Pablo Camacho for the degree of Master of Science
in Forest Engineering presented on November 28, 1983
Title: The Effect of Major Environmental Factors on Growth
Rates of Five Important Tree Species in Costa Rica
Abstract approved:

The growth of Alnus acuminata (HBK) O. Ktze, Cupressus lusitanica Mill., Gmelina arborea Roxb, Pinus caribaea var. hondurensis Barr. \& Golf., and Tectona grandis L. in Costa Rica and twenty seven soil and climatic factors were analyzed to determine the relationship between major environmental factors and growth rates of these five species. The growth of the species was compared within specific climatic zones of Costa Rica, and in the country as a whole. A reduced set of environmental factors was selected that best explains the species growth in the country and in specific geographic zones.

The forestry plots used in this study were installed by the Forest Service of Costa Rica, complemented with a few private farmer plantations. Diameter at breast heigh (dbh), the height, and volume growth of the trees were used as dependent variables. Data for twelve climatic variables were obtained from the national meteorological stations. Fifteen soil characteristics were evaluated for each study site.

The growth of Alnus was found to be related to relative humidity, the distribution of precipitation and the percentage soil base saturation. Within the range evaluated (78-80\%) an increase in the mean annual relative humidity will depress growth of this species.

For Cupressus it was found that soil texture (\% silt content), altitude of the plots, soil base saturation, as well as cation exchange capacity and nitrogen in the Central Valley of Costa Rica, were the environmental factors most closely related to the growth of this species. For the altitudinal range evaluated (1100-2620 m) a decrease in growtin can be expected as altitucie increases.

Growth of Gmelina was found to be closely related to soil characteristics: available phosphorus, exchangeable sodium and potassium, cation exchange capacity and organic matter. The general observation from this regression analysis and experience in other countries is that Gmelina requires fertile soils and favorable physical properties for optimum growth. However, this species is growing satisfactorily in all areas below 500 meters of elevation in Costa Rica; no data is available above this elevation.

Amount and distribution of precipitation, exchangeable potassium, magnesium, and sodium, soil texture, and an energy factor (number of hours of light: and radiation; or interaction of these two variables) were the factors most closely related to the growth of \underline{P}. caribaea in the country.

For Tectona it was found that soil texture, temperature, and exchangeable potassium, calcium, and sodium were the factors most
closely related to the growth of this tree in Costa Rica,
The information developed in this study provides a better basis for understanding the growth requirements of these five species. Iowever, planting guidelines must await the inclusion of additional data into the analysis.

Key words: soil fertility, tropical climate, tropical forestry, growth rates, introduction of species, Alnus acuminata (HBK) O. Ktze, Cupressus Iusitanica Mill., Gmelina arborea Roxb, Pinus caribaea var. hondurensis Barr. \& Golf., Tectona grandis L.

THE EFFECT OF MAJOR ENVIRONMENTAL FACTORS ON GROWTH RATES OF FIVE IMPORTANT TREE SPECIES IN COSTA RICA
 by
 PABLO CAMACHO

A THESIS
submitted to
Oregon State University

```
in partial fulfillment of the requirements for the degree of
Master of Science Completed November 28, 1983
Commencement June 1984
```

APPROVED

Professor of Forest Engineering in Charge of Major

Dean of Graduate School

Date thesis is presented November 28, 1983

I would like to thank Dr. Henry A. Froehlich for his guidance throughout this project, in the entire master's degree program, and also in the partial funding of the computer work. I am grateful for the excellent advice and teaching provided by Dr. David A. Perry. Helpful counsel was also obtained from Dr. Paul W. Adams, Dr. Richard K. Hermann, and Dr. Robert L. Krahmer.

Counseling and complementary funding for my computer work was generously volunteered by Dr. Kermit Cromack Jr., and is greatly appreciated.

Statistical and computer assistance were provided by Dr. Susan G. Stafford, Mr. Rodney L. Slagle and Mr. Miguel Espinosa.

My friends, Ms. Yenory Rodriguez and Mr. Rodrigo Infante in Costa Rica assisted by sending supplementary information pertinent to my study. Mrs. Barbara Casteel and Mr. John C. Balcom made appropiate corrections on my thesis draft.

Helpful encouragement at critical stages in my studies was provided by Dr. George W. Brown and Dr. Carl H. Stoltenberg,

I am also thankful for the many favors and jokes received from Cynthia M. Davis and Doryce J. McDonald. Their good sense of humor make me smile.

Finally, and in a very special way, I thank my wife for her Constant loving support and encouragement throughout my graduate program.

TABLE OF CONTENTS
Introduction 1
Study Objective 3
Literature Review 4
Silvics of Alnus acuminata (ABK) 0 . Ktze. 4
Silvics of Cupressus Iusitanica Mill. 6
Silvics of Gmelina arborea Roxb. 8
Silvics of Pinus caribaea var. hondurensis Barr. \& 10
Golf.
Silvics of Tectona grandis L. 12
Environmental Factors and Effects on tree growth 13
Ketnods and Materials 21
Establishment of the Study 21
Data Collection and Measurement 24
Geographic Location 24
Climate 24
Soils 25
Growth Indicators 27
Shape of the Plots 27
Data Analysis 29
Results and Discussion 31
Multivariate Analysis 31
Multiple Regression Analysis 33
Regression Analysis for Alnus acuminata (IBK) 0. 33
Ktze.
Regression Analysis for Cupressus Lusitanica Iill. 40
Regression Analysis for Gmelina arborea Roxb. 46
Regression Analysis for Pinus Caribaea var. 50
hondurensis Barr. \& Golf,
Regression Analysis for Tectona grandis L. 57
General Observations from the Regression Analysis 61
Conclusions 65
Literature Cited 66
Appendices 72
Appendix 1: Population statistics and correlation 73matrices for climatic and soil factors used in theregression analysis of Alnus acuminataAppendix 2: Population statistics and correlation77matrices for climatic and soil factors used in theregression analysis of Cupressus IusitanicaAppendix 3: Population statistics and correlation81matrices for climatic and soil factors used in theregression analysis of Gmelina arborea

```
TABLE OF CONTENTS (continued)
```

[^0]Figure Page

1. Graph of a forestry study plot showing its dimensions, 22the 81 trees measured per plot, and the buffer zone.
2. Forestry regions of Costa Rica and study site loca- 23tions.
3. Initial 10 years growth curves for different Alnus acuminata study sites in zone 5 and 7 of Costa Rica.
4. Initial 10 years growth curves for different Cupressus 124 lusitanica study sites in Costa Rica.
5. Initial 10 years growth curves for different Cupressus 124 lusitanica study sites in zone 5 of Costa Rica.
6. Initial 10 years growth curves for different Gmelina125 arborea study sites in zone 1 of Costa Rica.
7. Initial 10 years growth curves for different Gmelina arborea study sites in zone 3 and 4 of Costa Rica.
8. Initial 10 years growth curves for different Pinus caribaea study sites in zone 1 of Costa Rica.
9. Initial 10 years growth curves for different Pinus126 caribaea study sites in zone 3,5, and 7 of Costa Rica.
10. Initial 10 years growth curves for different Tectona 127 grandis study sites in zone 1 of Costa Rica.
11. Initial 10 years growth curves for different Tectona 127 grandis study sites in zone 3 of Costa Rica.
Table
Page
12. Location of type A meteorological stations in Costa26 Rica.
13. Environmental factors and growth indicators used in 28 the statistical analysis. Corresponding level of observation and name used for the weighted soil profile value is also included.
14. Independent environmental variables possibly related 32 to tree growth, as determined by Principal Component Analysis, by species and frequency of inclusion for the five tree species included in the analysis.
15. Environmental variables included in the regression 34 equations to predict tree growth, by species. Variable selection was based on stepwise MAXR approach.
16. Environmental variables included in the regression 35 equations to predict the tree growth, by study species and plot locations. Variable selection based on stepwise MAXR approach.
17. Multiple Regression Analysis Results for Alnus 37
acuminata using stepwise MAXR approach, for data from growth plots throughout the country as well as from an individual zone.
18. Multiple Regression Analysis Results for Cupressus 41
lusitanica using stepwise MAXR approach, for data from growth plots throughout the country as well as from individual zones.
19. Multiple Regression Analysis for Gmelina arborea using stepwise MAXR approach, for data from grow.th plots throughout the country as well as from individual zones.
20. Multiple Regression Analysis Results for Pinus 51 caribaea using stepwise MAXR approach, for data from growth plots throughout the country as well as individual zones.
21. Multiple Regression Analysis for Tectona grandis 58 using stepwise MAXR approach, for data from growth plots throughout the country as well as individual zones.

THE EFFECT OF MAJOR ENVIRONMENTAL FACTORS ON GRONTH RATES OF FIVE IMPORTANT TREE SPECIES IN COSTA RICA

INTRODUCTION

The testing of species, native and introduced, is a common activity in tropical and subtropical areas, mainly because tropical forests are not as productive as temperate forest in economical terms (yield of marketable wood per unit land area). Tropical forest are very complex (formed of a large number of tree species) and this has made the harvest procedure in these areas a selective activity. Only individual trees are harvested because of the selected utilization by the timber industry. In some cases this low volume per unit area could make the extraction cost so great that the timber harvesting becomes a low-profit activity (Camacho, 1983).

Researchers in many countries of Africa, Asia and America as well as Costa Rica are involved in the process of introducing and testing new tree species. These researchers have reported on growth rates, yield per unit area, and recommendents for future reforestation activities. Some authors (Martinez, 1981; Camacho, 1981) have already made recommendations about the more appropiate species to plant in Costa Rica based on a preliminary analysis of the forest plots in the country.

Evaluation of environmental factors affecting the growth of introauced tree species has not been commonly studied. Exceptions
are: Pande (1982) Ferreira and 2. do Couto (1981), Teoh (1981), Fassbender and Tschinikel (1974) and Wasan and Sukwong (1974).

Forestry research in Costa Rica began in 1948 in the Tropical Agronomic Center of Investigation and Teaching (CATIE) (Martinez, 1981). More recently the Forestry Development Project of Select Zones of FAO (Food and Agriculture Organization) in conjuction with the Institute of Lands and Colonization (ITCO) established plots in 1965 (ITCO, 1967), followed by the reforestation project on the slopes of Irazu Volcano started by the Civil Defense in 1967-1968. The Agricultural Diversification Office also initiated in 1970 a reforestation program with private tree farmers. (Camacho, 1981).

The General Forestry Direction Unit (DGF) of the Ministry of Agriculture and Animal Husbandry (MAG), initiated a program in 1971 of study plot installation whose objective was to generate basic information for future policies in commercial forestry plantation projects. This program led to the installation of more than 500 plots with 70 different species distributed throughout the country. Since the beginning of the investigation, the Forestry Department and more recently the Technological Institute of Costa Rica (ITCR), have been using different silvicultural practices in order to protect and provide for the development of those species. Study plots were initiated in Costa Rica in 1971 with the goal of testing individual species and their behavior in pure stands, and also with the purpose of obtaining a more efficient
forest to supply the future demand for wood. Now that most of the natural forest of the country is almost gone, the project becomes more important because the information these plots are providing can be used to direct the future policies and reforestation programs in Costa Rica。

The study of environmental factors that might affect the behavior of these introducted and native species is important. In the specific case of Costa Rica, some experimental plots have been observed since 1948 complemented by the analysis of their soil characteristics; meteorological data are also available from a good distribution of measurement stations. With this basic information, this research project was initiated to deternine the effect of major environmental factors on growth rates of important tree species in the country.

Study Objective

The general objective of this study was to determine the relationship between major environmental factors and growth rates of the following five important tree species in Costa Rica: Alnus acuminata (HBK) 0. Ktze, Cupressus Iusitanica Mill., Gmelina arborea Roxb, Pinus caribaea var. hondurensis Barr. \& Golf., and Tectona grandis L. Specific objectives were:

1) To test and compare the behavior of the species in specific climatic zones of Costa Rica and in the country as a whole.
2) To select the set of environmental factors that best explain the species behavior in the country and in specific growth zones.

LITERATURE REVIEW

Silvics of Alnus acuminata (HBK) 0. Ktze. ${ }^{1 /}$

The common name of this species in Costa Rica is Jaul. Thereas it is also known as alder in temperate areas. Initially this tree was described as Alnus jorullensis HBK, a comon species in South America (Holdridge, 1951). Both alders belong to the Betulaceae family.

Species description

A. acuminata is a medium size tree with a wide top and larpe branches when growing in open places. The leaves are simple, altemate, dentate, and coriaceus. The flowers are grouped in aments. The fruit is a yellow nut, indehiscent and comprised of 30 to 100 winged seeds.

Habitat

In Costa Rica the tree occurs in the tropical region at elevations between 1500 and $2500 \mathrm{~m}_{\mathrm{c}}$ In the provinces of San Jose, Cartago, Heredia and Alajuela, the species forms the natural forest, and also is found in plantations. (Combe, 1979b).

Geographical range

Jaul is widely distributed throughout Central and South America specifically from Mexico through Central America to Argentina. Holdridge (1951) mentioned that A. acuminata is

[^1]common in Central America.

Climatic range
Alder grows well in places where precipitation ranges between 1500 and $3000 \mathrm{~mm} /$ year and where mean annual temperature range from $16^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$. The species can withstand temperatures below $0^{\circ} \mathrm{C}$ for a short time. This tree has a high demand for moisture, in both soil and air. It prefers sites well supplied with moisture and having many cloudy days.

The species is found in the Lower Montane Moist Forest and Lower Montane Wet Forest life zones (classification according to Holdridge, 1969).

Edaphic range

Alder can grow well on well drained soils with high organic matter content. The tree is found near streams, in eroded pasture lands, in landslide areas and roads banks. Growth is poor in sites subject to flooding or in swamps.

Silvicultural characteristics

Alder is a pioneer species that needs a lot of light for good development, it requires the soil to be free of weeds at least during the time of establishment, and it also needs a high moisture level in the soil. The tree grows fast and fixes atmospheric nitrogen. Use

The wood from this species is in high demand by wood processors
in Costa Rica. It is utilized as fuel, in light construction, furniture, domestic articles, musical instruments, shoe manufacturing, and the production of pulp and paper. A recent project demonstrated that the wood is also suitable for building of wooden structures (Tuk, 1980)。

Silvics of Cupressus lusitanica Mil1. 1/

This tree is commonly known as cypress and belongs to the family Cupressaceae. In Costa Rica it is named cipres.

Species description
Cypress forms a large tree with a straight columar stem channeled in the lower part of the trunk. The leaves are dotted, have scale form and are attached in rows of four to the branches, The female flowers present a globose inflorescense and the male flowers are grouped in aments $2-4$ mong. The fruit is a globose strobile of 6 to 8 scales from 10 to 15 mm in diameter. It is maroon in color.

Habitat

C. 1usitanica is an exotic species that has become naturalized in Costa Rica due to its adaptability to the soil and climate of the country. The optimum altitudinal belt for cypress in Costa Rica is from 800 to 3000 m but it can grow at higher or lower altitudes.

1/ The description of this and following tree species was taken from Camacho (1981).

Geographical range

Cypress is native to Mexico and Guatemala. In the Americas it has been artificially propagated from Mexico to Argentina。 Spain, Portugal, East Africa, and Oceania are important regions where the species has become an important plantation tree.

Climatic range

Cypress grows in zones with precipitation between 1000 to $4000 \mathrm{~mm} /$ year, but can survive long periods of drought. The mean annual temperatures in its habitat are generally greater than $12{ }^{\circ} \mathrm{C}$ with occasional frost or critically low tempereratures. The tree is well adapted to the Lower Montane Het Forest and Premontane Wet Forest life zones formations (Holdridge, 1969).

Edaphic range

This species prefers deep soils with good drainage, and high organic matter content. It can adapt to eroded soils but growth will be less than optimum.

Silvicultural characteristics

Cypress is highly demanding of light, but can tolerate some shade. During its first two years it does not survive long periods of dryness. Little is known about the development of this tree in natural conditions; however, our limited data for Costa Rica shows good growth as an introduced species (Camacho, 1981).

Cypress trees have been used for shelterbelts. The wood can be used for rural construction, parquet, domestic articles, telephone poles, railroad ties, and more resently as a decorative wood.

Silvics of Gmelina arborea Roxb.

The common name of G. arborea in Costa Rica is melina and it belongs to the family Verbenaceae.

Species description

G. arborea is a deciduous tree that can grow quite large. The trunk is short if grown in open spaces. In plantations it is straight and without defects. The leaves are opposite, from 10 to 25 cm long and 5 to 15 cm wide, and ovate in form. The flowers are yellow and grouped in terminal panicles. The fruit is a yellow ovoid drupe, smooth when ripe and approximately 2 to 3 cm in diameter.

Habitat

Gmelina was introduced in Costa Rica by the Instituto Interamericano de Ciencias Agricolas (IICA) in the years 1967-1968, forming part of a program of adaptability and provenance trials. It grows in lowlands of the country to a maximum of 600 m where the species has demonstrated very rapid growth and an adaptability to a variety of soils.

Geographical range

The species is distributed geographically throughout India, Nepal, East Pakistan, Thailana, Laos, Cambodia, Vietnam and the southem provinces of China.

Climatic range

In its natural habitat, Gmelina grows best under temperatures between $16^{\circ} \mathrm{C}$ and $38^{\circ} \mathrm{C}$ with the presence of a dry season and precipitation between 1800 and 2000 mm/year.

Edaphic range

Gmelina prefers deep, fertile and moist soils with good drainage. It tolerates alkaline and light acid soils. The species does not adapt well to shallow soil or stony sub-soils, nor to very acid soils.

Silvicultural characteristics

Gmelina is one of the exotic species that has been demonstrated to be a fast growing tree requiring very short rotations. It does not tolerate shade and requires a lot of light for its ideal development. The species has been classified as transitory in the hygrophytic forest, invading from open areas where it grows very rapidily. The tree is resistant to fire; however, it is recommended that the trees be protected from it.

Use
The tree has been utilized as a nurse crop for the caoba
(Swietenia macrophy11a). Also plantations have been managed by the Taungya System (cropping during the early stage of the tree plantation). The wood is utilized for construction in general, plywood, particleboard, and shipbuilding. It is considered an important species for the production of pulp and paper. Also, many medicinal uses of this tree are reported in its area of natural distribution.

Silvics of Pinus caribaea var. hondurensis Barr. \& Golf.

The tree is commonly named caribbean pine and belongs to the Pinaeae family.

Species description

The tree can reach large dimensions, is cylindric and straight or lightly curved. The leaves are grouped in fascicles of 3 to 4 needles, their color is green-yellow, 5 to 30 cm long and 1 to 1.5 man wide. The female flowers are produced in small tenued cones, alone or grouped. The fruit is a greyish cone, brown or brown-red, with a length of 3 to 14 cm and from 3 to 5 cm wide.

Habitat

This species is naturalized, with a very wide range of distribution in Costa Rica, extending from the Atlantic Zone to the Pacific Zone, and from sea level to an altitude of 900 m . Camacho (1981) reported that it does well also at $1100-1200 \mathrm{~m}$ of elevation.

Caribbean pine is naturally distributed in Bahamas Islands, Cuba, and the Caribbean Coast from Honduras to Nicaragua.

Climatic range

The required mean annual temperature is about $25^{\circ} \mathrm{C}$, ranging from $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$. The necessary precipitation ranges between 500 to $1000 \mathrm{~mm} /$ year. In its place of origin, the precipitation ranges between 500 to $3500 \mathrm{~mm} /$ year, requiring a pronounced dry season and an absence of frost.

Edaphic range

This tree grows in a wide variety of soils from poor to fertile soils, from soils in the coasts to soils in the mountains where it usually shows better growth. The species can grow in sandy, infertile alluvial soils, as well as in deep granitic soils. Good soil drainage favors the growth of this tree.

Silvicultural characteristics

In general the species can adapt well to new sites and grow rapidly. Wind may affect the plantations, bending and breaking the trums, which is a very common problem in windy areas.

Use

This tree is used as firewood, for telephone poles, wood for general construction, furniture, parquet, disinfectants, resins, plywood, particleboard and also in the pulp and paper industry.

This tree is popularly named teak and belongs to the Verbenaceae family. In Costa Rica it is named teca.

Species description
Teak can reach a large size. It is a deciduous tree with a clear cylindrical trunk. The large leaves are opposite, elipticovalate and channeled.

Habitat

The date of introduction of teak to Costa Rica and its provenance is not known. However, the species is growing well on the majority of sites where it has been planted. The plantations in the Atlantic Zone (moist environment) are doing as well as in the Pacific Zone (more drier environment). All these forest plots are located below 600 m of elevation.

Geographical range

It is distributed in South-east Asia (India, Burma, Thailand, Laos and Indonesia) from sea level to 1000 m.

Climatic range

The tree is limited to areas with a range of precipitation from 500 to $5000 \mathrm{~mm} /$ year. Its optimum growth occurs where rainfall is between 1500 to 2000 mp/year. The species is adaptable to climates ranging from wet to dry, with a dry season of 3 to 5
months. The mean annual temperature for optimum growth is between $22^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$, however it is adapted to a wider range that goes from $2{ }^{\circ} \mathrm{C}$ to $36{ }^{\circ} \mathrm{C}$. It does not tolerate frost, which will kill it. In general, teak reach its best growth in warm, slightly wet tropical climates.

Edaphic range

Teak prefers fertile, deep, well drained soils. Since it does not tolerate extremely wet soils it does not grow well in heavy clay soils, but will generally grow in a great variety of geological formations.

Silvicultural characteristics

Teak is an extremely heliophytic species that does not tolerate shade in its first year of growth. Therefore the trees need to be free of weeds. The tree grows fast initially and somewhat slower in later years.

Use

This species is used for construction in general, furniture, bridges, railroad ties, parquet, and is also considered an excellent fuel wood.

Environmental Factors and Effects on Trees Growth

Plant growth is probably controlled by a combination of all environmental factors. However, some factors will exert greater influence than others so that for practical purposes, it is un-
necessary to consider all factors in attempting to predict plant growth. Scott (1969) mentioned that the interactions between plants and environment could be one of several types: 1) The major aspect of growth is influenced by a single factor 2) growth is influenced by a few factors and each is of similar importance 3) a few factors influence growth but the importance of each is different, and 4) growth is influenced by a multitude of factors and the effect of each is different. It is possible to determine which of these various alternatives applies by using the results of a stepwise multiple regression analysis involving plant response and measurements of many environmental factors.

Fritts (1974) working with 127 coniferous tree sites in Western North America found that higher-than-average precipitation most coumonly results in higher-than-average growth, though on cold sites the effects of precipitation during the cooler part of the year are sometimes lacking or inverse. Precfpitation was directly related to growth throughout the entire year for 32% of the sites studied. In the remaining 68% of the sites the effects of precipitation varied from season to season. Temperature was found most commonly inversely related to ring width during autumn, spring, and sumer. Site factors appeared most responsible for variations in the growth response. Aspect appeared to be the most critical, followed by altitude and latitude. The author also mentioned that the median percent of tree growth variance accounted for by climate is approximately 60 to 65%.

Graham et al. (1982) related environmental factors to forest
regeneration on clearcut and partially cut areas managed by the Bureau of Land Management in the Hungry-Pickett area northwest of Grants Pass, Oregon. The multiple regression equations showed that difficulty of regeneration clearcuttings increases with increasing solar radiation, temperature, rock cover, and depth of the soil A horizon. Moreover, difficulty of regeneration of partial cuts increases with surface gravel cover and is related to slope, aspect, and vegetation. In addition, Minore et al. (1982) used multiple regression analysis to relate environmental factors and vegetation to post-harvest forest regeneration in the Applegate area of southwestern Oregon. Optimal environments for regeneration were identified by aspect, slope, elevation, rock cover, and vegetation.

Of a variety of climatic factors evaluated by Gholz (1979), growing season evaporative demand and mean minimum January air temperatures accounted for most of the variation in leaf area, biomass, and net primary production of Pacific Northwest vegetation. The former apparently reflects limitations imposed by a seasonal sumer drought period, and the latter reflects limitations on winter carbon and nutrient accumulation, a major adaptative feature in many evergreen Pacific Northwest ecosystems.

Dry matter production is known to depend on the amount of solar radiation intercepted, which is itself determined by the leaf area of the crop (Biscoe and Gallagher, 1977). Early in the growing season small leaf area indices. cause low radiation interception by the crop and this limits crop growth rate. The rate of leaf area expansion is strongly dependent on temperature,
and cool weather severely limits leaf expansion rate. Periods of warm, bright weather can also limit both the rate of leaf expansion and the final size of the leaves if water stress develops.

The growth of seedlings of six tree species, Betula verrucosa, Populus trichocarpa, Acer pseudoplatanus, Larix leptolepis, Pinus silvestris, and Pinus radiata, was studied by Pollard and Vareing (1968). There appeared to be no clear differences in relative growth rates between broad-leaved and coniferous species as major classes, but there were significant differences within each group during the summer of 1964. The ability to respond to exceptionally favorable weather conditions appeared to be associated with the seasonal pattern of foliage production and, consequently, with leaf age. The annual relative growth rate showed a rapid decline over the three years of the experiment, and the values of relative growth rate at the end of the experiment were rather similar in all six species. The authors concluded that this was mainly due to 1) reduction of interspecific differences in sumer growth rates of deciduous species, and 2) the compensating production of dry matter during the winter in the two pine species. Apparently the length of the growing season, and possibly factors influencing the seasonal trend in net assimilation rate, assume increasing importance as determinants of growth in woody species with increasing age.

In conjunction with the study of the six species above mentioned, seasonal rates of growth and dry-matter production were examined by Sweet and Wareing (1968b) in second year seedings of

Larix leptolepis, Pinus contorta, and Pinus radiata grown in an unheated glasshouse. The deciduous Larix had a higher rate of production of dry matter than either of the two species of Pinus until the time of leaf fall, and this was accompanied by a greater height and diameter increment. However, between the time of leaf fall in Larix and the end of the growing season, the species of Pinus increased in dry weight by wore than 25 percent, and in consequence, Larix, because of its deciduous habit, lost most of the advantage of its fast growth rate. The authors also reported that the comparison of the two pine species showed that P. radiata, while making nearly 3.5 times as much height increment as \underline{P}. contorta, had only a 45 percent higher dry weight than that species at the end of the experiment.

The effects of a range of thermoperiods and soil temperatures upon growth of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were studied by Lavender and Scott (1972). Plants from varieties glauca and menziesii made maximum growth with soil and air temperatures between $18^{\circ} \mathrm{C}$ and $24^{\circ} \mathrm{C}$ during the twenty weeks of the study. Low soil temperatures greatly reduced growth and hastened dormancy of plants grown under all the thermoperiods tested.

Growth of western hemlock and Douglas-fir seedlings was also studied by Brix (1971) under eleven controlled day-night temperature regimes ranging from $8^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$, and with light intensities of 450 and $1000 \mathrm{ft}-\mathrm{C}$ for 100 days after seed germination. Douglasfir had a broad optimum temperature for growth between $18^{\circ} \mathrm{C}$ and
$24^{\circ} \mathrm{C}$, whereas hemlock had a pronounced optimum at $18^{\circ} \mathrm{C}$, especially at high light. High temperature was more detrimental to growth of hemlock than of Douglas-fir. Low temperature similarly affected the two plants. Moreover, dry matter production of hemlock was considerably lower than that of Douglas-fir for all growing conditions.

Similar to the study mentioned above, Larson (1967) conducted an experiment in which seedlings of Pinus ponderosa Laws. from seed collected in Arizona, Califormia, and South Dakota were grown for six weeks under various combinations of constant air and soil temperatures from $7^{\circ} \mathrm{C}$ to $31^{\circ} \mathrm{C}$, and combinations of day and night temperatures from $7^{\circ} \mathrm{C}$ to $31^{\circ} \mathrm{C}$. Root growth responded more to soil temperature while top growth responded more to air temperature. Roots grew best in $15^{\circ} \mathrm{C}$ air and $23^{\circ} \mathrm{C}$ soil, winile height growth was best in $23^{\circ} \mathrm{C}$ air and $23^{\circ} \mathrm{C}$ soil. Epicotyl length, root penetration, number of lateral roots, and dry weight of roots were correlated with daily degree hours. The author also mentioned that the source of seed had a pronounced effect on final seedling size.

Sweet and Vareing (1968a), reported the results of four experiments in which the parameters of growth were examined in first-year seedlings of Pinus contorta raised from seed of four different geographic provenances. Highly significant differences in net photosynthesis were shown between provenances over a wide range of light intensities, in plants of both twelve and nineteen weeks of age, when measurement was made at a temperature of $20^{\circ} \mathrm{C}$. Leafweight ratios (i.e. the ratio of leaf weight: plant weight) also
differed significantly between provenances, and there was an overall negative correlation between rates of photosynthesis and leafweight ratio. The authors concluded tinat differences in relative growth rate result from differences in the component variables, photosynthetic rate, and leaf-weight ratio.

Another study was conducted in which rate of CO_{2} uptake by Pinus rigida seedlings was found to decrease with age, and the response to changes in light and temperature become less pronounced (Ledig et al. 1977). Growth temperatures had no effect of the photosynthetic temperature optimum, and populations from Quebec, New Jersey, and Tennessee all had tine same temperature optimum and response pattern.

The rate of height growth in Pinus silvestris L. stands throughout Great Britain was examined in relation to site factors by White (1982). The site factors included measured geographical variation, topography, soil chemical and physical variables at two levels, several measures of soil phosphorus status, foliar monoterpenes and estimates of mean values of climatic variables. The conclusion of the author was that the variations in growth over Great Britain are associated mainly with solar radiation, soil texture and soil moisture content. For separate parts of the country the solar radiation term disappears from regression equations.

Slatyer (1982) found that the photosynthetic temperature optimum of field populations of Eucalyptus pauciflora decreases with increasing elevation and, at any one elevation, varies
seasonally in accord with the annual temperature regime.

These studies certainly demonstrate the importance of environmental factors in influencing seedling and forest growth. From reviewing the available literature, however, it is clear that only limited research has been done with tropical species of interest to Costa Rican scientists. This further illustrates the need for this study.

METHODS AND MATERIALS

Establishment of the Study

The project was initiated in 1971. All study plots had 169 trees per plot (81 measure trees), spaced at 2×2 meters. The same methodology and instruments were used in the measurements of all plots (diameter type and Sunto clinometer for the height of the trees) (Figure 1). One of the irregularities of the project is the lack of an initial statistical design (blocks, replication per study area of same species per site) which complicated the interpretation of the data and limited the conclusions which could be drawn. In addition, some areas of the country have not been covered at all (Figure 2).

Various institutions collaborated in the introduction and establishment of forestry species in Costa Rica. Martinez (1981) summarized and measured all the plots older than five years. One year later, Camacho (1981) made a general measurement, analysis, and reorganization of the information including all the plots for Which data were available. Both researchers gathered the available information and interpreted, as a whole, the behavior of the forest species.

As a part of the organizatior of the information, data codes were elaborated; one for each species in the study, and another for the location of the plots (See Appendix 9). This last code

Fig. 1. Graph of a forestry study plot showing its dimensions, the 81 trees measured per plot, and the buffer zone.

refers to the division of the country into seven different zones or forestry districts. Those zones have as a criterion of division natural occurrences (rivers, roads, ridge of mountains, etc.) and climatic similarities. For more details see Martinez (1931). This division of the country made possible the evaluation of the species in each particular growing zone.

These two reports (with the exception of the plots in the Tropical Agronomic Center of Teaching and Research (CATIE), Turrialba) sumarized all the information related to the tests and introduction of forestry species in Costa Rica. For the investigation realized in CATIE, see Combe and Guevals (1979a).

Data Collection and Measurement.

Geographic location

The geographic location of the plots were taken from the archives of the Forestry Department and/or from contour maps of the National Geographic Institute of Costa Rica, (scale 1:5000C) utilizing the coordinates of longitude and latitude expressed in degrees and minutes (See Appendix 10).

Climate

The description of climatic conditions were made using data collected between 1970 and 1980 by the National Meteorological Service. Meteorological stations used were as close as possible to the location of the plot. Table 1 presents the location of type A meteorological stations in Costa Rica. The climatic factors
used in the regression analysis were maximum temperature, minimum temperature, mean temperature, relative humidity, hours of light, radiation, evaporation, precipitation, and the distribution of precipitation (pluvioso, intermediate, and ecosecos). These three later variables also known as moist, mesic, and dry months. The altitude of the plots was another variable used in this regression analysis. For more details see Camacho (1981) page 113 to 115 and also Appendix 10. A detailed description of the variables and units of measurement are recorded in Appendix 7.

Soils

Data from soil analyses used in this study are the same as those reported by Martinez (1981) and also complemented by the data available in the Forestry Investigation Department. The examination was made at three different depths: $0-5 \mathrm{~cm}, 5-20 \mathrm{~cm}$, and $20-40 \mathrm{~cm}$. For each area in the investigation five to seven samples of soil were taken for each depth, depending on the homogeneity of the area (drainage, slope, etc.). Results of the physical characteristics and chemical analysis of soil are surmarized by Camacho (1981) pages 215-222. See also Appendix 8. The soil variables used in the regression analysis were percent sand, silt, and clay by volume, soil pii, organic matter content, carbon, nitrogen, carbon/nitrogen ratio, available phosphorus, calcium, magnesium, potassium, sodium, cation exchange capacity, and base saturation. For the description of these variables and units of

Table 1. Location of type A meteorological stations in Costa Rica。

NAME
$\frac{\text { ELEVATION }}{\text { (meters) }}$
$\begin{array}{lr}\text { Nicoya } & 120 \\ \text { Liberia } & 85\end{array}$
Puntarenas 3
Limon 3
San Jose 1172
F. Baudrit 840

Palmar Sur 16
La Pinera 350
Palmira 2010
C.R. Metodista 600
N. Tronadora 580

La Mola 70
$\begin{array}{lr}\text { Playa Panama } & 3 \\ & 602\end{array}$
Los Diamantes 249
Linda Vista 1400
Pacayas 1735
Cedral 1450
Coliblanco 2200
Volcan Irazu 3400
El Carmen 15
La Guinea
Taboga
La Lola
San Josecito de H 。
Naranjo
Esc. C. Ganaderia
Rio Negro

40
40
40
1450
1100
450
955

LONGITUDE

$85^{\circ} 27^{\prime}$	$10^{\circ} 09^{\prime}$
$85^{\circ} 32^{\prime}$	$10^{\circ} 36^{\prime}$
$84^{\circ} 50^{\prime}$	$09^{\circ} 58^{\prime}$
$83^{\circ} 03^{\prime}$	$10^{\circ} 00^{\prime}$
$84^{\circ} 05^{\prime}$	$09^{\circ} 56^{\prime}$
$84^{\circ} 16^{\prime}$	$10^{\circ} 01^{\prime}$
$83^{\circ} 28^{\prime}$	$08^{\circ} 57^{\prime}$
$83^{\circ} 20^{\prime}$	$09^{\circ} 11^{\prime}$
$84^{\circ} 23^{\prime}$	$10^{\circ} 13^{\prime}$
$84^{\circ} 24^{\prime}$	$10^{\circ} 21^{\prime}$
$84^{\circ} 55^{\prime}$	$10^{\circ} 30^{\prime}$
$83^{\circ} 46^{\prime}$	$10^{\circ} 21^{\prime}$
$85^{\circ} 40^{\prime}$	$10^{\circ} 35^{\prime}$
$83^{\circ} 38^{\prime}$	$09^{\circ} 53^{\prime}$
$83^{\circ} 49^{\prime}$	$10^{\circ} 13^{\prime}$
$83^{\circ} 58^{\prime}$	$09^{\circ} 50^{\prime}$
$83^{\circ} 49^{\prime}$	$09^{\circ} 55^{\prime}$
$83^{\circ} 33^{\prime}$	$09^{\circ} 22^{\prime}$
$83^{\circ} 48^{\prime}$	$09^{\circ} 57^{\prime}$
$83^{\circ} 51^{\prime}$	$09^{\circ} 59^{\prime}$
$83^{\circ} 29^{\prime}$	$10^{\circ} 12^{\prime}$
$85^{\circ} 28^{\prime}$	$10^{\circ} 25^{\prime}$
$85^{\circ} 09^{\prime}$	$10^{\circ} 21^{\prime}$
$83^{\circ} 23^{\prime}$	$10^{\circ} 06^{\prime}$
$84^{\circ} 00^{\prime}$	$10^{\circ} 02^{\prime}$
$84^{\circ} 23^{\prime}$	$10^{\circ} 07^{\prime}$
$84^{\circ} 24^{\prime}$	$09^{\circ} 57^{\prime}$
$82^{\circ} 52^{\prime}$	$08^{\circ} 53^{\prime}$
8	8

measurement see Appendix 7 ,
Table 2 presents the twenty eight variables used in the regression analysis, levels of observation, and the nanes used for the weighted profile values.

Growth Indicators

The growth indicator variables used were volume growth, height, and diameter at breast height (dbh) of the trees. Volume growth was calculated using the formula height growth x dbh growth x age. The volume growth obtained by the above expression is the mean annual increment in volume per tree, because it is calculated from mean annual values of dbh growth and height growth of the trees. It is not the true volume growth, but was used for the practical purpose of these data analyses, and was reported in $m^{3} / h a$. Height of the trees were measured with a Suunto clinometer and reported in meters. Diameter of the trees were measured with a diameter tape and adjusted to the nearest millimeter. These measurements were done including the bark of the trees. For more details see Appendix 7, and Table 2.

Shape of the Plots
The criteria followed for the installation of plots was common for all sites and is described by Gonzales (1979) as follows: :

Spacing of trees: 2 x 2 meters
Initial density : 169 trees per plot (13×13 trees)
Area of the plot: 676 square meters (26×26 meters)

Table 2. Environmental factors and growth indicators used in the statistical analysis. Corresponding level of observation and name used for the weighted soil profile value is also included.

	Independent variables ${ }^{\text {l/ }}$	Variable name	Level of observation	Weighted profile
1	age	age	1	-
2	altitude	alt	1	-
3	maximum temperature	tmax	1	-
4	minimum temperature	tmin	1	-
5	mean temperature	tmean	,	-
6	relative humidity	rhum	1	-
7	light	light	1	-
δ	radiation	rad	1	-
9	precipitation	precip	1	-
10	evaporation	evap	1	-
11	pluvioso (moist)	pluvioso	1	-
12	intermediate	interm	1	-
13	ecosecos (dry)	ecosecos	1	-
14	sand	sand	3	asand
15	silt	silt	3	asilt
16	clay	clay	3	aclay
17	soil pH	ph	3	aph
18	organic matter	mo	3	amo
19	carbon	c	3	ac
20	nitrogen	n	3	an
21	carbon/nitrogen	cani	3	acani
22	phosphorus	P	3	ap
23	calcium	ca	3	aca
24	magnesium	mg	3	amg
25	sodium	na	3	ana
26	potasium	k	3	ak
27	cation-exchange capacity	cec	3	acec
28	base saturation	satb	3	asatb

$1 /$ For the description of the variables and units of measurement see Appendix: 7.

