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TRIHEDRAL CURVES
1. INTRODUCTION

In the following we propose to study some space curves related
to a given space curve, We shall employ vector analysis, using a
right-handed rectangular cartesian coordinate system. Since a vector
U will be considered as an ordered triple of numbers, we can, depend-
ing on convenience, let U define either a point or a direction. We
shall, then, often speak of the point U, or the direction U, thus
identifying the point or the direction with its vector representation,
Capital letters will be consistently used to distinguish vectors from

scalars,

The following notation will be used throughout the paper. When
more than one curve occurs in a discussion, subscripts will be used to
denote to which curve the symbols refer,

1. The vector U, having components Ups Upy Ug, will be written

as Us (u, up, ug] .

2., The scalar product of vectors U and V: UeV

3. The vector product of vectors U and V: |U, V|

L. The determinant of three vectors U, V, W: |U, V, W{

Se Arc length: s

6. Torsion: t

7+ Curvature: k (always taken positive)

8. Screw curvature: m = (k° + ta)% (always taken positive)

9 Unit tangent: T



10, Unit principal normal: M

11, Unit binormal: B

12, Darboux vector: D 2 - T ¢ k3

13. Primes will indicate differentiation with respect to are
length.

From the study of twisted curves one has the familiar result
that, if Tl is the unit tangent and 8, the arc length of the curve
Xy = %; (sy), then 2

o[
This suggests two rela;’c‘,ed curves given by 5
b= Lﬂl i a9 LBI o

where Ny and By are the unit principal normal and unit binormal of the
original curve. The fact that all three curves are associated with the
- fundamental trihedral of the given curve sugpests the name trihedral
curves, Thus we shall have the T-trihedral, or given, curve, the ass-
ociated N-trihedral curve, and the associated B-trihedral curve. Some
of the geometry of these latter two curves, as well as another related
curve to be discussed later, is embodied in this paver. e shall as-
sume that our given curve is a regular analytic space curve (3, p. 18)
and, moreover, in the regions under consideration, is free of singu-

lar points (3, p. 27).



2. N~TRIHEDRAL CURVE 3

2.01. DEFINITION. Given the curve Xl =% (sl), then the
curve

s,
X, = .[;Nl dsq
will be called the N-trihedral curve, or, more simply, the N-trihedral

of the given curve.

2.02, THEOREM. A curve and its N-trihedral have the same arc

length,

For

S,
] % 3,
ax, . dX .
82 :J\ (_d_gz a_.}) dsl o= J(Nl Nl)% dSl = 81.

Sy iy

2,03. TABULAR DATA FOR N~TRIHEDRAL CURVE,
(1) T2 = Nl
! L n,Yn ;i'
(2) B, =|x), X3 |/ (x3.X7)3
=In, -k, T, - 4B,/ (ki + ti)%
=g B -t Ty )/ m
80 /%
(3) Nz :lBa, Ta' :\Dl, Nll/ ml = Ni /ml (2, Pe 93 or
1, p. 30) :
(L) Dy =Ny, N3[ (2, p. 93)
=l Ty -ty B) /g, - Wy
+ (T -4 B) /me L/ m ) (kT -t B
=k By -t Ty + (k) t1+tikl)nl/m:2l
2 ]
Dy - (g /m)” (6 /1)
g

(5) k,



For

ky Ny = Ni. Thus kzﬂi/nlgﬂi, or k, = m.

(6) 8y = =Ix3, X5, X3'| / (X3oX7)

-[Hy, =iy Ty - %) By, 'kl‘.rl"tl'.gl'm%“l‘ /"-i
(-l 4 ok 4) /u)

(e / m)2 (8, / i)'

2.0L, THUOREM. The N-trihedral is a plane curve if and only

if the given curve is a helix.

For, if the given curve is a helix, b / k, is constant (3, pe 52).
Taen, from 2.03 (6), t, 5 0. Conversely, if t, = 0. then (t, / i)' s
0, or t, / k; is constant, and the given curve is a helix.

In particular it follows that if the given curve is a plane

curve, then so also is its N-trihedral.

2,05, THEORFM, The N~trihedral is a circle if the given curve

is a circular helix,

By 2.04 the N-trihedral is a plane curve. It remains to show
that its curvature is constant. But k- m = (klz - ti)&, which is

constant if k1 and t.l are both constant.

