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ERROR CONTROL TECHNIQUES FOR THE Z-CHANNEL

1. INTRODUCTION

Error control coding plays an important role in designing highly reliable

digital computer and communication systems. The origin of coding theory comes

from a famous theorem of C. Shannon [37]; this channel coding theorem guarantees

the existence of codes that transmit information at rates close to capacity with

an arbitrarily small probability of error.

In most systems the source signals contain a lot of redundancy. Therefore

an encoder performs the important task of eliminating/reducing this redundancy

and transforms the message in a suitable form for transmission. This is what is

called source encoding. Then, data to be transmitted over the channel is again

encoded. This is the so called channel encoding, which involves the addition of

redundancy so as to provide the means for detecting and correcting errors that

inevitably occur in any real communication process.

The error model used for most of the binary communication systems is

the binary symmetric channel. Let p be the probability that a binary signal is

received correctly and then 1 p is the probability of incorrect reception. Usually

the probabilities of 1 -+ 0 and 0 - 1 errors are equal, as shown in Figure 1.1.

In general we assume that the elements of a finite field represent the under-

lying alphabet for coding. Encoding consists of transforming a block of k message

symbols a1a2 . . . a E F into a codeword x = x1x2 . . . x, where for each i, x E F.

Here the some k symbols are the message symbols, i.e. x = a3 for 1 < j < k.

The remaining n k elements of x are check symbols. The most common codes

used for the binary symmetric channel model are the linear codes. In this case
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0 0

FIGURE 1.1. Binary Symmetric Channel

the check symbols can be obtained from the message symbols in such a way that

the codewords x satisfy the system of linear equations

HxT 0,

where H is a given (n k) x ii matrix with elements in F.

Many techniques for efficient codes design have been developed [28], [34],

[4], [25], [27], [5], [41], [35], [29], [36]. Nevertheless, none of these techniques give

code rates arbitrarily close to the channel capacity

In optical networks, which will be one of the dominating communication

technologies of the future, l's are represented by the presence of photons and

U's by their absence. Upon transmission, photons may fade or decay, but new

photons cannot be generated. Thus, the observed errors are asymmetric and the

error characteristic of such a system can be modeled by the Z-channel [7], [6], as

shown in Figure 1.2.

Although linear codes and most of the codes developed for the binary

symmetric channel can also be used for the Z-channel, efficient coding calls for

different techniques. Many methods of asymmetric and unidirectional encoding

and decoding have been proposed over the last two decades ([7], [3], [14], [10],

[23], [39], [16], [17], [8]). These codes were proposed to enhance the data rate of

the transmission system, or because of simpler encoding/decoding algorithms.
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FIGURE 1.2. Z-channel

Two types of errors are mentioned above: asymmetric and unidirectional.

When errors of only one type (say 1 -* 0) occur during a transmission, they

are called asymmetric errors. However, if errors of both types occur during the

transmission, but not in the same codeword, then they are called unidirectional

errors. Obviously, unidirectional error detecting (UED) codes are also asymmetric

error detecting (AED); surprisingly, the converse is also true and it was proven in

[10].

1.1. Brief Overview of AED codes

The first asymmetric error detecting code was proposed by Berger [3], [14].

It can be constructed relatively simply by appending to the information word a

check symbol which is the number of ones in this information part, in binary. The

total number of check bits is log2(k + 1), where k is the length of the information

part. This is a systematic, all asymmetric error detecting code, and it is also

optimal.

Borden [7] proposed a d-UED code in which codewords of length n have

weight w that is congruent to [n/2J mod (d+ 1). Thus, the number of codewords
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of this code is N(n, d), where:

N(n,d)= (n
w)

w=[n/2j mod (d+1)

For d = 1, this code is an all single-bit error detecting code, like the parity

code. Also, if d n/2, it is a constant weight code (e.g. n/2-out-of-n code) and

detects all unidirectional errors.

The Borden code is optimal (i.e it has the highest k/n rate, which is called

the information rate, for any information block of length k), but its main dis-

advantage is that it is nonsystematic. This means that, inside a codeword, the

information bits cannot be distinguished from the check bits. Thus, in the case

of nonsystematic codes, the decoding and data manipulation cannot be done in

parallel.

Systematic AED/UED codes have been proposed by Bose and Lin in [10].

These codes can be summarized as follows

The check symbols for detecting 2 and 3 unidirectional errors are w0 mod 22

and w0 mod 2, respectively, where w0 is the number of 0's in the information

word. So, the 2 and 3 asymmetric error detecting codes use 2 and 3 check bits,

respectively.

When r 4 check bits are used, the code designed by this method can

detect up to 21'2 + r 2 errors. In order to get the check, first

(b_2,. . . , b1, b0) = w0 mod 2r1

is derived. Then, the check symbol is determined as:

(ar_i, ar_2, ar_3,. . . , a1, ao) (b_2, br2, br_3, . . . , b1, b0)

When r > 5 check bits are used, the following alternate method of encod-

ing, with better detecting capabilities (in terms of the number of errors detected
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per check bit) is used. First, calculate

(br_2, b3, . . . , b, b0) w0 mod 3 2r-3

Then, the 3 most significant bits, (br_2,br_3,br_4), which can be one of the pat-

terns in the set {000, 001, 010, 011, 100, 101}, are mapped into a 2-out-of-4 code.

A simple example of a mapping function is f(i) < f(j) for i < j, 0 < i,j < 5

i.e. f(000) = 0011, f(001) = 0101, f(010) = 0110, f(011) 1001, f(100) = 1010

and f(l0l) 1100. The concatenation of such a symbol with the remaining

r 4 bits (br.5,. . . , b, b0) gives the check symbol. This code can detect up to

5 . 2" + r 4 errors.

A compact description of these codes, which is useful for performance eval-

uation, is given in Chapter 3.

Comparing Berger-Freiman codes and Bose-Lin codes, we see that Berger-

Freiman codes can detect all asymmetric errors, but in most cases at the cost of

more check bits (lower rate). The Bose-Lin codes detect all errors up to some

weight (as well as some others), but with fewer check bits.

1.2. ARQ Protocols Overview

There are situations where it is more efficient to retransmit a part of a

message, given that errors were detected in it, than to correct those errors. In

such situations, a great deal of extra protection can be provided by the ARQ

(Automatic repeat ReQuest) protocols. This means that the system detects the

packet with errors, discards it, and requests a retransmission. These protocols

require two-way communication between the transmitter and the receiver and it

is desired that the perturbation duration be shorter than the retransmission time,

such that the retransmitted packet will pass undisturbed across the channel, thus
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FIGURE 1.3. Pure ARQ protocols

Selective Repeat ARQ

avoiding multiple retransmission attempts. However, the rate of retransmission

requests increases as the channel quality deteriorates, which affects the efficiency

of the system.

There are three basic retransmission protocols, stop-and-wait (SW-ARQ),

go-back-N (GBN-ARQ) and selective repeat (SR-ARQ). Their packet handling is

illustrated in Figure 1.3.

In general, we measure the performance of an ARQ protocol by two pa-

rameters:

1. the accepted packet error rate, PE, which is the percentage of erroneous

packets accepted by the receiver and

2. the throughput, , which is the average number of data packets accepted by

the receiver in the time it takes the transmitter to send one k-bit block.