Twenty seven environmental factors (twelve climatic variables and fifteen soil variables) and one age variable were included in the regression analysis.

The first step was to screen out some of these variables which were not fundamental to the analysis (growth relationship), subjected to large measurement errors, or whose effects were similar to another independent variables in the list (Neter and Wasserman, 1974).

Initially, species data were combined and analysed for the whole country. In all the cases the dependent variable was volume growth and two regression models were developed. One of them was generated using the twenty seven environmental factors plus age, while in the second highly correlated independent variables were discarded. This second approach was complemented with the more meaninful biological variables (those variables that have proven to more directly affect the growth of trees or major elements).

Neter and Wasserman (1974) and Snedecor and Cochran (1930) agreed that a stepwise procedure is one of the most convenient methods in multiple regression analyses. I used this method because I expected it to yield a good prediction equation with the least possible number of terms. The process followed here is described by SAS (1982), Helwig (1982), Helwig and Council (1979), and also complemented by the method of multiple regression analysis technique (Neter and Wasserman, 1974; Snedecor and Cochran, 1980).

An analysis of the species by zones was done using the same methods as for the first test. This regression by zones and by species was complemented with a multivariate analysis where Principal Component Analysis was used for the summarization of the data following the methodology reported by Morrison (1967), Mardia et al. (1979), and Johnson and Wichern (1982). Canonical Correlation was also used which has the advantage of allowing other growth indicators, like $d b h$ and height growth to be combined with volume growth in the analysis. The methodology followed in the principal component and canonical correlation is reported by SAS (1982).

RESULTS AND DISCUSSION

Multivariate Analysis

The results of the Principal Component Analysis are reported in Table 3. The overall selection among climatic and soil factors is similar and the number of variables selected for each species range from five for Alnus acuminata to ten for Cupressus lusitanica, Regression analyses were done using the results indicated by Table 3, however, none were significant.

These results of principal component analysis by individual species were used to select the independent environmental variables forming one set of data and the dependent variables dbh, height, and volume growth formed part of the second set of data. These two sets of data were combined through a canonical correlation and the analysis done by individual species. The results obtained from the canonical correlation were difficult to interpret and in some cases did not follow a reasonable pattern. Therefore these results were not utilized in this study.

One of the reasons why the canonical correlation did not give satisfactory results could be the small sample size that was used in the analysis. It is suggested that the relation between number of observations and number of independent variables should be 20:1 (Stafiord, 1983 personal communication). In this case, and based

[^2]Table 3. Independent environmental variables possibly related to tree growth, as determined by Principal Component Analysis, by species and frequency of inclusion for the five tree species included in the analysis.

Tree Species	Cupressus	Alnus	Gmelina	Pinus	Tectona	Frequency
Climatic factors -	precip	precip	-	-	-	2
Soil factors $1 /$	tmed	-	tmed	tmed	-	3
	tmax	-	-	-	-	1
	tmin	tmin	-	-	-	2
	rhum	-	-	rhum	-	2
	pluvioso	-	interm	ecosecos	Interm	4
	-	rad	rad	-	-	2
	-	-	-	-	11ght	1
	asand	as and	-	-	asand	3
	asilt	-	-	-	-	1
	ana	-	ana	ana	ana	4
	ap	ap	ap	ap	ap	5
	-	-	aca	-	-	1
	-	-	-	acec	-	1
	-	-	-	-	asatb	1
	-	-	-	-	amo	1
	-	-	-	acani	acani	2
	-	-	-	aph	-	1
Number of variables selected by species	10	5	6	8	8	

1/ For the description of the environmental factors and units of measurement see Appendix 7 .
on the eight to thirteen independent variables used in the analysis, 160 to 260 observations were needed. The largest sample size available was twenty six observations for Pinus caribaea which is only a fraction of the number suggested. Despite these poor results from the principal component analysis and canonical correlation, I believe that with a larger sample size, these two methods could be useful tools in the interpretation and sumarization of such data.

Multiple Regression Analysis

Tables 4 through 10 sumarize the results of the multiple regression analysis (using MAXR approach) for predicting the growth of Alnus acuminata, Cupressus 1usitanica, Gmelina arborea, Pinus caribaea, and Tectona grandis from various environmental factors:

To look at the "stability" of the individual regression equation and using an analysis of correlation (see Appendix 1 through 5), the best twelve variables were selected and the same criteria, as above, used to compute a second regression equation for each set of data. In most cases there was agreement among the variables selected. In every case the first approach (using the full set of data) gave the highest R^{2} value and usually chose a similar number of independent variables. Appendix 6 sumarizes these results.

Regression Analysis for Alnus acuminata (HBK) 0. Ktze.
A total of eight Alnus growth. plots from througnout Costa Rica

Table 4. Environmental variables included in the regression equations to predict tree growth, by species. Variable selection was based on stepwise MAXR approach.

Species	Alnus	Cupressus	Gmelina	Pinus	Tectona	Frequency
Climatic factors 1/	rhum	-	-	-	-	1
	pluvioso	. -	_	ecosecos	ecosecos	3
	age	age	-	age	age	4
	-	alt	-	d	-	1
	-	-	-	11ght	light	2
	-	-	-	-	evap	1
Soil factors ${ }^{1 /}$	asatb	asatb	-	asatb	-	3
	-	asilt	-	-	aclay	2
	-	-	ap	-		1
	-	-	ana	-	ana	2
	-	-	acani	-	acani	2
	-	-	ak	ak	ak	3
Climatic variables Soil variables Total selected	3	2	0	3	448	
	1	2	4	2		
	4	4	4	5		

1/ For the description of the variables and units of measurement see Appendix 7.

Table 5. Environmental variables included in the regression equations to predict the tree growth, by study species and plot locations. Variable selection based on stepwise MAXR approach.

Species ..		Alnus	Cupressus	Gmelina	Pinus		ctona	Frequency
		Zone Number						
Climatic factors ${ }^{1 /}$	age	7	5	-	1	1	3	5
Soil factors ${ }^{1 /}$	alt	-	5	-	-		-	1
	rad	-	-	-	1		-	1
	Interm	-	-	-	1		-	1
	precip	-	-	-	3		-	1
	tmax	-	-	-	-	1	3	2
	ana	7	-	-	1		3	3
	asilt	-	5	-	1	1	3	4
	acec	-	5	3	3		-	3
	an	-	7	1	-		4	3
	ac	-	-	1	-		-	1
	ap	-	-	4	-		1	2
	amo	-	-	4	-		-	1
	ak	-	-	-	1		-	1
	aph	-	-	-	1		4	2
	amg	-	-	-	13		-	2
	acani	-	-	-	3		-	1
	aca	-	-	-	-	1	3	2
	astb	-	-	-	-		4	1
Zone evaluated Number of variables selected by zone		7	57	$1 \begin{array}{lll}1 & 3 & 4\end{array}$			34	
		2		214		5	53	

1/ For the description of the variables and units of measurement sec Appendix 7 .
were analyzed, with five of these located in zone 7. The results of the analysis of regression are recorded in Table 6 .

The four variables included in the regression model from all eight plots are relative humidity, the number of months with precipitation over 100 mm (pluvioso), age, and the percentage base saturation. The value of $R^{2}(0.85)$ is acceptable but the probability of a larger F value (0.12) is low, which means that the significance probability of the F value is not greater than 0.83 . The lower F value found here could be due to large variation among the sites that cannot be easily explained by the low number of observations used in the regression analysis.

Relative humidity and the months of the year with high precipitation ($>100 \mathrm{~mm}$) are the two variables most closely related to alder growth. A. acuminata is a pioneer tree that needs a lot of light and a high level of soil moisture (Camacho, 1981). This seems to agree with the regression analysis results showing a relationship between the growth of the species and the variable pluvioso.

Relative humidity has a negative regression coefficient with a large effect in the regression equation. In other words, with an increase in relative humidity, there will be an expected decrease in growth. However, some interactions between relative humidity, precipitation, and mean temperature should be reviewed since in some plots the precipitation (3759 m/year) is greater than that generally required for the species, and mean annual temperature $\left(15.2^{\circ} \mathrm{C}\right)$ is lower than that normally suggested for the

Table 6:' Multiple Regreasion Analysis Degulta for Alnus acuminata using atepwise maxr, for data from growth plots throughout the country as well as from an individual zone.

Zone	No. of obs. (a)	Variables in the snalysis (p)	Dependent variable (\hat{X})	```Independent 1/ variable(s) selected and order of entrance```	Estimated regression equation 2/	R^{2}	$\operatorname{Pr}(\mathbf{F}>\hat{\mathbf{F}})$
Throughout							
the country	8	28	volume	rhum pluvioso age	Y=2.27-0.012(age)+0.035(pluvioso)-		
			growth	asatb	0.029 (rhum) +0.0048 (usatb)	0.85	0.1224
7	5	28	volume	ana age	$\widehat{\mathbf{Y}} \mathbf{0 . 0 1 4 - 0 . 0 1 2 (a g e) + 1 . 2 6 (a n a)}$	0.50	0.5046
			growth				

I/ age - Plantation age in years.
pluvioso = Number of months of the year with precipitation greater than 100 allilaeters.
rhum - Man annual relative humidity. Expressed in percent.
asatb - Hean soil profile ($0-40 \mathrm{~cm}$) base saturation. Expresued In percent.
ana - Mean soil profile ($0-40 \mathrm{cmi}$) sodium concentration. Expressed in williequivalents per 100 grams of soil.
2/ $\widehat{Y}=$ Man tree growhincrement in $\mathrm{m}^{\mathbf{3}} / \mathrm{yr}$.
species. There is also the possibility that on some plots the soil and atmospheric water is excessive, so that growing conditions improve when the relative humidity decreases. Similar results as these above mentioned were found for El Verde forest in Puerto Rico (Odun, 1970). This author argued that high relative humidity decreased nutrient uptake (because it resulted in reduced evapotranspiration) and therefore he concluded that trees grew better where relative humidity was low. Again, a greater sample size will allow us to have a better understanding of the species responses, as might additional information on such things as soil drainage.

The variable age has a negative coefficient of regression which seems to indicate that the species has already reached its maximum point in the mean annual growth increment curve. That is, the mean annual increment of the plots analyzed will probably decrease as the trees grow older. Range for age of the trees is presented in Appendix 1.

Percent base saturation is positively related to the growth of A. acuminata. This is consistent with the presence of the variable sodium in the regression equation of zone 7. This consistency between regression equations could be due to a high correlation between base saturation and the exchangeable bases (calcium, magnesium, potassium, and sodium): (see Appendix 1). This is assumed because the element sodium has not been found to directly affect the growth of trees unless a deficiency of potassium exists (Lyon et al. 1959). Low significance (probability) of the
regression model, and the small sample size, suggests the future need for a revision of this regression model. Further study of the interaction between sodium and other exchangeable bases is also needed.

The regression equation for zone 7 was determined for the purpose of comparing the behavior of the species throughout the country with that of a specific zone. However, given the significance of the F value, the validity of such a model is questionable.

The use of a second approach, analysis based on the reduced set of data, did not help in the testing of the stability of the individual regression equation. The only variable that entered the regression model in each case was age (see Appendix 6a). The other two variables that showed some overlap were percentage base saturation in the regression model for the country and cation-exchange capacity in the second regression equation of zone 7.

No major details of Alnus acuminata have been studied, and the studies found in the literature (Holdridge, 1951; Alvarez, 1956; Budowski, 1957; and Combe, 1979b) only give a general description of the behavior of A. acuminata in Costa Rica.

It is well known, especially to most dairy farmers in the Central Valley of Costa Rica, that Alnus acuminata is a fast growing tree, adapted to most of the soils of the area. Decause of its nitrogen-fixing characteristic the pasture grasses also grow as well or better beneath a stand of Alnus than in the open.

Since 1922 this tree has been a by-product for the dairy farms in elevations above 1500 meters. The recommendation is that we
gather more information to make possible the formulation of site index curves and ratings for the widespread reforestation of this species in the Central Valley of Costa Rica.

Regression Analysis for Cupressus lusitanica Mill.

Table 7 sumarizes the results of the regression analysis for C. Iusitanica. Thirteen plots were evaluated throughout the country, nine plots in zone 5, and four plots in zone 7.

Three out of four of the variables present in the regression equation for the country are included in the regression model for zone 5. Two minor differences can be identified. One is in the order of entrance of the variables age and silt into the regression equation. The other is the fourth variable entered into the equation. For the regression model of the councry percentage base saturation is the variable included and is substituted by cationexchange capacity in the regression equation of zone 5.

For zone 7, only the variable nitrogen enteres into the regression equation. The R^{2} value (0.99) is quite high and probability of a larger F value (0.0023) is low. However, the limited number of observations in the zone limits the drawing of strong conclusions.

Soil in the Central Valley of Costa Rica (zone 7) originated from volcanic ash. The regression analysis results for this zone agree with those of Fassbender and Tschinkel (1974) for plantations of C. lusitanica on volcanic ash soil of Colombia. The best equation found by the authors explained 52% of the

Table 7. Multiple Regression Analysis Resulte for Cupressus lusitanica ualing stepwise maxr, for data from growth plote throughout the comitry as wall as from individual zones.

zone	No. of oba. (n)	Variablea In the analyais (p)	Itcpendente variable ($\hat{\mathrm{Y}})$	Independent 1/ variable(s) aelected and order of encrance	Escimated regreaaion equation 2/	R^{2}	$\operatorname{Pr}(\mathrm{F} \boldsymbol{>} \boldsymbol{\hat { F }})$
Throughout							
the country	13	28	volume	asilt age alt asatb	$\widehat{\mathrm{Y}}=0.58+0.013($ age) -0.000064(alt) +		
			growth		0.021 (ayilt) +0.0018 (asatb)	0.99	0.0001
5	9	28	volume	age asilt alt acec	$\widehat{\mathrm{Y}}=0.40 \cdot+0.0093(\mathrm{age})-0.0001(\mathrm{alt})+$		
			growth		0.024(as11t)-0.0027(acec)	0.99	0.0001
7	4	28	volume	an	$\widehat{\mathbf{Y}} \mathbf{4 . 5 7 + 2 2 . 1 5 (a n)}$	0.99	0.0023
			growth				

If age - Plantation age in yeara.
alt - Elevation above mean sea level in meters.
asilt - Hean soil profile ($0-40 \mathrm{~cm}$) alit content in percent.
an - Mean soil profile ($0-40 \mathrm{~cm}$) nitrogen content in percent.
asatb $=$ Mean soll profile ($0-40 \mathrm{~cm}$) base saturation.
Expreswed in parcent.
acec - Hean soll profile ($0-40 \mathrm{~cm}$) cation exchange capacity, in anca/ 100 g of soil.
21
$\widehat{Y}=$ Meall tree growth fincrement in m^{3} / yr.
variation among the sites, and included aluminum phosphates, exchangeable potassium, and exchangeable magnesium as independent variables. Fassbender and Tschinkel (1974) also mentioned that the importance of aluminum phosphates complemented the results of previous investigations which snowed that growth of cypress is limited primarily by deficiencies of phosphorus and nitrogen. Based on the correlation analysis the authors concluded that only a few soil cinaracteristics regulate the growth of cypress in the soils studied.

Volcanic ash soils of Medellin, Colombia were studied by Valle (1976). Highly significant correlations were found between site quality and the nitrogen mineralized in fresh soils, which explained 58% of the variation in cypress growth. These resuits also agree with what was found for zone 7 in the present analysis.

For the regression analysis using data from throughout the country, the variables selected were silt, age, altitude, and percentage base saturation. The negative regression coefficient of the variable altitude seems to indicate that the yield of cypress will decrease with an increase in elevation. However, altitude typically has a direct effect on temperature and it is very possible that an interaction of the two variables is occurring. The range of elevation of cypress included in the analysis is from 1100 to 2620 meters and its altitudinal range reported in the literature is from 800 to 3000 meters. A possible explanation of this negative effect of elevation on the growth of C. Iusitanica could relate to the effect of temperature. It was mentioned by

Canacho (1981) that cypress grows better where temperatures are greater than $12^{\circ} \mathrm{C}$. Over the range of minimum temperature of the plot evaluated (Appendix 2); the mean annual temperature can drop to $5.4^{\circ} \mathrm{C}$, which could negatively affect the growth of the species. Odun (1970) reasoned that relative humidity increased with elevation, and had a depressing effect on growth. This later result could be another possible explanation of the regression analysis result for this species.

Cypress prefers uncompacted deep soils, with good drainage, and with high organic matter content (Camacho, 1981). This observation seems to agree with the presence of the variable silt in the regression equation for the country as, with the exception of organic matter, these conditions can be fulfilled by a soil with high percentage of silt, or one that is balanced among sand, silt and clay. Appendix 2 shows that the mean content of silt for the plots evaluated is 32%, and the addition of the means of sand and silt is greater than 79% of the total volume of the soil. This is a loam, which is generally a very desirable soil texture for most plant species.

The percentage base saturation of the soil is defined as the degree to which all cation exchange sites of the soil are occupied by bases such as calcium, magnesium, potassium, and sodium (Pritchett, 1979), and can be used as an indicator of soil fertility. Percentage base saturation of these soils may be related to cation exchange capacity (CEC). This is not a general relationship, but in this analysis the presence of base saturation in the regression equation of the country could be related to the presence of

CEC in the regression model of zone 5. It is also known that, in general, CEC is highly related to the content of organic matter of the soil. The higher the organic matter content, the greater the value of cation exchange capacity (Hausenbuiller, 1972).

Martinez (1981) conducted a regression analysis for cypress growing in Costa Rica. Thirteen plots were evaluated, all older than five years. A total of eight independent variables were included in the analysis: soil organic matter content ($0-5 \mathrm{~m}$ depth), pluvioso, interm, ecosecos, altitude, and the texture of the soil from the $0-5 \mathrm{~cm}, 5-20 \mathrm{~cm}$, and $20-40 \mathrm{~cm}$ depths. The dependent variables used were $d b h$ or height. The author found that the variables related to the diameter growth of the species were the content of organic matter from the $0-5 \mathrm{~cm}$ depth, the carbon/nitrogen ratio at the same depth, the number of months of the year with precipitation greater than 100 millimeters (pluvioso months), and soil textures from $5-20 \mathrm{~cm}$, and $20-40 \mathrm{~cm}$ depths. The regression equation using the height of the trees as a response variable was not significant.

In this study I have used the same number of cypress plots and similar soil chemistry factors as Martinez. The only difference with this study is that Martinez made his measurements in 1980 and I have used data recollected in 1981. Another difference between the analysis done by Martinez and the one reported here is the number of independent variables, which was here increased from eight to twenty eight. This allows for some additional variables to enter the regression equation, possibly giving clearer indication
of how these variables are related to growth of this species,
The regression equations developed here cannot be directly compared with those of Martinez (1931) since he used mean annual diameter increment as the dependent variable. My analysis also included numerous other independent variables. Martinez used only soil chemistry values from the $0-5 \mathrm{~cm}$ depth, whereas I have used the weighted profile value from the $0-40 \mathrm{~cm} \mathrm{depth}$. Finally, Martinez used 10 different soil texture groups, and I used the percentages of sand, silt, and clay by volume. However, it is worth noting that a soil texture variable (silt) is significant in two of my models, as well as those of Martinez.

Different provenances of C. Iusitanica were studied by Soares and Rosero (1973) in 3 localities of Costa Rica. The analysis of variance following the nested scheme, used as variables dbh, total height, stem forn, concentricity, bark thickness, and number of branches per tree. The correlation analysis carried out between these tree measurements and the site characteristics (altitude, precipitation, mean temperature, slope, and type of drainage) indicated that these characteristics were responsible for 47 and 33\% of the total variation in height and dbh, respectively.

The general interpretation of the regression analysis is that the growth of cypress slightly decreases with increasing elevation. Cypress responds better in soils with high content of silt. In the Central Valley (zone 7) growth of the species is strongly related to available nitrogen.

Regression Analysis for Gmelina arborea Roxb.

Gmelina is currently being grown in three different zones of Costa Rica. Five plots were evaluated in zone 1 , three plots in zone 3, and four plots in zone 4; for a total of twelve plots analyzed throughout the country.

For the equations developed, the values of R^{2} are $n i g h$ and the significances of the F values are above 95% (Table 8). These four regression models indicate that only the soil chemistry factors are related to growth. This species prefers deep moist soils, with good drainage and nutrients (Camacho, 1981). It is also known that G. arborea tolerates from alkaline to light acid soils. This seems to agree with the general results of the regression analysis indicating that soil fertility is the factor most nearly related to the growth of the species.

The above results also agree with those obtained by Golfari (1972) in the equatorial region of Brazil. The climate of this region is tropical, with annual precipitation of 2000 mm , and a dry period of four months. The preliminary results indicate that the species is very sensitive to the soil conditions, preferring porous, deep and fertile soils.

The number of independent variables included in the regression model for plots from throughout the country is four, two for the model of zone 1 and zone 4, and only one variable for the regression

Table 8. Multiple Regression Analysis for Cmelina arborea using stepwise MAXR, for data
from growth plots throughout the country as well as from individual zones.

model in zone 3. The overlap between the regression model is significant. The variable acani (carbon/nitrogen ratio) is present in the regression model for the country. As expected, it compares well with the presence of the variables carbon and nitrogen in the model of zone 1 . With respect to other soil chemistry variables, a possible association could exist between sodium and potassium (exchangeable bases) present in the regression model for the country and the variable cation-exchange capacity present in the regression equation of zone 3 .

Available phosphorus is present in the regression model for the country and zone 4. In addition, the agreement between the regression equation becomes stronger if the correlation between the variables carbon, nitrogen, and organic matter is taken into consideration, as shown in the matrix of correlation for this species in Appendix 3.

Ojo and Jackson (1973) reported that Gmelina is very sensitive to differences in soil fertility, particularly to deficiencies in nitrogen. In some cases there was a response to nitrogen only when phosphate was also applied. The authors also found that potassium had little effect on the growth of this species.

In general the regression analyses done for the species in Costa Rtca agree with those done in Brazil, Nigeria, and Nicaragua (Gomez, 1981); however, the presence of sodium and potassium in the regression equation for plots from throughout the country is difficult to explain. Sodium, as previously mentioned, has not
been found essential in the growth of trees and the significance of potassium contradicts the findings of Ojo and Jackson (1973). Interaction between the exchangeable bases may be responsible for the inclusion of these two variables in the regression model, a possibility that should be studied.

The second analysis done to test the "stability" of the regression models also showed the great influence that soil fertility factors have on the growth of G. arborea (Appendix 6c.)

For the regression analysis done by Martinez (1981) for Gmelina in Costa Rica, nine independent variables, were included: soil organic matter content (0-5 cm depth), the carbon/nitrogen ratio (0-5 cm depth), the distribution of the precipitation (pluvioso, interm, and ecosecos), altitude of the plots, and the soil texture from the $0-5 \mathrm{~cm}, 5-20 \mathrm{~cm}$, and $20-40 \mathrm{~cm}$ depths. The response variable that he used was the dbh of the trees. The variables that Martinez found to be most strongly related to the growth in diameter of the species were the soll organic matter content which entered only one of my regressions, and the variable interm (number of months with values of precipitation ranging from 30-100 mim), which did not appear at all in my regressions.

The regression equation developed by Martinez (1981) showed an R^{2} value of 0.77 and was significant at the 1% level. The smallest value of R^{2} reported in Table 8 is 0.95 and the lowest significance level, 5%. However, agreement between this one and a regression model computed by Martinez (1981) is minimal.

The general observation that can be draw from my regression
analysis and from the experiences in other countries, is that Gmelina requires fertile soils with good physical properties for optimum growth. However, this species is growing satisfactorily in all the areas below 500 meters of elevation of Costa Rica, and in the case of Nicaragua, it was reported by Gomez (1981) that this species is growing well even in areas with a six month dry season.

These characteristics of Gmelina arborea make it a reasonable choice for use in reforestation projects for the tropic low-lands.

Regression Analysis for Pinus caribaea var. hondurensis Barr. \& Golf.
Caribbean pine is a very popular plantation species in Costa Rica and is currently growing well even at 1200 meters of elevation. Table 9 presents the regression models for the plantations. Twenty six plots were evaluated for the country, fourteen plots in zone 1 , and eight plots in zone 3.

The variables selected for the regression model for data from througiout the country are potassium, percentage base saturation, the distribution of the precipitation (ecosecos or dry months), light, and age. The R^{2} value (0.75) indicates a relatively good relationship, and the significance of the F value ($\mathrm{P}<0.0001$) is very high. However, the regression models for zones 1 and 3 have better values of $\mathrm{R}^{2}(0.99)$ and F values comparable to that for the regression model from throughout the country. Various factors could contribute to the strong values of R^{2} and F test. White (1932) found for P. silvestris in Great Britain that the variation in climatic factors within zezes was smaller than for the country.

Tale 9. Multiple Regression Analyaio Reaults for Plaus caribaca using stepwise MaXR, for data from growth plots throughout the country as well as individual zones.

The agreement among the regression models is high, not only because some of the variables brought into the models are the same, but because the variables in one model are strongly related to the other variables selected. An example is the case of variables ecosecos and interm. These variables refer to the amount and distribution of precipitation (dry and mesic months, respectively). Another example is the presence of the variable potassium and percentage base saturation in the regression model of the country, potassium, magnesium, and sodium in the regression model of zone 1 , and the variable cation exchange capacity in the regression model of zone 3 .

In the analysis of data for all of the growth plots the variables ecosecos and percentage base saturation entered the regression equation with negative coefficients. As previously mentioned, the variable ecosecos indicates the distribution of the precipitation, specifically the number of months of the year in which the precipitation is less than 30 millimeters. Based on the negative coefficient of regression of the variable ecosecos, it can be assumed that the growth of \underline{P}. caribaea will be unfavorably affected by extended periods of dryness. It was mentioned by Camacho (1981) that the species in its natural habitat could still grows in areas with only 500 millimeters of precipitation per year. This does not contradict the results of the regression analysis for caribbean pine. Most pines are more drought tolerant than other trees, but their growth is still better when they get more water. In the case of Costa Rica, the best growth of the species is at sites with

2000-3000 millimeters of precipitation, and, as will be disscussed later, the regression analysis showed that the volume growth of Pinus would be favored by intermediate precipitation. This agrees with the results of the six year-old plantings of caribbean pine in Rhodesia, which showed it to be fast growing in the high rainfall (over 1300 mer annum) areas of the country at altitudes below 1200 meters (Barnes et a1. 1977)

An interesting situation can be observed in Table 9 in relation to the variable precipitation and its distribution (interm and ecosecos). For the regression model of the country, the variable ecosecos is negatively related to the growth of Pinus. For the regression model of zone 3, a similar behavior is displayed by the variable precipitation, which seems to indicate that the species will decrease in growth with an increase in precipitation. The presence of the variable interm with a very strong positive coefficient of regression for zone 2 reinforces the expected influence of precipitation and its distribution on the growth of P. caribaea. That is, the species seems to prefer a balance between extremely wet and dry conditions.

It is also known that Pinus caribaea grows naturally in a wide variety of soils, ranging from poor soils to fertile soils, from coastal to soils in the mountains. It also grows in sandy and infertile soil as well as: in deep granitic soils with good drainage (Camacho, 1981). The results obtained in the three regression models agree to a certain degree with this. The percentage base saturation in the regression model for the country
and cation-exchange capacity in the regression model of zone 3 have a negative coefficient of regression. However, the cations magnesium, sodium, and potassium show a strong relationship with the growth of Pinus in zone 1 . This also agrees to a certain degree with the preliminary trials results in Malaysia. P. Caribaea plots used in the afforestation of temuda areas (areas which have been repeatedly subjected to shifting cultivation) showed nutrient deficiencies (Fahlman, 1976). Fertilizer application to the plots (nitrogen, phosphorus, potassium, and boron) were suggested by the author.

The variable soil pH entered the regression equation of zone 3 with a high regression coefficient. Studies of this area have shown that most of the soils are clayey soils with a high content of bauxite (a clayey substance that is the chief ore of aluminum) (Flores-Silva, 1920) and also, with low values of soil pH. The interpretation of the regression analysis for this zone is that the low values of soil pH limit the growth of this species. The future addition of more information will allow the drawing of stronger conclusions in relation to the effect of soil pH on growth of caribbean pine in Costa Rica.

Another overlap between regression models is the variables age and light in the regression model for the country, and variables age and radiation in the regression model of zone 1 . A similar behavior was reported by White (1982) for Pinus silvestris in Great Britain, where variations in growth were associated mainly with solar radiation, soil texture, and soil moisture content.

The presence of variables light and radiation in the regression model for the country and zone 1 , indicates that the species grows better under open light conditions or areas with greater number of hours of sunshine.

The variable age is important in the regression models because the range varies widely for the plots of this species. In the case of P. caribaea the variable is positively correlated with growth which may indicate that the growth in the plots has not reached the maximum point in its mean annual increment curve.

The greatest number of observations analyzed in this study was for \underline{P}. caribaea, not only throughout the country but also by zones. For example, the number of plots included for zone 1 is larger than the total number of plots analyzed for Alnus, Cupressus and Gmelina. This should provide stronger results and more stable regression models. This can be observed in Appendix $6 d$ where the use of two different approaches gives similar regression models.

Martinez (1981) found that the factor that was most closely related to the diameter and height growth of \underline{P}. caribaea was the number of months of the year with precipitation greater than 100 m (pluvioso). Eight soil variables included in his analysis were pH , organic matter content, carbon/nitrogen ratio, available phosphorus, Cation exchange capacity (all of them from $0-5 \mathrm{~cm}$ depth) texture at three different levels $0-5 \mathrm{~cm}, 5-10 \mathrm{~cm}$, and the $20-40 \mathrm{~cm}$ depth. Two other variables were the distribution of the precipitation (pluvioso, interm and ecosecos) and altitude of the plots.

The three regression equations presented in Table 9 agree to
certain degree with the findings of Martinez (1981). That is, the variable precipitation and those variables related to its distribution are present in the model from throughout the country and the zone 1 model as well. However, in the present study it was determined that more variables than those associated with precipitation are related to the growth of this species.

The \mathbb{R}^{2} value reported by Martinez (1981) is 0.31 for the regression equation that used the mean annual increment in diameter as the response variable, and 0.30 when height was used as the dependent variable. The smallest value of R^{2} reported in the present study is 0.75 for the regression model for the country, and included five variables (table 9). The regression models for zones 1 and 3 had an R^{2} of 0.99 and very high significance.

A study conducted by Brito et al. (1975) in Venezuela showed that soil texture and its distribution in the profile, as well as soil drainage (Brito et al. 1975; Alterna, 1971) were the most important parameters for the growth of \underline{P}. caribaea. However, soil texture was an important factor only for the regression model of zone 1 (variable sand).

The general observation of my regression analysis is that precipitation and its distribution through the years, the chemistry of the soil (specifically the exchangeable bases), and an energy factor (number of hours of sunshine and radiation received or interaction of these two variables) are the factors most closely related to the growth of caribbean pine in Costa Rica.

Regression Analysis for Tectona grandis L.

Table 10 sumbarizes the results of the regression analysis for teak. Twenty one plots from throughout the country were evaluated and these were distributed as follows: seven plots in zone 1 , eight in zone 3, and six plots in zone 4.

A review of Table 10 shows that climatic and soil chemistry factors are strongly related to growth of this species, with soil factors being particularly significant.

The regression equation for data from throughout the country indicates a balance between climatic and soil factors. Three climatic and five soil variables are present in the models. For the other three regression models, soil variables dominate the regression equation.

The agreement among the variables in the regression models is high, both directly and indirectly. However, the inclusion of a few new variables was also part of the regression analysis results for T. grandis.

The range of precipitation for this species is between 300 and $5000 \mathrm{~mm} /$ year. However its best growth is between 1500 and $2000 \mathrm{~mm} /$ year (Camacho, 1981). This optimum precipitation is only reached In the driest part of Costa Rica, which is zone 4 in the study. This agrees with the regression analysis results of zone 4, which show only soil factors in the regression equation. It is possible, therefore, that the climatic factors are not limiting the growth of teak within this particular region.

Table 10. Hultiple Rugreasion Analysia for Tectona grandis uaing stepulee baxa, for data frow growth plots throughout the comitry as well as lidelvidial zones.

These results agree with the results of Yadab and Sharma (1973) for the region of Madhya Pradesh, India, where the climatic conditions as well as the soil calcium content were found to be very significant in the natural distribution of teak in the area. However, when the mean annual rainfall of the areas studied were in the range of 1400 to $1500 \mathrm{~mm} /$ year, climatic factors assumed lesser importance and the edaphic factors appear to be the greater value in these particular areas.

Also related to the above results is the presence of the variable ecosecos (dry months) which shows a very strong coefficient in the regression model for the country. This suggests that the species is well adapted to dry areas for a period of three to five months, which is also what was mentioned by Camacho (1981). Using Appendix 5 it is possible to determine that the mean period of dryness for the plots evaluated is less than 1.5 months. For zones 1 and 3 , where the majority of plots are located, there are only two dry months in the year. Teak, thus appears to grow best with moderate precipitation (1500-2000 mm/year), and a period of dryness lasting from 3 to 5 months.

The best growth temperature for teak is between $22^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ (Camacho, 1981). The mean annual temperature for the plots analyzed is $24.7^{\circ} \mathrm{C}$, and the values of maximum and minimum temperature are still within the optimum range reported for the species. It was therefore surprising that the variables maximum and mean temperature were included in the regression model of zone 1 , and zone 3 , with a negative regression coefficient. Results like this
should be reviewed especially if more information is available for the analysis.

Another noticeable trend is the presence of exchangeable bases (sodium, potassium, and calcium) and the percentage base saturation in the regression models. As mentioned, the occurrence of teak in the south-west region of Madhya Pradesh is favored by a higher exchangeable calcium level under drier conditions (Yadab and Sharma, 1973).

Variables phosphorus and nitrogen in the regression model of zone 1 and zone 4, respectively, also have a strong regression coefficient. The significance of these variables is consistent with the general observation that this species responds well in fertile soils. Moreover, this also agrees with the results obtained for this species in India and Nigeria (0 jo, 1973). T. grandis in India showed responses to ammonium sulphate, superphosphate, or a combination of the two. For early growth stages of teak in Nigeria it was found to respond to superphosphate, often accompanied by a nitrogen-phosphorus interaction.

A multiple regression analysis of the growth of I. grandis was done by Martinez (1981) using twelve environmental factors. These twelve variables are the same mentioned for the analysis of \underline{P}. Caribaea: He found that the variables most strongly associated with growth in diameter were soil organic matter from the $0-5 \mathrm{~cm}$ depth, soil cation-exchange capacity from the $0-5 \mathrm{~cm}$ depth, the distribution of precipitation (mesic months), and soil texture in the $5-40 \mathrm{~cm}$ depth. For height growth only soil texture from $5-40 \mathrm{~cm}$
was found significant.
The agreement between my regression models and that of Martinez is minimal. The R^{2} value reported by Martinez, using the mean annual diameter increment as the dependent variable is 0.79 , and 0.59 using the mean annual height increment. The smallest R^{2} value shown in Table 10 is 0.78 for the regression model of the country which uses the mean annual increment in volume as the dependent variable. The regression analysis done by Martinez (1981) was based on fewer environmental factors than used here, and those were the variables more highly correlated between themselves. In addition, he used mean annual increments in diameter and height of the trees as the dependent variables, while I selected the mean annual increment in volume as the dependent variable.

The general observation that can be drawn from the regression analysis for this species is that soil texture and exchangeable bases are the factors most closely related to the behavior of the teak in Costa Rica. More data would possibly reduce the number of independent variables entered into the regression model or increase the overlap between the different regression models for this species in the zones as well as in the country as a whole.

General Observations from the Regression Analysis

Growth curves for the five tree species analysed in this study were included in Camacho's (1981) study. These curves give a graphical representation of the growth variation within and between zones (see Figures 3 to 11 in Appendix 11). Some of
these curves, as in the case of Figure 11 , show a large variation in tree growth in a given zone. Moreover, the comparison of Figures 10 and 11 seems to indicate that the growth variation within zone 3 is greater than between zones 1 and 3 . A possible explanation of the above results is that soil characteristics vary greatly within zone 3, and because of this, teak is responding to changes in soil properties. This is in agreement to the general regression analysis results of my study, in which the soil factors were more frequently entered into the regression models than the other variables.

The regression analysis produced useful equations for predicting the growth of trees of interest in Costa Rica. It yielded many statistically significant relationships (e.g., Table 4), and the overall number of environmental factors was reduced from twenty eight to twelve for the analysis of data from the entire country. For the analyses by zones and by species, nineteen variables were found to affect the growth of these five species (see Table 5). However, the number of enviromental factors that remained in the regression equation for individual species was reduced to four for Alnus, Cupressus, and Gmelina, five for Pinus, and eight for Tectona. The values of R^{2} for the regression equations ranged from 0.75 for P. caribaea to 0.99 for C. Iusitanica. In the regression analysis by zones, the number of environmental factors that remained in the regression equation was similar as those for the country, however, the selection of a lower number of variables was also frequent for species Alnus, Cupressus, and Gmelina.

The variables selected for the regression models of the country were not necessarily the same as those for specific zones. There is no reason to expect the analysis for the country to select the same variables that were selected in the analysis of a specific zone. The variation of any given environmental variable within a zone is likely to be quite different than within the country. For example, in a zone with uniformly high precipitation, factors other than moisture (nutrients, soil texture, etc.) limit growth; whereas for the country as a whole, differences in precipitation may be the dominant factor influencing growth.

The reduction in the number of variables selected in the analysis by zones (compared to the analysis for the country), plus a noticeable increase in R^{2} indicates that the variation in the environmental factors is reduced if the regression analysis is done by specific geographic regions. This makes sense statistically and agrees with the results above. However, the small number of observation considered in the regression analysis by zones does not allow this to be presented as a strong conclusion. To draw stronger conclusions more data must be obtained.

