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that statistic.
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Applying Higher Order Asymptotics to Mixed Linear Models

1. Introduction

1.1 Introduction

Researchers have a variety of methods available to obtain p-values and confidence

intervals in Gaussian mixed linear models. In addition to exact and approximate methods

based on sums of squares, commercial optimization programs that give maximum

likelihood estimates have made likelihood based tests widely available. Likelihood based

tests such as the likelihood ratio test (LRT) offer a general method of making inference

about any parameter in any mixed model. However, like some sums of squares based

methods, these likelihood based tests are approximate and can be misleading when the

sample size is small compared to the complexity of the model. This thesis presents

methods of adjusting the likelihood to improve small sample inference. Based on recent

results in higher order asymptotics, the methods are straight forward to implement in any

model with current commercial software.

Specifically, the thesis shows how to apply three higher order asymptotic

procedures for making inference in Gaussian mixed linear models: the modified directed

deviance statistic introduced by I.M. Skovgaard (1996), the modified profile likelihood,

defined by O.E. Barndorff-Nielsen (1983), and Barndoff-Nielsen's approximate modified

profile likelihood (1994b). Although our primary concern is to develop practical methods

for improving small sample likelihood inference, more fundamental issues of inference

will be addressed as well.

After defining the mixed linear model and discussing available tests and

confidence interval procedures, this chapter ends with a more technical discussion that

places the Gaussian linear mixed model in the context of exponential families. The
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second and third manuscript chapters concern Skovgaard's modified directed deviance

statistic, r, and Barndorff-Nielsen's approximate modified profile likelihood, LIv,

respectively. The final manuscript chapter discusses a useful decomposition of 7 and

some technical notes on its accuracy.

1.2 The Gaussian Mixed Linear Model

Encompassing both linear regression and analysis of variance procedures, the

standard Gaussian linear model is arguably the most widely used statistical method. In

these models an n x 1 response vector Y is modeled as a linear function of unknown

slope and intercept parameters and a normally distributed random error term with

independent components. In matrix form,

Y = Xi3 + e

where X is an n x p matrix of constants, ,3 is an unknown vector of parameters and the

error term e is distributed multivariate normal with 0 mean and covariance matrix a2/.

In many applications the assumption of independence is not appropriate. In a

repeated measures model Y consists of multiple measurements taken over time on a

group of subjects so that the inter-subject measurements are dependent. For this case and

others a generalization of the standard linear model is useful:

Y = Xfl + Band e Nn(0,V (p)),

where V (p) is a symmetric positive definite covariance matrix. Researchers identify

these models by the form of the covariance matrix; e.g., variance component models

(Searle, Casella, McCulloch 1992), random coefficient models (Longford 1993), and

multivariate analysis of variance models (Johnson and Wichem 1982).

Our main interest lies with the common case of Y consisting of m independent

sub-vectors, i.e., V is block diagonal. This common type of covariance matrix arises in

nested variance component models and repeated measures models. Since Y consists of
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sets of independent vectors, the asymptotic properties of 7 and L,Tnp are straight forward

to derive, i.e., their behavior stabilizes as the number of independents units, m, increases.

Through out we will assume that V (p) is block diagonal; Miller (1977), Jiang (1996) and

Cressie and Laihari (1993) discuss the behavior of asymptotic tests when V is not block

diagonal.

1.3 Inference in Gaussian Mixed Linear Models

Statisticians have proposed a variety of methods to obtain tests and confidence

intervals for mixed models that for convenience we will categorize as follows: exact

procedures, specialized approximate procedures, and approximate procedures based on

the likelihood. Of these methods, only the likelihood based tests are available for

inference about any parameter in any mixed linear model. Without a general method,

researchers may choose to only fit models with exact tests even if other models offer a

better fit. The likelihood ratio test (LRT), unlike the Wald test, has the important

property of parameterization invariance so we will focus on adjusting it in hopes of

obtaining a more accurate and general inference tool.

Exact procedures have been developed for two types of models: balanced

variance component models and multivariate analysis of variance models with no missing

data. To obtain tests and confidence intervals when exact methods are not available,

statisticians have developed several methods that extend the exact F-tests. Separate

methods were developed for inference about covariance parameters and fixed effects.

1.3.1 Covariance Parameter Inference

For variance component models, Mathew and Sinha (1988) and Seely and El-

Bassiouni (1983) describe exact optimal F-tests for variance components. These tests are

optimal in the sense that they are most powerful among either invariant or unbiased tests
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(Lehmann 1986). However, in contrast to likelihood based tests, these procedures are

invalidated by the loss of even one observation or the addition of a continuous fixed

covariate. Furthermore even in the "ideal" balanced case, there is no method for

constructing exact confidence intervals for linear combinations of variance components

(Burdick and Graybill 1992).

For inference about variance components in unbalanced designs, Satterthwaite

(1941) introduced an approximate F-test. Although quite accurate in simple unbalanced

models, in models with several variance components the test is not unique; one can

construct several sensible approximate F-tests for the same parameter. In some cases

more accurate specialized approximations based on sums of squares exist (Ting et. al.

1991) but they too are not well defined in unbalanced models. The analyst then must

choose between several approximate procedures which may give contradictory results.

Both the LRT and the Wald are well defined in variance component models but

they may sometimes be inaccurate for small or moderate sample inference. Many

researchers prefer using a penalized likelihood called the residual, or restricted, likelihood

for making inference on covariance parameters. Introduced by Patterson and Thompson

(1973) the residual likelihood eliminates the nuisance fixed effects and gives unbiased

estimates of the variance components in balanced models. Li, Birkes, and Thomas (1996)

present a numerical study comparing the residual likelihood ratio to another exact, but not

optimal, test in a one way analysis of variance model and find that it performs quite well.

In chapter three we show that this residual likelihood is a special case of this approximate

modified profile likelihood.

1.3.2 Fixed Effect Inference

Currently, exact methods are available for most parameters of interest in

multivariate repeated measures without missing data and balanced variance component
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models. However, in models with unbalanced data, missing data, or covariates,

researchers have to rely on approximate methods. One popular approximate method is

the generalized least squares (GLS) t-test. Analogous to the t-test constructed in the

standard linear model, the GLS t is actually a modification of the Wald statistic that need

not follow a t distribution under the null hypothesis.

Calculation of the GLS t and F statistics requires two stages: one must first

estimate andand then calculate the GLS estimates of fl as

= (XT-1PX)-1X1V-1(P)Y.

The covariance matrix of [3 is then estimated with X'17-1(p)X. A test statistic

analogous to the simple t-test for testing = i3oi is given by

GLS t -
SE(A)

The variance of ;3, is estimated with the ith diagonal element of X'17-1(p) X. If the

MLE is used to estimate p then the GLS t reduces to the Wald test with the expected

(Fisher) information used to estimate the standard error. If other consistent estimators of

p are used, such as REML estimates, then in large samples the GLS t generally follows a

normal distribution. For small samples, however, it is often compared to a t distribution

the degrees of freedom of which are calculated in a variety of ways.

The estimator of the standard error ofA given above usually underestimates the

true standard error (Kackar and Harville 1984) so the p-values obtained from the GLS t

are too small and the confidence intervals too narrow when the GLS t is compared to a

normal distribution. To remedy this, McLean, Sanders, and Stroup (1991) argue that the

GLS t should be compared to a t distribution, rather than a normal, with degrees of

freedom determined by a Satterthwaite approximation. Although this ignores the

correlation of SE(A) and A, the resulting test is exact for many balanced variance

component models. The SAS® Institute implements this method with its MIXED

procedure. Kackar and Harville suggest using a Taylor series approximation to reduce
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the first order bias of the standard error estimates. However, neither this adjustment nor

the approximate degrees of freedom method appear to be invariant to reparameterizations

of V.

The GLS statistic requires estimates of p. Using ML estimates gives the standard

Wald test but many researchers prefer to use residual maximum likelihood (REML)

estimates since they are believed to be less biased and yield exact t-tests in some balanced

models. Another point of contention is whether the statistic should be compared to a t

distribution or a normal and when using a t distribution how should the degrees of

freedom be determined. Generally, the LRT is considered superior to the Wald test. As

the two manuscript chapters will demonstrate the LRT, adjusted for small sample

accuracy, can perform much better than the GLS t .

For making inference about fixed effects in multivariate repeated measures

models Hotelling's T gives exact confidence intervals and p-values. When there is

missing data, Pillai and Samson (1954) and McKeon (1971) provide approximate

extensions of Hotelling's T statistic. S.P. Wright (1994) reported that these tests are

superior to Wald type tests with REML variance estimates. However, using these tests

requires fitting an unstructured covariance matrix in lieu of another more parsimonious

repeated measures model, such as, an autoregressive model, that may offer a better fit.

We consider a multivariate repeated measures problem in chapter two.

Specialized tests exists in particular models for inference about some parameters

but the LRT is defined in all models for any parameter of interest. Recent advances in

software have made maximum likelihood estimates available for a wide variety of mixed

models so that the LRT is now a feasible alternative to the specialized non-likelihood

based approximations. However, some numerical studies (Lyons and Peters 1996 and

Wright 1994) indicate that these specialized approximations can be more accurate than

both the likelihood ratio test and the Wald tests for some models. In practice researchers

too often resort to fitting models that offer exact or specialized approximate tests even if
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these models fail to reflect the experimental design, do not answer the question of

interest, or fit the data poorly. Furthermore, applying these procedures requires

specialized knowledge and judgment which distracts researchers from their principle task

of fitting and interpreting useful models.

By employing likelihood ratio tests that are adjusted to be at least as reliable as

the specialized approximations researchers could fit models without considering the

existence of exact or specialized approximate tests. This would also place mixed linear

model analyses in a general context since most of the specialized methods above are

peculiar to mixed linear models while the likelihood ratio test is applied successfully in

many contexts, e.g., generalized linear models. In the next two chapters we will develop

these adjustments. First though, we need to place mixed models in the context of

exponential families.

1.4 Exponential Families and the Gaussian Mixed Linear Model

Some authors view mixed models in the general context of random effects or even

as extensions of standard linear models. However, to understand how to apply higher

order methods, the Gaussian mixed linear model is best viewed as a member of a regular

or curved exponential family. It is convenient to adopt notation similar to that of

Barndorff-Nielsen and Cox (1994).

Let 0 = , p) be partitioned into a parameter of interest, 0, and a nuisance

parameter, x. We will write the likelihood of 0 as L(6) and its log as 1(0).

Differentiation will be denoted with a sub-scripted / followed by the parameter, e.g., the

score U(9) = 119 and the observed information j(0) = 1(0)m . Evaluation of a quantity

at the maximum likelihood estimates, (;p , 2), or at the restricted maximum likelihood

estimates , (IA X ), is denoted by a superior and N , respectively; e.g., the profile log
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likelihood for 0, /p(0) = 40, 'Xa), can be written asi. For a matrix X, R(X) will denote

the range space, r(X) its rank, tr(X) its trace and IX I its determinant.

Suppose that the random vector Y has density f indexed by the parameter w of

dimension p. The density f (Y; 0) follows an exponential family if it is of the form:

f (Y ;0) = h(Y)exp(u)(0)1 t(y) n(w(0))) (1)

relative to some dominating measure. Here t(y) , the canonical statistic, and w(0), the

canonical parameter, are vectors of dimension k. The smallest natural number k for

which (1) holds is called the order of this (k, p) exponential family. The statistic t(y) is a

minimal sufficient statistic (see Lehmann 1986).

If k = p then f is generally a member of a regular exponential family; if k > p

then f is a member of a curved exponential family. The binomial, gamma, poison and

normal densities all belong to regular exponential families. Most balanced variance

component models are members of a regular exponential family while the densities of

unbalanced models generally belong to curved families. If k < p then the model is not

useful since it is over-parameterized.

To see that the density of Y in a mixed model follows an exponential family note

that

lnf (Y; f3, p) = WY X tiff -1 (p)(Y X,3) + lnjV (p)l)

Hence if we let vij denote the (i, j) element of V-1(p) we see that,

In f (Y; 0, p) =

1( it t vii(Y X f3)' (Y X f3) + lnIV(p)1)
i=1 i<i

The minimal representation, and hence, the order will depend on the form of V-1(p) .

As an example consider one of the simplest mixed models, the one-way random

variance component model arising when ki measurements are taken on each of a clusters.

Consider the n x 1 vector Y:

Y = lnp. + e



9

where e N NO:1117 (T, X)) and

V(r, X) = Tin + g ilk;

By inspection we see that

V = 1P0 + ET-÷co(Ps
i=i

where P0 = ED (I, k1,1) and Pi is a block diagonal matrix with the ith block
i = 1

given by kik; 4. This implies that

(Y pl,i)W-1(r,x)(Y pin)

PoY E *On 1inP0Y
i =1

8

ET4-4x1:,PiY + µ2 1nV lln
i=1

8

= 1171 POY ET÷X"Y E7-nCiXiikiY
112 iinv-11/n.

i=1 i=1

The last step follows since rnPo = 0.

The order of the family depends on the number of distinct kis. If ki = c for all i

then the model is said to be balanced and the density forms a (3,3) exponential family. If

there are two distinct kis the density forms a (5,3) exponential family. Generally, w

distinct kis leads to a (1 + 2*w, 3) exponential family. A one-way analysis of variance

model with two distinct kis then differs substantially from a model with one distinct k1.

