A STUDY OF MOROR TRUCE LOG TRANSPORTATYOX IN THE DOVCLAS FIR REGION AND
 ITS APPLICATLON TO TVE MELELEPINE LOGOLMG LNDUSTRY

 by

 by
 GUILLERMO PONCE

A THESIS
submitted to the
OREOON STATE COLLEGE

in partial fulfillwent of the requirements for the degree of
 MASTER OF PORESTRY
 May 1939

-Redacted for Privacy

In Cherge of fajor
 - Ŕedacted for Privacy

__Redacted for Privacy

In comactson wh the proparation of thla thase

 Pacturest and dediort as wil as the sectatary of state
整当

 and filling bhe mematical requireacnts of thit khosia.

TABLE OF COMIFNTS

INTRODJCTIOM 1
HISTORE OF HOTOR TRUCK LOG WAULIMG 3
 3
Poriod from 1922-1932.. 4
1932 to the present time 5
ENGIEBERING THE HOTOR TRUCK 8
Property Evaluation.. 8
Cholce and location of rosds. 9
Choice of equipment 10
Dotermining hauling capacity of motor trucks..... 12
TRUCK ROADS 30
Types of truck roads 80
Location and construction. 31
Gravelling 36
Planking. 37
Ditches and oulverta 39
 39
 41
cost of rosd construction. 42
 43
Clasalification. 44
Specification of trucks 45
Springa 46
Brake 46
Tires 48
Trallers 48
Motor 48
Rear wheel drive 50
Upkeep,*****...***********...................****.....**. 51
Garaging the truok*****....******.....................** 52
Special devices to increase the efficiency of trucks....................*...t....................... 53
Stx wheeler trucks... 56
 58
Types of loading devices 59
 62
 66
Deterninetion of the number of trucks to be used in truck operation. 86
What drivers should know 68
Legal restrictions on log hauling over public highways in oregon...*...................... 68
Control of hauling 78
Factors affecting cost of hauling. 74
Unloading. 79
MOTOR TRUCKS-NEW ADDITIONS TO LOGGING EQUIPMEMP. 80
Trucks vs. Reilroads 84
Trucks ve tractors. 87
PHILIPPINE COMDITIONS AND THUCK LOG RAULING 88
The Phallppine Forest. 88
Climete. 89
Topography and soll 91
Trensportation. 92
The logging industry. 98
Methods of logging 94
Computations of Trucking cost in the Philippines 98
COHCLUSIOM. 101
BIBLIOGRAPHY

Table 葉********************************* 16
 18 and 19
 22 and 8
 27
 29
Thble VI******************************** 36
 64
 87
 7
Fable X******************************** 01

LIST OF FIOUHES

 3
 31a
Pigure 8 33a
Figure 4 33b
Figure 5370
 $37 a$
Pigurb 7**********************......................*** 38 a
 38.
Figurb 9***************............................... 38a
F1gure 10*******.............**.............................. 38.
Figure 11.0.***********......**********...........** 39a
 39a
Figure 18 ********************************** 39a41
 41a
Figum 17,******************************* 416
 43a
Pigure 1943a
Piguse 20 43b
 43b
Tigure 28 456
F1gure 8542
Flgure 24
Figure 2560a60a
Figure 86 61a
Figure 2761.
61b
Figure 2873.
Figure 29a
Figure 29b 738
738
Figure 30,*********************************

A STUDX OF 3OTOR THUCK LOC TRAUSPOR"ATION
 In THE DOUCLAS FIR REGION AND
 ITS APPLICATION TO TEE FWILIPPINE LOGGIUG TNDUSTRY

INTRODUCTION

The last twenty-five jears marked the development of the use of motor trucks. The people omployed it in many industries 11 ke mining, road building, farming, and as common atility arrier. In the United States logging industry, they be said without any fear of contradiction that the transportation of logs with motor trucks has long passed its experimental stage. It has become more and more popular in the Douglas fir region. Its wide use is indicative of its productive usefulness, and many belleve that motor trucks have come to stay.

However, in the Philippines, its use as means of log transportation is still in its development stage. This is due to the fect that its intrieate ecomomical operation is not generally understood by most cperators in the Islanda. For "like other equipment, the motor truck can be ueed in the wrong plece with more or less disastrous results from efinancial standpolat, but within 1ts proper sphere of usefulness, it hes no competitor". (1)
(I) R. W. Pratt *Motor truck performance", Motor Logging Supplement, The Temberman. Vol. XXXIX, No. 5, March 1938. p. 2.

Certainly, the small loggers need something faster that would carry biggor load over longer hauls than the water buffalo presentiy used for log hauling. Very soon the old growth concentrated in big tracts will be logged over and it will be unprofitable for big concessioners to use reilroeds. Another equipment more flexible and more adoptable for logging mailer and scattered timber loated in rougher grounde will have to be omployed. Then, too, the use of rallroads requires big outlay of capital, ellowing only big business to engage in the lumber industry. Most Philippine capitala are small and a change of equipment would make logging more popular industry among the masaes.

Scattered very valueble timber located on mall islands covered with publio roads which are obtaining in the Philippines at present, should make the use of motor trucks very destrable, and should bid fair to becone as an important factor in the progress of the lumber industry. The importence of motor trucks as means of log tranaportation todey calle for the necessity of an inquiry on use of trueks.

It is the object of this study to investigate the different pheses of truck \log hauling and organize the knowledge which makes possible the profitable use of trueks in log transportation in the Douglas fir region of
the United states with the aim in view of looking into their wid eqplication in the Philippine logging industry*

BISTORY OR WOROR TRUCK LOG HAULINC

Experimental Poriod - 1918 to 1922.

The use of motor trucks for log hauling has been developed in recent years. As far as is known, motor trucks in the Douglas fir region wes first used in 1913 by Palm and Shielda near Covington, Washington (1). The pioneer logging truck was four-wheeled unit with a single axie semi-trailer provided with either solid stoel or solid rubber tiree (Fig. 1) which oftentimes had to be wound with cables to sot as skid chsins to provide trection when the truck went down or up 10 per cent grades. The treiler was not loaded on the truck on the return trip, making it hard to turn the truck around in limited space, neoossitating the use of turnteble for this purpose. Brakes were poor and in some cases a srubbing machine was used to lower the loaded truck on grades of 30 per cent. Wak chassia and motor did not allow big loads as are

[^0]

Fig. 1 The Pioneer Logging Truck
made on present trucks. The speed was only 12 to 15 miles per hour in high gear.

Plank roads were the rule, and earth roads were not thought of as good at 21. The best road considered was a Pore and aft pole rosd constructed with hewn logs with a surface 16 inches wide on one side and dapped over cross ties. Because of hard tires and lack of knee action in the axles, planks less than stx inches in thiekness were not used to build for and aft plank roads they broke under the hard tires.

Very fev used the trucks during this pertod, and it was estimated that there were only 500 trucks henling logs In the entire Pacific Northwest of the United States in 1919. (1) This is due to the fact that people were not acquanted with the proper use of the truck. There was no urgent need for its use as the timber was still on easy grounds adaptable for the use of rallroads.

The Portod from 1922 to 1932.

Up to 1932, the fority of motor tmoks erployed In log hauling was used by "gyppo" loggers. The construe-
(I) 3. Werker, Motor truck loging in western Wesh.," Proceedings Tenth Sossion, Pactito Logstmg Congroms, Portiand, Ore., Oct. 8-11, 1919. Complied and Issued by the Timberman, Portland, Oregon, pp. 18-19.
tion of roda by the government had been pushed progressively since the Morld Wer and truck hauling on numerous public roade became very profitable. Tlmber owners realized that they could get more returns from the ir timber holdings if they bought theis own trucks and conductod their own logging. The depression in 1929 to 1930 caused financial atress and small capital was possible only to investment in trucks. Thus, timber owners begen to buy trucks and became competitors of "gyppo" loggers. These operators were "strippers" constructing only two to four miles of private rod from the public highway which served as their main road. Additional incentive to truck users come about with the coming out of new type of equipment with better design, strongor materials, more poworful motors; With the introduction of pneumatic tires and with Increased sped of trucks of from 35 to 40 miles por hour. These improvements increased the ratio of the net payload to the woight of the chassis.

Unprecedented Development - 1932 to the Present Time.

The present truck unit has been the result of many developments that*took place Zrm 1932 to the present time. Among the achievenents of the oquipment manufacturers are: (1) the detachoble self-loading traller or one thet could be loaded easily on the truck, giving the advantage of
increased traction to the truck as woll as saving trailer tires on the return trip, (2) prior to 1932, single axie traflers wore the rule, but preforence is now given to newly developed dual-axle trafler wich permits heavter paylos and provides better tire bearing surface on the rosd, (3) knee action which serves to keep loads on a stable plane, eliminating the pound when going into chuck holes or over bumps and reducing both road and trailer upkeep, (4) more powerful and more economeal motors, (5) better synchronized gear ratios and drives, (6) development of pneumatic tires of longer iffe (7) development of Diesel motors that could be installed in standard trueks, which motors give lower cost of operation and maintenance than the gasoline engines.

The use of motor truck in logeing hes becone so popular that th has replaced wagons, narrow gauge-rallroads, spur lined of standerd railroeds, antmal haul, sled haul, chutes and flumes in many parts of the Union; has reduced the skiding distance in the ponderosa pine region, and even replased standard rallroad in the Pacific Northwest. The West Coast Lamberman estmated that in 1935, helf of the logs cut in the Pacific cosst were trensferred part of the may from the stump to the mill by truck units. (1)
(1) Editorial Artiole, Wrueks and tre11er", West Cogst Gumborman, Vo1. 63, No. 4, Apri1, 1936. pp. 9.

In 1937 in the state of oregon alone, over 1500 (1) trucks were used to haul over two and ono balf billion board feet of logs.

Roa butlaing teomnique developed and the introducthon of new equipment made it easy to construct good roads. Tractors, bulldozers, shovels and maintenance equipment played importent parts in road building on an economical basis.

The rapid developmont of truck log hauling in the Douglas fir region was possible by the cooperative efforts of severel entities. The loggers through the anspices of the pactifo Logging Congress conducted studes and discusstons in truck hauling. They devaloped technique in onglneoring truck losging shown in the form of better synchronized yarding, loading and hauling, better methods of loading, construction and me?ntenance of better roads, control of hauling, better upkeep of equipnent, and better skill developed in making choice of equipment. Equipment manufacturers holped build trucks more adopted for loging work. Studies conducted by the government through the Forest Experimental Stations helped dessiminate knowledge in truck hauling to truck logeers.
(1) Data fumished by the Secretary, State HIghway Commission as per lettor, May 1, 1939.

ENG INEER INO TYE MOROR TRUCK

Property Evaluation

The general practice in engineering motor truck shows ealls, first of all, for the survey of the timber property for the determination of the following: (1) the timber stand-its amount for the whole erea and aistribution per acre, its spocies with percentage of each, its quality indieating the log grades in each speoies, its age, and the sizea of logs, (2) the topography and drainage, soil conditions and presence of atones and rocks, (3) the olsmatio conditions indicating amount of reinfall, number of dry and rainy deys, snow dopth and amount of mator on strema during eariy spring, (4) location and aistance of the area with reference to existing roads, railroads, and streams to serve as outiet of timber. Also, it is important that the management determine the delivery of logs, whethor it is to be made throughout the year or during the dry months only, or whether logging is to support mill, or to supply logs in the open market. veilization of different species found in the atend like the utilization of hemlock for pulp, fir for pilings and poles, and cedar for bolts, is another important thing to look into. Then, a topographtc map of the area is usually prepared. All of the above are important in the working out of a plan of
exploitation.

Cholee and Loostion of Roads

Onee trucks are chosen to be used, the logging ongineer spends plenty of time making logging plans, detemintng the kind of road suttsble for the area and how to lay and construct them. The selection and location of the rosds are very important. Cautions truek loggers first project their roads, together with landings, campsites and other constructions on topographic map. The Grande Ronde, Pine Company, Podosa, Oregon, not only utilizes topographic maps but also acale rellef map for this work. (1) The topogrephy is the most important factor in loosting and building the road. Other factors Cetermining the location and chotoe of roads axe: (1) the amount of timber availeble in the whole area, (2) the footage to be hauled from a given section, (3) soll conditions and presence of snow on the ground, (4) slzes of timber to be hauled, (5) types of gravel available in the area, (6) the type of road requirement--temporary, intermediate of main line road. Synchronization in road location and construction is made to get the lowest cost

[^1]of operation, maintenance, both for the trucks and for the roads.

Chotee of Equipment

Then, the equipment is selected. It is the generel practice to fit the equipment to the logginghand not the latter to the equipment. Factors that are considered in the selection of equipment are es follows:

1. Size of trucks. Small trucks are used for amall timber and for small operations.
2. Orades. Heavy adverse grades call for heavier trucks and heavy favorable grades require spooial braking equipment.
3. Utility of publice roeds. If the operation 1s done on a 100 par cent private road, the ohoice has a wide range but if the operation is to be done partly on public roada, trucks mast be within the limit specified by statutes in regard to axle weight, tire welght, width, height and overall length. Truck most nearly adopted for public highwas are those with big load distributed in many weels. Truman Collins (1) says, "In our experience on private roada, the very large sized trucks obtainable have been
(1) Trumen Collins, How to solect the motor truek", 谒家 Coast Lumberman. Vo1. 65, No. 4, April 1938. pp. 11.
found to yiald the lowest cost".
4. Question of finance. Light standard trucks require a small initial investment. They are eas 17 y sold and have high trade-in and resale value which the operator can take advantage of when he desires to make quick shift to another type of equipment to take advantage of new fmprovements. With special big trucks, there is the chance that one $w 11$ be forced to stay by it throughout its 11 fe, since the resale and trade-in values are 11 kely to be far below the real one.
5. Time ovor which logging work will extend. Since it is best to use equipment adapted to the particular show, it is importent that equipment be amorticized before trensferring the operation to another region which may not allow the use of the old equipment.
6. Amount of timber to be delivered per day and the longth of the haul. The haul may be long and to have a specified mount of timber dellvered, more and larger sized trucks may be necessary.
7. The weight and sizes of timber. Large and heavy timber will require larger trucks for definite load.
8. Initial cost vo. low cost of operation. The
initial costs of Dieael trucks are high but it has been found that operating thom in the long run, ia cheapor. on the other hand some operators are forced to buy small
trucks because they could not afford the large ones. Q. Hauling capacity of tmicks. Hauling capecty should be available in order to negotiate maximun adverse grades of the road to be constructed and it should have enough carrying capacity to carry large loads.

