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A TWO~-DIMENSIONAL ANALOG OF THE DOUGALL METHOD

1. INTRODUCTION

The Green's function forms the basis for solutions
of a large number of equations in mathematics and physies.
Potential theory, heat conduction, elesticity, neutron
diffusion, and many other physical and mathematical con-
cepts employ the Green's function for solutions of prob-
lems. Physically, the Green's function represents the
reaction at a point P due to some kind of unit source at
another point, P!, In potential theory the source corre-
sponds to a charge end the reaction is the potentlal; in
heat conduction the source is a quantity of heat liberated
and the resction is the temperature; in elasticity the
source 1s a force and the resctlion a displacement; and so
on, The usual cese however does not involve polnt sources,
but continuous sources. The total contribution to the
solution 1s obtained by integratlion over the source
strength values. As we shall see in Chapter 2, the mathe-
matical statement of the Green's function and the solutiomn
of the Polisson equation makes this interpretation possible,
and with it, many solutions of problems can be written
down from a consideration of this meaning, provided the

Green's function is known.
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This psper is devoted to the construction of the
Green's function for the Laplacian, N/2T, using a method
employed by John Dougall for the cylindrical and spheri=-
cal coordinate systems (6, pp. 33-83). The analytical
representations, many of which appear as bilinear forms,
are easlly adapted to calculations, and the method of
construction is very direct once the singular form of
the Green's function is represented. In his representa-
tions, the singular or fundamental form appears as an
infinlite or contour integral, To this form is added a
solution of the Laplace equation which has arbitrary
.constants., The form of this solution 1s also an integral
of similer structure to afford maximum opportunities for
simplifications. In the usual way, the arbitrary parameters
are used to satisfy the boundary condltions, and the
resulting integrals are then evaluated by contour inte-
gration. The result is an expaension formula for the
Green's function,

In view of the direct gpproach and easily manipulated
results obtainable by this method, it seems desirable to
extend this approach to other coordinete systems. The
purpose of this thesis i1s to present an analog of the
Dougall method in two dimensions, starting with the two
dimensional logarithmic singulerity. At the beginning,

one may expect results similar to those obtained by



Dougall., Such 1is the case; however, the expsnsion
formula derived in this paper turns out to be a series
expansion for the classical solutlion for 2 circle.
Slight msnipulations give equivalent forms in terms of
infinite integrals which are evaluated by both contour

integration and comparison with the canonical forms.



2., THE GREEN'S FUNCTION

Assoclated with the Laplacien, V 2T, and a region
G is the Green's function K(P,P'), normally defined by

the equation
/ / /

where K(P,P') satisfies the Laplace equation
(2.2) VK = O
everywhere in G except possibly at P = P', and D 1s the
distance from P with coordinates (x,y,z) to P' with
coordinates (x',y',z'). 1/D is called the fundamental
solution, and /5 is called the complementary solution,
since both 1/D and 4 satisfy equation (2.2). /9 , however,
has no singular term and, with its first and second deriva-
tives, is continuous in the region G. Thus, the CGreen's
function is characterized by a singularity at P = P' since
D =0 at that point. Also associated with the Green's
function 1s & homogeneous boundesry condition, usually
K = 0 or some linear combinatlon of K and its normal
derivative to the surface of G. Thls relationship between
T and K can best be expressed by the following propositions
(4, pp. 351-388 end 11, pp. 224-231):

PROPOSITICN 1., If T is any function which satisfies
& homogeneous boundary condition, say T = 0, is continuous,

has continuous first and plecewise continuous second



derivatives in C, and satisfles the equation

(2.3) VT (P) = - YP)

then T(P) is expressed by

(2.4) 7(P) = jff/((/,’/") MP’)J/V’
G

On the other hend, if %/(P) is any function, which with
its first derivetives is continuous in G, then the func-

tion expressed by
) = | [ Keep) Yirordv’
G

is continuous, has continuous first and second derive-
tives, snd satisfiles both the boundary condition and the
differentisl equation
VA7) = - YP)
PROPOSITION 2, If T is a continuous function with

continuous first derivatives, and satisfies the equation

(2.5) VAT (P) =0
then T(P) is expressed by
_ T 72K\ s’
(2.6) 7(P) = ,” (kSL-T5%)4s
s

for K # 0 on S and

(2.7) T(P) = — “ T%,a/s’
S
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for K= 0 on S, where S is the surfsce of G and the dif-
ferentiation is taken along the external normal to S.

