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A TWO-DIMENSIONAL ANALOG OF THE DOUGALL rIETHOD 

1. INThODUCT ION 

The Green's function forms the basis for solutions 

of a large number of equations in mathematics and physics. 

Potential theory, heat conduction, elasticity, neutron 

diffusion, and many other physical and. rnathematicl con- 

cepts employ the Green's function for solutions of prob- 

lenis, PhySicSily, the Green's funct.on represents the 

resetion at a point P due to some cind of unit source at 

another point, P'. In potential theory the source corre- 
spoiids to a charge and the reaction is the potential; in 

heat conduction the source ts a quantity of heat liberated 

and the reaction is the tenerature; in elasticity the 

source is a force and the reaction a displcement; snd so 

on. The usual cese however dos not involve point sources, 

but continuous sources. The total contribution to the 

solution is obtsined by integration over the source 

strength values. As e shall see in Chapter 2, the rnathe- 

tnattcal staterrent of the Green's function and the solution 

of the Poisson equation nakes tuis interpretation possible, 

and with it, many solutions of problems cn be written 

down from a consideration of this meaning, provided the 
function is known. 
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This paper is devoted. to the construction of the 

Green's function for tne Laplacian, V2T, using a method 

employed by John Doua1l for the cylindrical and spherl- 

cal coordinate systems (6, pp. 33-33). The analytical 

representations, many of whtcI appear as bilinear forms, 

are easily adapte1 to c1culat1ons, and the metiod of 

construction is very 4lrect once the singular form of 

the Green's function is represented. In his representa- 

tions, the s1nuiar or fundamental form sppears as an 

ir±finite or contour integral. To tnis form is added a 

solution of the Laplace equation which has arbitrary 

constants. The form of this solution is also an integral 

of similar structure to afford maximum opportunities for 

simplifications. In the usual way, the arbitrary parameters 

are used to satisfy the boundary conditions, and the 

resulting integrals are then evaluated by contour inte- 

gration. The result is an expansion formula for the 

Green' s function. 

In view of the direct approach nd easily manipulated 

results obtainable by this method, lt seems desirable to 

extend this approach to other coordinate systems. The 

purpose of this thesis is to resent an analog of the 

Dougall metuod in two dimensions, startitg with the two 

dimensional logarithmic singularity. At trie beginning, 

one may expect results similar to twse obtained by 
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Dougall. Such is the case; however, tie exp.nsion 

formula derived in this paper turns out to be a series 

expansion for the clasaical solution for a circle. 

S1iht manipulations ¿ive equivalent forms in terms of 

infinite integrals which are evaluated by botn contour 

integration and comparison with the canonical forms. 



Let. 

2. THE GREEN'S FUNCTION 

Associated 1t1i the Laplacian, 2, and a region 

G is the Green's function K(P,P'), normally defined by 

the equ3tion 

/ I *p(P) -f 
(2.1) KOP) 4DcP) 

where K(P,P') satisfies the Laplace ejuation 

(2.2) V2KO 
everywhere in G except posib1y at P i', and D is the 

distance from P with coardthates (x,y,z) to P, with 

coordinates (x',y',z'). lID is called the fundamental 

solution, and is called the complementary solution, 

since both 1/n and, satisfy eqution (2.2). fi , 

however, 

has no sinuler tent and, with its first and second deriva- 

tives, is continuous in the region G. Thus, the Green's 

function is characterized by a singularity at P ' since 

D = O at that point. Also asociated with the Green's 

function is a homogeneous boundry condition, usually 

i: = o or some linear combination of K and its normal 
derivative to the surftce of G. This relationship betceen 

T and K can best be expressed by the following propositions 
(Li., ;. 351-388 nd 11, pp. 224-231): 

HOZ3SITION 1. If T is any function which stisfies 
a homogeneous boundary condition, say T = O, is continuous, 

has continuous first and piecewise continuous second 



deriv:tives in G, and satisfies the equation 

(2.3) VzFOE 

then T(P) is exoressed by 

(2. I) TF 5ff X 
( p') P 9 V' 

On the other hand, if 2l(P) is any funotlon, which with 

its first derivtives is continuous in G, then the fune- 

tion exoressed by 

T(P) p') (p ')IV' 

is continuous, has citinuous first seccnd derive- 

tives, and sstisfies both the boundary condition and the 

differentiDi equation 

V2TC1) 

PROFOSITIN 2. If T is a continuous function with 

continuous first derivstives, and satisfies th. eqution 

(2.5) VZT(P) O 
then T(P) is ex>resse by 

(2.6) T(P) - 

s 

for K O on S and 

(2.7) rOE) = - 
'5 



/ 
Q 

for K = O on S, where S is the surfsce of G and the dif- 

ferentiation is taken along the external normal to S. 

