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ELECTRON-PHONON INTERACTIONS AND DE HAAS-VAN ALPIfEN EFFECT IN

DILUTE NON-MAGNETIC ALLOYS.

I. INTRODUCTION

The de Haas-van Alphen effect (dHvA),discovered in 1930,has by

now become one of the most powerful tools in the study of Fermi

surfaces of metals and alloys as well as properties of electrons

moving on the Fermi surface.Whereas,measurements of oscillation

frequencies give the cross-sectional area of extremal orbits which

ultimately yield the size and shape of the Fermi surface,amplitude

measurements provide much valuable information regarding the many

body interactions.In this study we focus our attention on the electron

phonon interactions in general and those in dilute alloys in particular.

Let us first consider the case of a free electron gas in a magnetic

field.As shown in appendix A, the oscillatory effect arises because of

the quantization of the free electron states due to the magnetic field

The thermodynamic potential Ja of the degenerate free electron gas

in the magnetic is given by
(25)

3/1
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where all symbols used are defined in chapter II as well as in appendix

C.From this,to a good approximation,the magnetization is given by
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As is evident, there is an oscillatory behaviour in (1/B) with

frequency f,proportional to the extremal cross-sectional area of the

Fermi surface,given by

-c =
rnc.

(1.3)

2

for the r-th harmonic.The amplitude of the r-th harmonic is dictated by

the sinh term appearing in the denominator of eq.(1.2).The magnetic

fields and temperatures commonly used in the dHvA experiments are such

TT
2

Tkpthat >> i .In such a situation the sinh term can be approxi-
Loc.

mated as

AY

Sint TT21,61-f
we )

_ Tr-L 1?B-r

e u3c

_ arr f ("lc )

(e B) (1.4)

thus giving an exponential amplitude factor.From eq.(1.4) we see that,

if we plot the logarithm of the amplitude vs. temperature,we get a

straight line whose slope is proportional to the electron mass.In pro-

ceeding beyond the free electron approximation to include the crystal

potential one may,in many simple metals,employ an effective mass appro-

ximation in which the bare electron mass is modified and called the

band-mass.
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In the derivation of above formulae the electron states are regar-

ded as having infinite lifetimes.In the case that impurities are pre-

sent,the electron states will acquire finite lifetime.This effect was

considered in an earliar work by Dingle(3) in which it was shown that

if one introduces a Lorenzian broadening for the Landau levels then an

additional term appears for the amplitude which is given by

-TlfrWimpAl e
(1.5)

where r is the Landau level width.Since according to Dingle r-Divb,

it is possible to combine the two amplitude factors of eq.(1.4) and

eq.(1.5) and write

AY e

/12 IR T -+

(1.6)

where T is called the Dingle temperature.

The Dingle temperature "apparently" contains all the information

about Landau level broadening.In fact this idea is actively pursued by

experimental workers in this field in trying to understand the way in

which electrons scatter as they move on the Fermi surface

Extending Dingle's arguments to include the scattering due to

phonons one naively expects that as the temperature is raised from

absolute zero,the population of phonons increases and therefore the

amplitude of the oscillations should further decrease.Shoenberg
(26)

suggested that including the effects of phonon scattering the Dingle

temperature should depend on temperature as

To 1- °( 7 (1.7)



where estimates based on thermal conductivity suggest that 04'2,2_,

Such a temperature dependence would be easy to find in a logarithmic

plot of amplitude vs temperature;or the logarithmic plots of field

dependence of amplitude at different temperatures.However,in the ex-

periments done on mercury,where such effects are expected because of

strong electron-phonon coupling in it,Palin
(16) found no such tempera-

ture dependence of the Dingle temperature for field strengths upto

0

100 kG. and temperatures upto 17 K.

In actual fact a much earliar work of Fowler and Prange
(5) invol-

ving a field theoretic study of the electro-phonon interactions,in the

presence of magnetic field,predicted that the Dingle temperature would

be temperature independent.However,it was strictly speaking a high

temperature result and apparently was unknown to Shoenberg.An extension

of the arguments of Fowler and Prange (FP) was made by Engelsberg and

Simpson (ES)
(4)

in which they attempt,by numerical analysis using super-

conducting tunneling data,to go beyond the FP high temperature limit.

They suggest that at very low temperatures and extremely high fields

some temperature dependence of the Dingle temperature might be expected.

However, at these lower temperatures the rate of convergence of their

series is poor and their conclusions may not be as reliable as one

might hope.

In the present work we continue the investgat:ion begun by FP and

carried on by ES and develop an extension of FP high temperature result

which is valid at lower temperatures.

In our result we find that contrary to ES prediction,it is very

unlikely that one can see an amplitude of dHvA oscillations due to
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phonon scattering which differs appreciably from the quasi-particle

formula of eq.(l.2) except that now the electron-phonon enhanced mass

should be used in place of bare electron(free or band) mass.Further

more the result that we obtain has the advantage of being in a closed

form in which the effects of the electron-phonon interactions are easily

considered by calculating,according to the field theoretic prescriptions,

irreducible self-energies corresponding to the electron-phonon inter-

actions.We take advantage of the simplicity of this form for the dHvA

formulation to investgate as well,the consequences of impurities in the

form of a dilute substitutional alloy, on the dHvA effect.We consider

the case of both static and dynamical lattice impurities which will

modify the electron scattering.We also derive the result for fixed

impurity scattering in the case that the electrons have been renormalized

to include phonon scattering.



II. DE HAAS-VAN ALPHEN EFFECT IN INTERACTING SYSTEM.

2.1 General Formalism

The de Haas-van Alphen effect is an equilibrium thermodynamic

effect in which one measures the magnetization M of a metal or semi-

metal.This can always be computed from the thermodynamic grand poten-

tial ,which in turn is defined by

(2.1)

where 76, is the grand partition function and p =
(ko-) ;

ke is

Boltzman constant and T is the absolute temperature.By taking a deri-

vative of 171 with respect to the magnetic field B at constant temp-

rature T and volume V,we arrive at the magnetization;i.e.

M = 3_0_

)---r; V
(2.2)

6

The computation of _a ,for an interacting system can not be done

exactly and very often perturbation theory)as outlined in the following,

is used.

Introducing a variable coupling constant g,one can write the

Hamiltonian H(g),of the interacting system,as

\-1(co = Ho -k- nl (2.3)
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so that g = 1 describes the interacting system whereas g = 0 describes

some simpler system.In terms of g, 11 is given by
(1,6)

v(2s-t-Iyh,c. d% 2q0-0,) (.0,-,)

rh

(2.4)

where,

Jac, = thermodynamic potential of the non-interacting system,

V = volume of the system,

S = spin quantum number of the particles,

= h/2,

h = Planck's constant,

W11 = (2n + 1)74 = (2n + 1)11i2,3T.