In fact from the point of view of finding optimal tests or applying higher order methods

the densities of these two models differ in a more fundamental way than the densities of a

Binomial and Poisson, both of which follow a regular exponential family. This one-way

model will be considered again in chapter two.

The sufficiency of the MLEs in the regular exponential family case not only

leads to a convenient reduction of the data but to a compact approximation with third

order relative error for the density of the MLE the p* formula given by Barndorff-

Nielsen (Banrdorff-Nielsen and Cox 1989, ch. 9)

P*(B ;0) = c(0)131-1e1.
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Here c(9) is a norming constant that insures p* integrates to 1. For regular exponential

families the p* formula leads to both the modified profile likelihood, Lmp, and r*

statistic.

Since in curved exponential families 9 is not sufficient, Barndorff-Nielsen and

Cox (1994 ch. 7) present a second order relative error approximation for the density of 9

conditioned on an approximate ancillary statistic A:

p*(9 ;191.4) = c(0,A)131-1

Only the norming constant requires the specification of the ancillary statistic. This

decrease in precision from third to second order for curved families occurs in the statistics

discussed in chapters two and three as well. In practice, though, the order is only a rough

indicator of accuracy since the actual magnitude of the error depends on unknown

parameter values.

Sufficient conditions for the density of a mixed linear model to follow a regular

family are given in Chapter 4 but generally they follow curved families. The fact that the

MLEs alone are not sufficient in the curved case makes applying higher order methods

difficult since an ancillary statistic must be specified. Neither the score nor the directed

deviance ancillary are unique and calculating either r* or Lmp while accounting for an

arbitrary ancillary statistic is difficult. Instead, Barndorff-Nielsen and Cox (1994) suggest

using methods that are stable in the sense that asymptotically they give the same inference

that would have been obtained by conditioning on any reasonable ancillary. In doing this

a degree of precision is lost but the approximations are relatively easy to calculate and can

greatly improve on existing methods. Finding stable higher order methods for mixed

linear models is the main focus of this thesis.
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Chapter 2
A Simple Higher Order Asymptotic Test for Mixed Linear Models

Benjamin Lyons and Dawn Peters
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2. A Simple Higher Order Asymptotic Test for Mixed Linear Models

2.1 Abstract

The introduction of software to calculate maximum likelihood estimates for

mixed linear models has made likelihood estimation a practical alternative to methods

based on sums of squares. Likelihood based tests and confidence intervals, however, may

be misleading in problems with small sample sizes. This paper discusses an adjusted

version of the directed likelihood statistic for mixed models that can improve the

accuracy of the likelihood ratio test for any one parameter hypothesis. Introduced in

general form by Skovgaard (1996), in mixed models this statistic has a simple compact

form so that it is easy to obtain with existing software. Several simulations studies

indicate this statistic is more accurate than several specialized procedures that have been

advocated. Skovgaard's statistic, however, is available in mixed models where

specialized exact and approximate procedures have not been developed so that it offers an

automatic method of improving inference in many Gaussian mixed linear models.

2.2 Introduction

Gaussian mixed linear models are often used to model correlated data and a

variety of exact and approximate methods have been introduced to obtain p-values and

confidence intervals in some common models. Exact and approximate procedures based

on sums of squares are available in balanced and unbalanced variance component models

and similar approximations have been developed for multivariate analysis of variance

models. With the introduction of commercial programs to find maximum likelihood

estimates, tests based on either the full or residual maximum likelihood estimates are now

widely available. However, recent simulation studies, e.g., Wright (1994) and Wright

and Wolfinger (1997), indicate that first order likelihood based methods may be
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misleading. Furthermore, these likelihood based procedures are less reliable than some

specialized approximations that are not widely available.

For moderate sample sizes researchers are then faced with a choice between

unreliable likelihood based methods and specialized approximations that are not always

available. This hinders the application of non-traditional correlation structures, such as

the heterogenous covariance models discussed by Wolfinger (1996), where specialized

approximations have not been developed. These more parsimonious models may be

ignored in favor of correlation structures that admit reliable tests. Skovgaard (1996)

introduced a modified directed likelihood statistic, called 7, for curved exponential

families that offers a practical solution to this problem. The rstatistic can substantially

improve the accuracy of the standard likelihood based methods, is available for most

models, and is straight forward to calculate with existing software.

We show below thatr has a compact closed form depending on full and restricted

maximum likelihood estimates, observed and expected information, and other quantities

based on simple derivatives of the covariance matrix. It is not substantially more

complex then the wide variety of specialized approximations currently in use.

Simulations given below indicate that this statistic is a marked improvement on first order

likelihood methods and is often superior to specialized approximations when they exist.

We adopt notation similar to that used by Barndorff-Nielsen and Cox (1994) and

partition the parameter vector 9 into a parameter of interest, z1i, and a nuisance parameter,

x. The likelihood of 9 will be written as L(0) and its log as 1(0). Differentiation with

respect to 9 will be denoted by a sub-scripted parameter, e.g., the score U(9) can be

written as /0 and the observed information j(0) as /(0)00. The expected information is

denoted by i(0) = E(j(0)). Evaluation of a quantity depending on 0 at the full

maximum likelihood estimates , , or at the restricted maximum likelihood

estimates, (ika), is denoted by a superior and respectively; e.g., the profile log



likelihood for is denoted by T. For a matrix X, R(X) will denote the range space,

r(X) its rank, tr(X) its trace and I XI its determinant.

In section 2 we review some existing procedures. Section 3 gives some

background regarding Skovgaard's rand the related statistic, Barndorff-Nielsen's r*.

Section 4 gives a compact form for rin Gaussian mixed linear models. Section 5 gives

simulation results and some technical details are presented in the appendix.

2.3 Inference in Mixed Linear Models

Of interest here are models of the form:

Y = X13 + e and e N(0,V(p)), (1)

14

where X is an n by p design matrix and V is a covariance matrix that is positive definite.

Either the p-dimensional fixed effect vector /3 or the k dimensional covariance parameter

vector p may be of interest. We are primarily concerned with cases, such as repeated

measures models, where Y consists of m independent subsets and hence V(p) is block

diagonal and the likelihood based approximations improve as m gets large. It is easy to

see that the density of Y belongs to an exponential family that may be either regular or

curved.

In balanced variance component models a variety of exact F-tests can be formed

using sums of squares for many, but not all, fixed and covariance parameters of interest.

Besides being exact and easy to calculate, these tests are often optimal (Mathew and

Sinha 1988). Even in this ideal case, however, exact methods do not exist for important

parameters, such as the "between" variance component in one-way random analysis of

variance models and certain fixed effect contrasts in balanced split plot models (Milliken

and Johnson 1984 ch. 17). Similarly for many fixed effect hypotheses in multivariate

analysis of variance (MANOVA) models, Hotelling's T is exact and optimal.
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These exact methods can be extended to unbalanced models yielding tests that are

usually approximate. In unbalanced variance component models, approximate F-tests can

be calculated using the Satterthwaite procedure. Although these tests may perform well

in simple models they often fail in more complex models especially when the numerator

and denominator of the approximate F statistic are not independent (Tietjen 1974).

Furthermore, in more complex unbalanced models there are usually several approximate

F-tests and no method of choosing one over the other. In multivariate analysis of

variance models with missing data, approximate tests for fixed effects based on

Hotel ling's T have also been developed and may be quite effective (see Pillai and Samson

1954 and Wright 1994).

These approximate methods do not extend easily to models with less traditional

correlation structures. In these and other useful models, specialized approximate or exact

methods have not been developed and only methods based on the full or residual

likelihood are available. The lack of exact or specialized approximate methods may

hinder the fitting of more parsimonious repeated measures models or random slope

models. Skovgaard's directed likelihood statistic can be applied to one dimensional

interest parameters in most of these non-traditional models.

2.4 Skovgaard's Modified Directed Likelihood

Developed for curved exponential families as an alternative to Barndorff-Nielsen's

(1986) r* statistic, Skovgaard'sr, is simpler to calculate than r* but slightly less accurate.

Both statistics are modified versions of the directed likelihood statistics and they are

identical in regular exponential families.

If the log likelihood ratio statistic for the single parameter of interest & is

W(00) = 2(6, Y) i%); Y)).
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then the directed likelihood statistic (Barndorff-Nielsen and Cox 1994) for testing =

is

r(00) = s811(1 00) 14r77P0

Quite generally, under the null hypothesis r(00) is asymptotically standard normal with

absolute first order error, Op(n-i), in moderate deviation regions and Op(1) error in

large deviation regions.

To improve the accuracy of this approximation, Barndorff-Nielsen (1986)

introduced the modified directed likelihood statistic r*:

r*(0) - r(00) (÷mr log(3:1).

The statistic u(00), defined below, is a function of the observed and expected information

and two derivatives taken with respect to the data, i.e., sample space derivatives. This

statistic is standard normal with relative third order error, Op(n-i), in moderate

deviation regions and second order error, Op(n-1), in large deviation regions. Numerical

studies, see Pierce and Peters (1992), indicate that r* can be very accurate in small

sample problems. Unfortunately, u(IP0) is often difficult to calculate in curved

exponential families since it depends on the specification of an ancillary statistic.

The improvement in the order of the error does not fully capture the benefits of

using r* or rinstead of r. The accuracy of r and the Wald statistic decrease as models

become more complex since they fail to account for nuisance parameters as the modified

statistics do. For instance, when testing covariance parameter in mixed linear models, r*

and 7, like the residual likelihood, correct for the nuisance fixed effects. Unlike the

residual likelihood, however, they also correct for nuisance covariance parameters.

Similarly, when testing fixed effects, where there is no equivalent to the residual

likelihood, r* and 7 adjust for both nuisance fixed and covariance parameters.

Furthermore, unlike the Wald test, the modified and unmodified directed likelihood
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statistics are invariant to interest respecting reparameterizations (Barndorff-Nielsen and

Cox 1994 pg. 11).

The statistic u(00) is a function of the full MLEs, the restricted MLEs, the

observed information and two sample space derivatives:

400) = [(re;-4)-1(1;--i 7;)14,131-i freid flxxi-1,,
where j is the nuisance parameter block of the observed information. The sample

space derivatives, lore and /re , are taken with respect to the data, specifically with

respect to B. In the curved exponential family setting, an approximate ancillary statistic A

can be found so that B and A are jointly sufficient (see Barndorff-Nielsen and Cox 1994).

The sample space derivatives, taken with A held fixed, are written as

lore = 818-01(9;i, A) and /;-ii = to /(0; 4, A) .

In regular exponential families B itself is sufficient and calculating the sample space

derivatives is usually elementary. In curved exponential families, however, several

sensible ancillary statistics could be specified, each giving a different version of r*.

Skovgaard avoids specifying an ancillary statistic by approximating the sample

space derivatives:

7 A I ,97-13 and lri rl sro- = q7-1 3
0;u

twhere = indicates equality to second order. The terms S and q are given by

S = Cove1(1e(01), le(192)) 2 , and
91= B, 82 =9

q = Cove1(le(90,1(91) 1(02))1ei=e,o2=7f.

Here, evaluation at Band rso occurs after determining the covariance of the two terms.

Applying S and q to the u statistic gives Skovgaard's 7. Skovgaard shows that 7 is

standard normal with relative second order error in moderate deviation regions and first

order error in large deviation regions. If the density of Y belongs to a regular exponential

family, 'iv = r* and the higher order of accuracy is achieved. This is useful in the mixed

model setting where it is often difficult to determine if the density belongs to a regular
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family. Although ris less accurate than r* it is much easier to calculate and has a very

compact form in mixed linear models.

2.5 Calculating Skovgaard'sr in a Gaussian Mixed Linear Model

In mixed linear models the score and the deviance drop are functions of quadratic

and linear functions of Y, a multivariate normal random vector. In this case, using well

known results concerning the covariance of quadratic and linear forms and multivariate

random normal variables (Mathai and Provost 1992 ch. 3), it is elementary to show that S

and q have a compact form. For convenience we will write Vp71 = 17-1 and

T,V. =
2 Vpi

We show in the appendix for the parameterization given in (1) that S and q have

the following forms. By partitioning S

(SIM SOp)
SA8 Spp

it can be shown that the components are

S 1 X ri-lX ,PP

[S pp ]t3 = itr( Ppi 1 r7 r171 ), for i, j = 1, , k ,

So = 0,
and each of the k columns of Sop are given by

Sop, = Q ), for i = 1, , k.
Similarly, partition the vector q as

q =
qp I

and it can be shown that its components are

qp = X11-1X(T3 13 )

with each of the k elements of qp given by

[qp]j = 2 &(I1W V-1 V-1)) for j = 1, , k.

Given full and restricted maximum likelihood estimates, the components of S and q are
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then easy to calculate with existing software when Vpj has a closed form. In certain

common models, such as balanced variance component models, the formulas for S and q

simplify.

Note that in all mixed models Ski = X111-1 X , the fixed effect block of the

expected and observed information matrix. If the covariance matrix V is a linear function

of p, e.g., variance component models, then Spp = top. To see this note that

V-1 = V-1 V
Pj

V-1 (Graybill 1984 ch. 10) so that for known symmetric matrices
P3

Qi,
k

V = E PiQi
i=1

ES ppbj = 2tr(QiV-1QP-1) = pp]ii and

[qp]i = 2 tr(Qi(ri V-1)).
Another interesting simplification occurs when interest lies with p. Clearly, if for

fixed p, Q = 1(3 then Sop = 0 and q = 0. Using the terminology of Lindsey (1996),

is estimation orthogonal to p. In Gaussian mixed models this is implied by Zyskind's

(1967) condition: R(V (p)X) C R(X) for all p.

