

AN ABSTRACT OF THE DISSERTATION OF

Zeyu You for the degree of Doctor of Philosophy in Electrical and Computer

Engineering presented on March 12, 2019.

Title: Weak-supervision Time-series Analysis

Abstract approved:

Raviv Raich

E�cient time-series analysis can impact multiple application domains such as motif

discovery in gene analysis or music data, extracting spectro-temporal patterns in acoustic

scene analysis, or annotating and classifying electrical bio-signals (such as ECG, EEG,

and EMG) for medical applications. Time-series analysis involves a variety of tasks.

To predict future values of a time-series, many approaches focus on capturing the time

dependence between samples, e.g., hidden Markov model or recurrent neural network.

To learn a compact representation, transformation based approaches such as discrete

Fourier transform (DFT), singular value decomposition (SVD) or convolutive neural

network (CNN) are considered. To classify the time-series, one common approach is

a distance-based K-nearest neighbors (KNN) with dynamic time warping (DTW) or

edit distance. Other supervised approaches either use hand-crafted features or deep

learning representation. In time-series data, as in electrical bio-signals, acoustic scene,

and music theme analysis, occurrence of patterns can be modeled as stationary or time-

invariant. Discovering such patterns is the key to the analysis of time-series and can

be further used for reconstruction or classification. Rich time-series data may contain

multiple patterns associated with multiple labels (e.g., in acoustic scene analysis of an

urban environment, vehicle sounds, bird sounds, and human speech may be observed

in the time interval). To resolve the labels of individual instances, often an expensive

fine-grain labeling process is required. To reduce the labor-intensive annotation e↵orts

associated with labeling a signal at a time-instance level, coarse interval-level labeling is

often considered. In this context, we propose a framework that can e�ciently model and

analyze large-scale multi-channel time-series data and provide fine-grain label predictions

from coarse interval-labeled data.

Since our focus is on time-series data with time-invariant events, we consider a con-

volutive modeling. To extract time-invariant recurring patterns in time-series, we first

propose a convolutive generative framework and use the resulting features for classifica-

tion. To learn a time-instance label model in a weak-supervision setting e�ciently, we

propose novel dynamic programming approaches (using both a chain and a tree struc-

ture). Moreover, we extend the proposed weakly-supervised dictionary learning model

for adapting both multiple clusters and multiple-scales. As future work, we present an

application of the proposed approach to deep learning.

c�Copyright by Zeyu You
March 12, 2019

All Rights Reserved

Weak-supervision Time-series Analysis

by

Zeyu You

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented March 12, 2019
Commencement June 2019

Doctor of Philosophy dissertation of Zeyu You presented on March 12, 2019.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Zeyu You, Author

ACKNOWLEDGEMENTS

I would like to acknowledge my major advisor Prof. Raviv Raich, without his patience

and kindness guidance, I would not make so much progress. His motivation, enthusiasm

and immerse knowledge helped me to work through this thesis.

Besides my advisor, I would like to thank my family and my friends, especially my

mum, dad and my husband for always supporting me throughout my life and help me

go through all these di�cult periods.

Moreover, I would like to thank the rest of my committees, minor advisors, and GCR:

Prof. Xiaoli Fern, Prof. Jinsub Kim, Prof. Xiao Fu, Prof. Sarah Emerson, Prof. Liang

Huang and Prof. Thomas Schmidt for their support and advice.

I would also like to thank José Francisco Ruiz-Muñoz from Universidad Nacional de

Colombia - Sede Manizales, we used to work together as co-authors in two of my pub-

lished papers. At last but not least, I want to thank our group members, Anh Pham,

Tam Nguyen Thi, Thi Kim Phung Lai and Vu Trung Viet, for their support and all the

fun we had in the past years.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Unsupervised learning in time series . 2
1.1.1 Time-series as fixed length vectors: distance-based pattern discovery 3
1.1.2 Time-series as fixed length vectors: transformation-based pattern

discovery . 4
1.1.3 Time-series as streaming data: moving window approaches 7

1.2 Supervised learning in time-series . 10
1.2.1 Distance-based approaches . 12
1.2.2 Transformation-based approaches 13

1.3 Deep learning approaches . 14

1.4 Weakly-supervised learning in time-series 17

1.5 Research challenges . 18

1.6 Objectives . 19

1.7 Structure of the thesis . 20

2 Generative dictionary learning for time-series 21

2.1 Problem statement . 22

2.2 Solution approach for dictionary learning and activation extraction 26
2.2.1 Random projected dictionary learning 27
2.2.2 Dictionary learning . 28
2.2.3 Activation Extraction . 30
2.2.4 Solution approach for random projection model 33
2.2.5 Computational complexity . 33

2.3 Extension to classification framework . 34
2.3.1 Supervised dictionary learning . 34
2.3.2 Feature extraction . 36
2.3.3 SVM classifier . 37

2.4 Results and Analysis . 37
2.4.1 Analysis on synthetic data . 38
2.4.2 Analysis on real-world data . 38
2.4.3 Classification experiments . 43

TABLE OF CONTENTS (Continued)

Page

3 Simple case study: supervised recurring signal pattern recognition and localiza-

tion 46

3.1 Single class case . 47

3.2 Multiple class case as an extension . 57

4 Weakly-supervised dictionary learning for time-series 61

4.1 Problem statement . 61

4.2 Probabilistic graphical model . 64

4.3 Solution approach . 68
4.3.1 Complete and incomplete data likelihood 68
4.3.2 Expectation maximization . 70
4.3.3 Key challenge . 72

4.4 Graphical model reformulation for the E-step 72
4.4.1 Chain model reformulation . 73
4.4.2 Tree model reformulation . 77
4.4.3 Complexity analysis . 82

4.5 Prediction . 82
4.5.1 Time instance prediction: . 83
4.5.2 Signal label prediction: . 83

4.6 Results and Analysis . 83
4.6.1 Run time analysis . 84
4.6.2 Synthetic datasets and results . 85
4.6.3 Real-world datasets and results . 93

5 Weakly-supervised dictionary learning with multiple clusters 101

5.1 The probabilistic modeling . 101

5.2 Solution approach . 103

5.3 Simulations . 104

6 Multiple-scaled weakly-supervised dictionary learning 108

6.1 The multi-scale model . 110

6.2 Solution approach . 112

TABLE OF CONTENTS (Continued)

Page

6.3 The experimental results . 114

7 Conclusion and Future research 119

7.1 Summary . 119

7.2 The contributions of the work . 120

7.3 List of Publications . 122

7.4 Future research . 123
7.4.1 Preliminary idea . 124
7.4.2 Preliminary results . 126

Bibliography 133

Appendices 150

LIST OF FIGURES

Figure Page

1.1 An example of clustering time-series . 3

1.2 Time-series data examples with various application domain 4

1.3 An illustration of synthesis dictionary learning 5

1.4 Signal motifs in multiple time-series stream data: ECG [64] and Music [30] 7

1.5 An illustration of synthesis dictionary learning 9

1.6 Illustration of measuring distance between two sequences for (a) Euclidean
distance and (b) a non-linear mapping using DTW. 12

1.7 A method overview of di↵erent deep learning approaches for time series
classification (reproduced from [28]) . 14

2.1 A convolutive model for dictionary learning (reproduction of [103]) 24

2.2 Diagram of dictionary-based classification (reproduction of [103]. 35

2.3 Comparison between our approach and CNMF [107] (reproduction of [103]). 39

2.4 Examples of rain denoising on test spectrogram (reproduction of [103]). . 40

2.5 Parameter selection (reproduction of [103]): (a) training phase reconstruc-
tion error vs. L0 norm of activations for PC15 (the first number for each
point represents K and the second number for each point represents �);
(b) validation phase reconstruction error vs. L0 norm of activations for
PC15; (c) learned dictionary with K = 15 and � = 10 for PC15; (d)
learned dictionary with K = 15 and � = 50 for PC15 41

2.6 Learned dictionary words for HJA dataset (reproduction of [103]). 42

2.7 Learned bird dictionary words (reproduction of [103]). 43

3.1 Problem formulation of generative and discriminative recurring pattern
recognition (reproduction of [147]) . 48

3.2 The probabilistic graphical model (reproduction of [147]). 49

3.3 Synthetic data results (reproduction of [147]). 52

LIST OF FIGURES (Continued)

Figure Page

3.4 Detection comparison between generative and discriminative fridge acti-
vation patterns (reproduction of [147]). 54

4.1 An illustration of the setting of weakly supervised analysis dictionary
learning (reproduction of [148]). 62

4.2 The proposed graphical model for WSCADL (reproduction of [148]). . . . 66

4.3 The label portion of the proposed graphical model (a) and its reformula-
tion as a chain (b) (reproduction of [148]). 73

4.4 Graphical illustration of the chain forward and backward message passing
routines (reproduction of [148]). 74

4.5 Graphical model reformulation as a tree 77

4.6 Graphical illustration of the tree forward and backward message passing
routines (reproduction of [148]). 78

4.7 Running time versus Tn, |Yn|, N̄n. (Blue color for chain and red color for
tree algorithm. (a) � : |Yn| = 1, ? : |Yn| = 3, ⇧ : |Yn| = 5. (b)-(c)
� : Tn = 50, ? : Tn = 500, ⇧ : Tn = 5000.) (reproduction of [148]) 84

4.8 Nine Gabor basis used in the experiment (reproduction of [148]). 86

4.9 Gabor basis dataset performance metrics for the WSCADL approach
(solid �) and the GDL-LR approach (dashed ⇧) as a function of SNRdB

in (a), and for the WSCADL approach as a function of N̄n in (b) (repro-
duction of [148]). 90

4.10 Binary patterns dataset setting and results (reproduction of [148]). 92

4.11 Prediction accuracy as a function of the cardinality parameter N̄n on the
AASP dataset (reproduction of [148]). 97

4.12 Classification accuracy (%) for the o�ce live training data with mean and
standard deviation over 5 MC runs with (a) selecting top 1 class and (b)
selecting top 3 classes. Detection ROCs for (c) time instance level and (d)
signal of both experiments (reproduction of [148]). 99

LIST OF FIGURES (Continued)

Figure Page

5.1 The proposed graphical model for MC-WSCADL (reproduction of [146]). 102

5.2 (a). Signal labels: Y1 = {2}, Y2 = {1, 2}, Y3 = {1, 2, 3}; (b). Signal labels:
Y1 = {1, 2, 3}, Y2 = {2}, Y3 = {1, 2, 3} (reproduction of [146]). 105

5.3 (a) FSCDL words; WSCDL words with (b) N̄n = 5; (c) N̄n = 10; (d)
N̄n = 25; and (e) N̄n = 40. prediction accuracy for B = 100 and T = 50
(f) on one cluster dataset; and (g) on two cluster dataset with K = 1 and
K = 2 (reproduction of [146]). 106

6.1 Spectrograms of acoustic sound events for di↵erent sound type. Sound
events vary by the number of occurrences and the duration of each event
from one class to another (reproduction of [149]). 109

6.2 The probabilistic graphical model of MS-WSCADL (reproduction of [149]).111

6.3 On uni-scale dataset: comparison of performance (AUCs) between uni-
scale with various Tw and multi-scale algorithm for Tw = 4, K = [1, 2].
(�—: uni-scale algorithm; ? : multi-scale algorithm; Blue, red,
green, black: class 1,2,3,4) (reproduction of [149]). 115

6.4 On multi-scale dataset: comparison of performance between uni-scale and
multi-scale algorithm on various Tw (reproduction of [149]). 116

7.1 A systematic plot of the weak-supervised learning models: (a) The original
graphical model, (b) The deep learning model 124

7.2 The time-instance labeler models: (a) The original graphical model, (b)
The deep learning model . 125

7.3 The deep learning model . 127

7.4 3 examples of prediction on MNIST data in the weakly-labeled setting
with the linear model and the CNN model. 128

7.5 HJA data prediction on selected classes in the binary scenario. 131

7.6 HJA data prediction in the multi-labeled scenario. 132

LIST OF TABLES

Table Page

2.1 Overview of the notations used in this paper 23

2.2 Number of training and test recordings selected of the HJA data set. . . . 44

2.3 Classification results obtained with the proposed approach where features
are extracted from activation signals and the baseline where features are
directly extracted from spectrograms. 45

3.1 AUC for the generative method [150] and for our discriminative method. . 56

4.1 List of notations . 63

4.2 Runtime values for the chain-based and the tree-based E-step calculation
as a function of Tn for four scenarios. 85

4.3 Gabor basis dataset: Detection AUCs (%) for the WSCADL and the
GDL-LR approaches with optimal tuning parameters 91

4.4 Binary patterns dataset: Detection AUCs (%) for the WSCADL and the
GDL-LR approaches with optimal tuning parameters 93

4.5 Instance level and signal detection AUCs (%) for both experiments across
five MC runs. 96

4.6 Signal evaluation metrics (%) for various methods on HJA dataset. # (")
next to a metric indicates that the performance improves when the metric
is decreased (increased). The results from column MLR to M-NN are
extracted from Table 4 in [94]. 98

6.1 Training time (in s) for various window size in the uni-scale algorithm and
the multi-scale algorithm with Tw = 4, K = [1, 4]. 117

6.2 List 5 class example and the average across all 16 classes of instance level
and signal detection AUCs(%) for both approaches. 118

7.1 Performance results (%) on the MNIST sequenced data for various window
size by using 0/1 signal-labels in the training. 129

LIST OF APPENDICES

Page

A Derivation of complete data likelihood 151

B Derivation of auxiliary function 153

C Derivation of forward message passing on chain 155

D Derivation of backward message passing on chain 157

E Derivation of joint probability on chain 159

F Derivation of forward message passing on tree 161

G Derivation of backward message passing on tree 163

H Detail of computational analysis 166

Chapter 1: Introduction

In recent years, digital signal processing and machine learning techniques have been

widely applied to the analysis of time-series. In the analysis of time-series, classification

is an important and challenging problem. Time series classification is key to many

applications. For example, in species conservation, the presence or absence of endangered

bird species in their habitat can be monitored based the detection of their vocalization

in audio recordings. In bioinformatics, detecting subsequences of a long DNA sequence

(e.g., regulatory motif) can help isolate portions of the DNA, which help to control the

expression of genes.

Machine learning techniques are usually applied to ease the analysis of a large col-

lection of data. The traditional classification approaches may not work because the

attributes are ordered in time. The ordering of the attributes is usually considered as

an important characteristic of the discriminative features. Time-series representation is

fundamental to many of the key tasks in time-series analysis including predicting the

next value, extracting recurring patterns, or classifying a short intervals of the time-

series. In this context, the convolutive learning approaches are particularly suitable to

analyze the time-series data which is believed to be generated in a time-invariant fashion.

Finding such patterns is important for identifying a generative model for the data and in

assisting in classification. In this work, we focus on convolutive models for representing

and modeling time-series.

When the label information is given, the goal is extended to not only minimizing

the reconstruction error but also minimizing the classification error. In most time-series

2

data, labeling the time-series example at a time-instance level is labor-intensive. Labeling

e↵orts can be reduced by assigning a coarse label that indicates the presence and absence

of a particular class in a given interval. This setting is referred to as weak-supervision

learning, in which fairly long time-series containing multiple events are provided with

only the presence or absence of classes within the interval thereby allowing a fairly

inexpensive labeling process. To address the scalability issue associated with intensive

labeling of large amounts of time-series data, we focus on learning under the weak-

supervision setting. The goal in this setting is twofold: (i) recognizing the presence or

absence of a class in a previously unseen interval and (ii) determining and localizing all

occurrences of events from any class within the previously unseen time interval. Our

task is to not only learn how to label long sequences but also to provide the capability

of labeling them at a fine-granularity based on the coarse-granularity labels.

1.1 Unsupervised learning in time series

The amount of electronic time-series data, such as stock prices, ECG/EEG data or au-

dio clip, is growing rapidly. Time-series data, which ranges from commercial, medical to

scientific domains, may contain multiple occurrences of time-invariant patterns. Detect-

ing such patterns in such large data streams or time-series is important for knowledge

discovery, predicting the next value, or classifying them. These tasks contain many in-

teresting challenges within the context of providing computer tools for exploring large

data archives. Based on the level of data preparation, the methodology falls into two

categories: (i) For those well-prepared data (involving data selection, denoising and seg-

mented to a fixed-length vector), traditional unsupervised methods are directly applied;

(ii) For those automatically collected streaming data (not involving data segmentation

3

or annotation), time-invariant approaches are considered (e.g., a moving window repre-

sentation or convolutive modeling).

1.1.1 Time-series as fixed length vectors: distance-based pattern

discovery

Figure 1.1: An example of clustering time-series

To discover the knowledge behind the time-series data, many traditional methods

rely on the data that was pre-processed to have carefully selected fixed length time-

series intervals as feature vectors. Distinct patterns within the fixed-length windows

are identified using clustering methods such as k-means [117], Gaussian mixture model

[47] or hidden Markov model [86]. See Figure 1.1 for an example. A common approach

for identifying such patterns in the data relies on using a similarity measure between

two data vectors. In many applications, the use of Euclidean distance as a dissimilarity

measure may be inappropriate due to various artifacts that cannot be factored out by

the Euclidean metric such as delay, multi-modality, or other distortions. Instead, [11]

4

proposes a dynamic time warping algorithm (DTW) to match a short sequence template

in a large sequence data with a notion of “fuzziness”, which provides a robust similarity

measure between two temporal subsequences.

1.1.2 Time-series as fixed length vectors: transformation-based pat-

tern discovery

A A T C G A

A T C G C A

T C G

Figure 1.2: Time-series data examples with various application domain

Raw time-series data is usually high-dimensional and contains multiple temporal

patterns or motifs. See Figure 1.2 for various examples. Hence, dimension reduction

or data transformation is needed to improve the e�ciency and accuracy of the learning

methods. In the disaggregated end-use energy problem, di↵erent delays and o↵sets are

observed in the voltage transient response associated with the activation of a home

appliance. Bird syllables (recurring vocalizations) may commonly appear in large time-

series audio data with some variation in time duration or frequency range. Hence,

transformation based approaches are proposed such as singular value decomposition

(SVD) [135], discrete Fourier transform (DFT) [97], wavelet transform [19], and piece-

5

wise aggregate approximation (PAA) [53] to robustly match similar time-series. As

with SVD, dictionary learning methods provide a data-driven approach for identifying a

compact basis for representing high-dimensional data vectors. For example, sparse coding

dictionary learning can obtain an over-redundant basis and a sparse representation of

data point over the basis (dictionary). In the following, we review some of the dictionary

learning approaches for discovering local patterns.

1.1.2.1 Synthesis dictionary learning

α1 = [1 1 0 0 …]

...

Dictionary Sparse Codes

α2 = [0 1 1 0 …]

α1 = [0.5 1 0.5 0
…]

Observations

? ?

Figure 1.3: An illustration of synthesis dictionary learning

In synthesis dictionary learning [1, 55, 89], the goal is to simultaneously find a dic-

tionary and corresponding coe�cients to represent a set of n time-series x1,x2, . . . ,xn 2

Rm. A dictionary is a collection of atoms D = [dT

1 , . . . ,dT

K
]T , where dk 2 Rm is the kth

dictionary atom (or word). The ith signal can be approximated by a linear combination

over the dictionary D by

xi ⇡ D↵i =
KX

k=1

dk↵
i

k
, for i = 1, 2, . . . , n,

6

where ↵i = [↵i

1, . . . , ↵
i

K
]T is the coe�cient vector associated with the ith signal. Syn-

thesis dictionary learning is typically formulated as an optimization problem, where the

goal is to find D and sparse coe�cients {↵i}n
i=1 that minimize the reconstruction er-

ror. Several methods have been proposed for the problem. An over-complete synthesis

dictionary learning with sparse coding is introduced in [55]. Various state-of-the-art

approaches have been introduced to solve the dictionary learning problem including K-

SVD [1], matrix factorization [73], Lagrangian dual gradient descent and feature-sign

search [59]. For analyzing audio, music or spectral image data, convolutive dictionary

learning has been proposed [9, 116, 121]. Other dictionary learning based approaches

have been used for searching time-varying patterns of audio signals [4, 70], e.g., to detect

basic acoustic units as phonemes in speech recognition [88].

1.1.2.2 Analysis dictionary learning

In analysis dictionary learning [100, 102], given a signal xi, we are looking for an analysis

dictionary W = [w1,w2, . . . ,wK] 2 Rm⇥K and an estimated noiseless signal x0

i
(xi ⇡ x0

i
)

such that the resulting analyzed signal

WTx0

i = [wT

1 x0

i,w
T

2 x0

i, . . . ,w
T

Kx0

i]
T

is sparse. For a noisy signal model, analysis dictionary learning can be formulated by

minimizing a quadratic error between all xi’s and x
0
i
’s subject to the resulting analyzed

7

signals are sparse.

minimize
w,X0

kX0 � Xk2F

subject to kwx0

ik0  p � l, 81  i  n,

kwjk2 = 1, 81  j  p.

(1.1)

where p is the total number of analysis dictionary bases, l is the co-sparsity (number of

zero elements) of wx, and wj is the jth column vector of W.

1.1.3 Time-series as streaming data: moving window approaches

Signal motifs in ECG
time-series

Music motifs in a
song

Figure 1.4: Signal motifs in multiple time-series stream data: ECG [64] and Music [30]

Due to the development of hardware and software, the amount of time-series data

is growing rapidly in a wide range of fields. These measurements are generated con-

tinuously and in very high fluctuating data rates. Example domains include economic,

medical, music, audio, and acoustics. Segmenting a long series into fixed-length windows

that contain useful information would require domain knowledge and is time-consuming.

Alternatively, automatic discovery of patterns or knowledge behind large size stream-

8

ing data is necessary (see Figure 1.4 for an example). Recently, a framework based

on matrix profiling proposes an e�cient way to extract useful and local patterns in

time-series [37, 46, 143, 145, 158]. Given a collection of data objects, the matrix profile

retrieves the statistics (index and distance) of each object (moving window) to its nearest

neighbor [145]. The sliding window approaches, similar to convolutive modeling, provide

an e�cient way of discovering patterns no matter where it is in the time-series. In the

following, we review several convolutive modeling approaches.

1.1.3.1 Convolutive Non-negative Matrix Factorization (CNMF)

In the analysis of audio recordings of bioacoustics, convolutive non-negative matrix fac-

torization (CNMF) methods are applied for describing the sound-scape and analyzing

the environmental impact of human activity and natural changes [12]. In CNMF, the

goal is to approximate a matrix V 2 RM⇥N with a series of two non-negative matri-

ces Wt 2 RM⇥R and
t!

H 2 RR⇥N in a convolutive manner. The CNMF is a type of

structured non-negative matrix factorization (NMF) model [127], which can be applied

to dictionary learning for speech or audio analysis [87, 88]. Based on a CNMF model,

an observed spectrogram V can be written as:

V ⇡
T�1X

t=0

Wt

t!

H, (1.2)

such that the ik element of V is vik =
P

T�1
t=0

P
R

j=1 wijt(
t!

hjk).

The Kullback-Leibler (KL) divergence is used because this approach requires that the

factorized matrices are both positive. The solution is achieved by repeatedly alternating

9

between updating W and H with sparseness constraint as:

H = H ⌦
WT

t ·
t!

[V
⇤

]

WT
t

· 1 + ˘ · 1
, and, (1.3)

Wt = Wt + �w

⇥V
⇤

·
t!

H
T

� 1 ·
t!

H
T ⇤

, (1.4)

where ⇤ =
P

T�1
t=0 Wt

t!

H,

Despite the utility of CNMF in analyzing time-series signals, a few challenges arise

when applying the CNMF to the bioacoustic setting: (i) CNMF has a high computa-

tional requirement [120] such that it is di�cult to apply to large amounts of bioacoustic

signals [109]; (ii) CNMF is typically used in a single spectrogram setting, where bioa-

coustic signals usually contain a collection of discontinuous recordings; and (iii) CNMF

often assumes that the length of the activation signal is the same as the length of the

spectrogram in the time domain but it is possible that recordings register only part of a

vocalization at the beginning or the end. In this case, a longer activation signal should

allow for representing syllable parts in the beginning and the end of the spectrogram.

1.1.3.2 Convolutive synthesis dictionary learning

0.5

1

*

0.5

1

*+
1 11

11 1

α11(t)
d1 d2

α21(t)

α31(t)

α12(t)

α22(t)

α32(t)

Figure 1.5: An illustration of synthesis dictionary learning

10

Convolutive synthesis dictionary learning is often considered [49, 160] for time invari-

ant signals such as speech and audio. In the convolutive dictionary learning, the ith signal

xi is assumed to be formed by combining the convolution of dictionary words d1, . . . ,dK ,

where dk 2 Rm, with their corresponding sparse activation signals ↵i

1, . . . ,↵
i

K
:

xi ⇡
KX

k=1

dk ⇤ ↵i

k
, for i = 1, 2, . . . , n.

In this approach, because a signal may contain multiple time-shifted copies of the same

dictionary signal, convolutive dictionary learning eliminates the need to use additional

dictionary words to model multiple shifts of the same dictionary word. The joint recovery

of the dictionary and the sparse activation signals can be achieved by minimizing the

reconstruction error subject to sparsity constraints on the activation signals.

1.1.3.3 Convolutive analysis dictionary learning

In subsection 1.1.2.2, analysis dictionary learning is formulated as (1.1). Instead of the

multiplicative operation between the analysis dictionary and the noiseless signals, con-

volutive analysis dictionary learning convolves the analysis dictionary W with estimated

noiseless signals x0

1,x
0

2, . . . ,x
0
n so that the resulting signals w1 ⇤x0

1, . . . ,wK ⇤x0

1, . . . ,w1 ⇤

x0
n, . . . ,wK ⇤ x0

n are sparse [92, 93].

1.2 Supervised learning in time-series

With the extreme increase of temporal data archive, discovering useful information and

classifying time-series become challenging and significantly valuable. Time series classifi-

11

cation (TSC) tasks are applied to many real-world data such as electronic health records,

economic records, human activity data and acoustic scene recordings. Due to significant

di↵erences in application domains, time series analysis in almost every task that requires

expertise and human cognitive process. Therefore, labeling time-series requires excessive

amount of labor and time to accurately understand the time-series, especially in the need

of incorporating di↵erent domain knowledge. The time-series and its classification task

is defined as follows:

According to [17], a univariate time series

x = [x1,x2, . . . ,xT]T

is an ordered set of real values, and the length of x is the number of real values T . An

M-channeled multi-variate time series

X = [x1
,x2

, . . . ,xM]

consists of M di↵erent univariate time series with each xi 2 RT . For an example, a ECG

signal in Figure 1.4 is considered to be a univariate time-series while a spectrogram of

bird audio recording in Figure 1.2 is considered as a multi-variate (or multi-channel)

time series.

A dataset

D = {(X1, Y1), (X2, Y2), . . . , (XN , YN)}

is a collection of pairs (Xi, Yi) where X1 could either be a univariate or multivariate time

series with Yi as its corresponding class label. The goal is to predict its label given a

new time-series X that is di↵erent than the training dataset. In the following, we review

12

di↵erent types of methods in supervised time-series analysis.

1.2.1 Distance-based approaches

(a) Euclidean distance (b) DTW(nolinear alignment)

Figure 1.6: Illustration of measuring distance between two sequences for (a) Euclidean
distance and (b) a non-linear mapping using DTW.

Traditional approaches of the TSC problem directly treat raw time-series as a feature

vector and apply a nearest neighbor classifier [5, 66, 77]. Consider the ordering and

temporal information of the time-series, the most e↵ective and popular approach is k-

nearest neighbor (NN) classifier coupled with DTW [5]. Calculating a distance between

two time-series with an Euclidean distance [66] is inappropriate for time-series data due

to its high-dimensionality and commonly observed phase shifts. Instead, a more robust

and dynamic distance measure DTW algorithm is proposed to increase the performance

of classification accuracy. For time-series with text input data, an edit distance [77] are

often considered as a distance measure between two text-based time-series.

13

1.2.2 Transformation-based approaches

Other approaches use either an ensemble method or a data transformation phase where

time series are transformed into a new feature space. One involves finding shapelets

(motifs) in the data [142] and the other involves deriving features from varying size

intervals of the series, such as bag-of-patterns (BoP) [63]. Similar to BoP, discriminative

dictionary learning approaches [72, 74] identify a discriminative basis and jointly learn a

classifier by treating the sparse codes as feature vectors. Several approaches have been

proposed for dictionary learning in the presences of labels: (i) Learn one dictionary per

class [99, 114, 115, 134, 141]; (ii) Prune large dictionaries [31, 133]; (iii) Jointly learn

dictionary and classifier [3, 50, 74, 154]; (iv) Embed class labels into the learning of sparse

coe�cients [35, 57, 81, 140, 152]; and (v) Learn a histogram of dictionary elements over

signal constituents [24, 34, 52, 60, 61, 91, 115, 137].

All the transform-based time-series classification approaches aim to capture the local-

ized similarity in time, which tends to be e�cient that provides an e↵ective alternative

to the traditional approach. Motivated by shapelets and BoP, COTE (Collective Of

Transformation-based Ensembles) is developed to use an ensemble of 35 classifiers that

does not only ensemble di↵erent classifiers over the same transformation, but also en-

sembles di↵erent classifiers over di↵erent time series representations [6]. [67] extended

COTE with a hierarchical vote system (HIVE-COTE) which leverages a new hierarchi-

cal structure with probabilistic voting, including two new classifiers and two additional

representation transformation domains. HIVE-COTE is currently considered the state-

of-the-art algorithm for time series classification, but requires high computation and

intractable in large data in real applications.

14

1.3 Deep learning approaches

Figure 1.7: A method overview of di↵erent deep learning approaches for time series
classification (reproduced from [28])

Recently, deep networks have shown significant performance improvements over tra-

ditional methods on various machine learning tasks (e.g., in areas of computer vision or

speech recognition). Deep architectures can be trained e�ciently to learn hidden dis-

criminative features from the raw time series in an end-to-end manner. Deep learning

approaches shown in Figure 1.7 can be divided into two main categories: generative and

discriminative models.

For all generative approaches, the goal is to find a good representation of time se-

ries prior to training a classifier. For an example, to learn the wind pattern with a

high-level representation, [42] used the unsupervised stacked denoising auto-encoders

(SDAEs) [10] (pre-trained on a rich farm data) and transferred the model by fine tun-

ing to a new farm data. For an e↵ective time-series representation, a fully CNN-based

model was introduced to reconstruct a multivariate time series with the same dimension

by deconvolution followed by an upsampling technique [79, 131]. To model the latent

15

features in an unsupervised manner, deep belief networks (DBNs) were proposed and

then leveraged to classify univariate and multivariate time series [7, 124]. To capture

the time dependencies in the data, [75, 78, 98] introduced a recurrent neural network

(RNN) auto-encoder to first generate the time series and then using the learned latent

representation to train a classifier (such as SVM or random forest) for the input time

series. Other approaches utilize the echo-state networks (ESNs), where they were first in-

troduced for time series prediction in wireless communication channels [48]. ESNs were

designed to mitigate the challenges of RNNs by eliminating the need to compute the

gradient for the hidden layers which reduces the training time of these neural networks

thus avoiding the vanishing gradient problem. A self-predict modeling was proposed

in [2, 71] to classify time-series, where ESNs were used to reconstruct the time series.

Other ESN-based approaches in [21, 22] defined a kernel over the learned representation

followed by an SVM or an MLP classifier.