2,06, THEOR®M. The Larboux vectors of the given curve and its

li-trihedral are equal if and only if the given curve is a helix.
2.0 DEY - 2 &4
By 2.03 (L), 2 = D) (kl / ml) (tl / kl) N1 If the given
curve is a helix, (t, / kl)' 20, and D, = D,. Conversely, if
Dy = Dy, then (tl / kl)' g 0, and the given curve is a helix,

2,07, THEORFM. The N-trihedral of the N-trihedral is never the




given curve. .
2
]
For, if X = fouadsa, thenT:Nngl/mlg-(kl/ml) LN
-(tl / ml) Bl. For T to be equal %o Tl we must have tl = 0 and
2 -m. . The latter is impossible since k, >0, m,7 O,
o "

The next few theorems relate the N-trihedral of a given curve
with the involutes of the given curve. It will be convenient to re-
cord here the tabular data for involutes (L, p. 352). Notation with-

out subscripts will refer to an involute of the given curve.

2.08. TABULAR DATA FOR INVOLUTES.

(1) X.—.xl4(c-sl)'rl

(2) € = 21 according as c - alﬁo
(3) ds = le (c-sl) dsl
(h) T: el

1

(5) N:-e(lelftlBl)/m :eN]'./ml
il T b W U 2 "
(7) kzem /X% (c~s) |

8) t= (kg /m)? (4 /X)) /K (e-s,)

2.09, THEORFM. The ratio of curvature to torsion for the N-tri-

hedral and for an involute of the given curve are numerically equal.

For, by 2.08 and 2.03, we have that

k/tzem /(g /m)® (4 / k) = ek, / b,

2.10, THEOREM. The osculating, rectifying, and normal planes

of the N-trihedral and of an involute of the given curve are parallel,




2.11. THEOREM. The Darboux vectors of the N-trihedral and of

an involute of the given curve are parallel.

For N - eH]" [ my = €Ny, aN / ds = C-N",Z (dsl / ds). Therefore

D= |n, an / ds| = (as, / ds) [Ny, N;_',l = (ds, / ds) D,

2,12, LEMMA, A necessary and sufficient condition for a curve

1o be a helix is that its Darboux vector have a fixed direction, name-

ly the direction of the axis of the helix.

See (2, p. 106).

2,13. THEOREM. If either the N-trihedral or an involute of

the given curve is a helix, then so is the other, and their axes are

Earallel.
This follows from 2.1l and 2,12,

We now conclude this section of the paper by illustrating some

of the foregoing theory with an example.

2.1, EXAMPLE. For our given curve let us choose the helix
S (} cos 2u, cos u, ¥u - § sin 2u] , O<u<T,
we find
ds; = V2 sin u du
8, = 2 (1 - cos u)
T,z% V2 [Fcos u, -1, sin u]
B, = 3 V2 [ccos u, 1, sin u]
N, = [sin u, 9, cos u]



D1=§ {2 [o, esc u, 0]
ky =% escu
t = 2 escu
m = % V2 cse u
We note that the helix makes a constant angle with the direction
[0 2,0] 4
The N—trihedr:l is given by
X, = LN;_ dsy = V2 Ny sin u du,
where
u=cos~l} V2 (V2- sl), O<u<T1,
This turns out to be
X, =%4V2 [u-%sin2u-T, 0, sinzvi],
whence
dx, / du = V2 [sin2 u, 0, sin u cos u] ,

dsy = ﬁsinu(du/dsl)ds _-_dsl.

1
Thus s, = 8y
We also have

verifying theorem 2,02.

o = [#in u, 0, cos u] =N
oo (9: 1, OJ:':DI/WI
p = [eos u, 0, -sin u] :Ni/ml
D2 - [0, 2 ecse u, 0_] - Dl
k2 -3 V2 esc u =my
2 ]
-0 -
These results verify 2,03, 2.0k, and 2.06,

1

=
n
i ]



3. B=TRIHEDRAL CURVE : 8

3.01. DEFINITION. Given the curve Xy = X, (s,), then the curve

)
e | Ny _
will be called the B-trihedral curve, or, more simply, the B-trihedral,

of the given curve.

3.02, THEORFM. A curve and its B-trihedral have the same arc

length,

For

Sy I\(sixl'ix.l)é da, = ]\(31-31)!t dsy = 8.

3.03, LMMA. If two curves, X; = X, (s,) and Xy = Xy (33),

are so related that sy z ey and N = 3y, then (1) D; = Dy and

(2) n = mjo

If primes indicate differentiation with respect to 85, then

N;_ - =u3, whence

Dy = |mg, wif= (e, any( = (ny, wy|a o,

mg = (0308 = (040} & n,.