2.6 Numerical Examples

We employ three models to illustrate the accuracy of Skovgaard's statistic: a

balanced variance component model, a repeated measures model with an unstructured

covariance matrix, and a repeated measures models with a heterogenous toeplitz

covariance matrix. In all three cases, exact tests do not exist for some parameters but

specialized approximations have been developed in the first two examples. The

simulations compare the empirical rejection rates given by r, r, tests based on residual

maximum likelihood (REML) estimates, and several specialized approximate tests.

Results show that in each case'? is a significant improvement on the likelihood based
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approximations. In examples where they exist, the non-likelihood based tests are more

accurate than the unmodified likelihood based tests but generally inferior to r

2.6.1 Balanced Variance Component Model

Consider the one-way balanced variance component model with normal errors:

Ili = p + di + eii for i = I, ... , s, and j = 1, ... , k,

where d and e are independent normally distributed random vectors. The mean and

covariance of the multivariate normal vector Y of, dimension n, are given by E(Y) = Pin

and Var(Y) = cr2/n + a!D/Y where D is the n x s balanced classification matrix for

the random effect d. In order for the covariance matrix of Y to be positive definite the

eigenvalues of Var(Y) must be positive, i.e., 01> 0 and o + ko! > 0. These are the

only constraints placed on the variance components.

In this simple model, there is no exact method of obtaining confidence intervals

on the "between" variance component, al. A specialized approximation based on the

Cornish-Fisher expansion, introduced by Ting et. al. (1991), is known to work well and is

calculated here. The signed square root of the directed residual likelihood, REML r, is

also considered. Simulation results given in Table 2.1 were obtained by using the

MATLAB programming language with s = 10, k = 2, p = 1, and ol. = 1. Rejection

rates are given for testing o = 0, 0.5, and 1 against upper and lower alternatives in

Table 2.1. Other simulations with k = 3 and 4 gave similar results.

The density of Y in this three parameter model is a member of a regular

exponential family, hence for moderate sample sizes one might expect first order

methods, such as r and REML r, to perform well. The results summarized in Table 2.1

indicate that these tests are very misleading especially for the smaller nominal levels.

Skovgaard's r statistic, equivalent to r* here, however, performs quite well at all levels.

Ting's test is exact when o = 0. In other cases it gives satisfactory results when the
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nominal levels are large but is inferior to rat the smaller nominal levels. The errors for r

and REML r are very asymmetric since both tests are too conservative for the lower

alternative and too liberal for the upper alternative. Ting's procedure andrcorrect this

asymmetry. The Wald tests based on the full and residual likelihood are inferior to the

both directed likelihoods and so are omitted.

Table 2.1
Empirical rejection rates in 100,000 repetitions for testing or = 0, .5, and 1 for the one-

way balanced variance component models.

o-2 Testu

Upper
10% 5% 1% .1%

Lower
10% 5% 1% .1%

0

.5

r
REML r
Ting
r*

r
REML r

8.316 4.114 .856 .114 14.864 8.326 2.114 .306

10.445 5.365 1.168 .145 10.913 5.614 1.196 .135

10.069 5.031 1.029 .131 10.126 5.004 .995 .106
9.894 4.924 .999 .126 10.355 5.151 1.038 .111

6.042 2.870 .546 .045 17.478 10.044 2.625 .351

8.899 4.219 .815 .082 12.290 6.440 1.399 .160
.129
.110

1

Ting
r*

r
REML r
Ting
r*

9.595
9.810

5.477
7.934
9.621
9.738

4.703
4.968

2.535
3.838
4.684
4.889

.846
1.009

.440

.704

.819

.966

.071

.111

.034

.062

.065

.089

10.152
10.117

18.498
12.734
10.205

10.234

5.159
5.084

10.607
6.738
5.124
5.115

1.050
.991

2.796
1.460
1.064
1.042

.421

.169

.115

.114

2.6.2 Repeated Measures Model

Gaussian mixed models are commonly applied to repeated measures data. To

illustrate the accuracy of rwe employ data presented by Pothoff and Roy (1964) which

consists of growth measurements of 16 boys and 11 girls at ages 8, 10, 12, and 14. For
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this simulation study, the mean will be modeled as linear in age with a gender by age

interaction:

E(Y2) = µ + thgenderi + f32agej + /33(age x gen)ii

i = 1,2 and j = 1,2,3,4.

In the first simulation, we fit an unstructured covariance matrix and empirical rejection

rates are given for7. and four commonly used procedures. In the second simulation we fit

a heterogenous toeplitz covariance matrix and compares the empirical rejection rates

given by 7, a Wald test and r. Both simulations were conducted in SAS® using its mixed

model optimization procedure. The nuisance parameters were set equal to their MLEs for

the Pothoff and Roy data.

In the first simulation an unstructured covariance matrix is fit where for each

subject

vk =

(an 0.21 0.31 a41

0.21 a22 0.32 042

a31 032 0.33 0.43

0.41 042 0.43 0.44

k = 1, , 27.

Empirical rejection rates are compared for r, a Waldstatistic using REML estimates of

the covariance parameters,rand two specialized approximations: the Hotelling-Lawly-

Pillai-Samson trace (Pillai and Samson 1959) and the Hotelling-Lawley-McKeon

(McKeon 1971) trace statistic. As suggested by Wright (1994) we employed REML

estimates to calculate the FILM and HLPS statistics.

Table 2.2 displays the levels for testing /33 = 1 against a two sided alternative.

Errors from the stated level were nearly identical for the lower and upper alternatives.

Both the REML Wald and the directed likelihood reject far too often. When the stated

level is lower than 2.5% the REML Wald and the directed likelihood, both compared to a

standard normal, reject over twice as often as they should. The directed likelihood is

slightly less liberal than the REML Wald but still far inferior to the HLPS, HLM, and?"

statistic. The two specialized approximate procedures are more conservative than the
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likelihood based tests. However, their performance varies with the stated level and so it

is difficult to choose between them. As in the other simulations, ris more accurate than

its competitors at nearly every level. Simulations for testing /33 = 1 and 0 gave similar

results.

Table 2.2
Empirical two sided rejection rates for testing /33 = 1 with an unstructured covariance

matrix given by 100,000 simulations.

133 Test Level 10% 5% 2.5% 1% .1%

r
REML Wald
HLPS

HLM

7

13.449 7.384 4.133 1.871 .255

14.679 8.492 5.170 2.750 .594

11.913 5.814 2.701 0.881 .034

11.502 5.979 3.069 1.253 .112

10.193 5.181 2.587 1.020 .106

In our final example, we will evaluate Skovgaard's r statistic in a model where

no specialized approximations exist. The same means model as above is employed but

the more parsimonious heterogenous toeplitz covariance matrix (Wolfinger 1996) is fit.

Here the covariance matrix for each subject is

Vk = ( rial
02P1 cic3 P2 0104P3

ciopi 2a2 0203P1 cr2a4P2 k 27.
a1 03P2 02a3P1 cr

3
2

a3a4P1
2

0.1003 0204P2 (730-01 174

Skovgaard's 7 is compared to the directed likelihood and the REML Wald. The empirical

rejection rates are given in Table 2.3. In three cases the likelihood failed to converge and

in two other cased could not be calculated since 7 was nonsingular.
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Even in this more parsimonious model the REML Wald and the directed

likelihood, compared to a standard normal, reject the null hypothesis of /33 = 1 far too

often. The modified directed likelihood is substantially more accurate than either r or the

REML Wald. It gives relatively highly accurate levels for the larger nominal levels and

good accuracy at the lower nominal levels. Simulations for testing 163 = 0 and 1 gave

similar results.

Table 2.3
Empirical two sided rejection rates for testing /33 = 1 with a heterogenous toeplitz

covariance matrix given by 100,000 simulations.

/33 Test Level 10% 5% 2.5% 1% .1%

r
REML Wald
7-

12.316 6.658 3.571 1.602 .200

12.389 6.978 3.983 1.969 .357

10.503 5.335 2.730 1.194 .146

2.7 Conclusion

Skovgaard's statistic is easy to apply to many useful Gaussian mixed models

using existing software. The compact and general form of the adjustment makes it as

simple to implement as many specialized approximations. For testing both fixed or

covariance parameters, simulations indicate that rgives substantially more accurate levels

than standard likelihood based approximations and is generally superior to available

specialized approximations. Skovgaard's statistic then offers a general and automatic

method of improving likelihood based inference in mixed models. Further work remains

to be done, however, to determine for which models and sample sizes 7 gives adequate

accuracy and power. It would also be useful to investigate the relationship between 7

and the residual likelihood. For instance, if interest lies in the covariance parameters
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Would be constructed directly from the residual likelihood. It might then be useful to

expand on Barndorff-Nielsen, Peters and Pierce's (1994) discussion of the relationship

between r* and Barndorff-Nielsen's modified profile likelihood.
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2.9 Appendix
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First we show that SOP) has form the given in section 4.

Claim 1: S(11)) = (S13°o where
S

S13,5 = X111-1X,

So = 0,
Sprp, = itr(V,,Y-1 i7;41,-1)

and for r, / = 1, , k each column of Sop is given by

Sop,. = X'117),1 1(j) for r = 1, , k.

Proof. The score equations are proportional to

[II (3(3, p)b oc Y'17-1X1 XW-IXi13i for i = 1, , p and
.1

[Up(0, p)].; cc ((Y X,(3)1170,71(Y X13) + 170710i)

f o r j = 1, , k,

where /nIVIpi = InIV I. In both cases the score statistics are functions of linear and

quadratic forms of Y. The covariance of terms like these are well known (Mathai and

Provost 1992 ch. 3) and the result follows directly.

Claim 2: q = (q/3
qP

with components given by qfl = X'1,-1 X (73 74 ) and qp where the k elements of this

vector are given by

[qp]i = 2 tr(Vpi( 171-1)) for j = 1, k.

Proof: Note that the deviance drop

7 -7 = -1((y-43)T7-1(17-X3) + In1171)

+ 1((Y X74)''11-1(Y Xr14) + /n11/1).

Like the score, this is a function of quadratic and linear forms of Y.
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Chapter 3

A General Modified Profile Likelihood for Gaussian Mixed Linear Models

Benjamin Lyons and Dawn Peters
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3. A General Modified Profile Likelihood for Gaussian Mixed Linear Models

3.1 Abstract

In mixed linear models researchers often use a penalized version of the profile

likelihood to make inference about covariance parameters since this residual likelihood

does not involve the nuisance fixed effects. This paper presents Barndorff- Nielsen's

approximate modified profile likelihood, gp, as a generalization of the residual

likelihood, that can correct the profile likelihood for either fixed or covariance nuisance

parameters. This adjusted profile likelihood is a second order approximation to

Barndorff-Nielsen's modified profile likelihood, L.P. Straightforward to obtain with

commercial software, the approximate modified profile likelihood corrects the bias in the

score of the profile likelihood and equals L,p when the density is a member of a regular

exponential family.

3.2 Introduction

The introduction of software to obtain maximum and residual maximum

likelihood (REML) estimates in mixed models has made inference based on the profile

likelihood a viable alternative to more traditional methods that depend on sums of

squares. Unfortunately, in many problems inference based on the profile likelihood is

hindered by small sample sizes and large numbers of nuisance parameters which make

the profile likelihood misleading. Hence, many researchers use the residual likelihood for

inference concerning covariance parameters since it accounts for the nuisance fixed

effects. This paper presents a generalization of the residual likelihood that is easy to

construct for an arbitrary parameter of interest in any Gaussian mixed model.

Barndorff-Nielsen's approximate modified profile likelihood, 4,p, is a second

order approximation to Barndorff-Nielsen's modified profile likelihood, LmP, which often
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approximates the conditional or marginal likelihood appropriate for inference to third

order (Barndorff-Nielsen and Cox 1994). It is straightforward to calculate requiring only

restricted MLEs and derivatives of the covariance matrix and offers a sensible method of

correcting the profile likelihood for both fixed and covariance nuisance parameters. The

score of the L:np statistic is asymptotically unbiased so LLp behaves more like a true

likelihood than the unadjusted profile likelihood. In regular exponential families, ap is

equal to Lmp.

Of interest here are models of the following form:

Y = Xf3 + e and e N(0,V(p)) (1)

where X is an n by p design matrix and V is a positive definite covariance matrix. Here

either the p-dimensional fixed effects vector /3 or the k dimensional covariance parameter

vector p may be of interest. We are primarily concerned with cases, such as repeated

measures models, where Y consists of m independent subsets, and hence, V (p) is block

diagonal and the approximations improve as m gets large. It is easy to see that the

density of Y belongs to an exponential family that may be either regular or curved.