The discriminative deep learning model directly learns the mapping (a classifier or a

regressor) between the raw input of a time series and the class variables in a dataset. Sev-

eral deep learning approaches proceeded with hand engineered features using the most

frequently encountered and computer vision inspired feature extraction method by trans-

forming the time series into images such as Gramian fields [128, 129], recurrence plots

[40, 112] and Markov transition fields [130]. For other feature extraction methods, hand-

engineered features were used with some domain knowledge, then fed to a deep learning

discriminative classifier. For an example, in [113], several features (such as the velocity)

were extracted from sensor data placed on a surgeons hand in order to determine the skill

level during surgical training. In human activity recognition tasks such as human motion

detection using mobile and wearable sensor networks [45], deep learning approaches with

several hand-engineered features appear to be e↵ective. Since this type of deep learning

16

approach is domain agnostic, the end-to-end deep learning, which does not include any

domain specific pre-processing steps is desired. The end-to-end deep learning approaches

aim to incorporate the feature learning process while fine-tuning the discriminative clas-

sifier. In [39, 82], a deep multilayer perceptron (MLP) was designed to learn from scratch

a discriminative time series classifier. But the temporal information is not preserved and

the features learned are not time-invariant. Since convolutional neural network (CNN)

preserves spatial invariance, several variants of CNN models [58, 123, 132, 155] have been

considered for time series classification and have shown competitive performance on a

subset of the UCR [23] and UEA [5] archive relative to their non-CNN based alterna-

tives. Among such variants of CNN are Residual Networks (ResNets) [41], which add

linear shortcut connections for the convolutional layers potentially enhancing the models

accuracy. Apart from the UCR/UEA archive, deep learning has reached state-of-the-

art performance in di↵erent domains such as time-series forecasting in meteorology and

oceanography [159], spatio-temporal series forecasting problems [110], human activity

recognition from wearable sensors [85], electronic health records [20], surgical skills iden-

tification [29], prognostics and health management (PHM) [68], and physiological signals

classification [27]. Other types of hybrid architectures in which CNNs were combined

with gated recurrent units (GRU) [65] or the attention mechanism [106] also showed

promising results on the UCR/UEA archive datasets.

The aforementioned deep learning approaches focus on classifying a fixed size time-

series to a single label. However, in many scenarios, time series data may contain events

that are associated with di↵erent labels at di↵erent time instance within the time series.

Hence it is important to consider a classification scheme that can provide a label at the

time-instance level even when the training data only indicates presence or absence at the

entire interval level.

17

1.4 Weakly-supervised learning in time-series

In many application areas of time-series analysis, such as audio or acoustic scene analysis,

a time series is labeled by a multi-label indicating the presence or absence of each class

in the time series. For example, for in-situ bio-acoustic monitoring, audio recordings

obtained by unattended microphones may contain vocalizations from multiple species

including simultaneous vocalizations as well as noise artifacts such as wind, rain, streams,

and nearby vehicles.

Since the audio signals are multi-labeled at the interval level, the precise location

and class of each pattern contained in the signal are unknown. Manually isolating an

individual pattern and assigning the appropriate label as a training example in the

traditional supervised learning setting is labor intensive. Alternatively, in the weak-

supervision setting, each interval containing multiple time-instances, an interval-level

label set describing the presence or absence of classes is provided while the individ-

ual instance-level label remains unavailable. For weakly supervised dictionary learning,

several max margin based, non-convolutive, synthesis dictionary learning approaches are

proposed [83, 125, 126]. Other approaches propose to learn a discriminative synthesis dic-

tionary by fully exploiting visual attribute correlations rather than label priors [36, 136].

To the best of our knowledge, the problem of weakly-supervised convolutive analysis

dictionary learning has not been studied.

To tackle a dictionary learning under the weak-supervision, especially focusing on

time-series data, we use a convolutive analysis dictionary learning approach. The advan-

tage of using analysis dictionary learning model over the synthesis dictionary learning is:

(i) Analysis dictionary learning and transform learning o↵er an alternative to dictionary

learning [100, 102]. (ii) It produces a sparsified outcome after applying the analysis dic-

18

tionary to the original data such that it supports for localizing the target patterns in the

data. (iii) it can be applied directly at the test stage and does not require further opti-

mization, while the synthesis dictionary approach may require recovering the activations

(coe�cients) during the test stage for the classification thereby increasing the compu-

tational load during testing. Both synthesis and analysis dictionary learning are used

for solving problems such as reconstruction, denoising, and sparse coding. Sometimes,

the analysis approach shows a significant advantage over synthesis and other denoising

approach in terms of signal recovery for random, piecewise-constant and natural signal

data as stated in [102]. However, without an additional supervision component, such

methods have been reported to perform sub-optimally in classification tasks [32]. This

is due to the fact that both approaches aim at reconstruction rather than classification.

Nevertheless, both approaches can be applied to classification by modifying the objec-

tive to include a label fit term that renders the learned dictionary as discriminative as

possible.

1.5 Research challenges

The general goal of this research work is to build an automatic system that can e�ciently

analyze large time-series data. To achieve this research goal, we consider several sub-

tasks. One sub-task involves extracting distinct patterns from time-series. This sub-

task is often considered as an unsupervised task, in which the data is generated in

the generative setting. In the generative setting, the data examples are observed

as X = {x1, x2, . . . , xN}, where each xn is a time-series signal such as a waveform or a

time-frequency image. The goal is to learn distinct signal patterns/motifs or vocalization

syllables (dictionary atoms) to represent and reconstruct the original data. Finding

19

distinct patterns is an important step for understanding the data structure, generating

data examples, and for classification.

In real-world applications, e�cient labeling and prediction of time-series labels given

time-series examples is becoming of great importance [28]. Hence, another sub-task

involves developing a model that can detect and localize the patterns of interest from

a particular class under the weak supervision setting. In time-series analysis, multiple

occurrences of events may be observed in a time-interval. Labeling each event requires

extensive e↵orts. Modeling a system that can e�ciently and accurately localize patterns

and predict their labels is needed but non-trivial. This sub-task falls under the category

of the discriminative setting, where the data X and the associated label sets Y =

{Y1, Y2, . . . , YN} are observed and the problem is not only to predict the coarse class

labels but also to localize the exact time index for a particular pattern of interest.

1.6 Objectives

The aim is to provide an inference framework for the problem of learning a convolutive

model for time-series data under varying degrees of supervision. To investigate the

convolutive modeling of time-series data, we focus on the following tasks:

A. For the generative learning setting:

(i) Develop a robust convolutive model for finding dictionary in a collection of

discontinuous time-series data.

(ii) Develop e�cient algorithms that solve a large-scale optimization problem in the

convolutive model.

(iii) Extend the model to fuse the weak-supervised label fit into the generative ap-

20

proach objective.

B. For the discriminative learning setting:

(i). Develop a probabilistic model for weakly-supervised learning.

(ii). Develop e�cient algorithms that solve maximum likelihood estimation of weakly-

supervised learning model.

(iii). Extend the model to allow multiple clusters per class.

(iv). Extend the model to allow basis/atoms to have di↵erent scales in an e�cient

manner.

C. Extend the model to include deep feature learning into the weak-supervision setting.

1.7 Structure of the thesis

The rest of this work is organized as follows. In Chapter 2, we present an e�cient

generative convolutive dictionary learning approach for time-series analysis. In

Chapter 3, we focus on discriminative recurring signal detection and localization in the

case that examples contain a single event from only one class. In Chapter 4, we develop

a novel weakly-supervised dictionary learning approach that can address the case

in which time series may contain multiple occurrences of events from multiple classes.

An extension of our approach to multiple clusters per class is presented in Chapter 5. A

multiple-scale dictionary learning model is developed and analyzed in Chapter 6. Finally,

we present a summary of the work and some preliminary results on an extension of our

approach to deep feature learning for weakly-supervised time series analysis in Chapter 7.

A list of publications is included in Chapter 7 and Section 7.3.

21

Chapter 2: Generative dictionary learning for time-series 1

Synthesis dictionary learning and analysis dictionary learning are the two approaches to

target at minimizing the reconstruction error and sparse representation of the data. In

time series, especially bioacoustics audio analysis, the representation of a set of spec-

trograms using a convolutive mixtures of sparse activations and dictionary words is

particularly important. Among the reviewed methods, convolutive non-negative matrix

factorization (CNMF) [127] is particularly used as a dictionary learning method. Despite

the utility of CNMF in analyzing time-series signals, a few challenges arise when applied

to the bioacoustic setting: (i) high computational requirement of CNMF [120] makes it

di�cult to be applied to large amounts of bioacoustic signals [109]; (ii) CNMF is typ-

ically used in a single spectrogram setting, where bioacoustic signals usually contain a

collection of discontinuous recordings; and (iii) it is often assumed that the length of the

activation signal is the same as the length of the spectrogram in the time domain but

it is possible that recordings register only part of a vocalization at the beginning or the

end. In this case, a longer activation signal should allow for representing syllable parts

in the beginning and the end of the spectrogram. Therefore, we adapt CNMF for a col-

lection of potentially discontinuous spectrograms in which vocalizations may occur prior

to the beginning of the recording such that only part of them is observed. The proposed

1This chapter is a joint work with J. F. Ruiz-Muñoz. Two publications were associated with this work:
Ruiz-Muñoz, José Francisco, Zeyu You, Raviv Raich, and Xiaoli Z. Fern. “Dictionary extraction from
a collection of spectrograms for bioacoustics monitoring.” In 2015 IEEE 25th International Workshop
on Machine Learning for Signal Processing (MLSP), pp. 1-6. IEEE, 2015. and Ruiz-Muñoz, José
Francisco, Zeyu You, Raviv Raich, and Xiaoli Z. Fern. “Dictionary learning for bioacoustics monitoring
with applications to species classification.” Journal of Signal Processing Systems 90, no. 2 (2018): 233-
247. For both of the publications, J. F. Ruiz-Muñoz was the first author.

22

modification is designed to better suit the convolutive dictionary learning approach to

bioacoustic audio recordings which are obtained from multiple sources. To illustrate the

merit in this approach, we compare our approach against a standard CNMF approach.

To address challenges with computational complexity, we propose a random projected

dictionary learning approach. We derive a set of iterations with a choice of step-size that

guarantees monotonically decreasing objective. Furthermore, we present an application

of the proposed approach for (i) denoising spectrograms, which are corrupted by rain

noise and (ii) unsupervised bird syllable discovery, and (iii) supervised classification of

bird song recordings.

Since we consider a random projection approach to both spectrograms and dictionary

words to reduce the computational complexity, the non-negativity assumption on the

dictionary words becomes invalid. Another limitation of the CNMF model is that the

activation signal may occur before the time of the first observation. This requires the

length of the activations to be greater than the length of the observation signals. To

address these issues, we present a convolutive dictionary learning model for bioacoustics.

2.1 Problem statement

We begin by introducing the notations and symbols used in this paper in Table 2.1, and

proceed with a formulation of the proposed convolutive dictionary learning model. We

denote each spectrogram and each dictionary word as a function of frequency and time by

Yi(f, t) and Dk(f, t) respectively, where Yi 2 RF⇥T for i = 1, 2, . . . , N and Dk 2 RF⇥W .

We denote each activation signal as a function of time by ai

k
(t) where ai

k
2 RL⇥1. We

use (·) in one of the coordinates of a matrix to denote the vector formed by stacking

all the elements along the marked coordinate, i.e., Dk(f, ·) = [Dk(f, 1),Dk(f, 2), . . . ,

23

Notation Explanation
N number of spectrograms of the dataset
F number of frequency band
r number of reduced frequency band
T number of frames in time per spectrogram
K number of dictionary words
W length of each word
L length of an activation signal (L = T +W �

1)
Y {Yi 2 RF⇥T |1  i  N}, set of N spec-

trograms
YQ {YQ(i) 2 Rr⇥T |1  i  N}, set of N trans-

formed spectrograms
D {Dk 2 RF⇥W |1  k  K}, set of K dictio-

nary words

DQ {DQ

k
2 Rr⇥W |1  k  K}, set of K trans-

formed dictionary words
A {ai

k
2 RL⇥1|1  k  K, 1  i  N}, set of

N ⇥ K activation signals

Table 2.1: Overview of the notations used in this paper

Dk(f, W)]T for k = 1, 2, . . . , K, and f = 1, 2, . . . , F .

We assume that spectrograms are composed of a sequences of successive spectro-

temporal units called dictionary words that are activated at certain time instants. The

convolutive dictionary learning approach is targeting at jointly finding a set of K dic-

tionary words D = {D1(f, t),D2(f, t), . . . ,DK(f, t)} and a set of K sparse activation

signals A = {a1
1(t), . . . ,a

1
K

(t),a2
1(t), . . . ,a

2
K

(t), aN

1 (t), . . . ,aN

K
(t)} such that Yi(f, t) ⇡

P
K

k=1 ai

k
(t) ⇤ Dk(f, t) for 1  f  F, 1  t  T, 1  i  N (e.g., see Fig. 2.1). The goal

is to minimize the distance between the original and the reconstructed spectrograms.

Learning a convolutive dictionary model can be formulated as the following optimiza-

24

tion problem:

minimize
D,A

NX

i=1

⇥ FX

f=1

TX

t=1

(Yi(t, f) �
KX

k=1

ai

k
(t) ⇤ Dk(t, f))2

+�

KX

k=1

LX

t=1

|ai

k
(t)|

⇤

subject to
FX

f=1

WX

t=1

(Dk(f, t))2  1, 8 1  k  K.

(2.1)

Under this convolutive model, since each frequency band or each spectrogram can be

Dictionary Words�

Activations�

Spectrograms�

��

x�

d1(f,t)� d2(f,t)� d3(f,t)�

a1
1(t)� a2

1(t)� a3
1(t)�

a1
2(t)� a2

2(t)� a3
2(t)�

a1
3(t)� a2

3(t)� a3
3(t)�

Y1(f, t)�

Y2(f, t)�

Y3(f, t)�

Figure 2.1: A convolutive model for dictionary learning (reproduction of [103])

applied with 1-D convolution separately, the objective in (2.1) can be reformulated us-

ing Toeplitz matrices. Given a vector x = [x(1), x(2), · · · , x(m)], the Toeplitz matrix

T(x, c, p, w) 2 R(p�c+1)⇥w is:

T =

2

66666664

x(c) x(c � 1) · · · x(c � w + 1)

x(c + 1) x(c) · · · x(c � w + 2)
... · · · · · ·

...

x(p) x(p � 1) · · · x(p � w + 1)

3

77777775

.

25

Using a coordinate descent approach, the minimization in (2.1) can be facilitated by

alternating between the dictionary learning problem

(DL) minimize
d1,d2,...,dF

FX

f=1

kyf � TAdfk2

subject to kDkk2  1, 81  k  K,

(2.2)

where yf = [Y1(f, ·),Y2(f, ·), . . . , YN (f, ·)]T 2 RNT⇥1 for f = 1, 2, . . . , F , df =

[D1(f, ·), D2(f, ·), . . . ,DK(f, ·)]T 2 RKW⇥1 for f = 1, 2, . . . , F and TA 2 RNT⇥KW

given by

TA =

2

66666664

T(a1

1,W,L,W) · · · T(a1

K ,W,L,W)

T(a2

1,W,L,W) · · · T(a2

K ,W,L,W)

... · · ·
...

T(aN
1 ,W,L,W) · · · T(aN

K ,W,L,W)

3

77777775

and activation extraction problem

(AE) minimize
a1,a2,...,aN

NX

i=1

(kyi � TDaik2 + �kaik1), (2.3)

where yi = [Yi(1, ·)T ,Yi(2, ·)T , . . . ,Yi(F, ·)T]T 2 RFT⇥1 for i = 1, 2, . . . , N , ai =

[ai

1
T
,ai

2
T
, . . . ,ai

K

T
]T 2 RKL⇥1 for i = 1, 2, . . . , N , and TD 2 RFT⇥KL given by

TD =

2

66666664

T(D1(1, ·),W,L, L) · · · T(DK(1, ·),W,L, L)

T(D1(2, ·),W,L, L) · · · T(DK(2, ·),W,L, L)

... · · ·
...

T(D1(F, ·),W,L, L) · · · T(DK(F, ·),W,L, L)

3

77777775

.

Constructing TD and TA Toeplitz matrices is memory ine�cient and solving the above

alternating quadratic programming problem with matrix inversion is time consuming. To

reduce the computational complexity and the memory issue of the convolutive model, we

26

propose a random projected convolutive model with modified gradient descent algorithm

that utilizes the convolution operator.

2.2 Solution approach for dictionary learning and activation extrac-

tion

Consider the (DL) problem in (2.2), least square solution with normalization or projected

Newton descent method are both simple to derive. Consider the L1 regularized (AE)

problem in (2.3), Least-angle-regression (LARS) algorithm [26] or feature-sign sparse

coding algorithm are also applicable [59]. However, these algorithms require a large

matrix inversion to obtain an e�cient and exact solution. In our problem, comput-

ing TT

D
TD and TT

A
TA requires a computational complexity of the order O(FKT log T)

and O(NKT log T) respectively and computing their inverse requires O((KL)3) and

O((KW)3) respectively, which limits the practical applicability of the approach. Hence,

we propose an optimization transfer algorithm to minimize (2.1). In optimization trans-

fer, a surrogate function g(x, x
0) is considered as a replacement to the original objective

f(x) such that (i) f(x)  g(x, x
0), 8x, x

0 and (ii) f(x0) = g(x0
, x

0), 8x
0. The update

iteration x
(j+1) = arg minx g(x, x

0) guarantees f(x(j+1))  f(x(j)). The update rules are

derived by minimizing a surrogate such that the computation is reduced by utilizing the

fast Fourier transform (FFT) implementation of the discrete Fourier transform (DFT)

and its inverse.

27

2.2.1 Random projected dictionary learning

The convolutive model provides a natural representation for spectrograms of bird vo-

calizations. To reduce the computational complexity, we propose to make use of the

fact that bird vocalizations are concentrated in a small range of frequencies. Conse-

quently, spectrograms of bird vocalization tend to have sparse columns. We consider a

compressive sampling approach to facilitated the reduction in computational complexity.

To reduce the computational complexity, we apply the same transformation to both

the spectrogram side and dictionary word side. In such way, the computational com-

plexity of computing both dictionary words and activations is decreased by reducing the

number of unknowns. The new formulation of the dictionary learning is

minimize
DQ,A

NX

i=1

(
rX

c=1

TX

t=1

(YQ(i)(c, t) �
KX

k=1

ai

k
(t) ⇤ DQ

k
(c, t))2

+�

KX

k=1

LX

t=1

|ai

k
(t)|)

subject to
rX

c=1

WX

t=1

DQ

k
(c, t)2  1, 8 1  k  K

(2.4)

with a transformation matrix Q = [Q(1),Q(2), . . . ,Q(F)] 2 Rr⇥F , where Q(f) =

[q1(f), q2(f), . . . , qr(f)]T 2 Rr such that r < F . Note that YQ(i) = QYi and DQ

k
= QDk.

Many dimension reduction techniques can be considered when generating the trans-

formation matrix Q, e.g., principal component coe�cients (PCC) and Mel-frequency

cepstral coe�cients (MFCCs). But the problem of signal or spectrogram distortion and

the di�culty of recovering the original signal or spectrogram may arise. For example,

if the intensities at several frequency bins are compressed into a single coe�cient using

MFCC, it is di�cult to recover the their value from the single coe�cient. To prevent

28

a potential distortion problem, we apply a compressive transformation with a random

matrix [122]. We rely on the sparsity of the signal and the compressive approach to

improve recovery. The recovery of the spectrograms or dictionary words can be imple-

mented using a linear programming approach [8, 101].

2.2.2 Dictionary learning

Since we consider an optimization transfer approach (i.e., majorization-minimization

[44]) to facilitate an iterative minimization of the objective in (2.4), our goal is to identify

an e�cient surrogate for our DL objective. The following inequality

1

2
kyf � TAdfk2 =

1

2
kTA(df � df

0
) � (yf � TAdf

0
)k2


�f

2
kdf � df

0k2 � T
T

A (yf � TAdf
0
)df + const.

=
�f

2
kdf � (df

0
+

1

�f
T
T

A (yf � TAdf
0
))k2 + const., (2.5)

provides a surrogate to
P

F

f=1
1
2ky

f � TAdfk2. To satisfy the inequality, we choose

�d = maxf �f � maxf kTA(df � df
0
)k2/kdf � df

0k2. Replacing the objective using the

surrogate in (2.5) and minimizing with respect to the dictionary yields

minimize
d1,d2,...,dF

FX

f=1

�d

2
kdf � gfk2

subject to kDkk2  1, 81  k  K,

(2.6)

where gf = df
0
+ 1

�d
VD and VD = T

T

A
(yf �TAdf

0
). We denote df = [df

1

T

, . . . ,df

K

T

]T and

gf = [gf

1

T

, . . . ,gf

K

T

]T , where gf

k
= df

0

k
+ 1

�d
V

k

D
and V

k

D
= T

k

A

T
(yf�T

k

A
df

0

k
). To solve (2.6),

we form the Lagrangian L(D,fi) =
P

F

f=1

P
K

k=1
�d
2 kdf

k
�gf

k
k2+

P
K

k=1 �k(
P

F

f=1 kdf

k
k2�1).

29

Minimizing the Lagrangian with respect to df

k
results in df

k
= �d

�d+2�k
gf

k
. Substituting

df

k
back into the Lagrangian yields the dual function

P
K

k=1

⇥
�k(

�d
�d+2�k

P
F

f=1 kgf

k
k2�1)

⇤
.

Maximizing the dual objective with respect to �k subject to �k � 0 yields

8
>>><

>>>:

�
⇤

k
= 0,

P
F

f=1 kgf

k
k2  1;

�d
�d+2�⇤

k
= 1qPF

f=1
kg

f
kk

2

, Otherwise.

To obtain the optimal df

k
we replacing �k = �

⇤

k
back into df

k
= �d

�d+2�k
gf

k
and obtain

df

k
=

8
>>><

>>>:

gf

k

P
F

f=1 kgf

k
k2  1;

g
f
kqPF

f=1
kg

f
kk

2

Otherwise.
(2.7)

Finally, replacing gf

k
= df

0

k
+ 1

�d
V

k

D
back into (2.7) yields

df(j+1)
k

=

8
>>><

>>>:

df(j)
k

+ 1
�d

vk

D
,

P
f
kdf(j)

k
+ 1

�d
vk

D
k2  1;

d
f(j)
k + 1

�d
v
k
DrP

f kd
f(j)
k + 1

�d
v
k
Dk2

, otherwise,
(2.8)

where vk

D
= Tk

A

T
(yf�Tk

A
D(j)

k
(f, ·)) and Tk

A
= [T(a1

k
, W, L, W)T , . . . ,T(aN

k
, W, L, W)T]T .

Step-size selection for the DL update: To determine the step size �d, we consider

two cases. When the updated dictionary words satisfies the constraint that
P

F

f=1 kgf

k
k2 

1, the optimal step-size �
⇤

d
= kTAVDk

2

kVDk2
. When the constraints are not satisfied, the op-

timal step-size has no closed-form solution. Setting �d = maxv
kTAvk

2

kvk2
= �max(TT

A
TA)

ensures that kTAvk2  �dkvk2 for any v. This conservative approach results in a small

step size 1/�d, which leads to a slow convergence rate. To improve this, we consider the

30

following tighter bound on �d. We rely on maximizing first individual for each f and

then take the maximum over all fs.

From (2.8), we have df � df
0

= c(�d)(df
0
+ 1

�d
vD) � df

0
= ↵1df

0
+ ↵2vD. Since

df � df
0 2 span{df

0
,vD}, we can further restrict �d without violating the bound on �d.

Using Gram–Schmidt orthogonalization, we obtain the orthogonal basis for [vd,df
0
] as

u1 = vd/kvdk and u2 = d̃f
0
/kd̃f

0k, where d̃f
0

= df
0 � (df

0
Tu1)u1. For every value

of (↵1, ↵2) in the representation of df � df
0
= ↵1df

0
+ ↵2vD there exists a (�1, �2) in

the equivalent representation of df � df
0

= �1u1 + �2u2. Hence, we can find �f by

maximizing the following with respect to (�1, �2):

kTA(df � df
0
)k2

kdf � df 0k2 =
kTA[u1,u2][�1, �2]T k2

k[�1, �2]T k2 .

Consequently, we can bound kTA(df
�d

f 0)k2

kdf�df 0k2
by

�f = �max([u1,u2]
TTT

ATA[u1,u2]).

Note that although TT

A
TA is independent of frequency f, it is fairly large and its as-

sociated eigen-decomposition may be computationally intensive. Instead, we replace it

with the eigen-decomposition of F 2 ⇥ 2 f -dependent matrices [u1,u2]TTT

A
TA[u1,u2].

To ensure that the bound holds for every f , we select the step size �
⇤

d
= maxf �f .

2.2.3 Activation Extraction

Similarly to DL, we consider an optimization transfer approach to facilitate an iterative

approach to the minimization of the objective in (2.4) with respect to the activations.

31

Similar bounding technique yields

1

2
kyi � TDaik2  �a

2
kai � (ai

0
+

1

�a
T
T

D(ai � TDai
0
))k2 + const.,

where �a � kTD(ai
�a

i0)k2

kai�ai0k2
. Consequently, the surrogate problem of (AE) is defined as:

minimize
a1,a2,...,aN

NX

i=1

�a

2
(kai � hik2 + �kaik1), (2.9)

where hi = ai
0
+ 1

�a
VA = [hi

1(1), . . . , hi

1(L), hi

K
(1), . . . , hi

K
(L)]T and VA = T

T

D
(yi�TDai

0
)).

Note that the objective in (2.9) is separable:

NX

i=1

�a

2
(kai � hik2 + �kaik1) =

�a

2

NX

i=1

KX

k=1

LX

t=1

(ai
k
(t) � h

i

k
(t))2 + �|ai

k
(t)|).

Consequently, the solution to (2.9) can be obtained by solving element-wise for every

a
i

k
(t). The optimal solution to each element a

i

k
(t)⇤ is obtained by a thresholding function

as a
i

k
(t)⇤ = S �

�a
(hi

k
(t)) where S �

�a
(hi

k
(t)) is a soft-thresholding function defined as

S �
�a

(hi

k
(t)) =

8
>>>>>><

>>>>>>:

h
i

k
(t) + �

�a
, h

i

k
(t) < � �

�a
;

h
i

k
(t) � �

�a
, h

i

k
(t) >

�

�a
;

0, Otherwise.

32

The resulting update rule for extracting the activation signal ai(j)
k

(t) at iteration j follows

the iterative soft-thresholding approach as

ai(j+1)
k

(t) =

8
>>>>>><

>>>>>>:

ai(j)
k

(t) + 1
�a

(vk

A
(t) � �), ai(j)

k
(t) + 1

�a
(vk

A
(t) � �) > 0

ai(j)
k

(t) + 1
�a

(vk

A
(t) + �), ai(j)

k
(t) + 1

�a
(vk

A
(t) + �) < 0

0, otherwise,

(2.10)

where vk

A
= (Tk

D
)T (yi�TDai(j)) and Tk

D
= [T(Dk(1, ·), W, L, L)T , . . . , T(Dk(F, ·), W, L, L)T]T .

Step-size selection for the AE update: Since the optimal step-size for activation

updates must satisfy

�a � kTD(ai � ai
0
)k2/kai � ai

0k2,

we can bound �a by �max(TT

D
TD), which is the largest eigenvalue of the matrix TT

D
TD.

Computing the largest eigenvalue of a KL ⇥ KL matrix is costly. Instead, we apply the

DFT operator and further bound the maximum eigenvalue of TT

D
TD. Using Parseval

Theorem and Cauchy-Schwartz inequality, we derive the following bound

kTD(ai � ai
0
)k2

kai � ai0k2 =
FX

f=1

k
P

K

k=1 Dk(f, ·) ⇤ (ai

k
(·) � ai

0
k
(·))k2

P
K

k=1 kai

k
� ai0

k
k2


FX

f=1

1
2⇡

R
⇡

�⇡
|
P

K

k=1 D̂k(f, !)(âi

k
(!) � âi

0
k
(!))|2d!

P
K

k=1
1
2⇡

R
⇡

�⇡
|âi

k
(!) � âi0

k
(!)|2d!


FX

f=1

R
⇡

�⇡

P
K

k=1 |D̂k(f, !)|2
P

k
|âi

k
(!) � âi

0
k
(!)|2d!

R
⇡

�⇡

P
K

k=1 |âi

k
(!) � âi0

k
(!)|2d!


FX

f=1

max!
P

K

k=1 |D̂k(f, !)|2
R
⇡

�⇡

P
k
|âi

k
(!) � âi

0
k
(!)|2d!

R
⇡

�⇡

P
K

k=1 |âi

k
(!) � âi0

k
(!)|2d!


FX

f=1

max
!

KX

k=1

|D̂k(f, !)|2.

33

Hence, kTD(ai
�a

i0)k2

kai�ai0k2
can be upper bounded by �

⇤
a =

P
F

f=1 max!
P

K

k=1 |D̂k(f, !)|2, where

D̂k(f, !) is the !th coe�cient in the frequency domain on the Discrete Fourier Transform

of Dk(f, ·) at frequency band f for dictionary word k.

2.2.4 Solution approach for random projection model

For the random projection approach, we simply replace Y with YQ and D with DQ. We

propose an e�cient algorithm for practical dictionary extraction. The algorithm consists

of three main parts: (i) Transforming the original input spectrograms using a random

projection matrix, (ii) Alternatively solving the (DL) and (AE) until a convergence

criterion is met, and (iii) Recovering the uncompressed domain dictionary words by

solving the (DL) problem with the extracted activations and the original data Y.

2.2.5 Computational complexity

Since the convolution operator with length L can be computed more e�ciently by using

FFT and inverse fast Fourier transform (IFFT), the computational complexity for each

convolution block with size L is O(L log L). For the iterative procedure in (2.8), calcu-

lating TAdf , VD and �
⇤

d
all require O(NKL log L), therefore the overall computational

complexity for (DL) is O(FNKL log L). Updating the activations produces the same

computational complexity as O(NFKL log L). The total computational complexity for

the algorithm without random projection is O(FNKL log L). With random projection,

the computational complexity is proportional to the original computation complexity of

O(FNKL log L). If the reduced frequency band r is 20% of the original frequency band

F , the running time will be five times faster than the uncompressed dictionary learning

34

algorithm, which makes the convolutive dictionary learning method more e�cient and

practical.

2.3 Extension to classification framework

Dictionary learning is not limited to spectrogram reconstruction or denoising. It can

be considered as a preprocessing step for classification [33]. We present a dictionary-

based classification step that aims to use the learned sparse representation for classifying

bioacoustic recordings. The proposed scheme is inspired by the framework used in music

analysis [144]. In Fig. 2.2, we present the classification framework in two parts: i)

training and ii) test. In the first part, the dictionary words and activation signals are

estimated from the training set, a set of features is extracted from the activations signals

which is used for training an SVM classifier. In the second part, the activations signals

corresponding to the test set are estimated using the dictionary previously learned. Then

features are extracted based on the activations. Finally, the features are provided as an

input tor the SVM classifier. The supervised dictionary learning adaptation, feature

extraction and SVM for training and classification are explained below.

2.3.1 Supervised dictionary learning

For classification, we consider the case in which each recording may contain dictionary

words from multiple classes. In our application, vocalizations in the same recording may

come from multiple bird species. This classification framework has been considered for

species recognition of in-situ recordings [15]. This setting is often referred to as the

multiple label setting. In the multiple label setting, recording i is associated with a

35

Two-dimensional
representation

Two-dimensional
representation

Training
recordings

Test
recordings

Supervised
Dictionary
Learning

Activation
estimation

Activation
estimation

Feature
extraction

Feature
extraction

SVM
training

SVM
classification

Model

Training

Figure 2.2: Diagram of dictionary-based classification (reproduction of [103].

label vector [hi1, hi2, . . . , hiM]T in which hij 2 {0, 1}. The j entry of the label vector

is binary and indicates the presence (by 1) or the absence (by 0) of the j species in

the ith recording. The label information can therefore be summarize using the matrix

H 2 RN⇥M where Hij = hij . To adopt the dictionary learning approach to this setting,

we assume that the dictionary consists of M sub-dictionaries (one for each class). The jth

sub-dictionary consists of Kj words and the total number of dictionary words is K such

that
P

M

j=1 Kj = K. Moreover, each dictionary word is a�liated with one class only. We

use the mapping S(·) : [1, 2, . . . , K] ! [1, 2, . . . , M] to indicate this a�liation. Hence the

set of all dictionary words associated with class j is Sj = {k| k 2 [1, 2, . . . , K], S(k) = j}

and its cardinality is Kj = |Sj |. Moreover, we assume that dictionary words of a class can

only be used to construct a given spectrogram if that class is present in the spectrogram.