3.0L. THRORFM. If the given curve is a plane curve, the Btri-

hedral curve is a straight line parallel to 13;.

For, if the given curve is a plane curve then B]. is 2 constant

vector, and we have

Ay = ngd“l:f’l S“1=‘1B1'



3.05. TABULAR DATA FOR BeTRIHEDRAL CURVE,
(1) ‘1'3 = B,.
(2) € = %1 according as t,li Os
(3) By = X3, 23 |/ (xgexy)¥
= \f»l, "1 By 1 /ety =z~ €Ty
(L) E;: B3 T3| = €Fye
(5) Dy = Do (by lemma 3.03)
(6) k3 = (r_:,-ri}% 4 (ui.ai)é .ty
(7) t3 = = (X3, X, x| / (egexg)
selB by N -y kT R/
=~ k1.
(3) my 2 mys (by lomsa 3.03)
3.06. THEOREM., The fangent, priucipel normal, and binormel of
the B-trihedral are parallel, respectively, to the binormal, prineipal

normal, and tangent of the given curve.

3.07. THROREM, A gurve and its B-trihadrgj; have egual Darboux
vectors.

3.08. THEORSM. If the given gurve has constant curvature the
B-trihadral has constant torsion; if the given curve has gonstant
Lorsion, the S-trihedral has constant curvabure.

3.09. TN, The torsion of fhe jtrihedral s slways neg-
ative,

3.10. THEORMM. If he given gurve is a helix s also is the
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B-trihedrals if the given curve is a circular helix so also is the

B-trihedral. In either case the two helices have parallel axes.

For k3 / t3 == etl / kl. That the axes are parallel follows

from theorem 3.07 and lemma 2.12.

3.11, THEORIM, A curve and its B-trihedral have equal screw

curvatures.

3.12, THEORFM, The 3-trihedral of the B-trihedral is the given

curve or its reflection in the origin according as the torsion of the

given curve is negative or positive.

Sq <5
For Y - L 83 ds3 - -G_I;Tl ds1 - -exl.

The final theorem of this section and several of those of the

next section refer to Bertrand curves. For convenience of reference

we here give a definition and a criterion for these curves.

3.13. DEFINITION. A Bertrand curve is a curve whose principal

normals are the principal normals of another curve.

3.1h. CRITFRION. A necessary and sufficient condition for a

curve to be a twisted Bertrand curve is that there exist constants

r£0, wgaw, (nz0, 21, 22, , , .) such that
rksinwertcoswssinw,

r being the constant distance between corresponding points of a Ber-

trand curve and its mate, and w being the constant angle between

corresponding osculating planes of a Bertrand curve and i%ts mate.

(ef., 3, art. 23.)



b & |

3.15. THEOREM. If a given twisted curve is a Bertrand curve

whoge osculating planes are not perpendicular to the corresponding

osculating planes of its mate (w£ (2n+ 1) /2, n=0, %1,

- 2y + + o), then the B-trihedral is also a twisted Bertrand curve.

By 3.1l there exist constants r and w such that
vy sinwert coswesinw, r£0, widnT.
By 3.05, (6) and (7), ky = =t3, ¥ = € k3. Therefore
-rt3 sinwer €k3 cos W = sin w,
Let
N zs-e(T/2-w), qz=rtannn.
Then
qks sinn + qt3 cosfl =sin0 , q£0, o £nw,

and, again by 3.lli, the B-trihedral is also a twisted Bertrand curve.

As in section 2, we shall conclude this section by illustrating

some of the foregoing theory with an example.

3.16. FEXAMPLE. For our given curve we choose the same curve
used in 2,14, The B-trihedral is found to be
S J\“
X3 = oBl ds, = V2 nBl sin u du,
where
u=cos™t % 2 (V2- 81), O<u<w,
This turns out to be
i 3 . =
13 - [4(cos 2u-l), «(1L 4 cosu), (u-~2 sin 2 u =i )j p

whence

dXB / du - [—sin Q cos u, sin u, siné u] »
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and
dsg = VZ sin u {du / dsl) ds; = dse
Thus 89 = 8y verifying theorem 3.02.
We also have
T3=§ Vz[ -cos u, 1, sin u) = B
333} V2 [cos u, 1, ~sin u] = -7
By = (sin u, 0, cos u] = Ny
%:éfé[o, esc u, O]:DI
k3 =3 cscns= ty
by = =% cse u = -k,
my = 3 V2 cso u = m
These results verify theorems 3.06 through 3.11,
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h.0l. URFINITION. The curve
In,-,-,xlooseol)aane,
where © is any constant angle, will be called a 3-curve of the given
ourve, If Ox O the Begurve is the given curve, and if © g "/2 the
Begurve is the i-trihedral of the given curve.

k.02, THEOR™M. A gurve and its B-curves have the smme arg
Asagh.