We define the probability of detected errors, Pd, (which is also the probability that

a retransmission request is generated) as the value to which the ratio of blocks

with detected errors (Nd) to the number of blocks transmitted over the channel
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(N) converges in probability [19]:

urnNm N >
= , > . (1.1)

Similarly, the probability of undetected errors, P, is the value to which the ratio

of the number of blocks with undetected errors (Na) to the total number of blocks

transmitted converges in probability:

limNm > = 0, V > 0. (1.2)

These probabilities characterize events which occur during the decoding process.

can be computed by adding together the probabilities of all the events which

result in the acceptance of an erroneous packet:

PEPu+PdPu+PPu+PPu+..., (1.3)

as the erroneous packet can be accepted on the first transmission, or on the second

one, third one and so on. The series converges to:

Pu
PE=1 (1.4)

The throughput is defined as the average number of encoded packets ac-

cepted by the receiver in the time it takes the transmitter to send one information

word (k-bit packet). In a feedforward system, it is equal to the code rate, k/n. In

an ARQ system, it is a function of the average number of times a data packet has

to be transmitted before it is accepted. The explicit form of this function depends

on the protocol. This is a random variable with a geometric density function

(number of transmissions until the first success). Its expected value is:

Tm ET = jP(T = j) (1.5)

= (1 Pd) jP'
1 Pd



Throughput expressions for the three basic ARQ protocols are given in [41], [25]

and [19].

As already mentioned, if the channel quality deteriorates, the increased

frequency of retransmission requests has a severe impact on the throughput. To

deal with this problem, several hybrid protocols have been introduced. Although

there are major differences between them, they all have one thing in common: they

use forward error correction in order to correct the error patterns most frequently

caused by the noise on the channel, while the error detection is used to detect the

less frequently occurring patterns.

They can be categorized in several (usually overlapping) ways [41], [25],

[19]. We only mention here type I and type II hybrid ARQ and packet combining

systems. In the case of type I hybrid ARQ, each packet is encoded for both error

detection and correction by means of either one code capable of doing both, or

two codes, one for correction, the other for detection. When the packet arrives

at the receiver, it is first decoded by the feedforward error control (FEC) part,

then sent to the error detecting decoder. If errors are detected, a retransmission

request is generated. Type II hybrid ARQ protocols adapt to the changing channel

conditions through the use of incremental redundancy. This means that, in case

of retransmission requests, the transmitter will only send additional parity bits,

which are to be appended to the received packet with errors which is stored in

the receiver buffer. This allows for increased error correction capability.

Chapters 2 and 4 deal with such protocols for the Z-channel. Nevertheless,

the approach is a coding theory one: the transmission protocols are considered as

consequences of certain constraints, which are due to the codes which are used.

The protocols performance is evaluated by analyzing the codes.



On the same line, in Chapter 3 some bounds on the probability of unde-

tected error for systematic AED codes in general are derived and, more important,

this probability is determined for the Bose-Lin codes, thus solving a problem which

has been open for a while.
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2. DIVERSITY COMBINING

Error detection as part of a feedback error control system is a reliable

alternative to feedforward error correction in asymmetric channels. This is be-

cause of simpler hardware implementation of the encoding/decoding system and

further, the lack of asymmetric error correcting codes with better rates than the

corresponding binary symmetric codes.

The method proposed here improves the throughput of a feedback error

control for asymmetric channels using diversity packet combining. The idea was

first introduced by Sindhu in [38] who discussed a scheme that made use of the

packets that cause retransmission requests, which are simply discarded in basic

and type I hybrid ARQ protocols. Such packets can be stored and combined with

additional retransmissions of the packet, thus creating a single packet that is likely

to be the correct version of the transmitted one.

There are two basic categories of packet-combining systems: code corn-

bining systems and diversity combining systems. In code combining systems the

packets are concatenated to form noise corrupted code words from increasingly

longer and lower rate codes. This is the basis for type II hybrid ARQ protocols

[26]. On the other hand, in diversity combining systems, the individual symbols

from identical copies of a packet are combined to create a packet with more reli-

able constituent symbols. Most of the discussions on diversity combining systems

are based on majority logic decoding [40], [11], or on soft channel outputs [15],

[12], [2], [18]. The Z-channel error characteristic provides a simple framework

which can improve the performance of an ARQ system without adding much to

the hardware complexity of the decoder.
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FIGURE 2.1. Packet reusing scheme

First, the proposed asymmetric error correction scheme is introduced.

Then the undetected error probability and the average number of transmissions

are determined for unordered codewords under the assumption that there are at

most k 1 retransmission requests for a given codeword [32], [20]. The case of

unlimited number of retransmissions, that is a codeword is retransmitted upon

error detection until accepted, follows immediately. Furthermore, some bounds

are proposed for the more general case when some codewords of the asymmetric

error detecting code cover others.

2.1. Diversity combining scheme and problem formulation

The way the saved packets are combined with the retransmitted ones is

shown in Figure 2.1.



12

TABLE 2.1. Retransmission scenario. X,. is the received vector in the rth trans-

mission, and Zr is the combined word after r transmissions, that is Zr = Zr_i V Xr

for r > 1. The bits in error are underlined to make the table easier to read.

Xr Zr

0 0000000000000

1 0i000i0010 01 0100010010001

2 0100101010001 0100111010001

3 0100101000101 0100111010101

Packet combining consists of a bit-by-bit logic OR operation. Assuming

only 1 - 0 errors (the 0 1 type will require complementing the words prior to

the OR operation), note that any bit in error may or may not be corrected, but

new errors cannot be created. An example is given in Table 2.1. We assume that

x 0100111010101 is transmitted and suffers three bit errors during the initial

transmission. Assuming that the first two retransmissions yield the words shown

in Table 2.1, the codeword is recovered after these two retransmissions.

In other words, a codeword is transmitted repeatedly over a Z-channel.

At the receiving end, the OR of the received copies is stored (we will call this

the combined word). When the combined word becomes a codeword, this is

passed on, and a new codeword is transmitted. If the passed codeword is different

from the one sent, then we have an undetected error. This process is illustrated

in Figure 2.2, where the states T, RQ and FWD represent word transmission,

retransmission request and next word transmission, respectively. We will further

assume that there is a limit k on the number of transmissions of a codeword, that



13

is, if the combined word is not a codeword after k transmissions, it is discarded.

A special case of the protocol is a protocol without a limit on the number of

transmissions (that is, k = oc).

the combined word is not

a codeword

RQ

received word is not / \the combined word is
a codeword / a codeword

is received

FIGURE 2.2. The graph of the proposed diversity combining scheme

In order to characterize an ARQ system which includes this scheme, we

need to consider the following two quantities: N, the expected number of transmis-

sions and P, the probability that the combined word is passed on with an undetected

error. In general, both N and P will depend on the channel error probability p,

the codeword transmitted x, the set X = X, of codewords y such that y C x

(y C x denotes that x covers y [1]) or, in other words, the support of y is a

proper subset of the support of x, and the maximum number of transmissions k.

Therefore, we include these in the notation and write Nk(x, X; p) and Pk(x, X; p).

Further, we will consider the probability that all errors are corrected, that is, the

combined word passed on is the sent codeword. We denote this by Ck(x, X;p).
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We assume that x 0. Note that

Nk(x,X;O) = 1, P(x,X;O) = 0,

Nk(x,X;1)=1, Pk(x,X;1)=1, ifOX,

Nk(x,X;1)=k, Pk(x,X;1)=0, ifOX.

Therefore, from now on we will assume that 0 < p < 1. If we introduce

more codewords into X, Nk will decrease and Pk will increase, that is, if X C

then Nk(x, X;p) > Nk(x, Y;p) and Pk(x, X;p) < Pk(x, Y;p). One extreme case

is when all y C x are codewords. Then Nk = 1 and P = 1 (1 p)W (here

w xH, the Hamming weight of x, that is, the number of elements in x that

are 1). The other extreme is when X is empty. Clearly, Pk(x, 0; p) = 0. Since

Nk(x,O;p) only depends on w = xH, p and k, we will use the shorter notation

Nk(w;p) = Nk(x,O;p) for this particular, important case. As we have noted,

Nk(HxH;p) will be an upper bound on Nk(x, X;p) in general, and Nk(x, X;p) will

be close to Nk(HxH;p) if Pk(x, X;p) is small.