Alternatively, if the class is absent from spectrogram i, the activations associate with its

dictionary words a
i

k
(t) = 0 for t = 1, 2, . . . , T . Consequently, we extend our formulation

36

to

minimize
D,A

NX

i=1

⇥ FX

f=1

TX

t=1

(Yi(t, f) �
KX

k=1

ai

k
(t) ⇤ Dk(t, f))2 + �

KX

k=1

LX

t=1

|ai

k
(t)|

⇤

subject to
FX

f=1

WX

t=1

(Dk(f, t))2  1, 8 1  k  K.

and a
i

k
(t) = 0 for t = 1, 2, . . . , T if hij = 0, k 2 Sj , j 2 [1, . . . , M]

(2.11)

2.3.2 Feature extraction

We consider using a summarization of the activations as a feature vector that will provide

information about the presence or absence of a given class in a recording. To this end,

we map the set of activations of the i-th spectrogram {ai

k
= [ai

k1, . . . , a
i

kL
] 2 RL ⇥ 1|1 

k  K} to a vector where its dimension is the number of estimated features. Therefore,

we compute a vector gi = [gi1 . . . giK] where

gik =

LP
t=1

|ai
kt

|

KP
k=1

LP
t=1

|ai
kt

|
.

In the summarization process, for each activation, the entire activation time series is first

replaced with its l1 norm. Then, the l1 norms are scaled by the sum of l1 norms to make

gi· sum to one. We use the set of feature extracted from activation signals as input of a

support vector machine (SVM) classifier.

37

2.3.3 SVM classifier

For training the SVM classifier, we use two types of kernels:

• Histogram intersection kernel (HIK): which is computed as follows

KHI(gi,gj) =
KX

k=1

min(gik, gjk).

Notice that the range of this kernel is [0, 1] due to the applied normalization

(
KP
k=1

gik = 1).

• Exponential kernel (KEP):

KEP (gi,gj) = e
�

||gi�gj ||
p
p

�

where the parameter P is usually 1 or 2, and � requires being tuned.

2.4 Results and Analysis

In this section, we empirically evaluate the proposed random projected dictionary learn-

ing approach on both synthetic and real data. First, we compare how the boundary e↵ect

is addressed by our approach and CNMF. Additionally, we evaluate the proposed ap-

proach for the problems of denoising, dictionary discovery and classification of birdsong

recordings.

38

2.4.1 Analysis on synthetic data

In this case, we use three spectrograms synthetically generated with three dictionary

words and their corresponding sparse activation signals. The dimensions of each spec-

trogram are fixed to F = 50 ⇥ T = 500, and the dimensions of each dictionary word are

F = 50 ⇥ W = 50.

The learned dictionary words for these three spectrograms and activations using our

approach and CNMF [107] are shown in Fig. 2.3. The number of iterations is 10, 000

in both cases. We observe the proposed approach accurately recovers the dictionary

words (see Fig. 2.3(e)) and the spectrograms (see Fig. 2.3(c)) despite the boundary

e↵ect in the first spectrogram in Fig. 2.3(b). However, CNMF learns each dictionary

word as a mixture of the original dictionary words (see Fig. 2.3(g)) including the part of

the dictionary word appearing in the beginning of the first spectrogram, and it fails to

recover the spectrograms(see Fig. 2.3(d)). As it can be seen, our model is more robust

to boundary e↵ects than CNMF.

2.4.2 Analysis on real-world data

In order to apply our random projected convolutive dictionary learning approach for

birdsong analysis tasks, we use two real-world data sets:

• MLSP 20132 dataset: it contains 645 recordings of 19 di↵erent bird species.

• H. J. Andrews (HJA) dataset [15]: it contains a total of 548 recordings with

six di↵erent locations PC1, PC4, PC7, PC8, PC13, and PC15.

We convert each recording into a two-dimensional spectrogram with F = 247 and T =

2https://www.kaggle.com/c/mlsp-2013-birds

39

0 2000 4000 6000 8000 10000104

105

10 6

107

108

109
CNMF
our approach

(a) Objective vs. Iteration.

100 200 300 400

20

40

100 200 300 400

20

40

100 200 300 400

20

40

(b) Original spectrograms.

100 200 300 400

20

40

100 200 300 400

20

40

100 200 300 400

20

40

(c) Reconstruction by our approach.

100 200 300 400

20

40

100 200 300 400

20

40

100 200 300 400

20

40

(d) Reconstruction by CNMF [107].

20 40

10

20

30

40

50

20 40

10

20

30

40

50
20 40

10

20

30

40

50

(e) Learned dictionary words by our approach.

0 200 400 600
0

1000

2000

0 200 400 600
0

2000

4000

0 200 400 600
0

2000

4000

(f) Learned activations by our approach.

20 40

10

20

30

40

50

20 40

10

20

30

40

50

20 40

10

20

30

40

50

(g) Learned dictionary words by CNMF [107].

0 100 200 300 400 500
0

500

1000

0 100 200 300 400 500
0

1000

2000

0 100 200 300 400 500
0

1000

2000

(h) Learned activations by CNMF [107].

Figure 2.3: Comparison between our approach and CNMF [107] (reproduction of [103]).

40

2497 and examine four aspects of the proposed approach: (i) spectrogram denoising (ii)

optimal parameter selection, (iii) dictionary learning, and (iv) species classification.

(a) Test spectrogram on PC1 with rain noise (b) Reconstructed test spectrogram on PC1

Figure 2.4: Examples of rain denoising on test spectrogram (reproduction of [103]).

Spectrogram denoising: We use the proposed dictionary learning approach for spec-

trogram denoising. To this end, we learn a dictionary from a clean set of recordings and

use it for recovering a rain corrupted dataset. In this test, we use the HJA data set.

The result in Fig. 2.4 shows that after running the dictionary learning algorithm, the

rain artifact that appears as a long vertical line has been significantly reduced in the

reconstructed spectrogram.

Parameter selection for dictionary learning The model parameters that a↵ect the

performance of dictionary learning are the number of dictionary words K and sparsity of

the activations �. To show the relationship between the model parameters and the dictio-

nary learning performance, we present the reconstruction error
P

N

i=1

P
F

f=1

P
T

t=1(Y
i(t, f)�

P
K

k=1 ai

k
(t) ⇤ Dk(t, f))2 against a practical approximation of the L0 norm of the activa-

tions (number of the elements in A that are greater than ✏ = 10�2). During the training

phase, we select 8 spectrograms from location PC15 of the HJA dataset and run the

proposed algorithm to extract the dictionary words for each of the following parameter

values K = {5, 10, 15} and � = {1, 5, 10, 15, 30, 50}. We apply the learned dictionary

41

10
3

10
4

×10
5

1

2

3

4

5,1

5,5

5,10
5,15

5,30

5,50

10,1

10,5

10,10
10,15

10,30

10,50

15,1

15,5
15,10

15,15

15,30

15,50

(a) training phase

10
3

10
4

×10
5

1

2

3

4

5

5,1

5,5
5,10

5,155,30

5,50

10,1

10,5

10,1010,15
10,30

10,50

15,1

15,5

15,10
15,15

15,30
15,50

(b) validation phase

(c) learned dictionary (d) learned dictionary

Figure 2.5: Parameter selection (reproduction of [103]): (a) training phase reconstruction
error vs. L0 norm of activations for PC15 (the first number for each point represents K

and the second number for each point represents �); (b) validation phase reconstruction
error vs. L0 norm of activations for PC15; (c) learned dictionary with K = 15 and
� = 10 for PC15; (d) learned dictionary with K = 15 and � = 50 for PC15

42

words in the validation phase to independent three test spectrograms, the performance

curves are shown in Fig. 2.5a (a) and (b). Results show that the reconstruction error

decreases with decreasing value of � and/or increasing the value of K. The L0 norm of

the activations increases with decreasing the value of �. For a large �, the dictionary

concentrates on high energy words and low energy words are not discovered. For a small

�, the L0 norm of activations increases significantly even though the reconstruction error

decreases.

(a) PC1 (b) PC4

(c) PC7 (d) PC13

Figure 2.6: Learned dictionary words for HJA dataset (reproduction of [103]).

We select the optimal set of parameters (� = 10, K = 15) to balance the recon-

struction error and the sparseness of the activation in the validation set. We show the

extracted dictionary words in the Fig. 2.6.

Extracted dictionary words on MLSP2013 dataset: We select four or five rich-

of-syllable spectrograms from each species to learn the bird song dictionary and show

the discovered dictionary words of all 19 species in Fig. 2.7 by using randomly projected

43

Figure 2.7: Learned bird dictionary words (reproduction of [103]).

dictionary learning with r = 10%F and setting W = 200 for all species.

2.4.3 Classification experiments

In order to test the discriminative information provided by the learned dictionary, we

formulate the problem of bird species recognition in recordings of the HJA dataset. We

randomly choose 36 recordings for training and 58 for testing (choosing at least ten per

class in each case) and perform five two-class (one-against-all) experiments. Table 2.2

shows the classes (species) considered and the number of training and test recordings for

each class. Five binary classification problems are considered where each single class is

44

Table 2.2: Number of training and test recordings selected of the HJA data set.

Index Abbreviation Class name # training # test
(Class label) recordings recordings

1 BRCR Brown Creeper 25 26
2 WIWR Winter Wren 10 10
3 PSFL Pacific-slope Flycatcher 16 19
4 CBCH Chestnut-backed Chickadee 10 12
5 HAFL Hammond’s Flycatcher 10 10
- - Others 10 10

selected as target. Performance is evaluated by using the multi-label measures F1macro

and F1micro, as follows:

F1macro =
1

M

MX

j=1

F1(TPj , FPj , TNj , FNj)

and

F1micro = F1(
MX

j=1

TPj ,

MX

j=1

FPj ,

MX

j=1

TNj ,

MX

j=1

FNj)

where F1(·) stands for F1-score value, and TPj , FPj , TNj and FNj are the true positive,

false positive, true negative and false negative values estimated when the target is class

j.

Random projection is applied with r = 12. The following are the used parameters:

� = 0.1 (heuristically fixed), K = 20 (for supervised dictionary learning: Kj = 3

where j 2 {1, 2, 3, 4, 5} and, additionally, all spectrograms are labeled with a new class

6, for which K6 = 5, in order to find common patterns), and, 10000 iterations for

dictionary words and activations estimation. The parameter C, which controls the trade

o↵ between errors of the SVM and margin maximization, and � are selected among

{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}. The reported performance is the best

45

F1micro score obtained in each case.

Table 2.3 shows the results. The baseline is the classification framework where the

features are directly extracted from spectrograms instead of activation signals, which

implies that supervised dictionary learning is not applied. The kernels used are KHI

and KEP (P = 1 and 2; KE1
and KE2

, respectively).

Table 2.3: Classification results obtained with the proposed approach where features are
extracted from activation signals and the baseline where features are directly extracted
from spectrograms.

Features from\Kernel KHI KE1
KE2

F1macro F1micro F1macro F1micro F1macro F1micro

Activations 0.7835 0.7472 0.7855 0.7746 0.8127 0.7800
Spectrograms 0.7805 0.7895 0.71062 0.7724 0.7060 0.7639

According to our results, in the baseline exhibits higher F1micro scores than F1macro

scores, which means that performances is not similar for all classes. On the other hand,

since F1macro measure equally weighs all classes, we can say that our dictionary learning

approach can find more complex relationships and increase the performance even when

frequency band of vocalizations is not highly discriminant.

46

Chapter 3: Simple case study: supervised recurring signal pattern

recognition and localization 1

Due to rapid data growth we are facing nowadays, the capability to recognize recurring

patterns in data becomes increasingly important because it helps to find regularities in

data and can be used for downstream data analysis tasks such as feature extraction and

classification. The weakly-supervised dictionary learning problem can be sim-

plified to recognizing and localizing a recurring signal pattern problem. A

common goal in this context is to discover recurrent patterns from data without any prior

knowledge of what the patterns might look like. Toward this goal, several approaches

have been proposed recently, most of which focused on finding the fundamental charac-

teristics of the signal pattern [18, 62, 90, 111] and are generative in nature. By contrast,

limited work has considered a discriminative approach for this task. One important

issue with generative approaches of discovering recurring pattern is that the detection

performance significantly degrades with increased noise and variations of the recurring

signal. To address this issue, we focus on the problem of finding a discriminative con-

volutional kernel of the unknown recurring pattern, such that the resulting signal will

directly indicate the location of the pattern. The problem of discovering convolutional

kernel of recurring unknown pattern has been less studied.

1This chapter is a joint work with Raviv Raich, Xiaoli Fern, and Jinsub Kim. This work was published
as: Zeyu You, Raviv Raich, Xiaoli Z. Fern, and Jinsub Kim. “Discriminative recurring signal detection
and localization.” In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2377-2381.

47

3.1 Single class case

We are given a collection of signals and their labels {(x1, Y1), (x2, Y2) . . . , (xM , YM)},

where xm denotes the mth signal xm(t) for 1  t  Tm and Ym 2 {0, 1} denotes the

presence or absence of an arbitrarily time-delayed pattern within signal xm. Our goal

is to develop a discriminative framework for training a detector based on the given

training data that can detect presence or absence of an unknown recurring pattern in

a test signal. In contrast to the classical time delay estimation, we do not assume that

the patterns within di↵erent signals are identical or identical up to a scaling factor. A

generative model for detecting a recurring pattern [150] aims at finding the pattern and

its corresponding delay as shown in Fig. 3.1(a). A discriminative approach [147] uses

a convolution kernel to predict the presence and absence of that pattern as shown in

Fig. 3.1(b). Unlike the generative approach, the discriminative kernel does not resemble

the original shape of that recurring pattern, but transforms the original signal data into

a new signal that matches up with the signal label. Here, we focus on the latter.

To predict the presence or absence of the common pattern, we consider a sliding

window of size T0 and treat the signal segment within each window as an instance.

Specifically, we associate xm(t), the mth signal at location t, with a corresponding se-

quence ymt 2 {0, 1}. The instance label ymt being equal to 1 indicates the presence of

a pattern at location t in xm. The sequence of instance labels for xm, which we denote

by ym , [ym1, . . . , ymTm], directly determines the bag-level label Ym. Specifically, if ym

contains any entry with value 1, then Ym is 1; otherwise, Ym is zero.

The Probabilistic Model: In developing our model, we focus on a special case of

the problem in which a single observance of the pattern of interest is made in each

signal. Consequently, we assume that although the signal the instance label sequence

48

5 10 15 20 25 30 35 40 45 50

2
4
6
8
10

5 10 15 20 25 30 35 40 45 50

2
4
6
8
10

5 10 15 20 25 30 35 40 45 50

2
4
6
8
10

X2, Y2=1

X3 , Y3=1

X4 , Y4=1

5 10 15 20 25 30 35 40 45 50

2
4
6
8
10

X1, Y1=0

S
?

!1=0

Delay Index

!2=4

!3=34

!4=17

(a) Generative

w

5 10 15 20 25 30 35 40 45 50

2
4
6
8
10

5 10 15 20 25 30 35 40 45 50

2
4
6
8
10

5 10 15 20 25 30 35 40 45 50

2
4
6
8
10

X2, Y2=1

X3 , Y3=1

X4 , Y4=1

5 10 15 20 25 30 35 40 45 50

2
4
6
8
10

X1, Y1=0

?
50

50

50

50

y1(t)

y2(t)

y3(t)

y4(t)

(b) Discriminative

Figure 3.1: Problem formulation of generative and discriminative recurring pattern
recognition (reproduction of [147])

ym are not observed, we have the information that ym is either a vector with all zero

entries or a vector with all zero entries except a single nonzero entry taking value 1. For

completeness, we express the mth signal label Ym in terms of the corresponding instance

label sequence ym as

Ym =

8
>>>>>><

>>>>>>:

0, ym = 0

1, ym 2 {em1, . . . , emTm}

2, otherwise,

where Tm is the number of sliding window segments in xm, and eml = [0, . . . , 0, 1, 0, . . . , 0]T 2

RTm , 8l = 1, . . . , Tm is the lth standard basis vector of R
Tm , i.e., its lth entry is one,

and all other entries are zeros. Note that Ym = 2 is only used for ensuring a complete

probabilistic characterization of the model. However, in our setting, it is never observed.

We employ a probabilistic model (shown in Fig. 3.2) with a logistic function to

model the conditional distribution of an instance label ymt given a realization of the

corresponding sliding window segment xmt = [xm(t),xm(t�1), . . . ,xm(t�T0+1)]T 2 RT0

as the tth windowed instance and w = [w(1), . . . ,w(T0)]T 2 RT0 as the kernel signal.

Therefore, the probabilistic model for ymt is given by:

49

xmt ymt
T

M

Ym

w

Figure 3.2: The probabilistic graphical model (reproduction of [147]).

P (ymt|xmt;w) =
e
w

T
xmtymt

1 + ew
Txmt

. (3.1)

Note that wTxmt for all t = 1, . . . , Tm and m = 1, . . . , M are implemented as a convolu-

tion such that wTxmt =
P

T0

⌧=0 xm(t � ⌧)w(⌧).

To model the mth signal label Ym given the instance labels ym, we consider two

cases. When the signal label is positive Ym = 1, only one out of Tm instance label can

be one and the others are zeros. When the signal label is negative Ym = 0, all of the Tm

instances must be zeros. Therefore, the probabilistic model for the signal label Ym given

the instance labels ym is:

P (Ym|ym) = [
TmX

l=1

I(ym = eml)]
Ym [I(ym = 0)]1�Ym , (3.2)

The probabilistic graphical model in Fig. 3.2 describes the conditional dependence struc-

ture of our model.

Extension to 2-D signals: When the data signal is 2-D such as spectrogram

i.e.,xm 2 RF⇥T for some frequency F , the probabilistic model in (3.1) can be smoothly

adopted by setting the convolutive kernel to be 2-D as well, i.e.,w 2 RF⇥T0 . In this

case, wTxmt is replaced with trace(wTxmt) =
P

F

f=1

P
T0

⌧=0 xm(f, t � ⌧)w(f, ⌧).

50

Maximum Likelihood Estimation: Given our proposed model, we consider estimat-

ing the model parameter w using maximum likelihood estimation (MLE).

Data Likelihood: Denote D = {(x1, Y1), (x2, Y2) . . . , (xM , YM)} as the observed

data and assume that Ym 2 {0, 1}, the data likelihood L(w) = P (D;w), is obtained as

L(w) =
MY

m=1

(
P

Tm
l=1 e

w
T
xml)Ym

Q
Tm
t=1(1 + ew

Txmt)
P (xm). (3.3)

Therefore, the negative log-likelihood function is:

f(w)=
MX

m=1

[
TmX

t=1

log(1 + e
w

T
xmt) � Ym log(

TmX

t=1

e
w

T
xmt)] + C,

where C =
P

M

m=1 log(P (xm)) is a constant. The challenge is this function is a combina-

tion of convex and concave function such that the non-convexity of the problem makes

it harder to minimize.

Solution with CCCP: Since the objective is a convex-concave function, we apply

the convex-concave procedure (CCCP) [151] to update w. The general idea is to con-

struct a majorizing function g(w,wi) such that (i) g(w,wi) � f(w) for any w,wi; and

(ii) g(w,wi) = f(w) for w = wi. Minimizing g(w,wi) function instead of f(w) results

in the following update rule w(i+1) = arg minw g(w,wi), which yields non increasing

sequence of the objective, i.e., f(w(i+1))  f(wi).

A simple upper bound function g(w,wi) can be obtained by linearizing the convex

function v(w) = log(
P

T

t=1 e
w

T
xmt). Since v(w) � v(wi) + (w � wi)T�v(wi), then

51

f(w)  g(w,wi) [56]. Therefore, the upper bound g(w,wi) is:

g(w,wi)=
MX

m=1

[
TmX

t=1

log(1 + e
w

T
xmt) � Ym[log(

TmX

t=1

e
w

iT
xmt)

+
⇣PTm

t=1 e
w

iT
xmtxmtP

Tm
t=1 ew

iTxmt

⌘
T

(w � wi)].

Using the gradient descent method, we obtain the update rule as follows:

wi+1 =wi + �
@g(w,wi)

@w
|w=wi , where, (3.4)

@g(w,wi)

@w
|w=wi =

MX

m=1

TmX

t=1

[P (ymt) � YmP (ymt|Ym)]xmt,

and � is a learning rate. We refer to P (ymt) = P (ymt = 1|xmt;wi) in (3.1) as a prior

probability and P (ymt|Y) = P (ymt = 1|Y,x;wi) = e
wiT xmt

PTm
t=1

ew
iT xmt

as a posterior probabil-

ity, which can also be directly computed using Bayes rule.

Prediction: Given a test signal xtest, the localization signal or instance label signal

ŷ
test
t is obtained by

ŷ
test
t = arg max

a2{0,1}
P (yt = a|xtest

,w) 8 t = 1, . . . T.

A signal level label is obtained by

Ŷ
test = [T

t=1ŷ
test
t .

Computational complexity: To simplify the computational complexity analysis, as-

sume that the number of instance per signal Tm are all the same and equal to T . The

overall computational complexity is O(NMTT0), where N is the total number of itera-

52

tion needed for updating the kernel w. If T0 is set to be large (T0 ⇡ T), we can apply

Fast Fourier Transform (FFT) and Inverse of FFT to speed up the convolution [84] such

that the computational complexity will become O(NMT log T).

5 10 15 20 25 30 35 40 45 50

2

10

5 10 15 20 25 30 35 40 45 50

2

10

5 10 15 20 25 30 35 40 45 50

2

10

5 10 15 20 25 30 35 40 45 50

2

10

5 10 15 20 25 30 35 40 45 50

2

10

(a) Synthetic data

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
P

o
si

ti
v

e
R

at
e

0

0.2

0.4

0.6

0.8

1

discriminative

generative

(b) ROC curves

1 2 3 4 5 6 7

2

4

6

8

10

(c) True pattern

1 2 3 4 5 6 7

2

4

6

8

10

(d) Discriminative kernel

5 10 15 20 25 30 35 40 45 50 55

1

0

5 10 15 20 25 30 35 40 45 50 55

1

0

5 10 15 20 25 30 35 40 45 50 55

1

0

5 10 15 20 25 30 35 40 45 50 55

1

0

5 10 15 20 25 30 35 40 45 50 55

1

0

(e) Generative localization

5 10 15 20 25 30 35 40 45 50 55

1

0

5 10 15 20 25 30 35 40 45 50 55

1

0

5 10 15 20 25 30 35 40 45 50 55

1

0

5 10 15 20 25 30 35 40 45 50 55

1

0

5 10 15 20 25 30 35 40 45 50 55

1

0

(f) Discriminative localization

Figure 3.3: Synthetic data results (reproduction of [147]).

Numerical Evaluation: In order to evaluate our discriminative pattern recognition

approach, we perform a numerical synthetic experiment.

Synthetic data generation: The synthetic 2-D signals are generated with height

53

(number of frequency bins) F = 10 and width (time frames) T = 50 by randomly placing

a rectangular shape into one of the T � 6 maximally overlapped 10 ⇥ 7 windows of the

signals. Each window is referred as an instance and is labeled as 1 if the rectangular

shape is within that window, otherwise, it will be labeled as 0, the negative class. See

Fig.3.3 (a) for an example.

Numerical results: To verify our proposed approach, we use 10 independent ran-

dom shu✏es of 200 signals with balanced label that are split into 160 training signals

and 40 test signals. The convolution kernel dimensions are set to F = 10 and T0 = 7.

Fig. 3.3(c) shows the original rectangular shape, while Fig. 3.3(d) shows the learned

kernel, which appears to approximate the gradient of the rectangular shape. Fig. 3.3(f)

verifies that the position where the rectangular signal lies is correctly predicted, how-

ever, using the original signal pattern in the generative framework yields some ambiguity

about the shape location (see Fig. 3.3(e)). To show the resulting detection performance,

we plot the receiver operating characteristic (ROC) curve [13]. The averaged test ROC

curves based on the 10 di↵erent training sets are shown in Fig. 3.3(b). We can see that

using a discriminative kernel produces higher true positive rate when the threshold is

low.

Real-world Experiment: In this experiment, our goal is to learn a discriminative acti-

vation signature for each appliance using a set of training data and to test the detection

performance on a separate test data set.

Data Set and preprocessing: We use the Pecan Street dataset (Source: Pecan

Street Research Institute), which contains four homes of disaggregated, time-sampled

electricity usage data. The data set includes both voltage and apparent power readings in

a period of 25 days. For the experimental setup, we split the four home data into training

data with extracted activation signature with 1000 samples of a period of 11/17/2012-

54

(a) fridge activation and signal

0 500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

1

ps025-air
ps029-furnace
ps046-fridge
ps051-oven

(b) Tuning T0

0 500 1000 1500 2000 2500 3000 3500
-1000

-500

0

500

1000

1500

(c) Generative detector

0 500 1000 1500 2000 2500 3000 3500
-150

-100

-50

0

50

(d) Discriminative detector

Figure 3.4: Detection comparison between generative and discriminative fridge activation
patterns (reproduction of [147]).

55

11/25/2012 and test data is one hour readings, which contains around 500, 000 samples,

with a period of 11/26/2012-12/11/2012. For each home and each appliance, the training

activation event of short sequence voltage responses are generated based on the ground

truth of a power increase from 0 to 80 watt or more on the independent measurement

from a commercial power meter. The negative labeled data of short sequence voltage

responses are randomly extracted based on non-increase of the power meter.

Due to a time varying DC o↵set on voltage peak to peak (Vpp) value, we consider a

moving window (each window contains 1000 samples) approach to calculate the average

DC o↵set signal. For both training and test data, we remove that DC o↵set. We also

apply a five-tap median filter to despike the voltage waveforms, since the voltage peak to

peak (Vpp) waveform is corrupted by spike noise. For home ps-029, we use a fifteen-tap

median filter.

Results and Analysis: In the training phase, we tune the window size T0 using

ten random shu✏es of the data. On each of the ten, we first shu✏e and then pick

the first 80% of the data for training and the remaining 20% for validation. For each

random shu✏e, we compute the signal label accuracy 1/M
P

M

m=1 I(Ŷ val
m = Y

val
m) for

T0 2 {100, 300, 500, 700, 900, 1500, 2000} and present mean and standard deviation (over

the ten shu✏es) as in Fig. 3.4(b). An iterative gradient descent method is used to find

the discriminative activation signature. To compare with the results obtained from a

generative approach [150], we show a detection example from the generative approach

and the discriminative approach in the Fig. 3.4. Since [150] uses T0=700, we show the

resulting AUCs comparison with our approach by using both T0=700 and best window

size in the Table 3.1.

Fig. 3.4(c) shows an example for the detector output (before applying the thresh-

old) for the generative detector. We observe that the peak level of the discriminative

56

detector output in Fig. 3.4(d) appears more consistent than that of the generative detec-

tor. In general, we observe that the discriminative approach presents higher detection

performance than the generative approach, especially for some of the appliances which

contains more variation in their template. For example, for oven in home ps-025 and

Fridge in ps-046, the detection AUCs of the discriminative approach are 0.86 and 0.87

respectively, which are significantly higher than the generative approach AUCs, 0.52 and

0.49 respectively.

House ID App. Name Gen.(T0=700) Disc.(T0=700) Disc.(best T0)
PS-025 Air-Cond. 0.95 0.97 0.97 T0=700
PS-025 Oven 0.52 0.80 0.86 T0=100
PS-029 Air-Cond. 0.92 0.99 0.99 T0=700
PS-029 Dryer 0.99 0.93 0.96 T0=100
PS-029 Fridge 0.72 0.85 0.86 T0=900
PS-029 Furnace 0.86 0.89 0.89 T0=700
PS-029 Microwave 0.88 0.94 0.94 T0=700
PS-029 Oven 0.91 0.78 0.88 T0=100
PS-046 Air-Cond. 0.85 0.93 0.97 T0=500
PS-046 Fridge 0.49 0.85 0.87 T0=900
PS-046 Furnace 0.54 0.56 0.56 T0=700
PS-046 Oven 0.92 0.76 0.88 T0=100
PS-051 Air-Cond. 0.91 0.97 0.97 T0=700
PS-051 Oven 0.78 0.61 0.72 T0=100

Table 3.1: AUC for the generative method [150] and for our discriminative method.

Discussion on computational complexity: In a generative approach, [150] pro-

poses an algorithm of computational complexity of O(T0(MT)2). In our discriminative

approach, the computational complexity is O(NMTT0). If the total number of iteration

N is set to be less than MT , our discriminative approach is more e�cient.

57

3.2 Multiple class case as an extension

Given the observed signals and the associated labels {(x1, Y1), (x2, Y2) . . . , (xM , YM)},

where xm denotes the mth signal xm(t) for 0  t  Tm and Ym 2 {0, 1, 2, . . . , C} denotes

a particular class c type of time-delayed pattern is shown within signal xm, the goal is to

develop a discriminative framework for training a detector based on the given training

data that can detect an unknown recurring pattern belongs to which class in a test signal.

To predict the multiple recurring patterns, we consider a sliding window of size Tw and

treat the signal segment within each window as an instance. We denote � = (Tw � 1)/2

by assuming window size is odd for simplicity. Specifically, we associate xm(t), the mth

signal at location t, with a corresponding sequence ym(t) 2 {0, c} for c = 1, 2, . . . C. The

instance label ymt being equal to c indicates the presence of a pattern c at location t in xm.

The sequence of instance-level labels for xm, which we denote by ym , [ym1, . . . , ymTm],

directly determines the bag-level label Ym. Specifically, if ym contains any entry with

value c, then Ym is c; otherwise, Ym is zero.

The Probabilistic Model: In developing our model, we focus on a special case of

the problem in which a single observance of the pattern of interest is made in each

signal. Consequently, we assume that although the signal time-instance label sequence

ym are not observed, we have the information that ym is either a vector with all zero

entries or a vector with all zero entries except a single nonzero entry taking value 1.

For completeness, we express the mth signal label Ym in terms of the corresponding

time-instance label sequence ym as

58

Ym =

8
>>>>>><

>>>>>>:

0, ym = 0

c, ym 2 {ec
m(��+1), . . . , e

c

m(Tm+�)}; c = 1, 2, . . . , C

C + 1, otherwise,

where Tm is the number of samples in the mth signal and there is total of Tm + Tw + 1

sliding window segments in xm, and ec
ml

= [0, . . . , 0, c, 0, . . . , 0]T 2 RTm+Tw�1
, 8l =

�� + 1, . . . , Tm + � is the lth standard basis vector of R
Tm+Tw�1, i.e., its lth entry is

class c, and all other entries are zeros. Note that Ym = C + 1 is only used for ensuring a

complete probabilistic characterization of the model. However, in our setting, it is never

observed.

To model the mth signal label Ym given the instance labels ym, we consider two

cases. When the signal label is positive Ym = 1, only one out of Tm time instance label

can be one and the others are zeros. When the signal label is negative Ym = 0, all of the

Tm time instances must be zeros. Therefore, the probabilistic model for the signal label

Ym given the instance labels ym is:

P (Ym|ym) =
CY

c=1

[
Tm+�X

l=��+1

I(ym = e
c

ml
)]I(Ym=c)[I(ym = 0)]I(Ym=0)

, (3.5)

Maximum Likelihood Estimation: Given our proposed model, we consider estimat-

ing the model parameter w using maximum likelihood estimation (MLE).

Data Likelihood: Denote D = {(x1, Y1), (x2, Y2) . . . , (xM , YM)} as the observed

59

data and assume that Ym 2 {0, 1}, the data likelihood L(w) = P (D;w), is obtained as

L(w) =
MY

m=1

CY

c=1

(
Tm+�X

l=��+1

e
w

T
c xml�w

T
0
xml)I(Ym=c)

Tm+�Y

t=��+1

(1 +
CX

u=1

e
w

T
u xmt�w

T
0
xmt)

P (xm). (3.6)

Therefore, the negative log-likelihood function is:

f(w)=
MX

m=1

[
Tm+�X

t=��+1

log(1 +
CX

u=1

e
w

T
u xmt�w

T
0
xmt) �

CX

c=1

I(Ym = c) log(
Tm+�X

t=��+1

e
w

T
c xmt�w

T
0
xmt)]. (3.7)

The challenge is this function is a combination of convex and concave function such that

the non-convexity of the problem makes it harder to minimize.

