Endah Murniningtyas for the degree of <u>Master of Science</u> in <u>Agricultural and Resource Economics</u> presented on <u>October 12, 1989</u>.

Tittle : <u>Does Japan Exert Market Power in the World</u> <u>Wheat Market ?</u>.

## **Redacted for Privacy**

Abstract approved : \_\_\_\_

H. Alan Love

Hypothesis tests are developed for the exertion of market power by the Japanese government in the world and domestic wheat markets. The results indicate that the Japanese government is pursuing a more restrictive import policy for wheat than would be indicated by an optimal tariff strategy. Results also indicate that the Japanese government does not impose a restrictive policy on resale of wheat in the domestic market. An analysis of the welfare impacts of Japanese import restrictions suggests that the Japanese government may be pursuing a policy of collecting tariff revenues sufficient to cover domestic producer subsidies. The redistribution effects of Japanese import restrictions on the rest-of-world are sizeable. Does Japan Exert Market Power

in the World Wheat Market ?

by

Endah Murniningtyas

A THESIS

submitted to Oregon State University

in partial fulfillment of the requirements for the degree of Master of Science

Completed October 12, 1989 Commencement June 1990 APPROVED

5

# Redacted for Privacy

Assistant Professor of the Department of Agricultural and Resource Economics, in charge of major

## Redacted for Privacy

Head of the Department of Agricultural and Resource Economics

Redacted for Privacy

Dean of Graduate School

Date thesis presented October 12, 1989.

Typed by Endah Murniningtyas for Endah Murniningtyas.

#### ACKNOWLEDGEMENTS

I would like to thank to Dr. H. Alan Love, my major professor, whose continued interest and optimism provided the inspiration for this research; Dr. Steven T. Buccola and Dr. Patricia J. Lindsey, members of my graduate committee, whose valuable criticisms and suggestions improved the quality of my work; Prof. William Wick who served as Graduate Council Representative and Diana Burton for her valuable comments. I also would like to thank OTO/BAPPENAS for providing the scholarship and faculty, staff and friends in the Department of Agricultural and Resource Economic who made my time in Corvallis a "pleasant experience". Finally, I would like to dedicate this thesis to my mother and to the memory of my father, Sumitro Koesoemowijoto, for their loving and encouragement.

## TABLE OF CONTENTS

| I.   | INTRODUCTION1                                          |
|------|--------------------------------------------------------|
| II.  | REVIEW OF LITERATURE                                   |
| III. | JAPAN'S WHEAT POLICY6                                  |
| IV.  | CONCEPTUAL FRAMEWORK8                                  |
|      | Theory                                                 |
| v.   | ECONOMETRIC ESTIMATION23                               |
|      | Data24                                                 |
| VI.  | ECONOMETRIC RESULTS                                    |
|      | A Welfare Analysis of Japanese Trade<br>Restrictions32 |
| VII. | CONCLUSION                                             |
|      | BIBLIOGRAPHY41                                         |
|      | APPENDIX A. Results of the Monopsony<br>Power Test44   |
|      | APPENDIX B. Results of the Monopoly<br>Power Test45    |
|      | APPENDIX C. Data46                                     |
|      | APPENDIX D. Sources of Data53                          |

### LIST OF TABLES

| Table 1. | Estimates of Parameters28                |
|----------|------------------------------------------|
| Table 2. | Price Elasticities at the Mean Values31  |
| Table 3. | Model Solutions Under Alternative Policy |
|          | Scenarios                                |

#### DOES JAPAN EXERT MARKET POWER IN THE WORLD WHEAT MARKET ?

#### I. INTRODUCTION

Many countries administer agricultural imports and exports through government trade agencies. This has led a number of authors to pay increasing attention to the interaction of market participants and the possibility of imperfect competition. For example, McCalla [1966], Kolstad and Burris [1986] and Alaouze, et.al [1978] have proposed oligopoly models for the world wheat market. A duopsony model of international wheat trade has been proposed by Carter and Schmitz [1979]. While these studies helped provide new insight about the nature of agricultural trade, they have not as yet incorporated a statistical test for market structure. The purpose of this study is to develop a statistical test for identifying market structure in the international wheat market. The test developed in this study is adopted from methodologies used in industrial organization to identify monopoly power [Bresnahan, 1982; Appelbaum, 1979].

The Japanese wheat market is selected for empirical analysis because Japan is a major importer of wheat and it relies on a government trade agency for all imports and domestic resale of foreign wheat. Two statistical hypothesis tests are constructed. One test is for the exertion of market power by Japan as a buyer in the international market. The other test is for the existence of market power in the Japanese domestic market through monopoly resale of foreign and domestic wheat.

A review of previous studies is presented in Chapter two. Japanese wheat policy is described in Chapter three. A model of market structure is developed in Chapter four. The econometric estimation is presented in Chapter five. Chapter six gives econometric results and an economic interpretation of those results. Chapter seven summarizes results from the study.

#### II. REVIEW OF LITERATURE

During the past two decades a number of authors have proposed alternative models of market structure for the international wheat market. McCalla [1969] constructed a model of wheat trade based on the assumption of duopoly between the U.S and Canada. He found that outcomes in the world wheat market are determined by the sales-maximization behavior of the Canada-U.S duopoly with Canada acting as a leader. Alaouze, Watson and Sturgess [1978] later added Australia as a player in a joint U.S-Canada-Australia triopoly.

Based on the fact that most importing countries restrict their trade, Carter and Schmitz [1979] argue that importers take advantage of their market power in the world wheat market by imposing an optimal import tariff. They assert that the European Economic Community (EEC) and Japan exert joint market power by operating as a duopsony. Kolstad and Burris [1986] admit the possibility of imperfect competition among buyers and sellers and model Japan and the EEC as a duopsony facing a Canadian-U.S-Australian triopoly.

Empirical results from these various models have not been conclusive. In many cases these various studies provide contradictory evidence. For instance, Kolstad and Burris agreed with the duopoly and triopoly models proposed by McCalla and Alaouze-Watson-Sturgess but rejected the

duopsony model proposed by Carter and Schmitz. Part of the difficulty in resolving the differences in outcomes among the various studies is that those studies have not been conducted to empirically test for market structure. For example, McCalla utilized a Stackelberg duopoly model and simulated each possible outcome. These outcomes were then compared with the actual data. Carter and Schmitz based their conclusion on a simple comparison between actual and predicted prices in the presence of an optimal tariff imposed on the market by the EEC and Japan. Kolstad and Burris used Theil's inequality and Spearman rank correlations to measure the consistency between actual and simulated market outcomes. A common thread in all these studies is that their methodologies do not permit the possibility of forming testable nested hypotheses within a structural model context.

Tests for market structure have been constructed for other industries. Appelbaum [1979] tested for price taking behavior in the U.S crude petroleum and natural gas industries. Using cost functions of those industries to get derived demands for inputs, the hypothesis of whether the industry equalized its output price with its marginal cost was tested. The significance of the markup terms was used to distinguish monopoly and price taking behavior. The methodology of Appelbaum was adopted to U.S-Canada trade by Appelbaum and Kohli [1979]. A hypothesis test was performed to examine whether Canada behaves as a monopsonist with respect to its import demand and as a monopolist with respect to its exports to the U.S. They estimated the Canadian demand for imports and supply of exports to calculate markup terms that were then used to identify price taking behavior in the import and export markets.

Later, Bresnahan [1982] constructed a simple model of supply and demand to test for the existence of monopoly power. He proposed a demand function which contains an interaction between own-price and an exogenous substitute price. This interaction of variables allows a markup term to be incorporated directly into the estimated model. While Appelbaum calculated the value of the markup used to identify market structure outside the estimated model, Bresnahan parameterized the coefficient of the markup directly into the structural model.

#### III. JAPAN'S WHEAT POLICY

Since World War II, agricultural policy in Japan has been designed to encourage domestic production, maintain low consumer prices and minimize outflow of foreign exchange [Coyle, 1981]. The Food Staple Control Act of 1942 gave the government the authority to directly control prices and imports of food staples (mainly rice, wheat and barley). To maintain government objectives, the Japanese government intervenes in both the consumption and production of wheat through the auspices of the Japan Ministry of Agriculture, Forestry and Fishery (JMAFF).

To encourage domestic wheat production in Japan, a government purchasing price for producers is set well above the world level. This price is implemented through the JMAFF via wheat buying operations. The JMAFF must buy all wheat offered by farmers at the set producer price. Farmers are also free to sell wheat they produce directly to the market.

Adequate wheat for consumption is assured by the JMAFF which provides wheat from both domestic production and imports. The consumer price is maintained at a certain level by setting the government resale price of wheat to the wholesaler. Ninety percent of available wheat is imported, so the government selling price policy is heavily influenced by wheat import policy.

While wheat imports are provided by private traders, the government fully controls wheat importation by issuing import licenses to traders. The quantity of wheat imported is set to clear the market at the set resale price [OECD, 1987]. All imported wheat has to be sold to the JMAFF which then resells wheat to domestic wholesale consumers at the set government resale price. While the resale price charged to domestic consumers is well below the government purchasing price paid to producers, both prices are set above the world price. The government purchasing price mechanism means that farmers are likely to sell all wheat they produce to the government. Currently about ninety percent of domestically produced wheat is sold to the government. During the past few years, the government purchasing price for wheat has remained twice its resale price and four times world price.

#### IV. CONCEPTUAL FRAMEWORK

#### Theory

Market power is defined by McCalla [1981] as the ability to influence market outcome, which could be possessed by either the buyer (monopsony power) or the seller (monopoly power). Such power might arise because of the size of a firm relative to the total market (market share), or superior information possessed or control over channels in the marketing system. In the international market, market power can be possessed by a country with a large market share (large country assumption), a state trading arrangement or a large multinational firm which controls a substantial share of total trade. While firms use their market power to maximize profit, state traders may use market power for a variety of purposes [Just, Schmitz and Zilberman, 1979]. Carter and Schmitz [1979] have investigated the possibility of imposing an optimal tariff strategy to improve total welfare in an importing country. McCalla [1966] and others have investigated the possibility that exporting countries impose monopoly power to benefit producer groups. However, in an international setting, government-sponsored trade agencies may have motives other than those that are purely trade related. Government intermediaries like JMAFF, which regulates all wheat trade

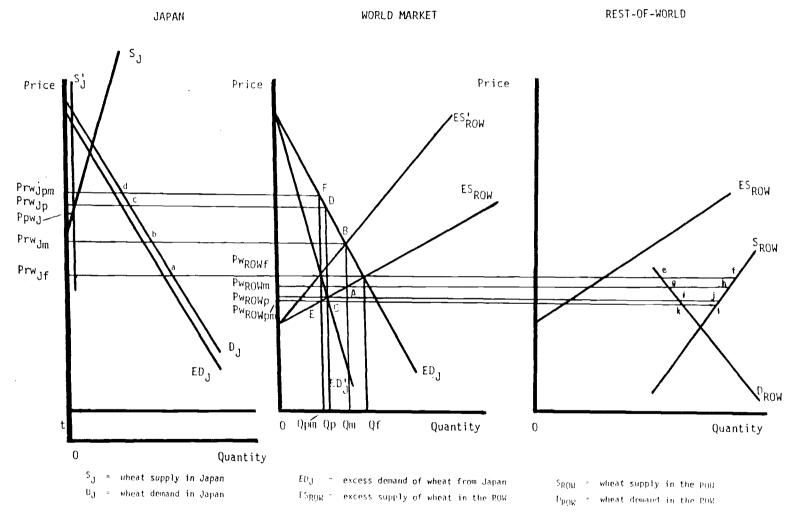
in Japan, may have multiple objectives including: price stabilization, enhancement of producers returns and provision of tax revenues to the government. Three possible objectives at JMAFF are evaluated: execution of an optimal tariff strategy, enhancing returns to domestic Japanese producers by restricting domestic trade, and maximizing producer returns through joint intervention in the domestic and international markets. Throughout the analysis it will be assumed that perfect competition prevails in the markets outside of Japan.

The monopoly and monopsony models are well developed in the literature [Lerner, 1934; Enke, 1944]. Monopoly power is possible when a monopolist faces a decreasing price as the sales increase. A monopolist will set price to maximize profit (marginal revenue = marginal cost) and let buyers decide the quantities they purchase at the set price [Lerner, 1934].

According to Enke [1944], a country which has an increasing import supply function, so that a disparity exists between marginal cost and supply price of each unit imported, will find it profitable to act as a monopsonist with respect to the commodity it imports. When the tariff rate is equivalent to the perfect monopsony buying power solution, the tariff is considered to be optimal. Enke has demonstrated that the imposition of an optimal tariff may have potential net welfare gains for the society imposing

the tariff.

The possibility of simultaneously imposing both monopsony and monopoly power (pure middleman solution), is raised by both Lerner [1934] and Enke [1944] and examined by Just, et.al [1979]. A pure middleman extracts surplus from both domestic consumers and foreign producers. Profits can then be redistributed to producers and consumers or used by the government to provide other social services. The economic impact of a pure middleman solution can be measured by calculating changes in consumer and producer surplus and the tariff revenue collected. The net benefit to the state trading agency generated by the pure middleman solution will be greater than that resulting from either a pure monopoly or pure monopsony solution executed independently [Just, et.al, 1982].