For this scheme we can view the accepted packet error rate PE as the

probability that a forwarded codeword is different from the sent codeword. The

probability that a combined word is forwarded is Ck(x, X; p) + Pk(x, X; p), and

so

PE(x,X;p) =
Pk(x, X; p)

(J(x,X;p) + i-'k(x,X;p)

The throughput efficiency is defined as the ratio of the average number of

information symbols, successfully received to the total number of symbols trans-

mitted over the channel. This definition accounts for various delays, protocol

specific, such as the time of ACK (NAK) block transmission and the round trip

delay (details are given in [41] and [19]). We only consider here the Selective

Repeat ARQ protocol in conjunction with this diversity combining scheme.



15

Ck(x,X;p) + Pk(x,X;p)

Nk(x,X;p)

where R is the information rate of the code.

2.2. The undetected error probability and the average number of trans-
missions

2.2.1. The special case when X is empty

We consider the following situation: a codeword x of weight w is transmit-

ted, and there are no codewords y of lower weight such that y C x. Let ir(w, r; p)

denote the probability that the combined word has weight w after r transmissions

Consider some fixed position. The probability that this is 0 after r trans-

missions is pr The probability that it is 1 after r transmissions is 1 pr Since

errors are independent, the probabilities for the various positions are independent

and so

rr(w,r;p) = (1 _pr)w

We continue transmitting until the combined word equals x, that is, it has weight

w. The probability that this happens after exactly r transmissions is ir(w, r; p)

r 1; p). Note that this expression is also valid for r 1 since ir(w, 0; p) = 0.

If the combined word is not x after k transmissions, we have used exactly k

transmissions. The expected number of transmissions is therefore
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Nk(w;p) = r[(w,r;p) l;p)] (2.1)

+k[1 [(w,r;p) 1;p)]]

= k (2.2)

An alternative useful expression is obtained by expanding ir(w, r; p) =

(1 pr)w and changing the order of summation:

k-i w

Nk(w;p) = k ()(_i)3pnj

rO jO
w k-i=k_()(_1)ipni

w k-i
= k k + () ()j-1 pri

w
1 kj

= (_i-i 11P. (2.3)

An expression for N©(w; p) follows directly from (2.3) since p -+ 0 when

k - oc (remember that p < 1). Hence we get

N(w;p) ()(_i)i-i pi
For example, for a balanced code of length n 100 (and w 50), N(50, 102)

1.400032. For the same code and a protocol not using diversity combining (the

codeword is retransmitted upon error detection, until a codeword is received), the

expected number of transmissions is

1
r[1 (1 _p)w]r_i(l _p)W

(1 _p)w

Its' value for w = 50 and p = 10-2 is 1.652876.
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When p is small compared to w1, we may consider the first few terms of

the Taylor series expansion of N(w; p) to compute good approximations:

1

N(w;p) = 1 + wp [2) W] p2 + [() + w] p3 + 0(p4).

For w = 50 and p = 10-2, the first four terms of the Taylor series expansion give

the value 1.402150.

2.2.2. The case when X contains a single codeword

We now consider the case when X contains exactly one codeword, that is,

there is exactly one codeword y such that y C x. Let w xH, u = yH and

d w u. Since Ck(x, {y};p), Pk(x, {y};p), and Nk(x, {y};p) only depend on

w, n, p, and k, we write Ck(w,u;p), Pk(w,u;p), and Nk(w,n;p), respectively.

Suppose that the combined word becomes y after exactly r transmissions.

The d positions not in the support of y must be in error for all r transmissions

and the probability of this happening is th.. The n positions in the support of y

must become all 1 for the first time after exactly r transmissions. The analysis in

Section 2.2.1 shows that the probability for this event is

(u,r;p) (u,r 1p) = (1 _pr)u (1 _pr_l)u.

Hence, the probability that the combined word becomes y after exactly r trans-

missions is

pdr[(l p (1 pr_l)u]. (2.4)

Summing over all 'r we get

k

Pk(w,u;p) = pdr{(1 _pr)u (1 _pr_l)u]
r=1



In particular (if k > d),

Pk(w, zt;
d(1 p)U + O(p2d).

We can rewrite the expression for Pk(w, u;p) in a way similar to what we

did for Nk(w;p).

k u

Pk(w,u;p)
pdr[

()(')' ()(_i)3n]
r=1 j0 j0

E (u)( 1)i_1(1 _)pdp(d+)(r1)

j=O r=1

k(d+i)

For the average number of transmissions, we start by considering that we

keep transmitting whether or not the combined word is a codeword.

As explained before, the probability that the combined word is x after r

transmissions is (1 p''°, and the probability that the combined word is x for

the first time after r transmissions is (1 (1 pr_l)w

Let F(r, s; p) denote the probability that the combined word was y for the

first time after s transmissions and x for the first time after r transmissions, and

let G(r; p) = >i F(r, s; p) denote the probability that the combined word is x

for the first time after r transmissions and it has, at some previous step been y.

If we now return to the situation where we stop when the combined word

becomes a codeword, we see that the probability that the combined word is a

codeword x for the first time after r transmissions (this can only occur if the

combined word has not been y earlier) is given by

(1 pr)w (1 pr_
G(r;p). (2.5)



19

Combining (2.4) and (2.5), we see that probability that the combined word

is a codeword (y or x) for the first time after r transmissions is

pdr[(l pr)u (1 pT_)] + (1 p (1 pr_l)w
G(r;p). (2.6)

Before we go on, let us make a small digression. We note that (2.2) could

have alternatively been expressed as

Nk(w;p)=r[(w,r;p)(w,r-1;p)]+k {(w,r;p)(w,r-1;p)].
r=1 r=k+1

(2.7)

Of course, we could have derived the expression (2.3) from (2.7) also. How-

ever, this derivation would have been a little more complicated. For Nk(w, u; p)

we similarly have two choices for a starting point, and it seems that, in this case,

the second choice gives the simpler derivation and we select it.

From (2.6) we therefore get

k

N(w,n;p) = r[p[(1 _pr)u (1 _pr_l)u]

r=1

+(1 pr)w (1 pr_l)w
G(r;p)]

00

+k [pdr{(l pr)zZ (1 pr_l)u]

r=k+1

pr)w (1 pr_l)w
G(r;p)]

= I'k(u;p) + Nk(w;p)

where

Fk(u; p) rpdr[(1 pr)u (1 pr_l)u] + k pdr[(l pr)u (1 pr_l)u]

r=1 r=k+1



and
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k(w,u;p)=rG(r;p)+k G(r;p).
r=1 r=k+1

The infinite sums Fk(u;p) and A(w,u;p) can be determined and trans-

formed to finite sums using the binomial expansion in a similar fashion as we have

done above.