Determining Hauling Capecity of Motor Trucka.

A knowledge of the hauling caacity of the motor truck is mportant in \log truck trensportation. The truck hauler needs it in the selection of his truck, in the construction of his roads, in the computation of the amount of timber that could be houled in a cortain time and in the computation of the number of trucks needed in the operation. Carlson (1) ummed up the importance of this knowledge to the logger as follows: (1) to be able to choose intelligently the right equipment fitted to the show, and (2) to be able to lay roas adapted to use with equipment already on hand.

The hauling capacity of motor trucks is affected by meny factors. Rim pull or the power developed at the drive wheols may express this ospacity, its quantity, depending upon the amount of torque developed by the

[^2]engine, the total gear reduction, the effictency of the Eransmission gears, the amount of load as affecting the loaded radius of the tire, and the altitude of the place of operation. Expressed in fompla given by Pratt: (1)

Where

$$
\begin{aligned}
& L R=\text { Loaded radius in inches } \\
& \text { T = Engine torque in foot-pounds } \\
& \text { TOR = Total gear reduction } \\
& F=\text { Efflctency of the spoed reduction } \\
& \text { machine in per cent } \\
& \text { I = Factor, mepresenting the effect of } \\
& \text { altitude on relative volumetric effi- } \\
& \text { clency in per cent or per cent of } \\
& \text { rated horsepower avallable at various } \\
& \text { elevations. } \\
& 12=\text { Factor to reduce loaded radus into } \\
& \text { reat. }
\end{aligned}
$$

Torque (T) is the twisting effort produced by the crank ahaft of the ongine. Torque produced by a certain oncine is Lound by test with an instrument called dynamoeter. Automotive engineers (2) caloulated that torque is equal to $5 / 8$ of the total displacement of the engine which displacement may be computed by the formula: (3)

P*ston Displacement $=$ area of crossmesection of cylinder x length of stroke (both in inches) x the number of cylinders.

T1) Pratt, op. cIt. pp. 12.

(2) Carlson, op. cit., pp. 32 and 34.
(3) Fred f. Jones Farm gas eneines and trectors. (New York and London: Moaraw-Bill Book Company Inc. 1938) pp. 50.

All truck specificetions $\mathrm{g}^{\text {tve }}$ out torgue of trucks of different makes and azes. Also, the size of oflinders and the number, as ell as the total displacement of the engine are given and the determination of torque is easily made.

The total gear reduction (TOH) affects the rim pull and speed of motor trucks. The question of total reduction may well be understood by an example given by Dagner (1) as follows:
"Example: atven motor truck equipped weth a
4-speed transmission and a rear axio ratio rem
duction of 6.29 to 1. pirst, assume that the
trensmisaion is in direot gear. In this case,
one revolution of the rear wheol will equal
6.29×1 or 629 revolutions in the crank shaft.
If the crank shaft turns $1800 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , then the
rear wheels will turn $1800 \div 6.29$ or 286 revo-
lutions... Next, assume that the transmission is
first gear, which provides 6.546 to 1 reduction.
In this case, if the rear wheels turn one revo-
Iution, the propeller shaft will turn 6.29×1
or 6.29 revolutions and the engine crank shaft
will turn 6.29×6.546 or 41.2 revolutions.
So the total reduction in first geer equals
41.2 to 1. With 1800 revolutions of the engine
per minute, the rear wheels will turn $1800 \div 41.2$
or 43.7 r.p.m. ${ }^{n}$

From this example, it is evident that the greater the totel reduction, the greater is the revolution of the engine arank shaft to make one revolution of the wheel. producing alower speed but giving more pulling power. Therefore, the nigher the total reduction, the greater is

[^3]the pulling capacity of the tmack and vise versa. Truck menufacturers have devoloped in modern engines different oombinations of transmissions and rear axle retio reductions and a careful constderation of this them would bring benefits to the operators. Transmisston and axle reductions avallable for certe in types of trucks are given in standard truck specifications.

The whole power produced by the engine does not reach the wheel due to different efficiency of the reduction mechanism. only a certain per cent (F) of it is utilized. Acoording to studies made by Carlson (1) in direct drive, a mechanical efficiency factor of 90 per cont is usually obtained and in lower gears, one of 85 per cent. This effictency ratings depends upon the kind of drive and with conditions of gearing which change with use, bedly worn gears being more efficient then those well fitted. Dagner (2) gives efficiency rating for the different arives as follows:

$$
\begin{array}{cc}
D / R & \text { Worm and aoar } \\
\text { Single Axie } & \text { Dual } D
\end{array}
$$

In direct gear	90%	85%
In transmisilon gear	85%	80%
In auxiliary and trans-	80%	75%
mission gear		

(1) Carlson, op. cit., pp. 34 and 36.
(2) Degner, op. eit., pp. 16.

Effect of altitude on the rim pull. Studies of Carlson (1) reveal that for every 1,000 foet inorease In elevation above see level, the fuel consumption and consequently torque decreases at the rate of approximately 3多\%. It is necessary, therefore, to consider the effect of altitude (L) on truck performance if the operation is to be conducted on areas over 1,000 feet in elevation in as moh as all truck rating are based on sea 1evel. Per cent of ratec horse power or torque evallable at various olevations given by Carlson (1) is as followas
Table I

Per cent of torque or horsepower avallable at various
elevations.

Elevation above sea level
0
1,000
8,000
3,000
4,000
6,000
6,000
7,000
9,000

Per cent of rated torque or horse power avallable
100.0
96.5 93.1 89.9 86.7 83.7 80.8 77.9 75.2 72.6

The pulling power or rim pull is inversely proportional to the loaded redius. The greater the losded radius, the weaker is the pulling power, Tire specificaTD) Carison, op. CIt., pp. 34 and 36.
tions give reted loads of the tires with corresponding loaded tire diameter. The following table taken from Pratt (1) gives tire specifications for difforent tires:
(1) Pratt, op. oit. p. 10.

Table 11
TIRE SPECIFICATIONS
Heavy Tuty, Lug-Type Traetion Tires

Itre size	P1y	Rim 31z*	Los. rated 1oad	$\begin{aligned} & \text { Pres- } \\ & \text { sure } \end{aligned}$	Sact. width	Sect. depth	Over- s 11 diam.	$\begin{aligned} & \text { Da- } \\ & \text { load- } \\ & \text { ad ra- } \\ & \text { dius. } \end{aligned}$	Loaded ra dua	Der.	$\begin{aligned} & \text { Reve } \\ & \text { per } \\ & \text { nile } \end{aligned}$
BAELOOX											
6.00-20	6	$5^{\prime \prime}-20$	1400	45	6.05	6.63	33.25	16.63	15.70	. 03	632
6.50-20	6	$5{ }^{\prime \prime}-20$	1700	50	6.65	7.20	34.40	17.20	16.35	. 85	607
$7.00-20$	8	$6^{\prime \prime}-20$	1950	55	7.30	7.80	35.60	17.80	16.80	1.00	591
-24	8	$6^{\prime \prime}-24$	225	55	7.35	7.88	39.75	19.88	18.90	. 98	525
7.50-20	B	$7{ }^{7 \prime \prime}-20$	2200	55	7.85	8.38	36.65	18.33	17.30	1.03	574
-24	8	$77-24$	2500	55	7.95	8.45	40.90	20.45	19.40	1.05	512
8.25-20	10	$7{ }^{7 \prime \prime}-20$	2650	60	8.40	9.13	38.85	19.13	18.05	1.08	550
-24	10	$7{ }^{7}-24$	3025	60	8.50	9.13	42.25	21.13	20.05	1.08	495
9.00-20	10	$8^{\prime \prime}-20$	3250	65	9.55	0.95	39.80	19.95	18.75	1.20	530
-24	10	$8^{\prime \prime}-24$	3650	65	0.60	0.95	43.90	21.85	20.75	1.20	494
9.75-20	12	$8^{\prime \prime}-20$	3900	70	10.05	10.55	41.10	20.55	19.35	1.20	513
-20	12	$9-10^{\prime \prime}-20$	3900	70	10.53	10.65	41.30	20.65	19.40	1.25	512
-24	12	$8^{3 \prime}-24$	4400	70	10.05	10.55	45.10	22.55	21.30	1.25	466
-24	12	$9-10^{\prime \prime}-24$	4400	70	10.53	10.65	45.30	22.65	21.40	1.25	464
10.50-20	12	$9-10^{\prime \prime}-20$	4700	75	10.95	11.25	42.50	21.25	19.90	1.35	499
-24	12	$9-10^{\prime \prime}-24$	5200	75	11.00	11.25	46.50	23.25	81.85	1.40	454
11.25-20	14	$9-10^{\prime \prime}-20$	5450	80	11.30	11.85	43.70	21.85	20.40	1.45	497
-24	14	$9-10^{\prime \prime}-24$	6050	80	11.35	11.85	47.70	23.85	22.40	1.45	443
12.00-24	14	11"-24	6950	85	12.80	12.70	49.40	24.70	23.10	1.60	429
13.50-24	16	$11^{\prime \prime}-24$	9100	96	14.05	14.25	52.50	26.25	24.45	1.80	406

```
Table II (con't.)
```


All of the terms in the formula for finding the rim puil or hauliag capecity of the truck have been explained. However, rim pull depends on the rolling rosistance exerted by the road surface and the gradient of the road whioh may be equated in the following fomalas: (1)

Simplifying : Eim puil $=10 \times a \times$ avw $+\mathrm{RF} \times$ ovw (3)

$$
\text { GVW }=\frac{\text { R1m pul2 }}{10 \times G+R F}
$$

Where ove Gross vehicle welght in thousands of pounds.
RF = Pactor of rolling resiatance in pound: per thousand pounds of gross vehicle weight.
$a=$ Grade angle in per cent
$10=$ Grade resistance in pounds per thoussand pounds of gross vohicle woight for each per cent of grade.

That moans that the amount of rim pull necessary to ain
puil oert*grose vehiale weight is affected by the gradient of the road and the rolling resistance factor for different road surfaces. The resistance of offered by grade is usually constdered by ongineers as 10 pounds per thousand of gross load for each per cent of grade rise. (I) Prett, op. CIt: P* 16.

Insmuch as the speed of loaded logging trucks is very alow, the air resistance is negligibet end for practical purposes it is not considered as affecting the hauling capecity of logging trucks. The coofficient of rolling resistance depends on the surface of the road and is given In the table taken from Pratt (1):
(1) Pratt, 0p. CIE* DD. 15.

Table III
AVERAOE ROLLING RUSISTANCE

Surfaceme	Condt tion		
	Smooth	Average	Rough
Conerete			
Fine grained, dry	11	14	15
Fine grainod, wet	14	(16)	(17)
Mon-sixid, dry	(12)	(15)	(26)
Cold asphalt or bituminoPino greined, dry			
	12	15	(16)
	13	- 14	(15)
Softened asphalt, Ine grained, dry	, 15	(18)	(20)
Water-bound macadam			
Dry	15	22	35
Wet	20	26	43
Bituminous macadam, dry	15	(21)	26
Monolithio	14	17	20
Asphalt filled	(21)	13	(15)
Wood block, dry	13	15	(26)
Hewn timber, dry	(12)	(14)	(25)
Rough plank, dry			
Lengthways-more and art	(12)	(14)	(15)
Crossmays, closely spacad	(13)	(15)	(16)
Crossways, apaced 1 or 2 inches	(15)	(20)	(20)
Cravel			
Best, clay-bound, dxy	18	22	27
Bast, clay-bound, wet	18	24	28
Frozen	18	25	30
Ordinary pit-rum matorial, dry	18	25	28
Spongy, damp to met	20	32	58
Bituminous troated	15	21	26
3 inches loose gravel, fim roadbed		32	
Uneompacted anread, new grade		80	
Netural dirt			
Beat sandmcley type, dry	16	22	
Ordinary, unsurfacod, dxy	22	29	(34)
Spongy, damp	20	32	(45)

Table II (con't)

Surface-	Condstion		
	Smooth	Average	Tough
Sand, damp to dry	(100)	175	250
Snow, fairly smooth road may			
Packed		25	
2 inches, 100se		30	
4 Inches, loose		45	
6 to 8 Inches, loose		65	
lud, 2 inches deep or deep dust			
Hard roadwey		60	
Spongy roadway		90	

A knowledse on the computation of the speed of logeing trucks is also nocossary in truck log hauling. Por practical purposes Dagner (1) recomends the following formula:

$$
\begin{equation*}
M P H=\frac{D x .008 \times R P M}{R} \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
\text { Where } & =\text { Holiling diameter of loaded tire in } \\
\text { RPM } & =\text { Enches } \\
H & =\text { Total revolution per minute } \\
\text { MPH } & =\text { Vehine and rear wheels }
\end{aligned}
$$

Application of the knowledge of truck performance. With the fomulas just described, truck logger could make caloulations for the determinetion of kind of equipment to buy, road to construct, amount of gross weight a certein truck could haul under eertain conditions, eto. To Illuatrate we use the following problem: (2)
"Up what grade and at what speed can s 50,000 peand load be hauled on a poorly maintained dirt road, when controlling factors are:

> Torque - 250 foot-pound at 3,000 r.p.m*
> Total gear reduction -20 to 1

Hechanical efficiency of the speed reducing machine - 85 per cent. Altitude of operation - 2,200 feet above sea 10vel.
Loaded radiu: - 20 inchos.
Frontal ares - 60 square feet. Rolling resistance - 30 pounds per thousand pounde of gross vehicle weight."

The speod, using formula (5) above, wil give the following:

$$
\mathrm{MPH} \cdot \frac{\mathrm{D} \times \cdot .003 \times \mathrm{RPH}}{\mathrm{R}}=\frac{40 \times \cdot .003 \times 3,000}{20}=\frac{18 \mathrm{mil} \text { es }}{\text { per hour }}
$$

arade, using formulas 1 and 2 above, will give the following:

Formule (1) Rim pull $=\frac{\text { T } x \operatorname{TOR} \times \mathrm{F} \times \mathrm{x} \times 12}{\frac{1}{2}}$

$$
\begin{aligned}
& =250 \times 20 \times .85 \times .925 \times 18 \\
& =\text { equals } 2359 \text { pounds. }
\end{aligned}
$$

Pormia (2) $\frac{\frac{\text { R1m pul1 }}{G W=}}{10}-$ RF $=\frac{\frac{2359}{50}-31.5}{\text { equals } 1.5 \text { per cent. }}=\frac{47-32.5}{10}$

The truck would be able to haul 50,000 pounds grose load or 25 tons on 2.5 per cent grade at a speed of 18 milea por hour.