G( ',0n) is the exact Green's function for the interacting system

and 2 5( L.0,) is a quantity called proper self-energy which is related

to the Green's function G(u011) by an integral equation which is

Dyson's equation

Gus(con) = Go (Lon) 6.(-)y)) 15(L),) cl(co.,)

where, Go(L0n) is the Green's function for the non-interacting system

corresponding to H0.The UJI.,= (2n + 1)Typ are points on the imaginary

energy axis.This rather peculiar state of points on the imaginary energy

axis is infact not so peculiar when it is observed that the finite

temperature Green's function is periodic along an imaginary time axis.

Thus the Green's functions may be expanded in the usual manner and the

ujnmerely represents the summation index for this Fourier series.
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The plus sign in eq.(2.4) correspond to fermions whereas minus

sign is taken for bosons.Thus for electrons we take positive sign,s =1/2

and using the units such that t = 1,we get from eq. (2.4)

a. V Ty
(-1(J yc(wyi)c,3(,0,-,) (2.5)

At this point it must be stated that the most general method of

computing AA is extremly complex and abstraCtit arises from a paper

by Yang and Lee
(12) and later recasted into the Green's function

language by Luttinger and Ward
(10 .However,it is possible to demons-

trate reasonably clearly the basic elements of the general arguments

by focusing on a simple situation,which is being done in what follows.

Rewriting the Dyson's eq.(2.3) as

+GibzqGc, (2.6)

where,for convenience,we suppress all the functional dependences except

that on the variable coupling constant g.By writing in the form of eq.

(2.6) we have isolated the effects of interactions in the self-energy

Eactk)n)-

Using eq. (2.6) ,the product can be written as

(2.7)

It is convenient to represent the various terms of the series of

eq. (2.7) by Feynman diagrams.In particular the lowest order electron-

phonon proper self-energy Ti)can be represented by the Feynman diagram

of fig. (2.1) where the solid line represents the electron Green's

function G
0
(u3n) and the dotted line the phonon Green's function d(')01-1)
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The vertex represents the coupling constants between the electrons

and phononsthe form of the actual coupling constant is given in eq.(4.24)

of chapter IA.

N

Fig. 2.1

Thus, in terms of Feynman diagram of fig. (2.1) we can represent

the series in the parenthesis of eq. (2.7) as in fig.(2.2).

X ,

Fig.2.2

The G0,written outside the parenthesis in eq. (2.7),has the effect

of closing the open diagrams of fig.(2.2),thus giving the diagrams of

fig.(2.3) for the thermodynamic potential ia .

However,the diagrams of fig.(2.3) can also be obtained by other

irreducible self-energies besides those of fig.(2.2).These are shown in

fig.(2.4).



^

2.3

-4-

/
5

I

10

Fig. 2.4

Thus,the summation of the diagrams of fig.(2.3) for the thermodyna-

mic potential actually involves the summation of the two types of self-

energy diagrams of fig.(2.3) and fig.(2.4).We note that there are two

diagrams in all higher orders except the first,hence the series for

Z1
1_ can be written as

± 2 (2-, G.T5Go

= ( -i- 2-5 G. .1) Go

zicio 2-4

21G.

2 .1- z G. 5 zGo

I
(2.8)
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since = for second order interaction in coupling constant.

It may be noted here that the self-energy still has an implicit

dependence on the actual coupling constant for which we use the nota-

tion g.That dependence is shown explicitely in later calculations,

when we need the actual analytical form of 2=

Using eq.(2.8) in eq.(2.5) we get

\ 2.

5 z
\ 1

(2.9)

Carrying out the integration over the variable coupling constant g,

we get

fry, ( G, G,

From the standard Dyson's eq. for the Green's function

we get,

CI 2 G. =
Gn

Q

(2.10)

(2.11)

(2.12)

The thermodynamic potential for the non-interacting system is

given by
(10)

'ff1( L
(2.13)



Using eq.(2.12) and eq.(2.13),we can write eq.(2.10) as

= \j-
sin ( Hc,d )

For the purpose of further generalization we write this as

Fig. 2.5

Basically what we are doing is constructing a quantity

V Tr ) Go1

12

(2.14)

(2.15)

which over counts the lowest order contribution(shown in fig. 2.5) to

of eq.(2.5),and then in the last term of eq.(2.15) we subtract off

the over counted diagram.This process can be extended to the summation

of all diagrams of a particular order in self-energy and not only of a

particular class,which were shown in fig.(2.3)However,for the general

case the counting and combinatorics becomes exceedingly complex.It is

at this point that the Yang-Lee-Luttinger-Ward argument bring the result



for the most general case into focus.These authors have argued that

the exact grand potential ,may be written in general as
(10)

) 4 " (2.16)
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The structure of eq.(2.16) is very similar to that of eq.(2.15).

In fact the origin of all the terms,in the two equations,is quite

1similar.The _0_(6n) represents the sum of all those diagrams in the

series for II in which originally only unperturbed Green's functions

are used but then these unperturbed Green's functions are replaced

everywhere by perturbed or exact Green's functions.Thus, _DV') can

be regarded as a functional of 17 whose purpose is to subtract off

a series of overcounted diagrams arising from the first two terms of

eq.(2.16).

Luttenger and Ward
(10) have derived several important properties

of fL ,using the expression of eq. (2.16),among which the most

important is its property of stationarity with respect to first order

variations in the self-energy ,i.e. = 0.This property of

g2_

stationarity allows some approximate calculations to be done in a very

elegant way as we shall see in the following.

For the interacting system of electrons and phonons we can write

the eqvivalent of eq. (2.16) for the thermodynamic potential __CL014k

for a unit volume,
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GC,o,

Ty -±* (Ct.),A) (10

2

(G D)

(2.17)

where Tqupy0 is phonon self-energy and D( On) is the exact phonon

Green's function;all other quantities are as defined above.

In writing eq.(2.16) we have omitted electron-electron Coulomb

interactions,because as shown by Rice
(17) this interaction gives rise

to little or no renormalization.However,screening effects can be taken

into account by using screened electron-phonon coupling constants.

In analysing eq.(2.17) we first note that the phonon contribution

to the oscillatory part of the thermodynamic potential is negligible.

This is due to the weak coupling between the density fluctuations and

the magnetic
field(4):The phonon self-energy-VC Wn) is also indepen-

dent of magnetic field,except for a small oscillatory part coming from

the excitations of electrons near the Fermi surface,this too is quite

negligible
(5) .This means that the major contribution to the oscillatory

part of the thermodynamic potential comes from electronic states only.