The restrictions on 7./ in Proposition 1 can be
relaxed somewhat to include a pliecewise continuocus y’,
and the proposition holds except at points of discontinu-
ity of ?’where the second derivative 1s discontinuous
(11, p. 64).

The existence proof for Proposition 2 is known as
the first boundery value problem of potential theory or
the Dirichlet problem, If the solution exists, it is
given by equation (2.7), but no assurance 1s given from
the statement or proof of the proposition that T(P)
actually assumes the values assigned to it on the boundary
when P approaches the boundary. The existence theorems
for a large class of problems are known, and we make use
of these results in expressing the solution for the
interior of a circle in Chapter 4 (11, pp. 291-305).

Also, the physical interpretation becomes clear.
From equation (2.4), we see that the total contribution
to T 1s obtained by summation of K7/ over the region in
which V is defined. Thus, K y must represent the reaction
at P due to a source of strength i/ at P', or the total
could not have been obtained by summation over G, When
7# = 1, K represents the reaction at P for a point source
of unit strength st P'. Hence the physlical lnterpretation

usually sccorded the Green's function.



7
PROCF OF PROPOSITIONS 1 AND 2, The first part of

Proposition 1 follows immedictely from an application of

Green's formulsa,
(2.8) jjj(u Vi -rve)dv = ff(u v 7/__4 P
G

to the region G with u = K and v = T, sccounting for the

singular nature of K at P = P', Thus,
k ,_ 3 )k_, a 4 [ ’ /
(2.9) f(/‘an/ gl L ([(r25-kgD)as' - — | [[kcers oy
= =

where o< is a sma2ll sphere of radius ¢ enclosing the point
P, and the differentiation is tsken along the exterior
normal, The integral over the surface of G vanlshes
since X and T both satisfy the same homogeneous boundary

condition of the form

T=0, §f=0, or ST+hT=0

where h is a parameter. The use of sphericsl coordinates

with P as the origin shows immedlately that

on

(2.10) i":; j‘f (7‘9'4’-,& ,)c/s': 7(P)
(=4

and

7P = ([ keery s dv
G
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This procedure of surrounding the point P by & sphere
iz convenient, although eny regilon surrounding P pro-
duces the sume results provided the volume of thne reglon
goes to zero through a sequence such that the maxlioum
chord goes to zero (9, pp. 147-148).

The proof for the second pert of Proposition 1 is
made by noting that differentiztlion under the integral
signs 1s permissible. Since & is e reguler harmonic
solution, with continuous first and second derivatives,
differentistion under the integral sign is permlssible
for the derivetives ot,é?(lz. ve 59)., The only term to

be considered in detall 1is
- 4 I3
.13 X = ir DI(EP)
.
end its derivetives, Conslder first the following

integrals written in spherical coordinastes with P as

L [ ppsine dedodf
&

477 f//¢ Q(D)JV 4;;7 !//;ﬂ Z/Z/‘-Z—s«;«éa//a/ét//

In this form, X 18 absolutely convergent, and the inte~-

the origin,

grend is continuous, Furthermore, the derivative of the

integrand is also continuous since lz=2) < 1 always,
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Hence, X may be differentlated under the integral sign

to cbtain the first derivative., Thus,
s 25 1,
7 732 4 = - 2524

o 28 . _ 2P
EX3 2x’

Alternatively, integrating by parts we have

(2.12) %: ir fﬁa/s 2 f/'fj._l/t/

22" D

L4
Now, each of these 1ntegrands is continuous, end each

2

derivative of these lantegrands 1ls continuous by rsason-
ing analogous to that for the first derivative. Hence,
differentiatlion under each of these integral signs 1s

agaln permitted. Thus,

2 ( L ’
% ”477 ffzﬂ 2B+ 477 f%g’%)/v

(2.13)

gl & v
% [[v28 - I

2 2
with similer expressions for %——y’t and %—;}j
The Laplacian, V’ZT = <72X, becones

(2.14) VT = -* ff;ﬂa(ﬂ)a/ 47; fffv% V(—DL)a/V'
é
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using v to denote the gradient operator 1in vector notation,

Green's first identity,
(2,15) jff Z(VZVOIV, ‘f"fffva.vzfp/y': ffug_z;a/s/
G & S

with v = (1/D), applied to the region G, keeping in mind

the singular nature at P = PV, gives

(2.16) JTfVa V(£ = ff—u - e Hu 2) a/o//

where o< 1s a sphere wlth radius € about the point P and
the differentiation 1s taken along the externmal normal.