If the road conditions are fixed, the equipment through its speofficstions of torque, total gear reduction and effletency of gearing could be found to ftt in the given conditions on the ground.

The above conditions presupposes that traction is normal. Praction; howevor, may not always be hed due to many factors, one of whtch is the lack of sufficient weight on the drive wheels to hold the rim pull of the wheele to
move the load, and another is the lack of sufficient coefficiant of friation on the road surface. The rosd surface may be too slippory. This explains the necessity of sprinkling salt or sand or stapling wires on plank roads to increase the coefflcient of friction of the road surface. Besides, surfaces of different roade vary. The coefficient of frietion on the road may be high, yet there is not enough traction because of insufficient weight on the drive wheels. Leck of weight on the driving wheela may be due to over concentration of the load on the trailer or there may be too many wheels bearing the load. According to studies of cerlson (1). "for every pound of PIm pull there must be a pound or more of welght to hold the wheola down...And as the coefficient of erietion decreases, the ratio of pounds of load on the driving wheels to pounds of rim pull naturally increases". The following table from Carlzon (2) indicates the averag coefficiente of friction for warious road surfaces when wet and when ary and the correaponding ratios of pounds of weight on driving hoels to pounds of rim pull.
(1) Car2son, op. e1t. Pp. 34 and 36.
(2) Carlson, op. alt., pp. 34 and 36.

Average Coefficient of Priction Between TIres and Road Suzface

	Fet Surface		Dry 3urieoe	
	Coorthe clent	Matio of wesght to Ifr pull	$\begin{aligned} & \text { Coefrim } \\ & \text { cient } \end{aligned}$	Ratio 0 welight vim oul
Portland Cement, 2 yre old	0.89	1.12	0.96	1.04
5 yrs old grea5 y	.96	1. 04	.64	1.56
Asphaltic oonerete	.87	1. 15	.86	1.16
Bttulithie	.69	1.45	.73	1.37
Wood B1ocks	.82	1.22	. 81	1. 25
Briok, Monolithio	.91	1.10	.60	1.67
Brict, Eand filled	. 67	1.25	. 62	1.61
Brick, saphalt filled	. 86	1.28	.81	1.28
Gravel	.76	1.33	. 79	1.27
Earth	.68	1. 47	-**	--m-
Hard-packed snow on pavement	--*	--*-	. 17-20	$5.9-5$
Tee and Sleet on pavement	-**	--*-	.80	12.6

The principles atscussed above simply rean that if The rim pull of the wheels 13 2350 poakis, the weligh on the drtve wheels should be 2559 pounds or move. In thes consection, many log haulens placed two anles at the rear end of the truck, one or both of tham ariving axles. In the case of only one axle ariving, the welght on each driving wheel of the truck decreases without inereasing the rim pull of the wheels. Addition of the eatra axie, therefore, inereases the carrying capacity of the rear wheels of the truck but decroases their pulling power. In this oase the coefficient of friction of the road surface must be increased to provide enough traction on the Wheels, othervise, the wheels will spin or slide, or the number of driving wheels must be increased to proportionally kncrease the rim pull with the load. The following teble shows the increased bauling capacity of the truck wth the number of driving wheels. (1)

[^4]
Table

Adverse grades negotiable by empty light truck wth various axle combinations drawing empty semi-trailer on ary gravel road. ${ }^{1}$

Max. per cent duerse*

Types of trucks Front Rear Trailer Grade negotiable

4 -wheel
2-rear-wheel arive

2,285
3,205
5,000
21.7

4mheel drive.
2,680
3,051
5,000
39.7

6-wheal
2-rear wheel
drive.
2,235
4,565
5,000
12.8

4-roar-wheel
drive
2,240
4:705
5,000
28.6

6-wheel drive.
2,670
4,726
5,000
44.6

1. coeffloient of friction, 0.79 ; rolling resistance, 25 pounde.

* Neglecting loss of welght through effect of grade.

TRUCK ROADS

All loggors are agreed on the lmportance of roads in truck log hauling. Many consider it the most important engineering phase of truck transportation. For this reason, they apend much t ime and money in determining its type, location, construction and maintenance. Joe Zauch, a sucoesaful truck logger of many years of experience of Index, Meshington eaid: (1)

I would like to say that in my opinion the most important phase of truck logging operation is roeds. You are licked before you start if you do not put in good roade and keep them in good condition winter and suramer."

Roads are constructed to connect the timber property to a public highway, or they may be constmoted as private roada so that the operatora may avold the stringent regulations and taxes kposed by statutes to truck haulers using the public roads.

Types of truck roads.

There are three types of truck roads generally used. In the Douglae fir region classified according to requirement, namely: (1) main line rosds, (2) intermediate or segondary roade, and (3) temporary or dirt roads. The main line roads asrve as the main trunk road to which many
(1) Joe zauoh, How to select the logging tmuck". West Coast Lumberman, Vo1. 65, No. 4. (Apr11, 1938) pp.11.
mallor roads from difforent parts of a logeing area may lead. In many instances the public highmays serve as main ruaus for mall operators. Privately constructed ones serve as main line roads for big truck operations. Main line private roads are, in general, two-way-gravelled roeds with low grades and wide curves.

Intermediate roads are feedor roads, and are constructed, generally inside the property. They connect big landings on which big cold decks are formed by yarding donkeys and tractors. They may also serve ás main branches of dirt roads. They are usually constructed one-way with gravelled or planked surfece. Turnouts at every 500 feet provide meeting places of trucks.

The tomporary rosds bring the truck nearer to the stump and reduce skidding distance to the minimum. They are usually oneway dirt roads with sharp curves, heavy grades, with no side ditches, crown, but with culverts. Fig. 2 shows typiesi oross-section of airt roed.

Location and Constmetion

Most experianced laggers do plenty of work in planning surveying and loosting good roads. First, road systeras are planned and located on the topographic map of the logging area. Then, general reconnaissance of the route is made on the ground. Preliminary and final location

> Cross Section ofa Dirt Road Fig.
surveys follow. Center line stakes indicating cuts and fills well as slope takes are driven on the ground to serve as guidea to the construction men. In important Iines, computations of cuts and filla are often done to balance cuta and fills and avold extra cost of borrowing pits and at the same time secure the best grades, ourves, and 1 dth for the road. In some ases, in intermediate and temporary rosed such rofinements are not necessary. Alignment is done by ocular inspection.

The different types of road call for various grades, curvetures and 1 dithe. Main line roads are generally 28 to 32 feet wide or more with grades ranging fram 5 to 7 per cent but not exceeding 6 per cent adverse grade, with curvature from 25 to 30 degrees (1): intermediate, usually 12 to 14 feet wide to 15 per cent grades but not exceeding 10 per cent adverse, with cuves as sharp as 50 feet in radius; tertieny, up to 20 per cont grade with 10 to 12 feet in width. Rapraeger (2) found thet the ability of trucks to go up on the return trip determines the meximum gradea of temporary roads. However, the majortty of haulers operate on maximum of 10 to 11 per cent adverse
(1) Bdward Baker, Wruck roads in fir region". The timber-
(2) titn, Vol. XxxYM(September 1937).
(2) E. J. Rapraeger, Motor truck \log hauling in Oregon and Washington. The Temberman, Vol. XXXX Vol. Xill(Aug. 1935 pp. 15-16)
grades on dirt roads.
Not much attention is paid en regard to curves because of the flexibility of trucks allowing very sharp curve: whioh mey be widened to allow room for the semitrailer. Pigure 3 indicates a dagram and formula used to widen eurves for different widhe of rod and radis of curvature of the road as well as for different lengthe of the reach of the treiler. The problem of ourves its also solved by special devices caleulated to direct the trailer wheels to follew very closely the tracks of the truck wheela as shown in Pigure 4.

On plank roeds, grades up to seven per cent adverse and 12 per cent favoreble are used on crose plank. Fore and aft plank and pole rosds are usually constructed on level grounds and whon construeted on grades are sprinkled with sand or selt to provide traction. A 16-per cent favorable grade is used sucoessfully by T. H. Christensen on fore and aft plank roads with wire stapled on them. (1)

It it a known fact arong experienced loggers that it is expensive to operste tracks on adverse grades, and it is the general practice to keep the grades as low as possible. The question of adverse grades is not very big among

[^5]

CASTLE ROCK TRAILER STEERING RIG
Fig. 4
loggers, however, most truck ahows are on high elevation allowing roads to go on fevorable gredes with the loade. The adverse grade that could be negotiated by a certain truck depends upon the torque devaloped by the motor, the various gear ratios, the resistance of the road surface and the elevation of the logging shows as w111 be shown later in this paper. Rapraeger (1) gives adverse grade Inits for cortain truck sizes as follows:

Adverse Grade Limits for Laden and Uniaden Vehicles Pulling Trailers Over Good or Poor Rosds in Dry weather.

Capactty of Trucks in Tons	Advarse Grade Limits			
	Lacen vehioles Vnladon vemhiclea			
	good Roads	Poor Roads	Good Boads	Poor Roeds
17 and 2 ton	5-8\%	4-7\%	8-12\%	5-8\%
$2{ }^{\text {乭 ton and larger }}$	7-12\%	6-10\%	11-18\%	- -14%

Hoad construction is not hard matter with the used of new equipment. the first operation in construction is the clearing of the rights-of-wey. This is done by felling all trees and chunking them out of the road bed. Chunking and pulling of mall stumps is dono by tractors with large stumps removed by stumpting dynamite. In blasting large stumps with dynamite, it was observed in a study mede

[^6]by the Oregon State Bngineering Class in blasting (1)
that there is a derintte ratio of the number of caps to the dlameter of the stump for proper removal of the whole stump from the ground as oan be seen in table VI below:

Table VI
Result of Blasting work, Class in Blasting OSC, Winter Team 1938-1939

Stump No. Diam. of stump Spectes of No. of In inches tump stioks Remarks mite

1	18	Dougles		10	Good shot, clear
5	14	"	"	9	Good
13	10	"	*	7	Good even shot
16	8	"	"	6	Good
18	0	"	"	6	Good, stump olear
21	26	"	"	24	Clean, well centered shot
24	8	"	*	6	Gooa shot
26	0	*	*	6	Good, open shot

By computation, it is found that one stick is necossary for every 1.4 inches of dimetor of the stump. This (1) Class was under the auspices of the Dept. of Ag. Eng., Logging Eng. and Civil Engineering, Oregon State College Corvallis, Oregon.
number of tieke in one tuwp, however, dyrers in
 preatnt in the soll, knd, betor attexthig blesting in - certuin ate, trial mot mould bo made to determine the number of etclestequived to Muly blast atrasp. Gradme ie very onsly done by trectors and bullw
 plectag of culverts and landing osn batily bo dono by thee non.

Oravollyge tore is a trond to grovel dil mein and
 hoad graden are manily kept one gear to allow it to uttle before tt ta grevelled. There tre two kind of
 grevel obtataed from pite and trem beds. wo formor is usually usad on matn trunk roads and the labtar on intermediete roads. Cruabed rock aro not comanly used on tnternediste rosi besue of the bigh cost ana hardahtp to secure. 基tarel gravel ta wally abundant in the place of contruction wore ita nocollity taten allventege of by mot loggers. on the other hand, natunt
 beonae $\frac{1}{t}$ dood not bimd well and have the tendoney to work by prodnctag un uven road ourcace* Depth of geavel

on intermediate roads. The thickness of the gravel necessary for certain road depends on the character of soil conditions, the welght of the losd expected to travel on 1t, and the width of the road. There is a general egreament mong loggers to use wider roads when surfaced With gravel. Wider roads allow the trucks to travel all over the surface keeping the road level and smooth. In narrow roacs the tires are forced to travel on the same track leaving two grooves on the road where water settles and makes the road unfit for hauling as shown in Fig .5. Crowning the road is not practiced as the crown causes uneven wear on the dual tires. Some, however, belleve in crowning the subgrade and keoping the surface level. One anthority (1) believes in eliminating the earth shoulders of roads common in pubitc highways and recommond gravelling clear out to the side of the road as shown in Wig. 6, so that water on the rosd may easily flow to the ditohes. Muddy houlders detain the water on the road bed and make it soft.

Planking. Although the general trend is for gravel roads in the fir region, plank rosds are still used and will probably be the conventional material to be used in waddy and wet places, and where gravel could not be
(1) Ealtorial Articie, "Building truck logeing roads." Hest Cosat Lumbarman. Vol. 63, No. 11 (Hov. 1936) pp. 4-18.

Fig. 5 Cross-section of Narrow Road Showing Groove on Road Surface Made by the Constant Pounding of the Wheels.

Fig. 6 Cross-section of Road Showing Method of Gravelling Entire Surface, and Method of Draining Springs on Roadside.
procurred econom cally in of near the logelng area. For onem way road on level ground, tho general mothod of lating Lumber plank roads 1 s to place cross-ties $4^{\prime \prime} \times 12^{\prime \prime} \times 10^{1}$ four foot apart frok center to conter, over which three planks $4^{\prime \prime} \times 12^{*} \times 22^{\prime}-82^{\prime}$ long are placed alde by side under each wheal. nalled wth $3 / e^{\prime \prime} \times 5^{\text {" }}$ wre nails, at the eads on the tios. Ghristerven (2) belleves in naliling the planks on the ties noxt to the enda of the ptece to avold the easy loosening of the nalls as la the case when placed at the very ond of the planks. He uses three planks if leg to be hauled do not exceed 40.0 feet, but It has been found better to use 4 planks if the length of the logs 1 s from 64 to so feet. Figure 7 shows the construction of typical fore and aft plank road. on muddy places and where there are depresstons to bridge, ma-sini is used as foundation where crost-ties ase dapped a* shown in F1g. 8.

Crose planking on grades and on curves is done by placing stae by stae plenke $4^{\text {F }} \times 12^{\prime \prime} \times 10^{\prime}$ over two 1 ines of $3-4^{\circ} \times 12^{\text {" }}$ Iumber placed on the ground as ahown in Fig. 9. Sometimes these cross planks are not nalled to the foundation as the case with the cross plank road of the Conox Logeing and Roilway Compeny at Ladysmith,

[^7]
B. C. (1) whioh uses random with planks five inches thick

18 to 24 feet long late over slabs latd diagonaly on the ground surface.