¥or

y 3
o ey
- J:ir(l‘l cos © « By line)'(!l cos S+ 8 aine)]§ dsy
- J; s[('r),”l) cosl e « 2(7y+8)) sin o cos o « (By*ly)
sind o] ¥ dsy

= ‘1.

LeO3. TABULAT UATA FOR B=CURVES,
(1) 'fu-_-'rlme’alme
(2) ¢ = %1 according as k) cos© st sin ©30

(3) 3y = Ky X1 / (G353 08

gelrlooaevﬁlline,ﬁl(klco-e
s ¢ sinoe) | / (g cosos t, sine)

:6\!1&).90?31 sine, ﬁll
=z €(B) wso « 1, sino)

) Mgy = 1Byq Ty [z ey

(5) Byg = By (bylom 3.03)

(6) kg3 = (P3°730% & <(ky 008 © 4 sine)



For & =€t

'
- - N_ si
13 N13 = 813 cos © kl N, sin e)

B
= NlB (tl Co8 © = kl sine)

(8) myg = My (by lemma 3.03)

The following six theorems are immediate consequences of the

tabular data for Becurves.

L.Ok, THEOREM. The prineipal normal of any B-curve is parallel

Yo the prineipal normal of the given curve.

4L.05. THEORFM. The rectifying plane of any B-curve is parallel

to the rectifying plane of the given curve.

4,06, THEORFM, The Darboux vector of amy B-curve is parallel

to the Darboux vector of the given curve.

L.07. THEOREM. If the given curve is a circular helix, so

also is every B-curve a circular helix.

L.08, THEOREM. If the given curve is a helix, so also is every

B-curve a helix. The axes of the given curve and its B-curves are

parallel.
This follows from 2.12 and (5) of L.03.

L.09, THEOREM. For any B-curve we have
(1) kygsines €tyy 0080 = ety

(2) k13 cOS© - Etn sine = ¢ k.
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L.10, THEORFM, If some B—curve is a circular helix, then every

Bwcurve, including the given curve, is a eircular helix,

This follows from L.07 and L.09.

L.11. THEOREM. Every twisted Bertrand curve is a B-curve of

cmmre——— cemn A na——— | ST

some curve of constant curvature.

Let C be a given twisted Bertrand curve of curvature k and tor-

sion t. By 3.1k there exist constants r £ 0, w £ nm, (n = O, :1,
22, . . .) such that

ksinwe tcosws (1/1r) sinw. (1)
Let €z 1 according as sin w = 0, and choose ©and k; such that

weT/2eco, (1 /r)sinws= €k

Then k1 is a positive constant and (1) becomes

kcoso=- ctsine = el&.
Finally, choose "1 such that

ksin ©+ €t cos o = etl.
By the fundamental theorem of space curves (3, p. 46) there exists
a curve G; having k; and %; for curvature and torsion, and by 4.08
C is a B-curve of curve Cy. Since cl has constant curvature, the

theorem is established.

k.12, THEOREM. Every twisted Bertrand curve is a Becurve of

some curve of constant torsion.
Let C be a given twisted Bertrand curve of curvature k and tor-
sion t. By 3.1h there exist constants r £ 0, w£ nm, (n = 0, %1,

> 2, + « o) such that



ksinwe t coswe (1 / r) sin w. (1)
Let
€ = %1 according as k cos w - ¢ sinw Z 0,
and choose © and t3 such that
vz€0, (1/r)sinwgzty.
Then ¢y is a constant and (1) becomes
éksinea-teoaegtl,

. or

ksin ¢ €t cos = € e
Finally, choose k; such that

keosO = et sinoz ek,
Observe that

ky = Ekcos© « ¢t sin© 2 €(k cos w = t sin w) ~ 0.
By the fundamental theorem of space curves (3, p. Li6) there exists a
curve Cy having ky and ¢, for curvature and torsion, and by L.08 C is
8 Becurve of curve C;. Since C, has constant torsion, the theorem is
established,

Lhel3. THEOREM. Every Becurve of a curve of comstant nou=zero
curvature, except those for which = (2n « 1) T/ 2, (n20, 2, 22,,,)

is a twisted Bertrand curve.
For we have, by (2) of L.09,

k)5 c08 © = etnsine=ek1. (1)

Suppose ky is constant and choose w and r such that

ege(""ﬂ/z)’ (l/r) 8inwleklo
Then (1) becomes
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k13 sin w + %35 cos W = (1 / r) sin w.
clearly r 0 and w £ n7, (n = 0, 21, 22, , . .). Therefore, by

3.1k, the B-curve is a twisted Bertrand curve.