When the entire vector p is of interest, Patterson and Thompson (1971) suggest

maximizing the residual likelihood, that is, the likelihood constructed from the density of

Q'Y where Q is an n by n p matrix that satisfies

QQ' = x(xix)-xl.
The density of Q'Y depends only on p. In balanced variance component models the

residual maximum likelihood (REML) estimates are, unlike the standard maximum

likelihood estimates, equal to the unbiased ANOVA estimates. Numerical studies

conducted by Swallow and Monahan (1984) indicate that the bias reduction extends to

unbalanced variance component models as well.
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Harville (1974) showed that the residual likelihood is equal to the product of the

profile likelihood for p and a penalty term consisting of the fixed effect block of the

observed information:

LREML(P) = Lp(P)IXT-1(P)X1-1-

Because the fixed effects and the covariance parameters are information orthogonal, i.e.,

E( alnia(P,p))
813p

the residual likelihood also equals the approximate conditional likelihood introduced by

Cox and Reid (1987).

In contrast to the profile likelihood which can yield maximum likelihood

estimates with large bias and has a biased score function, the residual likelihood yields

variance components estimates with reduced bias and has a score function which is

unbiased. Hence the residual likelihood behaves more like a "real" likelihood than the

unadjusted profile likelihood. The residual likelihood, however, is defined only when p

is the parameter of interest and is the nuisance parameter vector. It can not be applied

if, as is often the case, interest lies in the fixed effects. If only some of the components of

p are of interest, the residual likelihood fails to account for the remaining variance

component nuisance parameters. The approximate modified profile likelihood, defined

below, is applicable for an arbitrary interest parameter and reduces to the residual

likelihood if the entire vector p is of interest. Hence, Barndorff-Nielsen's approximate

modified profile likelihood generalizes the residual likelihood to other sets of interest

parameters.

We adopt notation similar to that used by Barndorff-Nielsen and Cox (1994) and

partition the parameter vector 9 into a parameter of interest, b, and a nuisance parameter,

x. The likelihood of 9 will be written as L(9) and its log as 1(9). Differentiation with

respect to 0 will be denoted by a / followed by a sub-scripted parameter, e.g., the score

U (0) can be written as 110 and the observed information j(0) as /(0),00 . The expected
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information is denoted by i(0) = E(j(9)). Evaluation of a quantity dependent on 9 at

the maximum likelihood estimates 61), i) or at the restricted maximum likelihood

estimates (ii, X,/,) is denoted by a superior and , respectively; e.g., the profile log

likelihood for 0, is denoted by 7, i.e., 7 = /pop) = /(zp, X ). For a matrix X, R(X)

will denote the range space, r(X) its rank, tr(X) its trace, and IX! its determinant.

In section 2 both Barndorff-Nielsen's modified profile likelihood, Lmp, and his

second order approximation to it are presented. In mixed models this approximate

modified profile likelihood has a compact form requiring only calculation of the restricted

MLEs and derivatives of the covariance matrix with respect to p. The specific adjusted

likelihoods for covariance and fixed parameters are discussed in sections 3 and 4,

respectively. In section 5 we present some numerical examples and the appendix

contains some technical results.

3.3 The Modified Profile Likelihood

The modified profile likelihood for (Barndorff-Nielsen 1983) is

L,p(0) = D(01.1 I14(0 (2)

where j is the nuisance parameter block of the observed information and

D(0) = I ox

where is the MLE of x when is held fixed. D(iP) is equal (Barndorff-Nielsen and

Cox 1994) to the ratio of the determinants of the observed information and the mixed

sample space derivative7/xi:

13'D(o) (3)

The sample space derivative, //xi = eX /, is the derivative of the log likelihood taken

with respect to the parameters x and with respect to the data through X. In curved

exponential families it is possible to choose an approximately ancillary statistic A such

that (, 2, A) is sufficient. Hence, the mixed sample space derivative is well defined for



34

a particular A. In practice, however, these derivatives can be difficult to calculate outside

of regular exponential families where the MLEs alone are sufficient.

Barndorff-Nielsen's modified profile likelihood has several favorable properties.

When the joint likelihood can be factored into either a conditional or a marginal

likelihood that isolates in a reasonable way then the L,p(0) approximates that

likelihood to third order. Also, unlike the unadjusted profile likelihood, the score of

L,p(0) is asymptotically unbiased (Barndorff-Nielsen 1994a). In contrast to the Cox-

Reid approximate conditional likelihood (Cox and Reid 1987), L,p(0) is invariant to

interest respecting reparameterizations (Barndorff-Nielsen and Cox 1994). That is,

reparameterizations of the form (Oa) 4- (4,A) where (/) = OM is a monotone function

of b, and A = A(0,x). Generally, however, outside of regular exponential families,

calculation of L,p(0) requires the specification of an approximate ancillary statistic and

in curved families there may be several reasonable ancillary statistic. This complicates

the calculation of the sample space derivative in (2) for mixed models since outside of a

few important cases, e.g., balanced variance component models, the densities in mixed

linear models belong to curved exponential families rather than regular exponential

families.

Barndorff-Nielsen (1994b) gave a second order approximation to the sample

space derivative in (3) for curved exponential families. The approximation depends on

writing the density of Y in canonical form with canonical parameter 71(0), canonical

statistic T and cumulant generating function K(0):

1(0) = Tii(0)Ti(Y) K(0) .

i =1

Ignoring factors that do not depend on 0, Barndorff-Nielsen showed that to second order

frixi I = Illhck/nn rii/x I. (4)

Approximating fl /xi I with lirixki,01/x I in (4) gives Barndorff-Nielsen's approximate

modified profile likelihood:
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LI, (o) = Dv) rixxi-14(0), (5)

where DI (0) = 1V/hc km) /x1 -1I3" xxl. In regular exponential families the relation in

(4) is exact so that LI,p (0) equals L,,p(0). This is convenient in mixed linear models

since it is often a nuisance to determine if the density of Y in a given model is a member

of a regular or curved exponential family. Like L Eytnp (0) is invariant to interest

respecting parameterizations and does not require parameter orthogonality. Furthermore,

as shown in the appendix, it behaves more like a genuine likelihood since the score is

asymptotically unbiased.

Since writing mixed model densities in canonical form is sometimes difficult, it is

convenient to note that iihckhri rilix is equal to the covariance of the score evaluated at

the full and restricted MLEs

I

u
n 7.

l=u2 u27-2u
(6)Sxx(0) = Cove, (Ux(01), Ux(02))

In a mixed model setting where interest lies with a component of or of p, Sxx has a

compact representation depending only on X, V, and derivatives of V with respect to

each component of p. Skovgaard (1996) proposed a similar approximation to the sample

space derivative: the nuisance parameter block of S z 3 where S is

S ( ) = COVei (U (01)7 U (02)) I
01= 0, 92=9

When the interest parameter zi) is either a component offi or p we show in the

appendix that S has the following compact form:

Soo Stip )
wherere

S 13p la pp

S igo = XIV -1X ,

S pp = 0 ,

SApt = Pr( ) , for r, 1 = 1,. . . , k ,

and the rth column of Sop given by
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Sop, = X'rilorl X(Q )3) for r = 1, . . ., k.

The matrix Sxx (P) is then given by the nuisance parameter block of S. If a component of

either p or /3 is of interest then neither Spp nor Ssr, appear in the determinant of Sxx and

can be ignored.

The fixed effect portion of S, Sop, is equal to the fixed effect block of the

observed and expected information matrices:

. .
Sop = 2 op = 3 Iv.

The covariance parameter block changes substantially with the form of V. When V is

linear in p, as in variance component problems, this block is equal to the expected

information evaluated at the restricted MLEs To see this note that

k

V(P)=EAQi
i=1

so that VIA = Qi and

SA. pi = itr( liIQi V-1Q/ )
-.,

Elementary methods show that this is equal to i pp (see Searle, Casella, and McCulloch

1992).

LInp differs from Lmp when evaluated at the full maximum likelihood estimate

losing a compelling property. When evaluated at the full MLE the sample space

derivative is equal to the observed information (Barndorff- Nielsen and Cox 1994),

//e;ii = 1, hence D( ) = 1. It is clear from (6), however, that

Sxx(1) = 71/xk/7101/x = i xx

so that 131'6P) = 1 only when the nuisance parameter blocks of the observed and expected

.--i--:
information are equal. Skovgaard's approximation remedies this by multiplying S by 2 3

. However, since these two approximations are equal if the density follows a regular

exponential family and are equal to second order generally, we will employ Barndorff-

Nielsen's simpler approximation.
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3.4 Inference About Covariance Parameters

If the entire vector of covariance parameters p is of interest in the model defined

by (1) then because of parameter orthogonality, I
a
as,e I = 1 to second order (Barndorff-

Nielsen and McCullagh 1993), so that the residual likelihood is a second order

approximation to Lmp (p). For this case it is clear that the approximation Dt (p) =1 so

that the approximate modified profile likelihood is exactly equal to the residual

likelihood. Furthermore, the residual, modified profile, and approximate modified
- 0

likelihoods are exactly equal if )3p = # which implies that I -4'
ap

I = 1 and hence

D(p) = Dt (p) = 1. In mixed models, 78/, = 1{1 is equivalent to Zyskind's condition

(Zyskind 1967): R(V-1(p)X) C R(X)Vp.

By itself Zyskind's condition, which holds in most balanced variance component

models as well as a variety of repeated measures settings, does not imply that the density

of Y belongs to a member of a regular exponential family. In this special case, the MLEs

are not sufficient but the ancillary statistic does not enter into the calculation of Lmp(p).

Generally, however, L,np(p) depends on the specification of an ancillary and so may

differ from the residual likelihood.

If only a subset of the covariance parameters are of interest the residual likelihood

fails to account for the covariance nuisance parameters. Suppose that p= (p1, p2) and

interest lies with pi so that the nuisance parameter x = (i3, p2). The adjustment is then

made up of the familiar determinant of the fixed effect block of the observed information

and an adjustment for the covariance nuisance parameters:

ln.qp(p1) = lnL(p,) 2lnIXT-1G6 )XI

+ ilniL2p2101- lniSp2p21

where ri p2,1,, is the observed information for p2adjusted for 0, i.e.,
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(3/32P21/3 I = p2p2 3 PO %301511 3 13p2i

Again, if Zyskind's condition holds this term simplifies since it is easy to show that

P213 =0.
The extra adjustment for the nuisance covariance parameters insures that the score

of Ltip(p,) is asymptotically unbiased. In cases where the covariance parameter of

interest is a canonical parameter in a regular exponential family the modified profile

likelihood is a third order approximation to the conditional likelihood. For inference on

canonical parameters in a balanced variance component model, the extra adjustment turns

out to be a function of the data only, so that both the profile residual likelihood and the

modified profile likelihood are proportional to the conditional likelihood. In some cases

though, the extra adjustment may be appreciable.

3.4.1 Balanced Nested Variance Component Model

Here we consider models of the form

Y = pin + e, e N N(0,V(r,x)),

a
where the covariance matrix V(T, x) = rIn + xM with M = (130 Jk, Jk is a k x k

i = 1
matrix of ls, and the variance of "u is given by (r + kx). The variable a represents the

number of clusters and k the number of elements in each cluster. It is easy to see that

V-1(r, x) = Q) + (r÷y,

where Q = iM is the orthogonal projection operator on R(M). Suppose that interest

lies with r + kx. A convenient parameterization employs the canonical interest

parameter'/) = (r + kx)-1, and nuisance parameter x = (Xt, X2) = (T-1, /1), where T

and p are canonical and mean parameters respectively. In this case IP and

(T-1, p) are estimation orthogonal since for fixed ip
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= µ = (lurY and

,r._i _ -1 na
(Y-01)'(In CMYAln)

The profile log likelihood is given by

1p(0) oc 4Y1NzQN.Y + ihrtP

where Nx = (I is the orthogonal projection operator on R(1n)1.

The statistic GI ,YWANzY ,YiNz(I Q)NXY) is a complete and sufficient

statistics in the full model so the conditional likelihood given by the density of

Y'NZQNXY YlArx(/ Q)NXY

can be used for inference. The term Oln NzQNzY is distributed as a chi-square random

variable with a 1 degrees of freedom so that Y'NXQNXY is ancillary when tk is

held fixed. Noting that ( Nz(I Q)NXY) form a complete sufficient statistic in

the model with //) held fixed we see by Basu's theorem (Lehmann 1986) that the

conditional likelihood is given by

lc(0) oc 4(In NxQNxY) + (11---;111n(0) = 4(0) 1171(0)

which differs from the profile likelihood by a factor 2 lnzli .

Noting that R(1n) C R(M) and that the restricted REML estimate of xi

coincides with the restricted maximum likelihood estimate, one can show that the residual

log likelihood is given by

1pREML(11)) = 4(0) 1 in I

oc 4(0 i/n(0)

since r(rn Ql) = r(1'n1n). Since the restricted MLEs of the nuisance parameters do

not depend on 0, the modified profile likelihood is equal to the Cox Reid profile
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likelihood, i.e., 1-8-k I = 1. Noting further that jxim = 0, lxixi is a function of Xi alone,

and that Xi = Xi we see that

Imp(0) -= 4(0 21nIlnV -11nI iln rixixi I

oc ip(0) lin 0.

Hence both the residual likelihood and the modified profile likelihood correct the profile

so that it is proportional to the conditional likelihood. This result generalizes readily to

other variance component models where Zyskind's condition holds.

3.4.2 Bivariate Normal

Suppose that m pairs of data follow a bivariate normal distribution and hence

have the following density:

(
Y2i
Y11) raN2((th2 Ei) where Ei = I ;2

Tx2 I , i = 1 to M.