The four variables most frequently included in the regression equations of these five species in the country were the distribution of the precipitation, percent soil base saturation, soil potassium content, and the age of the trees.

For the analysis of individual zones, the five variables that most frequently entered the regression equations were soil sodium content, soil cation exchange capacity, soil nitrogen content,
soil silt content, and the age of the trees.

The overall number of environmental factors that entered the regression equations of these species in the country was similar for climatic and soil factors. In contrast, for the regression equations by specific zones, the overall number of soil factors greatly increased. Clearly the variation in climate is reduced if the analysis is done by zones, however, the small number and dispersed location of meteorological stations (particularly station type A) results in extrapolations that introduce another source of variation affecting these results.

Three different dependent growth variables (dbh, height, and volume growth) were combined through a multivariate analysis. The sumarization of the data by the principal component analysis was effective in reducing the number of environmental factors, although the following step (canonical correlation) did not give satisfactory results. In most cases the analyses were difficult to interpret and did not follow a reasonable pattern. Despite this, multivariate analysis could become a useful tool in the summarization and interpretation of such data, especially if the sample size is increased.

CONCLUSIONS

Although cause and effect should not be assumed from a regression analysis, the consistency of the results obtained in this study allows the following conclusions.

1) The relationships between the growth of these species and environmental influences were successfully determined by the regression analysis, in the sense that the selection of variables, using different methods, was consistent throughout the study.
2) Variation in climatic variables was reduced when the analysis was done by zones, in such a way that soil characteristics were the factors most frequently included in the regression models.
3) Regression models with stronger relationships (R^{2} values) were found when the analysis was done by individual zones than for the country.
4) Environmental factors affecting the growth of the species in a zone were not necessarily the same as those affecting the species in the entire country.
5) For individual species in different growth zones, one or more similar independent variables were frequently selected. However, the addition of other variables into the regression models was also common, showing the response of the species to changes in the environment.

LITERATURE CITED

Allen, S. E. 1968. Fertilizer Sources of K, Mg, and S. Paper presented at the Symposium of Forest Fertilization. April 1967 at Gainesville, Florida. P. 132-175.

Altena, A. C. Van. 1971. The perfomance of two tropical pines in the coastal and plateau regions of north eastern Queensland. Department of Forestry Queensland. Research paper No. 1,44 p.

Alvarez Valle, H. 1956. Estudio Forestal del "Jaul" (Alnus jorullensis HBK) en Costa Rica. Tesis Mag. Agr., Turrialba, Costa Rica. IICA. 92 p。

Armson, K. A. 1977. Forest Soil Properties and Processes. University of Toronto Press. 390 p.

Aubreville, A. M. 1965. Conferencias sobre Ecologica Forestal Tropical. Turrialba, Costa Rica. Instituto Interamericano de Ciencias Agricolas. 74 p.

Barnes, R. D., J. J. Woodend, M. A. Schwppenhauser, and L. J. Mullin. 1977. Variation in diameter growth and wood density in sixyear old provenance trials of Pinus caribaea. Morelet on five site in Rhodesia. Silvae Genetica 26:163-167.

Biscoe, P. V. and J. N. Gallagher. 1977. Weather, dry matter production and yield. P. 75-100 in J. J. Landsberg and C. V. Cutting (eds.). Environmental Effects on Crop Physiology. Academic Press, London, New York.

Brito, P., J. Comerma, and R. Canizales. 1975. Aptitud de las tierras de la zona de Chaguaramas, Estado Monagas, para la siembra de Pinus caribaea. Agronomia Tropical. 15:295-304.

Brix, H. 1971. Growth response of western hemlock and Douglas-fir seedings to temperature regimes during day and night. Can. J. Bot. 49:289-294.

Budowski, G. 1957. Some aspects of forestry in Costa Rica. Bois et Forest des Tropiques. 55:3-8.

Camacho, P. 1981. Ensayos de adaptabilidad y rendimiento de especies forestales en Costa Rica. Instituto Tecnologico de Costa Rica y Ministerio de Agricultura y Ganaderia. Cartago, diciembre. 287 p.
. 1983. Evaluation of the effects of environmental factors on initial growth rates of Pinus caribaea in Costa Rica. Final Project for FS 523, Forest Science Department;

Oregon State University, Corvallis, Oregon. 26 p.

Combe, J. y Guevals, N. 1979a. Guia de campo de los ensayos forestales del CATIE en Turrialba, Costa Rica. Turrialba, Costa Rica. CATIE 378 p.

- 1979b. Alnus acuminata (A. jorullensis) with grazing and mowing pasture: Las Nubes de Coronado, Costa Rica. Proceedings of the workshop: Agro-Forestry Systems in LatinAmerica. Turrialba, Costa Rica. March 26-30. p. 199-201.

Cunia, T. et al. 1973. Proceedings of the June 1973 Meeting, Nancy, France. Volume 1. IUFRO. State University of New York. College of Environmental Science and Forestry. 199 p.

Do11, E. C. and R. E. Lucas. 1977. Testing soil for potassium, calcium, and magnesium. In: soil testing and Plant Analysis. p. 133-151.

Draper, N. R. and H. Smith. 1981. Applied regression analysis. John Wiley and Sons. 709 p.

Dyson, W. G. 1973. An East African provenance trial of Cupressus lusitanica Miller. Proceedings of a joint meeting on Tropical Provenance and Progency Research and Internation Cooperation. (Burley, J. and D. G. Nikles eds.) Commonwealth Forestry Institute, Oxford. P. 124-128.

Eyre, S. R. 1971. Vegetation and Soils. Eduard Arnold Ltd. 328 p.

Fahlman, R. 1976. Provenance trial of Pinus caribaea. Forest Department Sarawak, Malaysia. Forest Research Report No. S. R. 9. 11 p.

Fassbender, H. W. and H. Tschinkel. 1974. Relacion entre el crecimiento de plantaciones de Cupressus lusitanica y las propiedades de los suelos derivados de cenizas volcanicas en Colombia. Turrialba 24:141-149.

Ferreira, C. A. and H. T. Z. do Couto. 1981. The influence of environmental variables on the growth of species/provenances of Eucalyptus spp in the states of Minas Gerais and Espiritu Santo (Brazil). Boletin de Pesquisa Forestal. 3:9-35.

Flores-Silva, E. 1920. Geografia de Costa Rica. Corr. y aum. San Jose (Costa Rica): EUNED, 1982. 476 p.

Forsythe, W. M. 1975. Manual de laboratorio de fisica de suelos. Instituto Interamericano de Ciencias Agricolas de la O.E.A. Libros y Materiales Educativos No. 25. 212 p.

Fritts, H. C. 1974. Relationships of ring width in arid-site conifers to variations in monthly temperature and precipitation. Ecol. Monographs. 44:440-441.

Gauch, H. G. 1982. Multivariate analysis in comunity ecology. Cambridge University Press. 298 p.

Gholz, H. L. 1979. Limits on above ground net primary production, leaf area, and biomass in vegetational zones of the Pacific Northwest. Ph. D. thesis. Oregon State University. 61 p.

Golfari, L. 1972. Impacto de la ecologia en la eleccion de las especies para la reforestacion. Proceedings of the Seventh World Forestry Congress. Centro Cultural San Martin, Buenos Aires, Argentina. p. 1626-1629.

Gomez Lazo, D. A. 1981. Evaluacion del comportamiento de ensayos y plantaciones forestales en Nicaragua. Tesis Mag. Sc. Turrialba, Costa Rica, UCR/CATIE. 166 p.

Gonzales, Meza R. 1979. Plantacion forestal a nivel experimental. Proyecto. San Jose, Costa Rica. Direccion General Forestal. 4 p.

Graham, J. N., Edward W. Murray, and Don Minore. 1982. Environment, vegetation, and regeneration after timber harvest in the Hungry-Pickett Area of Sowthwest Oregon. Research note PNW-400.

Greaves, A. 1977. The suitability of the coastal lowland for tropical pine afforestation. Kenya Forest Department. Technical note No. 149. 23 p.

Helwig, J. T. 1982. SAS Introductory Guide. SAS Institute Inc. 83 p. - and K. A. Council. 1979. SAS user's guide. SAS Institute Inc. Cary, North Carolina. 494 p.

Holdridge, L. R. 1947. Determination of world plant formations from simple climatic data. Science, 105:367-368.

- 1951. The Alder "Alnus acuminata", as a farm timber tree in Costa Rica. Caribbean Forester. p. 47-57. life zones or plant formations. Centro Cientifico Tropical. San Jose, Costa Rica. 1 p.

Housenbuiller, R. L. 1972. Soll science principles and practices. WM. C. Brown Publishers. 504 p.

Instituto de Tierras y Colonizacion (ITCO), 1967. Proyecto de desarrollo forestal de zonas selectas. Informe tecnico del proyecto. San Jose, Costa Rica.

Instituto Meteorologico Nacional. 1981. Anuario Meteorologico Año 1980. Ministerio de Agricultura y Ganaderia. San Jose, Costa Rica. 243 p.

Johnson, R. A., and D. W. Wichern. 1982. Applied multivariate statistical analysis. Prentice-Hall, Inc. 594.

Larson, N. M. 1967. Effect of temperature on initial development of ponderosa pine seedlings from three sources. Forest Science. 13:286-294.

Lavender, D. P. 1981. Environment and shoot growth of woody plants. Forest Science Lab. Research paper No. 45.47 p.
\qquad . and W. Scott Overton. 1972. Thermoperiods and soil temperatures as they affect growth and dormancy of Douglas-fir seedlings of different geographic origin. Forest Research Lab. Research paper No. 1326 p.

Leaf, A. L. 1968. $K, M g$ and S deficiencies in forest trees. Paper presented at the Symposium on Forest Fertilization. April 1967 at Gainesville, Florida. p. 88-122.

Ledig, F. T., Joseph G. Clark, and Allan P. Drew. 1977. The effects of temperature treatment on photosynthesis of pitch pine from northern and southern latitudes. Bot. Gaz. 138:7-12.

Lyon, T. L., H. O. Buckman, and N. C. Brady. 1959. The Nature and Properties of Soils. New York. The Macmillan Company. 591 p.

Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate analysis. Academic Press. 521 p.

Martinez Higuera, Hugo. 1981. Evaluacion de ensayos de especies forestales en Costa Rica. Centro Agronomico Tropical de Investigacion y Ensenanza. Programa de Recursos Naturales Renovables. Turrialba, Costa Rica. 200 p.

Minore, Don, Albert Abee, Stuart D. Smith, and E. Carlo White. 1982. Environment, vegetation, and regeneration after timber harvest in the Applegate Area of Southwestern Oregon. Research note PNW-399.

Morrison, D. F. 1967. Multivariate statistical methods. McGrowHill Book. Company. 338 p.

Neilson, R. E. and P. G. Jarvis. 1975. Photosynthesis in sitka
spruce (Picea sitchensis (Bong.) Carr). . VI. Response of stomata to temperature. J. Appl. Ecol. 12:879-891.

Neter, J. and Wasserman, W. 1974. Applied linear statistical models. Richard D. Irwin, Inc. 842 p.

Norman, J. M. and P. G. Jarvis. 1975. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr. V. Radiation penetration theory and test case. J. Applied Ecol. 12:839878.

Odum, H. T. 1970. Summary: An emerging view of the ecological system at El Verde. In: H. T. Odum and R. F. Pigeon (editors) A Tropical Rain Forest. A Study of Irradiation and Ecology at El Verde, Puerto Rico. U.S. Atomic Energy commission, Washington, D.C. p. I191-I289.

Ojo, G. O. A. and J. K. Jackson. 1973. The use of fertilizer in forestry in the drier tropics. In proceedings of the FAO/ IUFRO International Simposium of Forest Fertilization. p. 351364.

Ott, Lyman. 1981. An introduction to statistical methods and data analysis. Duxbury Press. North Scituate, Massachusetts. 740 p.

Pande, G. C. 1982. Tropical pines in India. An overview. Indian Forester. 108:1-28.

Pollard, D. F. W. and P. F. Wareing. 1968. Rates of dry-matter production in forest tree seedlings. Annals of Botany 32: 573-591.

Pritchett, W. L. 1979. Properties and management of forest soils. John Wiley \& Sons. 500 p.

SAS User Guide. 1982. Basics Edition. SAS Institute Inc. Statistical Analysis System. 923 p.

SAS Institute Inc. SAS User Guide: Statistics, 1982 Edition. Cary NC: SAS Institute Inc. 584 p .

Scott, D. 1969. Determining the type of relationship between plants and environmental factors. Proceedings of the New Zealand Ecological Society. 16:29-31.

Slatyer, R. O. 1982. Photosynthetic adaptation in altitudinal populations of the australian snow-gum, Eucalyptus pauciflora. Proceedings of an IUFRO workshop on Ecology of Subalpine Zones. p. 31-37.

Snedecor, G. W. and W. G. Cochram. 1980. Statistical methods. Iowa State University Press. 507 p.

Soares, A. R. and P. Rosero. 1973. Variacao entre nove procedencias de Cupressus lusitanica Mill. em Costa Rica. Turrialba. 23:222-226.

Sweet, G. B. and P. F. Wareing. 1968a. A comparison of the rates of growth and photosynthesis in first-year seedlings of four provenances of Pinus contorta Doug1. Annals of Botany. 32:735-751.
_. 1968b. A comparison of the seasonal rates of dry matter production of three coniferous species with contrasting patterns of growth. Annals of Botany. 32:721-734.

Teoh, S. K. 1981. Soil suitability in relation to caribbean pine growth and yield. The Malaysian Forester. 44:60-76.

Tosi, J. A. Jr. 1969. Mapa ecologico de Costa Rica. San Jose, Costa Rica. Centro Cientifico Tropical, Escala 1:750.000. color.

Tuk, J. B. 1980. Maderas de uso estructural. Centro de Ingenieria en Maderas. Instituto Tecnologico de Costa Rica. Informe de Projecto. 200 p.

Valle Arango. J. I. Del. 1975. Crecimiento y rendimiento de Cupressus lusitanica Mill. en Antioquia, Colombia, utilizando parcelas permanentes. Tesis Mag. Sc. Turrialba, Costa Rica, UCR/CATIE. 127 p.
de cenizas volcanicas de Colombia y su relacion con el crecimiento de Cupressus Iusitanica. Turrialba 26:18-23.

Wasan, K., and S. Sukwong. 1974. Height growth for teak (Tectona grandis Linn. F.) as related to environmental factors. Faculty of Forestry, Kasetsart University, Bangkok, Thailand. Forest Research Bolletin No. 30. 21 p.

White, E. J. 1982. Relationship between height growth of Scots pine (Pinus silvestris L.) and site factors in Great Britain. Forest Ecology and Management. 4:225-245.

Yadab, J. S. P. and D. R. Sharma. 1973. A soil Investigation with reference to distribution of sal and teak in Madhya Pradesh. India, Forest Research Institute and Colleges. In Proceedings of the eleventh silvicultural conference. p. 204-215.

APPENDICES

APPENDIX 1 1/

Population statistics and correlation matrices for climatic and soil factors used in the regression analysis of Alnus acuminata

1/ For the description of the variables and unit of measurement see appendix 7.

vantamis	N	4h．als
ALI	14	1414．743／14ic＇s
inas	14	14．514／AS／1
Imin	16	17．14243114
（1040）	16	15．pesoucus
Howis．	14	H1．1／142nsi
Llo．si	16	1071－844057／h
18	14	4 TU．Buaunce
Phicim	14	
Eval	14	
minviosis	14	H．a．42ns／14
｜ratemm	14	1．42nsil4i
＊lusfeis	14	
Alot	14.	1．30428571
a same	4	C 1.4 10bbb！a，
asllid	4	2H．1Ub3¢，25n
aclay	＋	h．priouvulu
ala	n	
and	H	－．911．2a：．62t
alsa	\cdots	
an	\cdots	0．Vithlinf：
actic：	N	31．744，19804
Abais	4	14.80112 2bin
ars	\cdots	ל．5A7solum
Ac：	H	
amil	\rightarrow	H．46tintinuo
an	H	T0．46400¢30
	4	
alavi	n	11．0．6ss／su

S10 urv	Sthe
4ib．Sqathyll？	27041，00ausuab
4． 15444505	213．Ponnoues
6．nO44bil0	Itu．asuaume
5．athinueut	P1r．anteouneo
¢－11907411	1／tht．cuousuen
255．7534／104	2680．1．04016000
6thel $3 \mathrm{~d} . \mathrm{lun} 15$	Stha．\％ooulluos
7r0．2H131311	vis3．00004000
9n．0く1ヶ3ич？	nitionuonuoun
1.54854741	121．00000000
0．b135s？n）	chamodounou
1．49111541	21.00000400
4．2．3H16019	109．10000sus
11．111／4804	STO，AP：04100
H．16P20116	
S．unbi4i44	th．ersuougeo
2．04310324	22．1ヶT／bueu
	C．ȧiphon
U．0n2313as	c．7irsulue
$0.1723<0,0 \mu$	¢．17．7r900
	2b4．jprnouno
9．4474．thel	
$0.401101+1.14$	
2．411．35010	．14．17．0usuou
¢．Hア¢4нн？ 1	1．1．5850nHue
0.20001801	1． 11 ¢らくи00
3． $1+3.84514$	31．030u0uso
	yr．entsulluo

minfonum	matimim
Itue．uuvunoay	2h20．0000000：
If．nouounou	2h．30000000
S．40unoudo	11.00000000
1.900 uoum	20．20000000
／f．rauonuon	9H．5000000\％
1its．nousulau	2460．00000000
Jen．400U0000	416.00400000
200y．0ncouven	3／54．00000000
440. ROUDOUUS	H01． 60 OUOCO
$1.00000 u n$	11．eneogeos
1．00000000	2.00000000
－	4.00040000
0. beunuseo	$18.0000 n 000$
45.75040000	30．00un0000
14.50000000	Jh．enoudoti
3．50000N0и	co．rhaudeon
1．16isuoun	h．actionon
0.240000015	2．17500000
0.20125000	0.45750000
U．lzunoueo	0.946 ciono
｜．А．\％｜くらul0］	St．ancreoden
4.27540000	22.08150000
4.7 Inuouenu	5.431500 .10
$2.61<60000$	9.1 ¢730000
4.51 chuouo	13．ationconll
0.71230000	－．tisnoeno
5．125ucuro	14．50000000
Y． 10000030	1s．onasuoon

	ALI	I4An	ININ	Hefl 1	Hon/m	II, 111	Hals	Hete: 103	cvat	11511	inithm	cus	arif
AL:	$\begin{aligned} & \text { I © eanee } \\ & \text { A. Uave } \end{aligned}$	$\begin{gathered} -u .13120 \\ n .901 t \end{gathered}$	$\begin{array}{r} -0 . \text { Jn Ihn } \\ \text { U. Hovi } \end{array}$	$\begin{array}{r} -0.74 \mathrm{H} 60 \\ 0.000 \mathrm{~K} \end{array}$	$\begin{array}{r} -0.1 N 415 \\ 0.00114 \end{array}$	$\begin{aligned} & 0.3414 a \\ & 0.3+10 \end{aligned}$	$\begin{aligned} & 0.11917 \\ & 0.1011 \end{aligned}$	$\begin{array}{r} -u .40161 \\ 0.0224 \end{array}$	$\begin{array}{r} 0.53,414 \\ 0.1,1414 \end{array}$	$\begin{array}{r} -0.01 \text { fry } \\ n .9544 \end{array}$	$\begin{array}{r} -4.4 .1 a 29 \\ 0.1110 \end{array}$	$\begin{aligned} & 0.164 .14 \\ & 0.5050 \end{aligned}$	
Imax	$\begin{array}{r} -0.151195 \\ 0.7014 \end{array}$	1.000ne 0.silun	$\begin{gathered} \text { u.4) } \begin{array}{c} \text { and } \\ \text { U.avui } \end{array} \end{gathered}$	C.4nuat? U. U1III	$\begin{gathered} 0.02651 \\ 0.0164 ; \end{gathered}$	$\begin{aligned} & 0.11441 \\ & 0.0 \times 11 \end{aligned}$	$\begin{gathered} -0.4 n 54 n \\ 0.0 / 141 \end{gathered}$	$\begin{gathered} \text { n. ib nent } \\ \text { B. USt? } \end{gathered}$	$\begin{gathered} -0.145>61 \\ 0 . N / 69 \end{gathered}$	$\begin{gathered} 0.11 \subset 10 \\ 0.2656 \end{gathered}$	$\begin{array}{r} 0.61240 \\ 0.0149 \end{array}$	$\begin{array}{r} -0.224022 \\ 0.4413 \end{array}$	$\begin{array}{r} -9 . \text { aHtory } \\ 0.0467 \end{array}$
Imin	$\begin{gathered} -u . \text { yo } 1 \text { on } \\ \text { ©.unul } \end{gathered}$	$\begin{aligned} & 0.43111 \\ & 0.0041 \end{aligned}$	$\begin{aligned} & 1.40000 \\ & 0 . n 000 \end{aligned}$	$\begin{aligned} & 0.41044 \\ & 0.0001 \end{aligned}$	$0 . \operatorname{ej} 144$ 0.00113	$\begin{gathered} -0.117114 \\ 0.24710 \end{gathered}$		$\begin{aligned} & 4.046+300 \\ & 0.0121 \end{aligned}$	$\begin{array}{r} -0.24940 \\ 0.3 .1 / 0 \end{array}$	$\begin{gathered} 0.411317 \\ 0.1174 \end{gathered}$	$\begin{gathered} 0.01944 \\ 0.0141 \end{gathered}$	$\begin{array}{r} -0.294068 \\ 0.2914 \end{array}$	$\begin{array}{r} -0.76035 \\ 0.0016 \end{array}$
latil	$\begin{array}{r} -0 . \text { Iuhat } \\ 0.0046 \end{array}$	0.4 H 4 h (Wanull	$\begin{aligned} & 0.41044 \\ & 0: n 0111 \end{aligned}$	$\begin{gathered} 1 \text { - } 11 \text { anue } \\ 0.0 .1!100 \end{gathered}$	$\begin{gathered} \text { U. } 111115 \\ 0.0114 \text { ? } \end{gathered}$	$\begin{gathered} -0.04 \cdot 14 h \\ 0.8 n h 4 \end{gathered}$	$\begin{array}{r} -0.51117 \\ 4.1147 .0 \end{array}$	$\begin{gathered} 0.57102 \\ 0.0127 \end{gathered}$	$\begin{array}{r} -0.170 \text { is } \\ 0.0 .400 \end{array}$	$\begin{gathered} 0.020 \mathrm{nt} \\ 0.9441 \end{gathered}$	$\begin{aligned} & 0.0 .0444 \\ & 0.0104 \end{aligned}$	$\begin{array}{r} -0.24+31 \\ 0.3420 \end{array}$	$\begin{array}{r} -0.12153 \\ 0.003 ? \end{array}$
Howm	$\begin{array}{r} -0.7 \text { InHis } \\ 0.0 \text { ith } \end{array}$		$\begin{gathered} \text { U.A>14y } \\ 0.0001 \end{gathered}$	$\begin{array}{r} 0.11 .915 \\ 0.004 \text { ? } \end{array}$	$\begin{aligned} & 1.00104 \\ & 4.01144 \end{aligned}$	$\begin{array}{r} -14.55441 \\ 0.11+146 \end{array}$		$\begin{gathered} \text { U. RAllat } \\ 0.110 \cup 5 \end{gathered}$	$\begin{array}{r} -0 . \operatorname{nonit} \\ 0.0<13 \end{array}$	$\begin{gathered} 0.44174 \\ 0.11180 \end{gathered}$	$\begin{gathered} 0.40481 \\ 0.1455 \end{gathered}$	$\begin{array}{r} -0.60001 \\ 0.0 ? 33 \end{array}$	$\begin{array}{r} -0.57341 \\ 0.0319 \end{array}$
Llwit	$\begin{aligned} & 0.7474 .4 \\ & 0.1416 \end{aligned}$	$\begin{aligned} & \text { a. } 114+1 \\ & \text { flotilind } \end{aligned}$	$\begin{array}{r} -0.17711 \\ 0.0 i s t 10 \end{array}$	$\begin{array}{r} -0.0116 \cdot 1 \mathrm{eng}_{8} \\ 0.0 \mathrm{hent} \end{array}$	$\begin{gathered} - \text { n. Se, } 104 ; \\ 0.014 n \end{gathered}$	$\begin{aligned} & \text { I. ennoun } \\ & \text { i. Ullull } \end{aligned}$		$\begin{aligned} & -11.1 / 4614 \\ & 10.1+1 \% \end{aligned}$	$\begin{gathered} 11.44440 \\ 0.111715 \end{gathered}$	$\begin{gathered} -0.11446 \\ 0.58104 \end{gathered}$	$\begin{array}{r} -0.24<21 \\ 0.3843 \end{array}$	$\begin{aligned} & 0.27 \mathrm{n} 37 \\ & 0.1152 \end{aligned}$	$\begin{array}{r} 0.15314 \\ 0.5492 \end{array}$
Nat	$\begin{array}{r} 0.11+11 \\ 0.0 \in 10 \end{array}$		$\begin{array}{r} -u . a n u 42 \\ 0 . n 114 \end{array}$	$\begin{array}{r} -0.51111 \\ 0.037 \end{array}$		0.71214 II. Buth	$\begin{gathered} \text { H.0unuu } \\ \text { u. मoall } \end{gathered}$		$\begin{array}{r} 11.21140 \\ 10.4252 \end{array}$	$\begin{gathered} \text { n.01851 } \\ 0.0524 \end{gathered}$	$\begin{gathered} -0.5 \mathrm{sH} / 4 \\ 0.04 / 1 \end{gathered}$	$\begin{gathered} \text { O. } 1664 A \\ \text { U. } 56 A 3 \end{gathered}$	$\begin{gathered} 0.37111 \\ 0.1 \text { AHY } \end{gathered}$
Precim	$\begin{aligned} & \text {-U.anlal } \\ & 0 . A ? ? H \end{aligned}$		$\begin{gathered} 4 . h 4300 \\ \text { U.01? } \end{gathered}$	$\begin{gathered} 0.471 n+4 \\ 0.01 ? \end{gathered}$	$\begin{aligned} & 1 . A 0 A_{0} 7 \\ & U .0 U 10 S \end{aligned}$	$\begin{array}{r} -0.31410 \\ 0.141 \% \end{array}$	$\begin{gathered} \text { ". Sernu } \\ \text { ".usics } \end{gathered}$	$\begin{aligned} & \text { I.unnua } \\ & \text { o.unua } \end{aligned}$	$\begin{array}{r} -U . H 1042 \\ U .11 n 04 \end{array}$	$\begin{aligned} & =, \quad 1611 \\ & n . U 1 H 5 \end{aligned}$	$\begin{aligned} & \text { U.JDSUK } \\ & \text { Q.InP: } \end{aligned}$	$\begin{array}{r} -0.77810 \\ 0.0010 \end{array}$	$\begin{array}{r} 0.11601 \\ 0.6429 \end{array}$
avar	$\begin{array}{r} \text { 0. Inyiy } \\ 0.1418 \end{array}$	$\begin{gathered} -0.04: 0 a 1 \\ 0 . \ln 1 \end{gathered}$	$\begin{gathered} -11.24 h 34 \\ 0.3011 \end{gathered}$	$\begin{gathered} -0.1 j u \text { is } \\ 0.0 \text { Heal } \end{gathered}$	$\begin{array}{r} -0 . \operatorname{Annln} \\ u .0 i 3 \end{array}$	$\begin{aligned} & 0.144140 \\ & 0.10111 \end{aligned}$	$\begin{gathered} 0.751+11 \\ 10.475)^{\prime} \end{gathered}$	$\begin{array}{r} -0.11111442 \\ 0.010164 \end{array}$	$\begin{aligned} & 1.0 u 000 \\ & 0 . g u 00 \end{aligned}$	$\begin{array}{r} -0.0 .14372 \\ 0.0040 \end{array}$	$\begin{aligned} & 0.06 .1469 \\ & 0 . H 155 \end{aligned}$	$\begin{aligned} & 0.67164 \\ & 0.0011 \end{aligned}$	$\begin{array}{r} -4.10616 \\ 0.7170 \end{array}$
H. uvioses	$\begin{array}{r} -u .41 \operatorname{lncs} \\ 0.4 j 46 \end{array}$	$\begin{gathered} 0.01 .10 \\ 0.9646 \end{gathered}$	$\begin{gathered} \text { u.ansil } \\ 0.71 / 4 \end{gathered}$	$\begin{aligned} & 0.14 \mathrm{cush} \\ & 0.4441 \end{aligned}$		$\begin{array}{r} -n \cdot 11444 n \\ 0.350 A \end{array}$	$\begin{aligned} & \text { W.UItsin } \\ & \text { H. परije } \end{aligned}$	$\begin{gathered} \text { U.HIHIS } \\ \text { u.O\|H5 } \end{gathered}$	$\begin{gathered} -0.01632 \\ 0.00 \mathrm{He} \end{gathered}$	$\begin{array}{r} 1.00000 \\ 0.11000 \end{array}$	$\begin{array}{r} -0.28(1) 4 \\ 0.3342 \end{array}$	$\begin{array}{r} -0.44361 \\ 0.0001 \end{array}$	$\begin{aligned} & 0.21514 \\ & 0.4584 \end{aligned}$
1 N 12 Nm	$\begin{gathered} -4.414 ; 4 \\ 0.11 \% e \end{gathered}$	$\begin{aligned} & \text { U.h1240 } \\ & 10.01 .14 \end{aligned}$		$\begin{gathered} 0.0 .18+194 \\ 0.11104 \end{gathered}$	$\begin{aligned} & 0.40 \text { PA7 } \\ & 4.1 .5 S \end{aligned}$	$\begin{array}{r} 11.202211 \\ 0.324, \end{array}$	$\begin{array}{r} -0.33 \mu 14 \\ 0.0471 \end{array}$	$\begin{aligned} & \text { n. 1ysion } \\ & 0 . \mid a n e l \end{aligned}$	$\begin{aligned} & \text { Q. URHANH } \\ & \text { U.HID; } \end{aligned}$	$\begin{aligned} & -0.3 \ln 14 \\ & 0.319 ? \end{aligned}$	$\begin{aligned} & 1.000000 \\ & 0.0 n 00 \end{aligned}$	$\begin{gathered} 0.013 / 3 \mathrm{H} \\ 0.445 S \end{gathered}$	$\begin{array}{r} -46700 \\ 0.1 y(, f) \end{array}$
thish.cos	$\begin{aligned} & \text { a. } 11,+174 \\ & \text { b. } 56,54 \end{aligned}$	$\begin{gathered} -0 .+^{2}<402 \\ 0.4411 \end{gathered}$	$\begin{array}{r} -11.24 \neq h h \\ 4.214 \end{array}$	$\begin{array}{r} -0 . i^{4} 4 \mathrm{H} 11 \\ 0.7,8 \mathrm{Cl} \end{array}$	$\begin{array}{r} \text {-u.nounl } \\ 0.0 \text { I } \end{array}$	$\begin{aligned} & 0.81 \ln 11 \\ & 0.1 \operatorname{lsi} 2 \end{aligned}$		$\begin{array}{r} -n .1 / H 10 \\ 0.0110 \end{array}$	$\begin{aligned} & 0.011 \mathrm{H}_{4} \\ & 0.0071 \end{aligned}$	$\begin{array}{r} -0.04 \mathrm{ibl}^{-0} \\ 0.00001 \end{array}$	$\begin{array}{r} -0.0513 \mathrm{H} \\ 0.04455 \end{array}$	$\begin{aligned} & 1.00000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.04776 \\ & 0.7345 \end{aligned}$
A1,		$\begin{aligned} & \text {-n. onelens } \\ & \text { n.uath } \end{aligned}$	$\begin{gathered} -0.1 \text { nuss } \\ \text { I.nuln } \end{gathered}$	$\begin{array}{r} -0.1+18.1 \\ 0.11412 \end{array}$	$\begin{array}{r} -0.571+1 \\ u .4119 \end{array}$	$\begin{aligned} & 0.13 .19 \mathrm{H} \\ & 0.5 y+1 .{ }^{2} \end{aligned}$	$\begin{array}{r} \text { U. } 17311 \\ \text { U. } 1 \text { HAY } \end{array}$	$\begin{array}{r} -0.11601 \\ 0.5424 \end{array}$	$\begin{array}{r} -0.10116 \\ 0.7110 \end{array}$	$\begin{aligned} & \text { N.aisis } \\ & \text { I.4.4.AH } \end{aligned}$	$\begin{array}{r} -0.31,100 \\ 0.1 \% 6 A \end{array}$	$\begin{array}{r} -0.0 .97166 \\ 0.7395 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$

APPENDIX 2 I/
Population statistics and correlation matrices for climatic and soil factors used in the regression analysis of Cupressus lusitanica

1/ For the description of the variables and unit of measurement see appendix 7.

vawiafte	N	mean	Stio in v	5111	minimim	maximum			
ALI	14	1Hac.alllilll	S1H.7.517nS 1	13451.00040000	1104.00000000	2620.000000nu			
Iman	14	21.46111111	$4.69544 \mathrm{HQ5}$		12.40000400	24.200000no			
Imin	14	14.6111111		ers. -ronodueu	5.40000000	15.30011U080			
1为 ${ }^{\text {H }}$	$1{ }^{\text {H }}$	16.96111111	4.426448784	10i.30000000	1.90000000	14.50000000			
rewme	19	H¢.900V0000	2.ny4n147n	1492.20000000	17.40000000	40.300n0000			
410.15	10	141H.00000000	61.14ntah7	345e6.00000000	1087.00000000	1434.00000000			
mas	14	$467 . n 17711 / 4$	31.61114711	H335.40000000	32H.40000000	471.80000000			
Matcios	14	2164.11111111	Sns. IShigata	42954.00000000	1317.00000400	3346.000ws000			
- vap	, 14	6, 26.00000000		11232.00000000	490.000110000	650.00000000			
Mloviosil	19	1.41331313	1. Poonyulo	141.00000000	6.00000000	11.00800000			
Intorm	in	1.0 bhtotht		10.00000000	-	3.00000000			
eciosit cus	IH	2.50000000	1.1504474H	43.80000000	0	4.00000000			
ance	In	12.0444444.6	H.JAOITMP4	Pel.fnounuve	3.00400000	50.00000000			
asamil	16	4n, 4 UHY2mS 1	$11.5420 y y 5 \%$	6St. 1rionllut	11.25000000	74.4150u0u0			
asilit	14.0	12.7asil4ct	7.10150116	45\%.0000nu00	14.50040000	45.00000000			
allay	14	20.avtheraj)	15.0itwluon	284.86000000	5.50000000	60.50000000			
aca	..13		4.51548144	1¢.18500000	0.18750000	11.4151100004			
Ahis	1:		1. Sanh 3139	Ch.thersouvo	0.26000000	3.98685000			
Ana	11	-. JHCuntur	0.34 Blital	9.911 csuog	U.ipououno	1.49250000			
ak	11	a.atianithan	$0.4246463) \mathrm{H}$	1. Sozruuuo	4.12000000	1.57日15000			
actic	11	11.044 ¢ 31117	\|a.	ly 7-4al		$4 \% 1.81540000$	11.41730000	56. 215190000	
asall	$\cdots!1$		12.14 .114436	[11.91500000	S.sisuouvo	45.7150000			
A ${ }^{\text {a }}$	11	5.0.41340615		11.11850000		$6.2685000 n$			
al	110	4.0'th>o.9e 11	2.11061H1C	64. 178001104	2.61230000	y.1arbueno			
nmu	1.15	B.5.finarila	1.63144. 10	111.4 ¢bulliod	4.51250000	15.hSOU0040			
${ }_{*}$	17 :-	U.4nu:010.0e	U.C.cuybral	¢.4H7SOU00	0.21250000	0.87500000			
A1-	11	1.44114015	1.61120sion	10.7.23150000	3.11250000	30.85000000			
4. 4181	11	II.alterosit	1. 1 ¢thaly\%	IS1.018sudut	\%.42500400	14.90000000	∞		

