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Abstract 4 

n-Tree distance sampling (NTDS), also known as k-tree sampling and point-to-tree sampling, has 5 

been promoted as a practical method for forest inventory. This simulation study evaluated the 6 

performance of three NTDS estimators, as compared with fixed plot sampling and horizontal 7 

point sampling, for estimating density and basal area in headwater riparian forests of western 8 

Oregon. Bias of at least one NTDS estimator was low for both density and basal area when 9 

at least six trees were captured at each sample point, but performance of NTDS for density 10 

estimation was poor on stem maps exhibiting a clustered pattern. We close with some comments 11 

regarding the statistical efficiency of NTDS for riparian area inventory in similar forest 12 

conditions. 13 
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Introduction 17 

Located on the fringes of the drainage network, headwater streams are intimately connected with 18 

downstream reaches, serving as a source of sediment, woody debris, organic matter and nutrients 19 

(MacDonald and Coe 2007). Nonetheless, forests adjoining non-fish-bearing (Type N) streams in 20 

western Oregon receive no legal protection from timber harvest (Adams 2007). Therefore, forest 21 

managers have the opportunity–and responsibility–to actively manage headwater riparian 22 

systems for a variety of wildlife habitat, watershed protection, and fiber production objectives. 23 

Accurate and efficient estimation of stem density and basal area of trees on an area (e.g. 24 

per-acre) basis can be crucial to the success of active restoration or management programs in 25 

forests adjacent to headwater streams. Nonetheless, inventory in riparian forests can be more 26 

difficult than in their upland counterparts. Stand structure and composition can be highly variable 27 

(Pabst and Spies 1999) as a result of hydrologic disturbance and other fine-scale processes. 28 

Particularly in naturally regenerated areas, headwater streams can contain alternating patches of 29 

conifer and hardwood trees of varying sizes. The development of new inventory methods, 30 

specifically designed to mitigate these challenges, would be a welcome addition to the forest 31 

sampling toolbox. 32 

Most forest inventories in the Pacific Northwest are conducted using fixed plot and/or 33 

horizontal point sampling designs. Circular fixed plot sampling (FPS) is one of the oldest 34 

methods of forest sampling, and is still commonly used throughout much of the world. 35 

Horizontal point sampling (HPS), commonly known as variable plot sampling (VPS) in the 36 

Pacific Northwest, was developed by W. Bitterlich in 1948 and introduced to North American 37 

foresters by Grosenbaugh (1952). Under FPS, density can be estimated with a simple count of 38 

“in” trees, but basal area estimation requires diameter measurements on at least some captured 39 



 

trees. The exact opposite is true under HPS. These practical concerns, combined with the 40 

efficiency gained when selection probability is made proportional to the attribute of interest 41 

(Grosenbaugh 1967), tend to make FPS more statistically efficient for density estimation and 42 

HPS more efficient for basal area estimation. N-tree-distance sampling (NTDS), also called k-43 

tree sampling, density-adapted sampling, point-to-tree sampling or simply “distance sampling”, 44 

was promoted as an “all-encompassing forest inventory method” by Jonsson et al. (1992). In this 45 

method, the n trees nearest the sample point are selected (n being a pre-determined number that 46 

remains constant throughout the sampling effort). Since the same number of trees is captured at 47 

all sample points, empty plots and plots with too many trees can be avoided (Kleinn and Vilčko 48 

2006a), leading to a potential increase in productivity. In addition, the distance to the center of 49 

the n tree, acquired as a byproduct of this system, may provide some information on the spatial 50 

distribution of trees within a forest (Lessard et al. 1994). 51 

One important drawback of NTDS is that, unlike FPS and HPS, selection probabilities of 52 

individual trees cannot be known unless distances and azimuths to many additional trees are 53 

acquired (Kleinn and Vilčko 2006b). Therefore, design-unbiased estimation for this method is 54 

currently not operationally feasible. A plot area for all n trees can be computed as a circle with a 55 

radius that is equal to the horizontal distance to the center of the n tree. The factor used to expand 56 

per-plot estimates to a per-acre basis is then EF = 43,560/Ap, where Ap is the plot area in ft
2
. 57 