Thus, with u = 7/ we have
an [[[vy v@)dv'= g;/ %%Dl:)a/sl + 47 YCP)
6

and
(2.18) virp) = ~YP)
This proves the relationship stated in Proposition 1.
However, 1if equatlon,(z.IS) becomes the Laplace
equation, formula (2.4) is identically zero. On the
other hand, the usual problem for the Laplace eguation
requires that T have boundary values other than zero.
It was also noted in the derivation that the surface
integral in equastion (2.9) vanished only if T and K satisfy
the same homogeneous boundery condition. Thus, when K and

T are different on the boundary, and yu 0, equation (2.9)
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reduces to
2K\ Jo
(2.19) T(P) = ff (k35 -T55) s
S

It 1s generally necessary to make K satisfy some homo-
geneous condition and apply equation (2.19). The simpliest

and most direct is K = 0 on S, and we have

TP = —fff”a’s

In genersl, a plecewise continuous ¥7can also be
treated by breasking the region G down into the parts in
which ;ﬁls continuous. Let G = Gy + Gy where é’= ;% in

G, and ;p= 4% in G,. Let T;(P) denote the solution in

" 4
Gy, Tp(P) denote the solution in Gp, and 4 the boundary

between Gy and G2. Applying Green's formula to Gy and

G, respectively gives

7P+ {f (k%'T%VS'= i f f K(EP')%(P’)/V'

T _ 7ok \ s = KPPIIEIAY
f f (KZhT 555 g\/‘
and adding ylelds

ey = [[f keery perrdv’
G
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Also for the region G,,

[Jogg-mii = [[frarie
G,

- || (RSE-To s fé f [ kegr) therdy’

and

[[[ kegr)yprrav’
é

Since Ty and Ty are expressed by the szme formula, we see
that equation (2.4) also expresses the relationship for a
plecewise continuous 4/.

It may also be noted that the Green's function is
symmetric in its varisbles. Let Py and P2 be points in
G, and let =j and o<, be spheres asbout P, and P, with
radii 61 and €2 respectively., OCreen's formula, eguation
(2.8), epplied to G with o¢y and o<y excluded and with

u = K(Py,P') 2nd v = K(P,,P') gives (11, pp. 228-229)

f_f[xazf)%’ff"’) k(/’i’)ak(f _]Js + f f K(P p)éakhfg,m sz, P)Qaiw K= O
0(,

since V2K = 0 everywhere in the modified region and
the integrand of the surface integral is zero., Conse-

Quently, as €3 and € o approach zero,
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. w DK(BP) NOKBPI s - _
bﬁk/‘ ff[K([;P) W -k(/;,},) 1% ‘[JS = k[/g)ﬁ)
,

&—=0

‘ Qk(ﬁ’f’)__k[g’}a’) %{_/@Fﬂjs} k(ﬁ)ﬂ-)

Lo [[[KtEP) 50"
oG

&0

and
K(B,R) = K(BF)
Identical reesoning for the two-dlmensional Polsson

and Laplace equations with

KepP) = ~ab R + 805D

produces equivalent results with volume integrals replaced
by srea integrals snd surfsce integrels replasced by line

integrals, R 1s the distance from P to P' in a plane.
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3. THE DOUGALL METHOD

Bessel Functions
Before starting the discussion of the Dougall method,

it 1s necessary to define some Bessel functions, especlally
for the second solutions since various suthors add or
delete first solutions and constants. Those used through-
out this text are presented in reference (8). We define
the following quantltles by the serles representations and

note the asymptotic expansions needed in this development.

Functions
- /7
T8 = Z g
(3-1) B s (_/)5 (ih+u
S (2) 757%)!&)
=5
e / Z 28 _,, i
o=y gpl) =
(3.2) =0 5 )
=) ’” ~n J( 2
(4 n
L.(2) 7 sl(n+s)’("

235
—L(z)[“ﬁ Z ] + _é%?&)
Z( /)‘(n-s /)’(Z)" w43 _,)"“_‘[,,(iz)#«_.