Another type of plank rosd which has been tried with success in the Douglas fir region is the fore and aft timber road, an improvement of the fore and aft pole road. Round loge are employed as ties which are dapped to receive three $8^{\prime \prime} \times 12^{\prime \prime}$ timbers on each stide 3 homin Fig. 10. No sills are mployed axcept on bridges. only occassionsi ends are spiked.

Ditches and culverts. One of the requisites of good roads, gravel or plank; is drainage it it is to operate during the rainy sesaon. Experienced logzers provide adquate drainage systems by side ditching and by placing culverts et every 500 foet. Sizes of oulverts depend upon the amount of run-off. They should always be clesned out so that the flow of water will always be well below the level of the gravel. For culverts, the most generally used are the box oulverts made of 3 -inch lumber as shown in Fig. 11, the "A" log or 3-log culverts shown in Fig. 12, and 2-log culverts shown in Fig. 13.

Truck road bridges. The tendency in modern truck
(1) Jemes Sheasgroon, "Road building". The Ttmberman, Vol.
XI, (March 1939) pp, 16,17 and 20 :

fiver
fig

Box Culvert Lumber Fig./l
roed construction, is to eliminate all small bridges and trestles with earth fills. With the use of bull dewers and shovels filia are very easp and inexpensive to construct. Also, fills are fireproof unlike the tresties. Meintenance in fill is low. However, fills are dearrable only up to a certain height limit. In this connection (1) (1) found that "for less height than 25 feat the first cost of an embankment will generally be less than that of a trestle; this tmplies that a permanent trestle should never bo constructed with a height less than 25 feet".... He continues, "Although local olrcumstances may modify the application of any set rules, it is probably seldom that it 111 be less expensive to build an mbankent 40 to 50 feet high than to maintain pormanentiy a woodon trestla". However gulleys with very steep side slopes that would not hold fills have to be bridged. Also, streams uth a lange volumo of water flowing as well ws marshy places that are hard to fill need bridges. The Cahill Logging Company, Tillamook County, Oregon (2) had to butld a cable suspension bridge 191 feet in spen (Pig. 14) over the Wilson River to avold the large amount of freshets that are had difing the early spring.
(1) Webb, Welt er E*, Reilroed construction. New York, John Willey \& Sons. 1932 bp. 187.
(2) Eattorial Article, "Cable span log bridge*" The Timberman. Vol. Xxxviri No. 11. Sept. 1937. pp. 12.

CABLE SUSPENSION BRIDGE OF CAHILL LOGGING COMPANY OVER WLLSON RIVER. OREGON
Fig. 14

The more comion bridges wsed in truck roads are low crib bridges, Fig. 15, atringer br*dges (Fig. 16), and slmple bent trestie bridges, Cribs ase used on murshy grounds, stringer bridges over narrow streams, and trestles over wide guileys as shom in Pig. 17.

Meintonanos

Maintenance is necessary to keep the road in good condition. The hauling of he vy loads causer the development of weak spots from the to time. This calls for the blading of the surface to keep the road bed level. Watering is done to zeep dust down. Dust prevents good trection and good vision resuiting from clouds which lead to accidents. During the rainy season the ditohes and culverts are kopt in good working condition. The Comox Logging and Reilway Company, Ledysmith, B. C. spends * . 01 to $\%$. 02 per thousand bosd foot for maintaining their private road.

Cost of Road Conetmotion

Cost of roed construction vartes within wide limits due to differences in mount of clearing, amount of fill and cuts, kind of soll and the amount of brideing necessary. Rapraeger (1), found a case in Oregon in wich (1) Rapraeger, Op. OIE, pp. 17.

Fig. 17 Truck Road Trestle Bridge Over
A Wide Gulley
Lewis Lumber Co., Dexter, Oregon
a alrt rod costs from $\$ 100$ to 130 per milo where awemping is light, the ground level and the soll.free from large stones and outoropping rocks. The fore and aft plank road of E . L. Chriatensen (1) cost 860 to $\% 70$ per station of $\$ 3168$ to $\$ 3960$ per mile. West Coast Lumberman (2) found that plank roacs cost as high as $\$ 5,000$ per mile na gravel roads from $\$ 1000$ to $\$ 0000$ per mile(3).

TI) Christensen Op. oft. p. 17.
(2) Edtorial Article, "Truck Logging cost." west Coast Lumberman, vo1. 59, No. 4. April, 1932, p. 18.
(3) Op. cit. : p. 18.

EQUTPMEN

Most loggiag trucks in general use in the Douglas fir region are ragular factory models provided w th a semitreiler. They are, however, modified to be adaptable to rough hauling. The body is mado stronger by rivetting steel plates or plece of timber $6^{\prime \prime} \times 6^{\prime \prime}$ on the frame bearing the bunks. Both the rear end of the truck and the semi-traller are provided with steel I-beam bunks resting on steel frames whon are bolted to the truck frame and on the apringe in the case of the trailer. The bunks are usually swivel bunks and are free to rotate on the steel plates on wheh they rest. The semi-treiler ia connected to the truek by a square timber $8^{\prime \prime} \times 8^{\prime \prime} \times 32$: called the reach. The wheols of the trallers may be proWided with single wheels with dual tires, but the most popular ones are with dual axles with dual tires. The rear wheela of the truck are usually of single axle with dual tires, although there are also some in uso with dual axlea with dual tires. Other auxiliary parts of the trucks are the brakes and the water tank, the lattor usually placed under the bunks of the tratler and rear end of the truck. Figures 18 to 22 show different styles of present truck and trallers.

Fig. 18 Semi-trailer for a Light and Medium Truck.

Fig. 20 A Logging Truck With a Single Axle Drive and a Single Axle Trailer.

Fig. 21 A Logging Truck With a Dual Axle Drive and a Dual Axle Trailer.

Fig. 22
A Logging Truck With a Single Axle Drive and a Dual Axle Trailer.

Clasaifleation

The logging trucks widely used in the Dougles fir region are clasaified by the Pacific Logging Congress (1) as followa:

1. Light trueks ($1 \frac{1}{2}$ to 2 ton) with piston alsplacement from 200 to 300 cubic inches.
(a) Ordinary rear end, dual tires and aingle axle traller dual tires.
(b) Spectal rear end, dual tires and singleaxle trailer dual tires.
(c) ordinary or apecial rear end with dualaxle trailer dual tires.
(d) Dual rear end with dualeaxle trailer.
(e) Your or 1 -wheel drive th dual-axio trailer.
2. Medium sized trucks, gas or diesel, piston displacement 300 to 450 cubic inches.

With the same rear ends and trailer equipments as in the light trucks.
3. Heavy trucke, gas or diesel, piston displecement 450 to 700 aubic inches.

With the same rear onds and trailer equipment as in the light trucks.

According to studies of Rapraeger (2), in 1932, bout 69.4 per cent of logsing trucks used in Oregon were light trucke, 25.5 per cent of medium-sized trucks, and 5.1 per cent of the hewvy olass. At the present the the light clase still predominates in the Douglas fir region, although more and more of the larger operations are turning

[^8]to bis truoks. The light trucks are preferred because they require small investment, they aro easily traded-in or sold with high values, they have high utility for other hauling work during the closing of the logging season, they are easily serviced due to accessibility of parts, and they are within load imits allowed on public rosds.

Large trucks on the other hend, according to recent studies (1), when used in large operations have lower operatiag costa. Besides this, larger trucks could negotiate steeper and longer grades than the light trucks. At the present time the heavy trucks could be "Dieselized" which usualiy is more economical in fuel consumption and at the same time produces more power than gasoline trucks.
specification of trucks

Gab. Unlike the pioneer truck, the modern logeing truck is provided ith a comfortable and strong cab ith glass windows and windshiolds.

Bunks. Bunks are usually made of I-beam steel prom Vided with V-shaped chock-blocks held by chains when the bunk are loaded to keep the top in place. Highway regulations in oregon and washington require that there be
(1) Experience of the Grande fonde Pine Co., Pondosa, Ore. and the Comox Logging and hatlway Co., Ladysmith, $\mathrm{B}_{\mathrm{*}}$ C.
a maximum length of oight feet for the bunks. In many private operations, homever, 10 to 12 foot bunks are used.

Springs. Springs used in locging truoks are provided with enough power to carry hoavy loats. Enough sufety factor is allowed to take care of bumplng. There are two types of springs generaliy used: (a) The semi-elliptic type, and (b) the flet tye wh wide and faw leaves. The semp-oliptic type when under full loed does not get below the horizontal position, while the flat type sege as it is loadod.

Brates. Generally strong brakes are installed in the logging trucks. It is necessary ospecially if the hauling ia done on steep roeds and congested highways where the truck speed should be under control. Tro popular ones employed in logging are:

1. Hydraulic orkes. Most of the 1ight and mediumsized logging trucks are equipped with pyaraulic brakes. The popularity of this brake is due to its merrit. Smooth and oven pressure cen be exertod on 111 of the brakes at the asmo time and efficiency is secured. The objection in this type is that leakage in one point in the tubing would render the whole truck brake out of order as lack of pressure at one point of the tubing will release pressure which is the life of the whole brake unit. It is
not adaptsble for hesvy work.
2. Compressed alr brake. It is used by heavy trucks because of its power and good equalization of pressure in all of the wheels. the mechantsm of this brake is like thet of the wydraulio brakes, only, the power is supplied by compressed air. The power in the hydrsulic brakes is supplied by fluld. The advantage of this brake is that quick applioation or release can be secured with smooth and positive eotion. Unlike the hydraulic brakes, a lekage at one point in the tubing mey ffect only the leaking tube and other whels mey still function.
3. Vacuum booster. The vaccum booster is very common among amall trucke and trailere. One very great objeotion to this type of brake is thet it functions only when the motor is ruaning.
 coming unpopular in the logeing truck because oqualization of braking in all wheels is hard to attain due to the construction of the different parts whioh, because of use, get out of proper bearing and adjustment.

On continuous long grades brakes become very hot necessitating the use of water for cooling. For this purpose water tank is installed under the bunks in most logging trucks to suppiy small, continuous stream of water flowing on the outside part of the brake arum.

There is a denger thst the crun will break oasily if water is poured to it when it is hot, and the water pipe should be open before the truck decends a slope when the brake drams are still cool and allow water to flow until the bottom of the slope is reached at which t tme the water plpe is closed agein.

Tires

Tres used $i n$ logging trucks have changed aince 1913. At present paeumatio tires are used. Pneumatic tires as defined by the oregon Motor Vohicle Lew are those whioh are Inflated with compressed ant. Pneumetic tires are preferred ebove solld tirea because: (1) they give better traction (2) they cushion the vehtole and load on the roadbed, and (3) they protect the rosa. There are two types of pneumatie tires used in logeing---(1) the balloon tires, and (2) the high prossure tires. Aigh pressure tires are preferred on bad ronds in the moods because they suag lese readily. The belloon tires are good on paved highweys.

trailers

The most important mpendege of the truck is the semitraller. Its use is based on the theory thet woll-built trucks have more power available in excess of normal needs when the reted losd is carried, Such truck may be loaded to capacity while the engine remins half ide.

Under the right condtions the surplus power may be used to draw a trallex that supports one ond of the 10ad. Whth the use of the trailer, great savings are made both in fuel and labor. The writer observed that about tro-thirds of the load is carried by the trailer when the truck unit is with single rear ond axle and a trailer with double axies. Therefore, actually the total load of the truck and trafler is three times that of the capacity of the truck alone. According to Bverhart, (1) a truck and trailer combination uses only 10 to 20 per cent more gasoline than the truck alone, thas reducing the cost per tonmile of payload. Lhewise, cost of labor, tires, and depreciation are decreased. The most popular semi-trallers todey are the dual-axle unit with dual tires provided ith brakes.

Motor

Many operators found thet larger bore and longer atrote engines with alower speed produce the most economical operation. This is naturally the case because with a larger displacement in the ongine a larger torque is produced for hesvy hauling. Also, experienced loggers found that greater load with slower speed is more economical then

small losds with high speod because in the former case, truck wear and meintenance cost is smaller. Large Dieselized engines are proferred in larger operations. Sleeve-lined cylinders have practical value as they can be replaced and would render old engines renewed officiency.

Hear wheel drive
The power from the shaft is transferced to the rear axle by different kinds of drivess. The most commones used in trucks employed for log heuling are: (1) the chain drive; the chain drive is considered the strongest and most officient drive and is usually installed in large trucks for heavy hauling on adverse grades. It does not develop too much hest since the chain is placed out in the air. This is the advantage it has over the other drives. It pulls the wheel down in both ends of the axie and in that wey more tractive power is obteined. The only objection to this arive is that it is apt to catch dirt and soil which would cause trouble. This defoct is not a big problem. It is easily repairea. Wost light truck manufacturers do not install chain drive and it is only in the large sized truck that they are available. (2) The double reduction drive is the strongest and most officient noxt to the chain drive. It is mun by gearing enclosed in a case and evolds the possibility of dirt and soll obtained in the chein arive. It has, however, the tendency to
develop too much hent besides losing sone of tts efficieney. It is used in the medum-sized trucks very extensively. (3) The wom drive is not very popular to logzers. It is very expensive and has very low effictoncy because of its inherent character of developing excess?y heat. (4) The Bevel arive is famous for its simplionty. It is very adaptable to light work and is ased oxtensively in the 1ight class of logging trucks. It is inexpensive.

Dakeep

The upkeep of trucks is important because of the many factors that tend to disrupt its efricient uso. The main object of upzeeping is to see that $m 11$ of the parts are in geod working order, Upkeep insures the continues use of the truck. Neglect to repair a small damage nay soon cause trouble leading to complete destruction of the whole unit. For this reason the general practice amons loggers in the Douglas fir region is to maintain their own repatr shops under expert mechanics. The aoro experienced loggers belleve in complete overhavi of the equipment once a year in adition to day-to-day upkeep. Christensen (1), a vetoran log truck houler said, "I have found that a general overhaul of a truck ta very nocessary. The truck should be completely dismantled, ven to the transmission, Coast Lumberman. Vol. 64, No. 4, Apri1, 1937. pp. 2021.
the differential and spring shackles". He found it neeassary to check all parts of the trucit and restore them to proper working condition, like the piston and acessories, weter pump, radietor tubes, the ignttion systom, generators, clutch, transmisston, dufferential, springe, frames, wheels, brakes, and at ine in the brake ayatem. For day-to-day upkeep, the general prectice is to keep records of the performance of the truck. The driver reports any trouble and makes recommendations es to what Is to be repaired. The records keep the management posted on the necessity of replacements such as tres, grease and oll after a certain mileage, checking for the correct perfomance of important parte such as the valves, megnets and spent plug points. Fopalis aro mostiy done during the day.