Because the plot size at each sample point is computed as the smallest that could contain n trees, 58 

this uncorrected estimator will systematically overestimate the value of any attribute on a per-59 

acre basis (Kleinn and Vilčko 2006a). 60 

Despite the lack of a practical, design-unbiased estimator for NTDS, previous authors 61 

have promoted it as an attractive sampling method on the basis of an ease in field application 62 



 

(Jonsson et al. 1992; Kleinn and Vilcko 2006b; Nothdurft 2010). We hypothesized that the 63 

ability to control the number of trees captured at each sample point may make NTDS an 64 

attractive option for inventorying highly variable riparian stands. HPS has historically been 65 

preferred by many forest inventory professionals in the Pacific Northwest because, when a prism 66 

or Relascope is employed, horizontal distance measurements are unnecessary except to check the 67 

in/out status of borderline trees – a great asset when working in steep and brushy terrain. The 68 

advent of portable rangefinders with ever more sophisticated brush-filtering capacity has 69 

increased the viability of alternative sampling systems that depend more directly on distance 70 

measurements. Now that NTDS is more technologically feasible, we hoped to explore the 71 

relative advantages and disadvantages of the method in a practical sampling application. 72 

 The objective of this study was to examine the performance of selected NTDS estimators 73 

for estimation of density and basal area of headwater riparian forests in western Oregon. We 74 

evaluated the NTDS estimators against each other, but also against FPS and HPS for both density 75 

and basal area estimation. In the last 40 years, much effort has gone toward the development of 76 

estimators for NTDS that minimize bias under a range of forest conditions (see Magnussen 2008 77 

for a good overview). However, many of these estimators are difficult to comprehend and 78 

implement without advanced statistical training, and are therefore inaccessible to the majority of 79 

forest inventory professionals. Three estimators were chosen on the basis of their simplicity in 80 

understanding and application, as well as their track record in previous studies. These will be 81 

termed the Moore (Moore 1954), Prodan (as described in Lynch and Rusydi 1999) and Kleinn-82 

Vilčko (Kleinn and Vilčko 2006a) estimators. Details on the computation and theoretical 83 

background of these estimators can be found in the appendix. 84 

Methods 85 



 

Data were collected at eight different riparian sites as part of the Bureau of Land 86 

Management Density Management and Riparian Buffer Study, an interdisciplinary study on the 87 

effect of management activities on wildlife habitat and other ecosystem attributes of riparian and 88 

upland systems (Cissel et al. 2006). At each site, a 1.28-ac square plot was established so as to 89 

have an approximately equal area on both sides of the stream, within which the species, dbh and 90 

coordinate position of every tree was recorded (see Marquardt et al. 2010 for details regarding 91 

inventory procedures). Sites were dominated by Douglas-fir (Pseudotsuga menziesii var. 92 

menziesii [Mirb.] Franco) or western hemlock (Tsuga heterophylla [Raf.] Sarg.), with western 93 

redcedar (Thuja plicata Donn ex D. Don) a minor component of some sites. Hardwood species 94 

such as red alder (Alnus rubra Bong.) and bigleaf maple (Acer macrophyllum Pursh) were 95 

present at most sites. Composition of each site, by density and basal area, is given in Table 1. 96 

Because the performance of NTDS estimation has been found in previous work (e.g. 97 

Lessard et al. 1994; Kleinn and Vilčko 2006a) to be highly dependent on the spatial distribution 98 

of the trees on the tract of interest, the spatial distribution of each site was quantified, by species 99 

and for the site as a whole, using the Clark-Evans (CE) index (Clark and Evans 1954). The CE 100 

index takes on values of: 0 if the population is extremely aggregated (i.e. clustered); 1 if the 101 

population is distributed completely at random; and 2.14 if the population is perfectly uniform. 102 

Computation of the CE index was done using the program SIAFOR (Kint et al. 2004). Results 103 

are shown in Table 2. 104 

The estimators were compared using a Monte Carlo sampling algorithm written in the 105 

Microsoft Visual Basic for Applications (VBA) programming language (v. 6.5, Microsoft 106 

Corporation, Redmond, WA). Following Kleinn and Vilčko (2006a), in order to provide a 107 

common basis for evaluation, the estimators were compared across a range of n (the desired 108 