"

|

Kn(#)

(30‘4’)

)" W(5)+W(n+s) (?)W“
T 7 T Ssltn+s)!
=7
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where

Wis) = gis)+¥
@(s) =[/+-z{—+31+_---3/_]
y = 0.85772/57. --

Asymptotic Expeansions
(12|, large)

In@) ~[Z 0ot (z-F-4F) ~Fcarge<¥

&

O.5) Do~ gt ocargs <

-z
K”(?) i r‘e ,77“44;—7?477.

and I, setisfy the relations /
T () Koy (B + Ty 52 K(2) =
/

X n

(3.6)
Tt ky(2) = Ln(2) Kn(2) =z

Also in the development we shall need the addition formulse

for KO{)\R) and Jo()\B), R2 = r2 + r'2 - 2rr' cos (8 - 6'),

which are expressed by

KAR) = L) k') + Z,Z_Z.},[/M e, (M) Coonlo-6)

(3.7)
LAR) = JUAITiA) +,’L>_«7,;(/M)L(M’)wn[9/a)

for »r < r' and

KAR) = T,04) Kh) + LZI,,(/M’) K. (A1) Coonto-8)

(3.8)
TOR) = JG") T (A4) +zZzzA4')J7,m)canM’)
=

for r > r' (4, p. 38 and p. 74).
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The Green's Function for sn Infinite Cylinder

The Green's function for an infinite cylinder 1s well

known and can be expressed by (1, p. 341)

n__/ = . Tl M 2) Tn Am ) e'/)"'/?-all
KEP) =L, Z&ﬂn/e—a) Z
m =]

Am [ \7;;’(/]»-4)] *

n=-00

JnlAma) =0
The purpose of this section is to develop this function
by the Dougeall method, pointing out the distinquishing
features and showing how other solutions for a semi-
infinite or finite c¢ylinder may be constructed. This
section also provides the guide for Chapter 4 since many
of the steps employed for the construction of the Green's
function for a circle are directly analogous to those
presented here.

The Dougall method consists of representing the
singular term of the Green's functlon by an infinite or
contour integral in such & way that the complementary
solutions, /?, are easlilly added to the integrand to affect
gimplifications., It 1s generally necessary to find an
integral in terms of the complementary solutions, This
procedure works very well in the cylindrical coordinate
cases since two well known integrals in terms of the
solutions of the Laplace equation represent 1/D. These
integrals, commonly used as & starting point for thils

method, ere given by (8, p. 65 and p. 75).
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(=Y
' -A/z-2'
/ - 9 / - j:e ﬂ/

(3.10) _DL = ?/,'2— J: /(o(/),e) cM,/\(f—z)aé} +/5/P,P)

and K 1s then expressed by either

o?i/ 2/

/ - N1 Z~ ,

an ker) = 7 [T o0l ponr)

[
or

/ (==

(3.12) kAP) = ;2 f/gzxiﬁ)mm;—f')aﬂ +/5(/7/J')

depending upon what boundary conditions are to be satis=-
fied. In general, the first form is used when & boundary
condition on a z-plane is to be satisfied first, and the
result modified sgain by adding complementary functions
to satisfy the conditions on a eylindrical surface., The
second form is used for the reverse case. That is, the
boundary condition for the cylindrical surface is satis-
fled, and the result is the Green's function for an
infinite cylinder. Further modifications for finite
¢ylinders are obtained by adding other complementary
functions,

It is obvious that,ﬁ must also be expressed in a form

similar to 1/47 D in order to affect any simplificationms.
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The solutions most common are found by separation of
variebles in V'Z/? = 0, With the ald of the addition

formula for Ko(/\B), the second form may be expressed by

oo n=1eo°
K(RP) = ’2‘;2. f Cod./\(e—z’)Zm n (66 ) Ty W) kM) +G
) = s

or
n=+eo od

(3.13) K(PP) :,z{?z Z&an[e—e’) LW k) esee2)cll 118
Nn=-09 (]

for r > r', The inversion of the summation and integration
is Justified by uniform convergence for & # @' and any r
and r', Now it can be seen by separation of variables in