### Graphic Formulation of Alternative Market Solutions

As the sole buyer of all imported wheat in Japan, potentially the JMAFF can impose monopsony buying power in the world wheat market by establishing a wedge (tariff) between domestic and world prices. At the same time, as the sole seller in the domestic market, potentially the JMAFF can exert monopoly selling power by establishing a difference between the selling price and buying price from the world market. Such policies can be exerted individually

or jointly. The analytical framework is displayed in Figure 1.

On the left hand side are the supply  $(S_J)$  and demand  $(D_J)$  curves for wheat in Japan. Normally excess demand is determined as the horizontal difference between demand and supply. However, producer price of wheat in Japan is set exogenously. As a result, domestic supply of wheat does not respond to price fluctuations in the market, so the excess demand curve  $(ED_J)$  in Japan is given by the difference between total wheat demanded and the quantity supplied at the fixed producer price  $(Ppw_J)$ . The fixed quantity of wheat supplied in Japan is represented by the vertical supply curve,  $S_J'$ .

On the right hand side are the rest-of-world wheat supply  $(S_{ROW})$  and demand  $(D_{ROW})$  curves for the international market outside Japan. The excess supply of wheat from rest-of-world  $(ES_{ROW})$  is the horizontal difference between domestic wheat supply and demand in the rest-of-world. In the middle of Figure 1 the Japanese excess demand curve,  $ED_J$ , is superimposed on the excess supply curve from rest-of-world,  $ES_{ROW}$ . The horizontal axis of the world market is shifted up to integrate transportation cost (t) into the analysis. In a free-trade environment, the import price would be  $Pw_{ROWf}$ , domestic resale price would be  $Prw_{Jf}$ , and the quantity traded would be  $Q_f$ . The difference between these two prices is transportation cost. Under free trade





the JMAFF does not collect any tariff revenue.

If the JMAFF faces an upward sloping supply curve from rest-of-world it will be able to act as a monopsonist. The marginal cost of imports for the monopsonist is represented by the marginal excess supply curve from restof-world (ESpou'). The perfect monopsonist solution then will be given by the intersection of ED, and ES<sub>POU</sub>'. The resale price of wheat in Japan would be Prw<sub>Jm</sub>, the world price would be  $Pw_{ROMm}$ , and the quantity traded would be  $Q_m$ . The price differential, Prw<sub>Jm</sub> - Pw<sub>ROWm</sub>, multiplied by quantity traded represents tariff revenue collected by JMAFF and is given by the area Prwim Pwpoum AB. The deadweight loss in Japan is given by tariff revenue, Prw\_mPw\_ROWmAB minus the change in consumer surplus, **\_**Prw<sub>.if</sub>abPrw<sub>.im</sub>. Change in producer surplus is zero in the calculation of Japan's deadweight loss since producer price in Japan is fixed by the government and is assumed to remain unchanged across alternative market solutions. The deadweight loss in rest-of-world is given by gain in consumer surplus, ■Pw<sub>ROUf</sub>egPw<sub>ROUm</sub>, minus the loss in producer surplus, ■Pw<sub>ROWf</sub>fhPw<sub>ROWm</sub>. Enke [1944] has demonstrated that the monopsonist solution may result in a net welfare gain in the importing country.

If the JMAFF faces a downward sloping excess demand curve in the domestic market it has the potential to behave as a monopolist. The marginal revenue for the monopolist is given by the marginal Japanese excess demand curve  $(ED_{j}')$ . The pure monopolist solution is given by the intersection of  $ED_{j}'$  and  $ES_{ROW}$ . Price in the world market would be  $Pw_{ROWp}$ , resale price in the Japanese market would be  $Prw_{jp}$  and the quantity traded would be  $Q_{p}$ . The monopolist buying power premium is the difference between  $Prw_{jp}$  and  $Pw_{ROWp}$  and monopoly rent collected by the JMAFF would be  $\_Prw_{jp}Pw_{ROWp}CD$ . The deadweight loss in Japan is given by monopoly rent,  $\_Prw_{jp}Pw_{ROWp}CD$ , minus the loss in consumer surplus,  $\_Prw_{jq}acPrw_{jp}$ . The deadweight loss in rest-of-world is given by the gain in consumer surplus,  $\_Pw_{ROWf}cPw_{ROWp}$ .

If the JMAFF faces a downward sloping excess demand curve in the domestic market and an upward sloping excess supply curve in the world market, it would potentially be able to impose both monopoly and monopsony market power (pure middleman solution). The intersection of the ED<sub>J</sub>' and  $ES_{ROM}$ ' in the middle of Figure 1 gives the equilibrium solution for the pure middleman. The resale price in Japan would be  $Prw_{Jpm}$ ,  $Pw_{ROWpm}$  would be the world price and the quantity traded would be  $Q_{pm}$ . The distance between  $Prw_{Jpm}$ and  $Pw_{ROWpm}$  would be the price wedge (tariff) created by simultaneous execution of monopsony and monopoly power by the pure middleman. Tariff revenue collected by the JMAFF would be equal to area  $Prw_{Jpm}Pw_{ROWpm}EF$ . The deadweight loss in Japan is the tariff revenue,  $Prw_{Jpm}Pw_{ROWpm}EF$ , minus the loss in consumer surplus, ■Prw<sub>Jf</sub>adPrw<sub>Jpm</sub>. The deadweight loss in rest-of-world is the gain in consumer surplus, ■Pw<sub>ROWf</sub>ekPw<sub>ROWpm</sub>, minus the loss in producer surplus, ■Pw<sub>ROWf</sub>flPw<sub>ROWpm</sub>.

#### Algebraic Formulation of Alternative Market Solutions

Assuming that producers and consumers behave as price takers, a constant exchange rate and that transportation cost is the only transfer cost, the profit function for the pure middleman can be defined as:

$$\max \pi = \beta * \Pr_{J}(M) * M - \Pr_{ROW}(M) * M + \beta * \Pr_{J}(M) * S_{J}$$

$$M - \beta * \Pr_{J} * S_{J} - t * M$$
(1)

where: M is the quantity of wheat imported by Japan  $(ED_J = ES_{ROW}$  when the world market clears),  $Prw_J(M) *M$  is the revenue from the sale of imported wheat (Yen),  $Pw_{ROW}(M) *M$  is the cost of imported wheat (U.S. dollars),  $Prw_J(M) *S_J$  is the revenue from sale of the domestically produced wheat (Yen),  $Ppw_J *S_J$  is the cost of domestically produced wheat (Yen) and t\*M is the transportation cost of imported wheat (U.S. dollars).  $Prw_J(M)$  represents price-dependent excess demand for wheat from Japan and  $Pw_{ROW}(M)$  represents price-dependent excess supply from rest-of-world. All prices are converted into a common currency unit, U.S. dollars, because it is commonly used in international trade. This conversion is obtained by multiplying all Yen prices by the coefficient B, which represents the exchange rate from Yen into U.S. dollars.

Domestic wheat is included in the profit function because both domestic and imported wheat are sold at the resale price. There is a small difference between the resale price for domestic wheat and imported wheat but this is due to quality difference, domestic wheat being somewhat lower in quality compared with imported wheat [OECD, 1987].

Profit will be at a maximum when:

$$\delta\pi/\delta M = \beta * (\delta Prw_{J}/\delta M) * M + \beta * Prw_{J} - (\delta Pw_{ROW}/\delta M) * M$$
$$- Pw_{ROW} + \beta * (\delta Prw_{J}/\delta M) * S_{J} - t = 0$$
(2)

where:

| δPrw <sub>j</sub> /δM  | is the slope of the price-dependent    |
|------------------------|----------------------------------------|
|                        | excess demand curve for Japan.         |
| δΡw <sub>row</sub> /δΜ | is the slope of the price-dependent    |
|                        | excess supply curve from rest-of-world |

Equation (2) can be manipulated into the equilibrium condition:

$$\beta * \Pr w_{J} + \sigma^{D} * \beta * (\delta \Pr w_{J} / \delta M) * (M + S_{J}) - t = \Pr w_{ROU} + \sigma^{F} * (\delta \Pr w_{ROU} / \delta M) * M$$
(3)

Equation 3 states that, at equilibrium, marginal benefit of wheat imports plus the monopoly selling premium (represented by  $\sigma^{D} \star \beta \star (\delta Prw_{I} / \delta M)$ ) minus transportation cost must be equal

to the marginal cost of wheat importation plus the monopsony buying premium (represented by  $\sigma^{F} * (\delta Pw_{POW} / \delta M)$ ).

Equilibrium condition 3 can also be expressed as:

$$Pw_{ROW} + t = \beta * Prw_{J} - \sigma^{F} * (\delta Pw_{ROW} / \delta M) * M + \sigma^{D} * \beta * (\delta Prw_{J} / \delta M) * (M + S_{J})$$
(4)

and

$$B*Prw_{J}-t=Pw_{ROW}+\sigma^{F}*(\delta Pw_{ROW}/\delta M)*M-\sigma^{D}*B*(\delta Prw_{J}/\delta M)*(M+S_{J})$$
(5)

The coefficients  $\sigma^{D}$  and  $\sigma^{F}$  are added to the equilibrium condition to admit the possibility of alternative market solutions including: pure middleman, monopsony, monopoly and free trade. The coefficient  $\sigma^{D}$  represents Japan's market power (monopoly) in the domestic wheat resale market. The coefficient  $\sigma^{F}$  represents Japan's market power (monopsony) in the international wheat market. The values of these coefficients can range from 0 to  $\infty$ . Values of  $\sigma^{F} = \sigma^{D} = 0$ indicate that the market is at a competitive equilibrium. The perfect monopsony solution is given by the value of  $\sigma^{F}=1$ and  $\sigma^{D}=0$ . A perfect monopoly outcome is given by a value of  $\sigma^{F}=0$  and  $\sigma^{D}=1$ . Pure middleman solution is indicated when  $\sigma^{F} = \sigma^{D} = 1$ . Values of  $0 < \sigma^{i} < 1$  i=D, F, indicate that some monopoly or monopsony power is being imposed in the market. If the values of  $\sigma^i > 1$  i=D, F, policies more restrictive than perfect monopsony or monopoly solutions are being exercised in the market.

#### Model Specification

To facilitate estimation of the parameters of market power  $\sigma^{D}$  and  $\sigma^{F}$ , it is necessary to specify a behavioral model for wheat supply and utilization for Japan and restof-world. The United States, Canada and Australia are the primary countries exporting wheat to Japan, supplying about 60, 25 and 15 percent of Japan's total wheat imports respectively. To simplify the analysis however, all countries outside of Japan will be modeled as aggregate rest-of-world.

Based on standard results from the theory of the firm [Henderson and Quandt, 1971], wheat supply in Japan is specified as a function of producer price of wheat  $(Ppw_J)$ , producer price of rice  $(Ppr_J)$  and cost of production  $(C_J)$ . Previous wheat production,  $S_{J(-1)}$ , is also included in the Japanese wheat supply equation to represent the partial adjustment process of agricultural supply. Based on standard results from consumer theory [Henderson and Quandt, 1971], wheat demand in Japan is influenced by the resale price of wheat  $(Prw_J)$ , income  $(Y_J)$  and the resale price of rice  $(Prr_J)$ . Price of rice in Japan is used in both the supply and demand functions since rice is a substitute for wheat in both production and consumption [Riethmuller and Roe, 1986]. An interaction term between the price of wheat

and the price of rice  $(Prw_J*Prr_J)$  is included in the demand function to make the monopoly power coefficient  $(\sigma^D)$ econometrically identifiable [Bresnahan, 1982].

Japanese supply of wheat is given by:

$$S_{J} = a_{0} + a_{1} * (Ppw_{J}/C_{J}) + a_{2} * (Ppr_{J}/C_{J}) + a_{3} * S_{J(-1)} + e_{SJ}$$
(6)

Japanese demand for wheat is given by:

$$D_{J} = b_{0} + b_{1} * Prw_{J} + b_{2} * Y_{J} + b_{3} * Prr_{J} + b_{4} * (Prw_{J} * Prr_{J}) + e_{DJ}$$
(7)

where:

| Sj                                                                                    | is domestic wheat supply in Japan        |  |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
| Ppwj                                                                                  | is the real government purchasing price  |  |  |  |  |
|                                                                                       | for wheat in Japan                       |  |  |  |  |
| С <sup>1</sup>                                                                        | is an index of price paid by farmers for |  |  |  |  |
|                                                                                       | inputs in Japan                          |  |  |  |  |
| Pprj                                                                                  | is the real government purchasing price  |  |  |  |  |
|                                                                                       | for rice in Japan                        |  |  |  |  |
| S <sub>J(-1)</sub>                                                                    | is lagged domestic production            |  |  |  |  |
| DJ                                                                                    | is quantity of wheat demanded in Japan   |  |  |  |  |
| Prwj                                                                                  | is the real resale price for wheat in    |  |  |  |  |
|                                                                                       | Japan                                    |  |  |  |  |
| Prrj                                                                                  | is the real resale price for rice in     |  |  |  |  |
|                                                                                       | Japan                                    |  |  |  |  |
| ΥJ                                                                                    | is the real income in Japan              |  |  |  |  |
| e <sub>sj</sub> , e <sub>pj</sub> are the error terms                                 |                                          |  |  |  |  |
| $a_0$ , $a_1$ , $a_2$ , $a_3$ , $b_0$ , $b_1$ , $b_2$ , $b_3$ , $b_4$ are parameters. |                                          |  |  |  |  |

Excess demand in Japan is the difference between demand and supply. In price-dependent form this is:

$$Prw_{J} = [1/(b_{1}+b_{4}*Prr_{J})] [ED_{J}+a_{0}-b_{0}+a_{1}*(Ppw_{J}/C_{J}) +a_{2}*(Ppr_{J}/C_{J})+a_{3}*S_{J(-1)}-b_{2}*Y_{J}-b_{3}*Prr_{J}]+e_{EDJ}$$
(8)

where  $e_{EDJ}$  is the error term.