Solution with CCCP: Since the objective is a convex-concave function, we apply

the convex-concave procedure (CCCP) [151] to update w. A simple upper bound func-

tion g(w,wi) can be obtained by linearizing the convex function v(w) =
MX

m=1

CX

c=1

I(Ym =

c) log(
TmX

t=1

e
w

T
c xmt�w

T
0
xmt). Since v(w) � v(wi) + (w � wi)T�v(wi), then f(w) 

60

g(w,wi) [56]. Therefore, the upper bound g(w,wi) is:

g(w,wi)=
MX

m=1

[
Tm+�X

t=��+1

log(1 +
CX

u=1

e
w

T
u xmt�w

T
0
xmt) �

CX

c=1

I(Ym = c)
⇣
log(

Tm+�X

t=��+1

e
w

iT
c xmt�w

iT
0

xmt) +

(wc � wi

c � w0 + wi

0)
T
�

Tm+�X

t=��+1

e
w

iT
c xmt�w

iT
0

xmtxmt

Tm+�X

t=��+1

e
w

iT
c xmt�w

iT
0

xmt

�⌘
].

Using the gradient descent method, we obtain the update rule as follows:

wi+1
0 =wi

0 + �
@g(w,wi)

@w0
|
w0=w

i
0

, where, (3.8)

@g(w,wi)

@w0
|
w0=w

i
0

=
MX

m=1

Tm+�X

t=��+1

[P (ymt = 0)

� (1 �
CX

c=1

I(Ym = c)P (ymt|Ym))]xmt,

and

wi+1
c =wi

c + �
@g(w,wi)

@wc

|wc=wi
c
, where, (3.9)

@g(w,wi)

@wc

|wc=wi
c
=

MX

m=1

Tm+�X

t=��+1

[P (ymt) � I(Ym = c)P (ymt|Ym)]xmt.

for c = 1, 2, . . . , C, and � is a learning rate. We refer P (ymt) = P (ymt = c|xmt;wi) as

a prior probability and refer P (ymt|Y) = P (ymt = c|Y,x;wi) = e
wiT
c xmt�wiT

0
xmt

PTm+�+1

t=��+1
e
wiT
c xmt�wiT

0
xmt

as a posterior probability.

61

Chapter 4: Weakly-supervised dictionary learning for time-series 1

When both data and global labels are observed, the conventional dictionary learning

approaches are not suited. Instead, we present a convolutive analysis dictionary learn-

ing under weak supervision,where we learn a dictionary given a set of signals andtheir

label sets. In analysis dictionary learning, we are given a collection of data vectors

{x1, . . . ,xB} and look for an analysis dictionary [w1, . . . ,wC] such that for each n the

analysis of xn given by [wT

0 xn, . . . ,wT

C
xn] is sparse [102]. In the convolutive setting,

we are given a set of signals {x1(t), . . . , xN (t)} and look for an analysis dictionary of

the form [w1(t), . . . , wC(t)] such that for each n the analysis of signal xn(t) given by

[w0(t) ⇤ xn(t), . . . , wC(t) ⇤ xn(t)] is a sparse signal, where ⇤ is a convolution operator

[92, 93]. Based on the convolutive version of analysis dictionary learning, we develop a

discriminative version of the convolutive analysis dictionary learning is. In particular, we

consider the weak supervision setting in which every signal xn(t) is accompanied with

a single label set Yb. Focusing on time-series analysis, we proceed with the proposed

formulation of this problem using a probabilistic model approach.

4.1 Problem statement

In the following of the whole chapter, we denote signals in lower case, e.g., x(t) or y(t).

Similarly, we use lower case letters to represent indexes such as i or j. For simplicity,

1This chapter is a joint work with Dr. Raviv Raich, Xiaoli Fern and Jinsub Kim. This work was
published as: Zeyu You, Raviv Raich, Xiaoli Z. Fern, and Jinsub Kim. “Weakly supervised dictionary
learning.” IEEE Transactions on Signal Processing 66, no. 10 (2018): 2527-2541.

62

Instance-
labeler

signal-
labeler

Figure 4.1: An illustration of the setting of weakly supervised analysis dictionary learning
(reproduction of [148]).

we omit the dependence on time for signals, e.g., we also use x to denote signal x(t).

In some cases, we use the time-evaluation operator |t to denote evaluation of a signal

at time t, e.g., x|t = x(t). We denote vectors by boldfaced lower case, e.g., x or y. We

use upper case letters to denote sets, e.g,. Y , or constants such as C. All signals in this

paper are assumed to be in discrete time. Consequently, we use the convolution operator

⇤ to denote discrete time convolution w⇤x|t =
P

1

u=�1
x(t�u)w(u). Common notations

used in this paper are given in Table 4.1.

In the sparsity-driven setting of convolutive analysis dictionary learning, we are

given a set of discrete-time signals {x1, x2, . . . , xN} and look for an analysis dictionary

{w1, w2, . . . , wC} such that for each n 2 {1, 2, . . . , N}, each analysis signal of xn in

{w1 ⇤ xn, w2 ⇤ xn, . . . , wC ⇤ xn} is sparse [92, 93]. Without loss of generality, we assume

that the support of xn is included in {0, . . . , Tn �1}, i.e., xn(t) = 0 if t /2 {0, . . . , Tn �1}.

In the fully-supervised setting, for each xn, a potentially sparse time-instance label

signal yn is provided and the observed data is of the form {(x1, y1), (x2, y1), . . . , (xN , yN)}.

The signal yn can be viewed as a fine-grain label indicating the presence of particular

class patterns at each point in time. In this setting, location of a pattern from a given

class can be used to extract examples for that class to train a classifier.

63

Table 4.1: List of notations

Notation Explanation
xn the nth signal, e.g., xn(t) for 1-D signal indexed

by time t and xn(f, t) for 2-D signal indexed by
frequency f and time t

F the number of frequency bins, F = 1 in 1-D signal
case

Tn number of samples in nth signal
wc the cth dictionary signal, e.g., wc(t) for 1-D signal

and wc(f, t) for 2-D signal
wc is the vector format of cth analysis dictionary word
bc is the bias term for the cth analysis dictionary

word
w [wT

0 ,wT
1 , . . . ,wT

C]T , C dictionary words
b [b0, b1, . . . , bC]T , a vector of C bias terms
C number of class or dictionary words
Tw number of samples for dictionary
xnt is a tth time instance in nth signal
X {xn}N

n=1, set of N signals
Y {Yn}N

n=1, N sets of label set
yn(t) is the instance label at time index t in the nth

signal
N̄n maximum number of non-novel instances in nth

signal

In the weak supervision setting (see Fig. 4.1), yn is unknown and we are interested

in learning a discriminative version of the convolutive analysis dictionary given the ob-

served data. Under this setting, every signal xn is accompanied with a single label set

Yn containing the classes that are present in signal xn, e.g., Yn = {2, 6} if xn contains

patterns from only classes 2 and 6. Hence the data provided in our setting is of the

form {(x1, Y1), (x2, Y2), . . . , (xN , YN)}. Our goal in this setting, is two-fold: (i) to de-

velop a time-instance-level classifier that predicts the latent label signal y(t) value for

a previously unseen signal x(t) based on training data D; and (ii) to develop a signal-

level classifier that predicts the label set Y for a previously unseen signal x(t) based

on training data D. We proceed with the proposed formulation of this problem using a

64

probabilistic model approach.

4.2 Probabilistic graphical model

To solve the weakly-supervised dictionary learning problem, we present a probabilistic

model for learning a discriminative convolutional dictionary. We begin by introducing

the convolution used in our model and proceed with a graphical representation of the

proposed discriminative convolutional dictionary learning model.

Convolutional model: To simplify the exposition of the model using vectors instead

of signals, we convert each signal xn to a set of Tn +Tw �1 vectors such that each vector

is a Tw width windowed portion of the signal. For simplicity, we assume Tw to be odd

and denote � = (Tw �1)/2. This notation allows us to replace the convolution wc ⇤xn |t

with wT
c xnt for t = ��, �� + 1, . . . , Tn � 1 + � such that

xn ⇤ wc |t =
�X

⌧=��

xn(t � ⌧)wc(⌧) = xT

ntwc,

where xnt 2 RTw is defined as

xnt = [xn(t + �), xn(t + � � 1), . . . , xn(t � �)]T ,

and wc 2 RTw is given by

wc = [wc(��), wc(�� + 1), . . . , wc(�)]T .

The aforementioned one-dimensional signal model can be extended to a two-dimensional

65

signal model in which convolution analysis dictionary is applied only on the time dimen-

sion. In the two-dimensional setting, xn denotes xn(f, t) and the c-th analysis dictionary

word signal wc denotes wc(f, t). Using a 2-D window with size F ⇥ Tw, the analysis

signal xn ⇤ wc with the time-convolution of the two signal is given by

xn ⇤ wc |t =
FX

f=1

�X

⌧=��

xn(f, t � ⌧)wc(f, ⌧) = xT

ntwc,

where each windowed portion of the signal is

xnt = [xn(1, t + �), x(1, t + � � 1), . . . , x(F, t � �)]T ,

and

wc = [wc(1, ��), wc(1, �� + 1), . . . , wc(F, �)]T .

While it is possible to develop a model that can handle boundary e↵ects, such models

are not time-invariant and hence may not benefit from the simplicity of the convolutional

model.

Model assumptions: To develop our model, we introduce additional assumptions to

the aforementioned setting to explain the link between the analysis result and the signal

label. Specifically, we assume that

A.1 Convolutive instance labeler: for each signal xn, a hidden discrete-value label

signal yn(t) 2 {0, 1, . . . , C} is produced given only the analysis result at time t, i.e.,

the probability P (yn(t) = c|xn) depends on signal xn only through [w0 ⇤ xn |t, w1 ⇤

xn |t, . . . , wC ⇤ xn |t], the analysis result evaluated at time t:

P (yn(t) = c|xn) = fc(w0 ⇤ xn |t, . . . , wC ⇤ xn |t)

66

Signal
labeler

Sparsity
regularization

xnt yn(t)

w,b

Yn In
Tn + Tw � 1

N̄n

N

Figure 4.2: The proposed graphical model for WSCADL (reproduction of [148]).

for c = 0, 1, . . . , C, where fc is an arbitrary multivariate function such that fc : RC+1 !

[0, 1] and
P

c
fc = 1.

A.2 Sparse instance label signals: the instance label signal yn is sparse with the

number of nonzero values at most N̄n:

Tn�1+�X

t=��

I(yn(t) 6= 0)  N̄n.

A.3 Signal label union assumption: the signal label Yn is produced by taking the

union of all the nonzero values of yn

Yn =
Tn�1+�[

t=��,

yn(t) 6=0

{yn(t)}.

Note that this assumption makes it is possible to have an empty signal label set in the

case that all instantaneous labels are zero and no positive class is associated with any

67

time instance. For simplicity, we remove the braces of yn(t) and change to yn(t) to

represent a set of union of time instances.

Model description: The probabilistic graphical model for the weakly-supervised convo-

lutive analysis dictionary learning (WSCADL) is shown in Figure 4.2, in which, our target

is to estimate the model parameters w = [wT

0 ,wT

1 , . . . ,wT

C
]T and b = [b0, b1, . . . , bC]T .

As explained earlier, the latent label signal at time t given by yn(t) depends on the

entire signal xn through the convolution wc ⇤ xn for c = 0, 1, . . . , C evaluated at time

t and hence through signal window xnt. The probabilistic model for yn(t) follows the

multinomial logistic regression model given by:

P (yn(t) = c|xn;w,b) =
e
w

T
c xnt+bc

P
C

u=0 ew
T
u xnt+bu

, (4.1)

for c = 0, 1, . . . , C, where wc is the cth analysis word and bc is a scalar bias term for the

logistic regression model.

To encode the notion of sparsity in the instance label yn(t), we introduce class 0

following the novel class concept of [95]. To integrate a constraint on the number of non-

zero instances in the nth signal (i.e., the sparsity of yn(t)) into our probability model, we

introduce the latent random variable In, an indicator that takes the value 1 if the number

of nonzero yn(t) is less than or equal a sparsity upper bound N̄n and zero otherwise. We

treat N̄n as a tuning (or hyper-) parameter of the graphical model. The smaller the value

of N̄n, the sparser the label signal yn(t) is. The probability model for sparsity indicator

In of label signal yn is given by

P (In = 1|yn; N̄n) = I(PTn�1+�
t=�� I(yn(t) 6=0)N̄n)

. (4.2)

68

Using this notation, the sparsity constraint can be encoded as observing In = 1.

Since the class 0 is not represented in the signal label set, to obtain the signal label

Yn from yn(��), . . . , yn(Tn � 1 + �), we consider two possibilities. First, if the label

signal yn(t) does not contain zeros then we expect Yn = [t{yn(t)}. Alternatively, if the

label signal yn(t) contains zeros then we expect Yn [{0} = [t{yn(t)}. Consequently, the

corresponding probabilistic model for the signal label Yn is given by:

P (Yn|yn) = I(Yn=[
Tn�1+�
t=�� {yn(t)})

+ I(Yn[{0}=[
Tn�1+�
t=�� {yn(t)})

. (4.3)

4.3 Solution approach

Given the parametric representation of our proposed model it is natural to consider es-

timating the model parameter using a maximum likelihood estimation (MLE). Since the

model contains hidden variables, we adopt an expectation-maximization (EM) frame-

work to facilitate the MLE estimator. We continue with the derivation of the complete

and incomplete data likelihood.

4.3.1 Complete and incomplete data likelihood

Define the observed data as D = {X , Y, I1 = 1, . . . , IN = 1}, the hidden data as H =

{y1, . . . , yN}, the unknown parameters as ✓ = [wT
,bT]T , and the tuning parameters as

� = [N̄1, . . . , N̄N]T . According to the graphical model shown in Figure 4.2, the complete

69

data likelihood P (D, H;✓,�) is computed as

P (X)
NY

n=1

P (Yn|yn)z }| {
[I(Yn=[

Tn�1+�
t=�� {yn(t)})

+ I(Yn[{0}=[
Tn�1+�
t=�� {yn(t)})

]

P (In=1|yn;N̄n)z }| {
I(PTn�1+�

t=�� I(yn(t) 6=0)N̄n)

P (yn|xn;w,b)z }| {
Tn�1+�Y

t=��

P (yn(t)|xn;w,b) . (4.4)

The incomplete data likelihood is calculated by marginalizing out the hidden variables

as

L(✓)=
CX

y1(��)=0

. . .

CX

y1(T1+�)=0

CX

y2(��)=0

. . .

CX

y2(T2+�)=0

. . .

CX

yN (��)=0

. . .

CX

yN (TN+�)=0

P (D, H;✓,�) (4.5)

Taking the natural logarithm of (4.5) and plugging in the probability with (4.4) produces

the incomplete log-likelihood:

l(✓)= log P (X) +
NX

n=1

log
� CX

yn(��)=0

. . .

CX

yn(Tn�1+�)=0

[I(Yn=[
Tn�1+�
t=�� {yn(t)})

+ I(Yn[{0}=[
Tn�1+�
t=�� {yn(t)})

]

I(PTn�1+�
t=�� I(yn(t) 6=0)N̄n)

Tn�1+�Y

t=��

P (yn(t)|xn;w,b)
�
. (4.6)

Calculating the incomplete data likelihood in (4.5) involves enumerating all possible

instance labels, which is computationally intractable especially when the number of

instance per signal is large.

70

4.3.2 Expectation maximization

Exact inference which computes the likelihood in a brute force manner by marginalizing

over all instance value combinations is intractable. To resolve this, we consider an expec-

tation maximization (EM) approach [80], where the proposed approach is very similar

to the one in [95]. Specifically, the EM algorithm alternated between the expectation

over the hidden variable and maximization of the auxiliary function as the following two

steps:

• E-step: Compute Q(✓,✓i) = EH|D;✓i [log P (H, D;✓)].

• M-step: ✓i+1 = arg max✓ Q(✓,✓i)

The auxiliary function for the proposed model is given by

Q(✓,✓i) =
NX

n=1

Tn�1+�X

t=��

[
CX

c=0

P (yn(t) = c|D; N̄n,✓i) ·

(wT

c xnt + bc) � log(
CX

u=0

e
w

T
u xnt+bu)] + const.

The derivation of the auxiliary function for our model is explained in Appendix B.

The maximization of the auxiliary function Q(✓,✓i) provides an update rule for both

dictionary words w and bias terms b with a learning rate �:

wi+1
c = wi

c + �
@Q(✓,✓i)

@wc

|✓=✓i ,

b
i+1
c = b

i

c + �
@Q(✓,✓i)

@bc
|✓=✓i ,

71

for c = 0, 1, . . . , C, where

@Q(✓,✓i)

@wc

=
NX

n=1

Tn�1+�X

t=��

[P (yn(t) = c|Yn, xn, In; N̄n,✓i)

�P (yn(t) = c|xn;w,b)]xnt, (4.7)

and
@Q(✓,✓i)

@bc
=

NX

n=1

Tn�1+�X

t=��

[P (yn(t) = c|Yn, xn, In; N̄n,✓i)

�P (yn(t) = c|xn;w,b)]. (4.8)

The term P (yn(t) = c|xn;w,b) in (4.7) and (4.8), which is calculated using (4.1), is

regarded as a prior probability of the instance label, i.e., without any information about

the signal label or a sparsity constraint. The term P (yn(t) = c|Yn, xn, In; N̄n,✓i) can be

viewed as a posterior instance label probability that takes into account the signal label

and the sparsity constraint. Denote the di↵erence between the posterior probability of

yn(t) and its prior by anc(t) = P (yn(t) = c|Yn, xn, In; N̄n,✓i) � P (yn(t) = c|xn;w,b).

The gradient calculation w.r.t. wc in (4.7) is performed as a convolution between

anc(t) and the time-reversed signal xn(�t) such that

@Q(✓,✓i)

@wc(t)
=

NX

n=1

Tn�1X

⌧=0

anc(t + ⌧)xn(⌧)

=
NX

n=1

anc(t) ⇤ xn(�t)

for t = ��, �� + 1, . . . , �. When both signal xn and kernel wc are 2-D, the gradient

72

step in (4.7) is

@Q(✓,✓i)

@wc(f, t)
=

NX

n=1

Tn�1X

⌧=0

anc(t + ⌧)xn(f, ⌧)

=
NX

n=1

anc(t) ⇤ xn(f, �t)

for f = 1, 2, . . . , F and t = ��, �� + 1, . . . , �.

Regularization: To guarantee the boundedness of the solution, we add an L2-regularization

term ��r/2
P

C

c=0 kwck2 in the M-step.

4.3.3 Key challenge

The computation of the gradient in (4.7) and (4.8) involves the computation of the

posterior probability P (yn(t) = c|Yn, xn, In; N̄n,✓i) for each yn signal. This term presents

one of the challenges of EM inference for the proposed model. Brute-force calculation

requires marginalization over all other instance level labels, i.e., yn(s) for s 6= t. This

marginalization is exponential in the number of instances per signal and hence makes the

brute-form calculation prohibitive. In the following, we present the proposed e�cient

approach for calculating the posterior instance level label probability.

4.4 Graphical model reformulation for the E-step

The goal of the E-step is to obtain the posterior probability P (yn(t) = c|Yn, xn, In; N̄n,✓i),

which first requires the calculation of the prior probability. To e�ciently compute the

prior probability P (yn(t)|xn;w,b) as a function of t for each signal xn, C + 1 convo-

73

lutions of the form wc ⇤ xn are performed to obtain the values of wT
c xnt in (4.1) for

t = ��, ��+1, . . . , Tn � 1+�. Under some settings, the fast Fourier transform (FFT)

and its inverse can be used as a computationally e�cient implementation of the convolu-

tion. We proceed with two e�cient procedures for calculating the posterior probability

of yn(t) given the prior probabilities.

yn(��) yn(�� + 1) yn(Tn � 1 + �)

Yn

In

(a) Original model

yn(��)

Y
��
n

N
��
n

yn(�� + 1)

N
��+1
n

Y
��+1
n

yn(Tn � 1 + �)

Y
Tn�1+�
n

N
Tn�1+�
n

Yn

In

(b) Graphical chain model

Figure 4.3: The label portion of the proposed graphical model (a) and its reformulation
as a chain (b) (reproduction of [148]).

4.4.1 Chain model reformulation

Consider the label portion of the original graphical model in Figure 4.3(a). Enumerating

over the set of all possible values of (yn(��), . . . , yn(Tn�1+�)) to compute the posterior

is exponential with respect to the number of time instances. The v-structure graph in

Figure 4.3(a) does not o↵er an immediate e�cient approach for computing the posterior.

Hence, we propose a reformulation of the model as follows. We denote

Y
t

n =
t[

i=��,

yn(i) 6=0

{yn(i)}, N
t

n =
tX

i=��

I(yn(i) 6= 0)

74

as the label set and the number of non-zero class instances of the first t instances in nth

signal. Both of the aforementioned newly introduced variables follow a recursive rule

Y
t+1
n = Y

t

n [{yn(t + 1) | yn(t + 1) 6= 0} (4.9)

N
t+1
n = N

t

n + I(yn(t + 1) 6= 0) (4.10)

for t = ��, . . . , Tn � 1 + � � 1. This reformulation gives rise to the chain model in

Figure 4.3(b). We proceed with a linear time procedure for calculating the posterior

probabilities that takes advantage of the reformulation of our model as a chain.

Forward and backward message passing on the chain: Given the prior probability

First step Update step Final step

yn(��)

Y
��
n

N
��
n N

t�1
n

Y
t�1
n Y

t
n

N
t
n

Y
Tn�1+�
n

N
Tn�1+�
n

Yn

In

yn(t)

(a) Forward algorithm

Final stepUpdate stepFirst step

Y
Tn�1+�
n

N
Tn�1+�
n

Yn

In

Yn

In

Yn

In

Y
��
n

N
��
nN

t�1
n

Y
t�1
n Y

t
n

N
t
n

yn(t) yn(��)

(b) Backward algorithm

Figure 4.4: Graphical illustration of the chain forward and backward message passing
routines (reproduction of [148]).

of yn(t) = c for c 2 {0, 1, . . . , C} and t = ��, . . . , Tn � 1 + �, our goal is to obtain

the posterior probability of yn(t) = c. This can be done by first computing the joint

probability defined by Pntc = P (yn(t) = c, Yn, In|xn; N̄n,✓i) and then applying Bayes

rule as

P (yn(t) = c|yn, xn, In; N̄n,✓i) = Pntc/
P

C

c=0 Pntc. (4.11)

We compute the joint probabilities Pntc using a dynamic programming approach that is

75

summarized in the following three steps:

Step 1: Forward message passing. In this step, the goal is to compute the joint

state probability P (Y t
n, N

t
n|xn;✓i) for t = ��, . . . , Tn � 1+�. Denote an element in the

power set of all class labels in the nth signal by L 2 2Yn . A forward message is defined

as

↵t(L, l) , P (Y t

n = L, N
t

n = l|xn;✓i).

The first message is initialized as Figure 4.4(a) first step shows

↵1(L, l) = 8
>>>>>><

>>>>>>:

P (yn(��) = 0|xn;wi
,bi), l = 0,L = {0};

P (yn(��) = c|xn;wi
,bi), l = 1,L = {c}, c 2 Yn;

0, Otherwise,

The update equation for the forward message of the tth instance is calculated by marginal-

izing over the (t�1)th state and the tth instance label as Figure 4.4(a) update step shows:

↵t(L, l)=↵t�1(L, l)P (yn(t) = 0|xn;wi
,bi)

+ I(l 6=0)

CX

c=1

P (yn(t) = c|xn;wi
,bi)

· [↵t�1(L, l � 1) + I(c2L)↵t�1(L\c, l)]. (4.12)

In the final step, P (Yn = L, In = 1|xn;✓i) =
P

N̄n
l=1 ↵Tn�1+�(L, l).

Step 2: Backward message passing. In this step, the goal is to compute the con-

ditional joint state probability defined as P (Yn, In = 1|Y t
n, N

t
n, xn;✓i

, N̄n). We denote a

76

backward message as

�t(L, l) , P (Yn, In = 1|Y t

n = L, N
t

n = l, xn;✓i
, N̄n).

According to the graphical model in Figure 4.4(b) such that Yn, In is only dependent on

Y
Tn�1+�
n , N

Tn�1+�
n , the first backward message is initialized as

�Tn�1+�(L, l) = I(lN̄n)I(L=Yn).

The update equation for the t � 1th backward message is calculated by marginalizing

over the tth backward message as Figure 4.4(b) update step shows �t�1(L, l) =

CX

c=0

�t(L [{c 6= 0}, l + I(c 6=0))P (yn(t) = c|xn,wi
,bi). (4.13)

Properties: To understand the range that should be used in computing the joint prob-

ability, we examine the values for which the forward and the backward messages are

non-zero. The forward and backward messages for t = ��, . . . , Tn � 1 + � have the

following properties: (i) ↵t(L, l) = 0 for l � t + 1, (ii) �t(L, l) = 0 for l > N̄n, L /2 2Yn .

Where (i) is from the definition of N
t
n in (4.10) and (ii) is from the sparsity constraint

in (4.2) and the definition of Y
t
n in (4.9) such that each Y

t�1
n ✓ Y

t
n, and Y

Tn�1+�
n = L.

Step 3: Joint probability. Finally, the numerator of (4.11) for t = ��, . . . , Tn�1+�

is computed using all of the forward messages and the backward messages as

P (yn(t) = c, Yn, In = 1|xn;✓i
, N̄n) = p(yn(t) = c|xn;wi

,bi)

·
X

L22Yn

N̄
⇤
nX

l=0

�t(L [{c 6= 0}, l + I(c 6=0))↵t�1(L, l)), (4.14)

77

where N̄
⇤
n = min(N̄n� I(c 6=0), t). Since Y

��
n , N

��
n is only dependent on the first instance

yn(��) as Figure 4.4(b) shows,

P (yn(��) = c, Yn, In = 1|xn, N̄n,✓i) =

���({c 6= 0}, I(c 6=0))p(yn(1) = c|xn;wi
,bi).

Note: Based on property (i) that ↵t�1(L, l) = 0 when l > t, and property (ii) that

�t(L, l) = 0 when l > N̄n, the e↵ective calculation and actual need of storing both

forward and backward message is for 0  l  min(N̄n, t).

yn(�� + 1)

Y
L
n1

N
L
n1 N

L
n2

Y
L
n2

yn(Tn � 1 + �)

Y
L
n(Tn+Tw�1)

N
L
n(Tn+Tw�1)

N
L�1
n1

Y
L�1
n1

Y
0
n1

N
0
n1

Yn

In
N

Figure 4.5: Graphical model reformulation as a tree

4.4.2 Tree model reformulation

When both the cardinality constraints N̄n and size of signal Tn are large, chain model

reformulation become computational-wise ine�cient, since the complexity for both time

and space grows as N̄n ⇥ Tn increases. Instead, we propose a complete full binary tree

(denoted as T (Sj

nt
, j) with depth L + 1, where j indicates the tree level, S

j

nt
is the node

78

First step Update step Final step

yn(t � 1 � �)

Tn + Tw � 1

Y
L
nt

N
L
nt

Y
j
n(2t�1)

N
j
n(2t�1) N

j
n(2t)

Y
j
n(2t)

Y
j�1
nt

N
j�1
nt

Y
0
n1

N
0
n1

Yn

In

(a) Forward algorithm

First step Update step Final step

Y
0
n1

N
0
n1

Yn

In

Yn In

Y
j�1
nt N

j�1
nt

Y
j
n(2t�1)

N
j
n(2t�1) N

j
n(2t)

Y
j
n(2t)

Yn In

Y
L
nt N

L
nt

yn(t � 1 � �)

(b) Backward algorithm

Figure 4.6: Graphical illustration of the tree forward and backward message passing
routines (reproduction of [148]).

variable at index t in jth level and L = dlog2(Tn+Tw�1)e) graph structure reformulation

of the original graphical model in Figure 4.3(a) to make the E-step calculation more

e�cient.

In the complete full binary tree structure, each node of the tree S
j

t
is considered as

the joint state node (Y j

nt
and N

j

nt
). We denote Y

j

nt
as the label set of all ancestors of

node t in level j of the nth tree and N
j

nt
as the number of non-zero class instances of all

ancestors of node t in level j of the nth tree. We present the recursive relation At the

leaf’s level, we assign the values as:

Y
L

nt = {yn(t � � � 1)|yn(t � � � 1) 6= 0},

N
L

nt = I(yn(t���1) 6=0)

for t = 1, 2, . . . , Tn + Tw � 1, and Y
L
nt = ;, N

L
nt = 0 for t = Tn + Tw, Tn + Tw + 1, . . . , 2L,

The relationship between the child node and its left parent node and its right parent

79

node is using the following recursive formula:

Y
j�1
nt

= Y
j

n(2t�1) [Y
j

n(2t) (4.15)

N
j�1
nt

= N
j

n(2t�1) + N
j

n(2t) (4.16)

for t = 1, 2, . . . , 2j�1. This reformulation gives rise to the tree model in Figure 4.5. Note

that Y
0
n1 =

S
t
{yn(t)|yn(t) 6= 0} = Yn and N

0
n1 =

P
t
I(yn(t) 6=0) which is used to determine

In.

Forward and backward message passing on the tree:

In the tree inference, the target is the same as the chain inference as to compute the

posterior probability of yn(t) = c for c 2 {0, 1, . . . , C} and t = ��, . . . , Tn�1+�. Using

a dynamic programming approach, the joint probabilities P (yn(t), Yn, In|xn; N̄n,wi) can

be computed e�ciently with the following three steps:

Step 1: Forward message passing. In this step, the goal is to compute the joint

state probabilities P (Y j

nt
, N

j

nt
|xn;✓i) for all t = 1, 2, . . . , 2j and 0  j  L. Denote an

element in the power set of all class labels in nth signal by L 2 2Yn . The forward message

is defined as

↵
j

t
(L, l) , P (Y j

nt
= L, N

j

nt
= l|xn;✓i).

At the leaf level, the forward messages are initialized as ↵
L
t (L, l) =

8
>>>>>><

>>>>>>:

P (yn(t � � � 1) = 0|xn;✓i), l = 0,L = ;;

P (yn(t � � � 1) = c|xn;✓i), l = 1,L = {c}, c 2 Yn;

0, Otherwise,

80

for t = 1, 2, . . . , Tn + Tw � 1, and

↵
L

t (L, l) =

8
>><

>>:

1, l = 0,L = ;;

0, Otherwise,

for t = Tn + Tw, Tn + Tw + 1, . . . , 2L.

The update for the forward message of the tth node in j-1th level is calculated by

marginalizing over its left parent (the (2t � 1)th message in jth level) and the right

parent ((2t)th message in jth level) as

↵
j�1
t

(L, l) =
X

A✓L

X

B✓L

lX

a=0

I(A+B=L)↵
j

2t�1(A, a)↵j

2t(B, l � a). (4.17)

We summarize the forward message step in Figure 4.6(a).

Step 2: Backward message passing. In this step, the goal is to compute the joint

state posterior probability P (Yn, In = 1|Y j

nt
, N

j

nt
, xn;✓i

, N̄n). We denote a backward

message as

�
j

t
(L, l) , P (Yn, In = 1|Y j

nt
= L, N

j

nt
= l, xn;✓i

, N̄n).

The first backward message is initialized as

�
0
1(L, l) = I(lN̄n)I(L=Yn).