\ 2/3 = 0 that the function

B= AyN) Coa ¥ (6-6) T (M) CoaA(z-2)

is harmonic for arbitrary choices of A, ) amd,% . However,
in order to affect simplifications in K,' these parameters
are assigned roles similar to those in equation (3.13).
Summation over these parameters does not affect the
varisbles in r, @ and z as long as these sums with thelr
first and second derivatives converge uniformly. Thus,

with this condition on A(A ),/?may assume the form

=+00 oo
Vet E /—76,2 Ejm”&a—é’) f AnN) I, (\4) CoeAz-2) A
[/

h=-00
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for a solution ofﬁ72f?= 0 which is finite at r = 0, It
also may teke this form with In()\r) replaced by Kn()\r)
for a solution which is finite atoo, or the sum of the
two for a hollow cylinder. Other modifications on the
form of & can be mede by letting either ©' or z' be zero.
The boundary conditions generally dictate the form which
is most compatible.

For the purposes of continuing the dliscusslon, the
Green's function for an infinite ¢ylinder will be con-
structed, satisfying the boundsry condition K = 0 at
r = a, If we combine the forms for 1/47D and/(?, K(P,P')

becomes

oo
n= +o0
(3.14) K(BF)= ;—;, Zcoa h#-6") ﬁf,,//lt)&,oh) +/4,,())I,,//l4)](‘.04/)(?—?)aﬁ
o

n=-00

for r > r' with a similer expression for r <r'., If K =0

at r = g,
T AN Ky AQ) +An(A)Ip(Aa) =0
and
) = A GD
$ Z,, (Aa)
Thus,

n=+oco
(3.15) k(7P) = /—;Zcma-p’) /;m')[l: Nak,dy) -;’/6,0}4)1',/)4_5.}24/’{?15//}
5 Z,(1a)

N=-co
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If,k is now considered a complex variable, and the

expression
Alz-7

7

N y L) W Tnthd) - i tha) Tnld)] 0
Z ) TInlAa)

is taken gbout a large semi-circular contour in the upper

half,A.plane and along the real axlis indented at the origin,

not passing through any poles, we find that the integral

along the real axis reduces to

o ;
fliw,) Lk Tnia)- by () Ty M) oo Vo) /)
A Z, (Aa)

In epplying Cauchy's theorem, we also find that thils

integral is equal to 27 1 times the sum of the residues
et the poles inside the contour since the integral over
the large semi-circle vanishes as the radlus approaches
infinity. This cazn be seen by substituting the asymptotic
expansions for K, and I, into the integral. The functlon
In();a) has simple poles at the points ;\ = 1/\m along the

imaginary axis. Hence,

[ Tt Ut T00) - Ty Coodies),
A Zp(Aa)

= 7¢ i ~Z,, LemA") Kn () Tt A 1) Z’)»J z-Z
m=)

A .I”/(l'/’mco
and _Zj.,/a‘/)ma) = I»H-/ (' Ama)

or T (chma) = (7™ T/ hma)
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Also, from eguation (3.€)

: /
aA) T ————

Kalidn@) = o )

a

L
j" L) O TyMa) -~ KODDTAD] e )iz 29,
) Ly Aa)

= .77.: i J,/)M’)L(/).A)j’""/”"
s Al dy Oma)] =

with Jo{ \qa) = 0.

The residue st A\ = 0 is zero for n > 0 and there is no

pole at,x = 0 for n = 0, Consequently, the complete

solution for the Green's function for an infinite cylinder

is
f n=+o0 )8 f - ) //’»'4') P A 12-2°)
(3.16) K(£P) = 35 Do LTy O]
M=—o00 m=j

with Jh()\ma) = 0, />\m teken only over the positive roots.
It was noted that only the expression for r > r' was
handled. Actuslly, due to the symmetric property of the
Green's functlon, the second form for r < r' zlsc reduces
to the above equation,
If the function for & finite eylinder is necded, more

complementery sclutions with the form

n=te ’ ) fz,/). 1) HM’) [Anlvf' Bt —/Lf

- L
(3.12)  BLLP) =5, ) Coons Mo L3 P )]?

n=-o0o
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may be added to equation (3.16) to satisfy the boundary
conditions on the ends of the cylinder. An eslternste
expression for the finite cylinder may be derived also
by starting with equation (3.10), satisfyiang the conditions
for the z-plane surfaces first and then satisfying the
boundary conditions on the cylinder (1, p. 341). The
expansion in this case however is bilinear in trigonometric

functions instezd of Bessel functions.
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b, A TWO-DIMENSIONAL ANALOG

In the previocus chapter, it was noted that a sultable
representation of the singular form of the Green's function
was necessary to @pply the Dougall method. In two dimen-

sions, K takes the form

(4.1) K(PP) = '2;7/44/\7 7“/6//?#/)

2
where B2 = r2 + r' = 2rrt' cos (@ - &) in polar coordinates,

Before going further, we need to develop the function 1n R
in the form of an integral, actually two integrals since
it is both the real and the complex notztion with which

we shall be concerned.