Garaging the twack

It is nocessary to place the truck in a garage to protect if from the inclement weather and to have it repaired. There 13, however, the denger of the whole fleet boing bumed oapecially in the cole weather when it is hard to start the engine as happened with the fleet of Haley and Taley, Kinzua, Orogon (1). To romody thes dances,

ouggented the following (I) thet the garege be bullt soparete frow othe bullaings, and (2) that the floor of the garage be built an incilno wtik onough siant 0 bruoke could roll ont mithout power and qutekly enoagh in ouse of fire. me mataliation of atomatic sprakier
 lumber anea nould be enotian proceution for the preventlon of atre in tho gavage. Spectal dextaen to ingreane the gifiolency of twaks.
 haze engtneored the track for nore offlctent prifomente. tany devtces have ban diecoverev end enlculeted to tnoreare the hauliag ompectity of bmok as wall at to weance 1te oost of opention.

 Prow cirea by uaing dual cires in one weel mad by romove lag the drive weel tire before they are ontrely dentroy-
 and kind on the aneele, by correct inflation, and by Fegulating the loed. The Curstonsen aperetion saved 2770

ferring drive weel tires to the trallers. Data are available on the correct loading of tires and spoed that a certain truck should run 1 th them. Figure 23 shows the effect of overloading the tires. According to studtes (1) the tire will give 156% nomal service if loaded only to 80 per cent of the normal load, but would give only 70 per ent normal service if overloaded 20 per cent, 51 per cent normal service if overloaded 40 per cent, and 25 per cent normal service when overionded 100 per cent. "Loeding a pneumatic tire beyond its rated capacity causes excessive flexing of the side wails and distortion of the threar, oven if the correot air pressure is had. This results in broken fabries, rapid and spotty thread wear, tread and ply separation and complete fallure of the tire". sald W. T. Hess (2). Speed and temperatures at which tires are run also affect tiremilesge. Increasing the speed 30 to 60 miles reduces tire 11 fe to 60 por oent and increasing tomperature of muning tires from 70 to $100^{\circ} \mathrm{F}$. lowers the tire 11 fe 60 per cent.

The following are advises of two tire experts on how to get the most of the tires.(3)

T1) Editorial Artiole. "Evins of overloading tires". 渻est Cosst Lumberman, Vol. 64, No. 1, Jan. 1937, pp. 16.
(2) W. T. Hess. "Gotting the most of tires". West Coast Lurberman, Vol. 65, No. 4, Apr 11 1038, p. ${ }^{26 .}$
(3) W. T. Hess and M. C. Skelton, "Getting the most out of tires", West Coast Lamberman, Vol. 65, No. 4 Hptil 1988.

Fig. 23 Cross-section of Tires With Diagramatic Representation of the Effect of Overloading

1. Always install the lergest size tirea possible on the equipment.
2. Never install mismated tires slde by stde. Always have the same diameter so that the load will be equally distributed on both tires. Keap the best rubber on the drivers and wen they begin to wear transfer them to the trafler.
3. Koep your own shop so that trucks are kept to topnotch condition at all times.
4. In winter, the tires should be inflated more than in hot weather so that blow-outs are rept down.
5. Keep your weight to carrying oapacity 11 mit of what the tires are menufectured for and wi tha margin of capacity laft over to care for any super-elevated condition of the road.
6. Air pressure should be checked every other day and any tube that has tendency to drop in pressure should be repleced and checked for breakage before using again.

Increasing truck eapactit. An enginooring device enployed by ame loggers to make the small truck rore efficient is done by the installation of euxiliary transmission that would increase the gear ratio of the ordinary truck. (1) The witson-Brown-Lipe auxiliary transmission provides an underdrive and an over drive to each of the atandard truck gears. The gear ratio in compounded low gear of etruck equipped with it is 62.5 to 1 as compared to 42.24 to 1 in the standard trucks. The extra power made by the added gears incresses the pulling power of the truck. Another principle usod to increase truck capacity is the timken double reduction axles. Double reduction is made from the drive shaft to the whoel axle.
(1) T. S. Watson, "Selecting propar gear retlo for trucks". The Tiniberman (Th. Vol. 37, No. 2, Feb. 1938, p.48.

The effloiency of this outfit had been trige in the george Ven Vleet (1) operation in Astoria-Seaside Area, oregon where 18 mall trucks provided wh th double reduction axles have made the vanvieet outfit one of the stoadiest tmelk logging outilits in the Northwest.

A third ongineering achlevement used to inerease capsoity of trucks is the instaliation of two sxie drives to take the place of one in the standard truck. Isaacson Iron works, Seattie, Hahington recently snnounced introduction of their "Pnorton Unit". Cronkh1te (2) describes the engineoring feature "es adding an honestily engineered dual ratio dual drive to the standerd ilttie truck with six whesis and two driving exles with an inbuilt under drive available in all transmission speeds". of course the increase of another driving axie increased the hauling capacity of the truck. The small truck engineered thite way is claimed by Mr. Cronichite to equal the performance of atandard six-wheeled truck wich cost 50 to 100 per cent of the engineered truck described.

Six wheeler trucks. The sixwheeler truck is a recent development in automotive engineering. Its adventeges are that it increases the eapecity of the truck both on

Thoeorge Vanvieet, Making the most of light trucks". West Coust Lumbermen. Vo1, 65, No. 6, June 1988, pp. 50-51.
(2) L*J. Cronlinite, "Inereasing truck capacity", pest Cosst Lamborman. Vol. 65, No. 12, Dec. $1938, \mathrm{pp*} 46$.
private and on public poads, tt incurrs less wear on roads, and can have greator lood on adverse gradea.

LOADINE

Loading is an important phase of truck \log hauling. It may become "bottle neck" in the whole logging operation if it is not well synchronized with yarding and hauling, It may dolay yarding while a truck is boing loaded and may delay hauling for lack of logs caused by intermittent yamang. Therefore, yarding should be handled so that loading may work 100 per cont and hauling efficiently earried with the continuous rolling of the trucks. To attain this end loading should be synohronized with hauling and yarding. In this connection, Beker (1) seys:
> "The fluctuation in rate of production of yerding unit during the course of days work is usually quite pronounced. This is especially true with highlead or any other method of direct yarding. On the other hand the trucks usually operate with very little variation in travelling time por trip. Hence it follows that for good correlation of yarding and hauling eapacity, we must store up logs at the landing during high production peaks to keep the trucks supplied while the yarder is getting the tough loges"

> Thia calls for the performence of garding ahead of loading. However, there are certain types of loading devices that may be used in conjunction with yarding without delaying the later.

[^9]
Typos of londing devices.

Loading in truck hauling is more flexible than in railroad logging. The most generally used method in the Douglas fir region is the spreader bar (1) system and the McLean boom system. The spreader bar system is very adaptable to big and long logs and because of the two or more block purchases that could be installed in the rigging that gives mechanical power, it does not require very powerful machine. A $30-h . p$. gesoline ongine can load logs 1600 bosrd feet contente. With it logs could be Ilfted more or less parnilel to the road and be brought from one side of the roed to the other to be loaded on an ompty truck. Losding with proper balance is easy as the truck could easily move back and forth whle the loader 14fts the log to the proper balance. Another advantage of this aystom is ita adaptability in bringing logs from the cold deck and piling them parallel to the road preparatory to loading while the trucks are away. In this wey the loading time is mortened which would otherwise be prolonged due to time lost in shifting logs and sorting them in the landing. The disadvantage of this method is its hardship to rig. Two sper trees are to rigged and they (1) Edward Baker, "Liading Motor Trucks", 萌est Const Lumberman. Vol. 64, सo. 4; April 1937, pp. 18-19.
are to be located more or less opposite each other on each side of the road.

The rigeing of the spreader bar system has many varlations.

Essentially, the method is to pass the main 1ine (loading line) through the block in the spar tree about 75 to 100 foet above the ground, then through a fall block and then to a tall hold just below the tree block. This gives one block purchase on the mein ifiting line. From the fell block a preader bar about 8 or 9 feet in length is suspended by two eightfoot atraps. Hooked to this ber are the drop ilnes wth hooks for the loading straps attached, and slso the haulback ine. The latter is also rigsed up with block purchase, the tallhold being elther on another tree or on special guy ine"(1).

Figure 24 ahows apicel rigst $n g$ of the spreader bar systom. Piguren 25 and 26 are modufication riggings of the spreader ber losding system.

The MoLean boom "consists primarily of a doable
boom suspended at right engles to the spar tree, about 30 feet above the ground, with the heel of the boom resting ageinst the sper. One line from the donkey is used to rotate the boom around tho spar tree as an axia and the other ine depending on the power required. A counterweight is used to rotate the boom in the opposite direction from the donkey puli". The advantage of this syatem 1s: Ites ease of operation, steadiness with wich logs may be handled, small power on the loader required, and

[^10]
captablity for premloding logs. The thedinese wh
 poselble. its alamyantegea are: (1) it totas time to ris hich woula bo of great consideration in aperse stand,

 Interfere with freffic. wis in neocsary bectuse tinta metnod coula not load eract placec persilel to the rosa, Figurn 27 anow the risging of the woLnen boom ayetor

For ahort and anall lo and in connection ith antmel and tractor kitatug, tkeweys made of orib work of logs are employed for lowdut by hend among mall operators. Migure 2 a ahow crew of mon lose ins stort loge on track rolling the loge on the akdeway with penvien. The Exidury is esty nat inoxpocsive to bulld. one couldibuilt with loge by the use of three men wth the help of ereetor in onembil a dey*

Selt-propelled loadera note so wicely uaed in the Douglea fir regton those aysta deacribor bove be-
 when the verage tmusk leget cannot afford mon unte,

Fig. 28 Loading Truck from a Skidway.
(2) fir logs are heavy and long and require strong rig to load it, and (3) topographic conditions are too steep to permit oconomical use of self-loaders which require a flat country where logs may be brought alongside the road at any point.

The practice of pro-loading is taken advantage of by certain laggers to reduce the loading time. Preloading is great time saver in cases in which the interval between the arfivel of empty trucks for loading 4a long. It is done by placing the logs on two false bunks pleced on two parallel logs 40 feet long and spased so that a truck could be backed between them. The forward ond of the load is raised while an ampty truck is backed to recelve the premade load. Fre-loading also Qllow the building of bigger and more balanced load than when ordinarily and hurriediy done.

Cost of loading.
According to studies of Rapraeger, (2) the spreader bar and the McLean boom syetems could load from 50,000 to 100,000 board feet day. W1th a $30 \mathrm{~h} . \mathrm{p}$. gasoline engine of $\$ 20.00$ machine rate per 8 -hour day, (2) losding would cost . 20 to . 40 per thousand board feet. There
(I) Kapreeger: op. oit.
(2) Axel J. F. Brandstrom. Manalysis of logsing costs and operating methods in the Douglas fir region. publication of the Charles Lanthrop Pack Forestry Foundation, June, 1933. pp. 59.

Is a big effect of size of logs in the cost of loading. Also, interrupted loading is costiy. Higher cost due to longer time consummed in actual loading may be reduced by pre-loading. The following table from Brandstrom (1) which may be applicable in a truck logeing operation shows the effect of logs size on the cost of loading and the effect of interrupted loading.

Table $7 x$
Relution of ate of loge wo cost of londing tad relation of intervuptad operstion to the oont.

 cat G60 ger se tove day) Houdw Int tontay oporw ating cost ot 1oaderat conkey
 Ing indepentent contwole yaratng operte-部家 ocet 388. 80 arding controle 10sadnt

(1)

(a)
(3)
(4)

100	*.67	1.32	2.57
000	. 87	.60	1.31
300	.20	. 44	. 68
400	+22	.33	-67
600	.19	- ${ }^{\text {e7 }}$, 64
000	.17	. 23	- 4
200	. 14	-18	. 85
1000	, 18	. 16	.29
3000	+18	.18	* 28
1400	. 11	. 12	.21
1800	, 12	, 10	110
		.00	-17
		. 00	.16

As the volume increases the cost per M In each size olase decreases. A large volume in ono log is cheaper to handle than the seme volume mace by many amall ones. It is also seen that under column four in the table where the loading wes delayed by yarding, the cost is higher than when loading wes done unintermpted under column theee.

RAULIMG

Hauling aeals with the operation of bringing logs to market. The efficient performance of hauling is thet condition in which the truck runs contimoorsly. To have this, all the phases of hauling must be considered. Determination of the number of trucks to be used in a truck operation.

The amount of timber to be delivered daliy, the length of haul, the speed of trucks and the capacity of trucks determine the number of trucks needed in a certain operation. Thia calls for the examination of road conditionsgrades, surface, widh, as well as legal reatrictions on hauling if public highways are to be used. A knowledge of this information would allow the amount of timber thet could be hauled per trip of the truck. Table VIII on the following page sho the result of studtes of Trumsn Collins (1) whioh shows speed of trucks of different sizes, load, motor with load and without load on a gravelled foad of different gradea. From dsta like this the time it takes a truck to make a round trip could be computed. The round trip time plus time spent for loading and unloading and an ellowance for delays make the total time required to dellver a load of logs. The total delivery per day, per month or per year could be computed and given a Vol. 38, No. 12, Sop̆t. 1937, p. 60e61.

Table YIII

Hauling Speed of Loaced anc Empty Prucks on Different
Grades of a finding, Gravelled, Good surfeced Bosa.

certain volume of logs to be delivered a year, the
number of trueks required in the operation is obtained. Extre trucks should be proviced to be used as alternatives In case other units are to be repsired.

Whet arivers shoula know.
Effiolenoy in driving logging truck requires that a Ariver know what precautions to take to avota accidents and the requirements of his truck as well as truck logging regulations provided for by statutes.

Legal restrictions on $20 g$ hauling over public hishways In Oregon

With the increase of the use of motor trucks as a carrier over publie roads, it was necessary for the govemment to promulgate restrictions for the use of public roeds. The Oregon State Highway Comission, which has administrative control over public highways,in derining its polley declered that these restrictive measures are necessary in order to: (1)

1. thathighways may be rendered safer for the use of the general public.
2. that the wear of such highways may be reduced
3. that minimum of inconvenience to other users of the highways may be effected.
4. that minimum hindrance and stoppage to other users of the highways corisatible with needs of the public for dequate transportation service may be effected.
(1) Motor Trensportation Act. Chapter 429 as amended 1985, pp. 3.
5. that the highwas may be safe guarded from mproper end unnecessary usage.
6. that the operation of irresponstble persons or any othor operation threatening the safety of the pubifc or detremental to the general weifare be prevented.
7. that the disarimination in rate charged may be - iminated.
8. that conjestion of traffic on the highways may be minimized."