Excess supply of wheat in rest-of-world is derived similarly. Supply of wheat in rest-of-world is expected to be influenced by its own-price  $(Pw_{ROW})$ , lagged supply  $(S_{ROW(-1)})$ , the price of corn as a substitute in wheat production  $(Pc_{ROW})$  and cost of production  $(C_{ROW})$ . Demand for wheat is assumed to be influenced by its own-price  $(Pw_{ROW})$ , income  $(Y_{ROW})$  and the price of rice  $(Pr_{ROW})$  as a substitute in wheat consumption. An interaction term between price of wheat and price of rice in rest-of-world  $(Pw_{ROW}*Pr_{ROW})$  is included in the rest-of-world demand function so that the monopsony power coefficient  $(\sigma^{F})$  will be econometrically identified [Bresnahan, 1982]. The stock of wheat in restof-world fluctuates year to year and is expected to be influenced by wheat price  $(Pw_{ROW})$  and beginning wheat stocks  $(ST_{ROW}-1)$ .

The supply of wheat in rest-of-world is given by:

$$S_{ROW} = d_0 + d_1 * (PW_{ROW} / C_{ROW}) + d_2 * S_{ROW(-1)} + d_3 * (PC_{ROW} / C_{ROW}) + e_{SROW}$$
(9)

The demand equation for wheat in rest-of-world is given by:

$$D_{ROW} = e_0 + e_1 * PW_{ROW} + e_2 * Y_{ROW} + e_3 * Pr_{ROW} + e_4 * (PW_{ROW} * Pr_{ROW}) + e_{DROW}$$
(10)

The stock of wheat in rest-of-world is given by:

$$ST_{ROW} = f_0 + f_1 * PW_{ROW} + f_2 * ST_{ROW(-1)} + e_{STROW}$$
(11)

where:

 $Pw_{ROU}$  is the real world price of wheat

S<sub>ROW(-1)</sub> is lagged wheat supply for rest-of-world
PC<sub>ROW</sub> is the real price of corn in rest-of-world
D<sub>ROW</sub> is the quantity wheat demanded in rest-ofworld

Y<sub>ROW</sub> is rest-of-world income

Pr<sub>ROW</sub> is the real price of rice in rest-of-world

ST<sub>ROW</sub> is wheat stocks in rest-of-world

ST<sub>ROW(-1)</sub> is the lagged stock in rest-of-world

 $e_{srow}$ ,  $e_{drow}$ ,  $e_{strow}$  are error terms

 $d_0$ ,  $d_1$ ,  $d_2$ ,  $d_3$ ,  $e_0$ ,  $e_1$ ,  $e_2$ ,  $e_3$ ,  $e_4$ ,  $f_0$ ,  $f_1$ ,  $f_2$ , are parameters.

Excess supply from rest-of-world in price-dependent form is given by:

$$Pw_{ROW} = [1/((d_{1}/C_{ROW}) - e_{1} - e_{4}*Pr_{ROW} - f_{1})] [ES_{ROW} + e_{0} - d_{0} + f_{0} + e_{2}*Y_{ROW} - d_{2}*S_{ROW(-1)} - d_{3}*(Pc_{ROW}/C_{ROW}) + (f_{2}-1)*ST_{ROW(1)} + e_{3}*Pr_{ROW}] + e_{ESROW}$$
(12)

where  $e_{ESROW}$  is the error term.

•

#### V. ECONOMETRIC ESTIMATION

To facilitate estimation of  $\sigma^{\rm F}$  and  $\sigma^{\rm D}$ , the excess demand equation for Japan (8) is substituted into equilibrium condition (4) to obtain an estimable excess demand equation, ED<sub>J</sub>. The excess supply equation in pricedependent form (12) is substituted into equilibrium condition (5) to obtain an estimable excess supply equation, ES<sub>ROW</sub>. The monopoly and monopsony markup terms,  $(\delta {\rm Prw}_{\rm J}/\delta {\rm M})$ and  $(\delta {\rm Pw}_{\rm ROW}/\delta {\rm M})$  are replaced by  $[1/({\rm b}_1 + {\rm b}_4 + {\rm Prr}_{\rm J})]$  and  $[1/(({\rm d}_1/{\rm C}_{\rm ROW}) - {\rm e}_1 - {\rm e}_4 + {\rm Pr}_{\rm ROW} - {\rm f}_1)]$  respectively. The two resulting equations are then combined with the structural equations for Japan and rest-of-world markets (6, 7, 9, 10, 11) forming a system of simultaneous equations. This system then can be jointly estimated to obtain a full set of parameter estimates including both  $\sigma^{\rm F}$  and  $\sigma^{\rm D}$ .

Econometric identification of nonlinear simultaneous equations subject to nonlinear constraints has been investigated by Rothenberg [1971]. Identification of structural parameters can be checked by determining the rank of the information matrix augmented with the Jacobian matrix of the constraints. If the rank of this augmented matrix, calculated in the neighborhood of the parameter estimates, is equal to the number of unknown parameters, the system is locally identifiable [Rothenberg, 1971]. This condition can

be numerically checked using TSP4.1B [Hall, Scnake and Cummins, 1987].

Nonlinear three-stage least squares (NL3SLS) developed by Amemiya [1977] and implemented in the TSP4.1B [Hall, Scnake and Cummins, 1987] is used to obtain the parameter estimates. Parameters estimated using NL3SLS are generally less efficient than those obtained using full information maximum likelihood (FIML) estimation. However, if the errors are not normally distributed, NL3SLS is more robust than FIML estimators. If errors are nonnormally distributed, NL3SLS estimates are still consistent so long as the error terms have zero mean and finite higher moments, while those resulting from FIML estimation may not be consistent [Amemiya, 1977]. Lacking any <u>a apriori</u> information about the distribution of the error terms, the NL3SLS estimator is chosen.

#### <u>Data</u>

Data for the Japanese wheat market used in the estimation are mostly obtained from the Statistical Yearbook of the Japan Ministry of Agriculture, Forestry and Fishery (JMAFF). Wheat supply for Japan  $(S_J)$  is represented by wheat production. Beginning and ending stocks in Japan are negligible. However, since data for total wheat consumed in Japan are not available, wheat stock data are utilized to

calculate quantity of wheat demanded,  $D_J=S_J+M+ST_{J(-1)}-ST_J$ . Japanese production cost of wheat (C<sub>J</sub>) is represented by an index of prices paid by farmers for production requisites from the Food and Agriculture Organization (FAO). Japanese income data (Y<sub>J</sub>) come from the United Nations (UN). Government wheat purchasing and resale prices for wheat (Ppw<sub>J</sub>, Prw<sub>J</sub>) and rice (Ppr<sub>J</sub>, Prr<sub>J</sub>), cost of production (C<sub>J</sub>) and income (Y<sub>J</sub>) are deflated by the Japanese consumer price index (CPI<sub>J</sub>) to exclude the influence of inflation in price fluctuations.

Rest-of-world production  $(S_{ROW})$  and consumption  $(D_{ROW})$ data come from the United States Department of Agriculture (USDA) and generally are total world wheat production and consumption with Japan removed. Rest-of-world wheat prices  $(Pw_{ROM})$  and cost of transportation (t) are the average wheat export prices from the United States, Canada and Australia and transportation cost from each exporting country to Japan weighted by each countries wheat exports. The United States export price for rice is used to represent rest-of-world rice price (Pr<sub>ROW</sub>) since the United States is the biggest world rice market supplier. Rest-of-world income (Y<sub>ROW</sub>) is total income in developed and developing countries which comes from the United Nations (UN). Price of corn (Pc<sub>ROW</sub>) is the average export prices of corn in the United States, Canada and Australia weighted by corn production in each country. Rest-of-world cost of production  $(C_{ROW})$  is a

weighted average of the price index paid by farmers in the United States, Canada and Australia, weighted by wheat production in each country. Exchange rate data come from the United Nations and the United States Department of Commerce.

Annual data between 1964-1985 were utilized for the estimation. A detailed description of all data used is presented in Appendix C.

#### VI. ECONOMETRIC RESULTS

The parameters were estimated using the Nonlinear Three-Stage Least Squares (NL3SLS) routine in TSP4.1B [Hall, Scnake and Cummins 1987]. Econometric identification of the parameters was checked using TSP4.1B. The resulting parameter estimates are presented in Table 1.

Estimated coefficients in the model have the expected signs and most are statistically significant at the 0.5 percent level. Coefficients for world wheat and corn prices in rest-of-world supply functions are significant at the 15 percent level and the world wheat price coefficient in the rest-of-world stock function is significant at the 5 percent level.

Parameter estimates for the monopsony and monopoly coefficients are  $\sigma^{F}=10.192$  and  $\sigma^{D}=.001$  respectively. A number of formal hypothesis tests can be constructed concerning monopoly and monopsony power. Alternative hypothesis tests are:

i). Test for no market power (free trade):

 $H_o: \sigma^F = 0 \text{ and } \sigma^D = 0,$ 

versus  $H_a$ :  $\sigma^F = 0$  or  $\sigma^D = 0$ .

ii). Test for perfect monopsony solution:

H<sub>o</sub>:  $\sigma^{F}=1$  and  $\sigma^{D}=0$ , versus H<sub>a</sub>:  $\sigma^{F}=1$  or  $\sigma^{D}=0$ .

|                                                                                                                | Parameters                                                                             | Estimates                                             | t-values                                 |  |  |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|--|--|--|
| Supply in Japan                                                                                                |                                                                                        |                                                       |                                          |  |  |  |
| constant<br>Ppw <sub>J</sub> /C <sub>J</sub><br>Ppr <sub>J</sub> /C <sub>J</sub><br>S <sub>J(-1)</sub>         | a <sub>0</sub><br>a <sub>1</sub><br>a <sub>2</sub><br>a <sub>3</sub>                   | 1.4978<br>.1873e-4<br>1676e-4<br>.7125                | 8.45<br>10.18<br>13.84<br>6.03           |  |  |  |
| Demand in Japan                                                                                                |                                                                                        |                                                       |                                          |  |  |  |
| constant<br>Prwj<br>Yj<br>Prrj<br>Prwj*Prrj                                                                    | b <sub>0</sub><br>b <sub>1</sub><br>b <sub>2</sub><br>b <sub>3</sub><br>b <sub>4</sub> | 62.3330<br>1777e-2<br>.2121e-4<br>4721e-3<br>.1445e-7 | 9.09<br>-7.76<br>8.31<br>-8.47<br>7.77   |  |  |  |
| Supply at ROW                                                                                                  |                                                                                        |                                                       |                                          |  |  |  |
| constant<br>Pw <sub>ROW</sub> /C <sub>ROW</sub><br>S <sub>ROW(-1)</sub><br>PC <sub>ROW</sub> /C <sub>ROW</sub> | d <sub>0</sub><br>d <sub>1</sub><br>d <sub>2</sub><br>d <sub>3</sub>                   | 99.5520<br>.3889<br>.7992<br>7457                     | 2.48<br>1.10<br>12.78<br>1.43            |  |  |  |
| Demand at ROW                                                                                                  |                                                                                        |                                                       |                                          |  |  |  |
| constant<br>Pw <sub>ROW</sub><br>Y <sub>ROW</sub><br>Pr <sub>ROW</sub> *Pr <sub>ROW</sub>                      | e <sub>0</sub><br>e <sub>1</sub><br>e <sub>2</sub><br>e <sub>3</sub><br>e <sub>4</sub> | 475.1000<br>-3.8069<br>.8427e-4<br>-28.2180<br>.2551  | 14.37<br>-9.07<br>18.82<br>-8.56<br>8.78 |  |  |  |
| Stock at ROW                                                                                                   |                                                                                        |                                                       |                                          |  |  |  |
| constant<br>Pw <sub>row</sub><br>ST <sub>row(-1)</sub>                                                         | $f_0$<br>$f_1$<br>$f_2$                                                                | 38.3750<br>2791<br>.8215                              | 1.76<br>-1.80<br>5.03                    |  |  |  |
| Market Power                                                                                                   | $\sigma_{\rm F} \sigma_{\rm D}$                                                        | 10.1920<br>.9923e-3                                   | 5.10<br>.27                              |  |  |  |

Table 1. Estimates of Parameters

•

iii). Test for perfect monopoly solution:

 $H_{o}: \sigma^{F}=0 \text{ and } \sigma^{D}=1,$ 

versus  $H_a$ :  $\sigma^F = 0$  or  $\sigma^D = 1$ .

iv). Test for pure middleman solution:

H<sub>o</sub>:  $\sigma^{F}=1$  and  $\sigma^{D}=1$ , versus H<sub>a</sub>:  $\sigma^{F}=1$  or  $\sigma^{D}=1$ .

