Metacommunity dynamics of bacteria in an arctic lake: the impact of species sorting and mass effects on bacterial production and biogeography

Heather E. Adams¹, Byron C. Crump²*, and George W. Kling¹

- ¹University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, USA
- ²Oregon State University, College of Earth, Ocean and Atmospheric Science, Corvallis, OR, USA

Supplemental Table 1. DNA similarity (1.0 = identical) between sites during transplant experiments and the impact of location on community composition (average similarity of control compared to location treatment). Samples with slashes in the name have the community source environment before the slash and the incubation environment after the slash.

Date	Samples compared Similarity				
18 July 2006	I-8 inlet	I-8 outlet	0.38		
18–21 July 2006	Inlet/inlet	Inlet/outlet	0.77		
21 July 2006	I-8 inlet	I-8 outlet	0.56		
1 Aug. 2006	I-8 inlet	I-8 outlet	0.51		
1-3 Aug. 2006	Inlet/inlet	Inlet/outlet	0.74		
1-3 Aug. 2006	Outlet/outlet	Outlet/inlet	0.90		
3 Aug. 2006	I-8 inlet	I-8 outlet	0.55		

Supplemental Table 2. Habitat characteristics during transplant experiments. Transplant experiment collected on 9 Jul 2005 was deployed 12 hours after conditions were measured on 5 Jul 2005.

		Temp	BP (µg	Cond	pН	Chl a	Protein	Phenolics	DOC
Date	Site	(°C)	C/L/d)	$(\mu S/cm)$		$(\mu g/L)$	(mg/L)	(μM)	(µM)
5 Jul 2005	I-8 inlet	7	1.25	123.3	7.28	0.21	0.16	0.06	268
5 Jul 2005	I-8 outlet	12.3	7.19	51.2	6.99	0.39	0.29	0.04	387
9 Jul 2005	I-8 inlet	7.2	1.69	62.0	6.29	0.18	0.51	0.81	615
9 Jul 2005	I-8 outlet	10.6	11.4	62.2	6.61	0.80	0.53	0.99	457
26 Jul 2005	I-8 inlet	11.2	1.42	117.2	7.12	0.10	0.16	0.29	354
26 Jul 2005	I-8 outlet	14.6	6.38	67.9	7.61	0.75	0.38	0.78	527
28 Jul 2005	I-8 inlet	11	1.79	124.3	7.66	0.90	0.16	0.27	351
28 Jul 2005	I-8 outlet	14.4	10.6	69.5	7.54	0.97	0.34	0.76	522
18 Jul 2006	I-8 inlet	10.1	0.85	88.5	8.14	0.41	0.30	0.56	463
18 Jul 2006	I-8 outlet	12.4	2.39	69.6	7.65	2.10	0.59	1.05	574
21 Jul 2006	I-8 inlet	8.3	1.16	77.7	7.59	0.43	0.47	0.73	528
21 Jul 2006	I-8 outlet	11.6	7.70	72.5	7.39	1.72	0.59	0.95	564
1 Aug 2006	I-8 inlet	10.1	0.56	95.9	7.62	10.1	0.45	0.43	476
1 Aug 2006	I-8 outlet	12.6	3.86	75.4	7.41	12.6	0.59	0.87	592
3 Aug 2006	I-8 inlet	12.1	2.09	100.4	7.72	0.65	0.47	0.48	457
3 Aug 2006	I-8 outlet	12.8	10.8	78.4	7.52	2.10	0.62	0.81	576
2 Jul 2007	I-8 inlet	17.6	7.15	152.2	7.65	0.29	0.12	0.68	402
2 Jul 2007	I-8 outlet	16.3	15.4	79	7.47	0.48	0.19	0.69	315
4 Jul 2007	I-8 inlet	13.9	2.69	158	7.50	0.20	0.21	0.23	363
4 Jul 2007	I-8 outlet	18.4	2.68	74.2	7.25	0.29	0.32	0.03	427

Supplemental Materials

Supplemental Table 3. Limnological variables measured at Lake I-8 during the 4 Jul 2007 intensive spatial sampling (see Kling et al. 2000 for methodology).