Thus we can write

2, TY

-F -0-1(61)(2.18)

( 1 G,(Lon)1) ±-2(u3")G1

To isolate the oscillatory part of a ,we note that the self-

energy 7_ (COn) can be decomposed into an oscillatory and a non-



oscillatory part

( (03,0 -1-- (wn)

15

(2.19)

where nos( (63n) is that part of the self-energy which has no dHvA

oscillations in it and Zosc6,..),1) is the oscillatory part.If we now

use the stationary property of the thermodynamic potential Ja to

expand it around 2-110sc(W,),we get

Del = ivy, (E. + +--0)

P4
Lon)+

,00,3n) + 20(w") (2.20)

ca
where due to the stationary property, L. = 0,there is no first order

SY
term.Engelsberg and Simpson

(4)
have estimated the last term in eq.(2.20)

I/2
using an Einstein model and found it to be smaller by a factor (63ciu)

than the leading term,so we can drop the last term in ed.(2.20).We can

also drop the magnetic field dependence of the self-energy because,as

can be shown,for a constant coupling Einstein model the non-oscillatory

part of the self-energy has no field dependence at all
(4)

;and due to

the screened interaction between electrons and phonons,any other model

will not differ very significantly from the Einstein model.Writing

for the magnetic field independent non-oscillatory part of the self-

energy,we have
1

1. We can calculate the self-energy using Bloch states or free electron

states.This,of course,introduces some "false" quantum numbers,i.e.

k ,k ,which necessitates taking some orbital average.We shall discuss
x y

this point further on in the work.



.c> (Lon)

(2.21)

i.6

Since our primary interest is in the dHvA oscillations,we can

now use Luttinger's argument to separate the oscillatory part of LL
part

Luttinger (9)
has shown that the oscillatory,of 12.(toy,) is,to an

adequate approximation,equal to the negative of the second term in eq.

(2.21).The basis of the argument is the non-analytical character of

the Green's function which is responsible for the dHvA oscillations.

We can finally write

( I 1 )

1,4 (E 20(1wv1)i (L)n)

o 5 C

(2.22)

where we have written L,(iu),)in place of 4(ton) to point out expli-

citly that it is the finite temperature self-energy evaluated on the

imaginary energy axis.

As is mentioned in the footnote on the previous pageLkw-1)is

actually 2-0(2 ki, -,))where k
z
is the wave vector in the direction of

the magnetic field and k 1 is the wave vector transverse to the magnetic

field,over which some suitable average will be defined
(13)

the

following derivation depending on convenience,we will exhibit or suppress

the various dependences of the self-energy as well as the energy .
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2.2 Basic formula for de Haas-van Aiphen Effect

Our objective now is to develop from eq.(2.22) a formula that

describes the dllvA oscillations in an interacting system.To begin with

we use the effective mass approximation for the band structure,which

is good for some metals at least near the Fermi surface.We can then

write the non-interacting single particle spectrum(Landau levels) as

w, B
2rn 2 (2.23)

where,

= r/yric) the cyclotron frequency,

the magnetic field in the z-direction,

JJR= the Bohr magneton , ()If), )
2 M C

= + l /2,are the spin quantum numbers of the electron,

the electron band g factor,and

11 = the chemical potential,

rn = the band mass of the electron,and 1 is the quantum number

for the cyclotron motion of the electron.

If we treat the logarithm of eq.(2.22) as a distribution we can

apply the following integral representations:

when irn i UD ( u0 ) > 0 3

+ ; _S
cl

b 0

.

5

b (2.24)

and when Im 4 i LO ( i ko,) 4:- 0
_5[E ----1Lor)-1-20t014)1

c>
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Now,from the spectral representation of the self-energy function

we note that,

LY1

r(,0)

00 .11 (A),) 1k)

(k.) y)=
2n

o0

J

r (co

(2.26)

(2.27)

so, lm >1 U3-yi > 0 ;, (I Wy\ )< 0 when

and I\y, 2 ( 1.4.),,,) > C5 when (-0-n < 0 .

Thus we can write ...a as a sum of contributions from (.0,-, >0 and

from

and

4>y, < O ,which we call and _a_ respectively,where

1 Tr
YI

Y1 6 ) 0

cl9

b s[_e( e,
s e

(2.28)

1 Lon i (6, w,i)]

(2.29)

Before we proceed. further,we may verify that the above relations

does indeed give the familiar result for free electrons i.e. for

.Y.(kz)icJ )=D.Noting that Re s > 0;we have the following results



ecb3/4 / 2 rr)
2_ "rn

-00

e st,)c. (I 1/2)

.9 -0

More over for (,On > 0 , Im s 0;

e

2 sIY)h (Swc
2

and for (_0ri < 0 , Im s < 0 ,

O0 L S (2Y1+1)1T/p

e

sH (STI/t)

2

With these sums and integrals done)the two integrals may now be

combined to give

1/
2_

Til uc, 2 YY)

(211P/ 2¶L

5/(1- s c 01 S/F2,) 2 cos

3/
5 2 y 2

_

(2.30)

from which the oscillatory behaviour can be extracted by applying the

residue theorem at the poles along the imaginary s-axis at s
(2n+1) t.

we

where n= 2 )-± _

In the more general case (which is of interest here) when Z.([2j4.))1)0

the evaluation of the oscillatory part is still straight-forward.First



the sum over Landau levels

s-L 1 YYl 1-6 c

21T 1
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kt

Aa 1_

5

6 BC o s

co

rdhh
b
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2m
Lo 2. , i lJ n)_\

sink
2

k2e L

20

X

(2.31a)

tor ) 10i)]

b100

Cosh (
2_

q° 'LLB 1-.) S-.)// f'DLO(._)
7-

( 2 . 31b )

The kz integration may also be done at this stage by,say,the method

of stationary phase;but it is not necessary for obtaining an extension

of the Fowler-Prange theorem,in which we would be interested.

Once again,the oscillatory contribution arises from the poles

introduced by the sum over Landau levels,which are located on the

imaginary s-axis at s = 2 TT t r= ±1 ,+2, If we deform the con-

tours of _c-Ij and -Q__ to encircle the poles in the upper half of the

s-plane and the poles in the lower half of the s-plane respectively;we

have from the sum of the residues at these poles-

oro

Iy Wc 6

(-1)1. 2111,1 .1(071 k- ? (k)? )1 °)-))

C'_

rx.)

2
lAi.c L ,r

_oo
CI ki.,-TV- A- \\

X Co c> at

(2.32a)



and
00

TO (0 c

2_ Z---
--,

f,0

k 71)z

Cos 92bu' b

Finally, we combine the two parts to give

YY1

c.o

oo 06 -t
2 `r(1 4-)c. 2 a rdke 2- (-1) co

2. Lt.) c

-- 2 T1-

X c

21

t ) ,)

(2.32b)

(2.33)

Except for the remaining kz integration,the above equation may be

recognized as the well known Fowler-Prange theorem.The above derivation

shows with clarity,how the dHvA oscillations of the magnetic suscepti-

bility separates the real and imaginary parts of the self-energy,when

evaluated on the imaginary energy axis.

Our aim now is to extend the Fowler and Prange's high temperature

result,to a region including lower temperatures by carrying out an

approximate sum over n.Since we are primarily interested in the amplitude

we ignore the real part of the self-energy E0,;0,),) which appears in

the frequency.With this simplification,it becomes convenient to do the

k
z
integration by,say,the method of stationary phase to give

Yn c 2--

2_

211-1

-Tr

c
cos _ /

X CD
( TT r 13)

,
--- T1 t) jw, `2_ e,

.