It is necessary that turckloggers know the laws, rules and regulatione goverming truck log hauling to avoid penalty and delay of operation. The following are pertinent provisions of transportation and vohicle laws of Oregon (1).

1. Log hauling pormits are issued by the Fublic Utilities Commissioner upon recomendations of the State Highway Comission. If the over-all longth of the load does not exceed 50 feot, no further permit is required. Otherwise, permit to run for 30 days for hauling logs maximum length of 110 feet, must be secured from the State Highway Commission, with publio liebility insurance In the amount of 50,000 to $\$ 10,000$, property damage insurence in the amount of $\$ 20,000$ with the Stete of oregon and ita state H ghway Comission, jointly and soverally, es perties assured. (2)
2. It ghall be unlawful for any person to operate trucks for hauling logs, poles and pilings without first Edition 1937, State Print. Dept. Ore., pp. 16,17,81,103. (2)Lettor of Sec. St. Highway Comm., Ore., May 4, 1939.
applying for and obtaining in addition to the license required by law, permit. The application should state ownership, equipment to be used, the light and combined weight and cheracter of load to be treasported, loading and unloading point and route of travel.
3. The applicant is required also to fill out a form with the Cowmission policy of public and property damage issued by an insurance company for such limits of 1iability, tem, condition and provision as the oomalssion may determine to be necessary for the reasonable Idenmification of the patrons of the applicant and of the public against damage and injury for which the applicant may be liable by reason of the operation of any motor vehicle.
4. Pinancial obligations to be pad.
a. Application $\$ 2.50$ each vehicle.
b. Yearly registration fees based on IIght weight of the vehicle. (weight of chassis, cab and body).
5. weighing not over 2,000 pounds 6 . 30 par 100 ibs or fraction.
6. wetghing 2,000 to 3,000 pounds
\$. 50 per 100 ibs or fraction.
7. weighing 3,000 to 4,500 pounds
$\$.70$ por 100 lbs or fraction.
8. weighing 4,500 pounds and over
\$. 90 per 200 lbs or fraction.
9. Diesel truck

解 50 per 100 lbs or fraction.
5. Size of vehicle and load
a. no vehicle unleden or with load may exceod a height of 12t feot.
b. over-anl leagth not to ween so foct.

- widh not to excead 8 foet.
C. Teluht of vonielen mod load
a, Then total with of tire li lasa than 30
 not to ascecd bot matipiled by wa som of the widh of the tives.
D. Fran total wint of tire 1s aver 30 tnohec.
 hall sot exceec the frodxet of 000 wilt" pled by that of tho with of the tress.
c. Wo motor treck ic hloven to trive on kublic highems oits noto than maxtman indevthal
 of 0,000 pounda on anpaved poode and 8,500
 In oroest of $1 \mathrm{a}, 00$ pound on waywod roads and 17,000 pounti on yeval ronde, with a maximus of veaticlo sme low net bo excoad 54, Oot pounde.
 Asembly of ororgon with alourned on simen 15, 1930, allowed 10 per cont toloranco yolght to the stove loan

 16,000 pound and 19,000 powaid for unpewes nd paved

 thet those perat asblo oxaess wights alswil be comed tolerance motgt nut not arbutwry tnewsese in grosa eotigh to thos set by tistutes under sect ton 55m

2704, Oregon Code 1935 Supplement (1). However; in a conference beld on may 5, 1939 in which legislators, loggers, police forces, the Public Utilities Comissioner and State highway Commission were present, the besis for arreat would be the tolerance woight, that is 10 per cent increase to those allowed by statutes. The following punishment to violators have been promulgated. (2)

1. First offense--auapension of violator'a license
for five days.
2. Second offense--suapension of V lolator's license for 10 days.
3. Third orfense--suspension of violator's license for 15 days.
4. If ∇ tolators refuse to surrender their ileense, the Publie utilities Commisaioner will cancel license autonatically.
5. Violators are also liable to fines as the court may prescribe.

The following rule are also issued for compliance of oporatora. (3)

1. Bunks of truck hauling logs shall be streight or conceve upward.
2. Such bunks she 11 be provided with ohock-blocks not less than 8 inches in helght men in position holding the load.
3. Loads shall be secured with ties of minfmum

T1) OD. GIE. D. 105.
(2) Circular isaued by Oregon State Highnay Commission as aupplement of H. B. 542 passed March 15, 1939.
(3) P.U.C. Oregon Order, Ho. 3069 as amended by P, U.C. Oregon Order No. 3423.

Abstract

breaking strength of at least 10,000 pounds, one tie entirely surrounding the load and the rear tie to be fastened to the bunk of the treiler. Short logs not included in these two ties to be tied to the main load.

Control of hauling

Efficient truck haulers control their hauling through a system of cost recording. Accurato cost data re 1mportant for management. From it comparison could be made Wh aifferent types of equipment, thus enabling the operators to select the most advantageous unit. It also gives enough data for the promotion of contest between drivers in securing the most economical operation.

Examples of en efficient cost recording is that practiced by the Grand Rond Pine Company, Pondosa, Ore. (1) All the operating cost and amount of timber havied for each truck unit is recorded individuelly. The foreman epproves the time of the drivers, the scalers provide the emount of logs hanled and the truck mechanies look after the repair and consumption of oli, fuel and other supplies. Plgure 29e shows the form to be filled for each month for each truck unit to racord cost on operating labor, gasoline, and oll consumption, repairs, labor, repair parts, and tires. Figure 29b and 0 give the history of eabh
(1) Trumen Colitns, Forms and records for truck logging". West Coast Lumbermen, Vo1, 65, No. 4; Apri1 1938, p.23.

Form No. 2			TIRE RECORO Compery Fig. 29b							
Serial No.										
$\begin{gathered} \text { Truck } \\ \text { No. } \end{gathered}$	Wheel Pasition	Begining	ghore	Ending pileage	bate Remona	$\begin{aligned} & \text { Not } \\ & \text { Nalicege } \end{aligned}$	6%	$\begin{aligned} & \text { Caruse of } \\ & \text { Remouid } \end{aligned}$	Wepsived	$\begin{aligned} & \text { Pcont of } \\ & \text { Recowir } \end{aligned}$
Cost permila-			Tetal Mileage------				Tatal Cost--------			
	He.--	-	----			crial No.	,	---	----	

tire. When kept over period of one yoar, the data givea a very accurate basts for the chosco of the best tire that should be used. The mechanics and truck driver fill out the forms.

Dispatehing trucks: : : t another phase of havling that needs control is the dispetching of trucks. There should be nough time allowd between tripa to allow the loading of ach truck and there should also bo enough trucks to keep the loader busy. Christonson (1) found that on 13mile round-trip haul, their loading could keep four trucks busy all of the time; on two-mile round trip haul, two truoks are necessary, and on $25-\mathrm{mile}$ round trip havi 8 to 10 trucks are onaployed.

Factors affecting cost of hauling.

A. Size of logs. Cost of log hauling decreases with decrease in the stzes of loga hauled. Rapreeger (2) found that with one or two logs comprising the load, an average of 4,454 board feet was realized compared with 3,571 board feet from the some-ilzed load made up of seven to elght logt. Also, he proves with flgures that smaller logs of the same speotes velgh more pen thousand log scale than do the larger ones. For example, he found that Douglaa fit logs 16 Inches in diameter weigh 7,400 pounds per
thousend boand foet, Seribner Scale, and large logs, 30 inches in diameter meigh 5,700 pounds per thousand board feet, and consequently whemaller logs; smaller loads could be had at one loading then bigger ones. With less board feet contenta in each load as affectod by size and welght the cost of hauling per load 1 more per thousand board feet.
B. Length of haul. This item does not need explana*10n. Rapraeger (1) found for example that wth a liton truek drawing a treilor, it cost 63 cents to havo a thousand board feet hauled two miles compered with 55.59 on a 30-mile haul; with a 3-ton truck, 49 cents on amile haul compared to 4.66 on $30-m i l e ~ h a u l . ~$
C. Truck pulling a semi-treiler vs. truck alone. The averege truck notor has powar in excess of what is required to haul its rated load. With the use of a semi-trailer ita load is increased to two or three times with only about 10 to 20 per cent increase in fuel, oil, and grease consumption. It is, therefore, very eviaent that truck and trailew combination is very much cheaper.
D. Heavy vs. 11ght trucks. There is no data yot as to the comparative cost between heavy and 11 ght trucks. It Is established, however, that each has its own fleld. 1933. pp. 18 m 22.

Heavy truck give very low cost on hauling done on big timber over private rods. However, small truck are more profitable in small operations using the public roads.
E. Kind of road--with steop grades, rough surface and sharp curves havlage is decreased with the dded disadvantage of inoreased cost of operation.
F. Delays. Delays are caused by many factors and they increase the hauling cost.

Hothec of Conruakem cavitag cost

7ab2e 18
Operating coet for woton mench 1 ton
 ＊operatin yest of 100 olghtwhour （ay⿱⿱亠䒑日\zh20十）

1．DYviss

姆．Losteing trallaw that brate eanipment oos．00
6．anoss revisturin
6．Tire（alne（aubtract）347．50

18．Jtorege 120.00
 above temal．
68.49

1147.00
 （a）w yoav）

2．22
16．Drtver＇s wese（G－hour day onsia）4．00
17．TwIL HAK
398.08

19．Deprectstion of net invantasnt 0.056
20．Gnerline ub 18\＆pen gallon ．ORS

3．24

Item six, cost of tire, is considered as a running expense and is calculeted at 10,500 miles life expectancy, with en expense per mile under item 22 of $\$ 0.033$. Item 18 is 20% of the sum of 4 toms 9 to 12. Itom 15 is the result obtained by dividing itom 14 by 100 days. Itom 19 is obtained by dividing item 7 by $33,000 \mathrm{mbes}$, the 11 fe of the track, depreciated on a mlleage besis. It is belloved that tracks should be depreciatod on the mileage besis because logging trucka become obsolete through aervice. International Harvester Company, Portiand recome mends depreciation of logging trucks with the following rates:

For the first year---m30 per cent.
For the second year----30 per cont.
For the third year-----20 per cent.
For the fourth year-----20 per cent.
Item 9, however, seems to be too much as it is basea on net investment and not an average ennual investment which may be computed by the following frmule:

Where $\quad \begin{aligned} & \text { i inepreciation poriod } \\ & \text { initial cost }\end{aligned}$
Considering four years as the deprecistion period and (1147,00 as the initial cost, tho average annual investment would be $\$ 717.87$, which when multiplied by 7% wo uld give only ${ }^{\text {B }} 50.18$ instead of 880.29 .

Knowing the mileage and haulage of timber in one day, cost per thousand board feet could be computed.

Truman Collins* Hethod.
Hule of thumb for calculating hauling cost:

1. Besie standby oharge	\$1.00
2. Add per w per mile	
oompeny road unimproved	.17
company road improved	.12
public road improved	.10
Fubile road paved	.01
3. For each 1\% advorse grade	.01

Unlosding

Unloading in truck hauling is not problem especially for small and short logs. The truck could ensily be tilted by elevating one side of the road or by placing wedgeshape blocks of wood on the wheels at one side of the truds In larger loads composed of larger and longer logs, however, a gin pole is rigged, and ith power supplied by amall engine, loga are rolled from the truck. This mothod reduces damage to the truck. The ongine used for unloading is employed to load the tracter on the truck for the return texp.

Today the motor truck 解 recogntzed ns traportant cadtrion to lorgt ng equtpmont, prohably as laportant at the locomotive, the donkey onetice, and the treotor, and twack trensportation had grown to haty econot onl $3 n$

 truoks are mploper in locetrict today aco:
 clualon tuat truct trangportation sorvac tho bast mana

 adapted for aecond growth timber and hes boun and athll the most aconomicsi mothod of traneporting phrtal rawoval of tho atan in alection forest nu to placos
 oconr. Thes ts the oage because of the fastivitty of

 yemps to bo oconomical ha logatug bit timber, the length
 inatrumont of "grppo"logare and small "Etrippors".

Canyon Creek Logging Company, Orantte Falls, $\begin{gathered}\text { washington, }\end{gathered}$ arende Ronde Plne Company, Pondosa, Oregon, and many other outfits heve found big truck operations conducted on private roads highly successful with hauls up to twenty miles in length.
3. Of reoent development is the use of motor trucks, light and heavy, as feeders of the rellrceds. Where grades are excessive and construction costs high. truck roads now replace railroad spurs. This bringa the truck nearer to the atump reducing the skidaing distance considerably. Road construction is easy and inexpensive since most roade that are used ere dirt rosds with high adverse grades and with sharp ourves. "Impossible" areas for rellroads are now logged by the use of trucks. The main objection In the truck-railroad combination is the too much delay incurred in unloading the lond from the trick and relosding it on the raliroad cars. This has been removed and by this time unlooding and reloading could be done in two minutes, (i) by tho Snoqualmie Falls Lumber Company, Snoqualmie Falls, Washington. Features of the Snoqualmie outfit are: the use of false bunks that lift full truck load to the railroad car, and that each truck load is constructed as one car load. Pigure 30 shows the rigging of

(Unloading From Trucks and Loading on Log Cars)
Fig. 30
this outrit. Perhaps the most convincing testimony on the edaptabllity of trucks as feeders for retiroeds is thet of Jacoby(1), when he seld:

We loaded twe trucks and trailers, one Ford and another light truck on the train and took them to the woods. We took out about six million feet with theme There was a stand of traber we could not get any other way and meke money, and it proved to be a good way to bring logs in. It cost no more than swinging, in fact, it cost less".
4. The bringing of small mills, both cfreular and band, has been made possible by the use of trueks. Such small mills are numerously found on the wilamette Valley of oregon, and in King, Pierce and Lewis counties of Washington. (2) Trucks bring the logs to the mills and have the sawed lumber sent to maket or to a manufacturing plant. Among the bigger mills operating in this way are, the Alexander Yakey Lumber Company, Prineville, Oregon, The Deer Fark Lumber Company, Dear Park, washington, and the Guistiana Brothera Lumber Company, Eagene, Oregon. These small milla are important factors to be considered in the lumber industry. With the disappearance of the wide solld stand, mall mills will probably be the ones most usad as is now practiced in the state of Now York (3)
(1) Cerl C. Jacoby, logging superintendent of C. D. Johnson Lumber Co., siletz, Ore.
(2) E. J. Rapreeger, "Motor truck \log hauling in oregon and Weshington" The Timberman, Vol. XXXIV, No, 12, oct. 1933. pp. 18-24.
(3) Nelson Courtiand Brown, "Mne Small Sawmilis in New Yorkm. Bulletin, No. 50 of the N.Y. St. College of Forestry, Syracuse University, oct. 18, 1927, p.23-24
where seoond growth forest are tho prevalling ones. 5. Another uee of trucks in log heuling is the applying of logs to blg mills whose supply of aceesalble raw materisi had already been exhausted. Small timber ownere and contractors had made posstbie the contimued operationg of these mllls by brenging to them logs from different plaoes by motor trucks. The Booth-Kelley Lumber Compens, Bugene, Oregon, for example, 1s supplied by three different ontsties ualng motor truck to have logs dineet to the mill partly on private roads and partly on the pubile highway.