The update equation for the backward messages are calculated as follows:

�
j

2t�1(A, a) =
X

E22Yn

N̄n�aX

e=0

�
j�1
t

(A [E, a + e)↵j

2t(E, e). (4.18)

81

�
j

2t(E, e) =
X

A22Yn

N̄n�eX

a=0

�
j�1
t

(A [E, a + e)↵j

2t�1(A, a). (4.19)

We summarize the backward message step in Figure 4.6(b). Note: To e�ciently calcu-

late and store the forward and backward messages, we consider the following results: (i)

↵
j

t
(L, l) = 0 for l > 2L�j + 1. (ii) �

j

t
(L, l) = 0 for l > N̄n or L /2 2Yn for j = 0, 1, . . . , L

and t = 1, . . . , 2j . Where (i) is obtained from the recursive formula of N
j

nt
in (4.16)

with the initialization of N
L
nt and (ii) is obtained from the sparsity constraint in (4.2)

and the definition of Y
j

nt
in (4.15) such that each Y

j

nt
✓ Y

j�1
nt/2 , and Y

0
n1 = L. Based on

summary (i) that ↵
j

t
(L, l) = 0 when l > 2L�j +1, and (ii) that �

j

t
(L, l) = 0 when l > N̄n,

the e↵ective calculation and actual storing of both forward and backward message is for

0  l  min(N̄n, 2L�j + 1).

Step 3: Joint probability. Finally, the numerator on the RHS of (4.11) for t =

1, . . . , Tn is computed using the backward message �
L
t (L, l) such that

P (yn(t) = c, Yn, In = 1|xn;✓i
, N̄n) = �

L

t ({c}, I(c 6=0)) ·

p(yn(t) = c|xn;wi
,bi). (4.20)

Convolutive model on tree: Based on update equation of the forward message in

(4.17), if we treat each ↵
j�1
t

message of a particular set value L as a discrete signal

↵
j�1
t

(L, t), then the update of each forward message is performing a convolution between

↵
j

2t�1(A, t) and ↵
j

2t(B, t). For the update on the backward message in (4.18) and (4.19),

the update of backward message signal �
j

2t�1(A, t) is a convolution between �
j�1
t

(A [

E, �t) and ↵
j

2t(E, t) and the update of backward message signal �
j

2t(E, t) is a convolution

between �
j�1
t

(A [E, �t) and ↵
j

2t�1(A, t).

82

4.4.3 Complexity analysis

The complexity analysis can be divided into three parts (i) prior calculation, (ii) posterior

calculation in E-step, and (iii) gradient calculation in M-step. We evaluate both prior

probability and gradient update by forming (C + 1) ⇥ F number of convolutions in the

time domain for the nth signal. Therefore, the time complexity for both (i) and (iii)

is O(
P

N

n=1(C + 1)FTnTw). The space complexity is O((C + 1)F (Tn + Tw � 1)) and

O((C + 1)FTw) respectively.

On the posterior calculation of the E-step, the chain forward and backward mes-

sages require to run over all possible values of yn(t) and the previous state values of

Y
t�1
n 2 2Yn and 0  N

t�1
n  N̄n. Therefore the overall time and space complexity

is O(
P

N

n=1 |Yn|2|Yn|(Tn + Tw)N̄n) and O(2|Yn|(Tn + Tw)N̄n) respectively. To formulate

the tree forward and backward messages, we need to run over all possible values of

the previous two parents’ states. Therefore the resulting time and space complexity is

O(
P

N

n=1 4|Yn|(Tn + Tw)(log2 N̄n)2) and O(2|Yn|(Tn + Tw) log2 N̄n) respectively.

4.5 Prediction

In addition to identifying the analysis words wc, the discriminative model allows for the

prediction of time instance labels yn(t) for both labeled and unlabeled signals as well for

the prediction of the signal label. Given a test signal x
test
n (t) for t = 1, 2, . . . , Tn, the goal

is to predict the time instance label signal ŷn(t) and the signal label Yn.

83

4.5.1 Time instance prediction:

For an unlabeled test instance xtest
nt , the predicted label is

ŷ
test
n (t) = arg max

0cC

P (yn(t) = c|xtest
n ;w,b).

4.5.2 Signal label prediction:

For an unlabeled test signal x
test
n , the predicted signal label set using the union rule is

Ŷ
U

n = [Tn�1+�

t=��
{ŷ

test
n (t) | ŷ

test
n (t) 6= 0}.

Alternatively, the signal label can be predicted by maximizing a posterior probabil-

ity (MAP) rule:

Ŷ
P

n = arg max
A2{0,1}C

P (Yn = A, In = 1|xtest
n ; N̄n,w,b),

where,

P (Yn = A, In|xtest
n ; N̄n,w) =

P
N̄n
l=0 ↵Tn�1+�(A, l).

4.6 Results and Analysis

In this section, we first present a runtime comparison between chain and tree model

reformulations of the E-step inference. We continue by evaluating the performance of

the proposed approach using synthetic datasets and real world datasets.

84

4.6.1 Run time analysis

10 10
3

10
4T

n

10
-4

10
0

10
2

R
u

n
 t

im
e

O(T
2

n
)

O(T
n
)

(a) N̄n/Tn = 0.2

1 2 4 5|Y
n
|

10
-6

10
-4

10
0

10
2

R
u

n
 t

im
e

(b) N̄n/Tn = 0.5

0.1 0.4 0.8 1

10
-4

10
-2

10
0

R
u
n
 t

im
e

(c) |Yn| = 2

Figure 4.7: Running time versus Tn, |Yn|, N̄n. (Blue color for chain and red color for tree
algorithm. (a) � : |Yn| = 1, ? : |Yn| = 3, ⇧ : |Yn| = 5. (b)-(c) � : Tn = 50, ? : Tn = 500,
⇧ : Tn = 5000.) (reproduction of [148])

The computational complexity is due to three main calculations namely the prior

calculation, the posterior calculation and the gradient calculation in the M-step. Since

the posterior calculation dominates the computational complexity and since we have

focused on developing an e�cient computation for this step, the following results are on

the runtime analysis of the posterior calculation during the E-step based on the chain and

the tree reformulations of our model. We used a randomly generated prior probability

as an input to the posterior calculation. We illustrate the relationships between the

E-step posterior calculation time and the number of classes per signal |Yn|, the number

of time instances per signal Tn, the sparsity regularization per signal N̄n, we vary |Yn| 2

{1, 2, 3, 4, 5}, Tn 2 {5, 10, 20, 50, 100, . . . , 10000} and N̄n/Tn 2 {0.1, 0.2, . . . , 1.0}.

Figure 4.7(a) shows the posterior calculation time per signal based on the tree re-

formulation grows in a nearly-linear rate with respect to Tn when setting the sparsity

level to 0.2Tn. In addition, it shows the chain based inference time grows quadrati-

cally in Tn when Tn > 100. However, the chain reformulation is more e�cient than

85

Tn 5 50 500 5000 10000
N̄n/Tn = 0.2, |Yn| = 2

chain 0.024ms 0.08ms 4.27ms 0.55s 2.32s
tree 0.074ms 0.84ms 11.80ms 0.21s 0.39s

N̄n/Tn = 0.5, |Yn| = 2
chain 0.028ms 0.13ms 10.20ms 1.19s 5.52s
tree 0.071ms 0.95ms 13.97ms 0.23s 0.46s

N̄n/Tn = 0.2, |Yn| = 5
chain 0.046ms 0.63ms 0.06s 10.32s 45.34s
tree 0.95ms 28.11ms 0.52s 9.29s 22.25s

N̄n/Tn = 0.5, |Yn| = 5
chain 0.074ms 1.21ms 0.16s 24.39s 198.78s
tree 0.90ms 37.91ms 0.57s 11.15s 27.00s

Table 4.2: Runtime values for the chain-based and the tree-based E-step calculation as
a function of Tn for four scenarios.

the tree approach when Tn is small or when |Yn| is large. Even though Figure 4.7(b)

shows the posterior calculation time is exponential with respect to |Yn|, the number of

classes per signal is usually a small number in practice (see [94]). Figure 4.7(c) exhibits

a near-constant runtime with respect to the sparsity factor N̄n/Tn for the tree inference.

Runtime values for both models are shown in Table 4.2.

4.6.2 Synthetic datasets and results

In designing the synthetic datasets, our goal is to test the performance of the proposed

algorithms on di↵erent types of data both in terms of the dimension of the data and

whether a generative or discriminative approach is taken for the data generation mech-

anism.

Data generation: Below we describe the two synthetic datasets.

(i) Gabor basis dataset: This dataset is constructed with nine di↵erent Gabor filters

86

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

Figure 4.8: Nine Gabor basis used in the experiment (reproduction of [148]).

as 1-D signal templates as shown in 4.8(a):

s(a,f)(t) = cos (2⇡ft) e
�

t2

2a2 , for t = �20, �19, . . . , 20

by setting a = 1, 2, 3 and f = 0.1, 0.2, 0.3. Each of the nine templates is used to generate

signal of a particular class. The data is generated as follows. 1). First, we generate the

label sets using a fixed proportion such that 50% contains only a single label, 20% contain

two, 20% contain three, and 10% contain no label and are pure noise. The labels in the

label set are generated by sampling uniformly with replacement from the nine classes

until the target size is reached. 2). Given a non-empty label set Yn, to generate its signal

xn, we first decide mn, the number of active time instances in the signal that contain true

templates, by randomly choosing between |Yn| and |Yn| + 1 for |Yn|  2 and sampling

uniformly from |Yn| to 10 for |Yn| > 2. 3) For each active time instance k 2 {1, ..., mn}, its

exact location tk is sampled uniformly without replacement from 1 to Tn = 200, its class

label ck is uniformly sampled from Yn, and its scaling factor Ak is sampled from U[1, 2].

87

4) We then generate y
n
c (t) =

P
mn
k=1 AkI(c�ck)I(t�tk) for each class c and generate the signal

x̃n =
P9

c=1 y
n
c ⇤ s

c, where s
1(t) = s(1,0.1)(t), s

2(t) = s(1,0.2)(t), . . . , s
9(t) = s(3,0.3)(t). 5)

Lastly, we generate the final xn by adding to x̃n the white Gaussian noise, whose variance

is set to �
2 = E/(TnSNR) = E/(Tn10SNRdB/10). Here E is the average signal energy of

all x̃ns and we use SNRdB to control the signal to noise ratio for our final data.

(ii) Binary patterns dataset: For this dataset, we work with 2-D signals and

generate the data following the discriminative assumption. First we randomly generated

200 binary sequences of size 3⇥200 as synthetic 2-D signals (N = 200, F = 3, T = 200).

For each generated 2-D signal, we then determined the label for each of its time instance

t by matching the 3 ⇥ 3 sub-window starting at t to three pre-defined class-specific

templates2 shown in Figure 4.10(a). The label was set to 1, 2 or 3 if the sub-window

matched the template of class 1, 2 or 3 respectively, and 0 otherwise. After all time

instance labels were created, the signal label was set to the union of its corresponding

instance labels.

Experimental setting: To demonstrate the performance of the proposed approach, we

used 10 random splits of 100 signals and trained on each split of 80% data and tested on

the rest 20% data. For each random split, we denote it as one Monte-Carlo (MC) run.

We evaluated the performance on the test data with all 10 MC runs to find kernel size Tw,

regularization term �r, and the cardinality constraints N̄n. For the Gabor basis dataset,

we first tuned the model parameters by evaluating the average signal label prediction

accuracy with �r 2 {10�8
, 10�6

, 10�4
, 10�2

, 100, 102} and Tw 2 {5, 10, 20, 40, 60, 80} .

The iteration number was set to 10, 000. Using cross-validation for prediction accuracy,

we found the optimal �r and Tw and used those to present the prediction performance as

2These class templates are defined by selecting the most frequent 3 patterns in the generated 2-D
signals.

88

a function of the cardinality constraint parameter N 2 {5, 10, 20, 50, 100, 200} (setting

N̄1, . . . , N̄N = N) and the SNRdB 2 {�10, �5, 0, 5, 10, 15, 20, 25} (see Figure 4.9(a)).

For the binary patterns dataset, we tune the kernel size Tw 2 {1, 3, 5, 10}, regulariza-

tion term �r 2 {10�6
, 10�4

, 10�2
, 100} and the cardinality constraint N̄n 2 {3, 5, 10, 50, 100}.

Benchmark competing algorithm - A generative dictionary learning followed

by logistic regression (GDL-LR) approach: To the best of our knowledge, we

are unaware of other weak-supervision methods for convolutive dictionary learning. In

order to provide a benchmark, we considered a two-step approach: a generative con-

volutive dictionary learning method followed by a classifier.3 For the implementation

of the generative dictionary learning method, we chose [104] (used previously on the

HJA dataset) and constructed a generative dictionary D = {d1, d2, . . . , dK}. We used a

matched filter approach to compute a test statistic for each of the K dictionary works

as maxt d̃k ⇤ x
train
n |t, where d̃k is a time reversed version of dk (d̃k(t) = dk(�t)). We

combined the K test statistics into one feature vector and trained C logistic regression

classifiers based on the feature vectors and their corresponding binary labels indicating

the presence and absence of a class c 2 {1, 2, . . . , C}. We use the resulting C classifiers in

our performance evaluation for instance level classification and for signal classification.

Using the 10 MC runs, we evaluated the proposed GDL-LR approach by trained on

a fixed number of 5000 outer iterations as in [104]. We vary the dictionary window size

Td 2 {5, 10, 20, 40, 60, 80}, sparsity regularization �s 2 {10�8
, 10�6

, 10�4
, 10�2

, 100, 102}

and the number of dictionary words K 2 {3, 5, 7, 9, 15, 18} for the Gabor basis dataset.

For the binary patterns dataset, we vary Td 2 {1, 3, 5, 10}, sparsity regularization �s 2

{10�4
, 10�2

, 1, 5} and K 2 {3, 7, 9, 15}.

3Although the two steps can be combined to yield improved performance, the combination of the
two steps requires further research beyond the scope of this paper.

89

Evaluation metric: In computing the instance level detection area-under-the-curve

(AUC), we calculate an AUC for each class c and obtain AUC = 1/C
P

c
AUCc. For

each class c, we obtain the ground truth based on the presence and absence of a given

class c at each time stamp t = 0, . . . , Tn � 1 and use Pt = P (yn(t) = c|xtest
n ;w,b) as a

test score [76].

The signal level detection AUC is obtained based on AUCc for all c = 1, 2, . . . , C.

For each class c, the AUCc is obtained based on the signal level ground truth and the

corresponding test score defined as 1 �
Q

Tn�1+�

t=��
(1 � Pt).

Results on synthetic datasets: (i) Gabor basis dataset: Based on the highest

prediction accuracy, the hyper-parameters of our WSCADL approach are set to be �r =

10�4 and Tw = 40 via the aforementioned cross-validation. The hyper-parameters on the

GDL-LR approach are set to be �s = 1, K = 9 and Td = 40. The optimal window size

is learned to be 40, which is close to the ground truth Gabor basis length. We believe

the kernel size should at least cover the length of the signal patterns to obtain a good

performance. If the kernel size is set to be too large, over-fitting may occur. For the

proposed WSCADL approach and the competing GDL-LR framework, we observe that

the prediction performance increases when SNRdB increases in Figure 4.9(a). While the

two methods perform similarly at low SNRdB values, but for medium and high values

the proposed WSCADL approach outperforms the competing GDL-LR approach.

To show the importance of the cardinality constraints, we present the signal label

accuracy of the proposed approach, average instance-level and signal-level detection AUC

as a function of the cardinality parameter N̄n in Figure 4.9(b). As Figure 4.9(b) shows,

when N̄n < 20, the signal label accuracy and signal-level AUC drops significantly. We

suspect that this setting forces some of the non-zero instance labels to be predicted as

zero both in the training and test. When N̄n > 20, the performance drops gracefully.

90

-10 -5 0 5 10 15 20 25

SNR (dB)

0

0.2

0.4

0.6

S
ig

n
al

 l
ab

el
 a

cc
u
ra

cy

0.6

0.8

1
A

v
g
.
In

s.
 A

U
C

0.6

0.8

1

A
v
g
.
S

ig
.
A

U
C

(a) N̄n = 20

3 5 10 20 50 100 200

0.2

0.4

0.6

S
ig

n
al

 l
ab

el
 a

cc
u
ra

cy

0.9

1

A
v
g
.
in

s.
 A

U
C

s

0.9

1

A
v
g
.
si

g
.
A

U
C

s

True Maximum Cardinality

(b) SNRdB = 10

Figure 4.9: Gabor basis dataset performance metrics for the WSCADL approach (solid
�) and the GDL-LR approach (dashed ⇧) as a function of SNRdB in (a), and for the
WSCADL approach as a function of N̄n in (b) (reproduction of [148]).

In this setting, we allow some of the zero instance labels to be predicted as non-zero.

From Figure 4.9(b), the optimal N̄n is 20 in terms of signal label accuracy. We also

observe the average instance-level AUC reaches the peak when N̄n = 10, which is the

ground truth maximum cardinality in the data. However, the average signal-level AUC

and signal label accuracy reaches peak when N̄n = 20, which is slightly higher than the

ground truth.

To evaluate the performance in terms of AUC, we fixed SNRdB to be 20. We present

the detection AUC performance for both methods in Table 4.3. Comparing the instance

level and the signal detection performance from class 1 to 7, we observe that our proposed

WSCADL approach outperforms the GDL-LR approach. For class 8 and 9, the GDL-LR

approach detection AUCs is comparable to our WSCADL and sometimes, the AUCs for

the GDL-LR approach is slightly higher than our approach. The variance of the detection

91

AUCs for the GDL-LR approach is mostly higher than our WSCADL approach. We

suspect that since the GDL-LR approach performs an unsupervised dictionary learning

followed by a classifier training in a separate fashion, the resulting words may have

large variability. We believe that this can be fixed by combining the two steps into one.

However, due to the weak-supervision setting, the combined approach is a non-trivial

extension, which to the best of our knowledge is unavailable. Hence, we provide the

results for the two-step approach only.

Class WSCADL-ins. WSCADL-sig. GDL-LR-ins. GDL-LR-sig.
c=1 99.09±1.94 99.89±0.36 92.68±4.33 91.77±5.18
c=2 99.95±0.02 96.74±2.40 90.74±12.78 81.92±7.83
c=3 99.26±1.97 99.67±0.72 95.45±10.33 90.00±5.84
c=4 96.80±7.34 97.65±1.72 90.40±9.67 87.85±5.46
c=5 99.75±0.10 92.84±2.15 97.27±2.65 86.56±7.60
c=6 97.96±2.92 95.63±5.30 93.24±6.77 89.58±4.85
c=7 87.83±17.19 94.32±9.89 81.26±15.95 83.73±15.15
c=8 98.40±2.08 94.84±4.12 93.93±4.86 96.54±3.49
c=9 94.96±5.18 85.59±5.29 96.22±5.16 97.95±1.21

Table 4.3: Gabor basis dataset: Detection AUCs (%) for the WSCADL and the GDL-LR
approaches with optimal tuning parameters

(ii) Binary patterns dataset: The hyper-parameters are set to be �r = 10�2,

N̄n = 3 and Tw = 5 via the aforementioned cross validation. The optimal kernel size

3 ⇥ 5 is slightly higher than the ground truth window size 3 ⇥ 3. For the GDL-LR

approach, the optimal dictionary window size Td is 5, sparsity constraint �s is 1 and the

number of dictionary words K is 15.

The learned WSCADL words in Figure 4.10(b) and the learned GDL-LR words in

4.10(c) show that WSCADL is able to recover the true patterns while the GDL-LR

approach fails. Figure 4.10(d) and (e) also shows that WSCADL can localize the cor-

responding class patterns ideally while the GDL-LR approach is failing in this task.

The resulting detection AUCs in both WSCADL and GDL-LR approaches are shown in

92

c=1

2 4

1

2

3

c=2

2 4

1

2

3

c=3

2 4

1

2

3

c=1

2 4

1

2

3

c=2

2 4

1

2

3

c=3

2 4

1

2

3

(a) True pattern

(b) Learned WSCADL words (c) Learned GDL-LR words

0 1 0

60 70 80 90 100 110 120

1

2

3

60 70 80 90 100 110 120

2

0

1 0 0

140 150 160 170 180 190 200

1

2

3

140 150 160 170 180 190 200

2

0

0 0 1

60 70 80 90 100 110 120

1

2

3

60 70 80 90 100 110 120

2

0

(d) Localization for WSCADL

0 1 0

60 70 80 90 100 110 120

1

2

3

60 70 80 90 100 110 120

2

0

1 0 0

140 150 160 170 180 190 200

1

2

3

140 150 160 170 180 190 200

2

0

0 0 1

60 70 80 90 100 110 120

1

2

3

60 70 80 90 100 110 120

2

0

(e) Localization for GDL-LR

Figure 4.10: Binary patterns dataset setting and results (reproduction of [148]).

93

Table 4.4.

Class WSCADL-ins. WSCADL-sig. GDL-LR-ins. GDL-LR-sig.
c=1 100.00±0.00 99.59±1.08 57.92±17.20 48.11±5.18
c=2 100.00±0.00 99.34±0.62 60.16±18.93 56.64±8.63
c=3 100.00±0.00 99.78±0.45 56.30±8.77 51.89±10.97

Table 4.4: Binary patterns dataset: Detection AUCs (%) for the WSCADL and the
GDL-LR approaches with optimal tuning parameters

Due to the discriminative nature of the data, our proposed WSCADL model outper-

forms the GDL-LR approaches significantly. Since the data was not constructed as a

linear combination of dictionary words, the GDL-LR approach was not able to recover

a dictionary that could reconstruct the data accurately. Under the discriminative data

generation setting, the GDL-LR approach can reproduce the original data only when

the sparsity constraint is relaxed. However, regardless of sparsity the GDL-LR approach

seems to perform poorly on classification. We suspect that this is due to the lack of

discriminative power in the GDL-LR dictionary words obtained.

4.6.3 Real-world datasets and results

Dataset description: Below we describe the two real-world datasets.

(i) AASP challenge - o�ce live scene dataset: This dataset consists of audio

recordings of sounds taken in an o�ce environment [38]. The training dataset consists

of 20 to 22 individual events (such as door slam, phone ringing, and pen drop) recording

with varying time from 0.05s to 20s for 16 various class. The test dataset contains seven

roughly three minutes long o�ce live sound recordings, where each single recording is

multiple labeled. The task is to detect the presence and absence of events on the test

set.

94

(ii) HJA bioacoustic dataset: The HJA dataset contains 548 labeled 10-second

recordings of 13 di↵erent bird species. The audio recordings of bird song are collected

at the H. J. Andrews (HJA) Experimental Forest, using unattended microphones [14].

Each recording may contain multiple species.

Data preprocessing: For AASP challenge o�ce live training dataset, we compared

our proposed approach with the supervised dictionary learning approaches. Since the

competing supervised dictionary learning algorithms use a fixed size feature vector, we

created a fixed duration training signals from the various duration training data. For a

fair comparison, we used this modified short duration training data for all algorithms.

The fixed short duration training data is selected to be 1 sec duration because (i) most

single occurrence of a sound event lasts less than 1 second and (ii) over 80% of the

recordings are around 1sec duration. Recordings longer than 1s were chunked into 1s

duration signals. Recordings shorter than 1s were extended to 1s using the last sample

value. Note that our proposed WSCADL algorithm does not require the aforementioned

preprocessing as it can handle varying signal length. To perform a detection task on

the test audio with 3 minutes long, we chunk the test recordings into 10s and apply the

following procedures.

For both datasets, each audio recording was applied with (i). Spectrogram genera-

tion: FFT is applied to each windowed signal with 16ms window size of 0.9 overlap ratio

and the number of FFT bins is twice of the window samples; (ii). Noise whitening: each

column on the spectrogram was divided by the noise spectrum [14]. (iii). Spectrogram

down-sampling: a Matlab built-in imresize function is applied (For o�ce live dataset on

experiment 1, training spectrogram is down-sampled from R707⇥612 to R256⇥200 and test

spectrograms are from R707⇥6120 to R256⇥2000, on experiment 2, spectrograms are down-

sampled from R707⇥6120 to R256⇥200. For HJA dataset, spectrograms are from R256⇥1249

95

to R256⇥200).

Experimental setup: Below we present two real-world experimental setting.

(i) O�ce live experimental setting: we considered two experiments. In the first

experiment, we trained on the training dataset, which consists of the 1s duration training

examples, and tested on the 10sec-long recording test set. In the second experiment, we

use the 10sec-long recordings for both training and test.

Experiment 1: For cross-validated parameter tuning, we trained on 80% of the

original labeled data and validated on the independent 20% of the data. Parameter

tuning was performed for all dictionary learning approaches and the parameters that

yielded the highest prediction accuracy were selected. For tuning our approach, we

set the dictionary window size Tw 2 {10, 20, 30, 40}, the cardinality constraint N̄n 2

{5, 10, 60, 100, 200} along with a regularization term �r 2 {10�6
, 10�4

, 10�2
, 10�1

, 1, 10}.

Using the learned WSCADL words for the optimal tuning parameter value, we evaluated

both signal and instance level detection performance on the test set. For the other

supervised dictionary learning approaches, it is not easy to perform the detection task

since their approaches are non-convolutive.

Experiment 2: We trained on 80% of the sub-sampled test set along with the signal

labels generated by the union of event ground truth labels. For choosing the optimal

model parameters, we considered the same range as in experiment 1. We evaluated the

detection performance on the remaining 20%.

(ii) HJA bioacoustic experimental setting: For cross-validated parameter tun-

ing, we trained on 80% of the training data and evaluated the performance on the

independent 20% of the data. The tunning parameters considered were: the window

size Tw 2 {10, 20, 50, 100}, the cardinality constraint N̄n 2 {10, 20, 40, 60, 100, 160, 200}

and the regularization term �r 2 {10�6
, 10�4

, 10�2
, 10�1

, 100, 101}. After we learned the

96

analysis words for the optimal tuning parameter value, we used the dictionary to predict

the signal label on the test set.

Real-world results: Below we present the results on two real-world datasets.

Experiment-ins./sig. minimum class mean over class maximum class
1-instance 40.90±1.99 53.29±1.00 65.66±0.14
2-instance 36.57±18.60 54.75±3.32 77.65±16.74
1-signal 45.57±4.62 64.23±0.39 95.12±4.62
2-signal 45.58±9.18 70.19±3.54 99.88±9.18

Table 4.5: Instance level and signal detection AUCs (%) for both experiments across five
MC runs.

(i) O�ce live event detection: We compared our WSCADL approach with dis-

criminative dictionary learning approaches: sparse representation-based classification

(SRC) [134]; label consistent K-SVD (LCKSVD1,LCKSVD2) [51]; dictionary learning

with structured incoherence and shared features (DLSI) [99]; Fisher discrimination dic-

tionary learning (FDDL) [140]; dictionary learning for separating the particularity and

the commonality (COPAR) [54]; fast low-rank shared dictionary learning for object clas-

sification (LRSDL) [118].

For our proposed approach, the optimal tuning parameters found are window size

Tw = 10, the regularization term �r = 10�4 and the cardinality parameter N̄n = 10

as shown in Figure 4.11, which presents the performance of our proposed WSCADL

approach on varying cardinality parameter N̄n for the AASP dataset. Setting the car-

dinality parameter less than or larger than the optimal value reduces the accuracy. For

all other discriminative dictionary learning algorithms, the parameters values are tuned

with cross-validation. The SRC algorithm uses all training examples as dictionary. In

LCKSVD1 and LCKSVD2, DLSI and FDDL, 10 dictionary words per each class are used

97

5 10 60 100 200
0

0.5

1

A
cc

u
ra

cy

Top 1

Top 3

0

0.5

1

P
re

ci
si

o
n

0

0.5

1

R
ec

al
l

Figure 4.11: Prediction accuracy as a function of the cardinality parameter N̄n on the
AASP dataset (reproduction of [148]).

so that the total number of dictionary atoms is 160. In COPAR and LRSDL algorithms,

10 dictionary words per class are used with 5 shared dictionary atoms. However, in the

proposed WSCADL algorithm, we assign total of 16 dictionary words therefore only 1

dictionary word is learned to predict each class. The proposed model is limited to 16

words in total since the model uses a single word per class. Potential extensions to allow

more words per class may be considered as future work.

Figure 4.12(a) shows that our proposed method outperforms other discriminative

dictionary learning approaches except SRC. Additionally, our approach outperforms all

others on predicting whether the true class is among the ranked three classes as shown

in Figure 4.12(b). The instance and signal label detection receiver operating curves

(ROCs) for the proposed method are shown in Figure 4.12(c) and (d), and the resulting

AUCs are shown in Table 4.5). The average and maximum detection AUCs across 16

98

Table 4.6: Signal evaluation metrics (%) for various methods on HJA dataset. # (")
next to a metric indicates that the performance improves when the metric is decreased
(increased). The results from column MLR to M-NN are extracted from Table 4 in [94].

Method WSCADL GDL-LR MLR SIM Mfast LSB M-SVM M-NN

Ham-loss 05.5±0.0
P

06.1±0.8 09.6±1.0 15.9±1.5 05.5±1.1 10.6±1.5 04.5±0.6 04.7±1.1

rank loss 02.2±0.4 03.0±0.7 02.7±0.6 02.2±0.8 02.5±0.7 06.9±1.8 02.7±1.1 02.7±1.1

" avg. prec. 94.6±0.6 92.4±0.8 94.2±1.2 94.1±1.8 94.1±1.4 89.7±2.6 94.0±2.0 93.9±2.8

one error 04.6±1.8 07.0±2.0 03.8±1.8 05.1±3.1 03.7±2.4 03.7±1.7 04.6±2.6 05.3±4.4

coverage 16.2±0.9 17.0±1.9 13.9±1.6 12.4±1.6 13.4±1.6 21.7±3.6 13.2±1.6 13.4±1.3

classes for instance and signal are slightly higher in experiment 2 than experiment 1,

while the minimum AUCs are lower. The detection AUC for the best performing class

in experiment 2 is close to 100%, which indicates that WSCADL is able to discover that

class perfectly for each test recording. Moreover, the potential of the proposed approach

is demonstrated using experiment 2, in which only weak-supervision is provided. Despite

this limiting setting, the average AUCs in experiment 2 are comparable or higher than the

average AUCs reported in experiment 1 in which a single label per example is provided.

This illustrates the potential in the label-economic weak-supervision setting and the

potential of the proposed approach under this setting.

(ii) HJA bioacoustic classification:

We compared our proposed WSCADL approach with the GDL-LR approach that

both are dictionary learning based approaches, and with methods that perform segmen-

tation and multi-instance multi-label (MIML) leaning approaches: MLR [94], SIM [16],

MIMLfast (short for Mfast) [43], and LSB-CMM (short for LSB) [69]. MIMLSVM (short

for M-SVM) [156] and MIMLNN (short for M-NN) [153, 157].

We evaluated all of the approaches using multi-label evaluation metrics from [157].

The results indicate that the proposed WSCADL approach outperforms GDL-LR for

all metrics considered. Additionally, the proposed approach shows a slight advantage

in terms of rank loss and average precision over the other MIML algorithms. For one

99

Methods
0

20

40

60

80

100

LCKSVD1
LCKSVD2

DLSI
FDDL

COPAR

LRSDL

MLR

SRC WSCADL

(a) Top 1

Methods
0

20

40

60

80

100

SRC

LCKSCD1 DLSI

LCKSCD2

FDDL

COPAR

LRSDL
MLR

WSCADL

(b) Top 3

0 0.5 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P

R

experiment2-mean
experiment2-max
experiment2-min
experiment1-mean
experiment1-max
experiment1-min

(c) Instance level ROC

0 0.5 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P

R

experiment2-mean
experiment2-max
experiment2-min
experiment1-mean
experiment1-max
experiment1-min

(d) signal ROC

Figure 4.12: Classification accuracy (%) for the o�ce live training data with mean and
standard deviation over 5 MC runs with (a) selecting top 1 class and (b) selecting top 3
classes. Detection ROCs for (c) time instance level and (d) signal of both experiments
(reproduction of [148]).