First,

Fk(u; p) =
(t (_1)i-1(i )d

[
+ k p(r_1)(d+i)]

j=O r=1 r=k+1
U

1 k(d+j)
= ()(_1)-1(1

j=o

Now, consider F(r, s). The probability that the combined word was y for

the first time after s transmissions is p(s[(l (1 ps_l)u] as explained

before. For next r s transmissions, we only have to consider the d positions not

in the support of y. The probability that these d positions become all 1 for the

first time after r s transmissions is (1 pr_s)d (1 pr_sl)d. Hence

F(r, s) pds[(l pS)U (1 - ps_l)u][(1 pr_8)d (1 pr_s_l)d]

pds
(U) (l)(p

p(s_l)J)
() (_1)l(p(r_ p(r8_l)l)

Ij=1 1=1

u d

=
() ()

(_l)i(l
)(1

pl)plr_1_ip(d+i_1)s

j=1 1=1

Therefore

G(r;p)
()

1)i+1(1 )(1
j=1 1=1 s=1

u d d+3-1
=

() ()
(_1)i+1(1

)(1
l)lr_1_iP pr(d+3_l)

1 - p+i1

(U) 1)i+lP (1 j)(1 P1) 1(r_1)
1 pd+i_l
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Substituting this into the expression for 1k(w, u; p) (and changing the order

of summation), we get

u d

k(w,u;p) =
()

)(1 -)
1 - pd+i1 Sk

where

k Co k

Sk
[

rpl(r_l) + k
1(rl)]

[

+ k
p(d+)(r1)]

r=1 r=k+1 r=1 r=k+1

1 - v 1 k(d+j)

(1 pl)2
(1 - pd+i)2

Similarly

k

; ) = [i pr)w (1 pr_l)w
G(r; )]

r=1

where

(1 pk)w E
() () (1)1p

(1 )(1 pi)

j=1 1=1
1 - pd+31

k k
1 p'' 1

k(d+i)
pl(r_1)

1 p1 1 d+i
r=1 r=1

Expressions for PCo(w, U; p), etc., follow directly from the above expressions

by letting k * :

IL In i)i 1 d- ___
j=o

CCo(w,u;p) = 1 PCo(w,n;p),

N(w,u;p) = F(u;p) + N(w;p)
'pi

F(u;p) = (U)(_i)i_lpd
_pd+i)2'

j=o

U d

(w,u;p) = () ()(_1)i+lpd1(1 -)(' PI)
1 - d+i_1

j=1 1=1

[1 1.1
1_p02 (1 _pd+i)2j
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2.2.3. The values of Pk(x,X;p) and Nk(x,X;p) when the codewords
in X are unordered

We say that the codewords of X are unordered if y y' and y' y for

all y, y' E X, y y' E X. We observe that the event that the combined word

becomes x after having been y and the event that it becomes x after having been

y', where y y', are mutually exclusive. Hence

P(x,X;p) = >Pk(x,{y};p)
yEX

and

Nk(x, X;p) Nk(UxH;p) + F(y;p) z(UxU, yH;p).
yEX yEX

In the special case where all the codewords in X have the same weight, n,

(and x has weight w) we get
U

1 k(d+i)
Pk(x, X; ) = (_1)i_1(1 i)d

1 pd+i

Nk(x,X;p) = Nk(w;p) + XFk(u;p)

2.2.4. Bounds on the values of Pk(x,X;p) and Nk(x,X;p) when
some codewords in X cover others

In the general case when the codewords in X are not unordered, to de-

termine Pk(x, X; p) and Nk(x, X; p) becomes more complex and may not even be

feasible. Therefore, it is useful to get some bounds. Let T be the smallest value

of xH over all codewords z and y such that z C y C x, (in particular,

T 2d where d is the minimum distance of the code). Define the set Y by

Y={yEX y> xH-T}.
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Then the codewords of Y are unordered. Hence Pk(x, Y;p) and Nk(x, Y;p) can

be computed as explained above. Moreover,

Nk(x,X;p) <Nk(x,Y;p).

Further, if T is small, then Pk(x, Y; p) is a good approximation for Pk(x, X; p).

We will make this last claim more precise. On one hand, we know that

Pk(x,X;p) > Pk(x,Y;p). On the other hand, if the combined word becomes

a codeword not in Y, then after the first transmission, the combined word must

have weight w T or less. The probability that the combined word is some vector

of weight w T or less (not necessarily a codeword) after the first transmission is

- p) <pT(l - )w_T
() <PT(1 p)w_T2w.

Therefore,

Pk(x,Y;p) Pk(x,X;p) <Pk(x,Y;p)+2p(1 _p)w_T

Then, the corresponding quantities for the code are given by

Pk(C;p) = Pk(x,XX;p)

xEC

and similarly for Nk (C, p) (assuming that each codeword is equally likely).

In practice we may be able to calculate exactly the probability of unde-

tected error and the expected number of transmissions for some codes, but most

generally we can give bounds on these two parameters.



3. SYSTEMATIC AED CODES

In [10] it is shown that the multiplicity of errors that can be detected by

an unidirectional error detecting code depends on how the check bits are derived.

Moreover, it is shown that a code capable of detecting t asymmetric errors is also

capable of detecting t unidirectional errors.

An upper bound for the undetected error probability is derived in Section

3.1 [33], [31], [30]. This is done starting with estimating the probability of de-

tected errors in the case of asymmetric errors. Section 3.2 compares these bounds

for different versions of AED codes. Then the Bose-Lin codes are analyzed: a

new construction description is introduced (in Section 3.3), their probability of

undetected error is determined using this new description (in Section 3.5), and

the undetected error minimal weight problem is generalized (in Section 3.7) [22],

[21]. Finally, a couple of detailed examples are presented.

3.1. General bounds for the detected and undetected error probability

Let us denote by q and 1 q the probabilities of the source generating l's

and 0's, respectively. If Z is the number of bit errors in the code word, then:

= P(Z = z) = (w)pz(1 p). (3.1)
z

The weight of the code word win (3.1) can be written as the sum of corresponding

weights in the information part in and the check symbol. Thus, (3.1) becomes:

(w +8)Pz(l _p)_z(1 _p). (3.2)



25

Note that the functions (w f+Wc9) and (1 p)t0 are increasing and decresing,

respectively, in w8, so:

(win!
+ WCS)Z( - p)wiflf_z(1 - p)m. (3.3)

z

Because the '1' and '0' bits are independently distributed in the information part,

equation (3.3) can be rewritten as:

z > qk_i(1 q) i +WCSmn)pZ(l p)k_z_z(l p)Wc3ma (3.4)

Note that:

(k_i+wc8 (k_i (ki+1)(ki+2)...(ki+wc8.)
z ) z )(kiz+1)(k--iz+2)...(kiz+w8.)

(ki(ki+w8.z+1)(ki+w8.z+2)...(k_i+w8.)-
z ) (kiz+1)(kiz+2)...(ki)

for > z (the other case is similar). But,

so

ki+wcsmjn z+1 ki+w3. z+2 > ki+wcsmjnkiz+1 kiz+2 ki

(k + WCS.

)

Z (k (i +
(k_+Wcsmin)

k i z ki)
(1+wm)z.

Thus:

kz
()qk_i1_qy (i +

(k )pZ(l_p)ki_Z(l_p)Wcsma, (3.5)
i=O

or, by using

(ki)(k)
(k)(kz)

z i z i

kz
P () qzpz(1 p)V max (i + WCSm,n

)
z

(1 - q)iqk_z_i(1

(3.6)
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Equation (3.6) gives a lower bound for P, which is:

() (i + Wcsmrn )Zqzpz(1 _p)m(l _pq)k_z. (3.7)

The probability of detected errors can be related to P by using the fol-

lowing well known inequality:

Pd (3.8)

where m is the error detection capability of the code. There is no equality here,

because an AED code can detect more than the guaranteed number of errors, in,

in some situations. However, the two sides of this inequality become very close for

small p, thus (3.8) may be used as a good estimate of the probability of detected

errors in cases like optical communications, where the bit error rate is indeed very

small (p < i0).
The llndetected error probability is given by:

PulPdPef, (3.9)

where P1 is the probability of error free transmission. Using (3.7) and (3.8) we

can also obtain an upper bound for P:

P <1 (3.10)

3.2. Error detection performance

Equations (3.7) and (3.10) can be particularized for a Bose-Lin code. The

following examples are considered:

Case 1: 2 check bits

Since Wci9 = 0 and Wc8max = 2, we have that:

Pd>
(kqzpz(l

p)2(1 _pq)k_z (3.11)z)
z=1 /



and
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1 (kqzpz(l p)2(l _pq)k_z. (3.12)
z=O

\Zj

Case 2: 3 check bits

Similarly, WCSmin 0 and WCSmaX = 3:

and

Pd
(k)qzpz(l

p)3(1 _pq)k_z (3.13)
z=1

P < i (k)
qzpz(1 p)3(l

pq)k_z. (3.14)

Case 3: 4 check bits

In this case, 1 and Wcsma, = 3 so:

6(k\f

1Z
Pd> 1

qzpz(1_p)S(1_pq)k_z (3.15)
z=1

z,J\ k

P < 1 (k ( + 1zz(1 p)3(1 _pq)k_z. (3.16)z) k)

Case 4: 5 and more check bits

Because of the mapping, w5 = 2 and WCSm r 2:

and

52'4+r-4
Pd> (3.17)

z=1
z)

5.2r_4+r

<1 () (i + _p)r2(1 _pq)k_z. (3.18)

The above bounds for Pd and P are compared for different codes in Fig. 3.1 and

Fig. 3.2.
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3.3. The Bose-Lin codes - An alternative description

In this section the Bose-Lin codes are described using a somewhat different

notation than the one used in [10]. A common characteristic of the codes is

that the check bits are determined as a function of the number of zeros in the

information bits.