	Asabl	1 l	arcar	ata	sil.	ma	4n	4.15	abala	Aroll	4.	4 (1)	an	$4{ }^{4}$	al
asami	$\begin{gathered} 1.09004 \\ 0.0094 \\ 14 \end{gathered}$	$\begin{array}{r} -0.0 .1110 \\ 0.45 a i \\ 10 \end{array}$	$\begin{gathered} \text { u. whivi } \\ \text { w.aunt } \\ 14 \end{gathered}$	*. Mu>i			$\begin{array}{r} 0.2 \sin 25 \\ 0.1441 \\ 11 \end{array}$	$\begin{gathered} u .16,101 \\ i .0356 \\ i 1 \end{gathered}$		$\begin{gathered} 0.41831 \\ 0.4 h 7 n \\ 11 \end{gathered}$	$\begin{gathered} 0.2 \text { anu4 } \\ 0.645\rangle \\ 11 \end{gathered}$	$\begin{array}{r} -0.20 .000 \\ 0.4952 \\ 11 \end{array}$	$\begin{gathered} \text { e.Unn4e } \\ \text { ©. } 1717 \\ 11 \end{gathered}$		
asill	$\begin{gathered} 5117 \\ -0541 \\ 14 \end{gathered}$	$\begin{gathered} 1 \text {. wanes } \\ \text { U. UU.Ie } \\ 14 \end{gathered}$		$\begin{array}{r} -0.1 \text { nent } \\ 0 . s \ln 1 \\ 11 \end{array}$	$\begin{array}{r} 4.011+n g \\ 0.01 m 0 \\ 11 \end{array}$	$\begin{gathered} \text { H. } 1 \text { Huen } \\ \text { U. } 45 \mathrm{San} \\ \hline \end{gathered}$	$\begin{aligned} -0.0 \text { isey } \\ 0 \rightarrow 114 \end{aligned}$	$\begin{aligned} & 0.0+601 \\ & 0.41011 \\ & 11 \end{aligned}$			$\begin{aligned} & 0.1, \ll 4 n \\ & 0 . \text { nity } \\ & 11 \end{aligned}$	$\begin{gathered} \text { arifol } \\ \text { u.tilui } \\ \text { li } \end{gathered}$	$\begin{gathered} 0.19104 \\ 0.5141 \\ 11 \end{gathered}$	$\begin{aligned} & 10.4 .1 .1 \\ & 0.1 \% \\ & 111 \end{aligned}$	
ALIA	$\begin{gathered} -4.41 \mathrm{~mol} \\ \text { 4. Uni } \\ 14 \end{gathered}$	$\begin{gathered} 0.14 \times 14 \\ 0.011 / 4 \\ 14 \end{gathered}$	$\begin{gathered} \text { I."nuü } \\ \text { ".auau } \\ 14 \end{gathered}$						$\begin{array}{r} 0.4 n e \text { ic } \\ 0.0+311 \\ 11 \end{array}$	$\begin{aligned} & \because \text { anhay } \\ & \because . \text { N4iz } \\ & 13 \end{aligned}$	$\begin{array}{r} \bullet 1 / 16 p \\ 0 . s 151 \\ 10 \end{array}$	$\begin{gathered} \text { A. } 11141 \\ 0 .\{104 \\ 15 \end{gathered}$	$\begin{gathered} 0.40444 \\ 0.4154 \\ 13 \end{gathered}$		$\begin{gathered} \text { H.coprol } \\ \text { a. im } \\ 10 \\ 1 / 2 \end{gathered}$
4.4		$\begin{array}{r} -4.1 \text { manat } \\ 4.211 \\ 11 \end{array}$	$\begin{gathered} \text { ". } 11+41 \\ =0.4 n-n \\ 11 \end{gathered}$		0.0414. n. 41111 11	$0.14 \text { in }$						$\begin{gathered} \text { 0. rolnn } \\ \text { U. Suny } \\ 11 \end{gathered}$	$\begin{array}{r} 0.2 / 001 \\ 0.3 / 1 \\ 13 \end{array}$	$\begin{array}{r} =4.14411 \\ 11.0 \text { inft } \\ 11 \end{array}$	
atis	$\begin{gathered} -\mathbf{-} .250415 \\ 0.4044 \\ 11 \end{gathered}$			$\begin{gathered} 0.4414 \mathrm{c} \\ \text { a.onai } \\ 11 \end{gathered}$			$\begin{aligned} & 0.149 \times 4 \\ & \because .041! \\ & 1 \end{aligned}$	$\begin{gathered} \text { H. } 110111 \\ \text { H. natio } \\ 11 \end{gathered}$	$\begin{gathered} 4.1+0.17 b \\ 4.0010 \\ 1 ; \end{gathered}$	$\begin{gathered} \text { 4. .ar. } 1.214 \\ 4.11001 \\ 1.1 \end{gathered}$		$\begin{array}{r} 0.11414 \\ 4.4561 \\ 11 \end{array}$	$\begin{aligned} & =.25144 \\ & 0.4014 \\ & 11 \end{aligned}$	$\begin{array}{rl} -4.104 & 11 \\ 4.1 & 11 \end{array}$	
A 14	$\begin{gathered} -4.08104 \\ \bullet .44 \rho / \$ 1 \\ 11 \end{gathered}$		4	$\begin{array}{r} 0.41114 \\ 0.141 \mathrm{Ha} \\ 11 \end{array}$	$\begin{gathered} \text { U.4nnty } \\ \text { U. } 10.1 \\ 1: \end{gathered}$				$\begin{gathered} \bullet .24 H+4 ; \\ 0.18! \\ 11 \end{gathered}$		$\begin{aligned} & \text { \#. Imere4 } \\ & \text { I. } 1135 \\ & 11 \end{aligned}$	$\begin{aligned} & \bullet 1 n e s 10 \\ & \bullet .7117 \\ & 11 \end{aligned}$	$\text { ©. } 10 n n 1$	$\begin{array}{r} -4 .<n>41 \\ n .4112 \\ 11 \end{array}$	
as	$\begin{array}{r} -6.2+44 / 5 \\ 1.84 a! \\ 11 \end{array}$	$\begin{gathered} 0.41109 \\ 0.4144 \\ \text { is } \end{gathered}$	$\begin{gathered} 4.01444 \\ 0.034 \\ 11 \end{gathered}$		4.wuli	$\begin{gathered} \text { U.00140\% } \\ \bullet \cdot n+10 \\ 10 \end{gathered}$	$\begin{gathered} 1.0 \text { ueou } \\ \hdashline .000110 \\ 11 \end{gathered}$	$\begin{gathered} 0.4 n u n / 1 \\ 0.1119 \\ 111 \end{gathered}$	$\begin{array}{r} 0.1 / 6 \ln \\ 0.001 \\ 10 \end{array}$				$0.1152 n$	$\begin{gathered} 4 . \begin{array}{rl} 41 / 4 H \\ 0.1 & 101 \end{array} \\ 10 \end{gathered}$	$\begin{gathered} x .510 n \\ 4 . \ln 101 \\ 1: 1 \end{gathered}$
Mil		$\begin{aligned} & \text { ".cwnivi } \\ & \text { ".4ini } \\ & \text { iJ } \end{aligned}$			$\begin{gathered} \text { e.finn } \\ 0.04 y_{2} \\ 11 \end{gathered}$	$\begin{aligned} & 0.310141 \\ & 0.200^{-1} \\ & 11 \end{aligned}$	$\begin{gathered} \text { A. 4t,unt } \\ 0.1110 \\ 10 \end{gathered}$	$\begin{array}{r} 1 \text { - Inyuno } \\ \text { U. naue } \\ 11 \end{array}$	$\begin{gathered} 4.20 / 04 \\ 0.4 J 43 \\ 11 \end{gathered}$	$\begin{aligned} & . i \operatorname{con} n 4 \\ & 0.1441 \\ & 11 \end{aligned}$	$\begin{array}{r} \because 11,04 \\ \because .4041 \\ 17 \end{array}$	$\begin{gathered} 0.15112 \\ 0.0154 \end{gathered}$	$\begin{gathered} 0.1011 \\ 4.0014 \end{gathered}$	$\begin{gathered} -4 . P R 18 \\ 0.416 \\ 11 \end{gathered}$	
n 210		$\begin{aligned} & 0 . r 1124 \\ & \text { a. } \sin 1 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { W5cyc } \\ & .04511 \\ & 11 \end{aligned}$	$\begin{gathered} \text { e.n1 194 } \\ 0.0001 \\ 1 / \end{gathered}$				$\begin{gathered} 4.21 / 104 \\ 0.4104 \\ 1: \end{gathered}$	$\begin{gathered} 1.0 \text { ousou } \\ 0.00 \mathrm{O} \\ 11 \end{gathered}$	$\begin{gathered} 0.842 \mathrm{Na} \\ 0.17,1 \\ 1, \end{gathered}$	4.164148 0.5190 11	-. 5 Sinis	1000 0.701		
ars	$\begin{array}{r} -w .01 e i_{1} \\ 0.4 \text { in } \\ 11 \end{array}$				$\begin{aligned} & \text { \#. . } \mathbf{P} 449 ; \\ & \text { n. } 11: 1 ; \end{aligned}$	$\begin{gathered} \text { u.Auv/1 } \\ 0.02 h 4 \\ 11 \end{gathered}$			$\begin{array}{r} 4.44<94 \\ 0.1217 \\ 11 \end{array}$	$\begin{gathered} 1.0400 \mathrm{c} \\ \text { i. Nen } \\ \text { if } \end{gathered}$.40115 4.041004 13	.46014 0.1041 15	$\begin{array}{r} -11010+4 \\ 0.444 \\ 111 \end{array}$	$\begin{gathered} 0.110404 \\ 4.7111 \\ 11 \end{gathered}$
AL			$\begin{gathered} 0.11152 \\ 0.4131 \\ 11 \end{gathered}$		$\begin{gathered} 0.10152 \\ 0.6442 \\ 10 \end{gathered}$	$\begin{gathered} 4.30224 \\ 0.31 i 4 \\ 11 \end{gathered}$	$\begin{gathered} \text { U. Whate } \\ \text { U.M>RK } \\ 11 \end{gathered}$			$\begin{array}{rl} 449<1 \\ 0 & 0441 \\ 11 \end{array}$	$\begin{array}{r} 1.00000 \\ 4.0000 \\ 13 \end{array}$	$\begin{gathered} 0.29941 \\ 0.4041 \\ \text { IJ } \end{gathered}$	$\begin{gathered} 0.975 .24 \\ 0.01141 \end{gathered}$	$\begin{gathered} \text { H. Wifal } \\ \text { ".o+a! } \end{gathered}$	
$4+1$	$\begin{array}{r} -4 . c o v e 4 \\ 0.6412 \\ 11 \end{array}$	$\begin{array}{r} 0.1<141 \\ 0.6141 \\ 11 \end{array}$	$\begin{gathered} 0.17101 \\ 0.4144 \\ 15 \end{gathered}$		$\begin{gathered} 0.1+1 / n \\ 0.5 \sin 11 \end{gathered}$	$\begin{gathered} 0.10076 \\ 6.1141 \\ 11 \end{gathered}$	$\begin{gathered} \text { C.UBYN4 } \\ \text { a.H5h } \\ 11 \end{gathered}$	$\begin{gathered} 9.11318 \\ 0.4044 \\ 11 \end{gathered}$		$\begin{aligned} & .44118 \\ & 0 . \mathrm{OHAH}_{1} \\ & 11 \end{aligned}$	$\begin{gathered} 0.49 \times 4 y) \\ 0.0001 \\ 11 \end{gathered}$	$\begin{array}{r} 1.00048 \\ 0.0000 \\ 13 \end{array}$	$\begin{aligned} & 0.9 / 411 \\ & 0.0001 \end{aligned}$		
A!	$\begin{array}{r} -4.04 n+04 \\ 0.1 r i i \\ i 1 \end{array}$	$\begin{aligned} & \text { U.ivinu } \\ & -1: i n!+1 \end{aligned}$	$\begin{array}{r} 0.0744 y \\ 4.0154 \\ 10 \end{array}$		$\begin{gathered} 1.81944 \\ 0.4411 \\ 11 \end{gathered}$	$\begin{gathered} \text { H. } 1400.1 \\ 0 . e 4541 \\ 11 \end{gathered}$	$\begin{array}{r} 4.11 p 2 n \\ 4.7184 \\ 1.1 \end{array}$	$\begin{gathered} 4.11911 \\ 0.0 A 14 \\ 11 \end{gathered}$	$\begin{gathered} 01 \text { une? } \\ 0.7101 \\ 11 \end{gathered}$	$\begin{array}{r} -6.46410 \\ 0.14515 \\ 17 \end{array}$	$0.4 / 4.04$ $\text { a. } 2001$	$\begin{aligned} & 0.97401 \\ & 0.0401 \end{aligned}$ ©.auti	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$		
AN	$\begin{gathered} \text { \#. } 14040 \\ 0.64072 \\ 11 \end{gathered}$	$\begin{array}{r} a .194 n \\ 4.101 \\ 114 \end{array}$			$\begin{gathered} 4.1 u_{4} / 1 \\ i=1114 \\ 114 \end{gathered}$		$\begin{array}{r} 1010 \mathrm{H} \\ \mathrm{~N} .1141 \\ 13 \end{array}$	$\begin{array}{r} -4.181 \text { in } \\ 0.461 / 4 \\ 1 / 1 \end{array}$	$\begin{gathered} 0 . r a s i 4 \\ 0.164 \% \\ 11 \end{gathered}$	$\begin{array}{r} -0.2 \text { whb } \\ 0.44711 \\ 11 \end{array}$	$\begin{array}{r} 0.01 / 11 \\ 0.16015 \\ 11 \end{array}$	$\begin{gathered} 0.41612 \\ 0 . \operatorname{Hay} \\ 11 \end{gathered}$	$\begin{gathered} 0.014<\theta \\ 0 . \forall D H P \end{gathered}$ is	1. 1100711 H. HIILH	$\begin{aligned} & =111+4 \\ & 0.314 \\ & 10 \end{aligned}$
4.	$\begin{gathered} \text {-0. Ind } 11 \\ 0.545 \\ \text { it } \end{gathered}$		$\begin{aligned} & \text { ".racal } \\ & \text { u. inde } \end{aligned}$		a.on		$\begin{array}{r} 14.14104 \\ 0.143 \% \\ 10 \end{array}$	$\begin{gathered} 12.14 .14 \\ 0.11114 \\ 10 \end{gathered}$		$\begin{gathered} \text { U. } 180411 \\ 0.5111 \\ 11 \end{gathered}$	$\begin{gathered} -0.214 c h \\ 0.0 \cdot 1 / 15 \\ 13 \end{gathered}$	$\begin{gathered} .51111 \\ 4.05 \mathrm{H}_{4} \\ 15 \end{gathered}$	$\begin{gathered} 0.10 ع c y \\ 0.0414 \\ 11 \end{gathered}$	$\begin{array}{r} \text { U. } 1 / 147 \\ 4.3 / 41 \\ 11 \end{array}$	$\begin{gathered} 1 . \text { naturn } \\ 1.0 .4104 \\ 11 \end{gathered}$

	at I	Iman	IMIN	Intis	nisim	110.41	pais	Pution	- vap	niuviosa	InIENM	Ecost cos	arst
ALI	1.0.0.e"	$\begin{array}{r} -0.64243 \\ 0.0040 \end{array}$	$\begin{gathered} -0.696011 \\ 0.0816 \end{gathered}$	$\begin{array}{r} -0.6442 n \\ 0.013 \text { is } \end{array}$	$\begin{array}{r} -\theta . b 144 H \\ a . \theta<1 \end{array}$	$\begin{array}{r} 0.031972 \\ 0.8164 \end{array}$	$\begin{gathered} 0.19754 \\ 1.4320 \end{gathered}$	$\begin{aligned} & 0.110292 \\ & 0.51444 \end{aligned}$	$\begin{array}{r} 0.14047 \\ 8.5770 \end{array}$	$\begin{gathered} 0.24184 \\ 0.1375 \end{gathered}$	$\begin{array}{r} -0.64322 \\ 0.0040 \end{array}$	$\begin{aligned} & 0.13114 \\ & 0.6040 \end{aligned}$	$\begin{array}{r} -0.027<0 \\ 0.9144 \end{array}$
iman	$\begin{aligned} & -0 . \operatorname{tapas} \\ & 0.0840 \end{aligned}$	$\begin{array}{r} 1.00400 \\ 0.0000 \end{array}$	$\begin{gathered} 0.44 \% 63 \\ \text { U.Qun) } \end{gathered}$	$\begin{gathered} 0.44 n 9 h_{n} \\ 0.00 a 1 \end{gathered}$	$\begin{aligned} \text { Q.b1<A1 } \\ 0.4 ج 4\} \end{aligned}$	$\begin{array}{r} 0.17163 \\ 0.4454 \end{array}$	$\begin{array}{r} -u .0 b 521 \\ \text { u.Hepl } \end{array}$	$\begin{gathered} 0.19744 \\ 0.4441 \end{gathered}$	$\begin{array}{r} 0.15269 \\ 0.5450 \end{array}$	$\begin{array}{r} -n .21825 \\ 0 . J 1843 \end{array}$	$\begin{aligned} & 0.4 \text { ABBAH } \\ & 0.044 H \end{aligned}$	$\begin{array}{r} -0.05112 \\ 0.0165 \end{array}$	$\begin{array}{r} -0.109 \text { A6 } \\ 0.664 \mid \end{array}$
IHIN	$\begin{aligned} & -0 . \operatorname{tnhan} \\ & 0.0 .16 \end{aligned}$	$\begin{aligned} & 0.40463 \\ & 0.0001 \end{aligned}$	$\begin{gathered} 1 \text {. unueu } \\ \text { u.noue } \end{gathered}$	$\begin{array}{r} 0.45696 \\ 4.0001 \end{array}$	$\begin{gathered} 014784 \\ 0.01184 \end{gathered}$	$\begin{array}{r} -0.07457 \\ 0.8534 \end{array}$		$\begin{aligned} & 0 . \operatorname{lon} 11 \\ & 0.0151 \end{aligned}$	$\begin{array}{r} -4.10430 \\ 4.3142 \end{array}$	$\begin{array}{r} -0.01574 \\ 0.1652 \end{array}$	$\begin{gathered} 0.40 n 75 \\ 0.0509 \end{gathered}$	$\begin{array}{r} -6.199<4 \\ 1.4274 \end{array}$	$\begin{array}{r} -0.06760 \\ 0.78 Y H H \end{array}$
Inelu	$\begin{array}{r} -\theta \cdot 644 \text { ?n } \\ 0.00 \text { is } \end{array}$	$\begin{gathered} 0.4-446 \\ 0.9401 \end{gathered}$	$\begin{gathered} 0.0 \text { ostyb } \\ 0.4001 \end{gathered}$	$\begin{aligned} & \text { Houngo } \\ & \text { H.0uvo } \end{aligned}$	$\begin{gathered} 0.54 r_{1} 2 \\ 0.0140 \end{gathered}$	$\begin{array}{r} 0.11472 \\ 0.54>1 \end{array}$	$\begin{array}{r} -0.04711 \\ 0.4521 \end{array}$		$\begin{aligned} & \text { U. } 1 \text { I M M A } \\ & 0.0 \text { IH5 } \end{aligned}$	$\begin{array}{r} -0.20 \sin 4 \\ 0.4144 \end{array}$	$\begin{gathered} 0.44,1632 \\ 0.4500 \end{gathered}$	$\begin{gathered} -0.065<4 \\ 0.7969 \end{gathered}$	$\begin{array}{r} -0.04743 \\ 0.7005 \end{array}$
Houm	$\begin{array}{r} -8.51547 \\ 0.0271 \end{array}$	$\begin{gathered} 0 . b 1 P H 1 \\ 0.0 ? 4, \end{gathered}$	$\begin{gathered} 0.74<14 \\ 4.0004 \end{gathered}$	$\begin{aligned} & 0 . b 413, \\ & 0.01 H 7 \end{aligned}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{array}{r} -0.01479 \\ 0.0048 \end{array}$	$\begin{array}{r} -0.24+65 \\ 0.3000 \end{array}$	$\begin{gathered} 0.10557 h \\ 0.1135 \end{gathered}$	$\begin{array}{r} -4.117<4 \\ 0.0005 \end{array}$	$\begin{array}{r} 0.22145 \\ 4.3124 \end{array}$	$\begin{gathered} 0.21446 \\ 0 .<61 ? \end{gathered}$	$\begin{array}{r} -0.3 \times 9<1 \\ 0.100^{-1} \end{array}$	$\begin{aligned} & 0.111114 \\ & 0.6605 \end{aligned}$
Llumb	$\begin{gathered} \text { u.e3ver } \\ 0 . \operatorname{Hoy} \end{gathered}$	$\begin{array}{r} 0.17163 \\ 0.4454 \end{array}$	$\begin{array}{r} -0.07452 \\ 0.7514 \end{array}$		$\begin{gathered} -0.03414 \\ 0.0041 \end{gathered}$	$\begin{aligned} & 1 \text { ougau } \\ & 0.0 \text { unto } \end{aligned}$	$\begin{gathered} 0.114541 \\ 0.5044 \end{gathered}$	$\begin{gathered} -0.41 A B 4 \\ 0 . U N \& 4 \end{gathered}$	$\begin{aligned} & \text { O.H12zHI } \\ & 0 . H 011 \end{aligned}$	$\begin{array}{r} -\pi .54135 \\ 0.0041 \end{array}$	$\begin{aligned} & 0.11635 \\ & 0.4834 \end{aligned}$	$\begin{array}{r} 0.56347 \\ 4.0148 \end{array}$	$\begin{array}{r} 0.02526 \\ 0.420 \mathrm{an} \end{array}$
WA. ${ }^{\text {d }}$	$\begin{array}{r} 1.19754 \\ 0.43>0 \end{array}$		$\begin{array}{r} -n . e r b 44 \\ 0.3 n 72 \end{array}$	$\begin{array}{r} -0.041 s 1 \\ 0.4 b i l \end{array}$	$\begin{array}{r} -a .254 n h \\ \text { U. jun } \end{array}$	$\begin{gathered} 0.134510 \\ 0.5444 \end{gathered}$	$\begin{array}{r} 1.04000 \\ 0.0000 \end{array}$	$\begin{array}{r} -0.41811 \\ 0.0458 \end{array}$	$\begin{gathered} \text { M.bonss } \\ \text { H.HS12 } \end{gathered}$		$\begin{array}{r} -0.1<121 \\ 4.1,111 \end{array}$	$\begin{array}{r} 0.32 \mathrm{Cisfo} \\ 0.1876 \end{array}$	$\begin{array}{r} 0.16512 \\ 0.51 ? 6 \end{array}$
Phecior		$\begin{gathered} 0.14 ; 44 \\ 0.4441 \end{gathered}$	$\begin{array}{r} 0.3 n 431 \\ 10.7112 \end{array}$	$\begin{gathered} 0.14 n 47 \\ 0.4844 \end{gathered}$	$\begin{gathered} 0.10310 \\ 0.1335 \end{gathered}$	$\begin{array}{r} -0.41 n 54 \\ 0.0 H 14 \end{array}$	$\begin{array}{r} -0.41077 \\ 0.0611 \end{array}$	$\begin{array}{r} 1 \text { I Wungo } \\ 0.0 R 00 \end{array}$	$\begin{gathered} -0.34+12 \\ 0.1444 \end{gathered}$	$\begin{gathered} n \cdot 0 \text { Cosen } \\ 0.0011 \end{gathered}$	$\begin{array}{r} -0.13655 \\ 0.5350 \end{array}$	$\begin{gathered} -0 . b 4046 \\ 0.009+4 \end{gathered}$	$\begin{array}{r} -0.145 n 1 \\ 0.180 \% \end{array}$
LVAH	$\begin{gathered} 0.140 .102 \\ 0.5110 \end{gathered}$	$\begin{array}{r} 0.15204 \\ 0.5453 \end{array}$	$\begin{array}{r} -0.16,440 \\ n .5142 \end{array}$	$\begin{gathered} 0.11 \text { пнн } \\ 0.6 \text { (14\% } \end{gathered}$	$\begin{array}{r} -0.7 .1784 \\ 0.0405 \end{array}$	$\begin{gathered} \text { a.tupral } \\ \text { u.0nal } \end{gathered}$	$\begin{gathered} \text { u.bincss } \\ \text { u.0 } 11 \end{gathered}$	$\begin{array}{r} -\pi .134141 \% \\ 0.1445 \end{array}$	$\begin{array}{r} \text { 1.00von } \\ \text { u.0nou } \end{array}$	$\begin{gathered} -0.4 \text { ubith } \\ 0.0 E 10 \end{gathered}$	$\begin{array}{r} 0.04575 \\ 0.4 H<0 \end{array}$	$\begin{gathered} 0.462 n H \\ 0.0511 \end{gathered}$	$\begin{array}{r} -0.14<74 \\ 0.5134 \end{array}$
Pluylosat	$\begin{array}{r} 4.2 A^{4} \\ \cdot \cdot 1135 \end{array}$		$\begin{gathered} -0.017 b / 4 \\ 10.16 b c \end{gathered}$	$\begin{array}{r} -0.203144 \\ 0.4144 \end{array}$	$\begin{aligned} & 0.2214,5 \\ & 0.112 H \end{aligned}$	$\begin{array}{r} -n, \operatorname{Hen} 1 \text { s, } \\ 0.004 \end{array}$	$\begin{array}{r} -0.24>54 \\ 1.3127 \end{array}$	$\begin{gathered} \text { O.056ats } \\ \text { u.0n.11 } \end{gathered}$		$\begin{array}{r} 1 . a \operatorname{rano} \\ 0.00 a n \end{array}$	$\begin{gathered} -0 . j 3714 \\ 0.14 b i \end{gathered}$	$\begin{array}{r} -0 . H \text { Hubs } \\ 0.0001 \end{array}$	$\begin{array}{r} -0.34214 \\ 0.1015 \end{array}$
INIt.AN	$\begin{array}{r} -0 . n 41 ? ? \\ 0.0040 \end{array}$	$\begin{gathered} \text { O. } 4 \text { BHANA } \\ \text { O. Uiy } \end{gathered}$		$\begin{gathered} \text { a.4hus) } \\ \text { n.0 obon } \end{gathered}$	$\begin{gathered} 0 .+1844 \\ 0.20318 \end{gathered}$	$\begin{gathered} 0.110 .484 \\ 0.4454 \end{gathered}$	$\begin{array}{r} -11.12121 \\ 11.0111 \end{array}$	$\begin{array}{r} 0.1 \cdot 654 \\ 0.5334 \end{array}$	$\begin{array}{r} \text { U. } \begin{array}{c} 11 M_{i} 11 \\ \text { H. WA> } \end{array} \end{array}$	$\begin{aligned} & \text {-a. } 14114 \\ & 0.14,1 \end{aligned}$	$\begin{gathered} 1.00400 \\ 0.0040 \end{gathered}$	$\begin{array}{r} -0.8<361 \\ 0.13184 \end{array}$	$\begin{array}{r} 0.166445 \\ 0.5042 \end{array}$
ecources	$\begin{gathered} 0.11114 \\ 0.6040 \end{gathered}$		$\begin{array}{r} -0.1 .042 \mathrm{~s} \\ 0.4<1, \end{array}$		$\begin{aligned} & -0 . J 44>1 \\ & 0.100 \mathrm{H} \end{aligned}$	$\begin{gathered} 1.54147 \\ 0.0140 \end{gathered}$		$\begin{aligned} & -11.8 \cdot 919 \mathrm{HE} . \\ & 0.0 \cup 4 \mathrm{H} \end{aligned}$	$\begin{gathered} \text { U.4hrerh } \\ 0.0511 \end{gathered}$	$\begin{gathered} -0 \cdot \mathrm{H} 10!, 4 \\ 0.0001 \end{gathered}$	$\begin{gathered} -0.2<311 \\ 0.3724 \end{gathered}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{aligned} & 0.10445 \\ & 0.2107 \end{aligned}$
Aut:	$\begin{gathered} -0.0 j=8>4 \\ 0.4144 \end{gathered}$	$\begin{aligned} & -4.10 .046 \\ & 10.0,645 \end{aligned}$	$\begin{array}{r} -0.06 f_{1} 160 \\ 0.11 .108 \end{array}$	$\begin{array}{r} -4.0+147 \\ 0.700 ? \end{array}$		$\begin{array}{r} 0.0<4<6 \\ 0.4<118 \end{array}$	$\begin{gathered} 0.16318 \\ 0.5126 \end{gathered}$	$\begin{array}{r} -n .14 \cdot, 01 \\ 0,1,0,4 \end{array}$	$\begin{array}{r} -0.142 .44 \\ 0.1 .14 \end{array}$	$\begin{array}{r} -0.312144 \\ 0.1085 \end{array}$	$\begin{aligned} & 0.11,1,645 \\ & 0.1,09 ? \end{aligned}$	$0_{0} 30945$	$\begin{aligned} & 1.00000 \\ & 0.0000 \end{aligned}$

APPENDIX 3 l/

Population statistics and correlation matrices for climatic and soil factors used in the regression analysis of Gmelina arborea

1/ For the description of the variables and unit of measurement see appendix 7.

	4. 1	I،4AX	(ImIH	- Im.n	(millm	11 litll	1 Hall	Mnl.e. 11	- +vat	Pl uviossi	1 InILHM	Ecostcus	
at. 1	$\begin{aligned} & 1.400000 \\ & 0.100 \% 4 \end{aligned}$	$\begin{gathered} -n .44541 \\ 0.0704 \end{gathered}$			$\begin{array}{r} 0.4 \times 444 \\ 4.10110 \end{array}$	$\begin{array}{r} -0.4125 \text { r. } \\ 0.11+1 \end{array}$	$\left[\begin{array}{c} 0.0 .30 r_{1} 1 \\ 0 .+10 ? \end{array}\right.$	$\begin{array}{r} \text { n. Cshal } \\ 0.1401 \end{array}$	$\begin{gathered} -0.1 / n_{54} \\ u .14444 \end{gathered}$	$\begin{array}{r} 0.08975 \\ 0.1494 \end{array}$	$\begin{gathered} 0.2 .3 \text { HA } \\ 0.3 / 40 \end{gathered}$	$\begin{array}{r} -0.27119 \\ 0.4104 \end{array}$	$0.0 A \mathrm{JP}$
Itax		$\begin{gathered} \text { I ounne } \\ \text { H. Gilnt } \end{gathered}$	$\begin{gathered} \text { O.hale! } \\ \text { unuti } \end{gathered}$	$\begin{aligned} & \text { G.9) } 10<1 \\ & 4.04101 \end{aligned}$		$\begin{gathered} 0.14 \text { ri } 14 \\ 0.01104 \end{gathered}$			$\begin{aligned} & \text { a.bnncis } \\ & 0.0418 \end{aligned}$	$\begin{array}{r} -0.0 .0<\$ 1 \\ 0.0411 \end{array}$	$\begin{gathered} 0.11414 \\ 0.0<01 \end{gathered}$	$\begin{array}{r} 0.44050 \\ 0.0531 \end{array}$	$\begin{array}{r} 0.04473 \\ 0.0563 \end{array}$
Jmin	$\begin{array}{r} -4.441 / n \\ 4.00 n 1 \end{array}$	$\begin{aligned} & \text { Q.nh1>1 } \\ & \text { G. UJWi } \end{aligned}$		$\begin{aligned} & \text { W.n/Hi>1 } \\ & \text { i.NBUNI } \end{aligned}$	$\begin{array}{r} -4.19141 \\ 0.1118 \end{array}$	$\begin{aligned} & 0.41711 \\ & 0.10 \text { Y4 } \end{aligned}$	$\begin{gathered} 0.1170008 \\ 0.7449 \end{gathered}$	$\begin{aligned} -4.4 n i n! \\ 0.0 n j! \end{aligned}$	$\begin{aligned} & 0.44411 \\ & \text { O.UN15H } \end{aligned}$	$\begin{array}{r} -0.30 .1 \mathrm{mo} \\ 0.3521 \end{array}$	$\begin{gathered} -0.1 \text { jing } \\ 0 . \text { ROUK } \end{gathered}$	$\begin{array}{r} 0.41104 \\ 0.1137 \end{array}$	$\begin{array}{r} 4.103<6 \\ 0.7035 \end{array}$
1 atr. 11	$\begin{array}{r} -0.70441 \\ 0.00 ? 1 \end{array}$	$\begin{aligned} & \text { G. } 4 \mathrm{Ju} \text { ? } \\ & 0.0011 \end{aligned}$	$\begin{aligned} & 0 .+1.12) \\ & 1.0 .01111 \end{aligned}$					$\begin{array}{r} -0.9 .140 \mathrm{OH} \\ \text { O.UUN } \end{array}$	$\begin{gathered} \text { u. } \begin{array}{c} 011 \end{array} \\ \text { u. UNI? } \end{gathered}$	$\begin{array}{r} -0.48 \text { byn } \\ 0.0 \beta>4 \end{array}$	$\begin{gathered} -0.01,106 \\ 0.41 \operatorname{sins} \end{gathered}$.56341	0.12411 0.6464
Hinme	$\begin{gathered} 0.4 / 5484 \\ 4.1004 \end{gathered}$	$\begin{array}{r} -\pi . n c i g n \\ 0.0 u t y \end{array}$	$\begin{gathered} -0.34134 \\ 0.1316 \end{gathered}$	$\begin{aligned} & -0 . n j n / s \\ & 0.011104 \end{aligned}$		$\begin{array}{r} 0.41484 \\ 0.01101 \end{array}$	$\begin{aligned} & -4.44954 \\ & 11.11 P 5 ? \end{aligned}$	$\begin{aligned} & 11.15411 \\ & 0.11101 \end{aligned}$	$\begin{array}{r} -4.014 \mathrm{H}_{4} 4 \\ \mathrm{O} .00 \mathrm{O} \end{array}$	$\begin{gathered} 0.14814 \\ 0.4000 \end{gathered}$	$\begin{array}{r} -0.04015 \\ 0.0109 \end{array}$	$\begin{gathered} -0 . H_{1} 1344 \\ 0.00001 \end{gathered}$	$.16704$
1.1:011	$\begin{array}{r} -4.417 .2 \\ 0.11>4 \end{array}$	$\begin{aligned} & n .1407 \% \\ & 1.0004+ \end{aligned}$	$\begin{aligned} & 4.41111 \\ & 16.11+4.1 \end{aligned}$	$\begin{gathered} 0 . \operatorname{sinun} 1 \\ 0.11111 \end{gathered}$			$\begin{aligned} & \text { U. } \because 116410 \\ & 10.04114 \end{aligned}$			$\begin{gathered} -0 . H 11+4 A_{1} \\ 0.01111 \end{gathered}$	$\begin{aligned} & 0.31050 \\ & 0 . j u 23 \end{aligned}$	0. 1 1rash 0.0014	$\begin{array}{r} -0.21014 \\ 0.4210 \end{array}$
Hnos	$\begin{aligned} & \text { W. } 0 \text { IUn } \\ & 4.410 ? \end{aligned}$	$\begin{gathered} 0.11 \cdot 1+2 \\ 0.1,14 \end{gathered}$	$11.0 / 0 n 2$ 4.7044	$\begin{array}{r} 0.24 \cdot 241 \\ 11.3519 \end{array}$		$\begin{aligned} & 0.311,114 \\ & 0.040 \% \end{aligned}$	$\begin{aligned} & 1.00000 \\ & 0.0000 \end{aligned}$	$\begin{array}{r} -4.5 H+124 \\ n \cdot u \ln 1 \end{array}$	$\begin{aligned} & \text { ".apled } \\ & \text { u.olisy } \end{aligned}$	$\begin{array}{r} 0.54441 \\ 0.0151 \end{array}$	$\begin{gathered} 0.0 \text { 0.b } 52 \\ 0 . \operatorname{ycss} \end{gathered}$	0.64984 0.0064	0.05167
Hetecin	$\begin{aligned} & \text { U. PSi; } 1 \\ & 4.14 a 1 \end{aligned}$	$\begin{gathered} -4 . \operatorname{ban} \cdot 0 \mathrm{H} \\ \text { D.0 } \end{gathered}$	$\begin{gathered} -11.4 a 141 \\ 0.11 a / 7 \end{gathered}$	$\begin{array}{r} \text {-0.orsuby } \\ \text { W. UUH I } \end{array}$	$\begin{aligned} & \text { W.7541; } \\ & 0.0000 ; \end{aligned}$	$\begin{array}{r} -0.12 n 20 \\ 0.0 n 14 \end{array}$	$\begin{gathered} -0.4+12 \pi \\ \text { U.UIGI } \end{gathered}$	$\begin{aligned} & 1.00000 \\ & 0.01001 \end{aligned}$	$\begin{array}{r} -0.403<0 \\ 0.0001 \end{array}$	$\begin{gathered} 0.43 / 56 \\ 0.0001 \end{gathered}$	$\begin{array}{r} -4.000 .11 \\ n .9 \rightarrow+1 \end{array}$	$\begin{array}{r} -0.45561 \\ 0.0001 \end{array}$	-0.203417
cuat	$\begin{array}{r} -1 \cdot 11 \mathrm{H}_{44} \\ 4.1444 \end{array}$	$\begin{gathered} \text { n.annes } \\ 0.0112 \end{gathered}$	$\begin{aligned} & 11.44411 \\ & 11.10 \mathrm{H} 4 \mathrm{H} \end{aligned}$	$\begin{array}{r} 10.70112 \\ 0.002^{4} \end{array}$	$\begin{aligned} & -0.948444 \\ & 0.01101 \end{aligned}$	$\begin{gathered} 0 . H 4201 \\ 0.0001 \end{gathered}$	$\begin{aligned} & 0.341>4 \\ & 0.1154 \end{aligned}$		$\begin{array}{r} 1.00000 \\ 0.4000 \end{array}$	$\begin{array}{r} 0.40541 \\ 0.0002 \end{array}$	$\begin{array}{r} 0.00114 \\ 0 . y / 8 y \end{array}$	$\begin{gathered} 0.401 .51 \\ 0.0001 \end{gathered}$	0.01114
maviosio	$\begin{gathered} \text { U.04h7j } \\ 0.7644 \end{gathered}$	$\begin{array}{r} -0.50,41 \\ 0.0611 \end{array}$	$\begin{array}{r} -0.111144 \\ 0.8 i>1 \end{array}$	$\begin{gathered} -0.4 / 2 y+n \\ n .01024 \end{gathered}$	$\begin{aligned} & 0.164 / 8 \\ & 0.0 N 004 \end{aligned}$	$\begin{array}{r} -0.40 Y \mathrm{HI} \\ 0.0001 \end{array}$	$\begin{gathered} -0.5 .8647 \\ 0.0151 \end{gathered}$	$\begin{aligned} & 0 . H 415 n \\ & 0.0001 \end{aligned}$	$\begin{array}{r} -0.40 t i 41 \\ 0.000 ? \end{array}$	$\begin{aligned} & 1.0000 u \\ & 0.0000 \end{aligned}$	$\begin{array}{r} -0.44<44 \\ 0.0461 \end{array}$	$\begin{array}{r} -0 . H 8136 \\ 0.0001 \end{array}$	$\begin{array}{r} 0.01615 \\ 0.45 ? 7 \end{array}$
INTI Mm	$\begin{aligned} & 0.27 \mathrm{FH} \\ & 4.1740 \end{aligned}$	$\begin{gathered} 0.11414 \\ 0.72111 \end{gathered}$	$\begin{gathered} -0.1 \operatorname{lnc}, \mathrm{~h} \\ 4.0 .0410 \end{gathered}$	$\begin{gathered} -10.0 n \text { iun } \\ 0.0164 \end{gathered}$		$\begin{aligned} & 0.1 .0150 \\ & 0.20>5 \end{aligned}$	$\begin{aligned} & 0.4>8, ~ \\ & 10.424 \end{aligned}$	$\begin{aligned} -0.010031 \\ 0.4 \rightarrow 14 \\ 0 \end{aligned}$	$\begin{array}{r} -0.00119 \\ 0.9 / 4 \% \end{array}$	$\begin{array}{r} -0.44<6 y \\ 0.04 \mathrm{y} \end{array}$	$\begin{aligned} & 1.00000 \\ & 0.00100 \end{aligned}$	$\begin{array}{r} -0.0>401 \\ 0.9151 \end{array}$	$\begin{array}{r} -0.27369 \\ 0.3014 \end{array}$
thase cias	$\begin{array}{r} -4.22114 \\ 0.4104 \end{array}$	$\begin{gathered} \text { n.0.0u4n } \\ 0.0<11 \end{gathered}$	$\begin{gathered} 0.4110_{4} \\ 0.111 \end{gathered}$	$\begin{gathered} 0.5+1 \tan 7 \\ 4.11 / \sin \end{gathered}$	$\begin{array}{r} -4 .+11114 \\ 0.01441 \end{array}$	$\begin{aligned} & 0.720446 \\ & 0.0416 \end{aligned}$	$\begin{aligned} & \text { U. } 6.44 \mathrm{Na}_{4} \\ & 0.010 .04 \end{aligned}$	$\begin{array}{r} \text {-n. ysintir } \\ 0.11801 \end{array}$	$\begin{aligned} & 0.04151 \\ & 0.0001 \end{aligned}$	$\begin{array}{r} \text {-n.AH.156 } \\ \text { U. } 011101 \end{array}$	$\begin{array}{r} -0.0<401 \\ 0.4151 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{array}{r} .1259 n \\ 0.6420 \end{array}$
ach	$\begin{aligned} & 0.943311 \\ & 11.16 i 77 \end{aligned}$	$\begin{aligned} & \text { O.H4.0. } 1 \\ & 0 . H \text { S } 1 \end{aligned}$	$\begin{aligned} & \text { A. } 1 \text { nson } \\ & 10.10 \text { is } \end{aligned}$	$\begin{gathered} 0.12 \pi \cdot 11 \\ 0.640,14 \end{gathered}$	$\begin{gathered} 0.10,104 \\ 0.516,4 \end{gathered}$	$\begin{aligned} & -\mathrm{a} . \int 11_{1} 14 \\ & 0.6>111 \end{aligned}$	$\begin{array}{r} \text { O.asso. } 1 \\ 11 . H_{4} 41 \end{array}$	$\begin{array}{r} -0 .<0141 \\ 0.44 .364 \end{array}$	$\begin{gathered} 0.01114 \\ 0.10 \% 11 \end{gathered}$	$\begin{aligned} & 0.01615 \\ & 0.4321 \end{aligned}$	$\begin{gathered} -0.215007 \\ 0.1014 \end{gathered}$	$\begin{gathered} 0.12548 \\ 0.64<0 \end{gathered}$	$\begin{aligned} 1.00000 \\ 9.0000 \end{aligned}$