Statistical inference for systems of simultaneous, nonlinear equations has been developed by Gallant and Jorgenson [1979]. They constructed a quasi-likelihood ratio (QLR) test statistic that can be used for hypothesis testing in a nonlinear model estimated using the NL3SLS estimator. Their QLR test statistic is:

 $T^{o} = n*(Q_{o} - Q_{a}),$ 

where:

- $Q_o$  is the criterion level obtained from minimizing the system sum of squares under the null hypothesis,
- Q<sub>a</sub> is the criterion level obtained from minimizing the unrestricted system sum of squares,

and n is number of observations.

The QLR test statistic has a Chi-squared distribution with degrees of freedom equal to the number of restrictions under the null hypothesis.

To reject the null hypothesis, the value of  $T^{\circ}$  must be greater than the tabled Chi-squared value with 2 degrees of freedom, 9.91 at the 1 percent significance level. The QLR test statistic for the free trade hypothesis is  $T^{\circ}=63.87$ . The value of  $T^{\circ}$  for the perfect monopsony hypothesis is 35.92,  $T^{\circ}$  for the perfect monopoly hypothesis is 5123.93 and  $T^{\circ}$  for the pure middleman hypothesis is 5091.46. Clearly all hypotheses are rejected at a high level significance. This means that the wheat market is not a free, pure middleman, perfect monopoly or perfect monopsony market.

Coefficient estimates from the unrestricted model indicate actual market structure. The parameter estimate for monopoly selling power of  $\sigma^{D}$ =.001 and its associated t-value of .27 indicate that little or no monopoly selling power is being imposed in the domestic market. On the other hand, the estimated parameter for monopsony market power of  $\sigma^{F}$ =10.192 and its associated t-value of 5.10 suggest that Japan is pursuing a more restrictive import policy than that would be indicated by an optimal tariff strategy (corresponding to the values of  $\sigma^{D}$ =0,  $\sigma^{F}$ =1).

Table 2 presents the elasticities of excess supply and demand calculated at mean values. The own-price elasticity of supply for Japan is estimated to be 2.45, which is close to the estimate from Roe, Shane and Vo [1986], of 2.72. Own-price elasticity of demand is -.26, also not far from the result of Roe, et.al's (-.18), Rojko's (-.33) and Coyle's (-.18). The estimated income elasticity of .26 is greater than Roe, et. al's (.006) and Rojko's (.10), but close to Greenshield's (.21).

| 2.45  |
|-------|
| 26    |
|       |
| 30    |
| 30    |
|       |
| .07   |
| 29    |
|       |
| 30.00 |
| 2.68  |
|       |

Table 2. Price Elasticities at the Mean Values

.

,

The excess supply curve for the rest-of-world is very elastic (30.00) compared with the excess demand curve for Japan (-.30). These results imply that small changes in the quantity traded will cause small price changes in the rest-of-world market and large price changes in the Japanese domestic resale price. This result is consistent with the fact that Japan only imports seven percent of the total wheat traded in the world market, but wheat imports in Japan comprise almost 90 percent of total wheat consumed. Thus, a small reduction of wheat imports, in the presence of a trade restriction, will cause a big price increase in the domestic market and a small price decrease in the world market.

The magnitude of the market power coefficients are reflected in the elasticities. The parameter of domestic market power is almost zero ( $\sigma^{p}$ =.001) and therefore does not have much influence on the price elasticity of excess demand in Japan. By contrast, the elasticity of excess supply from the rest-of-world in the presence of market power exerted in the foreign market ( $\sigma^{F}$ =10.192) is ninety percent less than the elasticity of excess supply from rest-of-world in the absence of market power (which is 2.68 compared with 30.00).

#### A Welfare Analysis of Japanese Trade Restrictions

Price, quantity and welfare effects for five alternative policy scenarios are presented in Table 3.

|                               | Scenar                           | ios                                                           |                                         |                        |                 |
|-------------------------------|----------------------------------|---------------------------------------------------------------|-----------------------------------------|------------------------|-----------------|
|                               | trade                            | Perfect<br>Monopsony<br>$(\sigma_{\rm F}=1,\sigma_{\rm D}=0)$ | Monopoly                                | Middleman              |                 |
| M(m.mt)                       | 5.60                             | 5.56                                                          | 2.50                                    | 2.50                   | 5.24            |
| Prw <sub>j</sub><br>(US\$/mt  | ) 77.18                          | 79.70                                                         | 290.00                                  | 290.54                 | 101.90          |
| Pw <sub>roy</sub><br>(US\$/mt | ) 66.85                          | 66.83                                                         | 65.43                                   | 65.42                  | 66.70           |
| WELFARE                       | EFFECTS                          |                                                               |                                         |                        |                 |
| <u>JAPAN</u>                  |                                  |                                                               |                                         |                        |                 |
| TR<br>(m.US\$)                | -                                | 14.10                                                         | 535.60                                  | 537.70                 | 130.30          |
| CS<br>(m.US\$)                | 1320.00                          | 1304.00                                                       | 330.00                                  | 328.00                 | 1171.00         |
| DW<br>(m.US\$)                | 0                                | 1.90                                                          | 454.40                                  | 455.00                 | 18.70           |
| DW/TR                         | -                                | .13                                                           | .85                                     | .85                    | .14             |
| REST-OF                       | -WORLD                           |                                                               |                                         |                        |                 |
| CS<br>(m.US\$)                | 44332.70                         | 44340.10                                                      | 44858.35                                | 44862.10               | 44388.10        |
| PS (m.US\$)                   | 24528.20                         | 24520.60                                                      | 23990.10                                | 23986.30               | 24471.30        |
| DW<br>(m.US\$)                |                                  |                                                               | 12.45                                   |                        |                 |
| Note :                        | All pric<br>M = quan<br>CS = con | es and valu<br>tity traded<br>sumers surp<br>dweight los      | ues are in<br>1, TR = tar<br>olus, PS = | 1967 US\$<br>iff reven | dollars.<br>ue, |

# Table 3. Model Solutions Under Alternative Policy

All calculations are based on the estimated parameters appearing in Table 1. The observed trade solution is obtained by replacing both  $\sigma^{\rm f}$  and  $\sigma^{\rm D}$  in the equilibrium condition (equations 4 and 5) with the estimated values of 10.192 and .001 respectively. The free trade, pure middleman, perfect monopsony and perfect monopoly scenarios **are** developed by setting  $\sigma^{\rm f}$  and  $\sigma^{\rm D}$  appropriately and keeping all other estimated parameters constant. Welfare results of the free trade, perfect monopsony, perfect monopoly and pure middleman simulations must be interpreted with some caution since estimated values of the other parameters in the model are assumed unchanged in spite of the structural changes implied by the alternative market structures resulting from changing assumptions concerning  $\sigma^{\rm f}$  and  $\sigma^{\rm D}$ . All dollar amounts are in 1967 U.S. dollars.

The observed trade scenario results in quantity traded of 5.24 million metric tons, resale price in Japan of US\$ 101.90 per metric ton and rest-of-world price of US\$ 66.70 per metric ton. Under the free trade scenario the quantity traded is 5.60 million metric tons, resale price in Japan is US\$ 77.18 per metric ton and rest-of-world price is US\$ 66.85 per metric ton. Compared with the free trade results, the quantity traded under the observed trade scenario is about six percent less. Price in rest-of-world under the observed trade scenario declines by 15 cents per metric ton compared with the free trade scenario and results in a gain in consumer surplus of US\$ 55.40 million. Rest-of-world producers lose about US\$ 56.90 million in surplus as a result of Japanese trade restrictions. In total, the deadweight loss to the rest-of-world is about US\$ 1.50 million.

The observed trade scenario results in an increase in resale price in Japan of US\$ 25.00 per metric ton when compared to the free trade scenario. As a result, JMAFF collects tariff revenue amounting to US\$ 130.30 million. Japanese consumers lose US\$ 149.00 million in consumer surplus while producers surplus remains unchanged. Producer price in Japan is maintained well above resale price (averaging US\$ 216.80 per metric ton in 1967 dollars over the period of estimation versus an average US\$ 101.90 per metric ton resale price over the same period). Thus, producer surplus is unaffected by changes in trade policy. Total deadweight loss to Japanese society from trade restrictions amounts to US\$ 18.70 million.

Enke (1944) argued that the optimal tariff strategy may result in welfare gains for the country imposing the tariff. The optimal tariff strategy results in a quantity traded of 5.56 million tons. The Japanese resale price under the optimal tariff strategy is US\$ 79.70 per metric ton and rest-of-world price is US\$ 66.83 per metric ton. Compared with the free trade scenario, the optimal tariff strategy results in a decline in the quantity of wheat traded of

about 40 thousand metric tons. Price in Japan rises by US\$ 2.52 per metric ton and rest-of-world price declines by 2 cents per metric ton. The JMAFF collects tariff revenues amounting to US\$ 14.10 million but Japanese consumers lose US\$ 16.00 million. Total deadweight loss to Japanese society amounts to US\$ 1.90 million.

The optimal tariff strategy in this analysis results in a deadweight loss to Japanese society because producer price in Japan remains fixed, leaving producer surplus constant across alternative market structures. This causes these results to deviate from Enke's conclusions because producer price responds to market structure in his analysis.

The preceding social welfare analysis suggests that tariff revenue may be the most important reason for market power imposition in Japan. Greenshield [1986] points out that self-sufficiency is a major objective of Japanese agriculture policies. Producer price could be set to maintain domestic wheat production.

During the period of estimation, the mean value of the government purchasing price for wheat from producers in Japan was US\$ 216.80 per metric ton (1967 US\$). At the fixed quantity of wheat produced, which has a mean value of 603 thousand tons over the period of estimation, the average domestic wheat subsidy is US\$ 84.20 million per year. Under the free trade scenario, the government must finance the entire producer subsidy from general revenues. In the

optimal tariff strategy, tariff revenue only amounts to US\$ 14.10 million, so that the government has to finance most of the domestic wheat subsidy through general revenues. Thus, both of these scenarios may well be politically undesirable.

Other policy alternatives that can be pursued by JMAFF are perfect monopoly and pure middleman scenarios. Both policy scenarios produce much higher tariff revenue to the JMAFF, US\$ 535.00 million, which is six times the total producer subsidy. However, under these scenarios, Japanese society would pay a very high cost because consumers lose US\$ 990.00 million in consumer surplus. As a result, the deadweight loss to the Japanese society would be US\$ 445.00 million, which means that the Japanese society would pay 85 cents in deadweight loss for every dollar in tariff revenue collected. These two policy scenarios are also politically undesirable alternatives.

Compared with other policy scenarios, the observed trade scenario is the most efficient choice because the collected tariff revenues of US\$ 130.30 million per year are more than enough to cover the cost of domestic wheat subsidies and the associated deadweight loss of collecting this tariff revenue, US\$ 18.70 million or 14 cents per dollar of tariff revenue collected, is relatively low and fairly close to the 12 cents loss resulting from the optimal tariff strategy. From a political perspective, the observed

trade scenario is a favorable policy alternative for Japan.

In terms of model verification, the observed trade scenario gives a good approximation of the actual trade situation. For example, the observed trade scenario results in quantity of wheat traded of 5.24 million tons, resale price in Japan of US\$ 101.90 and rest-of-world price of US\$ 66.70 per metric ton. The corresponding values, based on the mean values during the period of estimation, are 5.14 million metric ton, US\$ 105.90 and US\$ 70.86 per metric ton.

Estimated market power coefficients resulting from separate hypothesis tests of monopsony and monopoly power are presented in Appendix A and B. These results support findings from the joint hypothesis tests already presented. The hypothesis test for the exertion of monopsony power yields an estimate of  $\sigma^{F}$ =8.71 and the monopoly test yields an estimates of  $\sigma^{D}$ =.001. These results are very similar to those from the joint hypothesis test presented in Table 1.

#### VII. CONCLUSION

Results of this study indicate that the Japanese government pursues a more restrictive wheat policy than would be indicated by an optimal tariff strategy. However, the Japanese government apparently does not pursue a restrictive policy for wheat resale in the domestic market. These results differ from those of Carter and Schmitz [1979] and Kolstad and Burris [1986], perhaps due to differences in the estimated price elasticity of excess supply. Small variations in this elasticity could result in fairly large variations in the coefficient of monopsony power  $(\sigma')$ . On the other hand, the difference may stem from the failure of previous studies to incorporate statistical tests for market power. Indeed, the methodology in the present study allows one to incorporate parameters that can be used to directly identify market structure.