The restrictions on in Proosition 1 can be 

relaxed somewhat to include a piecewise continuous ? , 

and the proposition holds except at points of discontinu- 

ity of where the second derivative is discontinuous 

(11, p. 6L). 

The existence proof for Proposition 2 is known as 

the first boundary value problem of potential theory or 

tne Dirichiet problem. If the solution exists, it is 

given by equation (2.7), but no assurance is given from 

the statement or proof of the proposition that T(P) 

actually assumes the values assigned to it on the boundary 

when P approaches the boundary. The existence theorems 

for a large class of problems are known, and we ma1e use 

of these results in expressing the solution for the 

interior of a circle in Chapter 4 (11, pp. 291-305). 

Also, the physical interpretation becomes clear. 

From equation (2.4), e see that the total contribution 

to T is obtained by summation of K over the region in 

which is defined. Thus, K must represent the reaction 

at P due to a source of strength P at P' , or trìe total 

could not have been obtained by summation over G. Jhen 

= 1, K represents the reaction at P for a point source 

of unit strength at P'. Hence the physical interpretation 

usually accorded the Green's function. 
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PROOF OF PROPOSITIONS i AND 2. The first part of 

Proposition i follows immediately from an appliea.tion of 

Green' s f;rmuis, 

(2.8) 
5JJ(ìV?z)dV/ 

Ji ' zm'} 

& s 

to trie region G with U = K and y = T, accounting for the 

singuir n:ture of K at P '. Th, 

(2.9)Jj(T jj(rds'_jjfkP)oe'x/Y' 60 
5 

where o iS S small sphere of radius enclosing tue point 

p, and the Ufferent1ition is tsken along the exterior 

normal. The integral over the surface of G vanishes 

since K and T both satisfy the same homogeneous boundary 

condition of the form 

T0, or 

where h is a parameter. The use of spherical coordinates 

with P as the origin shows immedtately that 

(2.10) 11(rAr)c/' 
-,-o J) 1' 6:?h' 

and 

TO') çJJ AO ) 4(P d y' 

6 
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Th proeedurc ot 3urrounfln the point P by a here 

is ewenient, aithou any region surrounding P pro- 

duces the oe resulta provided the vo1ue of the rec iOn 

toes to z ero throu;i a sequence such that the nL.xlmuai 

onorci goes to zero (9, PP. lil8)e 

Trie proof for the second rt o Proposition i is 

sde by noting tust differentistlon under the integral 

signs is perrnisibie. Sincedis a regulsr hermonic 

solution, wl.th cttnuous first and seond derivatives, 

differentitt1on under the integrl sign is peruissible 

for the derivatives of' g(l2, p. 59). The only term to 

be conridered In detail Is 

(2.11) X 1ff _ dv 

end its derivetives. Consider first the following 

intera1s written in spherio1 o..)ordizlates wltn P as 

the origin, 

X = 4 1ff4/2s6+J&d/ 
G 

4 fff« &ív' - L 
fff ¿z 

In this torm, X is absolutely convergent, and the inte- 

graM is continuous. :'urthermore, the derivative of the 

integrani Is also continuous since I?'J always. 



Heice, X may be differenti.ated under the integral sigi 

to obtain trie first derivtive. Thus, 

L fff9?a/V'. ¡ff4' Qa'' 

since (L) 

dz-' 

Alternatively, interatin by parts we have 

?> 
=-Jds' fff2í.Idv' 

:jw, eaci of these 1ntegraids is continuoua, and each 

derivative of theae integrands is contInuous by raason- 

in ana1ozous to that for the first derivative. Hence, 

differentiation under each of these integral signs is 

again permitted.. Thus, 

:: - - J'2/ ' 7L4 
J:fr 

(í)í' 
?z'2 I dz 

( 2 . 13) 

= bffDcít) -L- rrf±:)dv' 
dr' 1ì- / 3' d2' 

s 

With similar ex2ressions ror 2.nd 

The Laplacian, V 2T 'c72X, becomes 

(2.14) VZT = 
Jf )J'- fff. ()dv' 
.5 & 
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using to denote tue radient o:erator in vector notation. 