ans)	$\begin{aligned} & \text { 1.*acen } \\ & 0.0 \text { ent } \end{aligned}$		$\begin{array}{r} -0 . \mathrm{H} 6<15 \\ 0.0004 \end{array}$		$\begin{gathered} \text { 4. Absta? } \\ 0.0141 \end{gathered}$	$\begin{array}{r} -0.45401 \\ 0.13 \text { int } \end{array}$	$\begin{array}{r} -0.04194 \\ 0.0164 \end{array}$	$\begin{gathered} 0.2 a j a t \\ 0.5275 \end{gathered}$	$\begin{array}{r} -0.3 n 6.161 \\ 0 . ? 406 \end{array}$	$\begin{aligned} & -0.04467 \\ & 0.0^{2}+04 \end{aligned}$	$\begin{aligned} & 44 \\ & 09 \end{aligned}$	$\begin{aligned} & 191 \\ & 102 \end{aligned}$	$\begin{aligned} & 4 h \\ & 3 S \end{aligned}$		Pubut
Asill	$\begin{array}{r} -6.01716 \\ 0.0 ? 44 \end{array}$	$\begin{aligned} & 1: 00100 y \\ & 0.00 n 0 \end{aligned}$	$\begin{aligned} & \text { O. } 140 \text { uny } \\ & \text { U. } 86+\mathrm{H} \end{aligned}$	$\begin{aligned} & 0 .<3104 \\ & 4.454 ? \end{aligned}$	$\begin{array}{r} 0.1202 \pi \\ 0.00 \mathrm{~N} \end{array}$	$\begin{aligned} & 0.57450 \\ & 0.06 ? 1 \end{aligned}$	$\begin{gathered} 0.73175 \\ 0.406 .4 \end{gathered}$	$\text { - } 0.4 \text { IPH: }$	$\begin{aligned} 0.4010 N 1 \\ U . \mid N 5 甘 \end{aligned}$	$\begin{aligned} & 0.426 A t \\ & 0.1064 \end{aligned}$	$\begin{array}{r} -4.35518 \\ 0.2565 \end{array}$	-0. 34669	$\begin{aligned} & 10 \\ & 55 \end{aligned}$	$\begin{gathered} 4 n 1 \\ 015 \end{gathered}$	$\begin{aligned} & 446.23 \\ & 10.14 \end{aligned}$
aclat	$\begin{array}{r} -0.45 ? 15 \\ 0.8004 \end{array}$	$\begin{aligned} & \text { O. Ituhy } \\ & \text { g.th? } \end{aligned}$	$\begin{aligned} & \text { 1. unyou } \\ & \text { a. ouno } \end{aligned}$	$\begin{aligned} & 0.07 n+5 n \\ & 0 . \Delta u n ? \end{aligned}$	$\begin{aligned} & \text { U. in ilis } \\ & \text { U. } x^{4} 0 \mathrm{n} \end{aligned}$	$\begin{aligned} & 0.1 \text { ynk:i } \\ & 0.540 \% \end{aligned}$	$\begin{aligned} & \text { U. Jether } \\ & \text { U. } 21 / a_{4} \end{aligned}$	11	$\begin{aligned} & 141048 \\ & 1.540 . \end{aligned}$	$\begin{array}{r} -4.211 \mathrm{Hm} \\ 0.4 \cap \mathrm{BJ} \end{array}$	$\begin{array}{r} -0.5 y 456 \\ 0.0397 \end{array}$	$\begin{array}{r} -0.6 n 366 \\ 0.0117 \end{array}$	$\begin{array}{r} 0.68664 \\ 0.0119 \end{array}$	$\begin{array}{r} -0.24 z y 4 \\ 0 . \operatorname{Honl} \end{array}$	
aca	$\begin{array}{r} -0.1 \operatorname{lnn} 23 \\ \text { U.4h?? } \end{array}$	\because	e_{0}	$\begin{aligned} & 1.00040 \\ & 0.0 n 0 a \end{aligned}$		$\begin{gathered} 0.141 J 0 \\ 0.0 \mathrm{on} 14 \end{gathered}$		$\begin{array}{r} -0.4 .! \\ 0.1 \end{array}$	$\begin{gathered} 0 . n 70 n 4 \\ 0.400 ; \end{gathered}$	$\begin{array}{r} 0.0 \text { the } 2 \pi \\ 0.0140 \end{array}$	$\begin{gathered} 441460 \\ e, 1511 \end{gathered}$	$\begin{array}{r} 0.43195 \\ 0.1545 \end{array}$	$0.21 \mathrm{HK}$	$\begin{aligned} & 0.00504 \\ & 0.4 \operatorname{san} 1 \end{aligned}$	
Anvo	$\begin{array}{r} -0 . \operatorname{ancsinz} \\ 0.0141 \end{array}$	$\begin{aligned} & \text {-. } 12020 \\ & \text { a.0nat? } \end{aligned}$	$\begin{aligned} & \text { a. } \operatorname{loglis}_{6.2404} \end{aligned}$	0.8	$\begin{aligned} & \text { I Huntua } \\ & \text { U.0004 } \end{aligned}$	$\begin{gathered} 0.34>0 \text { ! } \\ 0.04 \% 0 \end{gathered}$	$\begin{gathered} 0.1 \operatorname{sen}_{64} \\ 0.004 .1 \end{gathered}$	0.0102	U.b日rl4 0. 1446 ?	$\begin{gathered} 0.4 \text { un? } \\ 0.1 .113 \end{gathered}$	0.1444	$\begin{array}{r} 3 H 082 \\ 0.2+2<0 \end{array}$	$\text { . } 1258$	$\begin{aligned} & \text { U.11sic } 1 \\ & 0.7 e n y \end{aligned}$	
A14A	$\begin{array}{r} -4.45401 \\ 0.1 \text { ini } \end{array}$	$\begin{gathered} 0.4 i v i \\ y .0 .2 \end{gathered}$	0.64	O. Ka	$0.04 i$	0.0040	$\begin{aligned} & \text { U.garyy } \\ & 0.01 .36 \end{aligned}$	$\text { H. } 344:$	$\begin{gathered} 0.1 \text { nthn } 4 \\ 0.4613 \end{gathered}$	$\begin{array}{r} 0.146 .10 \\ 0.51 .20 \end{array}$	$\begin{array}{r} -0.14114 \\ 0.114618 \end{array}$	$\begin{array}{r} -0.20019 \\ 0.5115 \end{array}$	$\begin{array}{r} -0.15210 \\ 0.6110 \end{array}$	$\begin{aligned} & 0.116414 \\ & 0.0+561 \end{aligned}$	
ak	$a, 0>44$	$\begin{gathered} 0.111 \\ 0.00 \alpha \end{gathered}$		0		0.01	$\begin{array}{r} 1.00000 \\ 0.0 n 00 \end{array}$	$\begin{gathered} 4.11 .012 n \\ 0.1731 \end{gathered}$	$\begin{array}{r} 0.4 .1215 \\ 0.1506 \end{array}$	$\begin{aligned} & 0.1 / 546 \\ & 0.22 \mathrm{~N}_{4} \end{aligned}$	$\begin{array}{r} -4.28651 \\ 0 . J 666 \end{array}$	$\begin{array}{r} 0 . j a g 15 \\ 0 . J ? \times 4 \end{array}$	$\begin{array}{r} 0 . j 0603 \\ 0.21 S 2 \end{array}$	$\begin{aligned} & 0.14441 \\ & 10.05 \text { is } \end{aligned}$	
altec	0.5215	0.914		$\begin{gathered} \text {-0.a.sega } \\ 0.4 \mathrm{cun} \end{gathered}$	B. hot	$0.144 .1$	$\begin{gathered} 0.041 p_{4} \\ 0.11 J 1 \end{gathered}$	$\begin{gathered} 1.00000 \\ 0.0000 \end{gathered}$	$\begin{array}{r} -0.3 n 0110 \\ 0, j 4,10 \end{array}$	$\begin{array}{r} -0 .>6530 \\ 0.4045 \end{array}$	$\begin{aligned} & 0.71+30 \\ & 0.0073 \end{aligned}$	$\begin{gathered} 0.04111 \\ 0.0123 \end{gathered}$	$\begin{aligned} & 0.10344 \\ & 0.0101 \end{aligned}$	$\begin{array}{r} -u \cdot 0^{24}+4 y u \\ 11,0151 \end{array}$	$\begin{aligned} & 110.0 .8+461 \\ & 0.0184 \end{aligned}$
->a Jd	8.7406	0.185	$\begin{aligned} & 4.101 \\ & 11,05 \end{aligned}$	0.000	$\begin{gathered} 0.50>14 \\ 0.0462 \end{gathered}$	0.541	$\begin{aligned} & 4.41715 \\ & 0.1506 \end{aligned}$	$\begin{array}{r} -0.16041 \\ 0.24400 \end{array}$	$\begin{gathered} 1.00 u 08 \\ \text { U.DOevo } \end{gathered}$	$\begin{aligned} & 0.4471 \\ & 0.0005 \end{aligned}$	$\begin{array}{r} -0.70 \mathrm{n45} \\ 0.0102 \end{array}$	$\begin{array}{r} -0.10015 \\ 0.0112 \end{array}$	0.01	$\begin{aligned} & 0.011401 \\ & 0.0412 \end{aligned}$	
arot	0.11704	0.100	$\begin{array}{r} -\pi .<11 \\ 0.46 \end{array}$	0.014	$0.1+i$	0.5620	$\begin{array}{r} 0.3154 N \\ 0.22 \mathrm{~A} \end{array}$		$\begin{gathered} \text { W. N4 } 731 \\ \text { U. } 10005 \end{gathered}$	$\begin{aligned} & \text { I ouves } \\ & \text { o.0nnoe } \end{aligned}$	$\begin{array}{r} -0.44 .115 \\ 0.1441 \end{array}$	0.41	$\begin{array}{r} -0.17111 \\ 0.2264 \theta \end{array}$	$\begin{aligned} & -0.0 \cup H 14 \\ & \text { U.\|til } \end{aligned}$	$\begin{aligned} & 0.00 \cdot 16 \\ & 4.04 \text { ins } \end{aligned}$
ac	$\begin{aligned} & \text { O. } 65444 \\ & \text { B. A>0 } \end{aligned}$	$11.8+5$	$\begin{array}{r} -4.5445 n \\ 0.11543 \end{array}$	0.18	$\begin{array}{r} -0.140,12 \\ 0.2444 \end{array}$	$\begin{array}{r} -0.1417 \\ 4.046 \end{array}$			$\begin{array}{r} 4.70 n 44 \\ 0.0102 \end{array}$	$\begin{array}{r} -0.46315 \\ 0.1441 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{gathered} 0 . y y r y y \\ 0.0041 \end{gathered}$	$\begin{aligned} & 0.94135 \\ & 0.0401 \end{aligned}$	$\begin{aligned} & -0.0 \text { max } \\ & \text { O.Hact? } \end{aligned}$	
Ama ${ }^{\text {a }}$	$\begin{aligned} & \text { Hiplif } \\ & \text { U. } 111612 \end{aligned}$	$\begin{array}{r} -9.7 \text { Hft9 } \\ 4 .<16 \mid \end{array}$	$\begin{array}{r} -4.001613 \\ 4.0171 \end{array}$	0.1945		$\begin{array}{r} -0.20014 \\ 0.5115 \end{array}$		$\begin{aligned} & \text { n.tr111 } \\ & 0.0121 \end{aligned}$	$\begin{array}{r} -0.10010 j \\ 0.0112 \end{array}$	$\begin{array}{r} 0.4 .418 \\ 0.145 \end{array}$	$\begin{gathered} 0.94194 \\ 0.0001 \end{gathered}$	$\begin{array}{r} 1.001000 \\ 0.0000 \end{array}$	$\begin{aligned} & 0.9 \text { Iaha } \\ & 0.0 \text { U0I } \end{aligned}$	$\begin{array}{r} -4.1104411 \\ 0.1424 \end{array}$	
an		$\begin{array}{r} -0.5 \pm 114 \\ 0.0 .155 \end{array}$	$\begin{gathered} \text {-a-nenont" } \\ \text { U.01/it } \end{gathered}$	$\begin{array}{r} -0.34 \mathrm{inn} \\ 0.71 H h \end{array}$		$\begin{array}{r} -u .15710 \\ 0.6170 \end{array}$	$\begin{array}{r} -0 . J n n 01 \\ 0.1152 \end{array}$	$\begin{gathered} 0.71044 \\ 0.0100 \end{gathered}$	$\begin{aligned} -0.6 n 04 d \\ 0.0194 \end{aligned}$	$\begin{array}{r} -0.111111 \\ 0.22 n 64 \end{array}$	$\begin{aligned} & 0.941 \mathrm{Jt} \\ & 0.0041 \end{aligned}$	$\begin{gathered} 0.418 \mathrm{yat} \\ 0.0001 \end{gathered}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	11.455	
ar	$\begin{array}{r} -10.14765 \\ 9.5445 \end{array}$	$\begin{aligned} & 0.4 \text { HMU1 } \\ & 0.1974 \end{aligned}$	$\begin{array}{r} \text {-0.Unlys } \\ \text { H.ADUI } \end{array}$	$\text { a. } 0 \text { untions }$	$\begin{gathered} 0.1154 .1 \\ 0.71004 \end{gathered}$	$\begin{gathered} -0.0547 n \\ 0 . \text { Mnsi } \end{gathered}$	0.14441 $0.0 .413$	$\begin{array}{r} -0.6 .4040 \\ 0.4357 \end{array}$	$\begin{gathered} 0.01142 \\ 4.94 i / 2 \end{gathered}$	$\begin{array}{r} -0.010 \mathrm{H} 14 \\ 0.1614 \end{array}$	$\begin{array}{r} -0.07681 \\ 0.062 ? \end{array}$	$\begin{array}{r} -0.06414 \\ 0.18424 y \end{array}$	$\begin{array}{r} -4.2 \text { Iffh } \\ 0.455 \text { ? } \end{array}$	$\begin{aligned} & 1.010 n u l \\ & \text { H. buen } \end{aligned}$	$\begin{aligned} & 10.51,240 \\ & 0.1174 \mathrm{H} \end{aligned}$
CAN	$\begin{array}{r} -0.14 n a 4 \\ 0.7040 \end{array}$	0.74465 0.144 .0	$\begin{aligned} & 0.11124 \\ & 11.3<15 \end{aligned}$	$\begin{gathered} -0.046 \text { en } \\ 0.041144 \end{gathered}$	$\begin{gathered} 0.1 \text { elo. } 9 \\ 6,04 p t \end{gathered}$	$\begin{gathered} -0.40184 \\ 0.1 \otimes 544 \end{gathered}$	$\begin{aligned} & 0.05151 \\ & 1.4737 \end{aligned}$	$\begin{array}{r} -0.4 . P_{4} 1 \\ 0.0 ? 74 \end{array}$	$\begin{aligned} & 0.13117 \\ & 0.6 .5114 \end{aligned}$	$\begin{gathered} 0.00534 \\ 0.94+4 \end{gathered}$	$\begin{array}{r} 0.2 \text { Hison } \\ 0.17 i x \end{array}$	$\begin{array}{r} -0.24502 \\ 0.4226 \end{array}$	$0.06+86$	$\begin{aligned} & u . b 1124 n \\ & 0.11744 \end{aligned}$	$\begin{gathered} 1.4 n O A t \\ 0.004 E \end{gathered}$

APPENDIX 4 - //

Population statistics and correlation matrices for climatic and soil factors used in the regression analysis of Pinus caribaea

1/ For the description of the variables and unit of measurement see appendix 7.

	A5A4)	ASILI	arcay	ara	$a^{\prime \prime \prime} 0_{1}$	alla	an	ar.te:	asall	nHH^{2}	AC.	and	AN	A^{18}	atani	
abaull		$\begin{gathered} -0.304851 \\ \text { C. OHt } \end{gathered}$	$\begin{array}{r} -4.4 \geqslant 452 \\ 0.11101 \end{array}$	$\begin{array}{r} -0.13144 \\ 0.0460 \end{array}$	$\begin{gathered} -\theta . J 1.550 \\ 0.05187 \end{gathered}$	$\begin{gathered} -0.0 \text { lhe } \\ \text { U. } 30114 \end{gathered}$	$\begin{array}{r} -0.2 \sin \mu_{m} \\ 0.8 n 07 \end{array}$	$\begin{array}{r} 0.31+24 \\ 0.1114 \end{array}$		$\begin{array}{r} 0.00670 \\ 0.4 / 41 \end{array}$	$\begin{aligned} & 0.01524 \\ & 0.0001 \end{aligned}$	$\begin{gathered} 0 .+1156 \\ 0.00 u 1 \end{gathered}$	$\begin{array}{r} 0.11263 \\ 0.0001 \end{array}$	$\begin{array}{r} -4 . e n b r t \\ u .1401 \end{array}$	$\begin{array}{r} -4.1464) \\ 0.4(1) \end{array}$	
ASILI	$\begin{array}{r} -1.34457 \\ 4.0447 \end{array}$	$\begin{array}{r} \text { I rasene } \\ \text { H.guen } \end{array}$	$\begin{array}{r} -0.01604 \\ 0.21040 \end{array}$	$\begin{aligned} & 0.16741 \\ & 0.0001 \end{aligned}$	$\begin{aligned} & 9.71601 \% \\ & 0.0001 \end{aligned}$	$\begin{array}{r} \text { n. ج.944\% } \\ 0.1 \text { ith } \end{array}$	$\begin{array}{r} 0.73146 \\ 0.0 n u 1 \end{array}$	$\begin{aligned} & 0.1+4+1 \\ & 0.153 k \end{aligned}$	$\begin{array}{r} 0.71442 \\ 0.0001 \end{array}$	$\begin{array}{r} 0 . \tan 40 \\ 0.0002 \end{array}$	$\begin{gathered} -0 . J j y u y \\ 0.0116 \end{gathered}$	$\begin{array}{r} -9.18476 \\ 0.0523 \end{array}$	$\begin{array}{r} -0.25224 \\ 0.213 \mathrm{a} \end{array}$	$\begin{gathered} \text { W. } 61112 \\ n .00005 \end{gathered}$	$\begin{gathered} -0.1 \text { uns } 4 \\ 0.1>31 \end{gathered}$	
melay		$\begin{array}{r} -0.0189 n \\ 0.0340 \end{array}$	$\begin{aligned} & \text { B.unyou } \\ & \text { u.auOu } \end{aligned}$	$\begin{array}{r} 0.0244 n \\ 4.014 n 3 \end{array}$	$\begin{gathered} 0.0 y_{n} 14 \\ 0.1_{3} 141 \end{gathered}$	$\begin{array}{r} -0.10742 \\ 0.61 .14 \end{array}$	$\begin{array}{r} -0.00 .103 \\ 0.1547 \end{array}$	$\begin{array}{r} -0.41180 \\ 0.0164 \end{array}$	$\begin{array}{r} 0.1 \text { Hi ? } 18 \\ 0.3116 \end{array}$	$\begin{array}{r} -0.24785 \\ 0.1544 \end{array}$	$\begin{array}{r} -0.51440 \\ 0.0021 \end{array}$	$\begin{array}{r} -0.5 \text { Shayb } \\ 0.0075 \end{array}$	$\begin{array}{r} -0.65450 \\ 0.0003 \end{array}$	$\begin{gathered} 0.011141 \\ 10.2241 \end{gathered}$	$\begin{gathered} 0.21<100 \\ 0.1184 \end{gathered}$	
ACA	$\begin{array}{r} -0.33146 \\ 0.0460 \end{array}$	$\begin{aligned} & \text { e. Incivi } \\ & \cdots=0001 \end{aligned}$	$\begin{gathered} 0.0 p+448 \\ 0 . A H A B I \end{gathered}$	$\begin{gathered} \text { 1.0.uaua } \\ \text { u.0119n } \end{gathered}$	$\begin{gathered} \text { u.voute? } \\ \text { u.unnot } \end{gathered}$	$\begin{gathered} \text { U. } 056 y 1 \\ 0.0 / 11 \end{gathered}$	$\begin{aligned} & \text { U.inneif } \\ & 0.0001 \end{aligned}$	$\begin{array}{r} 0.4<111 \\ 0.011 ? \end{array}$	$\begin{gathered} \text { O.Nal422 } \\ 0.00101 \end{gathered}$	$\begin{gathered} 0.0 i n b A K \\ 0.0004 \end{gathered}$	$\begin{array}{r} -0.1 n 4.35 \\ 0.3531 \end{array}$	$\begin{array}{r} -0.2004 y 3 \\ 0.3031 \end{array}$	$\begin{array}{r} -0.04625 \\ 0 . A<25 \end{array}$	$\begin{gathered} 10 \cdot \operatorname{lon} 1>1 \\ 0.0!0,0 H \end{gathered}$	$\begin{array}{r} -n .1+b r 1 \\ 0.0 \cdot 14 \end{array}$	
athe	$\begin{array}{r} -4.11 \text { irian } \\ 0.0541 \end{array}$	$\begin{aligned} & 0.11,064 \\ & 0.04 A \mathrm{i} \end{aligned}$		$\begin{aligned} & \text { •. "rovir } \\ & \text {. ouvol } \end{aligned}$	$\begin{aligned} & \text { I duanu } \\ & \text { n. Uunau } \end{aligned}$	$\begin{gathered} 0.511041 \\ 0.011416 \end{gathered}$	$\begin{gathered} \text { U.HOLUU } \\ \text { H.NODNI } \end{gathered}$	$\begin{gathered} 0.41 n_{2} 11 \\ 0.0144 \end{gathered}$	$\begin{gathered} \text { O.HOL', } \\ \text { O.ORUI } \end{gathered}$	$\begin{array}{r} \text { U.iscoll } \\ 0.00 .22 \end{array}$	$\begin{array}{r} -0.21281 \\ 0.1174 \end{array}$	$\begin{array}{r} -0.24444 \\ 0.1442 \end{array}$	$\begin{array}{r} -0.11261 \\ 0.5816 \end{array}$		$\begin{array}{r} -n .41 \text { 1.10n } \\ 11 .+1154 \end{array}$	
ana		a. pinyn. $0.11 \text { 1sn }$		$\begin{aligned} & 0.18 r .01 \\ & 0.01 .15 \end{aligned}$	$\begin{gathered} 0.5 .1 H_{4} 1 \\ 0.0041 \end{gathered}$	$\begin{array}{r} 1.00000 \\ \text { B.000u } \end{array}$	$\begin{array}{r} 0.47711 \\ 0.0131 \end{array}$	$\begin{gathered} \text { A. i } 10.411 \\ u .1101 \end{gathered}$	$\begin{gathered} 0.31501 \\ 0.1180 \end{gathered}$	$\begin{gathered} 0.11326 t \\ 0.510 . \end{gathered}$	$\begin{array}{r} -0.1310 \mathrm{n} \\ 0.4613 \end{array}$	$\begin{gathered} -0.1 / 896 \\ 0.34 \mathrm{Hi} \end{gathered}$	$\begin{aligned} & 0.04505 \\ & 0.4276 \end{aligned}$	$\begin{gathered} \text { U.lnir2n } \\ \\|,+1 \cdots 0 . \end{gathered}$		
An		$\begin{gathered} 0.151410 \\ 0.9401 \end{gathered}$	$\begin{array}{r} -v .46303 \\ 0.1>+1 \end{array}$		$\begin{gathered} 0 . H 0404 \\ 0.0001 \end{gathered}$	$\begin{array}{r} 0.41111 \\ 0.0111 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{aligned} & 0.101140 \\ & 0.0461 \end{aligned}$	$\begin{gathered} 0 . \operatorname{nal} 111 \\ 0.0 \cup 02 \end{gathered}$	$\begin{gathered} 0.629+1 \\ 0.0000 \end{gathered}$	$\begin{array}{r} -4.14400 \\ 0.1294 \end{array}$	$\begin{array}{r} -0.21014 \\ 0.2 H A 5 S \end{array}$	$\begin{array}{r} -0.1324 .1 \\ 0.5178 \end{array}$	0. 1 14 (1) 0.013d4	$\begin{array}{r} -n .2 n u=1 \\ n \cdot 1 \neq N i \end{array}$	
acte	$\begin{aligned} & 0.114>4 \\ & 0.1114 \end{aligned}$	$\begin{aligned} 0.14+1 \\ 0 . j \\ 0 \end{aligned}$		$\begin{array}{r} 0 .+i 11 \% \\ 0.011 ? \end{array}$	$\begin{gathered} a . a \mid 16 c h \\ 0.0144 \end{gathered}$	$\begin{array}{r} 0.2154 \% \\ 0.1 / 01 \end{array}$	$\begin{array}{r} 0.34140 \\ 0.0441 \end{array}$	$\begin{array}{r} 1.0 .015000 \\ 0.0000 \end{array}$	$\begin{array}{r} 0.01543 \\ 0.07115 \end{array}$	$\begin{gathered} 0.1574 n \\ 0.457 ? \end{gathered}$	$\begin{aligned} & 0.04101 \\ & 0.0011 \end{aligned}$	$\begin{aligned} & 0.54162 \\ & 0.0016 \end{aligned}$	$\begin{gathered} 0.14236 \\ 0.0001 \end{gathered}$		$\begin{array}{r} -0.0 \text { Her } 4! \\ 0.011 \end{array}$	
asaln		$\begin{aligned} & \text { a. } 114.42 \\ & a .0 \operatorname{con} 1 \end{aligned}$	$\begin{aligned} & 0.1 m<14 \\ & i .1115 \end{aligned}$	$\begin{gathered} \text { O.thn } \\ 0.0001 \end{gathered}$	$\begin{aligned} & 0.0025 n \\ & 0.0081 \end{aligned}$	$\begin{gathered} 0.31507 \\ 0.1170 \end{gathered}$	$\begin{aligned} & 0.56371 \\ & 0.000 ? \end{aligned}$	$\begin{gathered} 0.014+1 \\ 0.4104 \end{gathered}$	$\begin{gathered} 1.00000 \\ 0.0000 \end{gathered}$	$\begin{gathered} 0.65700 \\ 0.000 .5 \end{gathered}$	$\begin{array}{r} -0.50<0] \\ 0.00 \geqslant 0 \end{array}$	$\begin{array}{r} 00.515684 \\ 0.0010 \end{array}$	$\begin{array}{r} -0.35355 \\ 0.0164 \end{array}$	$\begin{aligned} & 10 \cdot \operatorname{l.017114} \\ & 0.111,66 \end{aligned}$	$\begin{array}{r} -0.11146 \\ 0.114 \% \end{array}$	
arn	$\begin{gathered} 10.98670 . \\ 0.4 / 41 \end{gathered}$	$\begin{array}{r} 0.6 \text { 6494 } \\ 0.000 . \end{array}$	$\begin{array}{r} -0.24125 \\ 0.154 n \end{array}$	$\begin{gathered} \text { O.OMbH4 } \\ \text { U.OnN4 } \end{gathered}$	$\begin{aligned} & 0.5540 .3 \\ & 0.003] \end{aligned}$	$\begin{aligned} & 0.1 \text { jpin } \\ & 0 . S 1 H \end{aligned}$	$\begin{gathered} 0.62943 \\ 0.000 n \end{gathered}$	$\begin{gathered} 0.15 \mathrm{sinh} \\ 0.45 i l \end{gathered}$	$\begin{gathered} \text { U. } 69700 \\ 0.8007 \end{gathered}$	$\begin{array}{r} 1.0 u s u 0 \\ 0.0000 \end{array}$	$\begin{array}{r} -0.24024 \\ 0.1655 \end{array}$	$\begin{array}{r} 0.2 H 104 \\ 0.1+11 \end{array}$	$\begin{array}{r} -0.026111 \\ 0.4 y, 0 \end{array}$	$\begin{aligned} & \text { U.1.1.0y } \\ & 0.4,08 \end{aligned}$	$\begin{array}{r} -4.01231 \\ 0.11440 \end{array}$	
ac	$\begin{array}{r} \text { U. bripa } \\ 0.01001 \end{array}$	$\begin{gathered} -0.13404 \\ 0.0116 \end{gathered}$	$\begin{array}{r} -0.57 \operatorname{sine} \\ 0.0121 \end{array}$	$\begin{array}{r} -0.1 n 455 \\ 0.7511 \end{array}$	$\begin{array}{r} -0.21 / A 7 \\ 0.1714 \end{array}$	$\begin{array}{r} -0.131 \text { un } \\ 0.46111 \end{array}$	$\begin{array}{r} -0.14400 \\ 0.344 \pi \end{array}$	$\begin{aligned} & \text { enus.al } \\ & \text { dunli } \end{aligned}$	$\begin{array}{r} -0.30203 \\ 0.01440 \end{array}$	$\begin{array}{r} -0.2 \mathrm{CNu} 24 \\ 0.1655 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{array}{r} 0 . y 4 \mathrm{Hf} 1 \\ 0.0001 \end{array}$	$\begin{array}{r} 0.41155 \\ 0.0001 \end{array}$	$\begin{array}{r} -0.11041 \\ u, 4414 \end{array}$	$\begin{aligned} & \text { "lonish } \\ & \text { netises } \end{aligned}$	
Ans	$\begin{array}{r} 0.67156 \\ 0.0091 \end{array}$	$\begin{array}{r} -0.3 H 414 \\ 0.0 .5 ? 1 \end{array}$		$\begin{aligned} & -0.2(0 n+3) \\ & u .105 i \end{aligned}$	$\begin{array}{r} -0.2 \text { cish } 4 n \\ \text { U.144? } \end{array}$	$\begin{gathered} -0.1174 n \\ 0.1441 \end{gathered}$	$\begin{array}{r} -9.81 \ln 14 \\ 0.8484 \end{array}$	$\begin{gathered} \text { n.byphe? } \\ 0.0016 \end{gathered}$	$\begin{array}{r} -0.51368 \\ 0.070 \end{array}$	$\begin{array}{r} -0.24 .104 \\ 0.1611 \end{array}$	$\begin{aligned} & 0 . Y \text { YHLI } \\ & 0.0001 \end{aligned}$	$\begin{array}{r} 1.00 u 00 \\ 0.0000 \end{array}$	$\begin{array}{r} 0.81077 \\ 0.0001 \end{array}$	$\begin{array}{r} -0.110 .14 \\ n, 6 \cdot 144 \end{array}$	$\begin{gathered} 1010.0+2 \\ 0.3 .114 \end{gathered}$	
An	$\begin{array}{r} 0.11761 \\ 0.0 n 01 \end{array}$	$\begin{array}{r} -n .25824 \\ 0.2119 \end{array}$	$\begin{array}{r} -4.65450 \\ 0.010 .01 \end{array}$	$\begin{array}{r} -0 . \text { unnes } \\ 0 . \operatorname{Hec} \end{array}$	$\begin{array}{r} -0.11 \text { ens } \\ 0 . S H 1 \end{array}$	$\begin{gathered} 0.0454! \\ 0.4710 \end{gathered}$	$\begin{array}{r} -0.13293 \\ 4.5174 \end{array}$	$\begin{gathered} 0.14,2.144 \\ 0.1041 \end{gathered}$	$\begin{array}{r} 0 . \operatorname{sinss} \\ 0 . n / t h 4 \end{array}$		$\begin{gathered} 0.01155 \\ 0.0001 \end{gathered}$	$\begin{gathered} \text { n.H1071 } \\ 0.0001 \end{gathered}$	$\begin{array}{r} 1.00000 \\ \text { B.0uno } \end{array}$		$\begin{gathered} -n .40 \cdot 041 \\ 0.01 \mathrm{Al} \end{gathered}$	
ar	$\begin{array}{r} -\pi \cdot 265255 \\ 0.14 n 3 \end{array}$	$\begin{aligned} & 0.63118 \\ & 0.0045 \end{aligned}$	$\begin{aligned} & 0.01041 \\ & 0.4: 041 \end{aligned}$	$\begin{array}{r} 0.3+1 ; 1 \\ 0.0644 \end{array}$	$\begin{array}{r} 0 . \operatorname{shy} 11 \\ 0.0611 \end{array}$	$\begin{gathered} 0.10 r i k \\ 0.0140 \end{gathered}$	$\begin{gathered} \text { e. } 31441 \\ 0.0 A_{1, ~}^{4} \end{gathered}$	$\begin{array}{r} 0.0!414 \\ 0.0041 \end{array}$	$\begin{aligned} & 0.34104 \\ & 0.0446 \end{aligned}$	$\begin{array}{r} 0.1 .19984 \\ 0.3 \times 1.0 \end{array}$	$\begin{array}{r} -0.11043\} \\ 0.5111 ? \end{array}$	$\begin{array}{r} -0.111446 \\ 0.441844 \end{array}$	$\begin{array}{r} -0.20124 \\ 0.1041 \end{array}$	$\begin{gathered} 1.011114 \\ 0.0000 \end{gathered}$	$\begin{aligned} & -41.0 u n+48 \\ & 11.0,122 \end{aligned}$	
ACANI	$\begin{array}{r} -4.14691 \\ 0.4134 \end{array}$	$\begin{aligned} & -9.10 \text { aticu } \\ & 10.12 \cdot 1 \end{aligned}$	$\begin{gathered} 0.21824 \\ 0.17 \mathrm{nn} \end{gathered}$	$\begin{aligned} -10.142031 \\ 0.05 引 11 \end{aligned}$	$\begin{array}{r} -4.411156 \\ \text { U.0 Dh's } \end{array}$	$\begin{array}{r} -0.4 .3531 \\ 0.02762 \end{array}$	$\begin{gathered} -0.25031 \\ 0.1941 \end{gathered}$	$\begin{array}{r} -0.411641 \\ 0.0111 \end{array}$	$\begin{array}{r} -11.11146 \\ 0.1144 \end{array}$	$\begin{gathered} -0.41841 \\ 0.01410 \end{gathered}$	$\begin{gathered} 0 \text { o luast } \\ 0.0 \text { ors } \end{gathered}$	$\begin{gathered} 0.10+486 \\ 0.5013 \end{gathered}$	$\begin{array}{r} -0.45497 \\ 0.01 \mathrm{HI} \end{array}$	$\begin{aligned} & -0.00 \text { nuse } \\ & 110.1117 \end{aligned}$	$\begin{aligned} & \text { I . Yover } \\ & \text { n. } 11000 \end{aligned}$	