We first introduce some notation. Let F = {0, 1} and let F' be the set

of all binary vectors of length k, and for x E Fk, let u(x) denote its number of

zeros and xH its number of ones (the Hamming weight). For a non-negative

integer a, aH denotes the number of ones in its binary expansion. For example,

u((011101)) = 2, (011101)H = 4, 21 3 (since 21 2 + 22 + 1).

For two vectors x and y, x C y denotes that y covers x, that is, x < y

for all i.

For integers a and n, let [a] denote the (least non-negative) residue of a

modulo n.

where

For non-negative integers a and s, where a < 2, let

B3(a) = (a81, a5_2, . . . , ao) F8

a=a2, aEF.
The Bose-Lin codes are systematic. A codeword consists of a k bits infor-

mation vector and an r bits check vector. In addition, there is another (integer)

parameter ii satisfying 0 < 2v < r. Let

= ( ), o
2r-2v and u = cr9.v)

Finally, let b(0), b(1),. . . , b1,(cr 1) be a listing of all the balanced vectors of

length 2zi, that is, the vectors of Hamming weight v.
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For an information vector x, let u = u(x), and define a by

[u]1. = a9 + [u]9 where then 0 < a <a.

The check vector is given by (b(a), Br_2y([]9)).

Bose and Lin showed that this code detects all asymmetric errors of weights

up to (a 1)9 + r 2ii, whereas some errors of weight (a 1)9 + r 2v + 1 are

not detected.

For k < 2, the code with v = 0 is optimal (it reduces to the all error

detecting Berger-Freiman code [3], [14] in this case).

The following lemma was known to Bose and Lin, but not explicitly stated.

This lemma was the reason they only considered v < 2.

Lemma 1. Fork> 2, (a 1)9+r 2i' is maximal for v = 0 when r = 1,2,3,

and for i-' = 1 when r = 4, and forii = 2 when r > 5.

Proof. Suppose r is fixed, and for 0 < 2v < r let

72v
A(v) (a 1)9 + r 2v I - 1}2r_2 + r 2v.v)

Then simple algebraic manipulations show that

A(v + 1) A(v) = 2r_2u_2{3 2 72v
V + 1 ) } 2.

Hence for u 2, A(ii + 1) < A(v). Further,

A(2) A(1) = 2' 2 > 0

for r 5 and

A(1) A(0) = 2r_2 2 > 0

for r > 4.

In the following , we will consider the general ii, since it does not yield

more complex derivations.
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3.4. Undetectable errors

Suppose x E Fc is encoded using the Bose-Lin code and transmitted over

a Z-channel. An undetectable error occurs if the received vector is another code-

word. The next theorem characterizes the undetectable errors.

Theorem 1. Suppose that a codeword

(x, b1.,(a), Br_2u({U10))

has been transmitted over the Z-channel and 1 > 0 errors occured in the infor-

mation part x. Let u = u(x) and A = [l]; then 1 = jp A where j 1. An

'undetectable error has occured if and only if

i) b(a) is not changed in the transmission,

ii) A <

iii) Br_2v(A) c Br_2v(['u]),

iv) Br_2v([U]9) is changed in exactly the positions where

B_2(A) ?5 1.

Proof. Since the information part of the corrupted codeword has n + 1 zeros,

the errors are undetectable if and only if the check part c(u) has been changed to

c(u+l) during the transmission. We will show that this is equivalent to conditions

iiv. Clearly, this is possible only if

c(u + 1) c c(u) (3.19)

First we note that c(u+l) = c(uA) since {u+l] = ['uA],. By definition

c(u) = (b(a), Br_2v(['u]8)),

c(u A) = (b(c'), Br_2u({'u A]0)),



where a and a' are defined by

= aO + [u]9,

[nA] =a'O+[nA]a.

Hence (3.19) is satisfied if and only if

(this is condition i) and
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(3.20)

Br_2u({ A]0) c Br_2v([U]&). (3.21)

If A 9, then a a' and so (3.20) and hence (3.19) are not satisfied. If [u]9 <

A < 0, then [u A]9 > [u]9 and so (3.21) and hence (3.19) are not satisfied.

This proves ii. Further, if 0 < A < [u]9, then (3.21) is satisfied exactly when

Br2v(A) c Br_2v([U]9). This proves iii. Finally, we observe that under condition

li, Br_v([tL]9) is changed to B_2([u]9 A) exactly when condition iv is satisfied.

This completes the proof of the theorem. LI

3.5. The probability of undetected error

Suppose that an information vector x is chosen from Fk according to some

probability distribution P, then x is encoded by a Bose-Lin code and transmitted

over a Z-channel with error probability p (that is, a 1 can change to 0 with

probability p). The probability that the received vector is another codeword (i.e.

that an undetectable error has occured) depends only on u = n(x) and p, and we

denote it by Pue(U,p). Then the probability of undetected error for the code is
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Pue(C,p) = P(X)Pue(fl(X),p)
xEFk

Pue(U,p) P(x).
tLO xEFk,u(x)=u

The part .ixeFk u(x)=u P(x) is the probability that the information vector contains

u zeros, and it depends on the distribution P. An important special case is when

the bits in the information vector are i.i.d. with probability q of being a zero. In

this case

P(x) (k)qu(1 q)ku

xEF' ,u(x)=u

In particular, if the codewords are uniformly distributed, (i.e. q = 1/2), then

xEFk,u(x)=u P(x) (k)2_k

3.6. Determining Pue(U,p)

Suppose (x, c(n)) is transmitted and 1 = j,u A > 0 errors occur in x. The

probability of this event is (7)p1(1 p) (recall that w = k u). By Theorem

1, an undetected error has occured if and only if i-iv are satisfied, and if so, then

there are HB_2(A)U = HAH errors in the check part (all of them in the part

Br_2v([]0)). Since b,,(a)H = zi, the probability of this is p1IAH(l - )i'+H[u]o-H11

(note that by iv), the locations of the errors are determined by A).

From these facts we get:

Pue(U,p) = ( w )(i p)W_iP+

j1 A

Br_2v (A)cBr_2, ([J)

pHH(1 p)U+H[U]oH_H\H
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= H)H (1

A
Br_2, ())cBr_2 ([u]8)

)-(i p)W)P+A

jI
Thus we have the following theorem:

Theorem 2. For 0 < u < k the probability of nndetected error, Pue(U,P) is given

by

where

lPH (1 _ p)V+H[tL}8H_IPHf,\,m,k__tL(p),

A
Br_2v (A)cHr_2 ([u]9)

f() = ( w )(i
j>1

for0,1,...jtl.
For the sums A 0, 1, , ,a 1, there are alternative expressions

that will be more suitable for computation when w is large. Let e2''. For
0 s 1 we get

(1 + (ES -
= (E8p + (1

w I=
)

s'p'(1 p)W_l

1=0

= (1 _p)W

(w
p (1 _p)W_P+

jILL\=0 j>1
IL-i

= (1 p)W +

Solving these equations for A = 0, 1,. , 1, we get the following

lemma.
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Lemma 2. Let e2". Then
pi

= + (e - l)p)W (1 p)W

f,(p) = ?(1 + (E8 - l)p)W for 0 < A <pt.