For this case the density of Y follows a regular exponential family. Suppose that the

parameter of interest is

0.7 X
which is a canonical parameter, and that the nuisance parameters are r2, o-2, pl and

p2, which are mean parameters in this case. Since x > 0 is equivalent to > 0 the

former can be tested through a canonical parameter. The restricted MLEs for the

nuisance parameters are

511ii -.502 E(Y2i -V)2
2 IV 2

m ' T , , and A2 =
m

iY2i
m

Given the estimates of -r2 and 02, the parameter x is a nonlinear function of b and the

adjustments are:
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1511, I = n2 +a7
(x 0)- (3)2 (x2(0) -47) ' and

liPrP, I = (na 4 + nX4(0) 42rd 2x2(0) 4rej T) ( rir- 4 ±
4 2X20) 47 3?' nrd 4 4rej 2 x2 (0)

+ 4aj 3-1v ( X 2 ( Q T) -2

The log of each of these terms depends on 7 so, unlike the previous example, the

covariance nuisance parameter adjustment is a function of 0.

The density formed from the residual likelihood also is a member of a regular

exponential family with Oa canonical parameter. The restricted residual maximum

likelihood estimates for the nuisance parameters r and a are given by

(1/1; -Y)2
m

:=1
(v2; -F)2

C T REML and rm-1 REML m-1 9

so that for moderately large m the fixed effect adjustment, IX'V -1X I, of the modified

profile likelihood will be very close to the residual likelihood's adjustment. Unlike the

previous example, however, the covariance parameter adjustment term

/nrip2p20 I /4502021 is a function of so there may be an appreciable difference

between the residual and modified profile likelihoods. Since the modified profile

likelihood approximates the conditional likelihood for b to third order any difference

between the modified profile and the residual profile likelihood may be important.

3.5 Inference About Fixed Effects

For fixed effects, Barndorff-Nielsen's approximate modified profile likelihood

compliments the residual likelihood by adjusting for the distorting effects that the

covariance and other fixed effects nuisance parameters have on the profile likelihood.

Suppose interest lies in a parameter it defined as
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E(Y) = AA + Xr) 3r.

Hence the nuisance parameter vector x = (,3,, p) . The approximate modified profile

likelihood is then given by

L , OM = I Sxx I fIxx114(131)-

= 1 xir v 1 xr 1 i i spp i -1 Cipp Ifir i i Loo ,

where ripp1/3, I = Upp -7pft, (X:.17-1(1)X0110p2 1.

Unlike the covariance parameters, the profile score of a single fixed effect is

always asymptotically unbiased. Cox and Reid (1992) noted this fact for mean

parameters in regular exponential families and a short proof in the appendix shows that

this holds for all mixed models. The unbiasedness of the profile score also implies that

the adjustment is op(1) rather than Op(1) and so may be less important. Despite this, for

small samples the profile likelihood may still be misleading especially if the covariance

matrix is complex. Lyons and Peters (1996) present simulation studies that indicate that

the unadjusted likelihood ratio test may be very misleading, rejecting too often. Another

numerical study of tests based on the Wald statistic presented by Wright (1994) indicates

that the Wald test is also too liberal.

The problem with the profile likelihood is analogous to the problem of inference

about mean parameters outlined in Example 8.2 of Barndorff-Nielsen and Cox (1994).

They show that the modified profile likelihood for an orthogonal contrast in a standard

linear model is a much closer approximation to the likelihood based on the exact

t-statistic than the unadjusted profile likelihood. Below we show that this result also

holds for orthogonal fixed effect contrasts in some mixed linear models, such as,

balanced variance component models. A sketch of the proof is given in the appendix.

Theorem 3.5.1: Suppose that the mixed model satisfies the following two conditions

insuring that the density of Y follows a regular exponential family:
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k

(i) The covariance matrix can be rewritten as V (p) = EAi(p)Qi
i =1

where the matrices Qi are known symmetric, idempotent, non-negative
k

definite, pair-wise orthogonal and EQi = I. Also, A(p) is a one to one
i =1

continuous and differentiable function of p.

(ii) Zyskind's condition: R(QiX) C R(X) V i.

Suppose also that the scalar fixed effect parameter of interest is p. where

X ,3 = AA + XrI3r.

Together with conditions (i) and (ii) the next two conditions insure that there is an exact

t-test for testing p, = po:

(iii) X, = 0.

(iv) R(A) C R(Qi) for some i.

Then for testing p = po the statistic

t """'

where SE(j.2) is, in variance component models, the usual ANOVA standard error for it,

follows a t distribution exactly with r(Qi) r(QiXr) 1 degrees of freedom. Also, the

profile likelihood, modified profile likelihood, normed so that they have maximum 1, and

the likelihood based on the t statistic are given by

Lp(A) = (1 + Two_ rrclipx)-1

t2Lynp (A) = (1 + r(Qi)- r(QiPz)-1

-41

-*(Q0-1-r(Qarr)+1

)
-1(%)+1(QiXr)

and Lt(p) = (1 + row-4c2ipx)-1 ) .

Since in this case the density of Y follows a regular exponential family the

approximate modified profile likelihood equals the modified profile likelihood. In

hierarchical mixed linear models, such as split plot models, the rank of QiXr is the
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number of fixed effect nuisance parameters on the same "level" as p. The profile

likelihood errs by not accounting for these variables while the modified profile likelihood

is nearly identical to the likelihood induced by the t statistic. This result is illustrated by

the following two split plot examples.

3.5.1 Fixed Whole Plot Effect in a Balanced Split-Plot

Suppose we wish to make inference concerning an orthogonal whole plot contrast

in a balanced split plot model. To apply the above theorem this model can be written as

= -I- Xith + X2132 +

e N(0,V(r,x))

where Ai[X1X21 = 0, IA has dimension pi, and 132 has dimension p2. The covariance

matrix V(r, x) = Tin + XM, where M =
a

elk and Jk is a k x k matrix of Is.
i = 1

Hence, V can be written as,

V (T, X) = r(In Q) + (kx + r)Q

where Q = PI is the orthogonal projection operator on R(M) and (In Q) is the

orthogonal projection operator on R(M)i. It is easy to see that

V-1(T, x) = T (.41 Q) +.7 Q.

Since A is a whole plot effect it is easy to show that R(A) C R(Q) which gives

QA = A. Also, without loss of generality, we can assume that R(X1) C R(Q) so that

r(QX1) = pi, and that R(X2) C R(Q)1 so that r(QX2) = 0. Hence, the profile

likelihood, modified profile likelihood and the likelihood induced by the t statistic,

normalized so that the maximum of each is 1, are

LP(A) = (1 + ) f

Lmp(p) = (1 + a-
p
-1



and Lt(p) = (1 + a_pit2_1

If the number of fixed effects at the whole plot level, pi, is large compared to the number

of whole plot units, a = r(Q), then the unadjusted profile likelihood will differ

substantially from the likelihood given by the t statistic since it in effect ignores the

nuisance fixed effects. On the other hand the modified profile likelihood accounts for

these effects and is nearly identical to Lt(p).

45

3.5.2 Fixed Sub Plot Effect in a Balanced Split-Plot

If instead p, is an orthogonal subplot contrast where (I Q)A = A then the

normed profile likelihood, modified profile likelihood and the likelihood induced by the t

statistic are given by

LIM = (1 +
a 1e2-1L

fa+1
Lmp(A) = (1 + a(k-1;2p2-1 2 1

and Lt(p) = (1 + a(k-1 t2p2-1 9

where r(X2) = p2. The difference between the modified and unadjusted profile

likelihood will usually be less marked here then in the whole plot case since a I4 is

usually large relative to p2.

3.6 Numerical Example

In a one parameter model, a plot of its profile likelihood neatly summarizes the

information available for that single parameter. As we have seen in the example above,

in more complex models with many nuisance parameters the profile may be misleading

because it assumes that the nuisance parameters are known; that is, it fails to account for

the uncertainty of the nuisance parameter estimates. The following repeated measures
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example illustrates how the adjustment modifies the profile likelihood to account for

these nuisance parameters.

Pothoff and Roy (1964) presented a repeated measures example consisting of the

growth measurements of 16 boys and 11 girls taken at ages 8,10,12, and 14. For this

example the mean is modeled as linear in age with a gender by age interaction:

E(Yij) = as + algerti + a2agej + 13(age x gen)ii

i = 1,2 and j = 1, 2,3,4.

For inference about the interaction coefficient 11, various variance structures can

be fit to account for the within subject correlation. A saturated model is given by the

unstructured covariance matrix:

all 021 031 041

viun C21 a22 (Y32 a42

031 032 033 043

041 042 043 044

A variety of other more parsimonious covariance matrices have been proposed and can be

fit with commercial software. For any covariance matrix, the nuisance parameters may

distort the profile likelihood of (3 giving a profile that is too narrow.

Figures 3.1 and 3.2 show the profile and approximate modified profile

likelihoods, normed so that they have maximum one, for the unstructured covariance

structured above, as well as the more parsimonious heterogenous toeplitz structure (see

Wolfinger 1996):

V=
cr2

1 0102/1 0103p2 0104P3
2

0102P1 02 020-3/11 0204P1
2

0103P2 0203P1 03 030-4P1

0104P3 0304P1 03074P1
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In both cases the profile and approximate modified likelihoods give nearly

identical point estimates of #. However, the approximate modified profile likelihood is

wider than the profile likelihood especially in the unstructured case and when ,Q is far

from the its MLE, i.e., the larger deviation regions. The profile likelihood is indeed too

narrow. Simulations presented in Lyons and Peters (1996) showed that the unmodified

profile likelihood gives confidence intervals that are too narrow in both models. It fails

egregiously in the more complex unstructured model and at the higher nominal levels of

coverage, that is, where the profile and approximate modified profile likelihood differ the

most. The appreciable difference between the profile and approximate modified profile

likelihoods in this case then indicates potential problems in using the LRT and other first

order methods, such as, the Wald test, to construct confidence intervals and p-values.

3.7 Conclusion

The approximate modified profile likelihood, gp(0), constructed for an arbitrary

interest parameter in a complex linear model sensibly corrects for the nuisance parameters

giving an approximately unbiased score. Furthermore, it is often a good approximation to

what is generally regarded as the correct likelihood. The adjustment improves profile

likelihood based inference since it takes into account the uncertainty associated with the

nuisance parameter.

For inference about a single parameter, plotting the profile likelihood and the

approximate modified profile likelihood may indicate whether the nuisance parameters

are having a substantially adverse effect on the likelihood ratio test. For more formal

inference about an individual parameter, such as, the construction of confidence intervals

and p-values, the modified directed deviance statistic (see Lyons and Peters 1996 and

Skovgaard 1996) may be more appropriate. This statistic is known to be standard normal

to second order in moderate deviation regions and first order in large deviation regions.
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To obtain p-values and confidence regions for several parameters at a time further

research is required to determine the efficacy of a deviance drop based on the

approximate modified profile likelihood.
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3.9 Appendix
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First we develop the form of S(0).

Claim 1: S(0) = (St:
Sna

where

Soy = XIV x,
Sp(' = 0,
SAP, = itr( V-4,:1>' -1 il*/0 ), for r, / = 1, ..., k

and the rth column of S pi, is given by

S o = X ' 4) for r = k.

Proof: The score equations are given by

[U0(/3, = Y'V-1 X:17-1 X jgi for i = 1, , p and
j =1

[Up(fl, p)]j = 2 ((Y X fl)'VI;j1(Y X fl) +

f o r j = 1, , k.

The score statistics are made up of linear and quadratic forms of Y. The covariance of

linear and quadratic terms like these are well known (see Mathai and Provost 1992) and

the result follows directly. 0

Claim 2: The score statistic of the approximate modified profile likelihood is

asymptotically unbiased.

Proof The bias in the profile score statistic for a parameter of interest & can be written

as (see Barndorff-Nielsen and Cox 1994)

E(11ho(0)) 2tr(ii)1( (rxxo,fr rx,x,0))

where implies equality to first order. The terms rxx,,k and rx,xi, are functions of joint

moments of derivatives of the log likelihood:

Txx,11, = vxx,t,b vxxaixxixib and = vx,xok

for vxi,xiock = E(/xi/xi/xk) and Vxix.kA = E(iXiXj1Xk ).

Barndorff-Nielsen (1994a) showed that
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l xxl xxlnr xxl

2 (.11) Otr(3xx(*Txx,0

where the left hand side is the adjustment term of the modified profile likelihood. Using

the results of Barndorff-Nielsen (1994b) it is straightforward to show using a first order

Taylor expansion that

^ t
iniSxxl + inlil =

where = denotes equality to second order and C(Y) is an Op(1) function of the data.

inter 143 xxl + C(Y)

Clearly, then up to an additive constant

/1/.1Sxxl + /01 + 1/nlj
xxl iixxl

1P)tr(ixx(lXX,0 7'.X,X0P))

Taking derivatives we see that the score of the approximate modified profile likelihood,

Lmtp(tk) is also asymptotically unbiased.

Claim 3: The score of the unadjusted profile likelihood is asymptotically unbiased if the

parameter of interest is a fixed effect.