Green's first identity, 

(2.15) JJf 
v2ydv/ rrd5' 

Ji i 

G 6 5 

witn y = (1/D), applied to ti-ic reion G, keeping in mind 

ti-ie singular nature at P = P', giveS 

(2.16) Tf v v()dv' 
6' 

(O 

where c is a shere with radius 6 about the point P and 

the differentiation is taken along tiìe external normal. 

Thus, with u = we have 

(2.17) ffv. ()dv'= fds' 
a rid 

(2. 18) 2T(P) 

T1iis groves the relationship stated in Proposition 1. 

However, if equation (2.13) becomes the Laplace 

equtìon, formula (2.2-i') is ideìtically zero. On the 

other hand, the usual problem for tne Laplace euation 

requires that T live boundary values other than zero. 

It was also noted in the derivation that the surface 

integral in eivation (2.9) vanished only if T and K satisfy 

the saine honogeneo ' s bouniary condition. Thus, when ¿ and 

T are different on the bounary, and 9 o, equation (2.9) 



reduces to 

(2.19) T(?) 

11 

lt Is generally necessary to rc!aie K satisfy sorne horno- 

geneous confltion and apply equation (2.19). the simpliest 

and rno:;t direct is K = O on S, and we have 

T(?) -ffr1' 

In general, a piecewise continuous 9can also be 

treated by breaking the region G down into the parts in 

which 9'is continuous. Let G G1 + G2 where 9= in 

G1 and = in G2. Let T1(ì) denote the solution in 

G1, T2(P) denote the solution in G2, and the boundary 

between G1 and G2. Applying Green's formula to G1 and 

G2 respectively gives 

(p) + Tf(T)ds'= 1ff (p)(p)íY' 
e 

- ffr2(')' 
3h 'J 

and adding yields 

(p) J K ( P ) 
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A1 for t.ie region G2, 

f 
f(T-Tds' 

9 h' 

D" 
£9, 

(p) 
ff 

(Ku- r)ds' a w 

and 

(P) 
6 

Since T1 nd T2 are exoressed by the same formula, we see 

thot equation (2.4) also expresses the reictionship for a 

piecewise continuous Z. 

It may also be noted that t Green's function is 

syi»etric in its variables. Let F and 2 be points in 

G, and let c?1 and °<'2 be spheres about 
i and P2 with 

radii and 2 respectively. green's formula, equation 

(2.8), applied to G with 'i 2 excluded and with 

u K(P1,P') nd y = K(P2,P') cives (li, o. 223-229) 

7<, 

[KûP)'k(,Pí{]ds' o 

siûce v2K = o everywhere in the rDodified region and 

the integrand of the surface integral is zero. Conse- 

quently, as 6 snd 62 approach zero, 



and 
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h')P) 
z_c J''ÇLKaY' T 

h4 rfLxP5 ' 

6-O 

_k(i,r)WJds' -k(1q) 

-j«fP') PJdí kM71) 

KO?,&) = 1c:(ì,;) 

Identia1 reasoning for the two-dimensional Poisson 

and Laplace equations with 

-thiR 8(íP) 

produces equivalent results with volume integrals replaced 

by area integrals and surface Integrals replaced by line 

integrals. Ii is t:e distance from P to P' in a plane. 



3. THE DOUGALL METHOD 

BeBsel Functions 

Before starting the discussion of the Dougall method, 

it is necessary to define so!no Bessel functions, especially 

for the second solutions since various authors add. or 

delete first solutions and constants. Those used through- 

out this text are presented in reference (8). We define 

the following quantities by the series representations and 

note the asymptotic expansions needed in this development. 

(3.1) 

(3.2) 

(3.3) 

(3.L.) 

Funot ions 

3;() = 
.5 

)i1S 

J) 
I> 5!flS)!() 

I_??)L(ï) z;c) 

=0 

0.0 

L() 

K0c) + 

j; c, & 

¿-b 

K(-) '- 

(-i)n-s-ì!(z h-25 1#I 

5! ) -1-(-1) Ih(z) 

Es =0 

c.o 

+ 
_1 

S.'n*s)I (/ 



where 
Lh's) - cs) +è 

Ø's) =L'------+] 
J- 

Asymptotic EXpansions 

(JZ/, large) 

J;(2) j 
ir 

(3.5) 

Xtir) j-'- Vz 

K and I sttsfy the r9lations 
:t(z)A;;,(*) Á;7() -L 

-ir 

15 

-far ¡" 

O 45 ' 

(3.6) 
I 

-z;1(t),k,(ir) 