The een's Function Singularity

After obtaining the Green's function for an infinite
eylinder, it is possible tc specialize the result to two
dimensions, If §ﬂ= l;%r,e) only, then ;Wis independent
of z and the Green's function in two dimensions 1s
obtainable by integrsting z' from ~o”toc +o9, The result

is the Green's function for a circle., Thus,

n=1*t oo

KBP) = jra Zw s Z ;/)».EJ)’ ()1)532

h=-00 m=/

with
I,()md) =0
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is the bilinear form for the circle. One may also expect
this procedure to work for the singular form alsc., Such
is not the case however. The integral in eguation (3.9),
when integrated with respect to z' from - to + » Yields
& divergent integral., Other methods must be sought for
the representation of the singular form in two dimensions.

The representatlion found sultable for this anslysis

is

way L= - fJMR))\ TN g - j'/«,m )k Y
0 c

where C 1s a straight line contour along the real axis in

the upper half,%.plane.
PROOF: The first integral is shown by considering a

function g'(x), integreble between 0 and o2, Then,
(=)
jleX)dL/ = 3(00)—'3(0)
[¢]
If x it replaced by xy in this integral, we obtain
= - g =90
(4.3) yjl(xtj)ﬂéf = d
0 J

which converges uniformly for y > 0, We now intsgrate

both sides of thls eguatlion with respect to y between

u and v for u,v > 0, Thus,

56{(7 yﬁlij)dx = [j(w)—(y(a)jjn%j
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n

(4.4) jaéf yg’crj)ﬂ/y = [Jfoo)—gml//ug

since the first integral on the left converges uniforuly.
then,

(4.5) f gun_JeD) dy - [ 9e0) ~go] I 2

0

Now, Jo(x) satisfies all the reguirements for g(x) and
g'(x). Hence
o<
(4.6) D R=- f MM}/\‘J;(/D A
0

with v = B, u = 1, and A= X,

It 1s this integrzl which gives the clue to the form
of the contour integrsl to be considered. One famlliar

with Bessel functions would nsturally assume the form

] f/q,(/lﬂe'?’)—/(,(/)z'zl)ﬁ//)
6,/

e A
around a semi-~circular contour in the upper half‘A rlane
and along the real axis indented at the origin (8, p. 23
end p. 103). By Cauchy's theorem, this integral is zero.
Also, as the contour is mede infinitely large, the integral

over the semi-cirecle vanlshes, and we have

-If‘_ w74 ‘l}‘_ +rd\1_ _nl '
/ KlAR 2 z K( K . 4 5y ’I;ﬂ E/

a v '
= b [ E [htere ™) - ke B)] oo
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Also, . ‘
((6-%) (e-%)

)-—k‘,(é,e ?') =

W8 T (ere P ek vy 1ito-F) 1T e H g +r167E)

K (eRe

plus a power serlies starting in e?,

Consequently, as ¢—— O

B od®
g - _]%C'J“/(;me/{ L0OE®)
C

Also

Kore™) - £ ARE) =
W9 _TOR) Lhedk +i T ] +GUUR) L df 1+ % ]
= 77 Jo—(/’ﬁ)

Similarly, '
K AR - K (NE) =1 KA

and substitution into equation (4.7) gives

(" zar - m = (kore®-40¢%)
%ﬁ,f ST f -kt

The Green's Function for a Circle
With the singular form represented by equation (4.2),

K becomes

(h.10) KCBP) =3k, j“/m*) -4 ) e
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X<
With the 21d of the addition formula for K (A Re %=

K can also be written

/ AL -I¢
KB P) j’b()u )I){\ ) -ks A =)/

7’-77—{6' i&on/e—a') f K,[/W’E?:)\_Z} 7%) ;/A+/6’
n=i C
Now & suitable cholce for/@ must be maede. The function
:[';J A_"_M’ + - fwhm—é’)f/lnm/}//\
" ¢ )\ i n=l c —?\_—’

getisfies Vz = 0 in two dimensions and X becomes

KEP)= L f[kwe’z).awzf) -k0£%) + A0,/

n ezln 1 a n
Zaoohm«ﬁ)fkm )L™ +4 Azﬁ)ﬁ/}

(4.11)