 

number of trees per sample point) from 2 to 10. While a certain number of trees captured does 109 

not necessarily represent an equal amount of effort across sampling methods (e.g. for a given 110 

number of trees, HPS requires less measurement time for basal area estimation than NTDS), we 111 

believe that the relative performance for different values of n will allow rough comparison of 112 

different sampling systems and more specific comparison between NTDS estimators. 113 

The value of n was fixed for each simulation run. The FPS radius and HPS basal area 114 

factor were computed so that n trees per sample point would be captured on average. For FPS, 115 

the plot area AFPS, in ac, was set as AFPS = n/TPA, where TPA is the density (in trees/ac) of the 116 

stem map. For HPS, the basal area factor, in ft
2
/ac, was set as BAF = BA/n, where BA is the basal 117 

area (ft
2
/ac) of the stem map. Toroidal wrapping, which gives all trees the appropriate long-run 118 

probability of selection, was used to avoid underselection problems associated with edge effects. 119 

At each iteration of the simulation, one sample point was randomly located using pseudo-120 

random numbers generated by VBA. Estimates of density and basal area were computed for each 121 

estimation method simulated (FPS, HPS and each NTDS estimator). This process was repeated 122 

10,000 times, with a different seed set for each iteration in order to avoid cyclical number 123 

generation patterns. A sample size of 10,000 seemed to be adequate for characterizing the 124 

statistical performance of each estimation method, as evidenced by the low realized values of the 125 

maximum recorded relative bias of FPS for density estimation and HPS for basal area estimation 126 

(neither was greater than 3%). 127 

The performance of each estimation method was evaluated using relative bias and 128 

relative root mean square error (RRMSE). Relative values were preferred because they allow an 129 

equal basis of comparison between attributes and sites. Relative bias was computed as: 130 
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where N is the sample size. 136 

Results  137 

Relative bias 138 

Because they are design-unbiased for estimation of density and basal area, bias results for 139 

FPS and HPS will not be presented. Among NTDS estimators, the Moore estimator tended to 140 

underestimate density (Figure 1) and basal area (Figure 2) for small values of n, while the Prodan 141 

and Kleinn-Vilčko estimators tended to give upwardly biased estimates. For a given value of n, 142 

the Moore estimator clearly had the lowest absolute relative bias for density estimation at seven 143 

sites, particularly for n≥4. For basal area estimation, the Moore estimator clearly had the lowest 144 

absolute relative bias at six sites, with the identity of the lowest-bias estimator unclear at two 145 

sites. For density and basal area estimation, the Prodan estimator had the highest bias for small 146 

values of n, but appeared to converge with the Kleinn-Vilčko estimator for n>5. 147 

RRMSE 148 

RRMSE was calculated across a range of N for a moderate value of n=6. For estimation 149 

of density, FPS had the lowest RRMSE across all values of N (Figure 3). HPS and the Moore 150 

estimator had roughly equal performance across most sites. A gap between the estimation 151 



 

methods previously mentioned and the Prodan and Kleinn-Vilčko estimators was evident across 152 

all sites, with the latter giving notably poor performance. 153 

For estimation of basal area, HPS had the lowest RRMSE across all values of N (Figure 154 

4), although there was not much difference in performance between HPS, FPS and the Moore 155 

estimator. There was a gap in performance between these estimation methods and the Prodan and 156 

Kleinn-Vilčko estimators at most (though not all) sites. 157 

Discussion 158 

 One limitation in this study is inherent in the use of toroidal wrapping as an edge-effect 159 

correction measure. As toroidal wrapping causes sample points located at the edges of the stem 160 

map to “wrap around” to the opposite side of the step map, the simulated RRMSE values can be 161 

different from those that would be obtained if (in the most ideal case) the study were conducted 162 

on much larger stem maps with a buffer zone surrounding a smaller 1.28-ac area wherein sample 163 

points were allowed to fall. The difference can be exacerbated by larger values of n (translating 164 

to larger inclusion areas across all estimation methods), which cause the toroidal wrapping to be 165 

employed more frequently. Table 3 indicates that the plot size for n=6 under FPS can be as large 166 

as 0.045 ac, while the largest inclusion area under HPS (corresponding to the largest-diameter 167 

tree on the stem map) for n=6 can be as large as 0.244 ac. It is unlikely that the use of toroidal 168 

wrapping would result in a distorted comparison of RRMSE values among the three NTDS 169 

estimators examined, as all will have similar inclusion areas. However, the simulated RRMSE 170 

values should be taken with a slight grain of salt when the NTDS estimators are compared with 171 