LJc

Wc. (2.34)



where k
z

(the quantum number of the orbit) is zero in this case.

Now,rather than using the customary method (10) for doing the

sum,we use the Poisson sum formula

cO

1)=0

--(2)1±1)11C

3

cc

(2 3 t- I) rT

(2.35)

22

\

If we expand Im 2-__(J+1,E around y = 0,and retain only the linear

term;we have

-0coo

where L2 = lycThe dHvA amplitude becomes then

aU
21-11" L00-1mCIL)')

C L--

`A3

Loc

2 1T,t

ci e

0

1TL

(?) =

rup-)j

(2.36)

(2.37)

Performing the now trivial yintegration yields for the amplitude

C

(4.),
02111, 22

li,1 ( (A3 p)

(-4.)

(2.38)



The infinite sum over ?) is just a Mittag-Leffler expansion of

loo

(2.39)

Thus,to this approximation,the amplitude finally takes the form

7--1 up H
rbwo

Lt)

and the oscillatory part of the thermodynamic potential is

Yel we )-)D/2- _c_1°
21T _ T

2 c 0 S

__ 2 TT

ODD e_ up

c 0 `3 _

I e

(2.4o)

up o --1,,1 s.2 ( r. (-°,) _,

I 17

(2.1d)

.'As an application of the above formula to see how various

interactions contribute to amplitude effects,we now consider two

specific cases (1)the self-energy due to phonon scattering in a pure

system and (2) the self-energy due to fixed impurity scattering.Later

in chapter III,we will derive the expressions for phonon scattering in

an impure (substitutional binary)alloy as well.



(1) The electron-phonon self-energy :The electron-phonon self-

energy in a pure metal,when evaluated at the first pole of the Fermi

function(from eq. 14.32 of ch. IV) is

( 0 , L 0) - uu 0 A 1.

where j\ is the enhancement factor4urther. more

to order of magnitude considered.

(2.142)

(2.143)

(2) Fixed impurity scattering : Any self-energy in general can be

written in terms of its spectral representation as
(2)

where ro, u3) is the self-energy spectral function,and

- 2 I, ( 0

(2.44)

(2.45)
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where CO is always on the real energy axis. F(Ii7,1,)) is in fact the dis-

continuity in the self-energy 2(k;c6) across the cut on the real energy

axis.In the case of randomly placed uncorrelated scattering potentials,

the spectral function may be expressed in terms of the scattering

t-matrix aS2

F( ) 2FT kit: 2_

(2.46)

which is essentially the optical theorem.
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Now for the purpose of our formulation,we require the dhvA orbital

average of

as well as of

--L?) >- o ) (-0

u_Th

2. 2_

Le

(2.47)

z_
uoo _± (Go

r( )

_ 2

7_

1-- ((p) --/c°

(2.48)

Examining eq.(2.47) and the first term of eq.(2.48),we shall take

the customary low temperature limit used in treating impurity scattering

Then as Q,we have

2_

(-6 0 ° W D e--() -PL)

so that,

and
Lc) 0

o)

1-yY) z

r(A-A)

r(l-k)
2 Lc)

where,we have ignored the second term of eq. (2.48),If we assume that

the self-energy due to static impurity is temperature independent,then

the only contribution comes from eq.(2.50),In this case we have for

the contribution to the amplitude from static impurity scattering as



s+.

ti

2 trr Ly1 p ry--)

(2.52)
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Comparing this with the expression defining the Dingle temperature

2-\12.T

e Loa
T

D
i e ,we see that

(2.53)

This then is the finite temperature derivation of Dingle tempe-

rature.

Including both impurity and phonon scattering,we can write for the

amplitude of the r-th harmonic of the dHvA oscillations as

A T
0.

-211-
1-('u')

- 2 7f V wo

- Coo

e_ w c,

2IT

where we have used the relation =

enhanced mass.

* ,

"Yr)

(2.54)

rn''- is called the el-ph
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TIT. ELECTRON-PHONON INTERACTION IN DILUTE ALLOW.

As noted in the previous chapter,to calculate the thermodynamic

potential for an interacting system,we need to know the electron self-

energy of interaction on the imaginary energy axis.Then we can use eq.

(2.41) to calculate the amplitude of the oscillations.

A formal calculation of the electron-phonon self-energy in a dilute

substitutional binary alloy has been done by Hicks
(7) .1n Hicks calcula-

tion modification of ionic force constants was ignored.Although there

are obviously cases for which this effect is important,no attempt to

include the effect has been made in the present work.In the following

we give a brief outline of the procedure used and then in chapter IV go

on to calculate the self-energy contributions which are of relevance in

our case.

The starting point in the calculation is to write the full

Hamiltonian of the alloy as

here,

z - k-

yy, 131

2_ up 2-

P A V ( + I A_

o(
2 (xt

2 11
-2_ 4_,

i and j sum over electron co-ordinates r. and r

of and p sum over all ion co-ordinates Rd, and Rp

2 sums over impurity co-ordinates,

Vc4 is electron-ion interaction on the c-th site,

111 is electron mass,

(3.1)



M is host ion mass,and

M is impurity ion mass,

i I

1- ; and
M'E M

(3.2)

pi and P denote the momenta of the i-th electron and ci\-th ion

respectively.

It is possible to separate the above Hamiltonian into two parts

H
ph

and H
el

corresponding to phonons and electrons respectively using

an extension of the Born-Oppenheimer theorem to the case of continuum

electron states
(18).

We have

_I
V( ) + L E ( ;0) 4- 13''\ /z E_

ot vi 2 cq_ dtC,
(3.3)

--te = (
2 . _

2, YY1 ) ( 3. 4 )

The term 5 E0Ro.--R p )
represents electronic energies for fixed

ion separation ( Roc - Re ).Though in general this correction depends

on the individual electronic states ( as indicated by the suffix k),it

is slowly varying in k for the electronic states near the Fermi surface
(18)

Therefore dropping the subscript k and absorbing the energy E into V by

writing it as Veff
,we get

Ho,

-2_

Pd A_ Ve,0

2 0 (3.5)

For states that show binding Veff has the shape typical of bound.

molecular states.Assuming then that the displacement of the .0(-th ion,

from its equilibrium position of minimum energy, sRao is small, we can

expand Veffaboutitsequilibrilmpesiti-ohR.and
get

ao
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j\_ S R t o4 S R
2- )Z,

f5

rl
2

where 1 and k sum over the three possible vector directions.

and,

knz

Now defining Matsubara Green's function as

04 V>

Est CZ)
R,,,(r)SRif(6)>

(3.6)

(3.7)

(3.8)
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(3.9)

where SR50<(-) is the ionic displacement operator as expressed in the

Heisenberg picture in which ixt = real time) has been analytically

continued to (1/kaT) = Z ;and is the imaginary time-temperature

ordering operator.The bracket < ) represents a thermodynamic

grand canonical ensemble average.