A

provided An()\) "Ss such thgt/é with its first and second
derivetives is continuous., Now, K = 0 at r = a. Thus,

A and A take the values

A, = L e ) K ihws L)+,(/(Ae'i’-‘)

Gl Ty M E) knfacE,
An - ol
Consequently, (/“, ‘@‘,) [ (/) o ,{/0) il
KUEP) < g, [ RO )

(4.13)

mee_é)fl;()u )[a/c,awu&m L)
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To evalueste these integrals, Cauchy's theorem 1s again
applled to a contour, C', around a semi-circle and along
the real axis indented at the origin in the upper half A
plene. Thus, following the pattern given in equations
(4,7) to (4.9) we have >

2RO -Kdae®)] 1 f Tl

i ) ST

;Ur"c
(4.14)
T
. c'(a—f;f)_ ((4-I) L % a
:.27;_2 fg:o[ﬁg(eu Yy —£ (€ae )Ja/a - -4
Similerly, ) - )
F S‘ T ®) [a"h, M=) -A" ki (Qac) | )
7 A

- L f z/\A)[J M) -T60] )

&0

_ L f o {[a"/« By ead “B) 1o "M;}Jg
77-2

Using the first terms of K, and I, in the expansions gilves

[a"k, (1.2 -2 K, (eaz‘@@)_'{l;(e// @E)

A 2]
Zh Lan An

(4.12)

and, as €—0,

L\ g )[a”m/ue’?‘)-/z" ) )

7760
zﬂﬂ [a" ﬂﬁ]
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Thus, the final form becomes

7 -_L - (’9)
(4.13) K(FP) = ; 6L ;”-Zna [_d" ana

for r > r' and tresting the expression for r <r' simlilarly

yields

. & _a
(&.14) KEP) = ’ /Za/" -1 Z ” Jcod,nfa é’)

We also have the results
oo ,&d sor A'<rsa
o SONIZAN-TAA] ) —
( . 5 A /ét.@. <A’<aa
0 & ey ASAS

_AN AN a" 3
> -y Zn Tn 7‘0)’ A<A56L
wa [ hn-Ahy . 27 A |
A

n h /
n

These results may be regarded as generalizations of the

(4.16)

Batemen integral (13, p. 406),
O for U LU

(4.17) f Lo [1-GFon]4 =
A %

For weEuo
or expansions in terms of the Fourler-Bessel integral.

A direct approach tarough the addition theorem for
Jo( A\R) end equetion (%.2) yields these integrals immedi-
ately, but does not provide thelr values in terms of

elementary functions. Thus, with K expressed by

oo
(8.18) K(£P) = £00, )Tl 4 )}er)fzmgf,gw//l v
[/ b= %
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and/§ selected in the form of real integrals,

o2 oo
N L , =
/6’(8/7) 7 ‘[4&_——/{\/))//" +/—;— )ZCM”(@;)[A/\H(/) n"
=]
we have

k(or) - - f @4)@0’4’)/\—@0\)#1,&)0/)

(4]

>
:\
AN
N
I
|~
e%
E%
=
S
K
S
=
NS

(4.20)

Aah

The disadvantage of this approach lies in the fact that

n=i

o
- 7—; Z‘CM" (0-6") J‘ @4’)[4"\;,{/)4)%"%&44)_] Al
6

reducing these integrals to elementary functions is dif-
ficult. Hence the contour method is preferred in most
cases,

If the expression for r'> r is differentiated and
substituted into the two dimensional eguation correspond=-
ing to (2.7), we have the solution T(P) for a circle in

terns of the series expansion of the Poisson integral



formula.

(4.21)

and

or
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Thus,

oo
’ -/ _ 1 zz, -6’) -
2/%7/)/ = 5 E - ,Cod h(6-6")
9/2, A=A h=1/

T (P) = fa 7(a,6 ), [ C{ +LZ~ Coe (- Jﬂ/‘g

277

7(P f a*u’ 7148 do’
”77 ) a’+a*-204 Cool-5) )
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