100

error and Hamming loss the proposed approach is comparable in performance to the

other MIML approaches. Our approach is outperformed by some of the alternative

MIML approaches in terms of coverage. The results from column MLR to M-NN in

Table 4.6 are directly extracted from Table 4 in [94]. Note that the alternative MIML

approaches from MLR to M-NN involve a process of converting spectrograms into a bag-

of-words using segmentation and feature extraction for each segment while the proposed

WSCADL approach and GDL-LR are directly applied to the raw spectrograms. We

suspect that the disadvantage observed with the alternative MIML approaches (based

on the bag-of-words representation) is due to error propagation from the segmentation

and feature extraction steps, which are not jointly optimized for MIML classification.

101

Chapter 5: Weakly-supervised dictionary learning with multiple

clusters 1

In reality, the previously proposed dictionary learning uder the weak-supervision setting,

which considers a single dictionary atom per class, may not capture the richness of

patterns in data. We consider a slight generalization of the aforementioned model by

assuming K dictionary words per class, wc.1, . . . ,wc.K for class c. Dictionary words are

analogous to dictionary atoms in synthesis dictionary learning.

5.1 The probabilistic modeling

Define the observed data as D = {X , Y, I1, . . . , IN} with In’s all equal to 1, the hidden

data as H = {y1, . . . ,yn}, the unknown parameters as w = [wT

0.1,w
T

0.2, . . . ,w
T

C.K
]T ,b =

[b0.1, b0.2, . . . , bC.K]T , and the tuning parameters as ✓ = {N̄1, . . . , N̄N}. The probabilis-

tic graphical model for including a cluster component in weakly-supervised convolutive

analysis dictionary learning (MC-WSCADL) is shown in Fig. 5.1.

To index a specific word within a class, we introduce a cluster label znt 2 {0, . . . , C}⇥

{1, . . . , K}. The probability of the cluster label znt is modeled using multiple-class

1This chapter is a joint work with Dr. Raviv Raich, Xiaoli Fern and Jinsub Kim. This work was
published as: Zeyu You, Raviv Raich, Xiaoli Z. Fern, and Jinsub Kim. “Weakly-supervised analysis
dictionary learning with cardinality constraints.” In 2016 IEEE Statistical Signal Processing Workshop
(SSP), pp. 1-5. IEEE, 2016.

102

Signal
labeler

Sparsity
regularization

xnt yn(t)

w,b

Yn In
Tn + Tw � 1

N̄n

N

Clustering

znt

Figure 5.1: The proposed graphical model for MC-WSCADL (reproduction of [146]).

logistic regression [96]

P (znt = c.k|xn;w,b) =
e
w

T
c.kxnt+bc.k

P
C

u=0

P
K

v=1 ew
T
u.vxnt+bu.v

. (5.1)

Moreover, the instance class label signal yn(t) 2 {0, . . . , C} is simply the class term

in znt hence the probabilistic model for yn(t) given znt is given by P (yn(t) = u|znt =

c.k) = I(u = c). Consequently, the class label probability model can be obtained by

marginalizing out znt as follows

P (yn(t) = c|xn;w,b) =

P
K

k=1 e
w

T
c.kxnt+bc.k

P
C

u=0

P
K

v=1 ew
T
u.vxnt+bu.v

. (5.2)

In the rest of the paper, we consider only ybt as the latent portion of the model. The

probabilistic model for In and Yn follows equations (4.2) and (4.3), respectively.

Complete and incomplete data likelihood: According to the probabilistic graphical

model shown in Figure 5.1, the complete data likelihood follows the equation in (4.4)

and the incomplete data likelihood follows the equation in (4.5). Calculating the incom-

plete data likelihood in (4.5) involves enumerating all possible instance labels, which is

computationally intractable especially when the number of instance is large.

103

5.2 Solution approach

To resolve this, we consider an expectation maximization (EM) approach [80]. Specif-

ically, the EM algorithm alternated between the expectation over the hidden variable

and maximization of the auxiliary function as the following two steps:

• E-step: Compute Q(✓,✓i) = Ey|D;✓i [log P (y,D;✓)].

• M-step: ✓i+1 = arg max✓ Q(✓,✓i)

The auxiliary function for the proposed model is given by

Q(✓,✓i) =
P

N

n=1

P
Tn
t=1[

P
C

c=0 P (yn(t) = c|D; N̄n,✓i) ·

log(
P

K

k=1 e
w

T
c.kxbt+bc.k) � log(

P
C

u=0

P
K

v=1 e
w

T
u.vxbt+bu.v)] + const.

Inference on E-step: Exact E-step inference has been proposed in [146], the goal is to

obtain posterior probability P (yn(t) = c|Yn, xn, In; N̄n,✓i), which requires the following

three steps:

(i) Calculation of the prior probability requires computing C⇥N convolutions between

each signal xn and each class analysis dictionary wc.

(ii) Forward message passing algorithm to compute each time step P (Y t
n, N

t
n;xn;✓i),

where Y
t
n is defined as union set up until the tth time instances and N

t
n is the

cardinality up until tth time instances.

(iii) Backward message passing algorithm to compute each P (Yn, In = 1|Y t
n = L, N

t
n =

l, xn;✓i
, N̄n).

Finally, we can obtain the posterior probability by the joint probably P (yn(t) = c, Yn, In|

xn, N̄n,✓i) and apply the bayes rule.

104

Update on M-step: To update dictionary words, we maximize the auxiliary function

Q. Since Q is a di↵erence of convex functions, we apply the convex-concave procedure

(CCCP) [151] to surrogate for Q denoted by Q̃(✓,✓i). Using the gradient ascent method,

we obtain the update rule as follows:

wi+1
c.k

= wi

c.k
+ �

@Q̃(✓,✓i)

@wc.k

|w=wi , b
i+1
c.k

= b
i

c.k
+ �

@Q̃(✓,✓i)

@bc.k |b= bi
, (5.3)

where

@Q̃(✓,✓i)

@wc.k

=
P

N

n=1

P
Tn
t=1[P (yn(t) = c|Ynxn, In; N̄n,✓i) ·

e
w

iT
c.kxnt+b

i
c.k

P
K

v=1 ew
iT
c.vxbt+bic.v

� e
w

T
c.kxnt+bc.k

P
C

u=1

P
K

v=1 ew
T
u.vxnt+bTu.v

]xnt. (5.4)

and

@Q̃(✓,✓i)

@bc.k
=

P
N

n=1

P
Tn
t=1[P (yn(t) = c|Ynxn, In; N̄n,✓i) ·

e
w

iT
c.kxnt+b

i
c.k

P
K

v=1 ew
iT
c.vxbt+bic.v

� e
w

T
c.kxnt+bc.k

P
C

u=1

P
K

v=1 ew
T
u.vxnt+bTu.v

]. (5.5)

5.3 Simulations

In this section, we evaluate the performance of the proposed approach in terms of pre-

diction accuracy at the instance level and at the signal level.

Setting: we randomly generate B 2 {100, 200} synthetic spectrograms with height

(number of frequency bins) F = 10 and width (time frames) T 2 {50, 100} using three

di↵erent class shapes and two di↵erent cluster shapes. We use T � 6 maximally over-

lapped 10⇥7 windows of the spectrograms as instances. The synthetic spectrograms are

105

(a) One cluster data (b) Two cluster data

Figure 5.2: (a). Signal labels: Y1 = {2}, Y2 = {1, 2}, Y3 = {1, 2, 3}; (b). Signal labels:
Y1 = {1, 2, 3}, Y2 = {2}, Y3 = {1, 2, 3} (reproduction of [146]).

generated by randomly placing one of the predefined shapes into the corresponding po-

sition based on the instance label. The instance label for each spectrogram is generated

from a Dirichlet distribution with high prior on the novel class. To make the synthetic

dataset close to the real-world dataset, each spectrogram contains some phenomenon of

overlapping with di↵erent classes and each syllable shape is at di↵erent intensity level

for the same class, see Fig. 5.2 for an example.

Empirical Performance Analysis: In this part, we evaluate both instance prediction

accuracy and signal level prediction accuracy of our proposed method by varying di↵erent

values of the sparse regularization parameter. In order to make a comparison, we propose

a fully-supervised convolutive analysis dictionary learning (FSCDL). In FSCDL training,

we feed the true instance label as the posterior probability of yn(t)’s to the M-step,

and we perform a gradient ascent updates of the weights in (5.3). N̄n is set to be in

{5, 10, 15, 20, 25, 30, 35, 40}, when we choose T = 50. We use 10 fold cross-validation

with 80 training spectrograms and 20 independent test spectrograms to examine both

instance prediction accuracy and the signal level prediction accuracy. To guarantee

the boundedness of the solution, we add an L2-regularization term �
P

ck
kwc.kk2 with

� = 0.0001 to the M-step. The discriminative dictionary by setting C = 3 learned in

106

both WSCDL approach and FSCDL approach are shown in the Fig. 5.3(a)-(e). The

prediction accuracy for the one cluster dataset and two cluster dataset are shown in the

Fig. 5.3(f)-(g).

(a) (b) (c) (d) (e)

Nbmax
0 5 10 15 20 25 30 35 40 45

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

0

0.2

0.4

0.6

0.8

1

FSCDL instance accuracy
WSCDL instance accuracy
FSCDL signal accuracy
WSCDL signal accuracy

(f)

Nbmax
0 5 10 15 20 25 30 35 40 45

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

0

0.2

0.4

0.6

0.8

1

FSCDL instance accuracy (K=1)

WSCDL instance accuracy (K=1)

FSCDL signal accuracy (K=1)

WSCDL signal accuracy (K=1)

FSCDL instance accuracy (K=2)

WSCDL instance accuracy (K=2)

FSCDL signal accuracy (K=2)

WSCDL signal accuracy (K=2)

(g)

Figure 5.3: (a) FSCDL words; WSCDL words with (b) N̄n = 5; (c) N̄n = 10; (d)
N̄n = 25; and (e) N̄n = 40. prediction accuracy for B = 100 and T = 50 (f) on one
cluster dataset; and (g) on two cluster dataset with K = 1 and K = 2 (reproduction of
[146]).

The results show that the WSCDL approaches FSCDL performance with a prediction

accuracy that is only a little worse than the FSCDL in terms of instance and signal

level prediction. When N̄n is set to be too small, the signal level prediction accuracy

drops. When we increase N̄n, the smearing e↵ect will occur and the instance prediction

accuracy drops. Additionally, the performance can be further optimized by tuning N̄n.

See Figure 5.3(f) for an example. Figure 5.3(g) illustrates that using more analysis

107

words per class increases both instance level and signal level prediction accuracy for a

two clusters dataset.

108

Chapter 6: Multiple-scaled weakly-supervised dictionary learning 1

Dictionary atoms are usually designed to have the same dimension. However, in many

scenarios patterns in data are naturally present at di↵erent scales such that it is neces-

sary to allow dictionary atoms to be of di↵erent dimensions. For example, consider the

spectrograms of sound events shown in Fig. 6.1. The sound pattern of throat chuckle

and knock are short and occur multiple times, while the sound patterns of alert and

phone rings are almost four times longer. When label information is provided, dic-

tionary learning is tailored to perform well on the classification task. The previously

proposed convolutive analysis dictionary learning with weak supervision [148] only con-

sider a universal scale for the dictionary. The approach was applied to the acoustic scene

analysis application. However, natural sound patterns or acoustic sound elements can

vary in duration. To capture such patterns with a single scale, one would need to con-

sider a large duration window to capture and di↵erentiate the di↵erent patterns. This

can results in over-fitting and potential increase in computational complexity. In this

paper, we extend the model of You et al.’s [148] to accommodate for multiple scales and

learn a multi-scale dictionary, which allows the intrinsic characteristics of a family of

signals to be captured more e�ciently.

1This chapter is a joint work with Dr. Raviv Raich, Xiaoli Fern and Jinsub Kim. This work was
published as: Zeyu You, Raviv Raich, Xiaoli Z. Fern, and Jinsub Kim. “Weakly Supervised Learning of
Multiple-Scale Dictionaries.” In 2018 IEEE Statistical Signal Processing Workshop (SSP), pp. 100-104,
2018.

109

Throat

Knock

Alert

Phone

Figure 6.1: Spectrograms of acoustic sound events for di↵erent sound type. Sound
events vary by the number of occurrences and the duration of each event from one class
to another (reproduction of [149]).

110

6.1 The multi-scale model

Consider the convolution between two signals xn ⇤wc, of lengths Tn and Tw respectively.

The convolution can be formulated as converting signal xn to a set of Tn+Tw�1 vectors,

each as a Tw windowed portion of the signal xn. For simplicity, we assume Tw is odd

and denote � = (Tw � 1)/2. Using this notation, the convolution operation wc ⇤ xn |t

can be replaced with wT
c xnt as xn ⇤ wc |t =

P
�

⌧=��
xn(t � ⌧)w(⌧) = wT

c xnt, 8t =

��, �� + 1, . . . , Tn � 1 + �. Vector xnt 2 RTw is defined as xnt = [xn(t + �), xn(t +

� � 1), . . . , xn(t � �)]T , and wc 2 RTw is wc = [wc(��), wc(�� + 1), . . . , wc(�)]T .

We introduce the scale variable to allow a dictionary word to capture much longer

patterns. For each class, we consider a dictionary word for each of the multiples scales

k = 1, 2, . . . , K by introducing a dependence of the dictionary words on c and k, wck.

For a particular scale k in class c, we formulate the convolution step as:

wT

ck
Mxk

nt =
�X

⌧=��

wck(⌧)
k�X

⌧
0=�k�

M(⌧, ⌧
0
)xn(t � ⌧

0
)

for t = ��, �� + 1, . . . , Tn � 1 + �. M could be a subsampling matrix such that

M(⌧, ⌧
0
) = I(⌧ = k⌧

0
) with k as the subsampling factor. Since subsampling may distorts

the signal xn, we use a random projection matrix here as M 2 RTw⇥kTw such that it

transforms each kTw windowed instance of signal xn into a random vector of length Tw.

Denote the transformed signal x
0
k
n with each Tw window portioned vector format as

x
0
k

nt = Mxk

nt = [m1 ⇤ xn |t, m2 ⇤ xn |t, . . . , mTw ⇤ xn |t],

where each mi 2 RkTw is a random projection signal. We have wT

ck
Mxk

nt = wT

ck
x

0
k
nt.

The aforementioned one-dimensional signal model can be extended to a two-dimensional

111

signal model (e.g., spectrograms) by following the approach in [148].

Scale
selector

Cardinality
constraint

N̄n

w

N

b,

Yn In
Tn+Tw�1

Signal
labeler

K

xn yn(t)zn(t)x
�k
nt

Figure 6.2: The probabilistic graphical model of MS-WSCADL (reproduction of [149]).

Probabilistic graphical model: To formulate a multi-scale weakly supervised dictio-

nary learning, we introduce a probabilistic graphical model for multiple-scale weakly-

supervised convolutive analysis dictionary learning (MS-WSCADL) in Fig. 6.2. To allow

the dictionary words to operate at multiple scales on the observed signals, we introduce

a time scale instance label signal. To index a specific scale within a class, we denote

zn(t) as the time scale instance label signal. The probability of the scale instance label

signal zn 2 {11, 12, . . . , CK} is modeled using multi-class logistic regression [96]:

P (zn(t) = ck|xn;w,b) =
e
w

T
ckx

k
nt+bck

1 +
P

C

u=1

P
K

v=1 ew
T
uvx

v
nt+buv

. (6.1)

Moreover, the instantaneous class label is given by

P (yn(t) = c|xn;w,b) =

P
K

k=1 e
w

T
ckx

k
nt+bck

1 +
P

C

u=1

P
K

v=1 ew
T
uvx

v
nt+buv

, (6.2)

112

and

P (yn(t) = 0|xn;w,b) =
1

1 +
P

C

u=1

P
K

v=1 ew
T
uvx

v
nt+buv

. (6.3)

In the rest of the paper, we only consider yn as the latent portion of the model. The

probabilistic model for In and Yn follows equations (4.2) and (4.3), respectively. Note

that N̄n is treated as a tuning (or hyper-) parameter of the graphical model. The smaller

the constraint value N̄n is, the sparser the label signal yn(t) becomes.

Complete and incomplete data likelihood: Since the multi-scale part is marginal-

ized out in the model, the complete data likelihood follows exactly the same as the

equation in (4.4) and the incomplete data likelihood follows the equation in (4.5). Cal-

culating the incomplete data likelihood in (4.5) involves enumerating all possible instance

labels, which is computationally intractable especially when the number of instance is

large.

6.2 Solution approach

To resolve this, we consider an expectation maximization (EM) approach [80], following

the similar procedure in the WSCADL model. However, the auxiliary function for the

proposed multiple-scale model is changed to

Q(✓,✓i) = const. +
NX

n=1

Tn�1+�X

t=��

[
CX

c=1

P (yn(t) = c|D; N̄n,✓i) ·

log(
KX

k=1

e
w

T
ckx

k
nt+bck) � log(1 +

CX

u=1

KX

k=1

e
w

T
ukx

k
nt+buk)].

To update dictionary words, we minimize the negative auxiliary function �Q(✓,✓i).

Since �Q is a di↵erence of convex functions, we apply the convex-concave procedure

113

(CCCP) [151] to surrogate for �Q denoted by Q̃neg(✓,✓i) as

Q̃neg(✓,✓i) =
NX

n=1

Tn�1+�X

t=��

[log(1 +
CX

u=1

KX

k=1

e
w

T
ukx

k
nt+buk)

�
CX

c=1

KX

k=1

P (yn(t) = c|D; N̄n,✓i)
e
w

iT
ckx

k
nt+b

i
ck(wT

ck
xk
nt + bck)P

K

k=1 e
w

iT
ukx

k
nt+b

i
uk

].

Using the momentum method, we obtain the update rule as follows:

b
i+1
ck

= b
i

ck
� �

@Q̃neg(✓,✓i)
@bck

|✓=✓i +⌘(bi
ck

� b
i�1
ck

),

wi+1
ck

= wi

ck
� �

@Q̃neg(✓,✓i)
@wck

|✓=✓i +⌘(wi

ck
� wi�1

ck
),

where � is the learning rate and ⌘ is the momentum parameter, which can be obtained

by exact line search. The gradient terms are:

@Q̃neg(✓,✓i)

@bck
=

NX

n=1

Tn�1+�X

t=��

[P (zn(t) = ck|xn;w,b) �

P (yn(t) = c|Yn, xn, In; N̄n,✓i)
e
w

iT
ckx

k
nt+b

i
ck

P
K

v=1 ew
iT
cv x

v
nt+bicv

], (6.4)

and

@Q̃neg(✓,✓i)

@wck

=
NX

n=1

Tn�1+�X

t=��

[P (zn(t) = ck|xn;w,b) �

P (yn(t) = c|Yn, xn, In; N̄n,✓i)
e
w

iT
ckx

k
nt+b

i
ck

P
K

v=1 ew
iT
cv x

v
nt+bicv

]xk

nt. (6.5)

The momentum step in (6.4) and (6.5) requires calculating P (yn(t) = c|Yn, xn, In;

N̄n,✓i), which is one of the main challenges of EM inference on our proposed model. The

Brute-force manner requires enumerating all possible values of yn(t) that results in an

114

exponential complexity with respect to the number of time instances. Since the brute-

force approach is calculation prohibitive, we directly apply the e�cient chain approach

in [148].

6.3 The experimental results

In this part, we evaluate our proposed approach on a synthetic dataset. We compare

our multi-scale approach with a uni-scale approach in [148] both on the synthetic data

and a real-world data. In addition, we compare the proposed multi-scale approach with

an alternative multi-scale approach on the real-world dataset.

Synthetic data analysis: We introduce the following two synthetic datasets:

(i) Uni-scale dataset: we randomly generate N = 50 synthetic data with height

(number of frequency bins) F = 10 and width (time frames) T = 50 using four di↵erent

class shapes. The synthetic data are generated by randomly placing one of the predefined

shapes into the corresponding position based on the instance label. The instance label for

each spectrogram is generated from a Dirichlet distribution with high prior on the zero

class. To make the synthetic dataset close to the real-world dataset, each spectrogram

contains some phenomenon of overlapping with di↵erent classes and each syllable shape

is at di↵erent intensity level for the same class.

(ii) Multi-scale dataset: We use four di↵erent scales on the predefined class 1

shape as four di↵erent classes. The scales are picked as {1, 2, 4, 8} times of the original

scale of class 1. The data are generated followed by the same procedure as previously

stated.

Experimental setting: To evaluate our proposed approach, we trained our model

both on the uni-scale and multi-scale dataset. We first separated the dataset into 40 sig-

115

nals for the training and the remaining independent 10 signals for the validation. We used

5 Monte-Carlo (MC) runs to tune the regularization term � 2 {10�8
, 10�6

, 10�4
, 10�2

,

100, 102} and the cardinality constraints N̄1 = N̄2 = . . . = NN 2 {5, 10, 20, 50, 80, 100}.

We evaluated the average signal label prediction accuracy on each pair of parameter

value with the iteration number set to 5000. Using cross-validation for prediction accu-

racy, we found that � = 10�4 and N̄n = 5 produces the highest classification accuracy

and used those to present the prediction performance.

For both uni-scale and multi-scale dataset, we compare our proposed multi-scale

learning algorithm with the uni-scale algorithm in [148] with various window size Tw 2

{4, 8, 16, 32} and multiple scales K 2 {1, 2, 3, 4}. We evaluate the performance on both

algorithms for both datasets with the 5 MC training output on the additional 50 test

signals.

4 8 16 32
0.9

0.92

0.94

0.96

0.98

1

(a) instance label AUC

4 8 16 32
0.9

0.92

0.94

0.96

0.98

1

(b) signal label AUC

Figure 6.3: On uni-scale dataset: comparison of performance (AUCs) between uni-scale
with various Tw and multi-scale algorithm for Tw = 4, K = [1, 2]. (�—: uni-scale
algorithm; ? : multi-scale algorithm; Blue, red, green, black: class 1,2,3,4) (re-
production of [149]).

Synthetic results: We evaluate both approaches in terms of instance level and

116

4 8 16 32

0.5

0.6

0.7

0.8

0.9

1

(a) instance label AUC

4 8 16 32

0.5

0.6

0.7

0.8

0.9

1

(b) signal label AUC

Figure 6.4: On multi-scale dataset: comparison of performance between uni-scale and
multi-scale algorithm on various Tw (reproduction of [149]).

signal level detection accuracy by measuring area under the receiver operating charac-

teristic curve (AUC). As Fig. 6.3 shows on the uni-scale data, the uni-scale approach

produces highest AUC in window size Tw = 4 for almost all four classes, and the multi-

scale approach performs similarly for class 3 and 4 and a little worse on class 1 and 2.

However, as Fig. 6.4 shows on the multi-scale data, the uni-scale algorithm performs

di↵erently for each class with various window size (Tw = 4 produces highest AUC for

class 1, Tw = 8 for class 2 and Tw = 16 for class 3 and 4). While the multi-scale al-

gorithm outperforms the uni-scale algorithm significantly for all four classes, especially

for class 3 and 4. To detect various scale patterns for the uni-scale algorithm, we have

to pick a large enough window size that covers almost the largest scale. The uni-scale

algorithm training time grows linearly as the size of window size in Tab. 6.1, therefore,

picking a large window size is not only costly but also results in overfitting. However,

the multi-scale algorithm accommodates the problem by various scales in a comparable

training time. The running time of the multi-scale algorithm is between the running

time of Tw = 4 and Tw = 8 of the uni-scale algorithm, which is 2.5 times faster than the

117

uni-scale algorithm picking window size of 16.

Tw uni-4 uni-8 uni-16 uni-32 multi-4
time 266.1±9.8 553.5±19.5 1071.2±40.4 3505.0±178.5 419.3±15.5

Table 6.1: Training time (in s) for various window size in the uni-scale algorithm and
the multi-scale algorithm with Tw = 4, K = [1, 4].

Real-world data analysis: To evaluate the multi-scale algorithm on the real-world

applications, we choose the o�ce live test dataset on the AASP challenge [38]. This

dataset consists of seven roughly three minutes long sound recording of 16 di↵erent

classes on the live o�ce scenario. In this experiment, our task is to detect the presence

and absence of class events on the new recording.

Data preprocessing and experimental setting: We first chunk the recordings

into 10s chunks and transform them to spectrograms. We apply the noise whitening

procedure [14] and the down-sampling from R707⇥6120 to R256⇥200. To compare our

proposed multi-scale approach with the uni-scale approach, we first tune the uni-scale

approach with the window size Tw 2 {10, 20, 50, 100}, the cardinality constraint N̄n 2

{10, 20, 40, 60, 100, 160, 200} along with a regularization term � 2 {10�6
, 10�4

, 10�2
, 10�1

,

1, 10}. After we obtained the optimal parameter value Tw = 20, N̄n = 10, � = 10�4. We

heuristically choose a window size of 10, N̄n = 10, � = 10�4 and use scale of 1, 4 for our

multi-scale approach. After trained on the 126 spectrograms of the data, we evaluate a

detection performance for both multi-scale approach and uni-scale approach on the rest

31 spectrograms.

Competing algorithm: To the best of our knowledge, since there is no state-of-

the-art algorithm for multi-scale weakly-supervised dictionary learning, we combine a

generative dictionary learning approach in [104] as sparse coding and a spatial pyramid

matching (SPM) algorithm in [138, 139] for scale-invariant as a competing algorithm.

118

Although the algorithm is in the fully-supervision setting, we can still detect the presence

and absence of a given class in the signal label by using C linear-SVM classifiers.

Results on real-world data: The result in Tab. 6.2 shows that our proposed

multi-scale approach outperforms the uni-scale approach on almost all classes in terms

of instance level AUCs, especially for throat and switch classes. The proposed multi-

scale algorithm performances similarly to uni-scale algorithm in terms of signal level

AUCs. Since the o�ce live sound dataset contains various length of recurring patterns,

the uni-scale approach may not be suitable to capture and classify those sound events.

Our proposed multi-scale approach can detect those short patterns and long patterns

at the same time. In addition, both multi-scale and uni-scale algorithms outperforms

the competing SPM algorithm, and the SPM algorithm are not designed to provide

the instance level classification task. We suspect the weakness of the competing SPM

algorithm is due to non-trivial combination of the two approaches and the combined

approach is designed with full-supervision, instead of weak-supervision setting. Further

research is needed to improve the performance, which is beyond the scope of this paper.

Class uni-ins. multi-ins. uni-sig. multi-sig. SPM-sig.
throat 50.21±12.17 67.90±17.14 74.88±4.01 82.48±12.08 39.83±14.00
knock 52.55±13.93 57.84±17.14 70.61±12.12 77.58±13.86 40.13±13.79

pageturn 52.98±5.64 61.94±10.34 79.09±16.45 77.89±6.76 56.10±11.54
phone 46.25±20.15 52.84±10.85 65.95±22.82 63.06±17.04 39.70±14.75
switch 46.33±3.57 65.52±11.75 88.08±8.43 84.24±6.80 46.95±24.72
average 54.75±10.60 58.37±6.66 70.19±13.09 68.62±13.77 43.88±3.64

Table 6.2: List 5 class example and the average across all 16 classes of instance level and
signal detection AUCs(%) for both approaches.

119

Chapter 7: Conclusion and Future research

7.1 Summary

In this work, we presented both generative and discriminative convolutive dictionary

learning approaches for time-series analysis. In particular, in the proposed generative

dictionary learning, we formulated a convolutive dictionary learning objectives to e�-

ciently extract dictionary and sparse activations from time-series data. This approach

combined the power of estimating spectra-temporal patterns given by the convolutive

model and the computational complexity savings associated with the random projection

approach. Additionally, we addressed the boundary e↵ect arising in a collection of dis-

continuous times-series data. Furthermore, we introduced a step-size selection criterion

to improve convergence rate when updating the activations and the dictionary words.

Real-world results suggested that the proposed approach can be used to e�ciently repre-

sent bird audio recordings and to solve denoising, syllable discovering and classification

problems.

In discriminative dictionary learning, we developed a novel probabilistic model that

aims to learn a convolutive analysis dictionary under the weak-supervision setting. We

incorporated cardinality constraints as observations to enforce sparsity of the signal label

to determine the location of the patterns-of-interest from agiven class. For the model

parameter estimation, we developed the EM update rules and introduced novel chain

and tree reformulations of the proposed graphical model to facilitate e�cient probability

calculations during the inference. In particular, under cardinality constraints that are

120

expressed as a fraction of the signal length, we showed that the computational complexity

for the chain reformulation is quadratic in the signal length and nearly-linear for the tree

reformulation, which was verified in a numerical runtime comparison. As a sanity check,

we demonstrated that the proposed discriminative approach performs comparably to a

generative alternative on data that follows the generative paradigm. However, when the

data follows a discriminative model, our approach outperformed the generative approach.

Additionally, we showed that the proposed approach yielded competitive and sometimes

superior performance in terms of accuracy or AUC on real-world datasets when compared

to either state-of-the-art approaches for dictionary learning or to alternative (i.e., non

dictionary based) solutions in the weak-supervision setting.

When the data is rich in class patterns (contains multiple cluster patterns for a

class), the extension of the multiple-cluster approach is needed. Therefore, we considered

a multiple dictionary words per class to accommodate for classes with multiple modes.

The experimental esults sroh what thetmodel with multiple cluste- componentrperformed

better than the one that does not use the clustering component. Since the patterns in

the time-series data are not always in the same scale, the weak-supervised dictionary

learning is not able to capture the di↵erence duration scales of the fundamental patterns

in the time-series data analysis. We proposed a learning strategy to adapt di↵erent

scales among classes in the analysis dictionary under the weak-supervision setting. We

showed our approach outperformed the uni-scale approach and a competing approach in

the multi-scale dataset and real-world dataset.

7.2 The contributions of the work

Our contributions are as follows:

121

(A) For the generative dictionary learning:

(i) We first developed a random projected convolutive dictionary learning ap-

proach to extract patterns from time-series data [103, 104].

(ii) We derived a set of iterations with a choice of step-size that guarantees mono-

tonically decreasing objective [103, 104].

(iii) We presented an application of the proposed approach for (1) denoising spec-

trograms of in-situ recordings of bird songs, which are corrupted by rain noise,

(2) unsupervised bird syllable discovery and (3) supervised classification of

birdsong recordings [103, 104].

(B) For the discriminative convolutive dictionary learning:

(i) We developed a novel discriminative probabilistic model for analysis dictionary

learning under the weak-supervision setting [148].

(ii) We used an alternative approach for cardinality (or sparsity) constraints as

implicit observations in a graphical model as opposed to commonly used norm

regularization [148]. This approach allowed for localization of the patterns-of-

interest.

(iii) We introduced a novel framework for e�cient message passing using a reformu-

lation of the proposed graphical model both as a chain and as a tree [148]. This

reformulation yields a near-linear exact probability calculation that alleviates

the need for approximate inference.

(iv) We extended the weakly-supervised dictionary learning model to learn multiple

dictionary clusters per class [146].

122

(v) We developed a multiple-scale dictionary learning model under the weak-

supervision setting [149]. Results indicate that multi-scale dictionaries can

improve classification performance.

7.3 List of Publications

Below is a list of publications associated with this dissertation:

Journal papers

1. Zeyu You, Raviv Raich, Xiaoli Z. Fern, and Jinsub Kim. “Weakly supervised

dictionary learning.” IEEE Transactions on Signal Processing 66, no. 10 (2018):

2527-2541.

2. Ruiz-Muñoz, José Francisco, Zeyu You, Raviv Raich, and Xiaoli Z. Fern. “Dic-

tionary learning for bioacoustics monitoring with applications to species classifica-

tion.” Journal of Signal Processing Systems 90, no. 2 (2018): 233-247.

Conference papers

3. Zeyu You, Raviv Raich, Xiaoli Z. Fern, and Jinsub Kim. “Weakly Supervised

Learning of Multiple-Scale Dictionaries.” In 2018 IEEE Statistical Signal Process-

ing Workshop (SSP), pp. 100-104, 2018.

4. Zeyu You, Raviv Raich, Xiaoli Z. Fern, and Jinsub Kim. “Discriminative recur-

ring signal detection and localization.” In 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 2377-2381. IEEE, 2017.