The productive utility of trucks had been made possible because of soveral contributing factors. Good public roads are found everywhere not only on settlea agricaltural areas but also in timberiand regions as well. Ther serve anain highmays to which private roads branch.

The constructions of private soads are not hard. The introduction of tractors, bulldozers, shovels, and stumping dynamite had mede roed construction inexpensive and fest. So11 conditions--the stony and hard-pan character of the coll make possible the use of dirt roads during the dry aason. An all-year-round road is aconomically posalble to constmet ith planks and gravel which are readily svallable in most logeing shows in the fir region.

The low initial investment needed to start logging

Whth trock fogether wh the fererel kecwledse of how to operate then hade the track hauling tudustwy popular onterpiriat mong the tasae.

The ent noertat of the motor trate hat bsen develop-
 ntene ond expertence hud been spreat over the country through the nuworous lumber formela and govermont agenetes 14k the different experimental abetowa and college of logging ongtneentw

ywack va. Gal1mends

The trueke we the resirow controver: to of intertet to track loggert. Wher are pelate worth mile constore kng on both alde. One think on when logers agree and are aur of however, thet track are mactsputed2y more
 rough country than ratiroeds. In big manonts of thben, ther is the controveray ss to moh would be beter to use. Aa tated acmothere in thit papez, severwi blg logstng compante are operwting avectafully with truck over private wots wh han an long as 20 miles over rough grounde loct tod on hith levetionw. In such condim Cona tructe som to be ravoroct The loagth of noul is Whth the economienl rang of truck whe condtetone of lopegraphy too axpmetve for ruron conatruction whe
witer found thet if, irrompettyo of topornthle condthoas, the hal 18 hort, from five to fifteon milez,
 peotive of the anount of thber to be hanled dathy and the

 of logitag rey fofriy onstanca. se stat
*hatever mortt thera to to trow loegtng or wnt type of lopging fon thet retter, must be comperative coet of 10 ging from otuap to pond and trmsportstion is not mually the chlor coet. if there ment

 The suin evontage of trock looging an I noe "t it the brosking down of prourotion wnets from the bift

 a bevedy and more awen prodaction withont the penite and waleges theu Dis production undte goee thay wio" on loconotive breata down of in in the ditoh, the fink aro roarklly cosbly becuse all productlon

 mise yayding poesiblo ant lons garding of any kind inspensive and ertetealt.

 now than one noeded."

On the side of the ratlroad, tt would be more advantageous to use 1t when the haul 1.3 long-may 30 to 50 miles; it is used to hevi a bis body of timbert when a very large volume of loge is to be dellvered detly* The ble gatn in hauling by the use of retyroads over the use of trucks $\frac{1}{}$ s shown by the following studtes of Brandetrom. (1)

1. Wotor trucks havilng on poop or steep
roede-averege as to the haulting for
a distance of three miles
2. Motor trueks hauling on good roads (public hlghways). Average hauling distance 10 miles 1.75
3. Logsing railroad spur transportation, average haul three viles 30
4. Logsing main 11 ne-average haul 20 mileg 00

As ahown above, raliroad transportation is lasa expenslvenbne-half to one-fourth that of motor tracka, and the rate of increase in cost ith the increase of Iength of haul is not as big as in the trucks. In the (2) Brandstron, ope clt*: pp. 72.
case of trucks using Collins data of $\% .10$ incresse per M per mile for each mile increase in haul, and using the standing charge in (2) above, the total cost per M for 50 miles would be $40 \times \$.10+\frac{8}{8} 1.75$ or $\$ 5.75$ compared to \$2.00 in railrosd or bout three timea; or, if we use the per mile cost in (2) as the basis for computing the total cost for 50 mile haul, it would cost 80.00 per $\begin{gathered}\text { 管 as }\end{gathered}$ compared to ${ }^{3} 2,00$ in the rallroad.

It may be seld, therefore, that length of haul would be the most important oriterion in the consideration of whether trucke or rallroads are to bo used in a certain operation.

Trucks 78 . Tractors

Another controveray is the use of truck or tractors as feedors of railroads. Brandstrom (1) found that tractor could better be used within one mile to feed railroads, but beyond that heuling should be done by trucks. Trucks bave the disadvantage in short hauls in road constructions in addition to cost of loading and unloading.
(1) Brandstrom, op, cit., pp. 72.

PHILTPPINE CONDITIONS AND TRUCE LOO HAULING

The Philippine Forest

One of the most valuable natural resources of the Philippines is her vast forests. Fifty-seven per cent of the total land area of the lslands, or 45 bilition acres, is covered with forest, 97 per cent belonging to the government. It has an estinated stumpage value of four billion dollars, which, when managed and utilized properiy, would support one third of the expenditure of the Philippine goverment.

The foresta are typically tropical, mixed in composition, and belonging to six distinct types. There are about 3,000 species of trees that attain a damoter of one foot, but only about sixty of these are brought to market at the present tire. The Dipterocarp family, which produces what is comercially known as "Philippine Mahogany," constitutes 75 per cent of the total stand and 90 per cent of the total volume. This species grows in thick stands making it possibly conomical to use modern methode of power logging to exploit it.

The total stand of the Pilippine forests is eatimated at 465 bililion board feet with 8,000 to 85,000 board feet stand per acre in the Dipterocarp forest, averaging 60,000 board feet per acre. The boles of miscellaneous
species are short and crooked, but in the Philippine Mahogany group, they are usually long, ranging from 32 foet to 132 feet of clear length, with diameters from 12 inches to six feet; they are usually sound free from too many lnots but of considerable weight, ranging from 40 to 75 pounds per cuble foot of green lumber compared to 38 pounds per cubic foot in Douglas fir. Retail price of Philippine mahogany red, retail price at Corvallis, ia 350 per thousand board feet.

c1imate

The climate of the Islands is tropical with abundance of rainfall. The Philippine Archipelago may be divided into climatio regions, namely: the seasonal region, nonseasonal region and intermediate. The seasonal region has beavy contimous rain for six months causing the flooding of rivers and streans, with little or no rain in the other half of the year. Logeing by trucks during the rainy season is impractical but very profitable when done during the ary months. Average annual rainfall is about 86 inctos. In the non-seasonal region, the rain is widely diatributed throughout the year, making the ground always wet and muday. Average annual rainfall is 121 inches. In this place the rivers are always filled with water very adaptable for 1loating logs. It would be impractical to
construct gravel road for truck hauling, but it would be all right to construct plank roads. In the intexmediate belts moderate rainfall comes in six months with little rain distributed in the other months. Average annual rainfall is 98 inches. In these places it is possible to operate trucks on gravel roads botin in the dry and raing season and with dirt road in the dry months. The temperaturea range from $60^{\circ} \mathrm{F}$. to $101^{\circ} \mathrm{P}$. with an average for the 1sland of about 75 F . The coldest months are January, February and March which may be comparable to spring in Oregon, with practically all the rest of the year with wam olimate. Another characteriatic of Philppine olimate Is the presence of annual typhoons during the months of September, December, January and Tebruary. This is an important consideration in the location of shipping points for loge and lumber. Host lumber and logeting docks are located in protected harbors. The following places, famous for their logging and lumbering operations, with average annual rainfall and the number of months of dry season obtained from the report of the Weather Bureau, Manila, (1) are given to compare rainfall in different regions:
(1) Mguel Selga, "Observations of Rainfall in the Philippines", Weather Bureau Report, 1935, Bureau of PrintIng, Manila. pp. $24,33,43,54,58,115,172,175$, and 241.

TABLE
Place
Average
No. of dry Amual Rainfall Ronths.
Seasonal region:

Calapan, Mindoro Is.	86 Inches	6
Solsona, I. N., Luzon Is.	86	6

Intormediate:

Cotabato, Cotabato, Mndanao	87	\%	5
Cateel, Davzo, MIndanao	169	\%	
Cagayan, Or. Mis., Mindanao	64	N	8
Cadiz, Occ. Heg., Negros	75	"	7

Won-zeasonal:

Davao, Devao, Mindenao	82		Practically no dry months.
Butuan, Agusan, Mindenao	92	"	
Kagay, C. S., Luzon	132	"	"
Saler, Tayabas, Luzon	129	"	

Topography and So11

The philippines is young geologically with rough topography. The abundant rainfall cauaes strong currents on streans that orode the land susface cutting mumerous deop valleys and sharp ridges that offer problems to onginears in road construction. In general, the slopes are shorter but steeper than those found in the Douglas fir rogion.

In nost timberlands the soil is clay to clay loam reaching a depth of one and one-half feet. The hahogany group of the pipterocarp family grows moatly on this kind of soli with the harder species on the rocky areas. Stones are plentiful in stream bottoms. Because of the
abundance of rainfall and the loany condition of the soil, most logeing showe are muddy during the rainy teason. And in places where the rainfall is widely distributed throughout the year the ground is always wet, making it very hard to truck loge, In seasonal and intermediate zones where there is no rain part of the year, the ground is hard and logeing by trucks could be done on earth roads*

Transportation

The Philippines is composed of meny lislands and interisland shipping is an important factor in transportation. Netive marine companies control locel shipping that is maintained regularly on schedules between frportant ports of the ialands. These boata carry inter-island comerce, load products from place to place Including logs and lumber. Freight is usually high. It is very hard to transport logs and lumber from place to place especially if the places of operation are in remote places not on the port of oall or not connected with road to the port of oall. For this reason, the big lumber mills have their own cargo boats to move their lumber, logs and supplies. Land transportation is done by reilroacs and roads on the islands of Luzon, Cebu and Ilo110, and motor roads in the other 1slands. The government has been sponding ble sume of money for the construction of roads ospecially in Mindanac,
second largest island, to reach unpopulated areas. (I) mransportation by airplane is earried from Manila to im portant points.

The logeing industry

The public foresta are not sold but ere utilized under a Llcense system. Small 11 censees operate under a yearly license while bis concessioners on a 20 -year period renewable for the same time. This systom of explottation gives the lumberman or loger onough chances to make prof1ts. He pays no taxer for sthapage; he is not required to burn the alam; he bas low wages for labor; and he doee not pay so many taxes. He 1s, however, required to pay forest chargee on all the merchantable trees he cute, whether he utilizes them or not. A diameter itmit is set below which he cennot cut, but the statutes co not forbid him to clearcut, and the diameter limit restriction is not enforced at all. Forest charges are $\$ 1.25$ per cuble meter (424 bd . ft .) for the first group, 4.75 for second, 黄. 50 for third, and $\frac{\text { a }}{} 25$ for fourth.
(1) The goverment spent $\$ 500,000$ in 1937 for road construction of roads in Kindanso alone to reach remote regtons. The goverment also contomplates to spend $\$ 49,070,650$ in a lour-year progran for public works from 1988 to 1841, according to the annual report of the Prosident as of Dec. 31, 1937, p. 28.

The lumber industry is a big industry in the islands. It ranks fifth in amount of capital invested; fourth in value of production; second in number of employees, and third in monthly wages, compared with other industry. There were 111 sawills and pover logeting operations and 1,606 mall operators in 1935. Lumber is exported to the United States, Australia, China, United Kingaom, Japan and Europe with most of the logs sent to Japan, Australia and the United States.

Labor is not big problem in the Philippines. The Filipino labor is easy to direct and learns easily. They work for low wages, as low as 8.50 per 8 -hour day. Most of the laborers in the lumber insustry do not belong to labor unions.

Methods of logsing. Methods of logsing are still antiquated among small operators. Timbers are still abundant on level places near navigable streams, near the seacoaste, and nowly constructed roads and hand rolling and water buffalo sled hauling are usea to move loge. In very rough country in the pine region aerial tramays are used. The big mill and logeing companies, however, omploy power equipment like the railroad, donkey engines, tractors and of very recent introduction--the motor truck, with the rallroad and donkey engines gtill the rule. There are two big companies and some mall 11 censees using trucks for
log hauling, but thelr operatfong are not managed and conducted on a modern bosis. Tho use of the truck without tha trailer is the general practice.

The slow introduction of tracts as atationa to modern logeing equipment in the Erinipgines is due to rany factors. Enginoering tho logetng track and track logetag shows is not generally mown by local logex m, both bis and small operators. The phatppines is not as lishly mechanizod as the Unitoc states, ane operatthe motor truck is not as easily Cone ad it la hera. Duscmination of modern logeng mothods is slow an Philpphe logers are not orcantzed. They Mavo no coagrosses, no huaboto Journala and no axpertmental stathon to aelp them solve thesp probleas, of course, Axarican oporatore and some big Filipino firme taire advantage of Amertean foumais, but other nationalitios do not. And thoro aro Local ocnditions with peculiarities that ooud oniy be golved by local study and application. Ae spown oluewhere in this roport conditions of althate, toporaphy, woil, transtortation, labor and tinber aro difuctont fron those of tho Unfted states, and opersting condttono mast be cipserent. The latost bevelopacat in truck enctnoerine is not avallable, ogpectally in renote regtons Looel cruck dealors carry only factory wotale harowhed from the United Statoe. Trucks cost more in the Infands than in the united

States by 30 to 40 per cent more because of importing costs.

Excessive mainfall keeps the soil soit all the year around in some placea, making it costly to construct roads and operate trucks. Hard and stony dry soil in oregon and Washington are generally the contragt of nost timberiand solls and operating trucks have to be done on plank roada or else operation must be cone during the dry season.