FPS and (especially) HPS. 172 

The three NTDS estimators were chosen for this study on the basis of their simplicity and 173 

ease of application. The development of new NTDS estimators is an area of current research in 174 



 

Canada and Europe (Nothdurft et al. 2010; Magnussen et al. 2008), and future estimators may 175 

have different statistical properties than those evaluated in this study. Therefore, the comments 176 

made about the properties of the NTDS estimators evaluated here should not be extended to 177 

other NTDS estimators that were not evaluated. 178 

The appeal of computer-based simulation studies, such as the one reported here, is that 179 

they allow researchers to compare the performance of different forest sampling methods without 180 

the expense of fieldwork. However, they are unable to directly compare the statistical efficiency 181 

(that is, the precision gained for a given cost investment; Iles 2003, p28) of different sampling 182 

methods because the per-sample-point costs of the various methods being compared is not 183 

precisely known. The best way to compare the relative statistical efficiency of different sampling 184 

methods in a specific setting is through a timed field trial employing experienced cruising staff, 185 

preferably in a tract in which the true density and basal area are known. As such a study has yet 186 

to be performed in this forest type, we must augment data with conjecture and experience in 187 

order to offer suggestions as to how the NTDS estimators examined might compare with HPS 188 

and FPS for inventory work in headwater riparian forests of western Oregon. 189 

The Moore estimator emerged as the best candidate among the NTDS estimators 190 

examined. The Moore estimator had the lowest bias for estimation of density and basal area on 191 

most stem maps. Similarly, the Moore estimator had the lowest RRMSE values on most stem 192 

maps when larger sample sizes were considered, particularly for estimation of density. The 193 

Prodan estimator performed poorly on the stem maps examined. In evaluating the same NTDS 194 

estimators, Kleinn and Vilčko (2006a) found that the Prodan estimator had the highest bias on all 195 

stem maps but those with a uniform spatial distribution. Lynch and Rusydi (1999) found that the 196 

Prodan estimator had negligible bias in uniformly-spaced teak plantations, where the Moore 197 



 

estimator tended to underestimate volume and density. The poor performance of the Prodan 198 

estimator in this study may be due to the non-uniform spatial distribution of trees in the sites 199 

examined. The performance of the Kleinn-Vilčko estimator was intermediate between that of the 200 

Moore and Prodan estimators. Kleinn and Vilčko (2006a) found that the Kleinn-Vilčko estimator 201 

had higher bias than the Moore estimator, which they refer to as the Eberhardt estimator, for 202 

estimation of density and basal area on most stem maps. However, in contrast to this study, they 203 

did not find substantial differences in root squared error (similar to the RRMSE statistic) 204 

between the two estimators. 205 

As a measure of statistical performance, RRMSE incoporates both the standard error of 206 

the sample mean (which decreases as sample size increases) and the bias of the sample mean 207 

(which is not affected by sample size). As predicted by theory, FPS and HPS had the the lowest 208 

RRMSE values for estimation of density and basal area, respectively. For estimation of basal 209 

area, RRMSE values for the Moore estimator and FPS appeared to converge with those of HPS 210 

with increasing sample size. For estimation of density, RRMSE values for the Moore estimator 211 

and HPS appeared to likewise converge with those of FPS on most stem maps. The increasing 212 

competitiveness of FPS and HPS for basal area and density estimation, respectively, with larger 213 

sample size is reflective of the design-unbiasedness of these sampling methods. Similarly, the 214 

competitiveness exhibited by the Moore estimator was due in part to low absolute bias on most 215 

stem maps for reasonable values of n (≥4). 216 

In timed field trials, Lessard et al. (1994) and Lynch and Rusydi (1999) found NTDS to 217 

be cost-competitive with FPS for density estimation in two very different landscapes (northern 218 

hardwoods and red pine forests of northern Michigan and Indonesian teak plantations, 219 

respectively). Since density estimation for the NTDS estimators examined only requires 220 