5. Zeyu You, Raviv Raich, Xiaoli Z. Fern, and Jinsub Kim. “Weakly-supervised

analysis dictionary learning with cardinality constraints.” In 2016 IEEE Statistical

123

Signal Processing Workshop (SSP), pp. 1-5. IEEE, 2016.

6. Ruiz-Muñoz, José Francisco, Zeyu You, Raviv Raich, and Xiaoli Z. Fern. “Dictio-

nary extraction from a collection of spectrograms for bioacoustics monitoring.” In

2015 IEEE 25th International Workshop on Machine Learning for Signal Process-

ing (MLSP), pp. 1-6. IEEE, 2015.

7.4 Future research

Chapters 4-6 introduced and developed modeling and inference methods for weakly-

supervised learning of time-series. Throughout, a linear model was used for the proba-

bilistic model of the instance level label, i.e., a logistic regression model. In particular, a

linear model in the raw-data time series. However, in some of the real-world applications,

linear classifier applied to raw time-series data may yield sub-optimal results in terms

of classification performance. In the past decade, learning using deep neural networks,

has become the golden standard for many applications including object recognition in

computer vision [105], sound event recognition in audio analysis [119], and speaker recog-

nition in speech analysis [108]. For many of the aforementioned application areas, the

replacement of carefully crafted domain specific features with deep network featurization

was demonstrate to yield significant improvements in terms of classification performance.

The formulation we considered in this work, lends itself to a natural extension to the

deep network featurization. This is accomplished by replacing the linear features in our

model, e.g., xnt, with a nonlinear transformation g(xnt) obtained by a deep net suited

for the application domain.

124

xn

yn(1) yn(2) yn(T)

Yn In

LR LR LR

xn1

xn2 xnT

(a) The original model

xn

y
c
n(1) y

c
n(2) y

c
n(T)

Y
c
n

CNN CNN CNN

C

xn1

xn2 xnT

(b) The deep learning model

Figure 7.1: A systematic plot of the weak-supervised learning models: (a) The original
graphical model, (b) The deep learning model

7.4.1 Preliminary idea

In Chapters 4-6, we introduced a weakly-supervised learning framework for time-series

data, where each time-series signal xn is going through a linear system that produces

a set of scores for determining the probability of the time-instance multi-class labels

yn(t) 2 {0, 1, . . . , C} as shown in Figure 7.1(a). However, in real-world applications,

data examples are often not linearly separable. To increase classification performance

when data are more complex, we incorporate a deep learning model (such as CNN)

into the proposed weak-supervision learning system. The main idea is illustrated in

Figure 7.1(b).

Time-instance labeler: The original time-instance labeler in (3.1) shown in Fig-

ure 7.2(a) is a linear model that maps the input time-series signal into a probabilis-

tic scoring of determining a multi-class label yn(t) for each windowed time-instance.

Here, we propose using a deep learning model as shown in Figure 7.2(b) in place of

the linear model. As a preliminary e↵ort to test the proposed approach, we consider

125

a simpler graphical model for the labeling mechanism. We replace the original multi-

class single instance label assumption yn(t) 2 {0, 1, . . . , C} with a binary multi-label

yn(t) = [y1n(t), y2n(t), . . . , yCn (t)] where each y
c
n(t) 2 {0, 1} represents the binary decision

corresponding to the presence and absence of a particular class c at the tth time win-

dow. This change allows us to have a separate signal level decision for each class thereby

simplifying the objective to minimize.

Signal labeler: Instead of using a union assumption in (A.3) of chapter 4 for com-

bining the instance labels yn(t) into a signal label Yn, we consider using an OR rule such

that the probability of the signal label P (Y i
c = 1) for indicating the class c being present

is P (Y i
c = 1) = 1 �

Q
t
P (ycn(t) = 0). Additionally, we omit the sparsity regularization

term for simplicity. Note that the resulting probability is expressed in closed-form in

terms of the instance level probabilities avoiding the marginalization used in the model

of Chapters 4-6.

xnt

x
(1)
nt

x
(2)
nt

x
(d)
nt

w0

w1

wC

yn(t)�

LR

(a) The original model

xnt

x
(1)
nt

x
(2)
nt

x
(d)
nt

DNN

w1

wC

�

�

�

y
1
n(t)

y
2
n(t)

y
C
n (t)

w2

(b) The deep learning model

Figure 7.2: The time-instance labeler models: (a) The original graphical model, (b) The
deep learning model

126

7.4.2 Preliminary results

To examine the proposed idea, we first considered the toy example problem of detecting

the presence or absence of a target digit in 0-9 in a hand written sequence of digits. More-

over, we want to evaluate the capability of our method to localize the target digit in the

sequence. To examine the applicability of the idea real-world applications, we considered

applying the method to the HJA dataset as described in Chapter 4 Section 4.6.3.

7.4.2.1 MNIST results

Data Generation: We created images of a sequence of digits by placing m 2 [1, 10]

hand-written digits (28 ⇥ 28 dimensions) from the MNIST dataset [25] into a 28 ⇥ 280

dimensional blank image as follows. (1) First, we generate the center index locations

as L = {lk|lk = k ⇤ 28 + 14, k = 0, 1, . . . , 9}; (2) We then generate each signal label Yn

using a Bernoulli distribution; (3) For the generation of a negative example xn that does

not contain a target digit Yn = 0, we randomly select m locations from the location

indexes L and place the randomly selected m non-target digits into the corresponding

locations plus an o↵set p ⇠ U [�10, 10]; (4) For a positive example xn that contains target

digit Yn = 1, we pick a positive event number n 2 [1, min(4, m)] and place n randomly

selected target digits into n randomly selected locations from L plus an o↵set p. The

remaining m � n randomly selected non-target digits are placed into the corresponding

m�n remaining locations plus an o↵set p. Note that the overlapping digits will add the

intensities from each digits, since placing each digit into the blank image is additive.

Methods: We implemented the proposed approach using a linear model with only 1

dense layer and a CNN model with 3 layers (2 convolutional layers and 1 dense layer). The

127

CNN model is shown in Figure 7.3. The loss function is designed using a cross entropy

loss between the signal label Yn and its probability P (Yn) = (1 �
Q

T

t=1(1 � p(yn(t) =

1))Yn(
Q

T

t=1(1 � p(yn(t) = 1))1�Yn , where p(yn(t) = 1) is modeled by the aforementioned

CNN model.

Convolution
Layer

32 filters

24x24

Pooling
Layer

64 filters

12x12 10x10 5x5

Convolution
Layer

Pooling
Layer

D
ro

po
ut

 0
.2

5

1024

Fully-
Connected
Layer

Flatten

1

P1

P2

PT

P (Yn)

CNN

Figure 7.3: The deep learning model

Results: First, we consider a qualitative assessment of the proposed approach by

examining the capability of the approach to resolve the location of target digits in the

digit-sequence image and comparing it to a linear model. Figure 7.4 shows the instance

level probability as a function position (i.e., instance index) using both the linear model

and CNN model along side the digit-sequence image example. In the plot, both positive

image examples that contain the target digit of 2 and negative image examples that do

not contain the target digit are examined. We observe that in some cases, the linear

model fails to localize and detect the target number while CNN model correctly localize

and detect the target digit 2.

Next, we examine the approach quantitatively by evaluating classification perfor-

mance at both instance-level and signal-level for both models. To prevent the repeated

128

(a) Negative example 1 (b) Positive example 1

(c) Negative example 2 (d) Positive example 2

(e) Negative example 3 (f) Positive example 3

Figure 7.4: 3 examples of prediction on MNIST data in the weakly-labeled setting with
the linear model and the CNN model.

129

counting for each of the positive events (containing the target digit 2), the instance-

level predictions are generated using the following mechanism: (1) For each of the posi-

tive events (instance-level ground truth with positive label), we use a sub-window with

length of 11 centered at its location index l and measure the predicted probability by

max{P (yn(l � 5)), P (yn(l � 4)), . . . , P (yn(l + 5))}. (2) The corresponding ground truth

is converted from {yn(l � 5) = 0, yn(l � 4) = 0, . . . , yn(l) = 1, yn(l +1) = 0, . . . , yn(l +5)}

to a single label yn(l) = 1.

To show the e↵ect on di↵erent window size, we choose a various window size in

{14, 28, 56} with 2000 training examples generated from the MNIST training set and

the the performance on 10 independent realizations of 2000 examples generated from

the MNIST test sets. Instance-level and signal-level performance evaluation metrics

(average±standard deviation) for various window sizes are provided in Table 7.1.

Metric 14-ins 14-sig 28-ins 28-sig 56-ins 56-sig
Linear model
Accuracy 99.88±00.02 93.89±00.35 99.89±00.03 92.75±00.48 99.72±00.02 92.63±00.59
AUC 97.60±00.37 97.62±00.27 97.17±00.21 97.12±00.42 95.56±00.34 96.61±00.36
F1 81.35±01.69 93.71±00.39 81.62±00.77 92.36±00.61 64.47±01.61 92.40±00.63

CNN model
Accuracy 99.95±00.00 97.73±00.35 99.96±00.00 98.44±00.24 99.96±00.00 98.01±00.25
AUC 99.98±00.00 99.71±00.08 99.99±00.02 99.84±00.06 99.93±00.02 99.76±00.08
F1 92.30±01.08 97.71±00.35 94.71±00.31 98.43±00.25 93.79±00.54 98.00±00.26

Table 7.1: Performance results (%) on the MNIST sequenced data for various window
size by using 0/1 signal-labels in the training.

The results show that the window size of 28 produces the highest average values in

terms of accuracy and F1 for linear model. The window size of 28 produces highest

average values for all metric in CNN model. When the window size is small, it may

not contain the entire digit. When the window size is large, multiple segments of digits

may appear within a window. In addition, the CNN model of window size 28 has the

highest average values in terms of accuracy, AUC and F1 scores. The performance gain

130

of instance-level F1 score is increased from 81% with the linear model to 94% using the

CNN model.

7.4.2.2 HJA results

In Chapter 4 subsection 4.6.3, we have introduced the HJA bioacoustic dataset. In

this subsection, we use this dataset for performance evaluation. We use the same deep

learning architecture as the one in Figure 7.3 to examine the performance of the proposed

idea on the HJA dataset. Since the HJA data contains 13 di↵erent bird species (i.e.,

classes), we test the classification of each class as a separate binary classification problem.

The bag label probability of presence or absence of each class is obtained from the

presence or absence of the class at each time instance (independent of other classes). We

consider using a qualitative assessment by examining the capability of the approach to

resolve the location of each bird species as in Figure 7.5.

Figure 7.5 shows 10 positive examples of 5 out of the 13 classes. For each class,

two spectrograms (containing bird chirps from the target class) are shown. Additionally,

instance-level prediction probabilities are displayed below each of the spectrograms. The

results show that for classes such as Brown Creeper and Red-Breasted Nuthatch, their

class chirps are correctly detected and localized. For some classes such as Varied Thrush

and Hammonds Flycatcher, not all chirps are identified, some chirps seem to have low

detection probabilities. Other classes such as Olive-sided Flycatcher, the chirps are not

detected that flat low probabilities are observed.

Figure 7.6 shows 6 examples of multi-labeled spectrograms and corresponding pre-

diction probabilities over the 13 classes. The results show a subset of the classes are

correctly detected and localized whenever high probabilities are observed around their

131

(a) Brown Creeper exp. 1 (b) Brown Creeper exp. 2

(c) Red-Breasted Nuthatch exp. 1 (d) Red-Breasted Nuthatch exp. 2

(e) Olive-sided Flycatcher exp. 1 (f) Olive-sided Flycatcher exp. 2

(g) Varied Thrush exp. 1 (h) Varied Thrush exp. 2

(i) Hammonds Flycatcher exp. 1 (j) Hammonds Flycatcher exp. 2

Figure 7.5: HJA data prediction on selected classes in the binary scenario.

132

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

Figure 7.6: HJA data prediction in the multi-labeled scenario.

133

class bird chirps.

Both the binary labeled scenario and multi-labeled scenario results show some of

the classes can not be correctly detected and localized that is due to several potential

reasons: (1) Training data is limited, (2) Low signal-to-noise ratio, (3) Di↵erent duration

for di↵erent classes, and (4) The model is not complex enough to discriminate between

di↵erent classes. In the future, we will focus on addressing these issues in order to

increase the classification performance. The ideas involves the following components:

(1) Find data augmentation schemes that are suitable for bioacoustics data; (2) Apply

noise reduction techniques or dimension reduction to the spectrogram; and (3) Search

over di↵erent hyper-parameters of the window size, the network size, or the architectures.

134

Bibliography

[1] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation. IEEE Transactions
on signal processing, 54(11):4311–4322, 2006.

[2] Witali Aswolinskiy, René Felix Reinhart, and Jochen Steil. Time series classi-
fication in reservoir-and model-space. Neural Processing Letters, 48(2):789–809,
2018.

[3] Behnam Babagholami-Mohamadabadi, Amin Jourabloo, Mohammadreza
Zolfaghari, and Mohammad T Manzuri Shalmani. Bayesian supervised dictionary
learning. In UAI Application Workshops, pages 11–19. Citeseer, 2013.

[4] Roland Badeau and M Plumbley. Multichannel high resolution NMF for mod-
elling convolutive mixtures of non-stationary signals in the time-frequency domain.
Transactions on Audio, Speech and Language Processing, 22(11):1670–1680, 2013.

[5] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.
The great time series classification bake o↵: a review and experimental evaluation
of recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3):606–
660, 2017.

[6] Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. Time-series classi-
fication with cote: the collective of transformation-based ensembles. IEEE Trans-
actions on Knowledge and Data Engineering, 27(9):2522–2535, 2015.

[7] Debrup Banerjee, Kazi Islam, Gang Mei, Lemin Xiao, Guangfan Zhang, Roger
Xu, Shuiwang Ji, and Jiang Li. A deep transfer learning approach for improved
post-traumatic stress disorder diagnosis. In 2017 IEEE International Conference
on Data Mining (ICDM), pages 11–20. IEEE, 2017.

[8] Richard Baraniuk. Compressive sensing. IEEE signal processing magazine, 24(4),
2007.

[9] Daniele Barchiesi and Mark D Plumbley. Dictionary learning of convolved sig-
nals. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5812–5815. IEEE, 2011.

135

[10] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized de-
noising auto-encoders as generative models. In Advances in Neural Information
Processing Systems, pages 899–907, 2013.

[11] Donald J Berndt and James Cli↵ord. Using dynamic time warping to find patterns
in time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[12] Daniel T. Blumstein, Daniel J. Mennill, Patrick Clemins, Lewis Girod, Kung Yao,
Gail Patricelli, Jill L. Deppe, Alan H. Krakauer, Christopher Clark, Kathryn A.
Cortopassi, Sean F. Hanser, Brenda McCowan, Andreas M. Ali, and Alexander
N. G. Kirschel. Acoustic monitoring in terrestrial environments using microphone
arrays: applications, technological considerations and prospectus. Journal of Ap-
plied Ecology, 48(3):758–767, 2011.

[13] Andrew P Bradley. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[14] Forrest Briggs, Xiaoli Z. Fern, and Raviv Raich. Rank-loss support instance ma-
chines for miml instance annotation. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 534–542.
ACM, 2012.

[15] Forrest Briggs, Balaji Lakshminarayanan, Lawrence Neal, Xiaoli Z Fern, Raviv
Raich, Sarah J K Hadley, Adam S Hadley, and Matthew G Betts. Acoustic clas-
sification of multiple simultaneous bird species: a multi-instance multi-label ap-
proach. The Journal of the Acoustical Society of America, 131(6):4640–4650, June
2012.

[16] Forrest Briggs, Balaji Lakshminarayanan, Lawrence Neal, Xiaoli Z Fern, Raviv
Raich, Sarah JK Hadley, Adam S Hadley, and Matthew G Betts. Acoustic clas-
sification of multiple simultaneous bird species: A multi-instance multi-label ap-
proach. The Journal of the Acoustical Society of America, 131(6):4640–4650, 2012.

[17] Peter J Brockwell, Richard A Davis, and Stephen E Fienberg. Time Series: Theory
and Methods: Theory and Methods. Springer Science & Business Media, 1991.

[18] Aline Cabasson and Olivier Meste. Time delay estimation: a new insight into the
woody’s method. IEEE signal processing letters, 15:573–576, 2008.

[19] Kin-Pong Chan and Wai-Chee Fu. E�cient time series matching by wavelets. In
icde, page 126. IEEE, 1999.

136

[20] Zhengping Che, Yu Cheng, Shuangfei Zhai, Zhaonan Sun, and Yan Liu. Boosting
deep learning risk prediction with generative adversarial networks for electronic
health records. In 2017 IEEE International Conference on Data Mining (ICDM),
pages 787–792. IEEE, 2017.

[21] Huanhuan Chen, Fengzhen Tang, Peter Tino, Anthony G Cohn, and Xin Yao.
Model metric co-learning for time series classification. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, 2015.

[22] Huanhuan Chen, Fengzhen Tang, Peter Tino, and Xin Yao. Model-based kernel
for e�cient time series analysis. In Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 392–400. ACM,
2013.

[23] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, and Gustavo Batista. The ucr time series classification archive.
2015.

[24] Oana G Cula and Kristin J Dana. 3d texture recognition using bidirectional feature
histograms. International Journal of Computer Vision, 59(1):33–60, 2004.

[25] Li Deng. The mnist database of handwritten digit images for machine learning
research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[26] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle
regression. The Annals of statistics, 32(2):407–499, 2004.

[27] Oliver Faust, Yuki Hagiwara, Tan Jen Hong, Oh Shu Lih, and U Rajendra Acharya.
Deep learning for healthcare applications based on physiological signals: a review.
Computer methods and programs in biomedicine, 2018.

[28] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. Deep learning for time series classification: a review.
arXiv preprint arXiv:1809.04356, 2018.

[29] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. Evaluating surgical skills from kinematic data using con-
volutional neural networks. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 214–221. Springer, 2018.

[30] Tomoko G Fujii, Maki Ikebuchi, and Kazuo Okanoya. Auditory responses to vocal
sounds in the songbird nucleus taeniae of the amygdala and the adjacent arcopal-
lium. Brain, behavior and evolution, 87(4):275–289, 2016.

137

[31] Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto. Localizing objects with
smart dictionaries. In European Conference on Computer Vision, pages 179–192.
Springer, 2008.

[32] Mehrdad J Gangeh, Ahmed K Farahat, Ali Ghodsi, and Mohamed S Kamel. Su-
pervised dictionary learning and sparse representation-a review. arXiv preprint
arXiv:1502.05928, 2015.

[33] Mehrdad J. Gangeh, Ahmed K. Farahat, Ali Ghodsi, and Mohamed S. Kamel.
Supervised dictionary learning and sparse representation-a review. CoRR,
abs/1502.05928, 2015.

[34] Mehrdad J Gangeh, Ali Ghodsi, and Mohamed S Kamel. Dictionary learning in
texture classification. In International Conference Image Analysis and Recognition,
pages 335–343. Springer, 2011.

[35] Mehrdad J Gangeh, Ali Ghodsi, and Mohamed S Kamel. Kernelized supervised
dictionary learning. IEEE Transactions on Signal Processing, 61(19):4753–4767,
2013.

[36] Yue Gao, Rongrong Ji, Wei Liu, Qionghai Dai, and Gang Hua. Weakly supervised
visual dictionary learning by harnessing image attributes. IEEE Transactions on
Image Processing, 23(12):5400–5411, 2014.

[37] Shaghayegh Gharghabi, Shima Imani, Anthony Bagnall, Amirali Darvishzadeh,
and Eamonn Keogh. Matrix profile xii: Mpdist: A novel time series distance
measure to allow data mining in more challenging scenarios. In 2018 IEEE Inter-
national Conference on Data Mining (ICDM), pages 965–970. IEEE, 2018.

[38] Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, Mathias Rossignol, Math-
ieu Lagrange, and Mark D Plumbley. Detection and classification of acoustic scenes
and events: An ieee aasp challenge. In 2013 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), pages 1–4. IEEE, 2013.

[39] Ernst Haselsteiner and Gert Pfurtscheller. Using time-dependent neural networks
for eeg classification. IEEE transactions on rehabilitation engineering, 8(4):457–
463, 2000.

[40] Nima Hatami, Yann Gavet, and Johan Debayle. Classification of time-series images
using deep convolutional neural networks. In Tenth International Conference on
Machine Vision (ICMV 2017), volume 10696, page 106960Y. International Society
for Optics and Photonics, 2018.

138

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[42] Qinghua Hu, Rujia Zhang, and Yucan Zhou. Transfer learning for short-term wind
speed prediction with deep neural networks. Renewable Energy, 85:83–95, 2016.

[43] Sheng-Jun Huang and Zhi-Hua Zhou. Fast multi-instance multi-label learning.
arXiv preprint arXiv:1310.2049, 2013.

[44] David R Hunter and Kenneth Lange. A tutorial on mm algorithms. The American
Statistician, 58(1):30–37, 2004.

[45] Andrey Ignatov. Real-time human activity recognition from accelerometer data
using convolutional neural networks. Applied Soft Computing, 62:915–922, 2018.

[46] Shima Imani, Frank Madrid, Wei Ding, Scott Crouter, and Eamonn Keogh. Matrix
profile xiii: Time series snippets: A new primitive for time series data mining. In
2018 IEEE International Conference on Big Knowledge (ICBK), pages 382–389.
IEEE, 2018.

[47] Atsushi Inoue and Mototsugu Shintani. Bootstrapping gmm estimators for time
series. Journal of Econometrics, 133(2):531–555, 2006.

[48] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. science, 304(5667):78–80,
2004.

[49] Maria G Jafari and Mark D Plumbley. Fast dictionary learning for sparse repre-
sentations of speech signals. IEEE Journal of Selected Topics in Signal Processing,
5(5):1025–1031, 2011.

[50] Zhuolin Jiang, Zhe Lin, and Larry S Davis. Learning a discriminative dictionary
for sparse coding via label consistent k-svd. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1697–1704. IEEE, 2011.

[51] Zhuolin Jiang, Zhe Lin, and Larry S Davis. Label consistent k-svd: Learning a
discriminative dictionary for recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(11):2651–2664, 2013.

[52] Bela Julesz. Textons, the elements of texture perception, and their interactions.
Nature, 290(5802):91–97, 1981.

139

[53] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.
Dimensionality reduction for fast similarity search in large time series databases.
Knowledge and information Systems, 3(3):263–286, 2001.

[54] Shu Kong and Donghui Wang. A dictionary learning approach for classification:
separating the particularity and the commonality. In European Conference on
Computer Vision, pages 186–199. Springer, 2012.

[55] Kenneth Kreutz-Delgado, Joseph F Murray, Bhaskar D Rao, Kjersti Engan, Te-
Won Lee, and Terrence J Sejnowski. Dictionary learning algorithms for sparse
representation. Neural computation, 15(2):349–396, 2003.

[56] Gert R Lanckriet and Bharath K Sriperumbudur. On the convergence of the
concave-convex procedure. In Advances in neural information processing systems,
pages 1759–1767, 2009.

[57] Svetlana Lazebnik and Maxim Raginsky. Supervised learning of quantizer code-
books by information loss minimization. IEEE transactions on pattern analysis
and machine intelligence, 31(7):1294–1309, 2009.

[58] Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. Data augmentation
for time series classification using convolutional neural networks. In ECML/PKDD
workshop on advanced analytics and learning on temporal data, 2016.

[59] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. E�cient sparse
coding algorithms. In Advances in neural information processing systems, pages
801–808, 2006.

[60] Thomas Leung and Jitendra Malik. Representing and recognizing the visual ap-
pearance of materials using three-dimensional textons. International journal of
computer vision, 43(1):29–44, 2001.

[61] Xiao-Chen Lian, Zhiwei Li, Changhu Wang, Bao-Liang Lu, and Lei Zhang. Prob-
abilistic models for supervised dictionary learning. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2305–2312, 2010.

[62] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Pranav Patel. Finding motifs in
time series. In Proc. of the 2nd Workshop on Temporal Data Mining, pages 53–68,
2002.

[63] Jessica Lin, Rohan Khade, and Yuan Li. Rotation-invariant similarity in time series
using bag-of-patterns representation. Journal of Intelligent Information Systems,
39(2):287–315, 2012.

140

[64] Jessica Lin and Yuan Li. Finding approximate frequent patterns in streaming
medical data. In 2010 IEEE 23rd International Symposium on Computer-Based
Medical Systems (CBMS), pages 13–18. IEEE, 2010.

[65] Sangdi Lin and George C Runger. Gcrnn: Group-constrained convolutional recur-
rent neural network. IEEE transactions on neural networks and learning systems,
(99):1–10, 2017.

[66] Jason Lines and Anthony Bagnall. Time series classification with ensembles of
elastic distance measures. Data Mining and Knowledge Discovery, 29(3):565–592,
2015.

[67] Jason Lines, Sarah Taylor, and Anthony Bagnall. Hive-cote: The hierarchical vote
collective of transformation-based ensembles for time series classification. In Data
Mining (ICDM), 2016 IEEE 16th International Conference on, pages 1041–1046.
IEEE, 2016.

[68] Chien-Liang Liu, Wen-Hoar Hsaio, and Yao-Chung Tu. Time series classification
with multivariate convolutional neural network. IEEE Transactions on Industrial
Electronics, 2018.

[69] Liping Liu and Thomas G Dietterich. A conditional multinomial mixture model
for superset label learning. In Advances in neural information processing systems,
pages 557–565, 2012.

[70] Qingju Liu, Wenwu Wang, Philip J B Jackson, Mark Barnard, Josef Kittler, and
Jonathon Chambers. Source separation of convolutive and noisy mixtures using
audio-visual dictionary learning and probabilistic time-frequency masking. IEEE
Transactions on Signal Processing, 61(22):5520–5535, 2013.

[71] Qianli Ma, Lifeng Shen, Weibiao Chen, Jiabin Wang, Jia Wei, and Zhiwen Yu.
Functional echo state network for time series classification. Information Sciences,
373:1–20, 2016.

[72] Julien Mairal, Francis Bach, and Jean Ponce. Task-driven dictionary learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4):791–804,
2012.

[73] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning
for matrix factorization and sparse coding. The Journal of Machine Learning
Research, 11:19–60, 2010.

141

[74] Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, and Francis R
Bach. Supervised dictionary learning. In Advances in neural information processing
systems, pages 1033–1040, 2009.

[75] Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and Gautam Shro↵.
Timenet: Pre-trained deep recurrent neural network for time series classification.
arXiv preprint arXiv:1706.08838, 2017.

[76] Henry B Mann and Donald R Whitney. On a test of whether one of two ran-
dom variables is stochastically larger than the other. The annals of mathematical
statistics, pages 50–60, 1947.

[77] Pierre-François Marteau. Time warp edit distance with sti↵ness adjustment for
time series matching. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 31(2):306–318, 2009.

[78] Nijat Mehdiyev, Johannes Lahann, Andreas Emrich, David Enke, Peter Fettke,
and Peter Loos. Time series classification using deep learning for process planning:
A case from the process industry. Procedia Computer Science, 114:242–249, 2017.

[79] Roni Mittelman. Time-series modeling with undecimated fully convolutional neural
networks. arXiv preprint arXiv:1508.00317, 2015.

[80] Todd K Moon. The expectation-maximization algorithm. IEEE Signal processing
magazine, 13(6):47–60, 1996.

[81] Frank Moosmann, Bill Triggs, and Frederic Jurie. Fast discriminative visual code-
books using randomized clustering forests. In Twentieth Annual Conference on
Neural Information Processing Systems (NIPS’06), pages 985–992. MIT Press,
2006.

[82] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. Feature-based classifica-
tion of time-series data. International Journal of Computer Research, 10(3):49–61,
2001.

[83] Minh Hoai Nguyen, Lorenzo Torresani, Fernando De La Torre, and Carsten Rother.
Weakly supervised discriminative localization and classification: a joint learning
process. In IEEE 12th International Conference on Computer Vision, pages 1925–
1932. IEEE, 2009.

[84] Henri J Nussbaumer. Fast Fourier transform and convolution algorithms, volume 2.
Springer Science & Business Media, 2012.

142

[85] Henry Friday Nweke, Ying Wah Teh, Mohammed Ali Al-Garadi, and Uzoma Rita
Alo. Deep learning algorithms for human activity recognition using mobile and
wearable sensor networks: State of the art and research challenges. Expert Systems
with Applications, 2018.

[86] Tim Oates, Laura Firoiu, and Paul R Cohen. Clustering time series with hidden
markov models and dynamic time warping. In Proceedings of the IJCAI-99 work-
shop on neural, symbolic and reinforcement learning methods for sequence learning,
pages 17–21. Citeseer, 1999.

[87] Paul D. O’Grady and Barak A. Pearlmutter. Convolutive non-negative matrix
factorisation with a sparseness constraint. In Proceedings of the IEEE International
Workshop on Machine Learning for Signal Processing (MLSP 2006), pages 427–
432, Maynooth, Ireland, September 2006.

[88] Paul D. O’Grady and Barak A. Pearlmutter. Discovering speech phones using
convolutive non-negative matrix factorisation with a sparseness constraint. Neu-
rocomputing, 72(1-3):88–101, 2008.

[89] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis
set: A strategy employed by v1? Vision research, 37(23):3311–3325, 1997.

[90] Alex S Park and James R Glass. Unsupervised pattern discovery in speech. IEEE
Transactions on Audio, Speech, and Language Processing, 16(1):186–197, 2008.

[91] Florent Perronnin. Universal and adapted vocabularies for generic visual cat-
egorization. IEEE Transactions on pattern analysis and machine intelligence,
30(7):1243–1256, 2008.

[92] Gabriel Peyré and Jalal M Fadili. Learning analysis sparsity priors. In Sampta’11,
pages 4–pp, 2011.

[93] Luke Pfister and Yoram Bresler. Learning sparsifying filter banks. In SPIE Optical
Engineering+ Applications, pages 959703–959703. International Society for Optics
and Photonics, 2015.

[94] Anh Pham, Raviv Raich, and Xiaoli Fern. Dynamic programming for instance
annotation in multi-instance multi-label learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[95] Anh Pham, Raviv Raich, Xiaoli Fern, and Jesús P Arriaga. Multi-instance multi-
label learning in the presence of novel class instances. In Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), pages 2427–2435, 2015.

143

[96] Anh T Pham, Raviv Raich, and Xiaoli Z Fern. Simultaneous instance annotation
and clustering in multi-instance multi-label learning. In IEEE 25th International
Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE,
2015.

[97] Davood Rafiei and Alberto Mendelzon. E�cient retrieval of similar time sequences
using dft. arXiv preprint cs/9809033, 1998.

[98] Deepta Rajan and Jayaraman J Thiagarajan. A generative modeling approach to
limited channel ecg classification. In 2018 40th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2571–2574.
IEEE, 2018.

[99] Ignacio Ramirez, Pablo Sprechmann, and Guillermo Sapiro. Classification and
clustering via dictionary learning with structured incoherence and shared features.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
3501–3508. IEEE, 2010.

[100] Saiprasad Ravishankar and Yoram Bresler. Learning sparsifying transforms. IEEE
Transactions on Signal Processing, 61(5):1072–1086, 2013.

[101] Justin Romberg. Imaging via compressive sampling [introduction to compressive
sampling and recovery via convex programming]. IEEE Signal Processing Maga-
zine, 25(2):14–20, 2008.

[102] Ron Rubinstein, Tomer Peleg, and Michael Elad. Analysis K-SVD: A dictionary-
learning algorithm for the analysis sparse model. IEEE Transactions on Signal
Processing, 61.3 (2013)::661–677, 2013.

[103] JF Ruiz-Muñoz, Zeyu You, Raviv Raich, and Xiaoli Z Fern. Dictionary learning
for bioacoustics monitoring with applications to species classification. Journal of
Signal Processing Systems, pages 1–15, 2016.

[104] José Francisco Ruiz-Muñoz, Zeyu You, Raviv Raich, and Xiaoli Z Fern. Dictio-
nary extraction from a collection of spectrograms for bioacoustics monitoring. In
Machine Learning for Signal Processing (MLSP), 2015 IEEE 25th International
Workshop on, pages 1–6. IEEE, 2015.