However. Log truclc transportation should be popular under many favorable fectore. Public roada are found all over the islands and new ones are being constructed to reach remote places making the timber acceselble. Trucka could very well serve as secondary transportation on short haula to bring loge to the coast, navigable rivers and to public roade Stunpage is not sold, and with a amall capital that is needea to buy trucks, the sualler capitalists could easily go into the logeing industry. It is a profitable industry. The big logeing compenies shonla use trueks to log hard areas. The witer knows operations that have have "Lmpossible" shows with their railroad that could be lozged profttably by truclas. Stringent laws and regulations govexning log hauling on public roads are not exiatIng and one could use the road as freely as he wants. Fees, 11censea and taxes are nominal. Wo liabllity and property damage insurance are required. Small milla supply Iumber
 sorved gest by tha use of fmok

2.	(add 50 \% to Portisnd price) ****	506.60	
3.	body, oob and apeolal oquipment (add sos to Fortiand		
	prioen********************	100.45	
4.	Logging trallor et tín braka equipment (acd 30 少 to ortland		
	рveroe)*********************	733.00	
6.			1942,86
	to Sontian perlos)	4312	
7.			
	(oproctatad) ***************		1491. 10
9.	Interest on net Invostmont		
	pes yenr********************	204.35	
10.		76.00	
12.	 property bility		
18.	Stoluarge.* *******************	50.00	
13.	Operating gucphead and rink (20% of above 1 tem) ****************	4.0.03	
$15 *$15.			276.46
	cparabinis tay pow sear) *******	1.54	
15.		.90	
17.			
			2.44
190.	Depreotation on not mundstaent.	.046	
		.047	
22.	011 at \% 50 per gallone******	. 000	
23.	214es. 11 fe appoctanoy $10,500 \% *$. 048	
83.		.002	
84*		.005	
28.			
			\% 160

Considering E-ning hond:

$$
\text { Yatipoinos U. } \mathrm{S}_{5}
$$

Truct conla maike 0

$$
\begin{aligned}
& \text { 83) } 0.68
\end{aligned}
$$

rotal fixed and driving exponaes per

马otal oxpenter ger day 14.5\% 27.20
Amount of thaber hanyos.

(T.E. 2.zen pex loma)	16.20	V. ${ }^{\text {g. }} 3$
		par load 24.00

Cost of hav1tng

Frico of lumber per H. bd. ft.....****** 350.00 35.00

Perce of lumer hue te based wa Corvaliss, orogon; Fotall price.

The computettons bove bhow compartson of the
 u**ng "Pantippine Mahogeny" logs as the bests cor compatatione in the philippinos and Douitias efe in to united states. The total rixed and trivins oxpensen por day Low millppine hauling is vory low camperea with United

 eruct, it baing ablo to hand only e, 2co board foet per

 comparison.

oaroweston

The prosent motor truck has proved very definitely tte usofulneag in log trensportation in the Dougke It regica of the Untted states and io highly recomended for wide wee in the millippine logeing indugtry. It is a big industry thet sivea many people empxoment and bringe rem voman to the goverument and ahould be curther developed by the Introduction of modern equipment.
 logiging is not offictent, honce unpepular, bocaze it is not ongineered properiy. The wraller and other aceesories of the logsing truck in its latest devalopmont in the Dougiat fis vegion mot beorporated in the feetory mod-
 nitee the importenct of good rouk ws regulate to a
 aaptod roms than bhose prosontly usod in the lalanda should be construeted. The knowleciso and tochnique used in roed busiatng th the Douglas fir region it highly developed and monla be acoped. Fractore, buildowess hovels and stumping aynamite mould rovolutionize the present now and sat quated method of roal construction by man mad antmal power. The writer tnowe of many oparetors who wont into notual logetng whout planning the operabion carefully
chead. It is not because of carclisanosh or lack of
 urgent thet the sureac or Toratisy intmasify tos trive in eoviring to aproval of the govomment to ateblish form
 on fowestry problams, lachatn the atwoncemoat of the
 Nowthweat can any the benericlal rasits of the friformaw
 tained from tre tuatom in the acyanoomont of tho huaber industry. Furthemore, the goverwent acould, tin the sched

 timber becomes mory and more knecosstbie, the need rop more logetug ougtnecre to log th weomes move and more tuperative. Tre logeing induatry to goine to tixat stage acon, and the gevemant anovic take st into consideration In the divection of forcst dinotion in the sehool. The Thilippine logylag unduetry has probleno thet are Inhorently loon that conla oniy be solved by ectruel trial and atuly on the promisas. it wound be very benefictal if the Philippine losgers ongantie thonaselvee for the parpose of looking into the progreas of the induttry the effic
efmey of present logetng wethon and enuspont of the
 opplication mang the logers binocelves through the ln stromentellty of the zotio wogetna dongreas. Wo present logetng truck wes developet "n bit toasure by the con*

 try.

 There is too much ratn bhat readers the oll soft and wet,
 stye. hank roed are fown ery proftriole un the Douglas

With the Jom inttind cost of tricka a Icocseo with a 1解le oapltal ahoula wole to go tnto the logetng tndustry and make sonag. un will not have to bay meumage and pay taxer on 14, he whi not have to abice to regula-
 have vory low cot of labor. His longth of hum w 11 be abort, ading onzy very shert preveto rouda, bucause preant

BIBLIOGRAFHY

1. Almack, John C. Research anc mests wnting. Boston Houghton Mifflin Company, 1930. pp. 1-301.
2. Baker, Edwera Loudins Hotor Truck. West Coest Lumber man. Vol. 64, Aprs1 1087, De. 18-19.
3. Baken, Edward Truck Roeds in Fir Regions. The timberman. Vol. 36, sept. $15-17,1937$, pp. $66-70$.
4. Bamker, 5 . W. Motor Truck Locezing in Western waehington. June 15, 1919, pp. 18-10. Rocific Loeting Congress, Yortiand, Oregon, october 8-11, 1919, pp.1819.
5. Brandstrom, Alex J. F. Sugsested Truck Nounted Douglas Mir Log Losder. Kost Coast zupbeman. Vol. 63, Jan. 1936, pp. 20.
6. Brown, C. M. Motor trucka in Modam Loging. Amorican Lumoorman. Vo1. 62, Sopt. 14, 1935, p. 40.
7. Brown, Nelson C. Logeing Trensportation. New York, John 1 loy and Sons, 1936. pp. 176-198.
8. Brown, Holson C. Logging Mransportation. New York, John wiley and Sons, 1934, pp. 121-135.
9. Brown, Nolson C. The Small Samills of How York. Now York state College of Forestry, Syracuse University Bulletin, No. 50. Oct. 18, 1927. pp. 23-24.
10. Carlson Roy C. Calculating Hauling Abilty of Motor Truoks. Meat Coagt Lumbernan. Vol 64. April, 1937, p. 32, 34,36.
11. Cnriatensen, d. H. Kow to Belect the Logeing Truck. Pest Coast Lumberman. Vol. 65, Ap:11 1938, pp. 11.
12. Christensen, L. H. Rosd Bullding. Tho fimoeman. Vo1. 40, March 1939, pp. 16-20.
13. Christensen, L. H . Upkoep of hotor Tmoks. Wost
Const Lumbermag. Vol. 64 . April 1937, pp. 20-21.
14. Colemen, C. C. How to Select the Logging Iruck. West Coast Lamberman. Vol. 65. April 1988. pp. 10814.
15. Coliins, Truman. Forms and Records for Truck Logging

16. Collins, Trumen. How to Select the Motor Triok. West Coast Lumberman. Vol. 65, April 1938, p. 11.
17. Collins, Truman. Light and Heavy Trucks. The Tmberman. Vol. 38. Sept. 1937, pp. 60-61.
18. Cornwall, Geo. $\mathrm{H}_{\text {. }}$ The Logeing Industry in Retrospect and Prospect. Pacific Logging Congress, Portiand, Oregon. Proceodings, 1925. p. 4.
 Cosat Lamberran. Vol. 65. Dec. 1938, p. 46.
19. Dagner, Ed. Engineering the Motor Truck Operation. Weat Coest Lumberman. Vo1. 65. Apri1, 1938. pp. 14-16
20. Dagner, na, Steering Long Loads. weat Coast Lumberman Vol. 65. Apri1, 1938, D. 16.
21. Eaftorial Artiole. Big Now B. C. Camp. Wost Const Kambernan. Vo1. 65. Aur. 1938, p. 26.
22. Editorial Article. Bullding Truck Logging Roads. West Cosest Lumboryan. Vol. 63, Now. 1936, pp. 4-18.
23. Haitorial Article. Cable Span log Bridge. The Timbarman. Vol. 38. Sept. 1037, pp. 20.
24. Fattorial Article. Correlating Truck and Railroad Logging. West Const Lamberman, Vol. 61. Sept. 1934. pp. 13 and 14.
25. Editorial Artiele Cost of Foad Construction. West
Cosst Lumberman. Vol. 63 . Apri1, 1936. pe. 18 .
26. Editorlal Artiele. Evils of overioading tires. West Goast Lumberyang Vol. 64. Jan. 1937. p. 16.
27. Edetorial Articie. Fills vs. Trestles. \#eat Coast Lamberwan. Vo1. 64. Oct. 1937, p. 50.
28. Eaitorial Article. Garaging Logging Trucks. Wost Coast Lumberman. Vo2. 65. April 1936. p. 40.
29. Editorial Article, Log Hailors Set Timber Rates. The Timborman. Vol. 35. Aug. 1934. p. 64.
30. Baitorial Article. Truck Logetne Coat. West Coast Lumberman. Vol. 59. April. 1932, p. 18.
31. Editorial Articie. Truck Logging with Grande Ronde Pine Company. Eest Coast Lumberman. vol. 65. Sept. 1936. p. 9.
32. Pattorisl Articlo. Trucking at Feyderwood. The T1mberman. Vol. 40. March, 1839. pp. 14 and 26.
 Lumberven. Vo1. 63. Apr11, 1936. pp. 11-14.
33. Eaitorial Article. Trucks and Tratlers. yogt coast Lumbermen. Vol. 64. April 1937, pp. 11-15.
34. Battorial Artiole. What ls Mew In Logging. West Coast Lumberwan. Vol. 63. Sept. 1936. p. 10.
5a. matorial Avticle. Winter Tracton Logging. Yest Coast Luphermane Vol. 65, Pob. 1938. p. 10-11.
 Imberman. Vol. 3s. Warch, 1932. p. 20.
35. Evernart, E. E. HIn Good Reasons for Trasiers. The timbexpan. Vol. 27. Dec. 1026. p. 162.
36. Filbert, Robert. Motor Trucks. Fost Coast Luwbeman. Yo1. 65. Nov. 1938, p. 16.
37. Gelbrasth, Kesth. Two Tundred Thousand Fest Everyday With Trucke. The mimborman. Vol. 35. Tay, 1934, pp. 17-18.
38. Geithman, H. Logging by Wotor Truck in the Pacifie Northwest. West Coast Lumberman. Vol. 46.
39. Hess, T. T. Getting the Most of IIres. Mest Coast Lumberman. Vol. 65. Apri1, 1938. p. 26.
40. Jaooby, Carl. C. Trucks as Rajlroad Feodews. vest Cosst Lumoexman. Vol. 64, Apri1, 1937, pp. 48.
41. Jones, R. Pred. Fonu Gas znghos and Tractore. fooraw H111. Bookteopping Company. 1938. p.50.
42. Sheasgreen, J. Road Builaing, The THmberman. Vol. 40 March, 1930. pp. 16-20.
43. Skolton, M. C. Getting the Most Out of Trucks. Thest Coset Lumbersen. Vol. 65. April, 1038. p. 26.
44. Snell, Ear1, Motor Vehtele Laws of oregon. Gompllation Eaition 1037. State Printing Dept., orogon. pp. 16, 17, 81 and 103.
45. Snellstrom, M, S. Snellstrom Logsers at Work. West Coast Lumbermen. Vol. 62. Fob., 1935. pp. 8 and 9.
46. Smeet, R. A. Motor Truck Loging * Hest Cosst Lumberman. Vol. 59, Sopt. 1932, pp. 12-13.
47. Tamesis, Florencio, deneral Infometion on Philippine Forests. Bureau of Forestry, P. I. Bublication. 1836, pp. 1-8.
48. Van Vioet, Geo. Making the Most of Light Trucks. Went Const Lumbeman. Vo1. 65. June, 1058, pp. 50851.
49. Wetson, H. S. Selecting Proper Gear Rat: 0 . The timbersan. Vol. S9. Peb., 1938, p. 48.
50. Webb, Walter, L. Reilroed Conctruction. Nev Xork, John :"11ey and sons. 1932. pp. 197.
51. Wiost, A. I. Labricating Logaing Trucks. West Coast Lumberman. Vo1. 63, April, 1936. pp. 22.
52. Zauch, Joe, How to Select the Logging Truck, west Coagt Lumberanan. Vo1. 65. Apri1, 1938. p. 11.

[^0]: (1) Frederick M. Knapp, Motor truck logging mothods (Un1versity of Wanington, Engineering Experimental stetion Series, Bulletin No, 12. Seattie: University of Wamington Press, 1921) pp. 5.

[^1]: (1) Editorial Articie, "Truck logging with Grande Ronde Pine Company", West Coast Lumberman, Vol. 65. No. 4, September, 1938. pp. 9.

[^2]: (1) Roy C. Carison, "Caloulating hauling ability of motor trucks." West Coast Lamberman. Vol. 64, No. 4, April 1837. pp. 32.

[^3]: (1) Ed. Dagner, "Engineering the logging truck operation".符部 Cost Lumboman. Vol 65, No. 4. pp. 15. April,1938

[^4]: TI) Carison, op. oIt., pp. 34 and 36.

[^5]: (I) Le H. Christensen, Kord builaine". the Timberman, Vol. XL No. 5. (Hareh 1939) pp. 16, 17 and 20.

[^6]: (1) Rapraeger, op* est., pp. 17.

[^7]: (I) L. T. Christensen, Road builling". The Itmberman, Vol. XL (March 1939) pp. 16, 17 and 20.

[^8]: (I) Advance copy of the Logger's Handbook, pp. 3.
 (2) Rapraeger, op. oit., pp. 16.

[^9]: (1) Edward Baker, "Loading logging trucks". West Const Lumberman. Vo1. 64, No. 4. April 1937. pp. 18-19.

[^10]: Ti) Edward Baker, Loading Motor Tmoks, Mest Const Lumbermen. Vol. 64, No. 4, April 1937, pp. 18-19.