Analysis of the welfare results indicates that the Japanese government may be pursuing a trade strategy entirely different from that hypothesized in earlier works. Over the period of estimation, the average annual cost of subsidies to Japanese wheat producers amounted to about US\$ 85 million (in 1967 U.S. dollars). Over the same period, tariff revenues amounted to about US\$ 130 million per year. On average, enough tariff revenues were collected to offset the cost of running the domestic wheat program and

provide some surplus funds to support Japan's very expensive rice program. The deadweight loss of collecting this tariff revenue was a relatively low 14 cents per dollar collected. Just how the producer subsidy is set remains a research issue.

While the deadweight loss to society in rest-of-world resulting from Japanese import tariffs is small, the redistributive effect is sizeable. Producers in rest-ofworld lose US\$ 57.00 million in producer surplus, while consumers achieve a similar gain in consumer surplus. Thus, a shift in Japanese trade policy to a free trade position would have significant economic impacts on market participants outside Japan.

#### **BIBLIOGRAPHY**

- Alaouze, Chris M., A. S. Watson and N. H. Strugess. "Oligopoly Pricing in the World Wheat Market." <u>American Journal of Agricultural Economics</u>, 60(1978):173-85.
- Amemiya, T. "The Maximum Likelihood Estimator and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model." <u>Econometrica</u>, 45(1977):955-68.
- Appelbaum, Ellie. "Testing for Price Taking Behavior." Journal of Econometrics, 9(1979):283-94.
  - \_\_\_\_\_\_. and Ulrich R. Kohli. "Canada-United State Trade : Test for the Small-Open-Economy Hypothesis." <u>Canadian Journal of Economics</u>, 12(1979):1-14.
- Bresnahan, Timothy F. "The Oligopoly Solution Concept is Identified." <u>Economic Letters</u>, 10(1982):87-92.
- Carter, C. and A. Schmitz. "Import Tariffs and Price Formation in the World Wheat Market." <u>American</u> <u>Journal of Agricultural Economics</u>, 61(1979):517-22.

\_\_\_\_\_. "Import Tariffs and Price Formation in the World Wheat Market : Reply," <u>American Journal of Agricultural Economics,</u> 62(1980):823-25.

- Coyle, W.T. Japan's Rice Policy. Foreign Agricultural Economics Report Number 164, Economics and Statistics Service, United States Department of Agriculture, July 1981.
- Enke, Stephen. "The Monopsony Case for Tariffs," <u>Quarterly Journal of Economics</u>, 58(1944):229-45.

- Gallant, A. Ronald and Dale W. Jorgenson. "Statistical Inference for a System of Simultaneous, Non-linear, Implicit Equations in the Context of Instrumental Variable Estimation." Journal of Econometrics, 11(1979):275-302.
- Greenshield, Bruce L. and Malcolm D. Bale. "Japanese Agricultural Distortions and Their Welfare Value." <u>American Journal of Agricultural Economics</u>, 60(February 1978):50-64.
- Greenshield, Bruce L. <u>Impact of a Resale Price</u> <u>Increase on Japan's Wheat Imports</u>. Foreign Agricultural Economic Report No. 128, United States Department of Agriculture, Economic Research Services, February 1979.
- Grennes, T. and P.R. Johnson. "Import Tariff and Price Formation in the World Wheat Market: Comment." <u>American Journal of Agricultural Economics</u>, 62(1980):819-22.
- Hall, B., R. Schnake and C. Cummins. <u>Time Series</u> <u>Processor Version 4.1: User's Manual</u>, TSP International, Palo Alto, California, August 1987.
- Henderson, James M. and Richard E. Quandt. <u>Microeconomic Theory, A Mathematical Approach</u>, McGraw-Hill, New York, NY, 1971.
- Just, Richard E., Andrew Schmitz and David Zilberman. "Price Controls and Optimal Export Policies Under Alternative Market Structures," <u>The American</u> <u>Economic Review</u>, 69(1979):706-14.
- Just, Richard E., Darrell L. Hueth and Andrew Schmitz. <u>Applied Welfare Economics and Public Policy</u>, Prentice-Hall, Inc., Englewood Cliff, NJ, 1982.
- Karp, L.S. and A.F. McCalla. "Dynamic Games and International Trade: An Application to the World Corn Market." <u>American Journal of Agricultural</u> <u>Economics</u>, 65(1983):642-50.

- Kolstad, Charles D. and Anthony E. Burris. "Imperfectly Competitive Equilibria in International Commodity Markets." <u>American Journal of Agricultural</u> <u>Economics</u>, 68(1986):27-36.
- Lerner, Abba. "The Concept of Monopoly and the Measurement of Monopoly Power," <u>Review of Economic Studies</u>, 1(1934):157-75.
- McCalla, A. "A Duopoly Model for World Wheat Market Pricing." <u>Journal of Farm Economics</u>, 48(1966):711-27.

<u>in Imperfect Agricultural Market Power Consideration</u> <u>in Imperfect Agricultural Markets, in : Imperfect</u> <u>Markets of Agricultural Trade</u>. Alex F. McCalla and Timothy Josling, eds. Allanheld, Osmun, New Jersey, 1981.

- Organization for Economic Co-operation and Development. <u>National Policies and Agricultural Trade, Country</u> <u>Study Japan</u>, 1987.
- Riethmuller, Paul and Terry Roe. "Government Intervention in Commodity Markets: The Case of Japanese Rice and Wheat Policy," <u>Journal of Policy</u> <u>Modelling</u>, 8(3):327-349.
- Roe, Terry, Mathew Shane and Dee Huu Vo. <u>Price</u> <u>Responsiveness of World Grain Trade Markets : The</u> <u>Influence of Government Intervention on Import</u> <u>Price Elasticity</u>. Technical Bulletin No. 1720 (June 1986), Economic Research Services, United States Department of Agriculture.
- Rojko, Anthony S., Francis S. Urban and James J. Naive. <u>World Demand Prospects for Grain in 1980s</u>. Foreign Agricultural Economic Report Number 75, Economics and Statistics Service, United States Department of Agriculture, 1971.
- Rothenberg, Thomas J. "Identification in Parametric Models," <u>Econometrica</u>, 39(1971):577-591.

APPENDICES

|                                                                                                                 | Parameters                                                                             | Estimate                                              | t-values                                 |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|
| Supply in Japan                                                                                                 |                                                                                        |                                                       |                                          |
| constant<br>Ppw <sub>J</sub> /C <sub>J</sub><br>Ppr <sub>J</sub> /C <sub>J</sub><br>S <sub>J(-1)</sub>          | a <sub>0</sub><br>a <sub>1</sub><br>a <sub>2</sub><br>a <sub>3</sub>                   | 1.9733<br>.5743e-5<br>1087e-4<br>.12742               | 7.08<br>1.66<br>-4.76<br>.86             |
| Demand in Japan                                                                                                 |                                                                                        |                                                       |                                          |
| constant<br>Prwj<br>Yj<br>Prrj<br>Prwj*Prrj                                                                     | b <sub>0</sub><br>b <sub>1</sub><br>b <sub>2</sub><br>b <sub>3</sub><br>b <sub>4</sub> | 35.3260<br>9057e-3<br>.1506e-4<br>2517e-3<br>.7401e-8 | 7.24<br>-5.80<br>6.04<br>-6.39<br>5.79   |
| Supply at ROW                                                                                                   |                                                                                        |                                                       |                                          |
| constant<br>Pw <sub>ROW</sub> /C <sub>ROW</sub><br>S <sub>ROW</sub> (-1)<br>PC <sub>ROW</sub> /C <sub>ROW</sub> | d <sub>0</sub><br>d <sub>1</sub><br>d <sub>2</sub><br>d <sub>3</sub>                   | 99.9760<br>.35815<br>.82707<br>87855                  | 2.90<br>1.17<br>15.20<br>-2.57           |
| Demand at ROW                                                                                                   |                                                                                        |                                                       |                                          |
| constant<br>Pw <sub>ROW</sub><br>Y <sub>ROW</sub><br>Pr <sub>ROW</sub><br>Pw <sub>ROW</sub> *Pr <sub>ROW</sub>  | e <sub>0</sub><br>e <sub>1</sub><br>e <sub>2</sub><br>e <sub>3</sub><br>e <sub>4</sub> | 550.8100<br>-3.9024<br>.7764e-4<br>-40.6130<br>.3391  | 14.19<br>-8.72<br>16.32<br>-9.77<br>9.45 |
| Stock at ROW                                                                                                    |                                                                                        |                                                       |                                          |
| constant<br>Pw <sub>ROW</sub><br>ST <sub>ROW(-1)</sub>                                                          | f <sub>0</sub><br>f <sub>1</sub><br>f <sub>2</sub>                                     | 25.5990<br>2066<br>.9077                              | 1.22<br>-1.29<br>6.08                    |
| Market Power                                                                                                    | σ <sup>F</sup>                                                                         | 8.7086                                                | 5.99                                     |

# APPENDIX A. Results of the Monopsony Power Test

|                                                                                                                 | Parameters                                                                             | Estimate                                              | t-values                                 |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|
| Supply in Japan                                                                                                 |                                                                                        |                                                       |                                          |
| constant<br>Ppw <sub>J</sub> /C <sub>J</sub><br>Ppr <sub>J</sub> /C <sub>J</sub><br>S <sub>J(-1)</sub>          | a <sub>0</sub><br>a <sub>1</sub><br>a <sub>2</sub><br>a <sub>3</sub>                   | 1.9161<br>.1382e-4<br>1736e-4<br>.8424                | 9.10<br>5.61<br>-10.62<br>5.00           |
| Demand in Japan                                                                                                 |                                                                                        |                                                       |                                          |
| constant<br>Prwj<br>Yj<br>Prrj<br>Prwj*Prrj                                                                     | b <sub>0</sub><br>b <sub>1</sub><br>b <sub>2</sub><br>b <sub>3</sub><br>b <sub>4</sub> | 45.4240<br>1312e-2<br>.1240e-4<br>3300e-3<br>.1067e-7 | 7.52<br>-6.34<br>4.11<br>-6.81<br>6.34   |
| Supply at ROW                                                                                                   |                                                                                        |                                                       |                                          |
| CONSTANT<br>Pw <sub>ROW</sub> /C <sub>ROW</sub><br>S <sub>ROW</sub> (-1)<br>PC <sub>ROW</sub> /C <sub>ROW</sub> | d <sub>0</sub><br>d <sub>1</sub><br>d <sub>2</sub><br>d <sub>3</sub>                   | 143.9900<br>.1483<br>.7576<br>-1.0305                 | 3.69<br>.44<br>12.22<br>-2.15            |
| Demand at ROW                                                                                                   |                                                                                        |                                                       |                                          |
| constant<br>Pw <sub>Row</sub><br>Y <sub>ROW</sub><br>Pr <sub>ROW</sub><br>Pw <sub>ROW</sub> *Pr <sub>ROW</sub>  | e <sub>0</sub><br>e <sub>1</sub><br>e <sub>2</sub><br>e <sub>3</sub><br>e <sub>4</sub> | 464.2500<br>-3.2068<br>.8325e-4<br>-30.4190<br>.2494  | 13.71<br>-7.58<br>18.90<br>-7.13<br>8.08 |
| Stock at ROW                                                                                                    |                                                                                        |                                                       |                                          |
| constant<br>Pw <sub>ROW</sub><br>ST <sub>ROW(-1)</sub>                                                          | f <sub>0</sub><br>f <sub>1</sub><br>f <sub>2</sub>                                     | 44.9020<br>3463<br>.8829                              | 1.99<br>-2.06<br>5.51                    |
| Market Power                                                                                                    | $\sigma^{D}$                                                                           | .1569e-2                                              | .37                                      |