	4.1	than	Inin	10te 41	Hinm	L10.4)	-	(micith	frat	Heuviosu	INII HM	falasecos		
at. 1	$\begin{aligned} & \text { Iounnag } \\ & \text { U. Hean } \end{aligned}$	$\begin{array}{r} 11.040 \text { ergh } \\ 0.0214 \end{array}$	$\begin{array}{r} -4.74016 \\ 4.0001 \end{array}$	$\begin{aligned} & -4.54084 \\ & 0.0046 \mathrm{k} \end{aligned}$	$\begin{array}{r} -0.2 H 70 S \\ 0.1 ? 40 \end{array}$	$\begin{aligned} & 0.113 \operatorname{lin} \\ & 0.1+44 n \end{aligned}$	U. 100sis g. Iush	$\begin{array}{r} -4.448463 \\ 0.0184 \end{array}$	$\begin{gathered} 0.1 f n / 5 \\ \text { U. } 1174 \end{gathered}$	$\begin{array}{rl} 5-0.0 .7 h>1 \\ 4 & 0.0 a n l \end{array}$	$\begin{gathered} 0.11 J 64 \\ 0.0001 \end{gathered}$	$\begin{aligned} & 0.41280 \\ & 0.0046 \end{aligned}$	$\begin{gathered} 0.23130 \\ 0.218 \mathrm{AR} \end{gathered}$	
lima		$\begin{aligned} & 1 \cdot 100100 \\ & 11 \cdot \\| 11110 \end{aligned}$	$\begin{aligned} & \text { W. Thusil } \\ & \text { O.towi } \end{aligned}$	$\begin{aligned} & \text { Q.cishti } \\ & 0.0001 \end{aligned}$	$\begin{array}{rl} -u . s .1 & 1111 \\ 0.0 \end{array}$	$\begin{aligned} & 0.07741 \\ & 0.0001 \end{aligned}$	$\begin{gathered} U_{0} 1<>A_{0} \\ U .517 H \end{gathered}$	$\begin{aligned} & 0 \text { W. } 111 \text { Iflen } \\ & H \end{aligned}$		$\begin{gathered} 0.074 \times 1 \\ 0.6461 \end{gathered}$	$\begin{array}{r} -0.11553 \\ 0.006 ? ? \end{array}$	$\begin{array}{r} 0.04466 \\ 0.6565 \end{array}$	$\begin{array}{r} -0.24010 \\ 0.2001 \end{array}$	
IHIM	$\begin{array}{r} -a .7 \operatorname{lon} 10 \\ \square .+1091 \end{array}$	$\begin{aligned} & 0.751111 \\ & 10.01101 \end{aligned}$		$\begin{aligned} & \text { a. AB4 II } \\ & \text { G.aUWI } \end{aligned}$	$\begin{aligned} & 4.0 .71 \mathrm{af} \\ & 4.14413 \end{aligned}$		$\begin{array}{r} -0.7 .4452 \\ 0.142 N \end{array}$		$\begin{aligned} & 0.11 \text { HAN } \\ & \text { U. } 511 H \end{aligned}$	$\begin{gathered} 0.44613 \\ 0.0133 \end{gathered}$	$\begin{array}{r} -0.61 \operatorname{cic} 11 \\ 0.0001 \end{array}$	$\begin{array}{r} -0.2 \lambda 844 \\ 0 .\langle\langle 4\rangle \end{array}$	$\begin{array}{r} -0.12501 \\ 0.5073 \end{array}$	
10.11	$\begin{array}{r} -4.54 \rho j \ddot{4} \\ 4.0416 \end{array}$		$\begin{aligned} & \text { H.HN4 } 11 \\ & \text { U.Dllill } \end{aligned}$	$\begin{aligned} & 1.40 .1100 \\ & 0.61400 \end{aligned}$	$\begin{array}{r} -0.14114 \\ 4.0 .944 \end{array}$	$\begin{aligned} & 0.54510 \\ & 0.111444 \end{aligned}$		$\begin{aligned} & 0.15410 \\ & y \quad 0.4 n 10 \end{aligned}$	0.8940_{4} 0.1044	$\begin{aligned} & \text { u.puouy } \\ & 0.2 N 41 \end{aligned}$	$\begin{array}{r} -0.4 n i 1 y \\ 0.0096 \end{array}$	$\begin{array}{r} 0.01636 \\ 0.4116 \end{array}$	$\begin{array}{r} -8.24704 \\ 0.1 H B 1 \end{array}$	
notm	$\begin{array}{r} -4 . \text { Par } 145 \\ 0.1<404 \end{array}$	$\begin{array}{r} -0.1 .11 \mathrm{n} 1 \\ 11.0814 \end{array}$	$\begin{aligned} & 4.078+1 \\ & 11.5411 \end{aligned}$	$\begin{array}{r} -0.14115 \\ 4.7444 \end{array}$	$\begin{gathered} 1.090104 \\ 0.01110 \end{gathered}$	$\begin{gathered} -0.17 \mu 14 \\ 0.11001 \end{gathered}$	$\begin{array}{r} -0.16455 \\ 0.0001 \end{array}$	$\begin{gathered} \text { H. Hupht } \\ \text { 0.UNOU } \end{gathered}$	$\begin{gathered} -0.5+740 \\ 0.11001 \end{gathered}$	$\begin{gathered} 0.92541 \\ 0 . e v z 4 \end{gathered}$	$\begin{array}{r} -0.24366 t \\ 0.1 d 42 . \end{array}$	$\begin{array}{r} -0.584 u 6 \\ 0.0001 \end{array}$	$\begin{gathered} 0.05122 \\ 0.7881 \end{gathered}$	
1.19041	$\begin{aligned} & 4.1+1414 \\ & 19.1244 \end{aligned}$	H.n7ent 				$\begin{aligned} & 1 \text {. } 11011111 \\ & 0.1101111 \end{aligned}$	$\begin{aligned} & \text { Unfoly } \\ & \text { Honolly } \end{aligned}$		$\begin{aligned} & 0 . n+4011 \\ & 0.11001 \end{aligned}$		$\begin{aligned} & 0.10 A 44 \\ & 0.58 H C \end{aligned}$	$\begin{array}{r} .54415 \\ 0.0005 \end{array}$	$\begin{array}{r} -0.12021 \\ 0.5063 \end{array}$	
*a.)	$\begin{aligned} & \text { U. junsi } \\ & \text { O. } 10 n t \end{aligned}$				$\begin{array}{r} -0.016055 \\ 0.0001 \end{array}$	$\begin{aligned} & 0.6 / 1,41 \\ & 0.01041 \end{aligned}$	$\begin{gathered} 1.00000 \\ 0.0110 u \end{gathered}$	$\begin{array}{r} -u .14 \ggg y \\ 0.01101 \end{array}$		$\begin{array}{r} -0.04001 \\ 0.0001 \end{array}$	$\begin{gathered} 0.31381 \\ 0 \cdot \Delta y 13 \end{gathered}$	$\begin{array}{r} 0.12449 \\ 0.0001 \end{array}$	-0.11404 0.5485	
Precisu	$\begin{gathered} -0.441145: \\ 11.0114^{\prime} \end{gathered}$	$\begin{aligned} & \text { a. unithly } \\ & \text { nobrith } \end{aligned}$	II. It. 14^{\prime}, II. 1 !ert4	$\begin{gathered} 0.15+14 \\ 0.4 i 14 \end{gathered}$	$\begin{gathered} \text { unnozal } \\ 0.0,10_{4} \end{gathered}$	$\begin{array}{r} -0.40445_{5} \\ 0.01141 \end{array}$	$\begin{aligned} & -4.14 \gg 4 \\ & \text { u. } 110111 \end{aligned}$	$\begin{gathered} 1.00000 \\ 0.010012 \end{gathered}$	$\begin{array}{r} -0.6_{6} \text { YHA } \\ 0.00111 \end{array}$	$\begin{aligned} & \text { O.Afons } \\ & \text { U.000 } \end{aligned}$	$\begin{array}{r} -0.6 .1054 \\ 0.0002 \end{array}$	$\begin{array}{r} 0 . \mathrm{ALILH} \\ 0.0001 \end{array}$	$\begin{array}{r} -0.04115 \\ 0.8046 \end{array}$	
Evar	$\begin{gathered} 0.1+175 \\ 4.1175 \end{gathered}$	$\begin{aligned} & \text { Ap sislife } \\ & \text { "1.04hth } \end{aligned}$	$\begin{aligned} & 4.11 n+111 \\ & 0.9 .114 \end{aligned}$	$\begin{aligned} & 0.24-1014 \\ & 0.10144 \end{aligned}$	$\begin{gathered} -9.0+1+170 \\ 0.0001 \end{gathered}$	$\begin{gathered} u .64467 \\ 0.01101 \end{gathered}$	$\begin{aligned} & 0.043 \mathrm{HIII} \\ & \text { ".000U } \end{aligned}$	$\begin{gathered} \text { U. On44HN } \\ \text { U. } 110 \text { NUI } \end{gathered}$	$\begin{aligned} & 1.00000 \\ & 0.00110 \end{aligned}$	$\begin{array}{r} -11.0447_{46} \\ 0.0001 \end{array}$	$\begin{array}{r} 0.211 y 13 \\ 0.2660 \end{array}$	$0.410,8$ 0.0001	-0.114313	
Mlatiosis)	$\begin{array}{r} -0 . \operatorname{taph} i \\ \text { u.unal } \end{array}$	$\begin{aligned} & \text { Q.anorl } \\ & \text { H.toph } \end{aligned}$	$\begin{gathered} 0.44612 \\ 0.0111 \end{gathered}$	$\begin{aligned} & 11.20 u 04 \\ & 0.20141 \end{aligned}$	$\begin{gathered} \left.0.42^{\prime} \mathrm{JH}\right] \\ 0.04 \Sigma 8 \end{gathered}$	$\begin{array}{r} -0.41 / 1100 \\ \text { U. OHINI } \end{array}$	$\begin{array}{r} -0.014001 \\ 4.0001 \end{array}$	$\begin{gathered} 10.117 \text { ynf } \\ \text { u.unul } \end{gathered}$		$\begin{aligned} & \text { I . unnnu } \\ & \text { u.unve } \end{aligned}$	$\begin{array}{r} 0.0 \text { OULOU } \\ 0.0001 \end{array}$	$\begin{array}{r} -0.014441 \\ 0.0001 \end{array}$	$\begin{array}{r} -0.07478 \\ 0.6945 \end{array}$	
Dilitina	$\begin{gathered} 0.11360 \% \\ 0.0401 \end{gathered}$		$\begin{array}{r} -0.01 s 11 \\ 11.01111 \end{array}$		$\begin{aligned} & -0 . \operatorname{cichan} \\ & \text { U. lia4? } \end{aligned}$	$\begin{aligned} & 0.1044 \cdot 2 \\ & 0.5445 \end{aligned}$	$\begin{aligned} & \text { A. } 111111 \\ & 4.0413 \end{aligned}$	$\begin{gathered} -0.01084 \\ 0.000 \% \end{gathered}$	$\begin{gathered} u_{0}\langle 0471 \\ 0.7 A B U \end{gathered}$	$\begin{array}{r} -0.10401 \\ 0.0001 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{gathered} 0.44714 \\ 0.0131 \end{gathered}$	$\begin{gathered} 0.1100 .11 \\ 0.4918 \end{gathered}$	
ccrobetus	$\begin{aligned} & \text { W. } 47780 \\ & .0 .0044 \end{aligned}$		$\begin{aligned} & -11 .<28444 \\ & 11.28847 \end{aligned}$	$\begin{gathered} u .01 \text { in } 1 k \\ 0.4116 \end{gathered}$	$\begin{gathered} \text {-W. SB4ARA } \\ \text { U. UHOUI } \end{gathered}$	0.34415 0.0uUS	$\begin{gathered} 0.18444 \\ 0.01101 \end{gathered}$	$\begin{array}{r} -11 \text { o H47 } 7 \mathrm{hH} \\ 11.110 U 1 \end{array}$	$\begin{gathered} \text { U.H\\|lat } \\ \text { U. HINUI } \end{gathered}$	$\begin{array}{r} 0 . \text { AHC4 }^{-0.0001} \\ 0 \end{array}$	$\begin{gathered} 0.64794 \\ 0.0131 \end{gathered}$	$\begin{aligned} & 1.00000 \\ & 0.0000 \end{aligned}$	$\begin{array}{r} -0.023 \mathrm{N4} \\ 0.9003 \end{array}$	
Als.		$-0 . .246 / \omega$ 	$\begin{array}{r} -0.1+4.11 \\ 110,413 \end{array}$	$\begin{array}{r} -n .24 / 104 \\ 11.1,141 \end{array}$	$\begin{aligned} & 0.0 \leq 122 \\ & 11.7+H 1 \end{aligned}$	$\begin{aligned} &-0.1 \text { Chisi } \\ & 0.5 l o n i \end{aligned}$	$\begin{array}{r} -0.111404 \\ 1 . \text { SUAS } \end{array}$	$\begin{array}{r} -0.114114 \\ 0.764 n \end{array}$	$\begin{array}{r} -0.11414 \\ 11.54 / 4 \end{array}$	$\begin{array}{r} -0.074 / \mathrm{y} \\ 0.0745 \end{array}$	$\begin{gathered} 0.130 b 1 \\ 0.40101 \end{gathered}$	$\begin{array}{r} -0.021 \mathrm{ng} \\ 0.4003 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	

APPENDIX 5 !

Population statistics and correlation matrices for climatic and soil factors used in the regression analysis of Tectona grandis

1/ For the description of the variables and unit of measurement see appendix 7.

	4.1	Imax	IMIM	litel	HiNm		Hall	Hhtilip	－vap	阿．avicisal	INIEAM	rcosf cos	aris	
AL． 1	$\begin{array}{r} 1.800 n 0 \\ 8.0000 \end{array}$	$\begin{aligned} & -0.4 \text { brie! } \\ & 4.00 ? 1 \end{aligned}$	$\begin{gathered} -0.37643 \\ 0.0001 \end{gathered}$	$\begin{array}{r} -0.7 \text { rgun } \\ 0.0001 \end{array}$	$\begin{array}{r} 0.46361 \\ 0.0174 \end{array}$	$\begin{array}{r} -0.50512 \\ 0.0061 \end{array}$	$\begin{gathered} -4.11 .30 . \\ \text { n. } 3 \text { ant } \end{gathered}$	$\begin{gathered} 0.21900 \\ 0.2140 \end{gathered}$	$\begin{array}{r} -0.17216 \\ 0.0512 \end{array}$	$\begin{gathered} \text { O. } 10456 \\ 0.5 月 24 \end{gathered}$	$\begin{aligned} & 0.14847 \\ & 0.1163 \end{aligned}$	$\text { -0. } 0.114464$	$\begin{array}{r} -0.14382 \\ 0.4653 \end{array}$	
imax	$\begin{array}{r} -0.55 A R 1 \\ 0.0 n \geqslant 1 \end{array}$	$\begin{aligned} & 1.011 n n u \\ & 0.01100 \end{aligned}$	$\begin{aligned} & \text { e. } 191444 \\ & \text { U.nOU1 } \end{aligned}$	$\begin{gathered} 0.44454 \\ 0.11101 \end{gathered}$	$\begin{array}{r} -0.4+5.54 \\ 11.0444 \end{array}$	$\begin{aligned} & 0.13014 \\ & 0.0001 \end{aligned}$	U．Pun4， 0．fonl	$\begin{array}{r} -0.16514 \\ 0.41104 \end{array}$	$\begin{gathered} 0.474 p u \\ 0.01 \text { un } \end{gathered}$	$\begin{array}{r} -0.15434 \\ 0.43 ? 2 \end{array}$	$\begin{array}{r} 0.0 \text { 0.4 } 19 \\ 0.4,1940 \end{array}$	$\begin{aligned} & 0.22241 \\ & 0.2442 \end{aligned}$	$\begin{array}{r} 0.21120 \\ 0.2407 \end{array}$	
InosN	$\begin{gathered} -4.81941 \\ 0.4 n 71 \end{gathered}$	$\begin{aligned} & 0.1584 y \\ & 4.0001 \end{aligned}$	$\begin{array}{r} 1 \text {. Whave } \\ \text { U.0000 } \end{array}$	$\begin{aligned} & 0.24840 \\ & 0.0001 \end{aligned}$	$\begin{array}{r} -0.51+101 \\ 0.04,14 \end{array}$	$\begin{aligned} & \text { Q. थYAH / } \\ & \text { U.0Q64 } \end{aligned}$	$\begin{array}{r} U .11 / 14 R \\ 0.6 S^{4} i 2 \end{array}$	$\begin{array}{r} -0.1+y \text { mos } \\ 0.113 n \end{array}$	$\begin{gathered} 0.111714 \\ 0.0141 \end{gathered}$	$\begin{array}{r} -0.11 P^{2} 01 \\ 0.4492 \end{array}$	$\begin{array}{r} -0.24151 \\ 0.2118 \end{array}$	$\begin{array}{r} 0.21468 \\ 0.2273 \end{array}$	$\begin{aligned} & 0.22045 \\ & 0.25 A 7 \end{aligned}$	
Intil	$\begin{array}{r} -0.789 a m \\ 0.01101 \end{array}$	$\begin{gathered} 0.4045 y \\ 0.00 . N 1 \end{gathered}$	$\begin{gathered} \text { U.9ntub } \\ \text { u.nuel } \end{gathered}$	$\begin{gathered} 1.1040 \text { une } \\ 0.00110 \end{gathered}$	$\begin{array}{r} -0.4 u 5 i 4 \\ \text { u.0Unit } \end{array}$	$\begin{array}{r} \text { a. } 61111 \\ \text { a.caut } \end{array}$		$\begin{gathered} -0 . e^{34 / 0} \\ 0.1404 \end{gathered}$	$\begin{gathered} 0.51 \text { Jus } \\ \text { u.0U4A } \end{gathered}$	$\begin{gathered} -11.15234 \\ 0.6 \mathrm{sin} \end{gathered}$	$\begin{array}{r} -0.1 .1066 \\ 0.30 / 4 \end{array}$	$\begin{gathered} 0.30102 \\ 0.1120 \end{gathered}$	$\begin{gathered} 0.21507 \\ 0.2717 \end{gathered}$	
Himme	$\begin{aligned} & \text { O.4hsht } \\ & \text { eutp? } \end{aligned}$	$\begin{gathered} -n .41 t^{\prime}+0.1 \\ 11.0 u+n \end{gathered}$	$\begin{aligned} & -0.310211 \\ & 11.11440 \end{aligned}$	$\begin{gathered} \text {-U. businh } \\ \text { w. Guent } \end{gathered}$	$\begin{aligned} & 1 . \operatorname{sounc} \\ & 4.04 B 0 \end{aligned}$		$\begin{array}{r} -4.68435 \\ 11.011015) \end{array}$		$\begin{array}{r} -0.41105 \\ 0.0001 \end{array}$	$\begin{gathered} \text { o.tarith } \\ \text { O. HODC } \end{gathered}$	$\begin{aligned} & 0.01094 \\ & 0.47130 \end{aligned}$	$\begin{array}{r} -0.81441 \\ 0.0001 \end{array}$	$\begin{array}{r} -0.13365 \\ 0.4 \forall 1 \mathrm{~F} \end{array}$	
410．0．1	$\begin{gathered} \text { - M. inasile } \\ 0.0001 \end{gathered}$	$\begin{array}{r} \text { W. } 17014 \\ 4.0001 \end{array}$		4．n／111 4．nlul	$\begin{aligned} & -0 . \text { H/che } \\ & 11.41111 \end{aligned}$	$\begin{gathered} 1.0011114 \\ 0.11000 \end{gathered}$	$\begin{aligned} & \text { 0.bcatil } \\ & \text { H. } 10411 \end{aligned}$	$\begin{array}{r} \text {-4.4.4R4t } \\ 0.11041 \end{array}$	$\begin{gathered} \text { Honpri4s; } \\ \text { u, nu lif } \end{gathered}$	$\begin{array}{r} -4.58(H)\} \\ 0.001\} \end{array}$	$\begin{aligned} & 0.14561 \\ & 0.4604 \end{aligned}$	$\begin{gathered} 0.0,5012 \\ 0.0003 \end{gathered}$	$\begin{gathered} 0.133+6 \\ 0.4416 \end{gathered}$	
Ha．）	$\begin{array}{r} -4.11103 \\ 0.8 \operatorname{sen} t \end{array}$		$\begin{gathered} n .0714 n \\ 0.0 .45 i z \end{gathered}$	$\begin{aligned} & \text { A. } 1 \text { Itha } \\ & 11 . \text { Jhat } \end{aligned}$	$\begin{array}{r} -0 . n .1015 \\ 0.0003 \end{array}$	$\begin{gathered} \text { a. } 92611 \\ \text { e. U04 } \end{gathered}$	$\begin{gathered} 1.00 n 001 \\ 0.0 n 04 \end{gathered}$	$\begin{array}{r} -0.404 y \\ 0.01<4 \end{array}$	$\begin{aligned} & 8.540171 \\ & 0.0160^{\prime} 6 \end{aligned}$	$\begin{gathered} -0.41 \text { pet } \\ 0.01140 \end{gathered}$	$\begin{gathered} 0.01 \text { ous } \\ 0.43 j 4 \end{gathered}$	$\begin{gathered} 0.055 \mathrm{Hy} \\ 0.0001 \end{gathered}$	$\begin{gathered} 0.437 p H \\ 0.0200 \end{gathered}$	
NHICLIN	$\begin{aligned} & \text { e.7yono } \\ & \text { B. } 14140 \end{aligned}$	$\begin{gathered} -0.1 a s \text { in } \\ 4.4104 \end{gathered}$	$\begin{gathered} -m .1 \text { ayty } \\ n .1+3 t \end{gathered}$	$\begin{array}{r} -0 . \dot{\sin 10} \\ 0.184 y \end{array}$	$\begin{gathered} \text { U.SHKid } \\ 0.0 \\| 10 \end{gathered}$	$\begin{aligned} & -4.4 H^{204 h} \\ & 0.001 / 7 \end{aligned}$	$\begin{array}{r} -0.46434 \\ 0.01>47 \end{array}$	$\begin{aligned} & 1.04004 \\ & 0.11800 \end{aligned}$	$\begin{array}{r} -0.149631 \\ 0.0041 \end{array}$	$\begin{gathered} 0 . A 4428 \\ 0.10 n 1 \end{gathered}$	$\begin{array}{r} -0.40 / 64 \\ 0.0111 \end{array}$	$\begin{array}{r} 0.42215 \\ 0.0001 \end{array}$	$\begin{array}{r} -0.26462 \\ 0.1 / 110 \end{array}$	
k64r	$\begin{array}{r} 0.01816 \\ 0.0312 \end{array}$	$\begin{gathered} 0.41424 \\ 0.01110 \end{gathered}$		$\begin{gathered} 0.71114 \mu \\ 0.0044 \end{gathered}$	$\begin{array}{r} -0.411004 \\ 0.0001 \end{array}$	$\begin{gathered} \text { O.R2545 } \\ \text { O.004 } \end{gathered}$	0.346450 H．Ull）	$\begin{array}{r} -0.14561 \\ 1 . n 001 \end{array}$	$\begin{gathered} 1.00000 \\ 0.00110 \end{gathered}$	$\begin{array}{r} -11.11184 \\ 0.0041 \end{array}$	$\begin{gathered} 0.01 n 26 \\ 0 . n 丹 22 \end{gathered}$	$\begin{gathered} 0 .+\operatorname{tr} 2<3 \\ 0.0001 \end{gathered}$	$\begin{aligned} & 0.1 j 6 v 2 \\ & 0.4 \mathrm{H} / 2 \end{aligned}$	
mluyjoso	$\begin{gathered} 0.10 n 56 \\ 0.5 A 24 \end{gathered}$	$\begin{gathered} -0.13454 \\ 0.4378 \end{gathered}$	$\begin{array}{r} -0 . n 2+501 \\ u .4 .1482 \end{array}$	$\begin{array}{r} -0.15214 \\ 0.43441 \end{array}$	$\begin{gathered} 0.60794 \\ 0.0006 \end{gathered}$	$\begin{array}{r} -0.5 / 413 \\ 0.0013 \end{array}$	$\begin{array}{r} -0.61527 \\ 4.0050 \end{array}$	$\begin{gathered} 0.4 \% 10211 \\ 0.01101 \end{gathered}$	$\begin{array}{r} -4.1113 / 4 \\ 0.0001 \end{array}$	$\begin{gathered} 1 \text { I Bucuou } \\ 0.0000 \end{gathered}$	$\begin{gathered} -0.0 .114646 \\ 0.0001 \end{gathered}$	$\begin{array}{r} -0 . \text { Jhtab } \\ 0.0001 \end{array}$	$\begin{array}{r} 0.18745 \\ 0.13 A 1 ? \end{array}$	
J＋18 HM	$\begin{array}{r} 0.140 .47 \\ 0.1163 \end{array}$	$\begin{array}{r} -0.0<6.17 \\ 0.4440 \end{array}$	$\begin{array}{r} -4.26151 \\ 0.2118 \end{array}$	$\begin{array}{r} -0.13064 \\ 0.5415 \end{array}$	$\begin{aligned} & \text { W.ODIBIH } \\ & \text { H.H7HE } \end{aligned}$	$\begin{gathered} 0.14481 \\ 0.4 \text { RUN } \end{gathered}$	$\begin{gathered} 0.01 \operatorname{con}_{3} \\ 0.9134 \end{gathered}$	$\begin{array}{r} -0.40104 \\ 0.0311 \end{array}$	$\begin{aligned} & 0.01 H \geqslant b \\ & 0.64 ? ? \end{aligned}$	$\begin{array}{r} -0.61 \mathrm{trisf} \\ 0.0003 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{array}{r} -0.00413 \\ 0.9 H 54 \end{array}$	$\begin{array}{r} -4.0615 H \\ 0.155 \% \end{array}$	
Llust cils	$\begin{array}{r} -0.1 n c \ddot{94} 4 \\ 0.1146 \end{array}$	$\begin{aligned} & 0.22291 \\ & 0.25,42 \end{aligned}$	$\begin{aligned} & 0.21364 \\ & 0.3231 \end{aligned}$	$\begin{aligned} & 0.10102 \\ & 4.117 n \end{aligned}$	$\begin{array}{r} -0 . \mathrm{H} / 641 \\ 0.00 \mathrm{NJ} \end{array}$	$\begin{aligned} & 0.61017 \\ & 0.4011 \end{aligned}$	$\begin{gathered} 0.035499 \\ 0.00111 \end{gathered}$	$\begin{array}{r} -0 . n+\operatorname{cols} 5 \\ 0.0001 \end{array}$	$\begin{gathered} 0.0162 \times 4 \\ 4.00111 \end{gathered}$	$\begin{gathered} -0.16046 \\ 0.0001 \end{gathered}$	$\begin{array}{r} -0.00413 \\ 0.07344 \end{array}$	$\begin{array}{r} 1.000100 \\ 0.0000 \end{array}$	$\begin{aligned} & 424361 \\ & 4.1<67 \end{aligned}$	
ncs	$\begin{array}{r} -0.14 \operatorname{mex}^{2} \\ 0.455: \end{array}$	$\begin{aligned} & 0.21120 \\ & 0.2 A 01 \end{aligned}$	$\begin{aligned} & \text { U. Douts } \\ & 0.23 H I \end{aligned}$	$\begin{aligned} & \text { U.r1501 } \\ & 0.2111 \end{aligned}$	$\begin{gathered} -0.1 \geq 18 \% \\ 0.4 y 14 \end{gathered}$	$\begin{aligned} & 0.115 \operatorname{sia} \\ & 0.4414 \end{aligned}$	$\begin{aligned} & 0.6170 \mathrm{OH} \\ & 0.0 ; 00 \end{aligned}$	$\begin{array}{r} -0 . \cos 62 \\ 0.1116 \end{array}$	$\begin{aligned} & 0.11641 ? \\ & 0.4412 \end{aligned}$		$\begin{array}{r} -0.00138 \\ 0.1554 \end{array}$	$\begin{gathered} 0.2 y 5 t_{1} \\ 0.12 \mathrm{in} \end{gathered}$	$\begin{array}{r} 1.00000 \\ 0.00 n 0 \end{array}$	

	asami	ASILI	ar.lay	Acia	А¢;	ana	an	acti.	asalll	APH	ar.	and	AN	Ar	alcals
asame		$\begin{array}{r} - \text { - X6alo } \\ \text { O. IUNH } \end{array}$	$\begin{gathered} -4 . \text { Hhave } \\ \text { O. ovol } \end{gathered}$	$\begin{array}{r} -4.16 \mathrm{H} 11 \\ 0.6 \mathrm{H} 61 \end{array}$	$\begin{array}{r} -0.11174 \\ 4.0 .314 \end{array}$	$\begin{array}{r} -0.044 / 4 \\ 0.4101 \end{array}$	$\begin{array}{r} -0.1544 \mathrm{~d} \\ 0.6499 \end{array}$	$\begin{gathered} 0.044611 \\ 0.7!77 \end{gathered}$	$\begin{gathered} -0.24 u n h \\ 0.20 n t \end{gathered}$	$\begin{gathered} 0 . a l u s i \\ 0.010 .14 \end{gathered}$	$\begin{aligned} & 0.53406 \\ & 0.0117 \end{aligned}$	$\begin{gathered} 0.550 .10 \\ 0.0 n y y \end{gathered}$	$\begin{array}{r} 0.62147 \\ 0.0023 \end{array}$	$\begin{gathered} -1101422 ? \\ 0.1448 \end{gathered}$	
ASsill	-0: Mele	$\begin{aligned} & 1.000 v e \\ & \text { u.eunc } \end{aligned}$		$\begin{aligned} & 4.161142 \\ & 0.10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.5 / 4404 \\ & 0.010 n 4 \end{aligned}$	$\begin{gathered} 0.21172 \\ 0.11178 \end{gathered}$	$\begin{array}{r} 0.01275 \\ 0.0004 \end{array}$	$\begin{aligned} & \text { U. CO } 744 \\ & \text { O. Jhhat } \end{aligned}$	$\begin{gathered} 0.31412 \\ 0.0157 \end{gathered}$	$\begin{aligned} & 0.54471 \\ & 0.0441 \end{aligned}$	$\begin{array}{r} -0 . J h y<4 \\ 0.0945 \end{array}$	$\begin{array}{r} -4.34910 \\ 0.0716 \end{array}$	$\begin{array}{r} -0.71202 \\ 0.1414 \end{array}$	$\begin{aligned} & 0.4 n \operatorname{tind} \\ & 11.01141 \end{aligned}$	$\begin{array}{r} -n .0141 u \\ 11.14+h \end{array}$
allay	$\begin{array}{r} -\pi . \text { Runes }^{0.0001} \end{array}$	$\begin{array}{r} -4.120111 \\ 0.4 H^{2} \end{array}$	$1.0 n 00 \%$ $0 . n 000$	$\begin{array}{r} -4.001111 \\ 0.4+10 \end{array}$	$\begin{aligned} & 0.10 \mathrm{iz4} \\ & 0.6361 \end{aligned}$	$\begin{gathered} -0.14618 \mathrm{ma} \\ 0.1 \mathrm{cose} \end{gathered}$	$\begin{gathered} -0.112>\mathrm{H} \\ 0.4548 \end{gathered}$	$\begin{array}{r} -0.14072 \\ 0.4076 \end{array}$	$\begin{aligned} & 0.04516 \\ & 0.4453 \end{aligned}$	$\begin{array}{r} -0.11593 \\ 0.1616 \end{array}$	$\begin{gathered} 0 . J H S<1 \\ 0.0 H 46 \end{gathered}$	$\begin{array}{r} -a \cdot 30218 \\ 0.0+11 \end{array}$	$\begin{array}{r} -0.491644 \\ 0.0214 \end{array}$	$\begin{array}{r} -4.18573 \\ 10.30 n 1 \end{array}$	$\begin{gathered} n . \quad \text { Iluay } \\ i .1 / 10.4 \end{gathered}$
aca	$\begin{array}{r} - \pm .16+111 \\ 0.46631 \end{array}$	$\begin{aligned} & 0.3 n u a n t \\ & H .1494 \end{aligned}$	$\begin{array}{r} -0.0 a 111 \\ 0.4 N / 1 \end{array}$		0.14760 0.0001	$\begin{gathered} 0.6177^{4} \\ 0.0011)^{4} \end{gathered}$	$\begin{aligned} & 0.51,404 \\ & 0.11071 \end{aligned}$	$\begin{gathered} 10.54111 \\ 0.0951 \end{gathered}$	$\begin{aligned} & 0.91046 \\ & 0.0001 \end{aligned}$	$\begin{gathered} 0.75439 \\ 0.0001 \end{gathered}$	$\begin{array}{r} -0.11215 \\ 0.1615 \end{array}$	$\begin{array}{r} 0.31043 \\ 0.1708 \end{array}$	$\begin{gathered} -0.20746 \\ 0.1651 \end{gathered}$	$\begin{gathered} 0.11196 \\ 0.1941 \end{gathered}$	$\begin{gathered} -\pi .11214 \\ n .41044 \end{gathered}$
Ants	$\begin{array}{r} -0.11176 \\ 0 . n 914 \end{array}$	$\begin{aligned} & \text { U.5/4ng } \\ & \text { W. Ullonh } \end{aligned}$		$\begin{gathered} 0.741 .94 \\ 4.010101 \end{gathered}$			$\begin{aligned} & \text { U.贝 } 11 \mathrm{H}_{4} \\ & \text { م.Un?I. } \end{aligned}$	$\begin{array}{r} 0 . \mathrm{h} 1411 \\ \text { u.0n? ? } \end{array}$	$\begin{gathered} 4.16117 \\ 0.0001 \end{gathered}$	$\begin{aligned} & 0.41111 \\ & a .0 u \geqslant 1 \end{aligned}$	$\begin{gathered} -0.16184 \\ 0.11 \leqslant 4 \end{gathered}$	$\begin{gathered} 0.3: a b 11 \\ 0.1124 \end{gathered}$	$\begin{gathered} -0.25401 \\ 0.2086 \end{gathered}$		$\begin{array}{r} -0.401011 \\ 0.0241 \end{array}$
ana	$\begin{array}{r} -0.049 / m \\ \text { U.H3a. } \end{array}$		$\begin{array}{r} -0.0 n .136 \\ 0.74 \zeta 4 \end{array}$	$\begin{aligned} & \text { u.t.11/H } \\ & 0.0001 \end{aligned}$	$\begin{aligned} & 0.08 / n y \\ & \text { o.0ung } \end{aligned}$	$\begin{gathered} 1.0 \text { OHDUA } \\ 0.0000 \end{gathered}$	$\begin{aligned} & \text { U.SHOSA } \\ & \text { O.OULSH } \end{aligned}$	$\begin{gathered} \text { a.brish } \\ 0.0 n c t \end{gathered}$	$\begin{gathered} 0.818 c 0 \\ 0.017 k \end{gathered}$	$\begin{gathered} 0.16142 \\ 0.1079 \end{gathered}$	$\begin{array}{r} -0.11434 \\ 0.6174 \end{array}$	$\begin{gathered} -0.1104< \\ 0.5711 \end{gathered}$	$\begin{array}{r} -0.045 \mathrm{H6} \\ 0.6794 \end{array}$	$\begin{aligned} & 11.111104 \\ & 1.3 / 14 \end{aligned}$	
an	$\begin{array}{r} -0.19 y 4 y \\ 4.4 N 94 \end{array}$	$\begin{gathered} \text { e.tiris } \\ \text { A. Uund } \end{gathered}$	$\begin{array}{r} -0.112 \mathrm{ch} \\ 0.45 i 28 \end{array}$	$\begin{gathered} \text { U. Soner } \\ 0.0411 \end{gathered}$	$\begin{aligned} & 0 . n 31 n 4 \\ & 0 . a u ?! \end{aligned}$	$\begin{aligned} & \text { A.5H0'54 } \\ & 0.00{ }^{\prime} \mathrm{CH} \end{aligned}$	$\begin{gathered} 1.00080 \\ 0.0000 \end{gathered}$	$\begin{gathered} n .16122 \\ 0.1011 \end{gathered}$	$\begin{aligned} & 0.65154 \\ & 0.0012 \end{aligned}$	$\begin{gathered} 0 . \operatorname{tavil} \\ 0.0014 \end{gathered}$	$\begin{array}{r} -0.24140 \\ 11.1492 \end{array}$	$\begin{array}{r} -0.10144 \\ 0.1 / 52 \end{array}$	$\begin{array}{r} -0.217 \mathrm{HA} \\ 0.2276 \end{array}$	".ensth	$\begin{array}{r} -10 \cdot 117641 \\ 11.40 .041 \end{array}$
ALit C	$\begin{gathered} 0.090 \mathrm{~N} \mid \\ 0.7277 \end{gathered}$	$\begin{aligned} & 0.2016 \mathrm{H} \\ & 0 . J \mathrm{BhH} \end{aligned}$	$\begin{array}{r} -0.14412 \\ 0.4016 \end{array}$	$\begin{gathered} \text { U.SHIf } \\ \text { U. Uusis } \end{gathered}$	$\begin{array}{r} 0.63011 \\ 0.04 ? 2 \end{array}$	$\begin{array}{r} 0.5154 n \\ 0.00 t i l \end{array}$	$\begin{gathered} 0 . J i 18 c \\ 0.1017 \end{gathered}$	$\begin{gathered} 1 \text {-upaue } \\ \text { o.vucue } \end{gathered}$	$\begin{aligned} & 0.1 H_{3} 5 \\ & \text { O. UH4 } \end{aligned}$	$\begin{gathered} 0.3<16.5 \\ 0.1551 \end{gathered}$	$\begin{array}{r} 0.34900 \\ 0.1116 \end{array}$	$\begin{aligned} & 0.1<1<1 \\ & 0.1476 \end{aligned}$	$\begin{gathered} 0.501194 \\ 0.0204 \end{gathered}$	$\begin{array}{r} 0.1114 .11 \\ 10.4150 \end{array}$	$\begin{array}{r} -0.0 .4118 \\ 10.11105 \end{array}$
asala	$\begin{gathered} -0.2 y n n h \\ 0.2004 \end{gathered}$	$\begin{aligned} & 0.31 .108 \\ & 0.0131 \end{aligned}$	$\begin{gathered} 0.114514 \\ 0.4412 j \end{gathered}$	$\begin{gathered} 0.81004 \\ 0.00101 \end{gathered}$	$\begin{aligned} & 0.15311 \\ & 0.0001 \end{aligned}$	$\begin{aligned} & \text { 0.jicizh } \\ & \text { o.nif. } \end{aligned}$	$\begin{array}{r} 0.05154 \\ 4.001 ? \end{array}$	$\begin{gathered} \text { O. IMSSS } \\ \text { O.Unt } \end{gathered}$	$\begin{array}{r} 1.09000 \\ 0.0000 \end{array}$	$\begin{gathered} \text { O.Hybyl } \\ 0.0 \text { Bul } \end{gathered}$	$\begin{array}{r} -0.51411 \\ 0.0110 \end{array}$	$\begin{aligned} & -0.50924 \\ & 0.01 A_{4} \end{aligned}$	$\begin{array}{r} -0.40461 \\ 0.0649 \end{array}$	$\begin{aligned} & 110.0 \text { risis; } \\ & \text { H.Nill } \end{aligned}$	
ar.t	$\begin{aligned} & 0.01041 \\ & 4.4 K 14 \end{aligned}$	$\begin{aligned} & \text { C.5.0.07t } \\ & \text { B.enal } \end{aligned}$	$\begin{array}{r} -0.115+1 \\ 11.1610 \end{array}$	$\begin{array}{r} 0.1545 \cdot 8 \\ 0.11001 \end{array}$	$\begin{gathered} 0.013115 \\ 0.01121 \end{gathered}$	$\begin{array}{r} 0.16142 \\ 0.1010 \end{array}$	$\begin{aligned} & 0.04017 \\ & 0.10014 \end{aligned}$	$\begin{gathered} 0.1-10 \mid \\ 0 .\|95\| \end{gathered}$	$\begin{aligned} & \text { W. HhH41 } \\ & \text { U. 000 } \end{aligned}$	$\begin{aligned} & 1.0 u 000 \\ & \delta .0000 \end{aligned}$	$\begin{array}{r} -0.14141 \\ 0.1<14 \end{array}$	$\begin{array}{r} -0.346<1 \\ 0.1 ? 42 \end{array}$	$\begin{array}{r} -0.2243 A \\ 0.319: \end{array}$	$\begin{aligned} & -11.01, A_{1} \\ & \text { II. Dhani } \end{aligned}$	
al	$\begin{aligned} & 0.504 a 6 \\ & 0 . a 11! \end{aligned}$		$\begin{array}{r} -0.1 n y<1 \\ 0 . A H 46 \end{array}$	$\begin{array}{r} -0.11<14 \\ 0.1674 \end{array}$	$\begin{array}{r} -u . \sin \text { ing } \\ u .11 \text { y } 4 \end{array}$	$\begin{array}{r} -0.11514 \\ 0.61 / 4 \end{array}$	$\begin{array}{r} -0.24170 \\ 0.1492 \end{array}$	$\begin{gathered} 0.14400 \\ 0.1 .115 \end{gathered}$	$\begin{array}{r} -0.51611 \\ 0.0170 \end{array}$	$\begin{array}{r} 0.34453 \\ 0.1215 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{gathered} 0.99105 \\ 0.0001 \end{gathered}$	$\begin{array}{r} 0.14249 \\ 0.0001 \end{array}$		
ant)	$\begin{gathered} \text { 0.5seye } \\ \text { u. ©eyl } \end{gathered}$	$\begin{aligned} & -0.1 .0410 \\ & 0.0 / 184 \end{aligned}$	$\begin{array}{r} -0 . \ln 21 H \\ 0.0 H / 1 \end{array}$	$\begin{array}{r} -0.31 u 41 \\ 0.110 n \end{array}$	$\begin{array}{r} -0.14 n 71 \\ 0.1184 \end{array}$	$\begin{gathered} -0.13044 \\ 0.51 .11 \end{gathered}$	$\begin{array}{r} -0.10744 \\ 0.1 / 52 \end{array}$	$\begin{aligned} & 0.12161 \\ & 0.147 \mathrm{a} \end{aligned}$	$\begin{array}{r} -0.501327 \\ 0.0146 \end{array}$	$\begin{array}{r} -4.341,23 \\ 0.1 / 4.2 \end{array}$	$\begin{gathered} 0.44765 \\ 0.0001 \end{gathered}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{gathered} 0 . \text { RyI } 34 \\ 0.0001 \end{gathered}$	$\begin{aligned} & -4.0 n n=1 \\ & 11.9 .9 \text { ? } \end{aligned}$	
an	$\begin{aligned} & 0.48\|n\rangle \\ & 0.00>1 \end{aligned}$	$\begin{gathered} -0.13>0 \text { e } \\ 0.1414 \end{gathered}$	$\begin{array}{r} -9.49864 \\ 0.0<14 \end{array}$	$\begin{array}{r} -0 . c 01 \text { yn } \\ 0.1051 \end{array}$	$\begin{array}{r} -14 . c 5407 \\ \text { u. } 2 \text { inen } \end{array}$	$\begin{gathered} -0.045 \mathrm{Hh} \\ 0.61 .04 \end{gathered}$		$\begin{gathered} 0.50196 \\ 0.0>04 \end{gathered}$	$\begin{gathered} -0.40461 \\ \text { U. \#nary } \end{gathered}$	$\begin{array}{r} -0.22 N 14 \\ 0.1144 \end{array}$	$\begin{gathered} 0.04 c \text { 0y } \\ 0.0001 \end{gathered}$	$\begin{array}{r} 0 . \mathrm{H}_{1} \text { in } \\ 0.0001 \end{array}$	$\begin{array}{r} 1.00000 \\ 0.0000 \end{array}$	$\begin{array}{r} -0.19171 \\ 4.41114 \end{array}$	$\begin{array}{r} -0.4 .8 \cdot 44 \\ 0.0 \cdot 2,010 \end{array}$
an	$\begin{array}{r} -0.01572 \\ 0.1454 \end{array}$	$\begin{aligned} & 0.4434 n \\ & 4.0 .345 \end{aligned}$	$\begin{gathered} -0.15414 \\ 0.4001 \end{gathered}$	$\begin{gathered} 0.01854 \\ 0.1108 \end{gathered}$	$\begin{array}{r} 0.01747 \\ 0.1 / 1 / 1 \end{array}$	$\begin{aligned} & 0.1 .10 H_{4}^{4} \\ & 0.5 / 114 \end{aligned}$	$\begin{aligned} & 0.2417] \\ & 0 .<A 1,4 \end{aligned}$	$\begin{array}{r} 0.0 \mid A y 7 \\ 0 . y J=0 \end{array}$	$\begin{gathered} \text { 4.05si46 } \\ 0 . n 111 \end{gathered}$	$\begin{array}{r} -0.01 \cos _{1} \\ 0.45 \mathrm{inf} \end{array}$	$\begin{aligned} & 0.01215 \\ & 0.4543 \end{aligned}$	$\begin{array}{r} 0.00043 \\ 0.4445 \end{array}$	$\begin{array}{r} -0.15111 \\ 0.3114 \end{array}$	$\begin{gathered} \text { L. } 11 \text { nann } \\ \text { U.110no } \end{gathered}$	
aciarls	$\begin{array}{r} -4.75175 \\ 6 . \operatorname{Pan} \end{array}$	$\begin{array}{r} -0.07410 \\ 11.14418 \end{array}$	$\begin{aligned} & \text { Q. } 110 n t \\ & 6.1104 \end{aligned}$	$\begin{array}{r} -0.17 e 5 \cdot 0 \\ 0.410,4 \end{array}$	$\begin{array}{r} -u .4 u^{c} ; 11 \\ n .0 t e d) \end{array}$	$\begin{array}{r} -0.41427 \\ 4.0244 \end{array}$	$\begin{gathered} -0.1 / 841 \\ 0.4441 \end{gathered}$	$\begin{array}{r} -0.1 .417 \mathrm{H} \\ 0.0408 \end{array}$	$\begin{gathered} -0.01404 \\ 0.0 .053 \end{gathered}$	$\begin{array}{r} -0.21134 \\ 0.1002 \end{array}$	$\begin{array}{r} -0.05631 \\ 0.807 A \end{array}$	$\begin{array}{r} -0.04064 \\ 0.8618 \end{array}$	$\begin{array}{r} -0.629444 \\ 0.0520 \end{array}$	$\begin{aligned} & \text { "orgin } \\ & \text { In.coms } \end{aligned}$	