Also in the development we shall need the addition formulae 

for K0(,:\R) and J0(,)R), R2 r2 + r'2 - 2rr' cos (Q - 

which are expressed by 

/Ç&1R) :: 2;a4)/(;(M') + 1(A)/AA') crn'-') 

(3.7) 
r1I 

(AR) J;w)J;(J') 

for r : r' and 
n1 

(AR) (M') kA + 

(3.8) 

(AR) cA4')th) 

for r r' (J4, p. 38 nd p. 74). 
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The Green's Function for n Infinite Cylinder 

The Gr3en's function for an infinite cylinder is well 

knoin nd ccn be ex?resFe. by (1, p. 324.l) 

(Am)Jn(Am)e 
2 LÀaJz m-i 

The purpose of this section is to develop this function 

by the Dougall method, pointini out the distinquishing 
features and saowing how other solutions for a semi- 

infinite or finite cylinder iay be constructed. This 

section also provides the guide for Chapter 4 since many 

of the steps employed for the construction of the Green's 

function for a circle are directly analogous to those 

presented here. 

The Doua11 method consists of representing the 

singu1r term of the Green's function by an infinite or 

contour thtegral in such a way that the complementary 

solutions, are easily added to the integrand to affect 

simplifications. It is generally necessary to find an 

integral in terms of the complementary solutions. Tnis 

procedure works very well in the cylindrical coordinate 

cases since two well known integrals in terms of the 

solutions of the La1ace equation represent l/D. These 

integrals, commonly used as a starting point for tiis 

method, are given by (8, p. 65 and p. 75). 



I 
/ 

(3.)) 
Le 
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(3.10) = 

f 
AR)t9 8(,P) 

and K is then ex)reed by either 

(3.11) K(?') 5íAI()a () 
or 

(3.12) (e?') 
, 
jA)-) 

depending upon what boun.Lrî cönditions re to be satis- 

fled. In genera1, the first form is used when e. boundary 

condition on a z-plane is to be satisfied first, and the 

result modified sgin by adding conipletsentary functions 

to satisfy the conditions on a cylindrical surface. The 

second form is used for the reverse case. Thet is, the 

boundary condition for the cylindrical surface is satis- 

fled, and the result is tLe Green's function for an 

infinite cylinder. Further modifications for finite 

cylinders re obtained by adding other cornlementary 

functions. 

It is obvious that fi must also be expressed in a form 
sirni1ur to l/4D in order to affect any simplifications. 



The solutions most common are found by separation of 

variables in = O. With the aid of the addition 

formula for K0(A.3), the second form nay be expressed by 

or 

(3.13) K(P') - fl(8-) 

JI - 

jIh{) n (A4 (-1 

for r ' r'. The inversion of the summation arid integration 

is justified by uniform convergence for 9 Q' and any r 

and r'. Now it can be seen by separation of variables in 

'ç' = O that the function 

8= A) 
is harmonic for arbitrary choices of A, )' and )\ . However, 

in order to affect simplifications in K,these parameters 

are assigned roles similar to those in equation (3.13). 

Summation over these parameters does not affect the 

variables in r, Q and z as long as these sums with their 

first and second derivatives converge uniformly. Thus, 

with this condition on A(,À ), may assume the form 

1too 

7(p) X1(&-&') JAn)4)/)(t-)4 
n-oo O 
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for a solution ofV2= O which is finite at r = O. It 

also may take this forai with i(,X.r) replaced by 

for a solution which is finite atoO , or the SUai of the 

to for a nollow cylinder. Other modifications on the 

form of can be mode by 1ettin either or z' be nero. 

The boundary conditions generally dictate the form which 

is most compatible. 

£or the purposes of continuing the discussion, the 

Green's function for an infinite cylinder will be con- 

structed, satisfying tLle boundary condition K = O st 

r = a. If we combine the forms for l/477D ande K(P,P') 

b e cornes 

(3 . ) K(&') 

for r' with a simulr expression for r s-r'. if K = O 

at r = a, 

iz: (AA')ik(Aa) +A(A)J(Aa) 
a rid 

Aa(A) = 

Thus, 

» *Oc 

(3.15) ,-(,P) 
n=-c ió 
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If is no: cnslJ.erecì a cz?I1lex variable, and te 

express ion 

i Ç i -K a)I)3j 
/?-? 