3.7. The minimal weight undetectable errors

As mentioned in Section 3.3, Bose and Lin [10] showed that the minimal

weight of an undetectable error is (a 1)8 + r 2v + 1 (they oniy considered

z' < 2). For completeness we prove this for general v. Moreover, we determine

the exact number of errors of minimal weight.

Theorem 3. For a Bose-Lin code with parameters k, r, and ii, where 2v < r, the

minimal weight of an undetectable error is (a 1)9 + r 2i + 1, and the number
(k+1' /kta+2\of undetectable errors of this weight is te-1i

Proof From the proof of Theorem 1, we see that for a given n, the weight of an

undetectable error is of the form

HAH +j A = j (A AH) (3.22)

wherej 1,0< A<[u]o <0land

B_2(A) C Br_2v([]9)). (3.23)

For a minimal weight, clearly j = 1. Further, if

r-2v-1



then
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r - 2v 1

AA= a(2-1).

Hence, if Br_2v(A') c Br_2u(A) where A' I" then

(A HAH) (A' A'H) (2 1)> 0
i:a=1,a=O

except if A is odd and A' = A 1. Hence, for fixed [u]0,

mm { (A IjAl)} = ({n]
A:Br_2,(A)cBr_2, ([u]O)

and the minimum is obtained for A = ['u]8 and, if [u]9 is odd, also for A = {u]9 1.

Since 9 1 = 21' 11 1 is odd and Br_2u([U]ü) c Br_2v(9 1) for all u,

min{ ([U] [u]oH)}=it(9 1 (r-2i))

= (a 1)9 + r 2v + 1,

and this minimum is obtained in three cases:

{u]9 = 9 1 A = 9 1,

[n]0 = 9 1 A = 9 2,

[u]8 = 9 2 A = 9 2.

We note that [uJ9 0 1 if and only if u = tO 1 for some t 1 and similarly

for 9 2. The number of minimal weight undetectable errors where n = tO 1 or

u = tO 2 is therefore 2k times

( k

t9- i)-o+i
/ k \/ktO+1

+ t9-1)-9+2
1k 1ktO+2\ (k+1\i'ktO+2

+ t0-2)O+2) to-1)o+2
Summing over all t 1, the theorem follows. III
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From our discussion we see that there are detectable errors of all weights

(up to the maximum weight of a codeword), but undetectable errors of only some

of these weights. The exact determination of these weights was first done by El-

Mougy and Gorshe [13] (for v < 2). In the general case, a complete description

of the possible weights of undetected errors is determined by (3.22) and (3.23)

above.

For small p, the cases where undetectable errors have minimal weight will

provide the main contribution to Pue(C, p). Since 1 p 1, we get the following

corollary.

Corollary 1. For small p and q 1/2,

/k+1 fkt9+2\
Pue(C,p) p(_l)e+r_2v+1

) (\jt 9 + 2)
2k

t 1

3.8. A couple of examples

Example 1. In this example ii = 2 and r = 5. For these parameters, a = 6, 9 = 2,

andy 12. The minimal weight of uncorrectable errors is (a-1)9+r-2v+1 = 12.

From Theorem we get:

[u]2 Pue(n, p)

0 (1_p)2fo

1 (1 p)3fo +p(i p)2fi

Here f = f,12,k(p) for A = 0, 1.

The values of Pue(C,p) and its approximation given in Corollary 1 for

q = 1/2 and k 50 are given in the Table 1 for some values of p.



p

0.00001

0.0001

0.001

0.01

0.1

0.2

0.425

0.5

1

p

0.00001

0.0001

0.001

0.01

0.1

0. 2277

0.5

1

TABLE 3.1. Pue(C,p), k50

Pue(C,p) approx.

0.3874981970 10-52

0.3867490905 i0°

0.3793352274 10_28

0.3124162376 10_16

0.4246867240 i0

0.1668633091 10_2

0.4001579456

0.3180626249

0

0.3875815183 1052

0.3875815183 i0°

0.3875815183 10_28

0.3875815183 1016

0.3875815183 i0

0.1587533899

TABLE 3.2. Pue(C,p), k100

Pue(C,p) approx.

0.2908927440. 10-48

0.2896778669 10-36

0.2778016844 10-24

0.1825826102 10-12

0.2453695931 10-2

0.7190816340 10_i

0.2364620679 10_i

0

0.2910280410 10_48

0.2910280410 10-36

0.2910280410 10-24

0.2910280410 10-12

0.2910280410
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The function Pue(C,p) has its maximum for p 0.425. We see that the

approximation is reasonably good for p < 0.01. For p > 0.235 (approximately),

the approximation has a value larger than 1.

For k = 100 the situation is similar. The maximum is obtained for p

0.2277. The approximation is larger than 1 forp > 0.1109. Some selected values

are given in Table 1.

Example 2. For ii = 1 and r = 5 we get:

[u}8 Pue(u,p)

0 (1p)f0

1 (1p)2f0+p(1p)f1

2 (1p)2f0+p(1p)f2

3 (1 p)3fo +p(l -p)2(fi +f2) +p2(1 -p)f

4 (1 p)2fo +p(l p)f

5 (1 p)3fo +p(l -p)2(fi + f) +p2(1 p)f

6 (1 p)3fo +p(1 -P)2(f2 +f4) +p2(1 -P)f6

7 (1 p)4f0 +p(l -p)3(fi +f2 + f)

P)2(f3 + f + f6) + p3(1 p)f

Here f = f,16,k-u(P), 0, 1, . . . , 7.



4. A ONE-CODE TYPE I HYBRID ARQ SYSTEM

Hybrid protocols use forward error correction in conjunction with error

detection. Thus, the FEC part of the protocol is designed to correct the most

frequent error patterns, caused by noise on the channel, while the error detec-

tion part deals with the less frequently occurring error patterns. These patterns

are generally most likely to cause decoder errors in the FEC system. The most

common approach is the type I hybrid ARQ which can be implemented as a one

code or a two code system. The first method may use only a FEC code and

retransmission requests are generated either if the number of errors exceeds a cer-

tain threshold, or in the event of FEC decoder failure. A two code system uses

separate feedforward error correcting and feedback error detecting codes.

The existence of high information rate t-AEC/d-AED codes suggests a

good opportunity for using type I hybrid ARQ protocols for the Z-channel. More-

over, these codes can correct t asymmetric errors, and simultaneously detect d

(d > t), and their encoding/decoding complexity is comparable to the existing

error correcting codes.

4.1. Reliability and Efficiency

The reliability of any ARQ protocol is given by the final error probability

(or the accepted packet error rate), by definition, the value to which the ratio of

the number N of received blocks with undetected errors to the total number of

received blocks N converges in probability [19]:

lim
{IN

(4.1)
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We have given some bounds on the final error probability for the Z-channel

with ARQ in [33]. Essentially, it does not depend on the delays introduced by

any specific basic ARQ protocol and it may be calculated as:

PuPE= iPd (4.2)

where Pd is the probability of detected errors and P the undetected error proba-

bility). For a hybrid ARQ protocol, we also need to consider P (the probability

of corrected errors), which is a characteristic of the feedforward part of the ARQ

system. Note that P, + Pd + P = 1 and we include the error free codeword

probability into P. The final error probability is given again by (4.2). However,

in this case P and Pd are related in a different way and we may also write:

Pu
(4.3)

The delivery time is characterized by the expected number of channel symbols

required to deliver one information symbol to a user. This is called the throughput

efficiency, or short throughput, and it does depend on the delays introduced by

various ARQ protocols. For analysis purposes we will consider here only SR-ARQ,

for which these delays are not important. Since each retransmission request results

in the retransmission of only one packet it follows:

= (1 Pd). (4.4)

4.2. t-AEC/d-AED codes construction and performance

The necessary and sufficient conditions for a code C to be t-EC/d-UED are

given by either of the following [24, 1]:

(a) N(X, Y) t + 1 and N(}' X) > t + 1,
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(b) D(X,Y) >t+d+1,
for any distinct X, Y E C. Here, N(X, Y) is the number of crossovers from X to

Y and D(X, Y) is the Hamming distance between X and Y.

