when no restoration
had occurred. We examined temperature (water year mean tempera-
ture, also acquired from ClimateEngine.org) and autocorrelation as
potential confounding processes. Temperature and NDVI were not sig-
nificantly correlated at any of the study areas – R2 values for the tem-
perature-NDVI relationship ranged from 0.001 to 0.12. Further, there
was no statistically significant autocorrelation (assuming a one-year
lag) within NDVI or precipitation in either the pre-restoration
(1984–2007) or post-restoration (2012–2017) periods.

Instead of simply comparing pre- and post-restoration Landsat
images to assess a change in vegetation vigor, this method focuses on
the relationship between NDVI and precipitation and uses all available
Landsat imagery for the time period of interest. Increases in NDVI are
usually associated with increased consumptive water use by riparian
vegetation (Groeneveld et al., 2007; Beamer et al., 2013; Nguyen et al.,
2015). The statistical analysis presented here shows that this additional
water is not provided by precipitation, so it must come from some other
source. In the case of Silvies Ranch, the ABDs were installed to raise the
level of water in the channel, thereby raising the elevation of the water
table adjacent to the stream channel. The higher water tables result in a

Fig. 3. Synthetic data illustrating the restoration assessment. a) pre-restoration data indicating the linear relationship between annual precipitation and NDVI
(R2=0.4). b) sample data showing an ineffective riparian restoration. A t-test shows that these data are not significantly different from the pre-restoration data
(p=0.74; t-statistic = 0.35). c) sample data showing an effective riparian restoration. A t-test shows that these data are significantly different from the pre-
restoration data (p < 0.005; t-statistic= 3.75).

Table 1
Pre-restoration statistical data (all statistical tests are based on 22 degrees of
freedom):

Study Area Pre-Restoration Precipitation-NDVI Linear Regression

Regression Slope
(mm−1)

Regression
Intercept

R2 p-value

Upper Camp Creek 4.00× 10−4 0.334 0.431 4.93× 10−4

Lower Camp Creek 5.77× 10−4 0.451 0.288 6.84× 10−3

Flat Creek 7.23× 10−4 0.231 0.521 6.88× 10−5

Jack Andy Creek 3.01× 10−4 0.386 0.337 2.93× 10−3
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vadose zone that drains less effectively, increasing the time over which
two sources of water (increased soil moisture and higher groundwater)
are available to the riparian community. The analysis presented here
offers quantitative and statistically supported evidence for the claim
that the restoration work effectively achieved that goal.

Taking advantage of recent advances in cloud-computing, this
method evaluates riparian restoration at spatial and temporal scales
that have proven challenging in the past (Kondolf and Micheli, 1995;
Hobbs and Norton, 1996; Aguiar et al., 2011). Norman et al. (2014)
regressed Landsat-derived NDVI against springtime precipitation to
examine the effects of gabions in cienegas, but limitations in data
processing required them to use a single Landsat image for each year,
and their nearest usable precipitation gauge was 35 km away from the
study site. Climate Engine’s easy access to distributed processing of
Landsat images and gridded meteorological data make it possible to

interrogate the local record from 1984 to the present, establishing a
baseline condition that is not just a snapshot in time, but a long-term,
quantifiable relationship that captures a wider range of conditions than
short-term pre-project monitoring might. This analysis does require
several years of post-restoration data, so it cannot be used as an as-
sessment tool immediately following the completion of a contemporary
project. However, the method can be applied quickly and inexpensively
to projects that were implemented as recently as five years ago. As time
passes, the method can also be applied repeatedly to monitor the pro-
ject over the longer timescales (i.e., the decadal monitoring re-
commended by Kondolf and Micheli, 1995) that are seldom considered
in the initial budgeting. Finally, the method could potentially be ap-
plied to consider riparian areas undergoing terrestrialization, although
grouping the pre- and post- terrestrialization data will be more chal-
lenging.

This statistics-based remote sensing approach is a powerful tool to
quantitatively and defensibly assess the effectiveness of one aspect of
stream restoration projects. The method does not depend on on-site
monitoring and instead uses existing satellite data accessed through
ClimateEngine.org. Climate Engine is designed to make these data-in-
tensive calculations and extractions accessible to a wide audience of
users, and the analysis presented here requires no specialized skills in
either remote sensing or Geographic Information System (GIS) pro-
gramming. Climate Engine is currently available at no charge for non-
commercial activity, making it an attractive option to (usually resource-
limited) NGOs and government agencies that typically sponsor re-
storation projects. Similarly, the statistical analysis, although per-
formed in MATLAB for this paper (see supplemental material for

Fig. 4. Pre-restoration (open circles) and post-restoration (filled circles) data for each watershed. In each panel, the best-fit regression line is indicated by the bold
line, and the 95% prediction interval indicated by the solid lines. Pre- and post-restoration statistics for each watershed can be found in Tables 1 and 2, respectively.