With the definition of eq.(3.9) for the phonon Green's function and

with the Hamiltonian of eq.(3.6) it is possible to generate a heiarchy

of equations of motion and an iterative process which will permit its

,

( i.e. Dst tZ) ) determination to some order in the coupling constants.

When this is done it is easy to get the phonon Green's function for the
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disordered mass substitutional
lattice.11owever, for the purpose of

separating the various contributions to view them eventually as

corrections to the normal host system(8),it is convenient to obtain

three different types of ensemble averaged Green's functions which

correspond to correlations of host and impurity atoms amongst themselves

and with each other.Thus one has

1. For host-host correlations

1-0:52-"10,1)}

I I, (q, 40,)

2. For impurity-impurity correlations

01,1

< (
M' fs(

M uojUi-) 11 d5 10,)

3. For host and impurity correlations

a
< bs lt,)-)

where,

cts-E (q (w)

(3.10)

(3.11)

(3.12)

211-17C

(3.13)



andconcentrationc=N./N ; where,N is the number of host atoms in a

unit volume and N. is the number of impurity atoms in a unit volume.We

assume thatconcentration c is low so that N>->Ni .

After getting these phonon Green's functions for the impure lattice

one has to consider some process of coupling these with the electron

Green's function.In coupling the electrons to the phonons,according to

the famous and important theorem of Migdal
(15)

, all vertex corrections

to the interaction may be ignored as they contribute to order (m/M)
1/2

i.e. square root of electron to ion mass ratio,compared to the lowest

order term.So the principal contribution to the electron-phonon self-

energy comes from the term with the Feynman diagram as shown in fig.

(3.1).

N

Fig. 3.1

There are then three different contributions to the electron self-

energy which arises from the correlation of host and impurity sites in

the lattice.These to order linear in concentration c (per unit volume)

are

1.

n -c )
ter)

2
k

(3.1)1)
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2.

Tb( iR1L"

3.

J_ F-q) Low) x

Lo

\/(-7) )
( )2-

(3.15)

N 2: I 2= C,10( k0,9 Ds(fLo,-,,),9 X

2_

" v(,)]

(3.16)

where the diagonality in k arises from the uncorrelated ensemble

averages over the impurity sites,and A is the Fourier component of

the difference in the scattering potential at the impurity site;and

UZ)
'VD L

Er.-)7 _ Lk".

V(f) e = CY

(3.17)

for a unit volume.

In the next chapter several approximations are made and these

three contributions are evaluated for points on the imaginary energy

axis.Infact,as the formulation in the previous chapter indicates,

evaluation at the point Wo = is all that is important.



IV. ELECTRON-PHONON SELF-ENERGY ON THE IMAGINARY

ENERGY AXIS FOR A DILUTE ALLOY.

From chapter III we have the formal expressions,eqs.(3.14),(3.15)

and (3.16),for the various contributions to the electron-phonon self-

energy in a dilute alloy.

Rewriting eq. (3.14),we have

k) I tl) I- 1 ( WI I tt) 1551 1,0 K

13 Lan"

(3.14)

For convenience we denote, 5a(ViCi) = C;0( Dciaq('4314111)

Then substituting for D5
4
( -0.0,-ttlh9frorti eq. (3.11) and using for the

electron Green's function Go (C103,1 =
1

,where

writ- Eli:,

we get

Saalf)' Z..
m

x
4).n, (A.,,,/ 7 iv,'

tk,

M m W51-( 1)1, .4 ( 4 1d to.,-. '4 ,

cis ( ''1,3.,-lA)vii) (1' 'fi

I TII 1 Z M tV52-.0.1) `-'1` (4' 1 t"- 1°119 (4.1)
N ."',

Considering an isotropic phonon spectrum,so that Ws (q)=to O)and

using

d5(1410h---01,i)

we get

1
i

1

, I I) ws (4)
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-2_

ran -2 )

1

2_

( ,., ' )

(

(4.2)

The summation over q
/.

is easily done within a Debye model,and we find

1

P,) )
__ 2_ X

-2_

ct )

r 3M wZ(C)
ta.)03

It

L., -3!-,

,-on'

tx.3 YI

2_

_

Jn

2_ 3 t tx),/ L')f)
D "

.0

(4.3)

where Lt) is the Debye frequency.

Converting the N'l ( sum into a contour integral in the standard

way using the Fermi function,f(x)
K

, which has poles at

r

13 t

r -f-
,

n--
X ; so that the sum is reproduced exactly by the

integral,we have

A

fix)

X (
- _H

(0,

D2 H.-" -1 ( )°3 2_

X c)r,

(4.4)
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where A = .The contour C and the analytical sLrucLure of t,he
U,)D

integral is shown in fig.(4.1),In the complex X plane the integrand

has simple poles at Ewo () )14-w(4)and and logarithmic branch

points at Lo,-4-- Lzb.Here upL is the frequency of the localized mode

which occurs for light impurity ( positive) as a pole of the phonon

Green's function of the disordered lattice.If the impurity is heavy

there appears a "virtual level" and in that case we can put U31__ = 0 in

the following derivation.Now deforming the contour outward to infinity

(fig. 4.2) we pick up contributions from the poles as well as the branch

points.In appendix (B) we show that the branch point contributions are

negligible.Hence,omitting them from consideration,we get from Cauchy's

residue theorem

sao-R'A:) (__200 x

M 2rrL j

L 6,,,_ ,E---,.,7) ,;(i)
2-

-+ A V (lo _,4 ) Lo, -1-- w,-_, --1- (H),,,- Lk; ) K

3
2_

( to, -+- 1-,)( q))
+- 1,,[w(;)]

Lor 2 t'°(q)

+- L )

-A-- L
LO NI -I- Lk.) Ek L.

Caiyi LOL) (_ .

--ETz U-) tS2- I )



X

Lot_

X n X

F LH

t-) LOD Lk),

Lo(47) 10.t, Lo,



where,

and,

Now

and

,,,2-(-) LA) (ft')
'0( f

L"--)
L-

L
2_ 'J(i)

1

-
L 2

L -- Lc)

[ ( (-01 ) (k)p (tk-)L ) Lop

2.

"-"L k-OD
0..)L

where y)(,,,(q))

e

Similarly,Similarly, L)

w)
I

Using these relations ,we have

)

=

is the Bose function i.e. the average

phonon-occupation number.

I Yl(LOL)

y (
2_

L (L.k.)n

_ A t-') ) 1

3 L

3

2 uo(i)

14 + u)D



r 1 E \r ( )

(A), _4- L Gr k;

Lot.)