Срµк µg/L	0.23	0.36	0.41	1.01	1.02	0.94	1.05	0.65	1.06	0.97	1.85	0.34
nsgyzO		•	•	8.43	8.74	8.78	8.73	8.80	8.48	8.69	7.75	
M4 iS	30.5	41.2	38.0	16.5	15.9	15.8	16.4	19.1	16.4	16.5	29.7	17.9
Мц Я	5.4	5.7	4.4	7.4	7.7	7.8	7.4	9.2	7.5	7.4	8.1	7.5
Mı, sN	22.3	30.8	20.4	12.8	13.4	13.2	12.8	27.8	13.3	12.9	13.1	13.1
Mµ gM	146	176	114	66.3	66.3	67	66.1	67.5	65.8	66.2	62.6	68.5
Мц вЭ	668	917	639	308	309	312	305	311	305	305	290	316
Mų 40T	0.08	0.06	0.11	0.09	0.11	0.11	0.07	0.10	0.12	0.08	0.14	0.11
Μη ΝΟΤ	21.1	24.7	13.5	10.8	12.2	12.1	11.3	12.5	11.1	11.7	11.8	12.1
M ^{η ε} ΟΝ	13.82	18.70	1.86	0.06	0.12	0.21	0.08	0.20	0.18	0.11	0.32	0.46
PO₄µM	0.02	0.06	0.07	0.04	0.04	0.03	0.04	0.07	0.04	0.03	0.05	0.04
Mµ ↓HN	0.35	0.57	0.54	0.26	0.34	0.48	0.27	0.44	0.25	0.28	0.52	0.67
DOC μΜ	363.3	427.3	405.9	447.4	456.4	444.1	405.7	429.3	448	391.1	425.9	393.5
Jpsy MA	1418	1898	1379	633.3	650.5	645	640.4	634.3	616.1	647.2	609.9	622.3
Hq	7.5	7.53	6.93	7.57	7.78	7.85	7.73	7.8	7.63	7.76	6.82	7.25
mə/S4 bnoD	158	208	143.3	68.4	68.7	68.8	68.1	69	67.8	67.8	61.8	74.2
O° qm∍T	13.9	11.3	16.3	17.8	17.9	18	17.5	18	17.7	17.6	7.76	18.4
Depth (m)	0.01	0.01	0.01	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9	0.01
əmiT	9:55	9:15	14:10	11:08	10:32	10:15	12:50	10:44	11:38	12:12	12:12	11:00
Site	I8 Inlet	I8 Inlet Northeast	I8 Inlet South	18 Lake Central	I8 Lake East	I8 Lake Northeast	I8 Lake Northwest	18 Lake Southeast	I8 Lake Southwest	I8 Lake West	I8 Lake West	I8 Outlet

Supplemental Figure 1. Diffusion of ¹⁴C-leucine across dialysis bags. Upper line (triangles) is radioactivity of ¹⁴C-labeled leucine measured inside a dialysis bag (in scintillation counts per minute (CPM) per ml), while the lower line is radioactivity measured in the fluid exterior of the bag (squares). Black solid lines are fitted to the curves with exponential equations (decay and increase, $R^2 = 0.997$ and 0.84), and gray dashed lines are 95% confidence intervals. Error bars on data points are standard error of the mean.

Supplemental Figure 2. Plot of isotherms in Lake I-8 from summer 2003. Bars indicate the depth range where the density of the inflow water from I-8 inlet is the same as the water within the lake (density calculated using measured temperature and salinity).

Supplemental Figure 3. Conductivity (left) and pH (right) depth profiles for the sampling transect in the western basin of Lake I-8 on 4 Jul 2007. I-8 southwest station (black circles) clearly shows the influence of the main inlet stream in higher conductivity and lower pH, compared to the west (light gray squares) and northwest (dark gray triangles) stations.