z 

is taken about a large semi-circular contour in the upper 

half plane and along the real axis indented at the origin, 

not passing through any poles, we find that the integral 

along the real axis reduces to 

EÁ)1',4)- 

In applying Cauchy's theorem, we also find. that this 

integrsl is equal to 2t times the sun of the residues 

at the poles inside the contour since the integral over 

the large seni-circle vanishes as the radius approaches 

infinity. This csn be seen by substituting the asymptotic 

expansions for K and I into the integral. The function 

In(, a) has simple poles at the olnts i,À along the 

imaginary axis. Hence, 

44')[2Ua) 
o 

o 
¿c'mA ') (Ama)()2m1i 

- 27 

»i ì 

with l('Ama)-O or J)ma) 
and a) z: :-L;,111 (i'2ma) 

or À»a) 
/_i/2/7 

T6')ma) 
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Also, from e;uation (3.6) 

and 

I 

- ¿,aZ'a) 

- a)21th)1 

I,,fAa) 

- - ________________ - L 
with Jn(Àma) o. 

The residue at)\ O is zero for n O end there is no 

pole at O for n O. Consequently, the corn;iete 

solution for the Green's function for an infinite cylinder 

-ta.O 00 ) I - '1 

I J V- ____________ 
(3.16) AmT 

with J(2a) O, tei<en only over the positive roots. 

It w9s noted. tht only the exressian for r- r' wes 

handled. Actu11y, due to the symnnetric property of the 

Green's function, the second form for r r' olso reduces 

to the above equation. 

If the function for a finite cy1iìder is needed, more 

complementary solutions with the form 

::Oø 

(3.17) &'V') en&fIwAm 
Am LfAMaJz 

n-o »V:I 
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may be added to equation (3.16) to satisfy the boundary 

conditions on the ends of trie cylinaer. An a1ternte 

expression for the finite cylinder may be derived also 

by stsrtin with equation (3.10), satisfyiag the conditions 

for the z-plane surfaces first and then satisfying the 

boundary conditions on trie cy1ider (1, p. 3l). The 

expansion in this case however is bilinear in trigonometric 

functions insted of iiessel functions. 
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4. Â TWO-DIMENSIONAL ANALOG 

In the previous chapter, it was noted that a suitable 

reresentction of' t;e sinular fortì of tue Green's function 

was necessary to pply the Dougall method. in two diEen- 

sions, K taies the fornì 

(L.l) k(P') = -kR *íp 
2 2 2 

where .R = r ± rt 2rr' cas ( - ) in polr coordinates. 

Before goin further, w need to develop the function 

in the form of an integral, actu1iy tio tntegral since 

lt is both the real and the complex nottion with whioh 

we shall be concerned. 

The Green's Function Sin1u1ar1ty 

After obtaining the Green's function for n infinite 
cylinder, lt iS ossib1e to specislize the reault to two 

dirensions. If (r,) ønly, then is independent 

of z cnd the Green's function in two dimensions is 

obtsinable by interting z' from -acto +c'O The result 

is the Green's function for a circ1. Thus, 

)l:.*c'O 

K(,P) 2 

r1-QO mì 

w i. t h 

ma) =0 
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is the b111necr form for tne c1.rclO. One may also expect 

tnIs procedure to iork for t1e s1nu1ar form also. tuch 

is not the cese however. The integral in equation (3.9), 

when 1nterted with respect to z' from - to + , yields 

E divergent integral. Other methods niust be soue, ' fOI' 

the representation of the singular form in two dimensions. 

The representation fun suitable for tills an1ysis 

13 

2) R 2C1A 
J 

where C is a streiht line contour along the real. axle in 

the upper helf ,'\ plane. 

PRO3F: The f lrrt integral is shown by considering a 

function g'(x), integrable between O and. Then, 

'&) 4 (o) -a(0) 

If X is replaced by xy in this inte.rl, we obtain 

(.3) 
o 

which converges anirormly for y 7 c. e now integrate 

botti sides of this euatlon i1th rspeot to y between 

u and. y for U,V 7 0. Thus, 



er 

(k.4) 

sthce the first integral on the left converges uniforniy. 

t hen, 

(k. 5) 
ç 

z) ¿;( = - (o) 4. 

Jo 

Now, J3(x) satisfies all the requirements fer g(x) and 

g'(x). Hence 

(k.6) 

O 

with y = R, u 1, and ) = x. 

It is this integral which giv the clue to the form 

of' the contor integral to be considered. One farni1ir 

with Bessel functions would naturelly assume the form 

K0Afli-(A) 

arouxi. a seiii-c1rculr contour in the uper half ,\ cle 

and along the real axis indente1 at the origin (8, . 23 

nd p. 103). By Cschy1s theorem, this 1nteral is zero. 