Table 2
Post-restoration statistical analysis (all statistical tests based on 5 degrees of
freedom):

Study Area Post-Restoration Tests of Precipitation-NDVI Regression

Statistically significant change? P-value t-statistic

Upper Camp Creek Yes 1.32×10−5 16.91
Lower Camp Creek Yes 5.90×10−4 7.70
Flat Creek Yes 1.46×10−5 16.57
Jack Andy Creek Yes 1.88×10−3 5.97
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program scripts), can be carried out in Excel or in R at limited or no
cost, respectively.

This paper offers a proof-of-concept for a quantitative, statistically
sound assessment of stream and riparian restoration work, but it is also
important to recognize its limitations. It examines only one aspect of
those projects, and it relies on spatially integrated data to do so. The
project must be large enough that data aggregated on a 30m pixel size
are representative of both the pre-restoration and restored area, and the
spatial scale of the precipitation data must be fine enough that those
data accurately represent the rainfall at the restoration site. The method
identifies changes in the relationship between spatially and temporally
integrated vegetation vigor and precipitation, but it does not identify
the mechanisms by which those changes occurred. Since the method
relies on spatially integrated data, the boundaries of the polygons en-
closing the study areas are particularly important. In this case, the
proof-of-concept goal of this manuscript was achieved by drawing
polygons based on post-restoration riparian areas. In using this method
to examine other projects, however, we recommend drawing the
polygons based on the project goals established before any restoration
work is undertaken. The proof-of-concept here was also demonstrated
in a semi-arid water-limited setting, where there is a marked distinction

in greenness between upland and riparian vegetation. Further testing is
warranted before applying the method in more mesic settings. Finally,
the remote sensing analysis cannot take the place of on-site data col-
lection to evaluate other aspects of the projects, nor can it evaluate the
success of effective riparian restoration in achieving specific project
goals. Wildlife surveys, for example, are still needed to assess the
creation of habitat, and on-site surveys are still required to evaluate
projects intended to halt ongoing incision. However, this method does
offer a way to perform some post-restoration analysis in a data-limited
environment for projects in which pre- and post-restoration on-site data
collection was limited or absent.

5. Conclusions

Using remote sensing and climate data freely available via a cloud-
computing application (ClimateEngine.org) along with relatively
simple statistical analyses, we demonstrate that restoration work at
Silvies Valley Ranch was effective in providing additional water to the
riparian vegetation community, thereby increasing vegetation vigor.

Fig. 5. Control tests on (a) Flat Creek and (b) Lower Camp Creek study areas. The control data (filled black circles) came from the pre-restoration population, but
were not used to establish the pre-restoration regression between precipitation and NDVI.

Table 3
Statistical analyses on the control study areas. (a) pre-restoration (1984–2002)
relationships, (b) control (2003–2007) t-tests, and (c) post-restoration
(2012–2017) t-tests.

(a) Pre-Restoration (1984–2002) Precipitation-NDVI Linear Regression (17 d.f.)
Study Area Regression Slope Regression

Intercept
R2 P-value

Flat Creek 6.75× 10−4 0.242 0.566 2.01× 10−4

Lower Camp Creek 5.37× 10−4 0.468 0.311 0.0130

(b) Pre-Restoration Control (2003–2007) Residual Tests for Changes in the
Precipitation-NDVI Regression (4 d.f.)

Study Area Statistically
Significant?

P-value t-statistic

Flat Creek no 0.411 0.916
Lower Camp Creek no 0.737 −0.360

(c) Post-Restoration (2012–2017) Residual Tests for Changes in the Precipitation-NDVI
Regression (5 d.f.)

Study Area Statistically
Significant?

P-value t-statistic

Flat Creek yes 9.04×10−6 18.27
Lower Camp Creek yes 7.68×10−4 7.27

Fig. 6. Pre- and post-restoration precipitation at study areas. The heavy black
line in each column indicates mean pre-restoration precipitation, with the
shaded box indicating ± one standard deviation and the lines indicating the
full range (minimum to maximum) of pre-restoration observations. Post-re-
storation precipitation observations are indicated by the open circles. For Lower
Camp Creek and Flat Creek, control data are indicated with filled circles.
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We infer that this additional water was provided by shallow ground-
water that was raised by the installation of ABDs along four streams.
The change shown in this study is not merely an observed change in the
vegetation, but a change in the functional relationship between pre-
cipitation and vegetation. The change to that relationship is quantified
and shown to be statistically significant. Although this analysis is lim-
ited to vegetation, it can be performed with freely available data and
common inexpensive software, and it does not depend upon on-site
monitoring, either before or after restoration. The approach and ana-
lysis presented in this paper offers a powerful and cost-effective way to
evaluate effectiveness of one aspect of restoration projects, especially
projects that are implemented with little or no monitoring.
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