W (4

( 4 . 6 )

3

Substituting the above expression for in eq. (3.14) we have

r-

2_

)

\- u)-L

x

D

3

(W k.
) LADD -4- (.4)D

_ cOn (4) 2 up ('')

_ey

2_
L4-1 r 4.4-) D

2 to(i)

coL_

'4,(u,(7))

4-, (coL)

( . 7 )
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A first principle evaluation of the above equation forZ,(V/Lk)h)

(in particular the ki integration ) is analytically not possible.On

the other hand,as is commonly done in the theory of superconductivity,

it is convenient to take some averages,suitably modified for dHvA

studies,over the Fermi surface in order to explore the magnitudes and

dependences of the effects being considered.We now change the sum over

ic, into an integral,as follows

cx)

OF (21-) -S

where VF is the velocity of the electrons at the Fermi surface.Since

u(q) goes only upto Wb,for large values of the integrand

falls off very rapidly.This allows us to extend the lower limit of

integration to -op without much error.We can now perform the

integration in the complex plane by closing the contour in the upper

half-plane to get

C

M VF (2_Tr

(Lov)-"`")(i))

2 Lo(

-2IT { 4-- (''' '') 14(w(02 w()

co

7--

w,-0

-4-
--f- -+- u3,)

2 2
(AD



(--

4-z

=- )
(2_ v\iyil8-rc

1 + 2 11 ( u)( 3 ) ) "j-, ( 4) f q) )

2 L.)(&)

2 Y1 (LA3L)

tot_ ( 9 )

) 2 kF

-2_

since 1 s 2 k Le)

assumed that
2

(.
(OL 2

+ 2 n (coL)

-2_ -
u-D (4 )

x

(_14.8)

and where it is

does not vary much with energy so that it

Ito

can be considered as constant.We can also take this constant value as

the one at the Fermi surface.Now,before doing the surface integration,

we. note that the residual relaxation time (F) may be defined by

2 N A( _

whereistheFermienergyandN.is the number of impurity atoms

in a unit volume.

Thus writing c = N. /N, we see that we can identify the surface

integration as the reciprocal of the relaxation time;remembering that

the

the delta function restriction is already implied inAderivation.Now

considering only the case n = O,as required by our general formulation



we have

Now

where,

kF

MITT Ni
L-

2 TT

I I 2,n( L0(4'0

2 t_...3( 9')

14

. oo
21r CI+ 2n (L0L) (oz..) z

(-0-2
YY1= o wITT L GT) t-.32(q)1

6, 2w, erT )

r) 1 2 -)-1 ( ( ) ) ))
2 Lk) (

2 Y1 ( Lk.)

2.
( 9- )

2 l <2

.r? )

,-.L)-a( )

( )

So that after simplification,we find that

-z..

-7a.

TT N

z )

2 M r-f -r )

(4.1o)

=c)

(4.11)

(4.12)

Now carrying out the q integration also,using a Debye model,



we finally get

Tu. I co 0)
Ir`f

r 42'_ L

M --z (

(4.13)

In the end,we can now define some suitable average,over extremal

orbit for example, and write

< ( Jo

where

<'C

(4.14)
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here denotes average over some extremal orbit i.e.
6,6F

F s (4.15)

where Vj_OF) is the component velocity of the electron in the orbit

plane.

To find the second contribution to the electron self-energy,we have

from eq.(3.15)

z 6 ( 172 1LOYI )

_
co,'

vq)

7_

_4_ v(-c-;) A ( )

(3.15)



Substituting for D
s

d
q IlA:).h-q from eq.(3.12) we get

b( NC_ 2_

54.

1

,)(
,

LC) ) "
l7(

E-112: wsz t)
4s/

v( -4) -6(.i) (<4' is)z- (4.16)
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For convenience denoting the (0,1/ sum in the square bracket by Sk,(k-)

and using an isotropic phonon spectrum,we have

Sb

where as before

1-k-)y

(" _I_ 2 a) f)

-(4

Converting the sum over Will in to a contour integral,as in the

case of a t--,(Z1u3n then,deforming) and then,deformin the contour in the same way we

pick up contributions from the poles of electron Green's function and

phonon Green's function including the 'localized mode',if any.The result

of all this is

2
) (q )

(4.17)

I r-

)

L(oNi- ) Lop 4-r,
2 1 3

7) (G0(;))

Lo(q)- E.k14.

( '')(97-))

(A.) l'31)

'-)D



where,

and

-r

"J:(Loi )

In terms of

I -1- ( (-0 (

u-) ( ) 2 Lai)

( Lt) )

n -4-

( (-0 L ( W L

2 2
LL), -f- Lf-) u.DL ( 9 ) I )

I en (cot.)

S), (1-j- q)

27 \Lo,) N c

[L02!_,024_
3

1114

(4.18)

3 -2_

2 c(--)2_ upp
G3i_

1-0L2. 02-
2_ (-0.1)

we can write 210(17Z It-0,1) as

(4.19)

If we restrict ourselves to normal processes
1
,then a sum over q is

1. The ensemble averaging actually gives delta function restrictions

for both'normal'and 'umklapp' processes.Umkalapp processes are no doubt

important for resistivity,where large angle scattering dominates;however,

for dllvA effect their effect may not be as big as in resistivity.In any

case ,because of the parametrization that we do,the effect of umkalpp

processes can also be taken into account in the end.



eqvivalent to a sum over k), since in this case q = (k - k).This

allows us to write (for a unit volume)

ctk,z

VF ( 2 ff)
(14.20)

where VF is the velocity of the electrons at the Fermi surface.It is

also convenient to separate the phonon contribution by introducing a

delta function.We have

r
1?,2-

oU J Up (217 ) 3
O

S b L)

V ( k' ) )

YZ' s

A- V ( 1Z) (1q-1-1rf

(4.21)
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Now performing the ec integration by closing the contour in the upper

half plane,we find

du) (--(3 k h, C 2 7 ( )

M VF (2R )

( (o, LoL)
k/(_ot )

2_
L w W L

2 (-0

04

=o

1

= I
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k^ tf X2131- w L
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V., it kiss -r )
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c.2 Re [ ( ) ( )

(co)

(4.22)

Considering only the n = 0 case,as is required by our general

formulation,we get after simplifying

N c

vY

0.) fe

cA 12,2

VF (2n)

)6 (7k'--rz )] [(2= E k,)s
(4.23)

Now using the relation for the electron-phonon coupling constant

in terms of the scattering potential
(20)

-2_

mu)l-

we can write 2 6(h I Lon) as

2-6 ( -'IL00)= 6 IR12

TT

13 (-0

v(C-

cS((k.)

2m (-012

(4.24)

(4.25)
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Finally,taking the average over k,at the extremal orbit k
z
=0,we

arrive at

C
C2

0

cam < 2 [ cA 6-0 F-(_())\

4S-Y );1

(4.26)

where F-00) is the phonon density of states and analogous to the

theory of super-conductivity,we have defined

c (-) (co) F(
6-y1Di

cl lz_t 1-.2,2-

( 2 ri

(7,

hinnF.S

(4.27)

Thus the new parameter that appears in the interference term has

the product (4((-0) A VLo) instead of N)) which appear in the

unperturbed system.