## APPENDIX B. Results of the Monopoly Power Test

,

## APPENDIX C. Data

| year         | jpwpro            | ppwheat  | pprice                | jppipf    | CPIJ                            |            |
|--------------|-------------------|----------|-----------------------|-----------|---------------------------------|------------|
| <b>19</b> 63 | 716               | 40600    | 85696                 | 81.43     | 89.50                           |            |
| 1964         | 1244              | 44200    | 95522                 | 82.29     | 92.90                           |            |
| 1965         | 1287              | 47200    | 107802                | 86.35     | 100.00                          |            |
| 1966         | 1024              | 50400    | 117308                | 89.81     | 102.40                          |            |
| 1967         | <b>9</b> 97       | 52600    | 133068                | 93.95     | 104.30                          |            |
| 1968         | 1012              | 55500    | 143618                | 96.80     | 114.70                          |            |
| 1969         | 758               | 57300    | 148141                | 97.00     | 120.50                          |            |
| 1970         | 474               | 60200    | 151502                | 100.00    | 130.30                          |            |
| 1971         | 440               | 64600    | 156080                | 103.40    | 138.40                          |            |
| 1972         | 284               | 67400    | 163992                | 108.10    | 142.20                          |            |
| 1973         | 202               | 75200    | 188663                | 136.30    | 117.70                          |            |
| 1974         | 232               | 98400    | 249359                | 171.30    | 146.40                          |            |
| <b>19</b> 75 | 241               | 112000   | 285165                | 181.40    | 163.80                          |            |
| 1976         | 222               | 121100   | 303516                | 104.00    | 179.00                          |            |
| 1977         | 236               | 169833   | 315604                | 107.20    | 193.40                          |            |
| 1978         | 367               | 174000   | 315953                | 103.50    | 199.80                          |            |
| 1979         | 541               | 178333   | 316465                | 110.90    | 206.90                          |            |
| <b>19</b> 80 | 583               | 178400   | 316465                | 123.22    | 223.40                          |            |
| 1981         | 587               | 184167   | 295933                | 126.91    | 234.30                          |            |
| 1982         | 742               | 184167   |                       | 126.91    |                                 |            |
| 1983         | 695               |          |                       |           |                                 |            |
| 1984         | 741               | 184867   |                       | 126.91    |                                 |            |
| 1985         | 874               | 184867   | 311133                | 124.45    | 256.10                          |            |
|              | ·                 |          |                       |           | an <u>no ao</u> <b>an an</b> an |            |
| where        |                   |          |                       |           |                                 |            |
| jpwpr        | ·o <sup>1</sup> = | wheat pr | oduction              | in Japar  | n (1000 r                       | nt).       |
| ppwhe        | $at^{1&13} =$     |          | nt purcha             |           |                                 |            |
|              |                   | (Yen per |                       |           |                                 |            |
| ppric        |                   |          | nt purcha             | asing pri | ce for 1                        | rice       |
| jppip        | $f^4 =$           | price in | dex paid              |           | ers for ]                       | production |
| CPI,28       | 3 =               |          | es in Jap<br>price in |           | Tapan.                          |            |
| J            |                   |          | F2100 11              |           |                                 |            |
| Varia        | bles use          | d in the | supply e              | quation   | for Japa                        | in:        |
|              |                   |          |                       |           |                                 |            |

| SJ   | = | jpwpro/1000 |
|------|---|-------------|
| Ppw  | = | ppwheat/CPI |
| Ppr  | = | pprice/CPI  |
| c' , | = | jppipf/CPI  |

| year              | jpst                      | Уjр                             | resalew                | ricesale                         | jptwhm   | jpxrate |
|-------------------|---------------------------|---------------------------------|------------------------|----------------------------------|----------|---------|
| - <b></b><br>1963 | 235                       | 20614                           | 35200                  | <br>88260                        | 3898     | 362.00  |
| 1964              | 142                       | 23375                           | 35200                  | 91484                            | 3577     | 358.30  |
| 1965              | 100                       | 26086                           | 35200                  | 104963                           | 3591     | 360.90  |
| 1966              | 100                       | 30443                           | 34990                  | 111850                           | 4186     | 362.50  |
| 1967              | 42                        | 36233                           | 34710                  | 119945                           | 3938     | 361.90  |
| 1968              | 198                       | 42870                           | 34648                  | 133168                           | 4325     | 357.70  |
| 1969              | 31                        | 52483                           | 34508                  | 137308                           | 4472     | 357.80  |
| 1970              | 159                       | 63443                           | 34460                  | 136300                           | 4728     | 357.60  |
| 1971              | 95                        | 68879                           | 34513                  | 135110                           | 5049     | 314.80  |
| 1972              | 173                       | 78928                           | 33900                  | 138864                           | 5562     | 302.20  |
| 1973              | 35                        | 97474                           | 37707                  | 142967                           | 5266     | 280.00  |
| 1974              | 174                       | 114656                          | 45420                  | 170933                           | 5262     | 301.00  |
| 1975              | 334                       | 127043                          | 46533                  | 203417                           | 6011     | 305.20  |
| 1976              | 150                       | 143232                          | 58800                  | 224183                           | 5677     | 292.80  |
| 1977              | 133                       | 158199                          | 60600                  | 246183                           | 5690     | 240.00  |
| 1978              | 183                       | 172859                          | 60600                  | 246183                           | 5584     | 194.60  |
| 1979              | 61                        | 188771                          | 60600                  | 256517                           | 5804     | 239.70  |
| 1980              | 88                        | 204574                          | 69145                  | 264850                           | 5930     | 203.00  |
| 1981              | 46                        | 216114                          | 76097                  | 273183                           | 5637     | 219.90  |
| 1982              | 129                       | 226246                          | 81936                  | 283883                           | 5597     | 235.00  |
| 1983              | 180                       | 234434                          | 82335                  | 283883                           | 5901     | 232.20  |
| 1984              | 130                       | 250024                          | 82200                  | 294550                           | 5748     | 251.10  |
| 1985              | 33                        | 265740                          | 82551                  | 305450                           | 5565     | 238.50  |
| ,<br>,            |                           |                                 |                        |                                  |          |         |
| where             | :                         |                                 |                        |                                  |          |         |
| jpst <sup>1</sup> | =                         | stock                           | of wheat               | in Japan (                       | 1000 mt) |         |
| yjp <sup>8</sup>  | _                         |                                 |                        | ome in Japa                      |          | •       |
|                   |                           |                                 | million Y              |                                  |          |         |
| resal             | ew <sup>1&amp;13</sup> =  |                                 |                        | le price c                       | of wheat |         |
|                   |                           | (Yen r                          | er mt).                |                                  |          |         |
| rices             | ale <sup>1&amp;13</sup> = | govern                          |                        | le price c                       | f rice   |         |
|                   |                           | (Yen r                          | er mt).                | _                                |          |         |
| jptwh             | m <sup>1</sup> =          | total                           | wheat imr              | ort by Jap                       | an (1000 | ) mt).  |
| jpxra             | te <sup>8&amp;11</sup> =  | Japan                           | exchange               | rate (Yen/                       | US\$).   |         |
|                   |                           |                                 |                        |                                  |          |         |
| Varia             | ble us                    | ed in the                       | e demand               | function:                        |          |         |
| Dj                | =                         | (inwnro                         | + intwhm               | + jpst <sub>(-1)</sub> -         | - inet// | 1000    |
| Prwj              | =                         | resalew                         | CPT                    | ) P <sup>3</sup> <sup>(-1)</sup> | Jbac)/   | 1000.   |
| Prrj              |                           | ricesale                        | CPT                    |                                  |          |         |
| Y                 | =                         | resalew/<br>ricesale<br>yjp/CPI | -,j.                   |                                  |          |         |
| MJ                | =                         | jptwhm/1                        | .000.                  |                                  |          |         |
| ອັ                | =                         | CPI,/ipx                        | rate/CPI <sub>us</sub> | •                                |          |         |
|                   |                           | <sup>1</sup> د <u>م</u> ر ر     | , us                   | •                                |          |         |
|                   |                           |                                 |                        |                                  |          |         |

APPENDIX C. Data (continued)

47

.

| year | worldprd | worldcon | worldst | yrwed   | yrwing  |
|------|----------|----------|---------|---------|---------|
| 1963 | 236.3    | 240.0    | 67.8    | 1202628 | 231235  |
| 1964 | 270.4    | 262.0    | 76.2    | 1239578 | 241035  |
| 1965 | 263.3    | 281.6    | 55.3    | 1300900 | 250015  |
| 1966 | 306.7    | 279.8    | 82.1    | 1489150 | 274815  |
| 1967 | 297.6    | 289.1    | 90.6    | 1683300 | 305700  |
| 1968 | 330.8    | 306.4    | 115.0   | 1832000 | 333800  |
| 1969 | 310.0    | 327.3    | 97.8    | 2016550 | 373350  |
| 1970 | 313.7    | 337.2    | 74.3    | 2226550 | 415700  |
| 1971 | 351.0    | 344.3    | 81.0    | 2508900 | 415700  |
| 1972 | 343.4    | 361.8    | 62.6    | 2968500 | 531900  |
| 1973 | 373.2    | 365.6    | 70.2    | 3427050 | 703650  |
| 1974 | 360.2    | 366.6    | 63.7    | 3855500 | 889500  |
| 1975 | 356.6    | 356.3    | 64.2    | 4253450 | 1003850 |
| 1976 | 421.4    | 385.9    | 99.8    | 4694350 | 1129350 |
| 1977 | 384.1    | 399.4    | 84.2    | 5493450 | 1311650 |
| 1978 | 446.8    | 430.2    | 100.9   | 6423350 | 1557400 |
| 1979 | 424.5    | 444.3    | 81.0    | 7255050 | 1956050 |
| 1980 | 440.0    | 445.8    | 78.2    | 7651200 | 2127950 |
| 1981 | 449.5    | 443.6    | 87.0    | 7649100 | 2136700 |
| 1982 | 477.5    | 462.2    | 102.3   | 7781400 | 2165700 |
| 1983 | 489.5    | 482.3    | 109.5   | 7910000 | 2111800 |
| 1984 | 511.5    | 494.9    | 126.1   | 8072450 | 2140500 |
| 1985 | 498.8    | 487.6    | 137.3   | 8234900 | 2169200 |
|      |          |          |         |         |         |

| APPENDIX | с. | Data | (continued) |
|----------|----|------|-------------|
|          |    | •    |             |

where:

| worldprd <sup>6</sup><br>worldcon <sup>6</sup> | = | world wheat production (million mt).<br>world wheat consumption (million mt).                           |
|------------------------------------------------|---|---------------------------------------------------------------------------------------------------------|
| worldst                                        |   | world wheat stock (million mt).                                                                         |
|                                                |   | world wheat stock (million mt).<br>Gross Domestic Product in the developed<br>countries (million US\$). |
| yrwing <sup>12</sup>                           |   | Gross Domestic Product in the developing countries (million US\$).                                      |

Variable used in the ROW function:

| SPOU                                  | =   | worldprd - Sj.                       |
|---------------------------------------|-----|--------------------------------------|
| S <sub>ROW</sub><br>Y <sub>ROW</sub>  | =   | (yrwed + yrwing)/CPI <sub>us</sub> . |
| D <sub>ROW</sub><br>St <sub>ROW</sub> | =   | worldcon - Dj.                       |
| St <sub>ROW</sub>                     | === | worldst - (jpst/1000).               |

| <u>APPENDIX</u> | с. | Data | (continued) |
|-----------------|----|------|-------------|
|                 |    |      |             |

| year                                                               | usxpw               | caxpw     | auxpw                 | cawx                       | uswx      | auwx    |
|--------------------------------------------------------------------|---------------------|-----------|-----------------------|----------------------------|-----------|---------|
| 1963                                                               | 66.14               | 70.70     | 62.35                 | 16182.6                    | 23299     | 6896    |
| 1964                                                               | 63.93               | 69.09     | 58.32                 | 10876.3                    | 19732     | 7268    |
| 1965                                                               | 59.52               | 69.90     | 58.69                 | 15920.1                    | 23607     | 4755    |
| 1966                                                               | 67.24               | 73.46     | 63.02                 | 14025.8                    | 20256     | 8527    |
| 1967                                                               | 62.46               | 67.82     | 58.23                 | 9145.6                     | 20713     | 5658    |
| 1968                                                               | 63.20               | 62.27     | 57.98                 | 8324.4                     | 14810     | 6694    |
| 1969                                                               | 57.32               | 62.93     | 53.93                 | 9431.3                     | 16491     | 8190    |
| 1970                                                               | 62.83               | 65.09     | 57.63                 | 11846.9                    | 20085     | 9049    |
| 1971                                                               | 61.73               | 65.46     | 57.74                 | 13711.6                    | 17200     | 7760    |
| 1972                                                               | 91.00               | 99.00     | 91.00                 | 15693.9                    | 32223     | 4137    |
| 1973                                                               | 177.00              | 207.00    | 195.00                | 11415.0                    | 31271     | 7418    |
| 1974                                                               | 164.00              | 206.00    | 167.00                | 10740.2                    | 28277     | 8550    |
| 1975                                                               | 152.00              | 192.00    | 147.00                | 12285.8                    | 31924     | 8233    |
| 1976                                                               | 113.00              | 142.00    | 113.00                | 13447.2                    | 25855     | 9763    |
| 1977                                                               | 116.00              | 137.00    | 119.00                | 16040.5                    | 30590     | 8098    |
| 1978                                                               | 141.00              | 164.00    | 142.00                | 13084.9                    | 32495     | 11693   |
| 1979                                                               | 174.00              | 202.00    | 169.00                | 15888.4                    | 37421     | 13197   |
| 1980                                                               | 182.00              | 201.00    | 181.00                | 16262.2                    | 41204     | 9614    |
| 1981                                                               | 171.00              | 190.00    | 165.00                | 18446.8                    | 48199     | 11014   |
| 1982                                                               | 159.00              | 190.00    | 164.00                | 21367.6                    | 41068     | 7280    |
| 1983                                                               | 154.00              | 193.00    | 154.00                | 21764.8                    | 38891     | 14159   |
| 1984                                                               | 148.00              | 188.00    | 150.00                | 17543.4                    | 38782     | 14675   |
| 1985                                                               | 131.00              | 181.00    | 135.00                | 17683.4                    | 24766     | 15000   |
| where                                                              | :                   |           |                       |                            |           |         |
| usxpw                                                              | 5 = wheat<br>Hard   | t export  | prices f<br>Drd., fob | rom the U.                 | s (US\$ p | per mt  |
| caxpw                                                              | ' = wheat           | c export  | prices f              | rom Canada<br>ring, fob    |           | er mt   |
| -                                                                  | Port                | z).       | -                     | -                          |           |         |
| auxpw                                                              | ' = wheat           | export    | prices f              | rom Austra                 | lia       |         |
|                                                                    | (US\$               | per mt A  | Australia             | n Standard                 | Wheat,    |         |
| 5                                                                  |                     |           |                       | rd selling                 |           |         |
| cawx                                                               | = total             | l wheat e | export fr             | om Canada                  | (thousan  | nd mt). |
| uswx⁵                                                              |                     |           |                       | om the U.S                 |           |         |
| 5                                                                  |                     | isand mt) |                       |                            |           |         |
| auwx <sup>5</sup>                                                  |                     |           |                       | om Austral                 | ia        |         |
|                                                                    | (thou               | isand mt) | •                     |                            |           |         |
| Variable used in the ROW function:                                 |                     |           |                       |                            |           |         |
|                                                                    |                     |           |                       |                            |           |         |
| $Pw_{ROW} = z1*(usxpw/cpius) + z2*(auxpw/cpius)$                   |                     |           |                       |                            |           |         |
| <pre>+ z3*(caxpw/cpius). z1 = uswprd/(uswpro+auwpro+cawpro).</pre> |                     |           |                       |                            |           |         |
| z2                                                                 |                     |           |                       |                            |           |         |
| z3                                                                 |                     |           |                       | co+cawpro).<br>co+cawpro). |           |         |
| uswpro                                                             |                     | pro/36.7  |                       | ofcawpro).                 |           |         |
| "P1(                                                               | $\sim - u \omega w$ | Pr0/ 30.7 | <b>T</b> •            |                            |           |         |