Also, as the ccntour is made infinitely large, the integral 

over the semi-circle vanishes, and e have 

L PI&,Ai2 -A/ A(AKe)J -LÀe- JidI (k7),.J =cJ À o 

L r1:7:. 
fl_ Ja 
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Also, 
¿ ( -ri) 

) - (e = 

(.3) -1 1'{h 1Í(b- *(ee1JL% 1Ï1«f] 

plus a power series strt1n 

Consequently, as 6-a-C 

I - fl _ Á 2 RI!) Á1) -me- 
C 

(À Re - ( e 

-R)[%J--'J 
77LAR) 

Similarly, 

(Àe) - A 

and substitution into equation (.7) ives 

C'o 

L - 

Tue Green's Functionf'or a Crele 

,;ith trie sinuiEr form reresented by equation (.2), 

K becomes 

(.lo) K(PP') 
Ç)-(Ài ((P') 

) 

27T2/ 
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- 
With the aid of the addit.on formula for K0(Ake V 

K cn also be written 
e / z 

n(- 'J 
(A 

Now a suitable ciao ice forfl rnut be me. The function 

¡g .2 -G 

satinfies o in two dinensions and K becomes 

k(,) .27TJ 
(L.11) C . 

2:- ____________________ 
ffz' e 

provided A(,X)is such tht,,,&with its first and second 

derivatives is continuous. Now, K = O at r = a. thus, 

A0 aiid A te the v1ues 

/40 = 
(A4L) L) 

(4.12) -z; ,ú'5 ,4i: 
Consequently, 

X(f/L;p) =g J 
( L 13) 

2- 
ll? J 
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To eva1ute these integrals, Cauchy's theorem is again 

applied to a contour, C', around a semi-circle and along 

the real axis indented at the origin in the upper half À 

1cne. Thus, following the pattern given in equations 

(Li7) to (4.9) we have 

-ae)] 
,zirz2 

j À O 

( 
¿4 1'4) 

- ç k 
Ì(G) 

(& 
' (ÑJ 4 z4o 

3irnilrly, 

')La 
j- 

l(/L&z 

2' 
z/ 

e 

L (/À'){LTfl(/4)-L7;(Aa)J 

77-JÓ 2" 

I 

Using th first terms of K and I in the expansions gives 

£'G -I) 
I 

L a (e4 2 
) 

b 
(e 

(Li.l2) 
_12,h [jjfl a1 LJ 

and, as 

L- Ç 
c 1T2: 

2' 

- - nL i2 
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Thuì, the f in1 form becomes 

(. 13) K(''P) -1 -h - J ¿ 
- 

fl (- û') 
/11 n- ,iz'1 ' A-" 

n i 

for r r1 and treat1n the expression for r r' sini1arly 

yields 

-L A± (.1L) ,k'6P) iîM4- 

We also h.ve the results 

rA 

(Li.16) 
'LaW-,j] 

Ç4 r" a - - I- 
liaTM LZ'1 A"' 

n.I 

-L -far 

_4' 
;:o).. 

_n L-f] or ,'<ìi 

:;1 L-J fa,kt'cZ 
These results may be regarded as sneralizatiots of the 

Bateman integral (13, p. iO6), 

no o for -ZI-lL 
(.l7) :- 

or expansions in terms of the Fourier-ßessel integral. 

A direct approach through tue addition theorem for 

J0(Àa) and equation (k.2) yields these lLltegrals immedi- 

ately, but does not provide their values in terms of 

eleentery functions. Thus, with K expressed by 

(L 18) K(t) A')-J;&4)d 6 



selected in the form of real integrals, 

00 

/ePf) = 

;e h6ve 

(L.l9) 

4Af)±aCJ,í 

+ 

f 

End for O r= a, 

(L; 20) 

c'O 

-í- 
i(&-í) 

Jo 

The disadvantage cf this Rpproach lies in the fact that 

reducing these integrals to elementary functions is dit- 

ficult. Hence the contour method is Lreferred in most 

cases. 

If tue expression for r',> r is differentiated and 

substituted into the two 1imenional equation correspond- 

Ing to (2.7), we have the solution T(P) for a circle in 

terrs of tne series exansion of the Poisson interl 
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formula. Thus, 

- / 

__ = 
pt (.2l) 

?A' 

and 

or 

zi7 

r(P) T(a) ) / 

co 

O 

27 

T(P) = 
2 

T4g 
)4/ 

J 
o 
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