The third contribution to the electron self-energy (11(,3) from

eq. (3.16) is

Pr

,

r
( CO n

LC)

(4.28)
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Considering only the normal processes,as before, and denoting

Sc (ti7 (1-i,/,,),,9 0, (i'li0-(0,)we have ,for an isotropic phonon spectrum

=

" - "
4 rI

_ (

'

647:i)

J

(Z1.29)

Because for dHvA effect the impurity concentration is typically

of the order of 1 %, we would be interested only in terms which are

linear in concentration.Rearranging the denominator and expanding it,

assuming c small, we get (upto terms linear in concentration)

Sc C ) =

I

2_ 2.

(qT)

c

Ni

fi

frt
ck.)11

(C. - ) (,)

"

6- A/
4_) _ _ W zi ',I 1

The third term in the above sum has a double pole and it is

(4.3o)

convenient to evaluate it by the following approximate procedure rather
02(4.)

than by contour integration.Because the function

is very sharply peaked near (c,),-La,f) , 0 ,most of the contribution

to the integral will come from the region close to this.Hence,using

0 in the last term of the above eq. (4.30), we find

that its contribution is



= ZGIO I L("1 1\1 j

(_0 62()

(4.31)

which,as we can easily verify,will give a contribution to the self-

energy that exactly cancells the contribution from the second term.

Thus to lowest order in concentration,the contribution from 2c(wo) is

only from the host atoms without any modification i.e.

c

a_

2 Et,o = -- L -F k /6-1-
( ('- )

(14.32)
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It is interesting to note that the approximation that we used

above in evaluating the last term in eq.(4.30) may indeed be a very

good one, because if we use the same approximation in the second term

of the same eq.(4.30) we get exactly the same result as we get by doing

the contour integration.Thus there is some cancellation effect which

all the more seems to justify our approximation.
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V. RESULTS AND DISCUSSION

In chapter II we presented a new derivation of the basic formula

for the dHvA effect,in particular for the dHvA amplitude.We have been

successful in extending the calculations of Fowler and Prange (5)
,which

is essentially a high temperature calculation to lower temperatures by

approximately summing contributions from all the poles of the Fermi

function on the imaginary energy energy axis.Now in our new formula,

there explicitly appears the divergent effects at very low temperatures

that one finds in the work of Engelsberg and Simpson who tried to sum

over all the poles on the imaginary axis numerically.More over the form

that we obtained is a simple algebraic closed form;which seems to be

highly useful in understanding the basic character of the dHvA oscilla-

tions.

We see from the analysis of chapter II that the dHvA effect is an

extremly unusal and useful experiment.First,as we pointed out earliar

the amplitude and frequency of the oscillations depend on the imaginary

and real part of the self-energy respectively for any short range

interaction potential.For electron-phonon interaction we know that the

real part of the self-energy on the imaginary energy axis is zero.This

then has the consequence that the band-mass of the electron which occurs

in the frequency of dJIvA oscillations is not affected by the electron-

phonon (el-ph) interactions.Thus,by measuring the band-mass by frequency

measurements and el-ph enhanced band-mass by amplitude measurements,

one can measure the el-ph enhancement factor , .Since the enhancement

factor,thus obtained,does not depend on temperature one can measure it
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in any temperature range in which dHvA experiments can be done.This then

provides very much of flexibility from the experimental point of view.

From the explicit calculations of chapter IV,we find that the el-

ph self-energy,even in a dilute disordered alloy,has its imaginary part

linearly proportional to temperature.On the other hand the self-energy

due to scattering from the fixed impurities is,to a good approximation

independent of temperature.Thus the temperature independent self-energy

shows up in the form of 'Dingle temperature' and causes a reduction in

the amplitude of oscillations.For the el-ph self-energy the linear

temperature dependence has the effect that it simply enhances the elec-

tron mass.Thus,the two self-energies (one temperature dependent and

other independent) can be investgated separately.In this regard we like

to point out that whereas some authors
(24)

elieve that the el-ph

enhanced mass should be used in the co-efficient of Dingle temperature

others
(13) think that only the band-mass should be used there.As an

application of our earliar derivation of Dingle temperature,we show

below that at least in the zero temperature limit,the mass used in the

co-efficient of Dingle temperature is not the el-ph enhanced mass.

Consider eq.(2.44) again,but now let us modify the electron lines

to include renormalization due to phonon scattering.We get for the el-ph

self-energy due to static impurity

zir

-

r,0

r(,c,3 ) d t

't co,- (co ( H&J-)

(5.1)



and,therefore,the imaginary part,evaluated at the first pole on the

imaginary energy axis,is

since

0 ( t )

2-u-

( r W0) coO

( (k ) (b.,0

(I I- >, 14 0 (

(5.2)
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Now if we take the limit T ---.),we find that the el-ph renormali-

zation effects go away,and we get back the original unmodified express-

ion for the Dingle temperature.This is one of the very important result

of the new approch.It may be remarked here that the above process can

be done self-consistently by including the static impurity self-energy

also in the renormalization process,but that should not change the

conclusions already drawn.

We feel that the new derivation will have useful application in

the theory of steady diamagnetism.Where,for example,one can possibly

extend our arguments and derive the theorem that el-ph interactions do

not contribute to steady diamagnetism.This theorem arises from the fact

that the el-ph self-energy has no real part when evaluated on the

imaginary energy axis.We also feel that the concepts developed in the

new derivation will be useful in more detailed studies of magnetic

breakdown in metals.

In chapter IV we derived explicitly the various expressions for

el-ph self-energy in a dilute substitutional binary alloy.We included
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both effects arising from changes in the el-ph coupling and mass

associated with the impurity.To order linear in concentration,there

are two terms,which appear as corrections to the el-ph enhanced effect-

ive mass in the host.One due to scattering from impurity site displace-

ment,and other due to succesive scattering from host and impurity atoms

respectively or vice-versa.Where as the first correction (due to :>,,,(w),))

is always positive,the correction due to the second term can be positive

or negative depending on the valence difference of the impurity from

the host.It is also clear that in general these corrections depend on

the orbital averages considered.The effective mass parameter now,

in the impure system,is given by

DE 2,(1,0, -I- 2.b ( I wn) ± 0°,0)-01

a (1,0,)

for n = 0 case,we get

A
3 1KF

MI D

2 C

c)

(5.3)

)(w) AV(,)) F(")) JLAD

/ 1-
C-0

(5.4)

where )\k is the enhancement factor in the host.If we denote the

first two correction terms on the right hand side of eq (5.4) by

and respectively,we have



F

M LOD 6-Y19

(5.5)

where we have restored back( which was taken as unity throught in

the text) and

b

c.0

(5.6)
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In general the coefficient of the residual relaxation time in

eq.(5.5) is small.Using the datas given in"Introduction to Solid State

Physics"(fourth edition) by Kittle,we find that the factor

has the following values

for, Au-Ag 5 * 10-17 sec.,

and for, Mg-Al 2 * 10
-16

sec.