# APPENDIX C. Data (continued)

| year         | uswpro  | auwpro | cawpro | CPIUS  |
|--------------|---------|--------|--------|--------|
| <b>1</b> 963 | 1146821 | 11714  | 19134  | 91.70  |
| 1964         | 1283371 | 12980  | 15732  | 92.90  |
| 1965         | 1315603 | 9626   | 17202  | 94.50  |
| 1966         | 1304889 | 16779  | 22519  | 97.20  |
| 1967         | 1507598 | 9817   | 16139  | 100.00 |
| 1968         | 1556635 | 19037  | 17690  | 104.20 |
| 1969         | 1442679 | 14229  | 18269  | 109.80 |
| 1970         | 1351558 | 12907  | 9025   | 116.30 |
| 1971         | 1617789 | 14744  | 14413  | 121.30 |
| 1972         | 1544936 | 10585  | 14515  | 125.30 |
| 1973         | 1711400 | 12000  | 16163  | 133.10 |
| 1974         | 1781918 | 11357  | 13296  | 147.60 |
| 1975         | 2126927 | 11982  | 17078  | 161.20 |
| 1976         | 2148780 | 11713  | 23587  | 170.50 |
| 1977         | 2045527 | 9350   | 19862  | 181.50 |
| 1978         | 1775524 | 18086  | 21145  | 195.40 |
| 1979         | 2134060 | 15697  | 17185  | 217.40 |
| 1980         | 2380934 | 10800  | 19158  | 246.80 |
| 1981         | 2785357 | 16360  | 24519  | 272.40 |
| 1982         | 2764967 | 8879   | 26790  | 289.10 |
| 1983         | 2419824 | 21780  | 26914  | 298.10 |
| 1984         | 2594777 | 18666  | 21199  | 311.10 |
| 1985         | 2424765 | 16127  | 24252  | 322.20 |
|              |         |        |        |        |

where:

| uswpro <sup>9</sup> | = | U.S total wheat production (thousand bus).<br>Australia total wheat production |
|---------------------|---|--------------------------------------------------------------------------------|
| auwpro"             | - | Australia total wheat production                                               |
| - 10                |   | (thousand mt).<br>Canada total wheat production (thousand mt).                 |
| cawpro              | = | Canada total wheat production (thousand mt).                                   |
| CPIUS               | = | Consumer Price Index in the U.S.                                               |

,

| ADDENINTY        | C              | Data | (continued) |
|------------------|----------------|------|-------------|
| <u>VLLDINDIV</u> | <u><u></u></u> | Dala | [Concinueu] |

| 1964 $90327$ $1348$ $174$ $54.24$ $87.50$ $117.13$ $1965$ $109963$ $1514$ $125$ $55.64$ $100.00$ $129.63$ $1966$ $104448$ $1688$ $204$ $55.39$ $82.50$ $203.066$ $1967$ $120199$ $1886$ $316$ $51.76$ $69.42$ $399.266$ $1968$ $111357$ $2055$ $202$ $50.56$ $83.88$ $268.366$ $1969$ $116525$ $1869$ $188$ $54.62$ $88.76$ $250.202$ $1970$ $104611$ $2569$ $203$ $57.57$ $71.89$ $267.766$ $1971$ $141022$ $2952$ $213$ $56.69$ $64.94$ $133.122$ $1972$ $141053$ $2687$ $188$ $70.45$ $74.65$ $127.366$ $1974$ $118144$ $2589$ $106$ $129.53$ $146.28$ $634.477$ $1975$ $148062$ $3645$ $133$ $125.34$ $141.75$ $496.156$ $1976$ $159173$ $3771$ $131$ $110.09$ $107.31$ $141.897$ $1978$ $180008$ $3251$ $145$ $112.15$ $125.86$ $121.71$ $1979$ $201655$ $4983$ $169$ $127.13$ $107.55$ $139.957$ $1980$ $168787$ $5753$ $151$ $138.92$ $130.56$ $148.91$ $1981$ $208330$ $6673$ $173$ $129.17$ $141.35$ $139.18$ $1983$ $106041$ $5933$ $139$ $140.11$ $128.29$ $144.$                                                                                                           | year | uscrprd | aucrprd | cacrprd | usxpcr | auxpcr | caxpcr |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|---------|---------|--------|--------|--------|
| 19651099631514125 $55.64$ 100.00129.6319661044481688204 $55.39$ $82.50$ 203.0619671201991886316 $51.76$ $69.42$ $399.26$ 19681113572055202 $50.56$ $83.88$ $268.36$ 19691165251869188 $54.62$ $88.76$ $250.20$ 19701046112569203 $57.57$ $71.89$ $267.76$ 19711410222952213 $56.69$ $64.94$ $133.12$ 19721410532687188 $70.45$ $74.65$ $127.36$ 19731434352803139105.88 $102.76$ $291.45$ 19741181442589106129.53146.28 $634.47$ 19751480623645133125.34141.75496.1519761591733771131110.09107.31141.8919771632134196144104.01130.11127.6819781800083251145112.15125.86121.7119792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.1112                                                                                                                                                                                                                                                                                                                                     | 1963 | 103900  | 921     | 145     | 54.80  | 64.50  | 177.80 |
| 1966 $104448$ 1688 $204$ $55.39$ $82.50$ $203.06$ 1967 $120199$ $1886$ $316$ $51.76$ $69.42$ $399.26$ 1968 $111357$ $2055$ $202$ $50.56$ $83.88$ $268.36$ 1969 $116525$ $1869$ $188$ $54.62$ $88.76$ $250.20$ 1970 $104611$ $2569$ $203$ $57.57$ $71.89$ $267.76$ 1971 $141022$ $2952$ $213$ $56.69$ $64.94$ $133.12$ 1972 $141053$ $2687$ $188$ $70.45$ $74.65$ $127.36$ 1973 $143435$ $2803$ $139$ $105.88$ $102.76$ $291.45$ 1974 $118144$ $2589$ $106$ $129.53$ $146.28$ $634.47$ 1975 $148062$ $3645$ $133$ $125.34$ $141.75$ $496.15$ 1976 $159173$ $3771$ $131$ $110.09$ $107.31$ $141.89$ 1977 $163213$ $4196$ $144$ $104.01$ $130.11$ $127.68$ 1978 $180008$ $3251$ $145$ $112.15$ $125.86$ $121.71$ 1979 $201655$ $4983$ $169$ $127.13$ $107.55$ $139.95$ 1980 $168787$ $5753$ $151$ $138.92$ $130.56$ $148.91$ 1981 $208330$ $6673$ $173$ $129.17$ $141.35$ $139.18$ 1982 $209180$ $6513$ $212$ $126.12$ $136.20$ $135.96$ 1983 $106041$ <                                                                                                                                  | 1964 | 90327   | 1348    | 174     | 54.24  | 87.50  | 117.13 |
| 1967 $120199$ $1886$ $316$ $51.76$ $69.42$ $399.26$ $1968$ $111357$ $2055$ $202$ $50.56$ $83.88$ $268.36$ $1969$ $116525$ $1869$ $188$ $54.62$ $88.76$ $250.26$ $1970$ $104611$ $2569$ $203$ $57.57$ $71.89$ $267.76$ $1971$ $141022$ $2952$ $213$ $56.69$ $64.94$ $133.12$ $1972$ $141053$ $2687$ $188$ $70.45$ $74.65$ $127.36$ $1973$ $143435$ $2803$ $139$ $105.88$ $102.76$ $291.45$ $1974$ $118144$ $2589$ $106$ $129.53$ $146.28$ $634.47$ $1975$ $148062$ $3645$ $133$ $125.34$ $141.75$ $496.15$ $1976$ $159173$ $3771$ $131$ $110.09$ $107.31$ $141.89$ $1977$ $163213$ $4196$ $144$ $104.01$ $130.11$ $127.68$ $1978$ $180008$ $3251$ $145$ $112.15$ $125.86$ $121.71$ $1979$ $201655$ $4983$ $169$ $127.13$ $107.55$ $139.95$ $1980$ $168787$ $5753$ $151$ $138.92$ $130.56$ $148.91$ $1981$ $208330$ $6673$ $173$ $129.17$ $141.35$ $139.18$ $1983$ $106041$ $5933$ $139$ $140.11$ $128.29$ $144.98$ $1984$ $194475$ $7024$ $238$ $132.50$ $134.71$ $148.00$ </td <td>1965</td> <td>109963</td> <td>1514</td> <td>125</td> <td>55.64</td> <td>100.00</td> <td>129.63</td> | 1965 | 109963  | 1514    | 125     | 55.64  | 100.00 | 129.63 |
| 1968111357205520250.5683.88268.361969116525186918854.6288.76250.201970104611256920357.5771.89267.761971141022295221356.6964.94133.121972141053268718870.4574.65127.3019731434352803139105.88102.76291.4519741181442589106129.53146.28634.4719751480623645133125.34141.75496.1519761591733771131110.09107.31141.8919771632134196144104.01130.11127.6819781800083251145112.15125.86121.7119792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1966 | 104448  | 1688    | 204     | 55.39  | 82.50  | 203.06 |
| 1969 $116525$ $1869$ $188$ $54.62$ $88.76$ $250.20$ 1970 $104611$ $2569$ $203$ $57.57$ $71.89$ $267.76$ 1971 $141022$ $2952$ $213$ $56.69$ $64.94$ $133.12$ 1972 $141053$ $2687$ $188$ $70.45$ $74.65$ $127.30$ 1973 $143435$ $2803$ $139$ $105.88$ $102.76$ $291.45$ 1974 $118144$ $2589$ $106$ $129.53$ $146.28$ $634.47$ 1975 $148062$ $3645$ $133$ $125.34$ $141.75$ $496.15$ 1976 $159173$ $3771$ $131$ $110.09$ $107.31$ $141.89$ 1977 $163213$ $4196$ $144$ $104.01$ $130.11$ $127.68$ 1978 $180008$ $3251$ $145$ $112.15$ $125.86$ $121.71$ 1979 $201655$ $4983$ $169$ $127.13$ $107.55$ $139.95$ 1980 $168787$ $5753$ $151$ $138.92$ $130.56$ $148.91$ 1981 $208330$ $6673$ $173$ $129.17$ $141.35$ $139.18$ 1982 $209180$ $6513$ $212$ $126.12$ $136.20$ $135.96$ 1983 $106041$ $5933$ $139$ $140.11$ $128.29$ $144.98$ 1984 $194475$ $7024$ $238$ $132.50$ $134.71$ $148.00$                                                                                                                                                                                                | 1967 | 120199  | 1886    | 316     | 51.76  | 69.42  | 399.26 |
| 19701046112569203 $57.57$ $71.89$ $267.76$ 1971141022295221356.6964.94133.1219721410532687188 $70.45$ $74.65$ 127.3019731434352803139105.88102.76291.4519741181442589106129.53146.28634.4719751480623645133125.34141.75496.1519761591733771131110.09107.31141.8919771632134196144104.01130.11127.6819781800083251145112.15125.86121.7119792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1968 | 111357  | 2055    | 202     | 50.56  | 83.88  | 268.36 |
| 1971 $141022$ $2952$ $213$ $56.69$ $64.94$ $133.12$ $1972$ $141053$ $2687$ $188$ $70.45$ $74.65$ $127.30$ $1973$ $143435$ $2803$ $139$ $105.88$ $102.76$ $291.45$ $1974$ $118144$ $2589$ $106$ $129.53$ $146.28$ $634.47$ $1975$ $148062$ $3645$ $133$ $125.34$ $141.75$ $496.15$ $1976$ $159173$ $3771$ $131$ $110.09$ $107.31$ $141.89$ $1977$ $163213$ $4196$ $144$ $104.01$ $130.11$ $127.68$ $1978$ $180008$ $3251$ $145$ $112.15$ $125.86$ $121.71$ $1979$ $201655$ $4983$ $169$ $127.13$ $107.55$ $139.95$ $1980$ $168787$ $5753$ $151$ $138.92$ $130.56$ $148.91$ $1981$ $208330$ $6673$ $173$ $129.17$ $141.35$ $139.18$ $1982$ $209180$ $6513$ $212$ $126.12$ $136.20$ $135.96$ $1983$ $106041$ $5933$ $139$ $140.11$ $128.29$ $144.98$ $1984$ $194475$ $7024$ $238$ $132.50$ $134.71$ $148.00$                                                                                                                                                                                                                                                                              | 1969 | 116525  | 1869    | 188     | 54.62  | 88.76  | 250.20 |
| 1972 $141053$ $2687$ $188$ $70.45$ $74.65$ $127.30$ $1973$ $143435$ $2803$ $139$ $105.88$ $102.76$ $291.45$ $1974$ $118144$ $2589$ $106$ $129.53$ $146.28$ $634.47$ $1975$ $148062$ $3645$ $133$ $125.34$ $141.75$ $496.15$ $1976$ $159173$ $3771$ $131$ $110.09$ $107.31$ $141.89$ $1977$ $163213$ $4196$ $144$ $104.01$ $130.11$ $127.68$ $1978$ $180008$ $3251$ $145$ $112.15$ $125.86$ $121.71$ $1979$ $201655$ $4983$ $169$ $127.13$ $107.55$ $139.95$ $1980$ $168787$ $5753$ $151$ $138.92$ $130.56$ $148.91$ $1981$ $208330$ $6673$ $173$ $129.17$ $141.35$ $139.18$ $1982$ $209180$ $6513$ $212$ $126.12$ $136.20$ $135.96$ $1983$ $106041$ $5933$ $139$ $140.11$ $128.29$ $144.98$ $1984$ $194475$ $7024$ $238$ $132.50$ $134.71$ $148.00$                                                                                                                                                                                                                                                                                                                                    |      | 104611  | 2569    | 203     | 57.57  | 71.89  | 267.76 |
| 19731434352803139105.88102.76291.4519741181442589106129.53146.28634.4719751480623645133125.34141.75496.1519761591733771131110.09107.31141.8919771632134196144104.01130.11127.6819781800083251145112.15125.86121.7119792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1971 | 141022  | 2952    | 213     | 56.69  | 64.94  | 133.12 |
| 19741181442589106129.53146.28634.4719751480623645133125.34141.75496.1519761591733771131110.09107.31141.8919771632134196144104.01130.11127.6819781800083251145112.15125.86121.7119792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1972 | 141053  | 2687    | 188     | 70.45  | 74.65  | 127.30 |
| 19751480623645133125.34141.75496.1519761591733771131110.09107.31141.8919771632134196144104.01130.11127.6819781800083251145112.15125.86121.7119792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · -  | 143435  | 2803    | 139     | 105.88 | 102.76 | 291.45 |
| 19761591733771131110.09107.31141.8919771632134196144104.01130.11127.6819781800083251145112.15125.86121.7119792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 118144  | 2589    | 106     | 129.53 | 146.28 | 634.47 |
| 19771632134196144104.01130.11127.6819781800083251145112.15125.86121.7119792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1975 | 148062  | 3645    | 133     | 125.34 | 141.75 | 496.15 |
| 19781800083251145112.15125.86121.7119792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1976 | 159173  | 3771    | 131     | 110.09 | 107.31 | 141.89 |
| 19792016554983169127.13107.55139.9519801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1977 | 163213  | 4196    | 144     | 104.01 | 130.11 | 127.68 |
| 19801687875753151138.92130.56148.9119812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1978 | 180008  | 3251    | 145     | 112.15 | 125.86 | 121.71 |
| 19812083306673173129.17141.35139.1819822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1979 | 201655  | 4983    | 169     | 127.13 | 107.55 | 139.95 |
| 19822091806513212126.12136.20135.9619831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1980 | 168787  | 5753    | 151     | 138.92 | 130.56 | 148.91 |
| 19831060415933139140.11128.29144.9819841944757024238132.50134.71148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1981 | 208330  | 6673    | 173     | 129.17 | 141.35 | 139.18 |
| 1984         194475         7024         238         132.50         134.71         148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1982 | 209180  | 6513    | 212     | 126.12 | 136.20 | 135.96 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 106041  | 5933    | 139     | 140.11 | 128.29 | 144.98 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1984 | 194475  | 7024    | 238     | 132.50 | 134.71 | 148.00 |
| 1965 225160 7595 511 110.55 125.81 142.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1985 | 225180  | 7393    | 311     | 110.55 | 125.81 | 142.46 |