A somewhat weaker condition (b') Da(X, Y) > d + 1 (Da stands for the

asymmetric distance) replaces (b) for the necessary and sufficient conditions of

t-AEC/d-AED.

Encoding and decoding procedures for these codes are given in [1]. Al-

though good AEC codes exist [9], their information rate is not much better than

that of some error correcting codes for the binary symmetric channel. Moreover,

efficient encoding procedures are not known yet. In this paper we will concentrate

on t-AEC/d-AED codes construction, which can be summarized as follows:

Let C' be any (n', k, 2t+1) systematic code where n' is the length of the code

word, k is the length of the information part and t is the number of correctable

errors. Define the D-sequence of length r with parameters t and d by D[r, t, d] E

{ S, Si,. . .
, Sm_i}, where each s is of length r. Then C {Y(X, m)X C'},

where Y(X, m) is the codeword obtained by appending Sw(X) mod m to X, is a

t-AEC/d-AED code of length i" = n' + r.

Moreover, in [1] it is also shown that any t-EC code can be changed into a

t-EC/t + r-AED code by adding an extra tail of r check bits. For small values of

r, the resultant code is an efficient one. This tail sequence can be constructed as:

D[r, t, t + r] {U.)1 1, j1 0 0 i r 1}. (4.5)

This specific construction suggests that P depends only on the inner sys-

tematic code C'. On the other hand, P0 and Pd, are related only to the D tail

sequence. However, in order to determine them, the weight distribution of the

codewords needs to be considered, thus they depend on C' in this manner.
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4.2.1. t-AEC/d-AED weight distribution

The weight distribution of a t-AEC/d-AED code using D tail sequences

(4.5), is given by the following theorem:

Theorem 4. Let A, i = 0. . . n', be the weight distribution of C', where C' is

a (n', k, 2t + 1) systematic code. The t-AEC/t + r-AED code C, constructed by

appending the D[r,t,d] tail sequence (.5) to the codewords of C', has the weight

distribution given by:

+

for allj = 0,1,..., Ln'/2i.

if 2jr <i < (2j + 1)r;

if(2j+ 1)r < i < (2j +2)r 1,
(4.6)

Proof. Because the tail check of any word of weight i is s mod 2r, the weights of

the codewords of C are at least r. Moreover, they take values which belong to

discrete sets of r elements. This is shown in Table 4.1.

TABLE 4.1. The weights of the codewords in C are given by adding the corre-

sponding check sequence weights to the weights of the codewords in C'

WCF 0 1 2 3 ... 2r 2 2r 1 2r 2r + 1

wDrrlrlr-2... 1 0 r r-1
wcjr r r+lr+1... 2r-12r-13r 3r

The weight of any codeword in C is in a set of the form {ir, ir + 1, . . . , 2ir

1}, where i is odd. Note the 'gaps' in the weight distribution of C which are

due to the D-sequence "re-adjustments" of weight. They correspond to {ir, ir +

1,. . . , 2ir 1} sets, where i is even. Taking into account these considerations,

equation (4.6) follows directly. LI
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4.2.2. FEC decoder

Let P be the probability that a received word has j crossovers from a

weight w code word. Assuming only '1 -* 0' errors, with probability p we have:

(4.7)

Let us assume a codeword X of weight w is received. The probability that it

contains correctable errors (or no errors at all) is then:

P(X,w,p) (4.8)

Then the probability of correctable errors for this system can be calculated by

multiplying the probability of correctable errors for a codeword of a certain weight

with the probability that the information word corresponding to that codeword

is generated. Assuming that each information word is equally likely we have:

P(C,p) = >AjP. (4.9)

The FEC decoder errors occur whenever the received codewords become valid

codewords after more than d errors occur during the transmission. Note that

if less than d errors occur in the received codeword, a retransmission request is

always generated. Some patterns with more than d errors may also be detected;

however not all such patterns are valid codewords. The decoder failure (that

is, passing codewords with undetectable errors) only happens when the received

codeword is a valid codeword that is different from the transmitted one

If more than d errors occur during the transmission, the received word Y

is at an asymmetric distance of more than d + 1 from the transmitted word X.

The probability of a word passing with undetected errors is upper bounded by:

P({wy <WX d 1} fl {Y E C}).
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However, not all the received words with d + 1 crossovers are undetectable as

mentioned above. In order to select those which are valid codewords, we need to

consider the weight distribution of the received words.

A listing of all the codewords of C from the lowest to the highest weight

looks like:

where

oo...o
r...2r-1

o0...i
00...1

3r...4r-1

1I
11...1

{ waxmodr+r+1) if[] isodd
(q,$)= [ r ]

(I + 1, Wax mod r + i) if is even,
[ r ]

and Wax is the maximum weight of C'.

The right column gives the weight range of the codewords from C corre-

sponding to the C' codewords in the left column. Because of the nature of errors

(only 1 0), a received word contains undetectable errors and thus produces

a FEC decoder error only if the transmitted codeword belongs to a lower weight

group. Any error pattern with a weight within the gaps between legal codeword

weights is detectable. In other words, if the received word Y has a legal codeword



weight and is at a distance of more than d + 1 from the transmitted codeword X,

then the decoder will pass it with undetected errors.

We can rewrite the bound on undetected error probability as

Pu<P(wyE{r,...,2r1}U{3r,...,4r1}UU{vr,...,wx_d_l}),

if [wxd-1] is odd, or,

pu < P(wy E {r,...,2r l}U{3r,...,4r l}U...U{(v 1)r,...,vr i}),

if v is even.

In a compact notation:

E Ui v_2{ir,. . . , (i + 1)r 1} U {vr,.. . ,wX d i}),
iodd

P,< ifvisodd

P (WXI E Ui<<-i {ir,. . . , (i + 1)r i}), if v is even.
iodd

In other words, this upper bound is given by the probability that the number of

errors occurred during transmission yields a valid codeword of lower weight.

v-2 y-(i+1)r_1 H(A_ 1)P3 +i1
iodd

P(w,d,r,p) < {

v-1 (i+1)r-1
1)Pr,i=i

iodd

1

/_.dj=vr H(A_ 1)Py',

if v is odd

if v is even.

(4.10)

Here, H(.) is the Heaviside step function, and it has the role of 'filtering out' the

words which are not legal codewords from each {ir,. . . , (i + 1)r 1} set. Thus, if

the word of weight w j is not a codeword, the probability to reach its weight is

not counted.
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Assuming that each codeword is equally likely to be transmitted, the un-

detected error probability for the code C is then:

P(C,r,p) < AP(i,d,r,p). (4.11)

4.3. Examples

4.3.1. A SEC/3-AED code

We consider the (7, 4) Hamming code to be the inner error correcting code.

As explained in Section 4.2, we can obtain a SEC-3AED code by appending a tail

sequence of r = 2 check bits.

TABLE 4.2. The weight distribution of the SEC/3-AED code constructed from

the (7,4) Hamming code

WCI 0 3 4 7

WD 2 0 2 0

wC 2 3 6 7

The (7,4) Hamming code contains the all zero and all one codewords, thus

A'(0) = A'(l) = 1. All the other codewords are of either 3 or 4 weight. It follows

A'(3) = A'(4) = 7 aild A'(i) = 0 for i = 1, 2, 5, 7. Then, equation (4.6) and Table

4.1 give the weight distribution as shown in Table 4.2.