The average reciprocal-relaxation time in these alloys is of the

order of 10
13

sec
-1

.It appears ,therefore, that the effect is too small

to be measurable.However,we note that the measured transport relaxation

time is usually an average over the entire Fermi surface,whereas the

residual relaxation time which occurs in eq (5.4) is an average over

some orbit.Because of anisotropy,it is quite possible that this factor

-For
)) may be large some orbits.In such cases one may observe an

z(k)

appreciable enhancement of the el-ph mass.This seems to be the case in

the experiments of Tripp and co-workers
(22)

.In alloy-of 0.8 % Cu in Be



Tripp et al found that
(24)

there was about 50 5 enhancement of the

electron's effective mass for the neck orbit.We can suggest one other

system in which the effect may be measurable.Because Sn has a reasonably

high. Fermi energy and reasonably low Debye temperature,it may be a good

substance in which the addition of a light impurity like Mg or Be should

give a measurable change in the enhancement factor on alloying.

The second term 4 is directly proprtional to the concentration

and,for dHvA experiments,is small in general.However,if the change in

the electron-phonon coupling constant, Lcg ),is large,then this term

may also give rise to a measurable effect.
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A. DE HAAS-VAN ALPIIEN EFFECT

Consider a large pure crystal in a magnetic field directed along

the z-axis.In the one electron approximation,the Shrodinger equation

of an electron ( disregarding spin for the moment) can be written as

2m
V r'n E

(A-1)

where B = Curl A,and we choose the gauge such that A = (0,xB4O).V(r)

is the potential energy of the electron in the periodic lattice-

potential.In a very rough approximation (which is good in many cases

atleast for electrons near the Fermi surface) the influence of the

lattice can be taken into account by replacing the free electron mass

by an effective mass called the band-mass.Since the main behaviour of

the electronelectron is not affected by this approximation,we will use in the

following.Thus assuming that m now represents the band-mass,eq.(A-1)

reduces to

f_ 4'
2m c

E

(A-2)

Expanding the bracket and remembering that,in the gauge chosen, p

commutes with A,we get

(A-3)

Replacing p by its explicit operator form p = t- and using

A = (O,xB4O) we get



12, c

2 r)-1 E-7 (f) _____ 0
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WC e ( ± a

U(X)

The solution of this will be of the form

Lc(x,y,) iee z-) J(x)

Using (A-5) in (A-4) we get the condition on U(x)

( X)

X 2-

with

2wiE/

<_az-)

c

(A-4)

(A-5)

From (A-4) it is clear that the motion of the electron in the

z-direction is exactly like a free electron;however)for motion in the

x-y plane we have to solve the differential eq.(A-6).Rewriting it as

-a2 U( X)
1

2w, 2 c

kJ ) u(x) i(x)
)

(A-8)

we note that this is the equation of a one dimensional harmonic

oscillator with frequency

e PI)

up c =

centered on the point

X 0

YIe\
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Thus

and

(y)
2- ) (A) c_

2_ 2_

1 ll k4 E
(11 ±

when spin is also included,we get

where = +Nand =

2_ 1,,r)

-Z 2_

k?:

-r)

(7- A-1- E

(A-9)

These are the Landau levels of an electron in a

magnetic field.Since = (eB/mc),the energy of these levels

directly depends on the magnetic field and they become wider and

move up as the strength of the magnetic field increases.

Another important thing about these levels is their degenracy,

which is given by

-Yr\ (A..)

Lx L
2 TV A71

e

2 "(1 C

X I-

(A-10)

6o

where L ,L ,L are the dimensions of the crystal.The degenracy of each
Y z

level is thus also a function of the magnetic field.As the magnetic

field increases the energy level starts to move up and the energy of

the system increases,but the degenracy of each level is also increasing

at the same time.When the topmost level starts crossing the Fermi

surface it begins to empty,because the lower levels now can hold

more electrons and while it is emptying the energy of the system

decreases.Thus the free energy of the system oscillates which in
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turn gives rise to oscillations in the magnetic susceptibility:The

de Haas-van Alphen Effect.



B. LINE INTEGRAL

In chapter IV while evaluating Y(.1_ Hn) by contour

integration technique,we said that the integrals around the branch

cuts are negligible.In this appendix we show this explicitly-We have

for the line integral which arises in the evaluation of 0.Xt1(-0).-Oas

-----
dx (x)

X- , (x- Loy, )2 )

H1(x)(9) X r X _

2 U_)

I* /1 f(y _ iJ )-1.06 -/- J o - (>( ) 3 x
3 -2_

x __ --.3 yi _f_. -,-) t)

Op

( B-1)

The branch points are at x = (A)h-i-u,Db and we take the branch cuts as

shown in fig. ()- .1).Let us first evaluate the line integral around the

branch point at x=L0)1+-Lc4.To do this let us put

X D

ci X cA

we get,denoting this part of the integral by

I = d
( L'')D

( r

1-0

-2_

-2_

2 Lod)
u.)D)

3
2_

Yor large y the integrand goes as(l /y5), therefore any

(B-2)



important contribution can only come from the region y -H)0 (i.e.

around the branch point).Therefore,we can put y = 0 in terms other

than the singular terms.However,if we put y = 0 in the denominator of

the unperturbed phonon Green's function,it would correspond to its

analytical continuation on to the real axis and therefore we must do

this carefully.Instead of putting zero,we replace(ixy)by i g in that

term;where at the appropiate stage,we can take the limit 3 O.We

thus have

Il
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(B-3)

Now,though it is not easy to get rid of the logarithmic singu-

larity,we see that in the region of interest y :>0,when the logarithmic

terms tend to get large they cancel out in the numerator and denominator

On the other hand,due to the presence of the Bose factor n( L2 ),the

over all contribution is very small,always.Hence we are justfied in

neglecting the branch point contribution.Similar arguments apply to
would.

the integrationAthe other branch point as well as to the corresponding

integrations in (12' 10 ri) and ,which are also omitted from

consideration in the text.
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C. LIST OF FREQUENTLY USED SYMBOLS

SYMBOL MEANING

e charge of an electron

m effective band-mass of an electron

h Planck's constant

Planck's constant h divided by 2TT

k
B

Boltzmann constant

T Absolute temperature

P
1/kET

B Magnetic field (usually in the z-direction)

(On (2n+1)74),

Thermodynamic potential for the interacting system

ao Thermodynamic potential for the non-interacting

system.

1) Magnetization,or 2) Ion mass of the host in a

dilute alloy.

Chemical potential of the system of electrons.

Wc. (eB/m.c); cyclotron resonance frequency.

c 1) velocity of light or 2) concentration of the

alloy.

g electron band g factor ( also used for variable

coupling constant in ch. II )

Screened electron-phonon coupling constant.

,LL g
T /2mc); the Bohr magneton.