L.1h, THEOREM. Every B-curve of a curve of constant non-zero

torsion, except those for which o= nT, (n =0, %1, 22, . . .) is a

twisted Bertrand curve.

For we have, by (1) of L4.09,
k]_3 8in © « etn cos© = €ty. (1)
Suppose t’l is constant and choose w and r such that
O =cw, (l/r)ainw:tl.
Then (1) becomes
ky3 = sinw e )5 cos w = (L/ r) sin w.
clearly r £ 0O and w£ nm, (n =0, 21, 22, . . .). Therefore, by

3.1k, the B-curve is a twisted Bertrand curve.

4.15. THFOREM. The normal planes of the given curve and its

B-curve, corresponding to the angle © , intersect in the constant
angi_l.: © e

For

T13-T1 - ('1‘1 cos © + By sin o). Tyzcoso .

4,16, THEOREM. The osculating planes of the given curve and

its B-curve, corresponding to the angle ©, intersect in the constant

angle © .
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For

3130313 6(810089-7181116). BI.GCOBGO

L.17. THEOREM. The general eguation of all curves of constant

non=zero curvature ¢ is
av av %
xz(l/o)fv - dr, (1)

where V is an arbitrary wnit vector function of the paremeter r.

Let us find the curvature of curve (1). We have

% =(1/e) Vv %‘%%)%
whence
& _(2&) .0/ (Lt
Therefore
T=V and KN = T dV (dVdV)‘%
Thus
= g_—;}: _gg_.%)‘é and k = c.

On the other hand (1) includes all curves having the constant
non-zero curvature c. For suppose k = e. Let T = V, a unit vector

function of a parameter r. Then

eNzT o4V dr _ dv (g%,g_})-% (Edr)é dr

dr ds dr ds ’
whence
-.- - (1 / c) (gog}!)%
and

&8sl av_av\®
E-T -a?..(l/e) v (-d-!:c.d?) .
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4.18. THEOR™M. The general eguation of all twisted Rertrand

gurves which arc not circular helices is

X=(1/¢) aoaefv (%%)idr
«(1/e) sineflv, av / dr | dr, (1)

vhere V is an arbitrary unit vector function of », and ¢ >0,
Ok (m+1) T/2, (na0, 2, 22, ...)are arbitrary constants

By Ll every twisted Bertrand curve is a Becurve of some ourve
of constant curvature. With this in mind let us find the Becurves of
(1), kal7. By Lel3 these B-curves will all be twisted Bertrand curves
ifed(nel) T2, (n=0, 21, 22, ...).

We have
X' ¥,
qeeg (gl
Bz |5, 1t/ (et
-4
=/e) |v, e (Lary?|

| e /e | (2,

Xy = | B, (ds, / ar) ar
= [0 av / o (LG H 0 / o) (it)ar
= /e) [lv,av fdr]| ar. (2)

Curve (2), being the B-trihedral of a curve of econstant curvee
ture C, is a curve of constant torsion -c. We now obtain (1) as the
general equation of the sought B-curves. 'hen gz (2n « 1) T/2,
(nz0, 21, £2, ., . .), the B-ourve reduces to a curve of constant
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non-zero torsion. It will thus be a Bertrand eurve only if it also
has constant curvature, as is seen by referring to 3.1hi, But in this

case it is a circular helix.

L,<19. THE SIGNIFICANCE OF ¢ AND © 1IN (1) OF L.18.
By L.09, the linear relation between the curvature and torsion
of (1) of L.18 is
kcose ~ et sino= ce (1)
or
k-€cttano= €c/cose, (2)
letting d be the constant distance between a Bertrand curve and its
mate, and letting w be the constant angle between the osculating
planes of the Bertrand curve and its mate, we have (3, p. 54)
d=z (1/¢c)eoso, (3)
cobt W= = €Etan® , (L)
Notice that if we take @z O, then, from (1), k is constant,
and the Bertrand curve reduces to one having constant curvature.