Proof. Suppose that the interest parameter is //, = 131 so that the nuisance parameters are

given by x = (02, p). We will only consider the case where /3 is a scalar. Then, as given

above

E(/0(0)) A 2tr(ix-xl(Txx,131 + rx,x,th))

By the orthogonality of )32 and p it is clear that ifip = 0 and is-' = 0 so that

E(//0(0)) itr(c-21/32(T ,5032,th + 1-)32,A,th)) 2tr(ZPP (7-pp,th + TP7P7131 )

where the T terms are given above. Then, using elementary facts concerning the

covariance and quadratic forms of Y (Mathai and Provost 1992), it can be shown that

pApi, Pk = pipj = pi, pi = 0 and vi34,3j,4 = vrispj,fik = 0.

From this it follows that E(//0(0)) A 0.O
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Proof of Theorem 3.5.1: Recall the assumptions
k k

(i) V (p) = EAi(p)Qi , EQi = 1 and the Qt's are symmetric, idempotent and
i=1 1=1

pair-wise orthogonal. Also, A(p) is a one to one continuous and

differentiable function of p.

(ii) R(Qi[A X,.]) C R([A X,.]) for i = 1 to k ( Zyskind's condition).

(iii) A9C,. = 0.

(iv) R(A) C R(Qi) for some i.

For convenience assume that R(A) C R(Qi) which implies that C2jA = 0

V j # 1. The proof has two parts. In the first part we show that the profile likelihood has

the form given in the theorem. This is shown primarily by noting that pis estimation

orthogonal to (fl, (Ai}j01); i.e., for any fixed p, = r and 3ti = Ai for j 1. In

the second part of the proof we turn our attention to the adjustment term.

First for fixed and p the restricted MLE of Ai is given by

ti
X j(II, 18) (Y AP-Xrtitrrq,(Y -Ap-X43)

r(Qi)

which implies that the profile likelihood for (p ,i3r) is

4(1, A.) oc oc fl (1 ri(p,p)-3:1(µ,#))_41.
j=1 ii(p,o)

The last step follows since the k distinct eigenvalues of V are given by Ai with

multiplicity r(Qj). Next we show that Zyskind's condition and the orthogonality of A

and X imply that when interest lies with p then

ri (1 .4_ z(µ,)-;(11,m,_12
-A;(1-1,#)j=2

is a function of the data alone.

For fixed p it can be shown using conditions (ii) (iv) that

R(QiX,.) C R(X,.) V i
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so that Zyskind's condition holds in the sub model with p held fixed. With A' = 0

this implies that for fixed A, 7j,.. By inspection of the form of PX(p, (3) and the fact

that Q,A = 0 for j 1 it follows that

Lp(A) oc (1 +

Next we show that this quantity is related to the usual t statistic.

Observe that

al 51 = AA Xr# rYCh (17 Aµ Xr7dr)

(Y Aµ X r7 4)1 Q (Y Aµ Xr73r))/r(C21)

Zyskind's condition in the full model implies that = (X1X)-1X'Y and we have

already shown that 731, = 4, By noting that Q1A = A and that X'.A = 0 it can be easily

shown that

31 = (AAA)Cµ 142 /r(C21),

where (A'A) is a scalar. Also, the standard error estimate, obtained from REML

estimates, or from sums of squares in balanced variance component models, of the

variance ofµ is given by,

Hence,

(A'Arl(Y (Y (A'A)*(Qi)V ar(µ) = (*(Qt)- r(Q1X0-1) (*(Q1)-- r(Qa)-1)

( 1 l -p)2
J (r(Q1)- r(Qi X,)-1)Var(ii)

which gives

Lp(p) cc (1 + ti)-411

where d f = r(Q1) r(QiXr) 1 and

t = ("Z? , and 5E(µ) = V ar(1.1)1

To see that t follows a t distribution with d f degrees of freedom we first introduce

a reparameterization of X,. that will be useful here as well as for calculating the

adjustment.

Because of conditions (ii) and (iii) it is possible to find X1 and X2 such that



56

R(Xi) R(X2) = R(XT),

R(X1) c R(Q1) and

R(X2) C R(Q1)1

from which it follows that XIX2 = 0. Without loss of generality we can then

reparameterize:

Xr13 = X131 + X202.

This gives

(Y Xr;3)1Q1 (Y ATI XI-73r)

= V(/ PA Px1- Px2)1 Q1 (I PA Pxi Px2)Y

where Px, = X1(X1X2)-1Xi is the orthogonal projection operator on R(X1) and PA

and Px2 are defined analogously. This term then reduces to the typical ANOVA Type I

sums of squares in balanced variance component models and elementary methods show

that it is a chi-squared random variable with degrees of freedom r(Q1) r(QiXr ) 1.

Noting that

Q1(/ PA Psi Ps2)Y) = 0

we have the result that t follows a t distribution with df degrees of freedom.

Turning to the adjustment of the modified profile likelihood, equal to the

approximate modified profile likelihood in these models, recall that the modified profile

likelihood can be written as

Lmp(l) cc ti(4,-`2) 11 xxiiisxxrilixxl-qxxl.

By (i) and (iv) we see that for all j # 1

CMY Xr7i, Arg) =0

which implies that = 0. The form of jAA simplifies further since Q1Q, = 0 for

i # j and the form of 'X given above implies that
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rti
AA = 3 AA = diag(*1 r(Cik) )

Al Ak

which in turn gives

AAI = 11(r )
j=1 Ai

The linearity of V in p implies that Sxx = i AA and hence

rixxiiisxxr'= pc;.rv-lxriIVAAlifiAA1-1

=p411-'xrriVAAri.

The assumption that Xr = [X1X2] yields

114V-1 XrI =
j#1

3Recalling from above that tli = we have that,

Lmp(p)cx Wixxiiisxxi--113xxrifixxi

=
1
X1A (16;11)-ilX1X11Aili CT21) )1Lp(ii) Al Al

«( ,j)a E) 2
.1-1 = (1 ± ) 2

L-F1

Al Al

where = r(Xi) = r(Qi Xi) = r(QjXr). This gives the desired result that

2
)+*(QiXr)+1

12Limp (A) a (1 + r(Q1).- TWa)-1 )

Furthermore, by inspecting the score of Lmp(p), it is clear that like the profile, the

modified profile likelihood is maximized atµ which is the uniformly best linear unbiased

estimator in this model. 0
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Chapter 4

Decomposition of they Statistic for Curved Exponential Families with Application to the

Gaussian Mixed Linear Models

Benjamin Lyons, Dawn Peters and David Birkes



59

4. Decomposition of the r Statistic for Curved Exponential Families with
Applications to Gaussian Mixed Linear Models

4.1 Abstract

Lyons and Peters (1997a and 1997b) demonstrate that Skovgaard's modified

directed likelihood statistic, T, and Barndorff-Nielsen's approximate modified profile

likelihood, LIp, are simple methods of improving small sample inference in curved

exponential families, such as, Gaussian mixed linear models. This paper discusses a

decomposition of the adjustment that forms Skovgaard's r statistic. Like the

decomposition of r* presented for canonical parameters in regular exponential families by

Pierce and Peters (1992) and, more generally, in Barndorff-Nielsen, Pierce and Peters

(1994), this decomposition incorporates Ilp's nuisance parameter adjustment.

Simplifications of this adjustment are presented for the most common curved exponential

family: the Gaussian mixed linear model. These simplifications may help researchers

gauge the accuracy of the modified directed deviance.

4.2 Introduction

For regular exponential families and transformation models, Barndorff-Nielsen's

modified profile likelihood, Lmp, and modified directed likelihood, r*, can greatly

improve small sample inference. Unfortunately, in curved exponential families these

statistics are difficult to calculate since they require the specification of an ancillary

statistic. To remedy this, Skovgaard (1996) introduced another modified directed

likelihood, 7, that is standard normal to second order and, as shown by Lyons and Peters

(1997a), is easy to calculate and very accurate in Gaussian mixed linear models.

Barndorff-Nielsen (1994a), using techniques similar to Skovgaard's, introduced an

approximate modified profile likelihood, gp, for curved exponential families. Lyons

and Peters (1997b) showed that gp is simple to construct for Gaussian mixed linear
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models and is a sensible generalization of the residual likelihood introduced by Patterson

and Thompson (1971).

Our concern here is to investigate the relationship between Barndorff-Nielsen's

LIp and Skovgaard's 7 and suggest a decomposition of 7 's adjustment term similar to

the decomposition of r* presented by Pierce and Peters (1992) and Barndorff- Nielsen,

Pierce and Peters (1994). By examining the magnitude of the different adjustment terms,

researchers may be able to determine if 7 will be accurate enough for inference. Since

'7 is particularly useful for Gaussian mixed linear models, we derive some simplifications

of the adjustment in this setting. We hope that the simplifications outlined will serve as

the foundation for a more thorough understanding ofr's accuracy. Specifically, it may

help determine which designs and models can be analyzed effectively using higher order

methods.

We adopt notation similar to that used by Barndorff- Nielsen and Cox (1994) and

partition the parameter vector 9 into a parameter of interest, //), and a nuisance parameter

x. The likelihood of 9 will be written as L(9) and its log as 1(9). Differentiation with

respect to 9 will be denoted by a I followed by a sub-scripted parameter, e.g., the score

U(9) will be written as be and the observed information j(9) as 1(0)m . The expected

information is denoted by i(9) = E(j(0)). Evaluation of a quantity dependent on 0 at

the maximum likelihood estimates 6p, or at the constrained maximum likelihood

estimates OA rij) is denoted by a superior and , respectively; e.g., the profile log

likelihood for IP is denoted by 7, i.e.,er = dp(0) = l( &, X). For a matrix X, R(X) will

denote the range space, r(X) its rank, tr(X) its trace, and IXI its determinant.

In section 2 we present7 and Ltzp. In section 3 we develop the decomposition of

the adjustment and in section 4 we apply this decomposition to Gaussian mixed linear

models. Additional technical results are discussed in the appendix.
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4.3 Modified Directed Likelihood

The modified directed likelihood corrects the directed likelihood: the signed

square root of the likelihood ratio statistic r. For testing a single parameter = tPo in the

presence of a nuisance parameter X,

r(00) = s811(17) 00)(2(6, i(iP0

which, under the null hypothesis, is standard normal with absolute first order, i.e.,

Op(n-1), error . To improve its accuracy Barndorff-Nielsen (1986) proposed adjusting r,

obtaining the r *statistic:

r*(11)0) = r(00) ,*109(u(0 )-

Barndorff-Nielsen's r* statistic is standard normal with relative third order, Op(n-1),

error in moderate deviation regions and second order, Op(n- 1), error in large deviation

regions. The statistic u(tPo) is a function of the full MLEs, the constrained MLEs, the

observed information, and two sample space derivatives:

u(00) = f(l;13.,i)-1 0;;Fi 'rano 131-1 Irmrelflxxi-1,

where [ (liero)-1 (//;-4 7a) ], is the element of this vector corresponding to 0.

In the curved exponential family setting, an approximate ancillary statistic A can

be found so that 8 and A are jointly sufficient (see Barndorff-Nielsen and Cox 1994 ch.

7). The derivatives //0;- and 14-4 are taken with respect to the data, i.e., with respect to

while A is held fixed. The sample space derivatives can then be written as

/Ai; = aa-,9,2F0/(9A A) and /a = 7:Ai/(0; B, A),

the derivatives taken with the ancillary statistic held fixed. Numerical studies, e.g., Pierce

and Peters (1992) and Lyons and Peters (1997a) have shown that r* gives quite accurate

p-values and confidence intervals for a variety of models. Unfortunately, the sample

space derivatives are difficult to calculate and require the specification of an ancillary

statistic.
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By accounting for nuisance parameters, the modified profile likelihood generally

provides improved inference about compared to the profile likelihood. Like r*, it is a

function of the observed information and sample space derivatives:

Lmpoo = rixxilLp(po),

wherelbci and are the nuisance parameter blocks of 7/9;-d and j respectively. In

many cases Lmp is a third order approximation to the conditional or marginal likelihood

of the parameter of interest. In all models the score of Lmp(?P), unlike the unadjusted

profile likelihood score, is asymptotically unbiased (Barndorff-Nielsen 1994b). Hence,

Lmp behaves more like a "real" likelihood than the unadjusted profile likelihood.

In practice, however, calculating either r* or Lmp is difficult. Constructing the

sample space derivatives requires the specification of an exact or approximate ancillary

statistic. It is technically difficult to take the derivative with respect to the MLE holding

the ancillary statistic fixed and in curved exponential models there are several possible

approximate ancillary statistics and hence neither TA nor Lmp are uniquely defined. For

curved exponential families both Barndorff-Nielsen (1994b) and Skovgaard (1996) have

proposed approximations to some sample space derivatives that do not require the

specification of an ancillary statistic. Rather, both approximations depend on the

covariance of the score statistic and the deviance drop and are relatively simple to

calculate.

Skovgaard proposed approximating the sample space derivatives with

".* t ^ N t
1/9;-e- = S j i and / lie = qj i

where = indicates equality to second order. The terms S and q are given by

S = Cove,( 4(01), 4(02))1 .,02.7). and

q = C ove,(10(01), 1 (9k) 1(02))10i.i,02.w.

Applying these approximations to u gives Skovgaard's r statistic which is approximately

standard normal with second order relative error in moderate deviation regions and first
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order relative error in large deviation regions. Using S itself to approximate 710(9- in the

formula for L,p gives Barndorff-Nielsen's approximate modified profile likelihood, gp,

a second order approximation to the modified profile likelihood. For Gaussian mixed

linear models, Lyons and Peters (1997a and b) show that S and q have compact forms so

that'? and 1,12p are easy to calculate with existing software.