[105] Philippe G Schyns. Object recognition: Complexity of recognition strategies. Cur-
rent Biology, 28(7):R313–R315, 2018.

[106] Joan Serraa, Santiago Pascualb, and Alexandros Karatzogloua. Towards a uni-
versal neural network encoder for time series. Artificial Intelligence Research and
Development: Current Challenges, New Trends and Applications, 308:120, 2018.

144

[107] Paris Smaragdis. Non-negative matrix factor deconvolution; extraction of multiple
sound sources from monophonic inputs. In Independent Component Analysis and
Blind Signal Separation, pages 494–499. Springer, 2004.

[108] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev
Khudanpur. X-vectors: Robust dnn embeddings for speaker recognition. In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5329–5333. IEEE, 2018.

[109] Dan Stowell and Mark D. Plumbley. Automatic large-scale classification of bird
sounds is strongly improved by unsupervised feature learning. PeerJ, 2, 2014.

[110] Nils Strodtho↵ and Claas Strodtho↵. Detecting and interpreting myocardial infarc-
tion using fully convolutional neural networks. Physiological measurement, 2018.

[111] Yoshiki Tanaka, Kazuhisa Iwamoto, and Kuniaki Uehara. Discovery of time-series
motif from multi-dimensional data based on mdl principle. Machine Learning,
58(2-3):269–300, 2005.

[112] RK Tripathy and U Rajendra Acharya. Use of features from rr-time series and
eeg signals for automated classification of sleep stages in deep neural network
framework. Biocybernetics and Biomedical Engineering, 38(4):890–902, 2018.

[113] Munenori Uemura, Morimasa Tomikawa, Tiejun Miao, Ryota Souzaki, Satoshi
Ieiri, Tomohiko Akahoshi, Alan K Lefor, and Makoto Hashizume. Feasibility of an
ai-based measure of the hand motions of expert and novice surgeons. Computa-
tional and mathematical methods in medicine, 2018, 2018.

[114] Manik Varma and Andrew Zisserman. A statistical approach to texture classifica-
tion from single images. International Journal of Computer Vision, 62(1-2):61–81,
2005.

[115] Manik Varma and Andrew Zisserman. A statistical approach to material classifi-
cation using image patch exemplars. IEEE transactions on pattern analysis and
machine intelligence, 31(11):2032–2047, 2009.

[116] Ravichander Vipperla, Simon Bozonnet, Dong Wang, and Nicholas Evans. Ro-
bust speech recognition in multi-source noise environments using convolutive non-
negative matrix factorization. Proc. CHiME, pages 74–79, 2011.

[117] Michail Vlachos, Jessica Lin, Eamonn Keogh, and Dimitrios Gunopulos. A wavelet-
based anytime algorithm for k-means clustering of time series. In In Proc. Work-
shop on Clustering High Dimensionality Data and Its Applications. Citeseer, 2003.

145

[118] Tiep H Vu and Vishal Monga. Learning a low-rank shared dictionary for ob-
ject classification. In IEEE International Conference on Image Processing (ICIP),
pages 4428–4432. IEEE, 2016.

[119] Chien-Yao Wang, Jia-Ching Wang, Andri Santoso, Chin-Chin Chiang, and Chung-
Hsien Wu. Sound event recognition using auditory-receptive-field binary pattern
and hierarchical-diving deep belief network. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 26(8):1336–1351, 2018.

[120] Dong Wang, Ravichander Vipperla, and Nicholas W D Evans. Online pattern
learning for non-negative convolutive sparse coding accepted for publication. In
INTERSPEECH 2011, 12th Annual Conference of the International Speech Com-
munication, August 28-31, Florence, Italy, 2011.

[121] Dong Wang, Ravichander Vipperla, and Nicholas WD Evans. Online pattern learn-
ing for non-negative convolutive sparse coding. In INTERSPEECH, pages 65–68,
2011.

[122] Fei Wang and Ping Li. E�cient nonnegative matrix factorization with random
projections. In Proceedings of the 2010 SIAM International Conference on Data
Mining, pages 281–292. SIAM, 2010.

[123] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. Multilevel wavelet decom-
position network for interpretable time series analysis. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2437–2446. ACM, 2018.

[124] Shuqin Wang, Gang Hua, Guosheng Hao, and Chunli Xie. A cycle deep belief
network model for multivariate time series classification. Mathematical Problems
in Engineering, 2017, 2017.

[125] Xinggang Wang, Baoyuan Wang, Xiang Bai, Wenyu Liu, and Zhuowen Tu. Max-
margin multiple-instance dictionary learning. In ICML, pages 846–854, 2013.

[126] Xinggang Wang, Zhuotun Zhu, Cong Yao, and Xiang Bai. Relaxed multiple-
instance svm with application to object discovery. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1224–1232, 2015.

[127] Yu-Xiong Wang and Yu-Jin Zhang. Nonnegative matrix factorization: A com-
prehensive review. Knowledge and Data Engineering, IEEE Transactions on,
25(6):1336–1353, 2013.

146

[128] Zhiguang Wang and Tim Oates. Encoding time series as images for visual inspec-
tion and classification using tiled convolutional neural networks. In Workshops at
the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[129] Zhiguang Wang and Tim Oates. Imaging time-series to improve classification
and imputation. In Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[130] Zhiguang Wang and Tim Oates. Spatially encoding temporal correlations to
classify temporal data using convolutional neural networks. arXiv preprint
arXiv:1509.07481, 2015.

[131] Zhiguang Wang, Wei Song, Lu Liu, Fan Zhang, Junxiao Xue, Yangdong Ye, Ming
Fan, and Mingliang Xu. Representation learning with deconvolution for multivari-
ate time series classification and visualization. arXiv preprint arXiv:1610.07258,
2016.

[132] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from
scratch with deep neural networks: A strong baseline. In 2017 International Joint
Conference on Neural Networks (IJCNN), pages 1578–1585. IEEE, 2017.

[133] John Winn, Antonio Criminisi, and Thomas Minka. Object categorization by
learned universal visual dictionary. In Tenth IEEE International Conference on
Computer Vision (ICCV’05) Volume 1, volume 2, pages 1800–1807. IEEE, 2005.

[134] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma. Robust
face recognition via sparse representation. IEEE transactions on pattern analysis
and machine intelligence, 31(2):210–227, 2009.

[135] Daniel Wu, Ambuj Singh, Divyakant Agrawal, Amr El Abbadi, and Terence R
Smith. E�cient retrieval for browsing large image databases. In Proceedings of the
fifth international conference on Information and knowledge management, pages
11–18. Citeseer, 1996.

[136] Lin Wu, Yang Wang, and Shirui Pan. Exploiting attribute correlations: A novel
trace lasso-based weakly supervised dictionary learning method. IEEE Transac-
tions on Cybernetics, 2016.

[137] Jin Xie, Lei Zhang, Jane You, and David Zhang. Texture classification via patch-
based sparse texton learning. In IEEE International Conference on Image Pro-
cessing, pages 2737–2740. IEEE, 2010.

147

[138] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid
matching using sparse coding for image classification. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1794–1801.
IEEE, 2009.

[139] Jianchao Yang, Kai Yu, and Thomas Huang. Supervised translation-invariant
sparse coding. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 3517–3524. IEEE, 2010.

[140] Meng Yang, Lei Zhang, Xiangchu Feng, and David Zhang. Fisher discrimina-
tion dictionary learning for sparse representation. In International Conference on
Computer Vision, pages 543–550. IEEE, 2011.

[141] Meng Yang, Lei Zhang, Jian Yang, and David Zhang. Metaface learning for sparse
representation based face recognition. In 2010 IEEE International Conference on
Image Processing, pages 1601–1604. IEEE, 2010.

[142] Lexiang Ye and Eamonn Keogh. Time series shapelets: a novel technique that
allows accurate, interpretable and fast classification. Data mining and knowledge
discovery, 22(1-2):149–182, 2011.

[143] Chin-Chia Michael Yeh, Nickolas Kavantzas, and Eamonn Keogh. Matrix profile
vi: Meaningful multidimensional motif discovery. In Data Mining (ICDM), 2017
IEEE International Conference on, pages 565–574. IEEE, 2017.

[144] Chin-Chia Michael Yeh and Yi-Hsuan Yang. Supervised dictionary learning for
music genre classification. In Proceedings of the 2Nd ACM International Conference
on Multimedia Retrieval, ICMR ’12, pages 55:1–55:8, New York, NY, USA, 2012.
ACM.

[145] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,
Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh.
Matrix profile i: all pairs similarity joins for time series: a unifying view that
includes motifs, discords and shapelets. In Data Mining (ICDM), 2016 IEEE 16th
International Conference on, pages 1317–1322. IEEE, 2016.

[146] Zeyu You, Raviv Raich, Xiaoli Z Fern, and Jinsub Kim. Weakly-supervised analysis
dictionary learning with cardinality constraints. In 2016 IEEE Statistical Signal
Processing Workshop (SSP), pages 1–5. IEEE, 2016.

[147] Zeyu You, Raviv Raich, Xiaoli Z Fern, and Jinsub Kim. Discriminative recur-
ring signal detection and localization. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 2377–2381. IEEE, 2017.

148

[148] Zeyu You, Raviv Raich, Xiaoli Z Fern, and Jinsub Kim. Weakly supervised dictio-
nary learning. IEEE Transactions on Signal Processing, 66(10):2527–2541, 2018.

[149] Zeyu You, Raviv Raich, Xiaoli Z Fern, and Jinsub Kim. Weakly supervised learning
of multiple-scale dictionaries. In 2018 IEEE Statistical Signal Processing Workshop
(SSP), pages 100–104. IEEE, 2018.

[150] Zeyu You, Raviv Raich, and Yonghong Huang. An inference framework for de-
tection of home appliance activation from voltage measurements. In 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 6033–6037. IEEE, 2014.

[151] Alan L Yuille, Anand Rangarajan, and AL Yuille. The concave-convex procedure
(cccp). Advances in neural information processing systems, 2:1033–1040, 2002.

[152] Haichao Zhang, Yanning Zhang, and Thomas S Huang. Simultaneous discrimina-
tive projection and dictionary learning for sparse representation based classifica-
tion. Pattern Recognition, 46(1):346–354, 2013.

[153] Min-Ling Zhang and Zhi-Hua Zhou. Multi-label learning by instance di↵erentia-
tion. In AAAI, volume 7, pages 669–674, 2007.

[154] Qiang Zhang and Baoxin Li. Discriminative K-SVD for dictionary learning in face
recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2691–2698. IEEE, 2010.

[155] Lu Huanzhang Chen Shangfeng Liu Junliang Zhao, Bendong and Dongya Wu.
Convolutional neural networks for time series classification. Journal of Systems
Engineering and Electronics, 28(1):162–169, 2017.

[156] Zhi-Hua Zhou and Min-Ling Zhang. Multi-instance multi-label learning with appli-
cation to scene classification. In Advances in neural information processing systems,
pages 1609–1616, 2006.

[157] Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-Feng Li. Multi-instance
multi-label learning. Artificial Intelligence, 176(1):2291–2320, 2012.

[158] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh,
Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn Keogh. Matrix
profile ii: Exploiting a novel algorithm and gpus to break the one hundred million
barrier for time series motifs and joins. In Data Mining (ICDM), 2016 IEEE 16th
International Conference on, pages 739–748. IEEE, 2016.

149

[159] Ali Ziat, Edouard Delasalles, Ludovic Denoyer, and Patrick Gallinari. Spatio-
temporal neural networks for space-time series forecasting and relations discovery.
In 2017 IEEE International Conference on Data Mining (ICDM), pages 705–714.
IEEE, 2017.

[160] Michael Zibulevsky and Barak A Pearlmutter. Blind source separation by sparse
decomposition in a signal dictionary. Neural computation, 13(4):863–882, 2001.

150

APPENDICES

151

Appendix A: Derivation of complete data likelihood

Given the observed data and the hidden data, we perform the complete data likelihood

as:

P (D, H;✓,�) =

P (X , Y, I1 = 1, . . . , IN = 1, y1, . . . , yN ;w,b, N̄1, . . . , N̄N).

Using the probability rule of P (A, B) = P (A|B)P (B) and the independence assumption

of each observed data point (xn, Yn, In = 1), the complete data likelihood can be further

computed as:

P (D, H;✓,�) = P (X)
NY

n=1

P (Yn, yn, In = 1|xn;w,b, N̄n).

Apply the probabilistic graphic structure in Fig. 4.2, we have

P (D, H;✓,�) =P (X)
Q

N

n=1 P (In = 1|yn; N̄n)P (Yn|yn)

·P (yn|xn;w,b).

Plug in the model formulation in (4.2) and (4.3) and due to conditional independence

assumption of each time instance label, we arrive the final formulation of the complete

152

data likelihood as:

P (D, H;✓,�) =

P (X)
NY

n=1

[I(Yn=[
Tn�1+�
t=�� yn(t))

+ I(Yn[{0}=[
Tn�1+�
t=�� yn(t))

]

I(PTn�1+�
t=�� I(yn(t) 6=0)N̄n)

Tn�1+�Y

t=��

P (yn(t)|xn,w,b).

153

Appendix B: Derivation of auxiliary function

In the EM algorithm, the auxiliary function is given by the expectation of the complete

data log-likelihood over the hidden conditioned on the observed data. Therefore, the

auxiliary function is formulated as:

Q(✓,✓i) = EH|D;✓i,�[log P (D, H;✓,�))].

Applying the natural logarithmic operation on the complete data likelihood, we have

log P (D, H;✓,�) = log P (X) +
NX

n=1

log[I(Yn=[
Tn�1+�
t=�� yn(t))

+I(Yn[{0}=[
Tn�1+�
t=�� yn(t))

] + log(I(PTn�1+�
t=�� I(yn(t) 6=0)N̄n)

)

+
Tn�1+�X

t=��

log P (yn(t)|xn,w,b).

Since the hidden data is only associated with each time instance label signal y1, . . . , yN ,

the expectation of P (In = 1|yn; N̄n) and P (Yn|yn) are constant. Therefore the auxiliary

function is computed as:

Q(✓,✓i) =
NX

n=1

Tn�1+�X

t=��

Eyn(t)|D;✓i,�[log P (yn(t)|xn,w,b)] + const.

154

Since log P (yn(t)|xn,w,b) = I(yn(t)=c)(w
T
c xnt + bc) � log(

P
C

u=0 e
w

T
u xnt+bu), the final

formulation of the auxiliary function is

Q(✓,✓i)=
NX

n=1

Tn�1+�X

t=��

[
CX

c=0

P (yn(t) = c|D; N̄n,wi) ·

wT

c xnt + bc � log(
CX

u=0

e
w

T
u xnt+bu)] + const.

155

Appendix C: Derivation of forward message passing on chain

The derivation of the chain forward message passing is based on the definition of the for-

ward message on the chain model ↵t(L, l) = P (Y t
n = L, N

t
n = l|xn;✓i) and the marginal

probability

P (Y t
n = L, N

t
n = l|xn;✓i) =

P
Y

t�1
n

P
N

t�1
n

P
yn(t)

P (Y t
n = L, N

t
n = l, Y

t�1
n , N

t�1
n , yn(t)|xn;✓i).

The forward message passing update rule can be formulated by marginalizing the pre-

vious state variables (Y t�1
n , N

t�1
n) and the current time instance yn(t). Rely on the

v-structure on the update step of the chain structure in Fig. 4.4(a) and the chain rule

of the joint probability (P (A, B, C) = P (A|B, C)P (B)P (C)) such that

P (Y t
n = L, N

t
n = l, Y

t�1
n , N

t�1
n , yn(t)|xn;✓i)

= P (Y t
n = L, N

t
n = l|Y t�1

n , N
t�1
n , yn(t)) ·

P (yn(t)|xnt;wi
,bi)P (Y t�1

n , N
t�1
n |xn;✓i),

we have

↵t(L, l)=
X

A22Yn

t�1X

a=0

CX

c=0

P (Y t

n = L, N
t

n = l|Y t�1
n = A

, N
t�1
n = a, yn(t) = c)P (yn(t) = c|xnt;w

i
,bi)

P (Y t�1
n = A, N

t�1
n = a|xn;✓i).

156

According to (4.9) and (4.10) , the conditional probability follows a deterministic rule

such that P (Y t
n = L, N

t
n = l|Y t�1

n = A, N
t�1
n = a, yn(t) = c) = I(L = A [{c})I(l =

a + I(c 6= 0)). Therefore, the update rule of the forward message passing is:

↵t(L, l)=
X

A22Yn

t�1X

a=0

CX

c=0

I(L = A [{c})I(l = a + I(c 6= 0))

·P (yn(t) = c|xn;wi)↵t�1(A, a)

Due to the constraints that L = A [{c} and l = a + I(c 6= 0), for a fixed value of L and

l, A and a can only have one value for a particular class c. Thus the update rule of the

forward message can be further simplified as:

↵t(L, l)=P (yn(t) = 0|xn;wi)↵t�1(L, l)

+
CX

c=1

P (yn(t) = c|xn;wi)I(l 6= 0)

[↵t�1(L, l � 1) + I(c 2 L)↵t�1(L\c, l)].

157

Appendix D: Derivation of backward message passing on chain

The derivation of the chain backward message passing is based on the definition of the

backward message on the chain model �t�1(L, l) = P (Yn, In = 1|Y t�1
n = L, N

t�1
n =

l, xn;✓i
, N̄n) and the marginal probability

P (Yn, In = 1|Y t�1
n , N

t�1
n , xn;✓i

, N̄n) =
P

Y t
n

P
Nt

n

P
yn(t)

P (Yn, In = 1, Y
t
n, N

t
n, yn(t)|Y t�1

n , N
t�1
n , xn;✓i

, N̄n).

Rely on the v-structure on the update step of the chain structure in Fig. 4.4 (b) and the

chain rule of the conditional probability (P (A, B|C) = P (A|B, C)P (B|C)), we have

P (Yn, In = 1, Y
t
n, N

t
n, yn(t)|Y t�1

n , N
t�1
n , xn;✓i

, N̄n)

= P (Yn, In = 1|Y t
n, N

t
n, Y

t�1
n , N

t�1
n , yn(t), xn;✓i

, N̄n) ·

P (Y t
n, N

t
n|Y t�1

n , N
t�1
n , yn(t))P (yn(t)|xnt;wi

,bi).

Given the current time joint state node (Y t
n, N

t
n), the observed node (Yn, In) is indepen-

dent of the previous joint state node (Y t�1
n , N

t�1
n) and the current time instance yn(t),

so P (Yn, In = 1|Y t
n, N

t
n, Y

t�1
n , N

t�1
n , yn(t), xn;✓i

, N̄n) = P (Yn, In = 1|Y t
n, N

t
n, xn;✓i

, N̄n).

Combining the above two equations, we obtain the update rule of the backward message

158

passing as:

�t�1(L, l)

=
X

A22Yn

tX

a=0

CX

c=0

P (Yn, In = 1|Y t

n = A, N
t

n = a,Xn; N̄n,w)

P (Y t

n = A, N
t

n = a|Y (t�1)
n = L, N

t�1
n = l, yn(t) = c)

P (yn(t) = c|xn;wi
,bi)

Since P (Y t
n = L, N

t
n = l|Y t�1

n = A, N
t�1
n = a, yn(t) = c) = I(L = A [{c})I(l = a + I(c 6=

0)) and each one of A, a is only limited to one value for a particular class c, therefore,

the update rule of the forward message passing is:

�t�1(L, l)

=
CX

c=0

�t(L [{c 6= 0}, l + I(c 6=0))P (yn(t) = c|xn,wi
,bi).

159

Appendix E: Derivation of joint probability on chain

To calculate the joint probability P (yn(t) = c, Yn, In = 1|xn;✓i
, N̄n), we apply a condi-

tional rule that

P (yn(t) = c, Yn, In = 1|xn;✓i
, N̄n) =

P (Yn, In = 1|yn(t) = c, xn;✓i
, N̄n)p(yn(t) = c|xn;wi

,bi).

Once each time instance label yn(t) is known, the observed state node (Yn, In) is inde-

pendent of the observed signal xn and parameter ✓, so

P (Yn, In|yn(t) = c, xn;✓i
, N̄n) = P (Yn, In|yn(t) = c; N̄n).

Since P (Yn, In|yn(t) = c; N̄n) can be obtained by marginalizing out the joint state nodes

of both (Y t
n, N

t
n) and (Y t�1

n , N
t�1
n),

P (Yn, In|yn(t) = c; N̄n) =
P

Y t
n

P
Nt

n

P
Y

t�1
n

P
N

t�1
n

P (Yn, In, Y
t
n, N

t
n, Y

t�1
n , N

t�1
n |yn(t) = c; N̄n)

160

Apply the chain rule of the conditional probability (P (A, B|C) = P (A|B, C)P (B|C)),

P (Yn, In, Y
t
n, N

t
n, Y

t�1
n , N

t�1
n |yn(t) = c; N̄n)

= P (Yn, In|Y t
n, N

t
n, Y

t�1
n , N

t�1
n , yn(t), xn;✓i

, N̄n)

P (Y t�1
n , N

t�1
n |xn;✓i)p(yn(t) = c|xn;wi)

Given the current time joint state node (Y t
n, N

t
n), the observed node (Yn, In) is indepen-

dent of the previous joint state node (Y t�1
n , N

t�1
n) and the current time instance yn(t), so

P (Yn, In = 1|Y t
n, N

t
n, Y

t�1
n , N

t�1
n , yn(t), xn;✓i

, N̄n) = P (Yn, In = 1|Y t
n, N

t
n, xn;✓i

, N̄n) =

�t(Y t
n, N

t
n). Combining the above equations, applying the deterministic rule P (Y t

n =

L, N
t
n = l|Y t�1

n = A, N
t�1
n = a, yn(t) = c) = I(L = A [{c})I(l = a + I(c 6= 0)) and ap-

plying the definition of the forward message P (Y t�1
n , N

t�1
n |xn;✓i) = ↵t�1(Y t�1

n , N
t�1
n),

the joint probability is performed as:

P (yn(t) = c, Yn, In = 1|xn;✓i
, N̄n)

=
X

A22Yn

t�1X

a=0

X

L22Yn

tX

l=0

I(A = L [{c})I(a = l + I(c 6= 0))

↵t�1(L, l)�t(A, a)

=
X

L22Yn

N̄
⇤
nX

l=0

�t(L [{c 6= 0}, l + I(c 6= 0))↵t�1(L, l))

p(yn(t) = c|xn;wi),

where N̄
⇤
n = min(N̄n � I(c 6= 0), t).

161

Appendix F: Derivation of forward message passing on tree

The forward message passing update on tree can be first applied with the definition of

the forward message on tree ↵
j�1
t

(L, l) = P (Y j�1
nt

= L, N
j�1
nt

= l|xn;✓i) and the marginal

probability

P (Y j�1
nt

, N
j�1
nt

|xn;✓i) =
P

Y
j
n(2t�1)

P
N

j
n(2t�1)

P
Y

j
n(2t)

P
N

j
n(2t)

P (Y j�1
nt

, N
j�1
nt

, Y
j

n(2t�1), N
j

n(2t�1), Y
j

n(2t), N
j

n(2t)|xn;✓i)

According to the v-structure of the update step in Fig. 4.6(a) , the joint probability can

be decomposed as:

P (Y j�1
nt

, N
j�1
nt

, Y
j

n(2t�1), N
j

n(2t�1), Y
j

n(2t), N
j

n(2t)|xn;✓i)

= P (Y j�1
nt

, N
j�1
nt

|Y j

n(2t�1), N
j

n(2t�1), Y
j

n(2t), N
j

n(2t)) ·

P (Y j

n(2t�1), N
j

n(2t�1)|xn;✓i)P (Y j

n(2t), N
j

n(2t)|xn;✓i)

Due to the deterministic rule between (Y j�1
nt

, N
j�1
nt

) and (Y j

n(2t�1), N
j

n(2t�1)), (Y
j

n(2t), N
j

n(2t))

as proposed in (4.15) and (4.16), P (Y j�1
nt

, N
j�1
nt

|Y j

n(2t�1), N
j

n(2t�1), Y
j

n(2t), N
j

n(2t)) = I(Y j�1
nt

=j

n(2t�1)

[Y
j

n(2t))I(N
j�1
nt

= N
j

n(2t�1) + N
j

n(2t)). Combining the above the equations, we obtain the

162

update rule of the forward message passing on tree as:

↵
j�1
t

(L, l)=
X

A22Yn

N̄
⇤⇤
nX

a=0

X

E22Yn

N̄
⇤⇤
nX

e=0

I(L = A [E)I(l = a + e)

·↵j

2t�1(A, a)↵j

2t(E, e)

=
X

A✓L

lX

a=0

↵
j

2t�1(A, a)↵j

2t(L \ A, l � a),

where N̄
⇤⇤
n = min(N̄b, 2L�j) + 1.

163

Appendix G: Derivation of backward message passing on tree

Given the definition of the backward message on tree �
j

2t�1(A, a) = P (Yn, In = 1|Y j

n(2t�1) =

A, N
j

n(2t�1) = a, xn;✓i
, N̄n) and �

j

2t(E, e) = P (Yn, In = 1|Y j

n(2t) = E, N
j

n(2t) = e, xn;✓i
, N̄n),

the backward message passing update on tree can be derived based on marginal proba-

bilities:

P (Yn, In = 1|Y j

n(2t�1), N
j

n(2t�1), xn;✓i
, N̄n)

=
P

Y
j
n(2t)

P
N

j
n(2t)

P
Y

j�1

nt

P
N

j�1

nt
P (Yn, In = 1, Y

j

n(2t),

N
j

n(2t), Y
j�1
nt

, N
j�1
nt

|Y j

n(2t�1), N
j

n(2t�1), xn;✓i
, N̄n)

and

P (Yn, In = 1|Y j

n(2t), N
j

n(2t), xn;✓i
, N̄n)

=
P

Y
j
n(2t�1)

P
N

j
n(2t�1)

P
Y

j�1

nt

P
N

j�1

nt
P (Yn, In = 1, Y

j

n(2t�1),

N
j

n(2t�1), Y
j�1
nt

, N
j�1
nt

|Y j

n(2t), N
j

n(2t), xn;✓i
, N̄n).

164

According to the v-structure of the update step in Fig. 4.6(b), the joint probabilities can

be decomposed as:

P (Yn, In = 1, Y
j

n(2t), N
j

n(2t), Y
j�1
nt

, N
j�1
nt

|Y j

n(2t�1), N
j

n(2t�1), xn;✓i
, N̄n)

= P (Y j�1
nt

, N
j�1
nt

|Y j

n(2t), N
j

n(2t), Y
j

n(2t�1), N
j

n(2t�1))

P (Yn, In = 1|Y j�1
nt

, N
j�1
nt

, xn;✓i
, N̄n)

P (Y j

n(2t), N
j

n(2t)|xn;✓i)

and

P (Yn, In = 1, Y
j

n(2t�1), N
j

n(2t�1), Y
j�1
nt

, N
j�1
nt

|Y j

n(2t), N
j

n(2t), xn;✓i
, N̄n)

= P (Y j�1
nt

, N
j�1
nt

|Y j

n(2t), N
j

n(2t), Y
j

n(2t�1), N
j

n(2t�1))

P (Yn, In = 1|Y j�1
nt

, N
j�1
nt

, xn;✓i
, N̄n)

P (Y j

n(2t�1), N
j

n(2t�1)|xn;✓i).

Due to the deterministic rule that

P (Y j�1
nt

, N
j�1
nt

|Y j

n(2t�1), N
j

n(2t�1), Y
j

n(2t), N
j

n(2t))

= I(Y j�1
nt

=j

n(2t�1) [Y
j

n(2t))I(N
j�1
nt

= N
j

n(2t�1) + N
j

n(2t)),

165

we derive the update of the backward message passing update rule by combining the

above equations as:

�
j

2t�1(A, a)=
X

L22Yn

N̄
⇤⇤
nX

l=0

X

E22Yn

N̄
⇤⇤
nX

e=0

I(L = A [E)I(l = a + e)

�
j�1
t

(L, l)↵j

2t(E, e)

=
X

E22Yn

N̄
⇤⇤
nX

e=0

�
j�1
t

(A [E, a + e)↵j

2t(E, e).

and

�
j

2t(E, e)=
X

L22Yn

N̄
⇤⇤
nX

l=0

X

E22Yn

N̄
⇤⇤
nX

e=0

I(L = A [E)I(l = a + e)

�
j�1
t

(L, l)↵j

2t�1(A, a)

=
X

A22Yn

N̄
⇤⇤
nX

a=0

�
j�1
t

(A [E, a + e)↵j

2t�1(A, a).

166

Appendix H: Detail of computational analysis

H.1 E-step chain inference

Time complexity is (O(
P

N

n=1 |Yn|2|Yn|N̄nTn)): In the chain inference with both for-

ward and backward message passing, each update of forward and backward message

requires running over all possible values of yn(t) and (L, l), therefore, the computational

complexity is O((|Yn| + 1)2|Yn| min(t, N̄n)). Since each time step is only depend on the

previous time step, the overall computational complexity is

T c

n (t) = T c

n (t � 1) + O((|Yn| + 1)2|Yn| min(t, N̄n)).

After solving this recursive formula, we have T c
n = O(|Yn|2|Yn|N̄nTn). Therefore, the

overall chain inference needs a computational complexity of
P

N

n=1 T c
n = O(

P
N

n=1 |Yn|2|Yn|N̄nTn).

Space complexity is (O(2|Yn|TnN̄n)): For E-step chain inference with both forward

and backward message passing, each forward and backward message requires O(2|Yn|min(t+

1, N̄n + 1)). Since each time step is only depend on the previous time step, the overall

space complexity is calculated as:

Sc

n(t) = Sc

n(t � 1) + O(2|Yn| min(t + 1, N̄n + 1)).

Solving this recursive formula, we obtain Sc
n =

P
Tn
t=1 2|Yn|min(t+1, N̄n+1) = O(2|Yn|TnN̄n).

167

H.2 E-step tree inference

Time complexity is (O(
P

N

n=1 4|Yn|(log2 N̄n)2Tn)): In the tree inference on both for-

ward and backward message passing, each update of forward and backward message

requires running over all possible values of (Y j

n(2t�1), N
j

n(2t�1)) and (Y j

n(2t), N
j

n(2t)), there-

fore, the computational complexity is O(4|Yn|(min(N̄n, 2L�j) + 1)2). However, the up-

dates of the forward and backward messages on the tree for controlling sparsity l are

operating in a convolutive nature. When N̄n is large, we rely on FFT and Inverse of

FFT to speedup such that the convolution complexity will become O((min(N̄n, 2L�j) +

1) log(min(N̄n+1, 2L�j)+1)). Since current instance on tree level j only depend on pre-

vious two parents’ at j+1, the recursive formula of the overall computational complexity

is

T tr(j)
n (t) = T tr(j+1)

n (2t) + T tr(j+1)
n (2t � 1) + O(4|Yn|X log X),

where X = min(N̄n, 2L�j) + 1 and 1  t  Tn/2L�j
, 1  j  L. After solving this

recursive formula, we have T tr
n = O(4|Yn|(log2 N̄n)2Tn). The overall computational com-

plexity of tree approach is
P

N

n=1 T tr
n =

P
N

n=1 O(4|Yn|(log2 N̄n)2Tn). space complexity

is (O(2|Yn|Tn log2 N̄n)): For tree forward and backward message passing, each node re-

quires O(2|Yn|min(2j + 1, N̄n + 1)) space. Since current instance on tree level j only

depend on previous two parents’ at j + 1, the recursive formula is:

Str(j)
n (t) = Str(j+1)

n (2t) + Str(j+1)
n (2t � 1) + O(2|Yn|X),

where X = min(N̄n, 2L�j) + 1 and 1  t  Tn/2L�j
, 1  j  L. Solving it, we obtain

Str
n =

P
L

j=0 2|Yn|(min(2j , N̄n) + 1)Tn/2j = O(2|Yn|Tn log2 N̄n).