APPENDIX 6 ́/

Multiple regression analysis for Alnus acuminata, Cupressus Iusitanica, Gmelina arborea, Pinus caribaea, and Tectona grandis using stepwise
maximum R square improvement (MAXR)

1/ For the description of the variables and unit of measurement see appendix 7 .

Appendix 6a. Nultiple Regression Analysis for Alnus acuminata using stepwise maximum R square improvement (MAXR).
The analysis was done for the species in the whole country and individual zones. Two model were used, one with the full set of variables ($P=28$), and one with a reduced set of variables ($\mathrm{P}=12$).

Zone	No. of obs.	Variables in the analysis (p)	```Dependent variable (P)```	Independent $1 /$ variable(s) selected	Estimated regression equation ${ }^{\text {a/ }}$	R^{2}	$\operatorname{Pr}(\mathbf{F}>\hat{\mathrm{F}})$
The Country	13	28	volume growth	age pluvioso rhum asatb	$\begin{aligned} & \hat{Y}=2.27-0.012(\text { age })+0.035(\text { pluvioso })- \\ & \quad 0.029(\text { rhum })+0.0048(\text { asat }) \end{aligned}$	0.85	C. 1224
The Country	13	12	volume growth	age alt precip acec	$\begin{gathered} \hat{Y}=-1.25-0.009(\text { age })+0.0004(\text { alt })+ \\ 0.00033(\text { precip })-0.0082(\text { ace }) \end{gathered}$	0.84	0.1336
7	5	28	volume srowth	ana age	$\hat{\mathrm{Y}}=0.014-0.012(\mathrm{age})+1.26$ (ana)	0.50	0.5046
7	5	12	volume growth	age ecosecos	$\hat{\mathbf{Y}}=0.29-0.012($ age $)+0.033$ (ecosecos)	0.50	0.5046

1) age - Plantation age in years.
pluvioso - Number of month of the year with precipitation greater than 100 millimeters.
rhun - Mean annal relative humidity. Expressed as

ecoseocos Number of month of the year with precipitation less than 30 millimeters.
alt Elevation above mean sea level in meters.
precip - Mean annual precipitation in millimeters.
acec
asatb
ana

- Mean soil profile cations exchange capacity. Expressed as milliequivalent per 100 grams of soil.
= Mean soll profile base eaturation. Expressed as a percentage.
- Nean soil profile sodium content. Expressed as milliequivalent per 100 grams of soil.
- Mean tree growth increment in $\mathrm{m}^{3} / \mathrm{yr}$.

Appendix 6b, Multiple Regression Analyais for Cupressus lusicanica using stepuise maximum square improvement (fiaxk).
The analysis was done for the species in the whole country and individual zones. Two model were used,
ons. with the full set of variables ($P=28$), and one with a reduced sec of variables ($P=12$).

Zone	No. of obs.	Variables in che analyals (p)	$\begin{aligned} & \text { Dependent } \\ & \text { variable } \\ & (\boldsymbol{Q}) \end{aligned}$	$\begin{gathered} \text { Independent }!/ \\ \text { vartable(s) selected } \end{gathered}$	Estimated regression equation	g^{2}	$\operatorname{Pr}(\boldsymbol{F}>\hat{\boldsymbol{F}})$
The Councry	13	28	volume growith	age alt asilt asatb	$\begin{aligned} & \hat{i}=-0.58+0.013(\text { age })-0.000064(\text { alt } i+ \\ & \quad 0.021(\text { asi1t })+0.0018(\text { asatb }) \end{aligned}$	0.99	0.0001
The Councry	13	12	volume orowth	age precip ecosacos acec aph amo	$\begin{aligned} & \hat{X}=1.95+0.005(\mathrm{age})- \\ & \quad 0.00031(\text { precip })+0.13(\text { ecosecos })+ \end{aligned}$		
					0.59(acec) -0.30 (aph) +0.009 (aro)	0.99	0.0001
5	9	28	volume growch	age alc asilt acec	$\begin{gathered} \hat{X}=-0.40+0.0093(\text { age })-0.0001(\text { alt })+ \\ 0.024(\text { asi } 1 t)-0.0027(\mathrm{acec}) \end{gathered}$	0.99	0.0001
5	9	12	volume growth	age aclay acec aph	$\begin{aligned} & \hat{\mathrm{Y}}=-0.82+0.022(\mathrm{age})-0.0057(\mathrm{aclay})+ \\ & \quad 0.004(\mathrm{acec})+0.13(\mathrm{aph}) \end{aligned}$	0.98	0.0008
7	4	28	volume growth	an	$\hat{\mathbf{Y}}=-4.57+22.15$ (an)	0.99	0.0023
7	4	12	volume growch	an	$\hat{\mathbf{Y}}=-4.57+22.15(\mathrm{an})$	0.99	0.0023

Appendix 6c.. Multiple Regression Analysis for Gmelina arborea using scepwise maximum R square improvement (MaxR). The analysis was done for the species in the whole councry and individual zones. Two model were used, one with the full set of variables ($\mathrm{P}-28$), and one with a reduced set of variables ($\mathrm{P}=12$).

The saalyaia was done for the spaciea ta the uhole couptry and individual zones. iwo oodel were used, ona with the full aet of variablea (P-28), and one wigh a raduced eet of variablea (p-12).

200a	Mo. of obs	variablea it the analysid (p)	$\begin{aligned} & \text { Dapandene } \\ & \text { vaziable } \\ & \text { v } \end{aligned}$	$\begin{gathered} \text { Indepandent !/ } \\ \text { variable(s) selected } \end{gathered}$	Es:ianced regrassion equaction ${ }^{\text {2/ }}$	R^{2}	$\operatorname{Pr}(\mathrm{F}>\hat{\mathrm{F}})$
$\begin{aligned} & \text { The. } \\ & \text { cowatry } \end{aligned}$. 26	20	volume crouth	ags ecosecos light asasb ak	$\begin{aligned} & \hat{y}=0.051+0.0091(\mathrm{age})- \\ & 0.082(e \operatorname{cosec}(\mathrm{~s})+0.00017(11 \mathrm{shc})- \\ & 0.0092(\mathrm{asacb})+0.26(\mathrm{sk}) \end{aligned}$	0.75	0.0001
$\begin{gathered} \text { The } \\ \text { comery } \end{gathered}$	$\cdots \cdot 36$	12	voluse arow:h	ege ecosecos ak asatb	$\begin{aligned} & \hat{i}=0.31+0.0057(\text { ase })-0.064(\text { acoeecos })+ \\ & 0.33(a k)-0.0085(\text { aeatb) } \end{aligned}$	0.67	0.0001
1	16	20	voluat grouch	aga intare rad apb asand amer ana *	$\begin{aligned} & \hat{Y}-3.68+0.011(\mathrm{sge})+0.75(\text { inters })- \\ & 0.008(\mathrm{rad})-0.29(\mathrm{aph})+ \\ & 0.006(\mathrm{es} \mathrm{and})+0.076(\mathrm{mog})+ \\ & 0.25(\mathrm{sad})+1.03(\mathrm{dk}) \end{aligned}$	0.99	0.0001
1	16	12	volume srouth	age alt precip aclay asatb an ap	$\begin{aligned} & \hat{y}-3.900 .019(a g e)+0.0006(a 1 t)- \\ & 0.0007(p r e c t p)-0.013 i \operatorname{sclay})- \\ & 0.023(\mathrm{as} \mathrm{etb})-0.72(a n)+0.05(e p) \end{aligned}$	0.97	0.0002
3	\%	20	volume yrouth	precip aph acec acaui	$\hat{\hat{F}}=1.09-0.0003$ (precip) +0.098 (eph) - 0.0083 (acec) -0.011 (ecan1)	0.97	0.0009
3	0	12	volue sroush	pracip aph scec ecetb	$\begin{gathered} \hat{\mathrm{y}}-0.91-0.00034(\text { precip })-0.01(\mathrm{acec})+ \\ 0.0024(\mathrm{ssact})+0.13(\mathrm{aph}) \end{gathered}$	0.99	0.0011

asatb - Mean soil protice base eaturation. Expreseed as a perceatage.
ak - Mean soil profils pocassitua content. Expressed in Moan soll profils pocassitia content.
allisequivaleats par 100 grase of soll.
aph - Mean profila woill pla
asand - Mesen sail prot:le sand conteat. Expransed as a parceataye by volume.
ang - Man soll profile atgnesitas conrent. Expreased in allitoquivaleat per luc grame of eoll.
ans - man aoll profile sodita cuncent. Expreased in milliequivalent per 100 grams of soll.
aclay - Mean coll prollla clay content. Expressed at percentaze by valume.
an - Mona soil prolile nitrogea content. Expiessted an - percentige. acec - Hean soll profitia catione exchange capazaty.

The analyate vas done for the apectes ta the wole counsry and Individual zonea. no model mere

DESCRIPTION OF THE VARIABLES USED IN THE STATISTICAL ANALYSIS AND UNIT OF MEASUREMENT.

Volume growth: The formula used for the calculus of tree volume growth was diameter x height x age. The volume growth obtained by the above expression is the mean annual increment in volume growth per tree because it is calculated from mean annual values of diameter and height of the trees. It is not the true volume growth of the trees, but was used for practical purpose of these data analysis.

DBH: Mean annual increment in diameter at breast height, standarized to 1.30 meters above the surface of the soil. Measured with a diametric tape and adjusted to the nearest millimeter.

Height: Reported as a mean annual increment in tree height and measured as the distance from the soil surface to the terminal bud. Measured with a Suunto clinometer and also with a stadia in young plantations.

Basal area: Calculated from the expression

$$
G=\sum_{i=1}^{n} g_{i / s}
$$

Where: $G=$ Basal area per hectare in m^{2}.
$g=$ Basal area of individual trees at the breast height in m^{2}.
$\mathrm{n}=\mathrm{Number}$ of trees.
$S=$ Area occupied for the stand in hectares.

Age: Considered since the day of the establishment of the plantation and taken from the archives of the Forestry Department and also directly from the owner of the plantation.

Altitude: Elevation of the plots in meters above mean sea level. Taken from the contour maps and corroborated with an altimeter and adjusted for the closest meter.

Sand, Silt and Clay: Three major physical components of the soil and are expressed as a percentage by volume. The sum of these three parameter is equal to 100%. For those plots for which information was not available in the files of the Forestry Department, the analysis was done in the soil laboratory of CATIE. The methodology used was the suggested by Forsythe (1975).

Temperature: Reported as a maximum, minimum and mean daily air temperature obtained from hourly values. Expressed in degree celsius (${ }^{\circ} \mathrm{C}$).

Relative humidity: Humidity of the air obtained from the mean of hourly observations and is expressed as percentage.

Light and Global Radiation: Light, expressed as number of daily hours of sunshine (full exposure): Radiation indicates the total of calories per square centimeter per day, received in a horizontal surface.

Precipitation: The observation period of rainfull is the twenty four hours, between 07:00 and 07:00 the following day.

The values are reported as total for daily, monthly, and annual precipitation in millimeters.

Evaporation: Measurement of the evaporation with the Pich evaporimeter and also with the tank type A. The values are daily and for the same period and units than that of precipitation (millimeters)。

Soil pH: Indicates the degree of acidity and/or alkalinity of the soil. Range from 0-7 for acid soils, 7-14 for alkaline soils. Specifically, pH is defined as either the negative logarithm of H^{+}-ion concentration or as the logarithm of the reciprocal of the H^{+}-ion concentration.

Pluvioso, Intermedium and Ecosecos: Variables also knowed as moist, mesic and dry, respectively and indicates the distribution or occurrence of rain. Method suggested by Aubreville (1975), and is formed of three digits. The first indicates the number of months of the year with precipitations greater than 100 millimeters (pluvioso or moist months), the second, the number of months with precipitation between 30-100 millimeters (intermediate or mesic months), and the third for those months with precipitation less than 30 millimeters (ecosecos or dry months):

Chemical and physical properties: For the chemical analysis of the soil was used the methodology described by Diaz Romeu and Hunter as mentioned by Martinez (1981). The values for organic matter, carbon, and nitrogen are expressed as a percentage. Phos-
phorus is reported as available phosphorus in micrograms per milliliter of soil. The exchangeable bases (calcium, magnesium, potasium, and sodium) and cation-exchange capacity are reported as milliequivalent per 100 grams of soil. Base saturation expressed as a percentage.

Asand: Mean soil profile value for sand in the soil. Exzpressed as percentage of soil by volume.

Asilt: Mean soil profile value for silt in the soil. Expressed as percentage of soil by volume.

Aclay: Mean soil profile value for clay in the soil. Expressed as percentage of soil by volume.

Aph: Mean soil profile value of pi.

Amo: Mean soil profile value of organic matter content. Expressed as percentage.

Ac: Mean soil profile carbon content. Expressed as percentage.

An: Mean soil profile nitrogen content. Expressed as percentage.

Acani: Mean soil profile carbon/nitrogen ratio.

Ap: Mean soil profile phosphorus content. Expressed as available phosphorus.

Aca: Mean soil profile calcium content. Expressed in milli-
equivalents per 100 grams of soil.

Amg: Mean soil profile magnesium content. Expressed in milliequivalents per 100 grams of soil.

Ana: Mean soil profile sodium content. Expressed in milliequivalents per 100 grams of soil.

Ak: Mean soil profile potassium content. Expressed in milliequivalents per 100 grams of soil.

Acec: Mean soil profile cation exchange capacity. Expressed in milliequivalents per 100 grams of soil.

Asatb: Mean soil profile base saturation. Expressed as percentage.

APPENDIX 8 l/

Species, site characteristics, growth indicators, and other environmental factors used in the regression analysis

1/ For the description of the variables and unit of measurement see appendix 7.

ithoi	matacors．	sutirs	＇ill	1901	A．A	11401	－1／0．1	Ha＊） 4	vin ing
1	110011	int 1104	101	1	6． 2	Re．ma	11．0n	4.14	－0．0troue
2	110011	H1．mis	101	1	A．${ }^{\text {a }}$	Rath	10.008	1．104	－i2－rols
，	－1rull	luca	171	1	m． 4	11.14	$1 \% .00$	3．14	－． 20 －xify
4	1 Inul！	tuelma	102	1	1．＊	4．2011000	22．61	4.31	0． 340,001
4	d tevil	－1oms	ine	，	6．0．	19．111	70．nh	－6．0．3	C．Jegini
i	110411	HCA	101	1	4.0	11．84	10.08	0.44	0.110400
1	110911	pirnos	104	1	4.6	11．11	83.11	11．th1	－ $0 \cdot 0$ anar
\cdots	110011	leca	106	1	4.6	Rh．In	31.10	3．78	
4	110el1	－Me ina	10\％	1	－．$\%$	46.00	38.11	10.50	
10	1 lowil	Welima	103	$?$	1.4	．11．14a	21.46	1.45	－． 546411
11	－Iavil	－1anos	103	1	1.0	P4． 14	110.11	$4 \cdot 18$	－． $\mathrm{S}_{511 \mathrm{~m}}$
12	110011	$\cdots 1$ mis	105	－	1.1	23.04	80．30	1．2h	－．Jjulas
11	110011	plons		1	1.0	\％2．14	82．015	－0．14	6．${ }^{\text {a }}$
14	Clatl	11．1．4	10．3	1	H．0	80.84	81.8	1.06	－6． 95×190
14	110011	If ca	193	2	4．n	4.65	10.11	1．0．un	－． 0 ＇ing？ 1
13	1 10411	mlilloa	101	1	1.5	［J．4n	$11.6 n$	1.15	－．Jtresas
11	－1acil	rimis	101	1	1.4	27.02	16.404	4．AP？	0.2685 7n
10	110011	1 CCA	101	1	n． 1	M．04	H．a．）	－．tio	0.05 .1 nes
14	P lamil	pilams	IOM	1	5.1	19.64	16．14	2.44	－Inatima
？	＇laul	11 Ca	104	1	5.1	84.11	P4． 11	3.64	－．Jupion
21	rlanil	leca	118	1	0.1	$42 . \mathrm{H}^{4}$	15.11	0.81	－．04172
72	limeli	ftca	112	1	－．．	16．07	119．09	1．0nt	0.018 nos
21	Cineil	CIPHES	201	1	14.0	f．en	5.00	． 12	－．10sione
24	118011	－1041s	202	1	4．0	14．80	26．M0	H． 11	0.505920
23	＇10011	Plinis	70）	1	H．\％	11.00	21.50	－．54 ${ }^{4}$	－． 40,4400
80	C10011	Pitwos	2.04	1	3.1	14．06	11.40	4.81	－． 2 ¢312）
31	＇10011	Plimes	203	1	6．＊＊	14.00	28．30	4.58	－．ban 100
28	11041！	－inmis	Pon	1	h．${ }^{\text {cos }}$	14.09	13.08	2.25	0.140400
24	［10011	Jail．	P0\％	1	3．4	13.00	11.00	3.13	－Onlicou
30	＇19011	Higis	111	1	12.0	84.00	20.00	3.02	－． 576.009
11	＇10011	jain	212	1	H．0	13．100	16．fie	1.04	0.22 .0200
18	r10011	clpars	212	1	H．0	． 18.00	$90 \cdot 0$	1.44	－0．094n日包
11	1 10wl1	Hinus	101	1	5.0	20.00	11.40	3.44	0.121560
14	＇1ael	itcia	101	1	\％．4	5.40	H． 20	－．0n	0.016740
15	［1ael	Mf 1.1040	10%	1	6．\％	80．01	17．84	2.02	－． 342112
in	119011	Hionts	102	1	4.6	11.85	1.25	－． 18	0.034075
11	119011	Ifeca	102	1	4.0	In．IIM	14.00	1.2%	
in	＇10011	milina	109	1	1.4	410.18	72.10	6.45	0.925130
51	1 1nal！	11 Ca	Ins	1	\cdots	25.34	21．04	2．41	0.491476
$4{ }^{41}$	110411	clill 1004	10.	1	3.6	24．pon	12．40	H．N：	0.6845×4
41	－1neil	11 Ca	104	1	$8 \cdot n$	26．20	24．40	\＄．40	0． 341640
4%	－Inell	thca	195	1	1．0	46．11	21.16	4.51	－．P．1113
43	－10011	$0 \cdot 10105$	Di4．	1	1．4	＋1．0n	$1 \% 00$	2．0．0	－0．017ncos
46	－lasil	P1041s	101	1	4.4	「＂．10	11.010	－0．1 1	0．1arisay
43	1 layll	Plomes	104	1	14．0	11.00	11.10	－$\cdot 10$	0．08．174\％
$4{ }_{4}$	＇19011	－10915	10.1	1	0.0	P＇90\％	－11． 10	R．P2	－．3140．00
41	110811	leca	110	1	4.0	$4 . \mathrm{HH}$	4．pa	－． 26	－． 01 erno
40	－10011	plomis	118	1	4.1	80．0＊	20.00	2.36	－．3280ee
$4 \cdot$	Flous	Plimis	113	1	5.4	c．lan	14.40	1.12	$0 . ? 11000$
59	＇laull	11 Ca	114	1	8.4	19．00	11．10	W．as	－．074344
31	1 lasil	fica	116	，	4.1	H．00	10.1 .8	－0．is	－． 016464
31	1 Inell	11 ca	11%	1	$0 \cdot 1$	19．NH	4.53	0.12	$0.00 \cdot 1411$
31	119011	sa．4	110	1	M．t	20．0n	20.00	． 4.4	－．036ant
34	11asil	leca	401	，	$4 . *$	PH．00	？6．H0	4.0 .8	－．300180
＇8	114011	Itca	49.1	1	10．0	10.00	H． 00	－．13	0.840004

0115	dalacililit	S14．1．175	S11	11．11	n 1,1	11111	．\｜\｜．，\｜ 1	llabia	vill unt
4t	110011	If ca	4115	1		1.1010	1． 111	2．0H	0.140150
31	｜lall｜	brifica	4116	1	12.0	14.011	14.411	11.911	U． 1111140
SH	1 inusis	Platiss，	411	1	$4 \cdot 11$	11.011	11.111	11.11	10．0ngmot
b4．	＋11011	on li lina	410	1	1.11	11．11	$1+0111$	4.22	0.215643
\＄10	clousi	Itca	410	1	8.11	（1．11）	1.911	0.01	0.031 .240
61	110111	melina	411	1	0.0	10.111	2.6 .11	4.00	0.419740
$n \mathrm{~m}$	Plalis	II CA	412	1	$6 \cdot 1$	3 H .111	11.110	0.71	$0 .\langle$ Hiano
01	110011	milita	411	1	$8 . \%$	11.110	84.011	4.010	0.11150
H4	＋100］I	Itca	414	1	1.11	14.011	16.411	P．tor	0．dilizo
65	110011	nhtima	410	1	6．H	2－0．35，	3H．AS	（1．0＇）	0.519104
nis	－Inosi	Itca	411	1	8.11	\＄6．011	1n．9n	1.41	（1．）ASHDO
0.1	P1001s	mt i．ina	480	1	H．${ }^{\text {H }}$	17.94	14.41	2.10	0.175780
for	rinus）	Jath	901	1	4.11	11.11	11.28	$1 . \mathrm{H}_{4}$	0．1．3P3AS
at	FInlis	C．fricts	h111	1	4.11	1s．0n	12.00	1．46	0.162000
10	11001）	CIFHIS	301	？	4.1	14.00	＊．5＇s	4.35	0.110157
11	Flallil	Clpats	Su\％	1	14.11	14.00	11.10	2.31	0.229320
17	finuis	Clputs	503	1	311.0	17．110	1.00	1.47	0． 11 ¢non
11	＋104］	CJPut 5	5114	1	311.0	11.011	11.00	4.41	0.544000
1.4	1180］	Jame．	5ils	1	6.11	11.014	11．0．3）	3.42	0．1931ta
75	flouls	CIPRIS	4113	1	H．H	14．04	6.41	1．ne	0．06y ${ }^{\text {a }}$
76	1100si	C Iprets	506	1	1.0	1．011	19.411	1．13）	0．dili3n
17	Finusi	CIPMES	5017	1	3.11	19．4II	14.411	2.014	0.113160
1 m	Itnuil	CIputs	907	？	4.0	11.511	111.30	¢．1H	0.113400
14	Flnusi	PINISS	507	，	1.0	11．th	10.11	4.22	0．133421
H0	110011	helina	510	1	1.0	4.1 .100	1siou	1．21	11.064500
41	t1001s	IfCa	310	，	7.0	11，in	h． 1111	1.01	0.01 yano
H．	Flnals	ILCA	$31 ?$	1	1．1）	10.00	1.00	0.11	0.003000
H	H1001）	Himis	514	1	6.1	C3．43	16．43	4.41	U．ci4unis
H_{4}	IInus）	mel itia	516	1	2.0	44.50	41.50	4.22	0.470250
H_{5}	110011	Itca	416	，	2.0	1／．50	24．110	1.73	0.151500
Nh	110011	$\mu \mathrm{Hfus}$ ：	417	1	1．H	16．ti	10.04	2．00	0.042966
H1	F10011	jame．	516	1	0.7	14．2n	7.14	0.6	0.007137
MH	F10011	Clibr 5	514	1	6．th	15．44	1.74	2.45	0.042510
84	Flousi	JAM，	ha？	1	4.11	1H．5is	11.11	1．10	0.2115651
94	＇lnusl	JAML	62\％	$?$	12.4	11.100	14.50	1．n1）	0.213140
41	11001s	Jalut	628	3	11.0	12.00	11.511	3． 14	0.27 .1000
42	Flnus	Jaml	622	4	12.4	1u．0n	14.40	2.011	
43	H10011	Cipalis	6.22	1	13.11	14．017	1.911	1．カ．1	0.141790
44_{6}	Flouli	C Ipoks	no？	2	11.4	17.04	11．811	1．HS	U．libisao
45	110111	ciputs	n？${ }^{\text {a }}$	J	11．11		1．40	2.11	O．lilato
＊	Ploall	Cipidis	16.4	1	H．11	81.10	8.40	4.23	U．411600
41	tinuil	Clrouts	n20	1	4.4	11．NI	4.61	$2 \cdot 16$	U．100515
4 H	F19011	JAML	7104	，	$\mathrm{H} \cdot \mathrm{H}$	12.45	16．110	2．4，	n．IArcitu
14	＋11011	rinus	707	，	7.11	P1．00	16.00	4.41	
1111	finuli	HiNIS	7114	1	11.11	61．0n	14．00	0.01	$0.46{ }^{5} 5040$
111	H10011	Jayt	1114	1	1.7	22．44	｜H．＇il	1．13	U．Di＇riny
10？	＋10011	Jaiti．	7114	2	4.0	17.114	1H．00	3．13	1）． 2 H46，56
101	cinuil	CItrics	110	1	1.1	21.1111	14.8	1.02	U． 211 H64
1114	H10111	－1atis	111	1	H .11	20．83	12．00	6.01	11.24 .1100
1115	（1）0ll	Jaml．	$11 ?$	1	4.1	21．4？	17.4	11.94	0．0142a，
105	11101）	Hiruis	111	1	1.11	21．1？	$17.4,1$	ヶ．ガ	

s																			
							\cdots					a							4
0		c	ω		N	C	＊					：						4	5
4	\cdots	4	\％	\cdots	\cdots	c	5	$\stackrel{A}{*}$	${ }_{\sim}^{4}$	－	a	H	，	a	0		$\stackrel{A}{ }$	c	4
5	1	1	．	，	1	1	1	11	：	r	N	1	＂	\square	4	K	a	c	1

	14	11 mm	${ }^{1 / 5}$	11				n．＜nisa	2．1000	1．4／30	0．1425	M． $411 / 5$	18．4414	1p－r？11	＊orlnoe	9．9n000	0.31425		
t	44	Pos		44	＜								3． 18.150						
	24	－ 1	54）	IN		34			11.	O	0.6150	18.04	1.41	P．1011					
	1.8	？ 31	51	11	81	－11	4				－．tnul	H．P\％	2．6ibun	1．ticy）	0.	．？ 31			
4	13	bres	\cdots		84	Pי．	0.8		5.11	$1 \cdot 1$	e．papi	11.46 －4	4.16 .25	－．17\％1	0.241 .8	0450	0.261	29．6315	5
1	40	1	104	11	11	146	8י\％	． 2	．21	7.4	n．prif	11.468	4.3 ¢ 0	．1．101？	1.8 ¢ 114	Clls	38125	ค． 1150	？8．1400
${ }^{\prime}$	1.	$5 ?$	17	1	\therefore	477	10	1	． 4	－ 0	U．trsio	＋．＇3150	1．n／4n	u－ti，${ }^{\text {a }}$	n．75115	$2 \cdot 1$	． 391	37．3？40	5
4	1.1	$4 \times$	41	\％	？	411	St	ald	1.1140	－．4．113	0.6900	iv． 11.8	c．110．9	－ 1111	－．nion 15	．In．15	． 2 ra	4P．9A	＋．7150
1	41	thes	1 HH	1.	\bigcirc	P	H	． 1	4．184	On	a．Inun	4.1	1.1405	4.10117	1．\cdot Mraia	－． $0^{\text {dicoue }}$	－ e ． 8 ？	19．115	．
11	417	1 in	294	40，	14	4 a	${ }^{\circ} \mathrm{C} 1$	，10，${ }^{\text {a }}$	4.9174	415	＂，	4.1		H．0iP！	8.465110	0．npane	．	WH．WH／5	4． 1115
14	17	Ho4	211	－	10	101	$1{ }^{18}$	b．＞ 104	4.	2．ntic	$0.1 / 50$	1.4190	$\cdot{ }^{-1}$	9.2 .175	2． 17115	U－92．115		．17．5000	3．4190
11	9		11	\cdots	44	－＂4		．11ヵ	14． 10	月．90	o．hail	in．4i？	5．4．119	1．1675；				H25	
14	1.6		241	\％	14	－10，	10.4	． 1115	9.0 .50	1． H ＋	0．41is		1．－2108	1．010u	1．0nion	． 4 Hunt	5rsoo	N15	
14	95	40	$1{ }^{1}$		1	＇	101	11	． HC	． 1	a．Pari	1P．417 ${ }^{4}$	n． 1180	$0.4+1$,	U．1sili	1－14475	25	H1	
in	－3	404	115	\cdots	1	144	1 l 1	．	．111	く．！	0.1150	14．00nn	$4.10 \cdot 1 / 4$	－，¢1 17	－ 11 ion	0．4i！115	2125	Stu0	\％
－	14		14.1	01	－1	10：${ }^{\text {a }}$	101	．	． 680	1．41／5	－． 21%	10． 1 IR	4．4．415	＊．． 181	P－1asion	9．54850	－81090	2m．thno	
14	in	4044	115	41	\square	$1 \cdot 1$	－••	． 11	1．130n	1.		）		0°	．				
iv	5	14n｜	4－1	34	01	$\cdot 1$	40	3．11）	Ho	人．1413		H．stiph					（1）	保	い）．

							5												
							4					\cdots							
						c	,	-				c						4	5
\checkmark		c	\cdots		4	\%	5	a	a			a		-	*		4	c	4
${ }^{\text {d }}$	\cdots	1	6	M	1	C	E	μ	\cdots	A	\cdots	N	-	r	4	\cdots	4	E	1
5	3	1	3	3	1	3)	11	0	r	N	1	\cdots	-	4.	a	\cdots	c	-
20	25	65	24	22	20	24)	54	5.4183	6.6123	7.N00e	0.2175	17.10110	3.1185	-. Jhbs	-. 1 d Bou				
21	he	415	76	14	1 H	261	276	S.4625	P.4374	4.4500	-. 3475	12.9000	5.7175	4.3HH7	A.tilage	-.71750	-. 1 Mm75	25.6425	21.85n4
12	4 H	54	11	11	14	145	10	5.173	12.1625	1.0400	-. ithe	1H.10no	4. H6P? 5	W.nzJl	N. 111185	0.1575	-.17H75	46.6123	21.854
<1	H4	20	${ }_{4}^{*}$	5	24	241	?*	5.0125	\%.enue	4.0 .500	\%. 1000	16.42Sin	H.1509	-. 246 +	-.18304	U.46125	0. ${ }^{\text {P14 }} 15$	21.6n75	7.5750
34	25	10	3%	$1 ?$	26	255	51	5.2624	7.5175	4.4173	-. 1000	16.4185	S.14t5;	3.9424		0. 2 - 025	-. 23250	PM.012S	17.4175
25	12	13	11	4	19	204	14	5.1123	4. 1125	2.1315	0.1415	14.3250	1.4tio	-0.iona	n.ep-ion	9.06175	0.16000	22.6A7S	3.8500
26	25	111	31	11	? 3	24?	71	5.1n25	7.1000	4.7500	-.2n25	17.4808	J.7.175	1. 1012	-. 11115	U.144an	- 24450	26.7500	7.4 HCL
21	19	\% ${ }^{14}$	21	14	11	15.	91	5.1174	5.1230	2.9H75	-.1423	15.1310	3.?404	4.0717	U. 10.750	- 1 Itrso	0.21515	17.5685	4.7780
24	14.1	S850	414 896	91	184	614	466	6.8625	5.1750	J.1500	-.2625	1.1 .175	15.4150	51. 1154	4.fintili	1.15315	1. 35750	67.4000	44.26 .25
24	25	2500	496 384	(118	11	4H1	6.76 516	6.10009	4.1175	2.1115	$0.2 n 25$ 0.1124	11.4475	2.6046	24.H500	H. 90150 1.17125	0.5u5ae	-. 12.1000	47.11115	10.6469 41.4755
11	17	151	44	33	21	10	baty	6. 4875	2.0150	1.2un	-.112s	12.48/6	3. 3 Hers		1.12iras	- 0.314000	0.85625 0.22500	23.3230	41.4125 50.3000
12	35	13n	102	18	10	154	3 l 1	6.HSAO	2.1475	1.3750	0.1750	11.118	2.8inn	3.9400	1.028<	0.Ju2s	-. 0.2291 .25	12.1715 20.4750	50.3000 24.3000
11	75	174y	577	14	11	19	6ip 4	6.HAIS	4.2250	2.4150	-.16is	il.017s	2.418	16.0.020	5.55174	-.sssino	-. .10125	H6.2150	44.4000
16	40	1P44	176	111	45	以仡	402	h.asts	4.H150	2.4su0	-.zacs	10.25ue		$13.010 n$	4.04750	i.çisa	-. 37250	36.4150	57.11/5
13	6)	1610	171	119	31	th1	318	6. I4is	6.HIPs	3.9.1/5	4. 1125	13.88So	6.4 eso	11.642	1.34250	1.1HSOO		34.tiso	51.8230
16	13	${ }^{174} 4$	215	107	15	457	211	6. J11s	d. 0 ? ${ }^{\text {a }}$	4.6 .750	0. 16,75	11.5375	2.1125	"0.0num	+ 111180	$0 . H 4125$	-. ${ }^{-18475}$	43.2150	27.4125
11	'63	$26 n 0$	440	45	24	H1	H. 14	6.18 c 6	4.2175	2.65u0	0.2184	12.1840	4.11<4	35. 3nl2	4.21685	-.th2iz5	-. 27175	19.0504	M1.1040
$3+$	14	105	251	H3	<1	434	214	3.45al	H. 3560	$4 \cdot 6374$	U.b125	4.4850	4.ichu	n.4:15	2. $\begin{aligned} & \text { biciod }\end{aligned}$	-.44r.25	U.ionts	$41.4+15$	c8.6H7S