 

measurement of the distance to the n tree (and, if implementing the Kleinn-Vilčko estimator, the 221 

distance to the n+1 tree as well), NTDS may be most promising as a sampling method for 222 

density estimation. 223 

However, HPS and the Moore estimator gave notably poor performance for density 224 

estimation at TH75, the only site with a large hardwood component. At this site bigleaf maple 225 

comprised 25% of total stems, but only 8% of total basal area. Red alder was also present, 226 

comprising 2% of all stems and 2% of total basal area. 227 

The gap in performance appears to stem from the clustered nature of the hardwood 228 

species. Bigleaf maple had a CE index of 0.58 and red alder had a CE index of 0.24, indicating a 229 

strong tendency towards a clustered spatial distribution for both species. When the distance to 230 

the n tree is extremely small (as might happen when a sample point is located inside a hardwood 231 

clump), a large overestimate of stem density can be produced. Similarly, the clustered 232 

distribution of the hardwood trees, in combination with their small size relative to the population 233 

as a whole (the quadratic mean diameter of hardwood trees was 8 in., while the overall quadratic 234 

mean diameter was 14 in.) may have contributed to the poor performance of HPS at this site.  235 

In timed trials in mixed pine-hardwood forests of southern Maine and New Hampshire, 236 

Kenning et al. (2005) found that the Moore estimator (although not referred to by that name) 237 

consistently underestimated snag density for very low values of n (one, two and three-tree 238 

sampling), a result that is consistent with our findings regarding the underestimation bias of the 239 

Moore estimator for very low values of n. They found that the Moore estimator did not offer 240 

productivity gains sufficient to compensate for the loss of design-unbiasedness, although a 241 

“distance-limited” modification of the Moore estimator showed some promise. They mentioned 242 

that snags in the compartments they sampled exhibited a clustered spatial distribution, and 243 



 

indicated that this was at least partly due to “the abundance of dead sprouts of Acer rubrum.” 244 

Similarly, Lessard et al. (1994) found that the Moore estimator performed poorly in the 245 

“clumped, mixed hardwood stands” of northern Michigan. 246 

For basal area estimation, RRMSE of the Moore estimator converged with that of FPS 247 

and HPS with larger values of N at most sites. However, it seems difficult to imagine that any 248 

NTDS estimator could be more statistically efficient than HPS for basal area estimation, since 249 

trees must be measured for diameter under NTDS but only counted in HPS. Nonetheless, Lessard 250 

et al. (1994) found that, for a fixed sampling time, NTDS using the Moore estimator sometimes 251 

gave a lower sampling error than HPS. In another trial, Lynch and Rusydi (1999) found that 252 

NTDS was far more efficient for basal area estimation than HPS. 253 

While HPS can be a highly efficient system for basal area estimation, the initial 254 

investment in training required for proper application of the method is probably greater than for 255 

FPS or NTDS. Neither study discloses the prior training level of the technicians who performed 256 

the sampling. However, the results may be more easily understood if the technicians had little or 257 

no prior experience with HPS. In the Pacific Northwest, where HPS has been widely used for 258 

over 50 years, qualified inventory personnel are readily available, and a study employing 259 

professional cruisers with multiple years of experience in HPS would perhaps yield very 260 

different results. 261 

All of the NTDS estimators examined, and the Moore estimator in particular, generally 262 

exhibited lower absolute bias with increasing values of n, and therefore the NTDS estimators 263 

examined may be more attractive with larger values of n. However, the limited field experience 264 

of the primary author in attempting to identify the nearest n trees to a given point suggests that 265 

the amount of time required to perform NTDS may increase disproportionately with the value of 266 



 

n desired, particularly when steep terrain or brushy conditions are encountered. Unlike FPS and 267 

HPS, where inclusion areas are never mutually exclusive, under NTDS the n tree will always be 268 

selected at the expense of the n+1 tree. Therefore, a sophisticated recording system or a good 269 

memory will be required to efficiently track the distances to all potentially included trees, and 270 

this could be challenging with larger values of n. 271 

Conclusion 272 

Of the NTDS estimators examined, only the Moore estimator remained competitive with 273 

FPS and HPS at larger sample sizes. The relatively low bias exhibited by the Moore estimator at 274 

most sites indicates that it may have potential for estimation of both density and basal area in 275 

some forest types. However, hardwood trees exhibiting a clustered spatial distribution (e.g. red 276 

alder and bigleaf maple) are common in riparian areas, and our results and those of others 277 