In regular exponential families, no ancillary statistic is necessary since the MLEs

alone are sufficient. In this case, both 7 and LLp reduce to r* and Lmp, and so,7 has

third order accuracy. In curved exponential families, however, the accuracy of 7 depends

on properties of the ancillary statistic (see Skovgaard 1996). Our decomposition will

attempt to account for this.

4.4 Decomposition

Pierce and Peters (1992) explained that in problems with nuisance parameters it is

useful to decompose the higher order adjustment, u(0), into two parts: one analogous to

the adjustment needed in one parameter models and the other pertaining to the nuisance

parameters. Our decomposition is similar but in addition highlights a component due to

the ancillary statistic.

Using Skovgaard's approximation we can approximate u with u3:

us (P) = [ S-1 q]* rixx1-1131-i1Sxx1140 Six(Sxx)-1Sxsifil-1131,

here [ S-1 q],t, is the element of the vector corresponding to the interest parameter. To

obtain the nuisance parameter adjustment, note that the approximate modified profile

likelihood can be written as

ap (P) = Dt (0) r xxii4(0),
IIwhere Dt (P) Multiplying LL ((Ii) by the z.' independent factor, gives
1Sxxl XX

LIp (tP) oc C't(tP) Lp(0),

where
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CI (0) = Dt (IP) {
xxl

In a regular exponential family, the nuisance parameter adjustment Cf ( ) = 1 since

Sxx (0) = 2 and the observed and expected information are equal. This is not the case in

curved exponential families where C1.(iP) 0 1. A method for preserving this equality is

discussed below.

The other adjustment in regular exponential families is often called the

information adjustment since it tends to be large when the adjusted information is small.

If no nuisance parameters were present, it would constitute the entire adjustment.

Denoted by u this adjustment is given by

17(0) = [ S-1 Citinklx I-1 I StAblx1 where

Stinblx = S S ox(S xx)-1 S and itoP 7ox(.7xx)
-iiaro

In regular exponential families r* is

r* (0) = r(0) 7tp)In(C1(0)) + Rivyln(%)) ).

Calculating'? in curved exponential families, however, requires an additional function of

171-'131:

7(0) = r(0) ,7,g/n(CI(0)) + ,71771, 1 n ( (pfr) ) + i;71 5 .1 n (

Large values of the final term above would suggest that the ancillary statistic is influential

and may affect the accuracy of ther statistic.

In one parameter families the Efron-Hinkley, or affine ancillary statistic is defined

as

a = 1) /

where -y is a function of the expected information, the expectation of the square of the

observed information, and the expectation of the product of the score and the observed

information (see Barndorff-Nielsen and Cox 1994). This statistic is standard normal to

first order and hence approximately ancillary. In the one parameter setting, large values

of /n(I) corresponds to large values of this ancillary statistic.
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It is convenient to decompose the ancillary adjustment into two terms: one

dependent on the nuisance parameters and another that would be present in a one

parameter family. That is, write

1 In (111) = 1 ln(fir-0,1) - In(liftd)r(0) /VP/ 'loft'

For 1/) = ;):

Ct(;1))1ixcxj = 1

so that the first adjustment and the nuisance parameter term cancel in this case. The other

adjustment term, the ratio 13 +Mx I Ii +Mx I -1, would be present in one parameter models.

Generally, this ratio would be used to form the affine ancillary statistic in the model

defined by the profile likelihood.

4.5 Decomposition for Gaussian Mixed Linear Models

Gaussian mixed models are the most commonly used models where the density

often follows a curved exponential family and Skovgaard's 7 statistic is particularly useful

in this setting. Of interest here are models of the form:

Yn = XI) + e and e ti N n(0,V (p) ), (1)

where X is a known n by p design matrix and V is a positive definite covariance matrix

that depends on the unknown covariance parameter vector p of dimension k. Either the

fixed effects vector 0, dimension p, or p may be of interest. Since only one dimensional

hypotheses of are considered, we can assume without loss of generality that X has full

column rank. We are primarily concerned with cases, such as, repeated measures

models, where Y consists of m independent subsets, and hence V (p), is block diagonal

and approximations improve as m gets large. It is easy to see that the density of Y

belongs to an exponential family that may be either regular or curved. If this density

belongs to a regular exponential family then 7 = r* and hence its accuracy may improve a

great deal.
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The accuracy of 7 depends explicitly on the type of mixed model being fit. Most

balanced variance component models belong to regular exponential families as do

balanced multivariate analysis of variance models. Many unbalanced variance

component models and repeated measures models are, however, curved. Sufficient

conditions for the density of Y to follow a regular exponential family are given in the

appendix. Unlike the Wald and the directed likelihood which are first order standard

normal regardless of the design, the accuracy of 7 improves in "nice " mixed models.

Our aim in giving the simplifications below then is to help lay a foundation for a more

systematic study of when"? will give accurate inference outside of regular exponential

families.

In Gaussian mixed models Lyons and Peters (1997a) show that S and q have a

compact form if either a component of p or is of interest. Below 17/pi = V . Writing

S
(AS pp Sop).
S pi3 Spp

the component matrices have the form:

S = -1X ,

ES ppbj = ltr( Vim V -11V ipj, -1 ) for i, j = 1, , k ,

Spo = 0,

and the ith column of Sop is given by

Sop; = 1/701, X ( ) , i = 1 , . . . , k.

Similarly, q = (qt' ) where qt, = X'11-1X(,3 ) and the jth elements of
qp

qp are given by

[qp]i = 2 tr(Vpi( rV -1)) for j = 1 , k.

The simplifications of the adjustment will be presented separately for p and /3.
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4.5.1 Inference About a Covariance Parameter

Suppose that the scalar ti) = pl is of interest and x = (i3, p2) so noting that

Spp =jpp and that S f3p = 0 , the nuisance parameter adjustment can be written:
-1

'XIV XI
In(at (0)) = ) + In( ri p2p2101 p2p2Ifil ),

IXqp XI 12,21

where jp2p20 = p20 (X X)-1 p 2 The first term corrects for the fixed effects

while the second term corrects for the nuisance covariance parameters. Also, the two

parts of the ancillary adjustment term also simplify since ifip = 0:

In(42Qd) = ln(11°2°21 ) and
lixxl 1P2P2101

ipipIRS,p2) = ZPIP1 ipip2 (i p2P2)-liP2p1 = ipipilp2

Other notable simplifications occur when either Zyskind's condition (Zyskind

1967) holds or the covariance matrix belongs to a commutative quadratic subspace. As is

shown in the appendix, together these conditions imply that the density of Y belongs to a

regular exponential family and that 7 = r*.

In the appendix we show that for fixed p, Zyskind's condition ,

R(Vp-1X) C R(X)V p, implies that /3 is estimation orthogonal (see Lindsey 1996):
ti

= 73. This in turn implies that ;co = 0 so that the adjusted and unadjusted

information matrices for p2 are equal: 3 p2p2ifi = 3 . This simplifies both the nuisance

parameter and ancillary adjustments.

Zyskind's condition holds not only in balanced variance component models but in

many repeated measures models where there is no missing data and a saturated means

model is fit to the fixed effects. Other interesting simplifications occur when the

covariance matrix belongs to a commutative quadratic subspace (CQS).

In balanced variance component models the covariance matrix can usually be

written as



68

k

V(P) = Ai(P)(2i
i =1

where the matrices Qi are known symmetric, idempotent, non-negative definite, and

pair-wise orthogonal matrices that sum to the identity and A(p) is a one to one

continuous function of p. When these conditions hold, V(p) belongs to a CQS (Seely

1977). This condition does not depend on the form of the fixed effect design matrix X

and so may be satisfied without Zyskind's condition. For example, the CQS condition

may be satisfied in balanced incomplete block models and split plot models with

covariates.

If interest lies in the parameter Al so that x= (,3, {Ad }dol), then the information

adjustment u simplifies. Noting that

17-1(P) = >:
i=i

it is easy to see that the covariance parameter block of the observed information is given

by jA,A, = 0 for i 1 and

3AiAi (Y-X13,(Y-X15) r(CA?,)

and hence iAA is a diagonal matrix with (i,i)th element given by

T42:1.

The MLE for Ai is

3, (Y-X;5)'Q,(Y-4)
r(Q,)\ /*ft,

Hence, we see that iaa = jAA even though the density of Y may not be regular. Since V

is linear in A, we also have SA), = iAA. The parameterization orthoganality of Al and

{Ad}dot as well as the fact that SA,05 = 0 implies that SA,A,ix = SA,A, . Finally, the qp

term can be written as

[qp] 1 = 719-1( 1 4-) so that2 AI Ai

= r(Qi)(
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To illustrate the decomposition when interest lies in a covariance parameter, we

will employ a balanced analysis of variance or covariance model with sub-sampling.

Suppose that k samples are taken from a experimental units and that the response vector,

with length n = a x k, follows the Gaussian mixed linear model:

Yn = + E , C rI Nn(0,V(T,X)).
a

Assume the covariance matrix V(T, x) = Tin + xM where M = e Jk, and Jk is a
i = 1

k x k matrix of ones. So V can

/

be rewritten as

V(T, x) = rin Q) + (kx + r)Q,

where Q = 01 is the orthogonal projection operator on R(M) and In Q is the

orthogonal projection operator on R(M)-L. Clearly, V belongs to a commutative

quadratic subspace. Since the treatments are applied to the experimental units, it is easy

to see that R(X) C R(M) regardless of the form of X, for instance the columns of X

could be either continuous or discrete.

Suppose that interest lies with the sub-sampling variance component T. In this

case (In Q)X = 0. This implies thatigal = 0 and with since jAA is diagonal this fact

implies estimation orthoganality (see Barndorff-Nielsen and Cox 1994 pg. 99); that is, for

fixed Ai, rA'd = d for d 1 and 73 = 711 This leads to the entire nuisance parameter

adjustment disappearing.

Since V is linear in A, SAdAd = ik,Ad so that

riA A d GA A
( d ddIn

IS AdAd I

The fixed effect portion of the nuisance parameter adjustment disappears since

X'rf7-1X = r(E 4-A Qd)X = ,C(EtQd)X = X'f-1 XX.
dpi --d

Finally, the orthogonality implies that ikAiix = iA1A1 and jAlAilx = jA1A1 so that one

portion of the ancillary adjustment disappears, specifically lz Ai Ai Ix = 13 Ai Ai ix !-

Thus, there is no nuisance parameter adjustment and
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r(r) = r(r) + 7711 in(r 71 ) + ,71,71
liA101

(k- 1)
4

1

r
1where it = n(2

( th. If Zyskind's condition holds, i.e., the density belongs

to a regular exponential family, then the ancillary adjustment disappears entirely:

r* (r) = r(r) ;31.7yin(41) .

In this case, r* has the same form regardless of the number of fixed effects in the model

and the discussion above can be extended for an arbitrary number of random effects as

well.

4.5.2 Inference About a Fixed Parameter

Suppose that interest lies with a one dimensional component I% where

Xi3 = X1,31 + X2/32 so that x = (132, p). The nuisance parameter adjustment reduces

to
- -1

nInat(0)11 (-2-f/--2
piX1VX21 )
0121113PPIthii

X2I
ln(

p

,
where jppi/32 = ipp jp132(X2Vp

-1
X2):702p . The ancillary adjustment simplifies in a

similar manner.

The most interesting simplification, however, lies in the information adjustment.

Using results given by Graybill (1983), it is easy to show that

Sq0 SSfl Sqs-147 OP of P PP P(
S;pqp

and that 5/3-41q0 = (4 is0) and hence,

[S-1 q]th = (781 WO [SiASop Sppq, ]th.
-

It is common to estimate the variance of 4 with (XT
-1

X)-lso that an estimate of the

standard error of 41 is given by (iththilA )-t. We see then that it can be written as a

function of this popular version of this Wald statistic:

it = (Wald [Slip& S p-pl qp]thliflitiAli)R thi3i1A21-113 sithix1-117 ththlth I

where Wald = 631
lifii#0321-
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Pierce and Peters (1992) found it convenient to write u as a function of the Wald

statistic since ln( bew:1d) will small when the likelihood is quadratic in the interest

parameter. Below we show that the term [S/31Stip Sp0;qp]th RAN/3211i is generally

Op(n-2) while the Wald term is Op(1). In some special cases this adjustment simplifies

as well. The Wald statistic and r are easy to obtain from existing mixed model software

so their ratio offers a simple way of gauging ifs size.

Recall that 7) p = Op(n-2), in moderate deviation regions, and hence so are

the elements of the difference P-1 - IFIwhich implies that go is Op(ni). Similarly,

13 - Q = Op(n-i) so that S/30 is Op(ni). Noting that each element of 7, So, and

Spp are Op(n) we find that the entire term [S 09145 S 00!qp]thri ththiA(t is Op(72i). In

addition, if filand /32 are orthogonal with respect to the observed information, i.e.,

XIV 1P)X2 = 0,Vp,

then 7) = Op(n- 1) and ;3 -73 = Op(n-1) (see Cox and Reid (1987)) so that

[S115/31, qv] RS0110211 is Op(n-i).