The probability of undetected error can then be upper bounded according

to equation (4.11) as:

11

P(C,2,p) < AP(i,2,p).16 i-'
i=O



TABLE 4.3. The probability of undetected error of 2 t-EC/d-AED codes

log10 p -7 -6 -5 -4 -3 -2 -1

P(C,4,p) I

8.25 x j-28 8.74 x 10_24 8.74 x io20 8.74 x 10 8.73 x 10 8.56 x 10s 8.74 x i0
I

SEC/3-AED
P(C, 6, p)

9.33 x 10. 9.33 x 9.33 X 10 9.31 x 10. 9.16 >1 10_25 7.75 x iO_16 1.35 x 10
2-EC/8-AED

Because of the weight distribution of this code, the summation has only

four nonzero terms. P(i, 4, p) is the probability that the weight of the received

codeword belongs to the set of legal weights of C and it is at distance more than

3 from the transmitted one. Then,

7
1P(C,4,p) < AP(i,2,p)= [A7(P+P)+A6P]
16

i=4

A7[ ()4(i p)3

+ ()P5(1_P)2]

+ A6()P4(1 p)2.

This probability of undetected error is shown in Table 4.3 for some values of p.

4.3.2. A 2-AEC/8-AED code

Let us consider the (31,21) binary BCH double correcting code, given by

the the following generator polynomial:

g(x) = + + + + + + 1.
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TABLE 4.4. A 2-EC/8-AED code weight distribution

w' C' weight distribution w C weight distribution

0 1 6 A6=1

5 186 8 .48=1

6 806 9

A9 3441

7 2635 9

8 7905 10

= 26815

9 18910 10

10 41602 11

A11 127162

11 85560 11

12 142600 18

A18 = 337900

13 195300 18

14 251100 19

A19 = 553071

15 301971 19

16 301971 20

A20 = 553071

17 251100 20

18 195300 21

A21 = 337900

19 142600 21

20 85560 22

A22 127162

21 41602 22

22 18910 23

A23 26815

23 790523

24 2635 30

A30 = 3441

25 806 30

26 186 31 A31=186

133 .433=1
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Note that this is a primitive narrow-sense BCH code and thus, apart from

the all zero codeword, its dual has [25, 41]:

(2 1)(2 + 2)

2 + 2 1

(2 1)(2 2)

codewords of weight 2 - 22,

codewords of weight 2, and

codewords of weight 2 + 22.

The weight distribution of the BCH code can be determined by using the

MacWilliams equation [25, 41] and it is shown in Table 4.4. The weight distribu-

tion of the 2-AEC/8-AED code is determined according to Theorem 4 and it is

also shown in Table 4.4. The probability of undetected error is shown in Table

4.3.
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5. CONCLUSION AND FURTHER RESEARCH DIRECTIONS

5.1. Summary

In this thesis, results that are both of theoretical and practical interest are

derived for AED and t-AEC/d-AED codes. Also, feedback error control techniques

are proposed and analyzed. Specifically, new results are given on:

The probability of undetected error for the Bose-Lin code.

Bounds on the probability of undetected error for general classes of system-

atic AED codes and for t-AEC/d-AED codes.

Diversity combining for the Z-channel.

Chapter 2 introduced a particular scheme of diversity combining, specific

to the Z-channel. The stored result of a bit-by-bit OR operation between any

retransmitted codeword and the result of the previous transmissions was used

towards increasing both the reliability and the throughput at the receiving end.

First the probability of undetected error Pk(x, X; p) and the average number of

transmissions Nk(x, X;p) were considered for each codeword x, with its set X of

covered codewords. Assuming that each codeword is equally likely, the probability

of undetected error for an AED code can be calculated as:

Pk(C;p) = jPk(xXx;P).
xEC

A similar equation was derived for Nk(C,p). In realistic situations, we will

be able to compute Pk(x,XX;p) exactly for some x's, and give bounds for other

x's.
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Lower and upper bounds for the probabilities of detected and undetected

errors in the received words, respectively, were determined in Chapter 3. These

bounds may be very useful tools for characterizing ARQ systems performance by

providing good starting points for estimating the throughput and the accepted

packet error rate. Then, in the same chapter, the Bose-Lin codes were analyzed

by providing a new parameterized form for them which includes all the method

designs, for any number of check bits. Based on this approach, their probability

of undetected error was calculated.

The type I hybrid ARQ protocol with t-AEC/d-AED coding was ana-

lyzed for the the Z-channel transmission in Chapter 4. The parameters which

characterize this protocol, the final error probability and the throughput were in-

troduced in Section 4.1. Both can be completely determined by the undetected

error probability and the probability of error correcting. For t-AEC/d-AED codes

with a D[r, t, dJ tail sequence as check symbol, the probability of error correcting

was calculated and an upper bound on the probability of undetected error was

also determined. This bound took into account the weight distribution of these

codes, which was determined in Section 4.2 based on the inner error correcting

code weight distribution. A couple of detailed examples were given, starting with

Hamming and binary BCH codes as inner codes.

5.2. Further Research

In Chapter 3, a powerful class of AED codes has been investigated and

analyzed: the Bose-Lin codes. A new parametrized description and the complete

derivation of the probability of undetected errors, leaves only one open problem:

the complete optimality investigation. Thus, we know that these codes are optimal
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in the cases of 2, 3 or 4 bits check sequences. However , a generalization to any

number of check bits (if true) is highly desireable.

Because of the difficulty in designing systematic t-AEC codes with a better

information rate than the corresponding t-error correcting BCH codes, there is an

alternate direction one may take; namely, to design t-AEC codes with simpler

encoding/decoding techniques.

A t-AEC code design is briefly described in the following [9].

Let {ao 0, a, a2, . . a,} be the elements of GF(n + 1). We define the

function F from the binary n-tuples to GF(n + 1) as:

F : GF(2) f GF(n +1)

by

Fi(x)l

F2(x)

I,

F(x)j

where

Fi(x) = Fi((xix2. . x))

and

F(x) = a1a2 .

31<32<<Ji
xjl=xj2=...=xji=1

for i = 2, 3, . . , t. Now, F partitions 2 tuples into (n + i)t classes

C1, C2, . . C(n+l)t, such that, if X, Y C, then F(X) = F(Y). It can be proven

that each of C, i = 1, 2, . . ., (n + i)t is a t-AEC code and there exists a class

which contains at least 2 codewords.
(n+1)



54

Suppose we choose the C1 code such that:

Fi(x) 0

F2(x) 0
F(x)= =

F(x) 0

Let X and X' be the transmitted and the received words, respectively, and X'

has s, s < t, 0 + 1 errors (similar results hold for 1 + 0 errors). Then, it can be

proven that:

F1(X') = S1 = 0

F2(X') = 52 U2 0

F3(X') = S8 = cr 0

F81(X') S+i 0

F(X') St = 0,

where the o-j's are the symmetric functions of the error location values. Thus,

from the syndromes, it is possible to find the number of errors and, furthermore,

the syndromes directly give the symmetric functions of the error location values.

Then, the errors location can be determined by using Chien search ([4], [25], [34]).

In the case of BCH codes decoding, the major step is to find the symmetric

functions of the error location values from the syndromes. Thus, these t-AEC

codes have a much simpler decoding procedure.

One possible research goal is to find simple encoding methods for these

codes; in particular, methods of encoding in a systematic form. The analysis of
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these codes within the frame of feedback error control systems is another goal.

Thus, a combination of AEC with Bose-Lin codes may provide a valuable hybrid

ARQ technique for the Z-channel.
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