From (3) and (L) we then have d =1 / ¢, w = 7/ 2,

.20, THEOREM, A twisted Bertrand curve is either a circular

helix or is linearly dependent on two curves, one of gonstant curva-

ture ¢ and one of constant torsion -¢, the second curve being the

B-trihedral of the first. The Bertrand curve is a B-curve of the

first.
For, from (1) of 4.18, a twisted Bertrand curve, not a circu=

lar helix, is linearly dependent on the two curves
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(1/e) YV (%’%§dr,
a curve of constant curvature c, and

(1/C)J\\v, dV/dr | dr,
a curve of constant torsion -c. In the proof of L.18 it was shown
that the second curve is the B-trihedral of the first, and that the

Bertrand curve is a B-curve of the first.

.21, THEOREM. The general eguation of 2all curves of constant

non-gero torsion ¢ is
X:-(l/c)flV,dV/drIdr, (1)
where V is an arbitrary unit vector function of the parameter r, and e

15 gg.arbitrany non-zero constant.

If ¢ <O the curve X, being the B-trihedral of a curve of cone
stant curvature -¢, is a curve of constant torsion ¢. If ¢ >0, then
-X is a curve of constant torsion. But the torsion of ~X and X are
the same except for sign since torsion, t, is given by

te- Xl 15 XM /(2N
and replacing X by =X results only in an odd number of sign changes.

On the other hand (1) includes all curves having the constant

non-zero torsion c. For suppose t = ¢. Set B = V, a unit vector func-

tion of r. Then

Bt o &V dr ¥ (avaiy® (v an? ar
eV Al G (d ) (drEF s’

=% 3
N - 24V (dV dV)™2 . qds _ « av,dv
G (5 and 2 =20/ ) ()
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Therefore
r-(n Bl l,dv dVdV) Vl

= :‘v, v / dr ] (gg.g.g)'%,

X = j\r(ds/dr)dr

J\[’ ¥, av / ar | (&L dV] Jea /o (@& dvfldr

:-(l/c)j|V, av / az | ar.

The following examples illustrate some of the theory of this
section., We will use the unit vector function.

V=2V2 [cosr, sin r, 1}.

k.22, EXAMPLE OF A CURVE OF CONSTANT CURVATURE.
Let

c=2

av, av\E
"=2,fv (EF] o
v=3V2 [cosr,sinr,lJ
g:-%\ré E—sinr, cos r, 0]

(%,Y-d")*df‘

X=22 (3V2)3V2) |[cosr, sinr, 17 ar
=[sin r, =cos r, r].

then

To verify that the curvature of X is constant and equal to 1 / ¢ = 3,



23

ds = (%’%)%drg% V2 ar

‘1‘-_-;%%’;:% N2 Ecos r, sinr, 1)

KN = T =4 [-sin r, cos r, 0)
thus
k=%z21/c.
L4.23. EXAMPLE OF A CURVE OF CONSTANT TORSION.
Let

1/3:-2
X=2J‘|V’§§|d"

\V, %I: % [=-cos r, -sin r, l]

X = 2% f[—coa r, -sinr, 1] dr
= ([-sin r, cos r, r).
To verify that the torsion is constant and equal to ¢ = -3,
X* =% V2 [ -cos r, -sin r, 1]
X* = [sin r, =cos r, 0]
mai V2 [cos r, sin r, 0]
ke, xml=% v2 (o, 0, 1)
sa-x', 2" " | 7 ")

= =&

k.24, EXAMPLE OF A FAMILY OF BERTRAND CURVES.
Let X; be the curve of constant curvature of 4.22 and X3 be the

curve of constant torsion of 4.23. Then
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Ya32% 08O Xy 8in ©, 0<O<Y Y
sz [sinr, ~cosr,r] cos8© e« (c8inr, cos r, r] #n ©
= [sin r (cos © ~2in © ), ~cos r (008 © -sin ©),

r{cos© & gin © )J

%a [mr(coaé-sin ©), sin r (co8 © = 8in O ),
(cos © « sin 6)_]

F1.203 , (c0s &= 530 6 )2+ (008 6+ 8in 0)2 ¢ 2
s = () a2 7 e
f3=% V2 [coar (s O~0ine),

sin r (cos © - sin © ), (cos O« sin e)]

knliug'l‘]'agi [-ainr(mse-nme),
cos r (eos © « sin © ), OJ

= %(cos © - sin 6 ) E -8in r, cos r, Oj

k13=§(me-me),amatmt,uxnuamm

ourve.
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