This entire term simplifies in the special case = W2 which, as shown in the

appendix, is implied by Zyskind's condition holding in the sub-model and design

orthogonality, i.e., R(Vp-1 X2) C R(X2) and XIX2 = 0. This estimation orthoganality

implies that for each of the k columns of Stip

S rrV-1X(74

= Pk) A

)
2 /pi 1

effectively removing 742 from the adjustment. Noting that -,01.-Sfi is 0
P
(n) we see

Ith P

= X1 (1 [S 01S S = Wald(1 - Op(n- i)).
ispoilp2r

Furthermore, as shown in the appendix, the remainder term is actually

/n(11 Op(n- 1)I), in moderate deviation regions, since
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R(V-1X2) C R(X2) and X1X2 = 0

implies that Xi V-1 (p) X2 = 0, V p.

In regular exponential families, /3 is generally a mean parameter and the

likelihood is quadratic in fl . Hence, as Pierce and Peters (1992) noted, 3-1n(wrald) should

be small for moderate sample sizes. In this cases the ratio of Wald and r may be an

accurate guide to the magnitude of the information adjustment. The appendix contains a

more technical discussion of conditions that guarantee estimation and information

orthoganality of Pi and (/32, p).

To illustrate the decomposition in the fixed parameter cases, we will employ a

balanced analysis of covariance model with sub-sampling. Suppose there are a blocks of

size k so that for n=axk

Yn = X/3 + e , e - N(0, V(r, x))

the covariance matrix V(r, x) having the same form as in example 1.

Suppose that interest lies in 131 :

E(Yn) = X1,81 + X282

where X1 is a covariate that varies with either each sub-sample or with each experimental

unit. Suppose further that X2 is a balanced classification matrix representing treatments

measured on each experimental unit. Hence, Zyskind's condition holds in the sub-model:

R(X2) C R(Q) = R(11-1 X2) = R(Q X2) = R(X2). If we assume further that

XIX2 = 0 then for fixed A , /32 = :e2 and ii can be simplified:

U =
liPom

The magnitudemagnitude of the information adjustment is well approximated in this case with the

(1 Op(n- 1)) .

ratio of the Wald statistic to r.
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4.6 Conclusion

The greatest difficulty in applying asymptotic methods, with or without higher

order adjustment, is determining if one has enough data to obtain accurate p-values and

confidence intervals. The decomposition given in section 3 may help researchers use in

curved exponential families. By gauging the magnitude of the adjustment terms they can

diagnose accuracy problems. In section 4 we showed how these adjustment terms

simplify in the case of the most common curved exponential families, the Gaussian

mixed linear model, and indicated that the same conditions that result in Y being a

member of a regular exponential family leads to simplifications of the adjustment term.
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4.8 Appendix
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Claims 1 and 2 below are similar, but less general, to results given by Seely

(1977) and Zyskind (1967) respectively. We feel some redundancy is warranted,

however, since our methods differ slightly and our motivation differs a great deal from

that of those authors. Specifically, we would like to place these results in the context of

likelihood based inference and we wish to determine when?' = r* or when the

adjustment terms simplify in some useful way. Claims 3 and 4 are consequences of

Claims 1 and 2.

Again, we are concerned with the model n = X f3 e where E Nn(0, V(P)).

Here V (p) depends on the k dimensional vector p and is positive definite for all p. The p

dimensional vector fl E RP and X is assumed to have full column rank. The first claim

establishes sufficient conditions for the density of Y to be a member of a regular

exponential family implying that 7 = r*, and hence both are standard normal to third

order. For convenience, in this section we will let Vp denote V (p).

Claim 1: Consider the multivariate normal families indexed by (3,p):

F= IN(X f 3,V (p)) : 13 E RP and p E rp}

with rp = fp E Rk : Vp is positive definite }.

Sufficient conditions for the family defined by F to be regular in the sense defined by

Barndorff-Nielsen and Cox (1994 pg. 63), and hence 7 = r*, are given by
k

(i) For p E rp, Vp-1 = EAi(p)Qi where Qi's are known symmetric and linearly
1=1

independent matrices. Furthermore, for each A E Rk, 2 a WA such that
k

Wa = E Ai Qi and if A Era = {A E Rk : WA is positive definite} then
i=1

Wa = Vp-1.

(ii) A(p): rp TA is a bijective continuous function implying, in particular,

that A(rp) = TA.
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(iii) R(QiX) C R(X) for i = 1, , k, which is equivalent to Zyskind's

condition in this model.

Proof : By (i)
k

l(p, /3) = (QiAi)Y + rWA X fl XiWA X13 ilnIWA I.
i=1

For fixed A, condition (iii)

R(WA X) C R(X) = 3 DA, dimension p x p, such that WAX = XDA

.XDA = XiWA X DA = (X1.20-1X1 WA X.

Hence, MAX/3 =rXDA,3=rX(X'X)-1X'IVAX13.

This implies that a p + k vector of canonical statistics is

T = (Y'QIY, , 17' QkY, (X' X)-1 X'1")

and the p + k vector of canonical parameters is

0 = (A, ry)

where 7 = rWAXO. For the density indexed by 0 , let

4 = { 9 : f < co}.

It can be shown using a decomposition argument similar to the one presented in Kendall

and Stewart (1987 pg. 477) that f < 00 if and only if WA is positive definite and

hence (II = x RP. By the independence of the Qi, it. has dimension k + p so that

the above canonical representation is minimal. Now we will show that 4) is open.

WA is a continuous function into K, the space of symmetric matrices. Note that

= We 1(D) where V is the subset of k containing all positive definite positive

definite matrices. Since V is open, TA and 4' are also open (1994 pg. 62). By (ii) (p,13)

one to one with (A,7) so that any density in is also a member of a regular exponential

family.

To see thatr = r* is such cases note that in these regular families the mean

parameterization defined by E(T) = v is one to one with 0 so that the density indexed

by (p, /3) can be indexed with rl. Furthermore in such cases, = T so that
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n(p, T3) = T. By Lemma 1 of Skovgaard (1996), n(71,7) = T implies that S and q are

exactly equal to the sample space derivatives they approximate which gives 7 = r*.

The simplest way to obtain a A such that condition (ii) holds is to find a

parameterization of V such that E(Y'QiY) = pi. This will be demonstrated with the

following corollary which is applicable to most balanced variance component models.

Corollary to Claim 1: Suppose that Vp is an element of a commutative quadratic

subspace so that V can be written in terms of its spectral decomposition
k

VP = E PiQi
1=1

where the Qi's are symmetric, idempotent, pair-wise orthogonal matrices such that
k

= 1.
i=1

If p varies freely over the set rp = {p E Rk : V (p) is positive definite} and if

R(QiX) c R(X) Vi then r = r*.

Proof- In this case it can be checked that
k

V-1 = E 1(2, where
i=1

pi = E(Y'QiY) define the eigenvalues of VP.
k

Let Ai = ti and WA = >2 AiQi . Note that the mean parameterization i = (A, fl) so
i =1

that (ii) holds (Barndorff-Nielsen and Cox 1994 pg. 62).

The next claim shows that Zyskind's condition alone give estimation orthogonality

of p and P.

Claim 2: If condition (iii) of Claim 1 holds then for fixed p the constrained MLE of f3 is

= (X1X)-1XT and hence Q = (X' X)-1X'Y

Proof It is well known that for fixed p the constrained MLE of /3 is given by
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74 = (XWIT1X)-1X1Vp1Y.

By condition (iii) we have that R(Vp-1X) C R(X) which implies that

ViTlX = X(XX)-1X1Vp1X

since X(XX)-1X' is the orthogonal projection operator on R(X). Hence

74 = (X'Vp-1X)-1X1Vp-lY = (X'Vp-1X)-1(X'Vp-iX)(X'X)-1 X'Y

= (X1 'C)-' X11" .

In particular, this holds for p ="la which implies 73 = 74 .

Claim 3: If Zyskind's condition holds then for fixed p

,se
3 flp = O.

Proof This is a direct result estimation orthogonality, since in all models

X Jc = <#.1x,i, = 0 (see Barndorff-Nielsen and Cox 1994 pg. 99).

Claim 4: Suppose that

E(Y) = X1131 + X202

and that interest lies in the parameter 131 so that x = (132, p). We will discuss the

relationships between the first four conditions concerning the relationship between X and

Vp and estimation and parameter orthogonality:

(1) Zyskind's in the full model: R(V/T1X) C R(X), Vp.

(2) Zyskind's in the sub-model: R(Vp-1(p)X2) C R(X2),V p.

(3) X1X2 = 0

(4) Vp-1 orthoganality: X0fp-1X2 = 0, V p.

(5) Estimation orthoganality of )32 : F#2 = 'ij2.

(6) Expected Information orthoganality:

r132 '132 = Op(71-1) and PI 7, = op(n-1).
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Claim 4.1: (4) = (3).

Proof : All sensible models of interest can be parameterized so that for some Po,

V
Po

1 oc I .0

Claim 4.2: (2) and (3) = (5).

Proof : For fixed Q1, 732 is the MLE for the model

Yth = Y X1/31 ".. N (X202,11 (P))

Claim 2 gives, /32 = (XX2)-1XYr3i

= (XPC2)-1X2(Y X131)

= (XX2)-1XP7 by (3).

In particular for ,Q1 = T3iwe have Q1 = -410

Claim 4.3: (4) = (5).

Proof- Clearly, (4) implies that A and ,132 are parameter orthogonal in the sense defined

by Cox and Reid (1987) since

ithf32 = XI Vp-1X2 = 0.

Elementary methods show that iplp = 0 so that the entire vector th and (i32, p) are

orthogonal with respect to the observed information. This implies (Cox and Reid 1987)

that 732 712 = Op(72-1) andP "A = Op(n-1)

Claim 4.4: (2) and (3) (4).

Proof- (2) = 3 Dp such that ViT1X2 = X2Dp which with (3)
Xlyp-1X2 = XiX2Dp = 0.O

Claim 4.5: (1) and (4) (2) .

Proof- As shown in the proof of claim 1, (1) = 3 Dp such that Vp-1X = X D p where

Dp = (X' X)-1 X'Vp-1 X. (3) and (4)
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DP
( (xix1)-1 0 i-ixi 0

0 (Xp2)-1
)

0 XW- ix2p)
= DA((X1X1)-1XiVp-1X1 0 0 )( 4

0 (.X.X2)-1XV p-1X2 ) 0 Dp2

Vp-1 X = XDp = (XiDpi X2 Dp2 ) 4'

Vp- 1X2 = X2 (XX2)-1XVp-1X2

3 D2p such that 17TI X2 = X2D2p = R(Vp-1 X2 ) C R(X2). By symmetry we also

have R(170-1X1 ) C R(X1). 0
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5. Conclusion

This thesis is concerned with applying new higher order asymptotic methods to

the venerable subject of mixed linear models. Gaussian mixed linear models are among

the oldest class of problems where optimal and exact frequentist methods are not

available while higher order asymptotics is a relatively recent arrival to statistics with

Skovgaard's seminal paper on 7 being published in 1996. In this way, this thesis

amounts to putting old wine in new bottles and I hope I have not spilled too much.

The first paper demonstrated that Skovgaard's modified directed deviance statistic

is simple to apply in Gaussian mixed linear models and is worth the trouble because of its

simplicity, generality, and accuracy. The second paper showed that Patterson and

Thompson's residual likelihood is a special case of Barndorff-Nielsen's approximate

modified profile likelihood and discussed the appropriateness of applying the latter if

interest lies with a subset of covariance parameters or in the fixed effects. The third and

final paper discussed two related topics: decomposing the adjustment term used in r- in a

sensible manner and determining in what models Skovgaard's statistic will be accurate.

The last paper builds a foundation of, what I hope, will not only be a better

understanding of the accuracy of Skovgaard's statistic but a reconciliation between

likelihood inference in mixed models and other time tested sums of squares methods.

The connection begins in noting that Skovgaard's modified directed likelihood is equal to

Barndorff-Nielsen's third order accurate r* statistic when the density Y is a member of a

regular exponential family. The regularity of Y depends on the form the mixed model,

specifically the form of the covariance matrix and its relationship with the fixed effects.

These are the very same conditions discussed by Zyskind and Seely in a different context

years before commercial software made likelihood based inference practical.
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In practice this means that when applying higher order methods the venerable

fundamentals of mixed model design, e.g., balance and the orthogonality of fixed and

random effects, still matters. Contrast this with first order likelihood methods where the

design does not generally affect the accuracy of either the LRT or the Wald test. I find

the fact that the design has no bearing on the accuracy of the likelihood ratio test

unsatisfying and the fact that 7 = r* when the data is "nice" intuitively appealing.

Of course the converse is also true: 7 decreases in accuracy when the data is

"messy." I also find this, perhaps perversely, appealing since a third order modified

directed deviance could, in principle anyway, be constructed using a particular non-

unique ancillary. The ambiguous results arising from different ancillaries is not unlike the

more familiar ambiguity of different sums of squares giving different F-tests. That is,

messy data gives messy third order test statistics. This takes likelihood inference in

mixed linear models back to the future where messiness matters once again. This time,

however, we might have a chance of quantifying messiness since the accuracy of

Skovgaard's statistic is affected by the magnitude of an unspecified ancillary. By actually

calculating an ancillary we might arrive at a useful definition of messiness that could

serve as a guide to practitioners.
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