where:

| aucrprd' =<br>cacrprd' =<br>usxpcr' = | total corn produced in the U.S. (1000 mt).<br>total corn produced in Australia (1000 mt).<br>total corn produced in Canada (1000 mt).<br>export price of corn from the U.S. |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| auxpcr <sup>7</sup> =                 | (US\$ per mt).<br>export price of corn from Australia<br>(US\$ per mt).<br>export price of corn from Canada<br>(US\$ per mt).                                               |

Variable used in the ROW function:

| PCROW | = u1*(usxpcr/cpius) + u2*(auxpcr/cpius)  |
|-------|------------------------------------------|
|       | + u3*(caxpcr/cpius).                     |
| u1    | = uscrprd/(uscrprd + aucrprd + cacrprd). |
| u2    | = aucrprd/(uscrprd + aucrprd + cacrprd). |
| u3    | = cacrprd/(uscrprd + aucrprd + cacrprd). |

| APPENDIX | c. | Data | (continued) |
|----------|----|------|-------------|
|          |    |      |             |

| year                                                                                                                                                                                 | uspipf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | capip              | f aupipf                        | usfr             | cafr     | aufr           | ricep    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------|------------------|----------|----------------|----------|
| 1963                                                                                                                                                                                 | 47.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.56              | 21.50                           | 11.28            | 7.22     | 7.50           | 8.75     |
| 1964                                                                                                                                                                                 | 46.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.39              | 22.35                           | 11.64            | 7.67     | 7.92           | 8.30     |
| 1965                                                                                                                                                                                 | 47.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.47              | 23.21                           | 11.65            | 7.97     | 8.17           | 8.10     |
| 1966                                                                                                                                                                                 | 49.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.23              | 24.27                           | 10.83            | 7.55     | 6.52           | 8.15     |
| 1967                                                                                                                                                                                 | 49.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.05              | 25.12                           | 10.80            | 8.65     | 8.76           | 8.35     |
| 1968                                                                                                                                                                                 | 50.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31.86              | 25.55                           | 9.60             | 7.84     | 7.51           | 8.45     |
| 1969                                                                                                                                                                                 | 52.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.93              | 25.76                           | 12.68            | 10.04    | 9.50           | 8.55     |
| 197 <b>0</b>                                                                                                                                                                         | 53,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.44              | 26.83                           | 10.04            | 10.64    | 10.67          | 8.70     |
| 1971                                                                                                                                                                                 | 56.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.67              | 28.32                           | 6.52             | 6.63     | 7.04           | 8.90     |
| 1972                                                                                                                                                                                 | 60.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.30              | 30.45                           | 13.90            | 11.90    | 11.71          | 12.70    |
| 1973                                                                                                                                                                                 | 73.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.49              | 35.13                           | 30.79            | 26.17    | 26.69          | 26.40    |
| 1974                                                                                                                                                                                 | 83.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49.66              | 45.77                           | 24.50            | 21.87    | 22.58          | 20.05    |
| 1975                                                                                                                                                                                 | 89.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.82              | 53.65                           | 15.64            | 14.33    | 14.62          | 15.85    |
| 1976                                                                                                                                                                                 | 95.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59.25              | 59.00                           | 15.34            | 14.90    | 14.90          | 13.30    |
| 1977                                                                                                                                                                                 | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.64              | 66.00                           | 15.73            | 14.06    | 13.92          | 19.10    |
| 1978                                                                                                                                                                                 | 108.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68.84              | 73.00                           | 23.00            | 17.79    | <b>18.</b> 05  | 15.40    |
| 1979                                                                                                                                                                                 | 125.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.48              | 78.00                           | 36.17            | 30.25    | 32.63          | 21.40    |
| 1980                                                                                                                                                                                 | 138.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.36              | 87.00                           | 38.42            | 30.68    | 31.46          | 25.95    |
| 1981                                                                                                                                                                                 | 148.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.00             | 100.00                          | 27.38            | 26.85    | 24.67          | 20.20    |
| 1982                                                                                                                                                                                 | 153.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103.00             | 111.00                          | 23.41            | 17.69    | 16.98          | 18.00    |
| 1983                                                                                                                                                                                 | 152.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.00             | 123.00                          | 24.42            | 18.27    | 18.21          | 19.38    |
| 1984                                                                                                                                                                                 | 155.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.00             | 133.00                          | 26.08            | 19.41    | 19.14          | 17.98    |
| 1985                                                                                                                                                                                 | 151.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.00             | 141.00                          | 28.67            | 17.83    | 17.83          | 16.11    |
| <pre>where:<br/>uspipf<sup>4</sup> = price index paid by farmers for production<br/>requisites in the U.S.<br/>capipf<sup>4</sup> = price index paid by farmers for production</pre> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                 |                  |          |                |          |
| aupip                                                                                                                                                                                | $f^4 = pr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | quisite<br>ice ind | s in Can<br>ex paid<br>s in Aus | ada.<br>by farme |          | -              |          |
| usfr <sup>5</sup>                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                 |                  | s to Jar | oan (USS       | per mt). |
| aufr <sup>5</sup>                                                                                                                                                                    | = from the frequency of the frequency |                    | ate from                        |                  |          |                |          |
| cafr <sup>5</sup>                                                                                                                                                                    | = fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ojaht r            | mu).<br>ato from                | Canada           | to Jona  | m (lice        | per mt). |
| ricep                                                                                                                                                                                | 6 = WO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rld pri            | ce of riv                       | ce (US\$         | per cwt  | 11 (033<br>1). | per mc). |
| ricep <sup>6</sup> = world price of rice (US\$ per cwt).<br>Variable used in the ROW function:                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                 |                  |          |                |          |
| Varia                                                                                                                                                                                | DIE USEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | ROW IUI                         |                  |          |                |          |
| C <sub>ROW</sub>                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | f/cpius)                        |                  | aupipf/o | cpius)         |          |
| Der                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | pipf/cpiu                       | ls).             |          |                |          |
| Pr <sub>ROW</sub>                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cep/cpi            |                                 |                  |          |                |          |
| t                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | cpius) +                        |                  | fr/cpiu  | s)             |          |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | r/cpius)                        |                  |          |                |          |
| X1                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                | w+auxw+c                        | •                |          |                |          |
| x2                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | w+auxw+c                        |                  |          |                |          |
| <b>x</b> 3                                                                                                                                                                           | = ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xw/ (usx           | w+auxw+c                        | axw).            |          |                |          |

•

#### APPENDIX D. Sources of Data

- 1). Abstract of Statistics on Agriculture, Forestry and Fishery, Japan Ministry of Agriculture, Forestry and Fishery.
- 2). Monthly Statistics of Japan (1967-85), Statistics Bureau, Management and Coordination Agency.
- 3). Statistic Yearbook of Japan (1960-1966), Statistics Bureau, Prime Minister Office.
- 4). Production Yearbook, Food and Agriculture Organization, United Nations.
- 5). World Wheat Statistics, International Wheat Council, London.
- 6). Agriculture Outlook, March 1987, United States Department of Agriculture.
- 7). Trade Yearbook, Food and Agriculture Organization, United Nations.
- 8). Statistical Yearbook for Asia and Pacific, Economic and Social Commission for Asia and the Pacific, United Nations.
- 9). Agricultural Statistics, United States Department of Agriculture.
- 10). Grain Trade of Canada, Ministry of Supply and Services, Canada.
- 11). Statistical Abstract of the United States, United States Department of Commerce.
- 12). Yearbook of National Accounts Statistics, Statistical Office, United Nations.
- Coyle, William T. <u>Japan's Rice Policy</u>. Foreign Agricultural Economic Report No. 164, United States Department of Agriculture, 1981.