049	Mavacmif	S1\%	Sanlil	SILT	Clari	sanili	stli?	Ci.ar?	54.1913	SHIS	Ca.ars	asanis	ASILI	aclay	
1	(5013)	101	11	tou	23	14	be	24	1\%	46	14	1f.iso	50.000	33.250	
,	(50.40	14?	41	16	1	H)	14	3	HI	16	1	-1.150	15.250	3.3 .000	
1	550 3nd 3	10.1	+1	14	41	11	24	45	8	84	41	24.250	25.250	45.500	
4	[Sosal	1114	11	is	1	14	16	4	11	18	5	11.750	17.000	5.240	
4	550 ind	105	11	IH	4	69	04	1	64	24	7	64.300	23.250	1.250	
a	-5n in.	101	14	¢	41	45	14	41	4.1	12	45	43.250	13.750	4.1 .000	
7	(stinl	10 n	al	P4	5	03	I?	5	13	2	5	6R.500	26.500	5.000	
n	rsujul	208	34	8	? 4	52	8	24	50	$1{ }^{1}$	3?	51.240	20.750	2H.000	
*	550.141	20.1	4H	2 H	84	59	14	d9	59	26	34	57.685	11.125	25.815	
10	F503a,	204	in	10	54	14	23	no	12	24	1.4	11.250	25.500	1,1.250	
11	5 Sn 341	202	14	16	* 41	16	12	3 ?	9	PH	H6	10.750	. 10.500	5A.750	
$1 ?$	(Snsma	206	pror	17?	$4{ }^{4}$	22	3	52	-	22	10	15.500	24.150	54.750	
11	550343	204	6.4	in	H	A2	14	4	Mr?	12	b	80.080	14.500	5.900	
14.	[Susind	211	$4{ }^{4}$	10	28	36	8	22	42	40	2 A	3.1 .000	22.000	25.000	
14	[50 Im_{3}	212	S	for	${ }^{+}$	A?	14	4	$1{ }^{1}$	12	6	74.475	14.500	5.500	
is	IS0 11.3	101	11	30	j0	16	18	Ans	$1 ?$	$1{ }^{1+}$	111	15.750	IM. CH	66.000	
11	[Sajes	711)	16	26	1 H	is	74	56	14	? 0	8.0	17.500	2h. 150	55.150	
14	[50343	10.1	40	4 n	12	42	42	10	44	40	16	43.000	41.510	15.580	
14	rsinge 3	1114	26	d	4 H	54	2 H	IH	SH	24	18	\$2.500	25.750	21.150	
8	- 50943	313)	12?	14	14	12	-	42	11	2 n	54	26.000	21.010	$41.0 n 0$	
21	(5034)	306	?	12	16	10	2 H	4 ?	in	20	has	2.1.250	24.300	52.250	
?	150143	311	96	6	10	6?	84	14	0.10	24	In	6 6.2.0	24.250	14.500	
71	- Salmi	104	10	14	16	6. ${ }^{\text {ch }}$	10	16	tis	16	1 H	h7.j50	15.750	17.000	
74	[Sn inis	10.9	14	20	4.2	no	12	P4	$1 ?$	12	Sh	4.3 .250	13.000	43.750	
19	[501H3	110	$4{ }^{4}$	10	$1{ }^{1+}$	45	14	76	32	In	48	J.1. 750	$1 \mathrm{H.500}$	41.150	
Ps	- 5n'jal	115	44	? 6	in	24	1 M	34	$1{ }^{\text {H }}$	in	66	25.250	14.000	46.150	
71	[5094)	. 311	13	26	14	14	20	46	- ${ }^{\text {H }}$	IN	34	31.250	14.154	44.000	
PH	550 [41	314	49	2.4	10	. 16	22	4.2	10	is	54	34.250	1% ecso	4 4 .500	
24	CSA IHI	4111	7e	is	74	40	?	11	40	$? 1$	13	.14.500	PA.N15	31.150	
13)	- Sodis	411.	It	46	14	14	44	4%	?	14	no	H. 250	41.250	50.500	
11	- Sn 14.1	4115	$4{ }_{4}$	32	? 11	40	10	8	6.0	1.4	G	54.750	12.250	13.000	
12	[50] 3	4117	46	10	14	4.2	26	12	47	\%	20	55.150	\$1.500	16.150	
11	[90 543	441	511	11	13	$4{ }^{4}$	30	22	4H	84	24	41.250	2.7.675	23.075	
14	59514:	410	14	30	is	70	10	40	411	44	14	35.500	17.000	27.500	
${ }^{1}$	$5 \mathrm{Saj} 1 \mathrm{~S}_{1}$	411	th	11	21	12	8	14	III	11	11	31.500	.11.000	31.500	
in	-5n17	412	$7{ }^{7}$	4 4?	12	. ${ }^{\text {H }}$	31	¢	34	34	3/	13.140	13.500	27.150	
11	[50183	411	it	41	14	14	41	14	11	11	311	31.615	. 34.500	22.625	
114	5 Sln 141	414	3	11	13	14	25	41	?	2	44	2 H .250	21.150	44.000	
19	530 in 1	511)	4\%	1 A	111	In	II	14	4%	is	10	43.150	34.nu0	20.250	
41	Cstinl	S13\%	5.4	PH	11	4 H	1?	\cdots	46	16	14	5\%.140	. 10.5400	16.150	
41	CSatal	514	31	10	40	17	Pr	0.10	\cdots	? 11	Of:	11.250	34.7611	60.500	
47	(9034)	5114	¢	8	?	34	14	- ${ }^{\text {H }}$	S	411	14	31.250	42.500	20.850	
41	(9010,	4115	44	37	1)	no	PH	12	40	H	12	5.1.500	11.400	11.000	
44	550141		44	\%	4	16	44	2u	4.0	is	IH	$4 a^{\prime} . \sin 10$	3n. 2511	14.500	
45	Fin $3: 47$	411	> 4	15	'0.	4%	10	- ${ }^{\text {H }}$	",	8	30	4110230	24.150	30.000	
46	(SOIH)	ap?	2.4	111	"	6.4	10	n	$4{ }^{4}$	16	6.	0.1 .000	. 13.000	6.000	
41	(Snjal	nip4	24	106	Pn	1 H	44	If	14	44	14	14.2511	45.000	35.150	
418		1110	4.0	14	6	111	8	0	0.4	T	A.	41.150	26.850	H.1600	
$\begin{aligned} & 40 \\ & 40 \end{aligned}$	¢Sn 3 Sti	1117	H1	411	$1 / 14$	16,	4	?	12	4	CO	14.250	42.750	2.10000	\cdots
40	SMint	\%14	'41	I'	IH	44	14	88	411	$1 /$	pa	42.150	31.130	13.500	N

APPENDIX 9 2/

Numerical code for the species in investigation in Costa Rica and location of the plots inside the country

2/ The information was taken from Camacho, (1981) and Martinez, (1981).

CCDE FOR SFECIES IA INVESTIGATION IN CCETA EJES

mancie aurlculfleande 1. Curn. ax senth.
2acta madive tilld
mexengive Irexiaifollus whtic
aurigin Ealcacaria (L.) Poeberg
Atman acomineal (ing o. kexe

netroalua grevecleat Jeç.

Breecopate qurnatie Wacql Drqaid
mantin ollantre sworts
tice uele na; yoter
Calliandes enllotiny
Elophylive breall: cace Camb.
Ornape guloneriete aubl
Cacuarisin equfenetiolla z.
corcin mancan (L.) Roen.
1 erocuris (C.) DC.

conelss aprarenale
Cratia Garmagentero off. Garascenehu
Cypeeneria taponten D. Doa.
Cuprosee macrachrpe (Eard)
Cyinerr domoll-miletil (Rosel) Seibort
Datheryda catilquitzearis P! =ëfer
Dalboryia retesa Eanel
Delonar ragta (Mofer) Rat.
Matyman robleinleaz Berch
DLptersdendrum elequas kadik
Dryate granelimaty (z.)

Ercalppene dibe Resom
manytu encoleulens:a Eaka
monlyreus elvariaca F. sesell
nanlyptin decopte alakely

gnonptas slobala Lasil2
Exalytio lenglfolle Link y otto
moslyper mecrocarpa iotk
monlfpere matdanil F. Mueli
beenlyptue robugea salth
045 monippen ealipn sulth
047 mprela flmboa tima
od Fraisaum cupdei Lindelsh

Cliriciden septur :Jaeky seead
amilia atbarea Roxt
Crovilian gabisea A. Guns

ecbiscue eletus (X .1) senctes
aymenee cocrtaril 2.
Jecarade copaia (Aubl) 8. Doo
Jacarande rivos:fol!a D. Doa
Juglage oleneanim Scandl \% WLll
Lavenem laucocephala (Leal de Wit
Moquartle quianensis Aubl
Moneapon dencola riete
myroryion baisamisa in.) Hern
Paptaclathra nacrolobe (W1Nid) xexe
Plnus caparlencte C. Sintin
Pimu earibea var. bebrienile sert y eolf
Pleus caribeca ver. gerthace Berr y Colf
Pinus ceritace ver. bonduranais bart y Colf

PLinu magemanti Cnrr.
Plum kesiya Rovie y cordoc
Pinus aoca:pa : :chzode.
Plam patiod scr:! y'Cus.
Pinus pinaster

Plnas zecigea シ. Don
P1nua ructs Enel.
Pinise caeda 5.

Pithecolcbix.e sarna (Jack: Sent
pratirye: fo:a:seacioror Jorn Em.
P!a:
Podocerpus ciestolits Don

Schizelokis peraiybu rfaill Blake
saniozia gracalf:oza iL.l Pers.
SLearonibe giavce D.C.
seareulif egeeala (Jack) Rurst.

svartcila pereensia genth
Buieteraia buedilla Zuee
Proteala sacropnyila 6. Rleq
Fabobuta ehryentra (Jack) licisol.
Fabebule peiseri Rose.
Sababuis roset (Vorell DC.
Feceona qrancle 2 lpa
terminalia ameronic (Cmas) kell.
feralonila iverensie A. Ever
fermalla lueila yotso.
Teona ci:jara N. Aow
frem meranthe (L.) ilume
Stlebosperm rexicance (0C.) Ealli.

CCDE FOR SITES IN INVESTIGATION IV CCETA EIVA ZiV TOTM CE EICT EE ICCACTICN 1971-1951

sice coce		No. of plot per ife
Forestry Region 1: Aelanete zone		
191	Sen Crisebioni-Roxana-Pocoe?	(4)
102	Guifiles - Pncoc: - instituts haroperinrio	(11)
103	Cuatum - itmon - Hacsenda Sanea marfa	(4)
104	Guipiles - Pococi - Macienda in zranja	(8)
105	Gupiles - Pocac! - Esrac:or Experimintal ins diareres	(45)
106	Guiciso - Limin Haciendo la nosaila	(6)
107	Guícrao - idmén - Haciende la Gubaria	(7)
104	Guicimo - inm - Inst:tuto A;\%cpecimatio	(8)
109	Focora - Poceer - Haclenda srasen	(4)
110	Cariar: - pooci - Lea dageles de	(6)
111	RLo Mine - Siqurites	(3)
112	- scapa - Limen	(4)
Forestry Region 2: Norch Zone		
201	zurero - Alfaro mufz - Pinca de	(1)
292		(2)
203		(3)
204	platuar - San carioz - detris ce: Pemplo se: idgar	(1)
205	Munile - Sas Carler - Prente hestiadero	(1)
206	Santa nosa - Cus:s - Finen ramitid puesada	(2)
207		(1)
208	Yara Bianca da He:exta - Finea ce rouelio i= ithar	(1)
229	Vera marca de Merecia - Prisa At-as	(4)
210	Vara blaria je Heredic - Pinca in ingia	(i)
211	in marioa de San Eazios - tosiersa is marina	(2)
212		(2)
213	Les Angeies de id Fursima - Sar Carlcs, zora finca	(6)
2:4		(3)
Forestry Region 3: Souch Pactile Zone		
301	Bungea insey - Plutaremas - iersruerso	(9)
302	Suhatre de fuemes ties - Furescenas	(23)
303		(9)
304		(15)
305		(8)
306		(:)
307		(2)
308		(2)
309		(1)
310	San 1s:t:0 - Ptetz zeiciobr. - aturera Ei saris	(4)
111		(1)
312		- ! 11
314		(2)
315	Pejitaje do 2fres Ecientr - :istitute Agropecmer:	(6)
31.6	-on ançajer de pîrez zelec5.:	(4)
117	boruca - Buemon A:res -.perizarzras	(3)
Forestry Region 4: Dry Pacific Zoue		
401		(1)
402	Kievye - vivre rorcient cej Mac	(2)
403	Santa Griz - Forsa ee Etimiter Casalace	(2)
404	Priadensid - Coisis det itsurn jceisi	(2)
405		(2)
406	Colorade - Pinsa it :iarcise jivas	(4)
407	-iber:e - Fimen si peita ce ia anjurs	(1)
404		(1)
4	Caias - Yivero si poctrec.	(1)
410		(13)
419	Panoge - Sains - recienen id seca	(3)
412		(2)
413	! berta - Hac:ras in $\mathrm{r}:=\mathrm{r}$	(2)
414	inecr:a - Mazrenes st zrai	(2)
415	Le Erus - daeserdi -a *ary	111

cone....

ton primeron 20 digites un man reservetr paza los onsayes esenblecidos on el

621		(9)
522	No Revertado - Purequg Patreative ie russea	(19)
623	San Esitre de Peiar - fieea te Rhvin Gocriler	(1)
694	Sen Isadrs te Je:ur - Farca Socer!	(1)
525	Pierra BLasen - こırtaro - Cerito de Adupeación 5esjai	(3)
626	Fagat - Eafeeco - ins Eigijes	(E)

Forestry Region 7: Central Valley 2one (West)
alayucia - surrio Sas Jesf Estación Copertanaeal Fabio buedeme (6)

Sar irecírımo ta megarka - Finea de Cscar tocriga: (4)
sar Isidre fie Cereneds - Pinta de R. Ciseso
(1)

Semso Tenis de santo hemaç - isanho Arison
(4)

8an Jegfone de moravie - Finen de frecicy selfe
131
san Jezcniry de meraria. Finea de Ceralia hipliar
(1)
civale mign - Sar. Jost - Mocienda EL lodeo
Sarthi - Lajunia - tacjenca La ingsa
(6)

San Pabls fe Riradia - Cempuit. pliser

APPENDIX No. 10.

Sites number, location in coordinate of latitude and longitude, elevation above mean sea level, and corresponding meteorological station to which they were refered.

SITE

Number	Latitude	- Longitude	Elev.
101	$10^{\circ} 17^{\prime}$	- $83^{\circ} 43^{\prime}$	90
102	$10^{\circ}{ }^{\prime \prime}$	- $83^{\circ} 47^{\prime}$	260
103	$10^{\circ} 17^{\prime}$	- $83^{\circ} 34^{\prime}$	150
104	$10^{\circ} 13^{\prime}$	- $83^{\circ} 44^{\prime}$	240
105	$10^{\circ} 13^{\prime}$	- $83^{\circ} 46^{\circ}$	249
106	$10^{\circ} 1^{\prime}$	- $833^{\circ} 40^{\prime}$	70
107	$10^{\circ} 12^{\prime}$	- $83^{\circ} 41^{1}$	100
108	$10^{\circ} 12$ '	- $83^{\circ} 41^{\prime}$	100
109	$10^{\circ} 12^{\prime}$	- $83^{\circ} 37^{\prime}$	70
110	$10^{\circ} 18^{\prime}$	- $83{ }^{\circ} 40^{\prime}$	250
111	$10^{\circ} 05^{\prime}$	- $83^{\circ} 25^{\prime}$	200
112	$09^{\circ}{ }_{55}$	- $833^{\circ} 01^{\prime}$	20
201	$10^{\circ} 11^{\prime}$	- $84^{\circ} 24^{\prime}$	1736
202	$10^{\circ} 19^{\prime}$	- $84^{\circ} 26^{\prime}$	580
203	$10^{\circ}{ }^{19}$	- $84^{\circ} 26^{\prime}$	540
204	$10^{\circ} 25^{\prime}$	- $84^{\circ} 28^{\prime}$	120
205	$10^{\circ}{ }^{\prime \prime}$	- $84^{\circ} 27^{\prime}$	122

meteorological station

Latitude	- Longitude	Elev.	Name
$10^{\circ}{ }_{21}{ }^{\prime}$	$-83^{\circ} 46^{\prime}$	70	La Mola
$10^{\circ} 13^{\prime}$	- $833^{\circ} 49^{\prime}$	249	Los Diamantes
$10^{\circ} 21^{\prime}$	$-83^{\circ} 46^{\prime}$	70	La Mola
$10^{\circ} 13^{\prime}$	- $833^{\circ} 49^{\prime}$	249	Los Diamantes
$10^{\circ} 13^{\prime}$	- $833^{\circ} 49^{\prime}$	249	Los Diamantes
$10^{\circ} 21^{\prime}$	- $83{ }^{\circ} 46^{\prime}$	70	La Mola
$10^{\circ} 13^{\prime}$	- 83 ${ }^{\circ} 4^{\prime}$	249	Los Diamantes
$10^{\circ} 13^{\prime}$	- $83{ }^{\circ} 49$	249	Los Diamantes
$10^{\circ} 13^{\prime}$	- $833^{\circ} 49^{\prime}$	249	Los Diamantes
$10^{\circ} 21^{\prime}$	- $83{ }^{\circ} 46^{\prime}$	70	La Mola
$10^{\circ} 06^{\prime}$	- $83^{\circ} 23^{\prime}$	40	La Lola
$10^{\circ} 00^{\prime}$	- $83^{\circ} 03^{\prime}$	3	Limon
$10^{\circ} 3^{\prime}$	- $84^{\circ} 23^{\prime}$	2010	Palmira
$10^{\circ} 21^{\prime}$	- $84^{\circ} 24^{\circ}$	600	C. Rural Metodista
$10^{\circ} 21$ '	- $84^{\circ} 24^{\circ}$	600	C. Kural Metodista
$10^{\circ} 21$,	- $84^{\circ} 24^{\prime}$	600	C. Rural Metodista
$10^{\prime \prime} 21^{\prime}$	- $84^{\circ} 24^{\prime}$	600	C.Rural Metodista

APPENDIX No. 10. Cont....

206	$10^{\circ} 36$!	- $84^{\circ} 29{ }^{\prime}$	160	$10^{\circ} 21^{\prime}$	$-84^{\circ} 24^{\prime}$	600	C.Rural Metodista
207	$10^{\circ} 22^{\prime}$	- $84^{\circ} 26^{\prime}$	590	$10^{\circ}{ }_{21}{ }^{\prime}$	- $84^{\circ} 24^{\prime}$	600	C.Rural Metodista
211	$10^{\circ} 23^{\prime}$	- $84^{\circ} 22^{\prime}$	410	$10^{\circ} 21^{\prime}$	- $84^{\circ} 24^{\prime}$	600	C.Rural Metodista
212	$10^{\circ} 09^{\prime}$	- $84^{\circ} 09^{\prime}$	1900	$10^{\circ}{ }^{\prime} 3^{\prime}$	- $84^{\circ} 23^{\prime}$	2010	Palmira
213	$10^{\circ} 27^{\prime}$	$-84^{\circ} 34^{\prime}$	80	$10^{\circ} 21^{\prime}$	- $84^{\circ} 24^{\prime}$	600	C.Rural Metodista
214	$10^{\circ} 54^{\prime}$	- $83{ }^{\circ} 01^{\prime}$	30	$10^{\circ} 21^{\prime}$	- $84^{\circ} 24^{\prime}$	600	C. Rural Metodista
301	$09^{\circ}{ }_{10}{ }^{\prime}$	- $83{ }^{\circ} 20^{\prime}$	380	$09^{\circ} 1_{11}$	- $83^{\circ} 20^{\prime}$	350	La Pinera
302	$09^{\circ} 12{ }^{\prime}$	- $83{ }^{\circ} 19^{\prime}$	500	$09^{\circ}{ }_{11}{ }^{\prime}$	- $83^{\circ} 20^{\prime}$	350	La Pinera
303	$09^{\circ} 10^{\prime}$	- $83{ }^{\circ} 22^{\prime}$	500	$09^{\circ} 1^{\prime}$	- $83^{\circ} 20^{\prime}$	350	La Pinera
304	$08^{\circ} 58{ }^{\prime}$	- $83^{\circ} 27^{\prime}$	20	$08{ }^{\circ}{ }_{57}$	- $83^{\circ} 28^{\prime}$	16	Palmar Sur
305	$08^{\circ} 41^{\prime}$	- $83{ }^{\circ} 04^{\prime}$	30	$08{ }^{\circ}{ }_{57}$	- $83^{\circ} 28^{\prime}$	16	Palmar Sur
306	$09^{\circ} 12{ }^{\prime}$	- $83^{\circ} 28^{\prime}$	410	$09^{\circ}{ }^{\prime \prime}$	- $83^{\circ} 33^{\prime}$	1450	Cedral
307	$09^{\circ} 13^{\prime}$	- $83{ }^{\circ} 27^{\prime}$	415	$09^{\circ} 22^{\prime}$	- $83^{\circ} 33^{\prime}$	1450	Cedral
308	$09^{\circ} 15^{\prime}$	$-83^{\circ} 31^{\text {\% }}$	570	$09^{\circ} 2^{\prime}$	- $83^{\circ} 33^{\prime}$	1450	Cedral
309	$09^{\circ} 1^{\prime}$	- $83^{\circ} 22^{\prime}$	590	$09^{\circ} 11^{\prime}$	- $83^{\circ} 20^{\prime}$	350	La Pinera
310	$09^{\circ} 17^{\prime}$	$-83^{\circ} 38^{\prime}$	550	$09^{\circ}{ }^{2} 2^{\prime}$	$-83^{\circ} 33^{\prime}$	1450	Cedral
312	$09^{\circ} 23^{\prime}$	- $83{ }^{\circ} 4^{\prime}$	680	$09^{\circ} 2^{\prime}$	- $83^{\circ} 33^{\prime}$	1450	Cedral
313	$09^{\circ} 23^{\prime}$	- 83 ${ }^{\circ} 43^{\prime}$	700	$09^{\circ} 2^{\prime}$	- $83^{\circ} 33^{\prime}$	1450	Cedral
314	$09^{\circ} 10^{\prime}$	- $83^{\circ} 23^{\prime}$	340	$09^{\circ} 11^{\prime}$	- $83^{\circ} 20^{\prime}$	350	La Pinera
315	$09^{\circ} 49$ '	- $83^{\circ} 43^{\prime}$	400	$09^{\circ} 2^{\prime}$	- $83^{\circ} 33^{\prime}$	1450	Cedral
316	$09^{\circ} 29^{\prime}$	- $83{ }^{\circ} 46^{\prime}$	1110	$09^{\circ} 22^{\prime}$	$-83^{\circ} 33^{\prime}$	1450	Cedral

APPENDIX No. 10. Cont....

317	$09^{\circ} 00^{\prime}-83{ }^{\circ} 19$?	650	$09^{\circ} 11^{\prime}-83^{\circ} 20^{\prime}$	350	La Pinera
401	$10^{\circ} 07^{\prime \prime}-85^{\circ} 17^{\prime}$	20	$10^{\circ} 09^{\prime}-85^{\circ} 27^{\prime}$	120	Nicoya
402	$10^{\circ} 08^{\prime \prime}-85^{\circ} 28^{\prime}$	120	$10^{\circ} 09^{\prime}-85^{\circ} 27^{\prime}$	120	Nicoya
403	$10^{\circ} 14^{\prime}-85^{\circ} 36^{\prime}$	50	$10^{\circ} 09^{\prime}-85^{\circ} 271$	120	Nicoya
404	$10^{\circ} 27^{\prime}-85^{\circ} 33^{\prime}$	17	$10^{\circ}{ }^{\prime} 6^{\prime}-85^{\circ}{ }^{\prime}{ }^{\prime}$	85	Liberia
405	$10^{\circ} 30^{\prime \prime}-85^{\circ} 34^{\prime}$	22	$10^{\circ} 36^{\prime}-85^{\circ} 32^{\prime}$	85	Liberia
406	$10^{\circ} 40^{\prime}-85^{\circ} 28^{\prime}$	120	$10^{\circ} 36^{\prime}-85^{\circ} 32^{\prime}$	85	Liberia
407	$10^{\circ} 33^{\prime}-85^{\circ} 23^{\prime}$	120	$10^{\circ} 3^{\prime}{ }^{\prime}-85^{\circ} 32^{\prime}$	85	Liberia
410	$10^{\circ} 20^{\prime}$. $-85^{\circ} 12^{\prime}$	50	$10^{\circ} 21^{\prime}-85^{\circ} 09^{\prime}$	40	Taboga
411	$10^{\circ} 22^{\prime}-85^{\circ} 06^{\prime}$	50	$10^{\circ} 21^{\prime}-85^{\circ} 09^{\prime}$	40	Taboga
412	$10^{\circ} 15^{\prime}-85^{\circ} 05^{\prime}$	60	$10^{\circ} 21^{\prime}-85^{\circ} 09^{\prime}$	40	Taboga
413	$10^{\circ} 36^{\prime}-85^{\circ} 33^{\prime}$	98	$10^{\circ}{ }^{\prime} 6^{\prime}-85^{\circ}{ }^{\prime}{ }^{\prime}$	85	Liberia
414	$10^{\circ} 33^{\prime}-85^{\circ} 32^{\prime}$	30	$10^{\circ} 36^{\prime}-85^{\circ} 32^{\prime}$	85	Liberia
416	$10^{\circ} 18^{\prime}-84^{\circ} 58^{\prime}$	400	$10^{\circ} 30^{\prime}-84^{\circ} 55^{\prime}$	580	Nueva Tronadora
417	$10^{\circ} 15^{\prime}-85^{\circ} 05^{\prime}$	30	$10^{\circ} 21^{\prime}-85^{\circ} 09^{\prime}$	40	Taboga
418	$10^{\circ} 24^{\prime}-85^{\circ} 10^{\prime}$	20	$10^{\circ} 21^{\prime}-85^{\circ} 09^{\prime}$	40	Taboga
419	$10^{\circ} 24^{\prime}-85^{\circ} 05^{\prime}$	50	$10^{\circ} 21^{\prime}-85^{\circ} 09^{\prime}$	40	Taboga
420	$10^{\circ} 28^{\prime}-85^{\circ} 07^{\prime}$	50	$10^{\circ} 21^{\prime}-85^{\circ} 09^{\prime}$	40	Taboga
421	$10^{\circ} 37^{\prime}-85^{\circ} 27^{\prime}$	140	$10^{\circ} 36^{\prime}-85^{\circ} 32^{\prime}$	85	Liberia
422	$10^{\circ} 53^{\prime}-85^{\circ} 36^{\prime}$	250	$10^{\circ} 36^{\prime}-85^{\circ} 32^{\prime}$	85	Liberia
423	$10^{\circ} 24^{\prime}-85^{\circ} 36^{\prime}$	30	$10^{\circ} 35^{\prime}-85^{\circ} 40^{\prime}$	3	Playa Panama

APPENDIX No. 10. Cont....

424	$10^{\circ} 18^{\prime}$	- $85^{\circ} 03^{\prime}$	50	$10^{\circ} 21^{\prime \prime}$	- 85 ${ }^{\circ} 09^{\prime}$	40	Taboga
501	$09^{\circ} 42^{\prime}$	$-83^{\circ} 59^{\prime}$	2100	$09^{\circ}{ }_{50}$	- $83^{\circ} 58^{\prime}$	1400	Linda Vista
502	$09^{\circ} 39^{\prime \prime}$	$-83^{\circ} 58^{\prime}$	1550	$09^{\circ} 50^{\prime \prime}$	- $83^{\circ} 58^{1}$	1400	Linda Vista
503	$09^{\circ} 40^{\prime \prime}$	$-84^{\circ} 01^{\prime}$	1520	$09^{\circ} 50^{\prime \prime}$	$-83^{\circ} 58^{\prime}$	1400	Linda Vista
504	$09^{\circ} 41^{\prime}$	- $84^{\circ} 02^{\prime}$	1750	$09^{\circ} 50^{\prime}$	- $83{ }^{\circ} 58^{\prime}$	1400	Linda Vista
505	$09^{\circ} 4^{\prime}$	$-83^{\circ} 67^{\prime}$	2380	$09^{\circ}{ }_{50}$	$-83^{\circ} 58^{\prime}$	1400	Linda Vista
506	$09^{\circ} 49^{\prime}$	- $84^{\circ} 07{ }^{\prime}$	1670	$09^{\circ}{ }_{50}$	- $83^{\circ} 58^{\prime}$	1400	Linda Vista
507	$09^{\circ} 50^{\prime}$	- 84 ${ }^{\circ} 15^{\prime}$	1110	$09^{\circ} 50{ }^{\prime}$	- $83^{\circ} 58^{\prime}$	1400	Linda Vista
508	$09^{\circ} 50^{\prime}$	- $84^{\circ} 13^{\prime}$	1110	$09^{\circ} 50^{\prime}$	$-83^{\circ} 58^{\prime}$	1400	Linda Vista
509	$09^{\circ} 50^{\prime \prime}$	- $84^{\circ}{ }^{15}$	1000	$09^{\circ} 50$	- $83{ }^{\circ} 58^{\prime}$	1400	Linda Vista
510	$09^{\circ} 54^{\prime}$	- $84^{\circ} 26^{\prime}$	350	$10^{\circ} 01^{\prime}$	- $84^{\circ}{ }^{16}{ }^{\prime}$	840	Fabio Baudrit
511	$09^{\circ} 51^{\prime}$	- $84^{\circ} 27^{\prime}$	300	$10^{\circ} 01^{\prime}$	- $84^{\circ}{ }^{16}{ }^{\prime}$	840	Fabio Baudrit
512	$09^{\circ} 52^{\prime}$	- $84^{\circ} 28^{\prime}$	250	$10^{\circ} 01{ }^{\prime}$	- $84^{\circ} 16^{\prime}$	840	Fabio Baudrit
513	$09^{\circ} 52^{\prime}$	- $84^{\circ} 31^{1}$	100	$10^{\circ} 01^{\prime}$	- $84^{\circ} 16^{\prime}$	840	Fabio Baudrit
514	$09^{\circ} 39^{\prime}$	$-84^{\circ} 371$	360	$09^{\circ} 57^{\prime}$	- $84^{\circ} 24^{\prime}$	450	E.C. Ganaderia
515	$09^{\circ} 2^{\prime}$	- $83^{\circ} 571$	10	$09^{\circ}{ }_{58}$,	- $84^{\circ}{ }^{\circ} 0^{\prime}$	3	Puntarenas
516	$09^{\circ} 19^{\prime}$	- $83^{\circ} 56^{\prime}$	30	$09^{\circ}{ }_{58}$	- $84^{\circ} 50^{\prime}$	3	Puntarenas
517	$09^{\circ} 49^{\prime}$	- $84^{\circ} 121$	900	$09^{\circ} 50$	- $83^{\circ} 58^{\prime}$	1400	Linda Vista
518	$09^{\circ} 49^{\prime}$	- $84^{\circ} 08^{\prime}$	1500	$09^{\circ} 56^{\prime}$	- $84^{\circ} 05^{\prime}$	1172	San Jose
519	$09^{\circ} 41^{\prime}$	- $83^{\circ} 54^{\circ}$	2500	$09^{\circ} 50^{\prime}$	- $83^{\circ} 58^{\prime}$	1400	Linda Vista
621	$09^{\circ} 55^{\prime}$	- $83^{\circ} 57^{\prime}$	1560	$09^{\circ} 50$ '	- $83^{\circ} 581$	1400	Linda Vista
622	$09^{\circ} 58^{\prime}$	- $83^{\circ} 52^{\prime}$	2620	$09^{\circ} 59^{\prime}$	- $83^{\circ} 51^{\prime}$	3400	Volcan Irazu

APPENDIX No. 10. Cont....

623	$09^{\circ} 51^{\prime \prime}-83^{\circ} 56^{\prime}$	1350	$09^{\circ} 50^{\prime}-83^{\circ} 581$	1400	Linda Vista
624	$09^{\circ} 50^{\prime}-83^{\circ} 58^{\prime}$	1375	$09^{\circ} 50^{\prime}-83^{\circ} 58^{\prime}$	1400	Linda Vista
625	$09^{\circ} 56^{\prime}-83^{\circ} 53^{\prime}$	2350	$09^{\circ} 59^{\prime}-83^{\circ}{ }_{51}$	3400	Volcan Irazu
626	$09^{\circ} 52^{\prime \prime}-83^{\circ} 56^{\prime}$	1400	$09^{\circ} 59^{\prime}-83^{\circ} 58^{\prime}$	1400	Linda Vista
703	$09^{\circ} 56^{\prime}$ - $84^{\circ} 21^{\prime}$	400	$09^{\circ}{ }_{5}{ }^{\prime}-84^{\circ} 24^{\prime}$	450	E.C. Ganaderia
704	$10^{\circ} 01^{\prime} \cdots-84^{\circ} 01^{\prime}$	1420	$10^{\circ} 02^{\prime}-84^{\circ} 00^{\prime}$	1450	S. Josecito de H.
707	$10^{\circ} 01^{\prime} \therefore-84^{\circ} 22^{\prime}$	700	$09^{\circ} 57^{\prime}-84^{\circ} 24^{\prime}$	450	E.C. Ganaderia
708	$09^{\circ} 59^{\prime}-84^{\circ} 05^{\prime}$	1180	$09^{\circ} 59^{\prime}-84^{\circ} 05^{\prime}$	1172	San Jose
709	$10^{\circ} 01^{\prime \prime}-84^{\circ} 01^{\prime}$	1450	$10^{\circ} 02^{\prime}-84^{\circ} 00^{\prime}$	1450	S. Josecito de H.
710	$10^{\circ} 01^{\prime}-84^{\circ} 01^{\prime}$	1450	$10^{\circ} 02^{\prime}-84^{\circ} 00^{\prime}$	1450	S. Josecito de H.
711	$09^{\circ} 55^{\prime}-84^{\circ} 16^{\prime}$	800	$10^{\circ} 01^{\prime}-84^{\circ} 16^{\prime}$	840	Fabio Baudrit
712	$10^{\circ} 09^{\prime}-84^{\circ} 20^{\prime}$	1400	$10^{\circ} 07^{\prime}-84^{\circ} 23^{\prime}$	1100	Naranjo
713	$09^{\circ} 59^{\prime}-84^{\circ} 07^{\prime}$	1100	$09^{\circ} 56^{\prime}-84^{\circ} 05^{\prime}$	1172	San Jose

APPENDIX 11

Initial 10 years growth curves for the species and study sites in Costa Rica

AGE IN JEARS
Fig. 3. Initial 10 years growth eurves for different Alnus acuminata seudy sites in zones 5 and 7 of Conta Rica. Individual curve (number above the curve) is based on the mean of che 81 trees measured per plot.:
\vdots

Fig. 4. Initial 10 years growth curves for different $\frac{\text { Cupressus }}{\text { Rica. Indivitanica study. sites in Costa }}$ Rica, Individual curva (number above the curve) is based on the mean of the 81 trees measured per plot.

Fig. 5. Initial 10 years growth curves for different Cupressus lusitanica study aites in zone 5 of Costa Rica. Individual curve (number above the curve) is based on the mean of the above the curve) is based on
81 trees measured per plot.
 Gmelina arborea scudy sites in zone 1 of Cosca Rica. Individual curve (number above the curve) is based on the mean of the a_{1} crees measured per plot.

Fig. 日. Inicial 10 years growth curves for different $\frac{\text { Pinus }}{\text { Rica. }} \frac{\text { caribaea atudy sites in zone } 1 \text { of costa }}{\text { Individual }}$ Rica. Individual curve (number above the curve) 18 based on the mean of the 81 trees
measured per plot. measured per plot.

Fig. 9. Initial 10 years growth curves for difierent Pinua carlbaea study sites in zones 3, 5 . and $7 \frac{\text { of Cista rica. Individual curve }}{}$ (number above the curve) is based on the mean of the 81 trees measured per plot.

Fig. 10. Initial 10 years growth curves for different Tectona grandis atudy altes in zone 1 of Cosca Rica. Individual curve (number above reea measured per plot mean of the ol treen measured per plot.

Flg. 11. Inltial 10 years growth curves for different Tectona grandis study sites in zone 3 of Costa Rica. Individual curve (number above the curve) 1: based on the mean of the 81 trees measured per plot.

[^0]: Appendix 4: Population statistics and correlation 85 matrices for climatic and soil factors used in the regression analysis of Pinus caribaea
 Appendix 5: Population statistics and correlation
 matrices for climatic and soil factors used in the regression analysis of Tectona grandis
 Appendix 6: Multiple regression analysis for Alnus
 acuminata, Cupressus Iusitanica, Gmelina arborea, Pinus caribaea, and Tectona grandis using stepwise maximum R square improvement (MAXR)
 Appendix 7: Description of the variables used in the 99 statistical analysis and unit of measurement
 Appendix 8: Species, site characteristics, growth indicators, and other environmental factors used in the regression analysis
 Appendix 9: Numerical code for the species in investigation in Costa Rica and location of the plots inside the country
 Appendix 10: Site number, latitude and longitude, elevation above mean sea level, and corresponding meteorological station
 Appendix 11: Initial ten years growth curves for the species and study sites in Costa Rica

[^1]: 1/ The description of these species and other silvicultural information was taken from Camacho (1981).

[^2]: Stafford Susan. 1983. Forestry Projects Data Analysis. Course offered by the Forest Science Department. Oregon State University. Corvallis, Oregon 97331.