(Lessard et al. 1994; Payandeh and Ek 1986) show the Moore estimator to perform poorly for 278 

estimating density of clustered populations. 279 

Edge-related bias, which can be a particularly problematic issue when sampling long, 280 

narrow riparian areas (Lynch 2006), is also of concern. While unbiased correction techniques 281 

exist for FPS and HPS (e.g. Ducey et al. 2004), such techniques have only recently been 282 

developed for use with NTDS (Lynch in press). In riparian forests, which inherently have a high 283 

edge-to-area ratio, severe underestimation bias could result from application of NTDS when 284 

estimates are not edge-corrected, and therefore the implementation of appropriate correction 285 

measures is highly recommended. 286 

As sample size increases, the attractiveness of estimation methods which have little or no 287 

bias increases relative to estimation methods which have higher bias. This suggests that 288 

inventory personnel seeking long-run performance over a large number of sample points will 289 



 

continue to be best served through the use of methods that minimize bias. Although this study 290 

has demonstrated that the Moore estimator may have minimal bias in some forest types, it is the 291 

opinion of the primary author that none of the NTDS estimators examined (including the Moore 292 

estimator) is likely to result in a reduction in measurement costs, relative to FPS and HPS, 293 

sufficient to offset uncertainty regarding any insidious bias that may result. The forest inventory 294 

community has historically favored design-unbiased estimation methods, and it is recommended 295 

that such a preference be retained in this context. 296 

Sampling in a highly variable forest type is difficult. Finding too many trees at a sample 297 

point, or a string of sample points with no trees, can be psychologically painful, and it is only 298 

natural to search for alternatives to this headache. A similar search led some inventory groups to 299 

adopt a policy of changing the basal area factor used in HPS so as to get a constant tree count at 300 

each sample point (Bell 1994), a policy which has been demonstrated to lead to biased (Wensel 301 

et al. 1980; Iles and Wilson 1988) and more variable (Iles and Wilson 1988) results. As an 302 

unbiased solution for sample points with too many trees, Iles and Wilson (1988) recommend the 303 

plot be split in half, with one side randomly chosen for sampling. This protocol would be useful 304 

in FPS as well. There does not appear to be an easy answer for plots with too few trees, but it 305 

may be better to accept the added variability and keep the process unbiased. 306 

In conclusion, while the ability to control the number of trees sampled for density 307 

estimation under NTDS is theoretically attractive, we suggest that none of the NTDS estimators 308 

examined will offer operational gains sufficient to offset the relatively poor statistical 309 

performance that may result under conditions that surface often in riparian forest sampling. 310 

However, the development of new NTDS estimators is currently an area of active research, and 311 

future developments may result in estimators that offer sound statistical performance while also 312 



 

being cost-competitive with traditional methods. An estimator developed by Nothdurft et al. 313 

(2010), which requires stem mapping of all n sampled trees, holds particular promise for 314 

sampling the clustered spatial patterns characteristic of riparian areas. 315 

Appendix 316 

 The Moore (1954) estimator applies an (n-1)/n multiplier to mitigate the overestimation 317 

bias of the uncorrected NTDS estimator. The sample-point-based estimators for density (trees/ac) 318 

and basal area (ft
2
/ac) are, respectively: 319 
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where n is the number of trees to be captured at the sample point, Ap = π(dn
2
)/43,560 is the area, 321 

in ac, of a circle with radius dn, dn is the distance to the n tree, and gt is the basal area of tree t. 322 

Under the Prodan (1968) estimator, the n tree is considered borderline and counted as a 323 

half-tree. The sample-point-based estimators for density and basal area are: 324 
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 Kleinn and Vilčko (2006a) developed an approach based on the arithmetic average of the 326 

distances to the n and n+1 trees. Since the distance to the n tree would result in systematic 327 

overestimation and the distance to the n+1 tree would result in systematic underestimation, they 328 

reasoned that using the average distance would result in more reasonable estimates. The sample-329 

point-based estimators for density and basal area are: 330 
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where dn is the distance to the n tree, and dn+1 is the distance to the n+1 tree. 334 

335 
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Table 1: Density and basal area of each site by tree type. 410 

  Conifers Hardwoods Total 

       

 

Density Basal area Density Basal area Density Basal area 

       Site (trees/ac) (ft
2
/ac) (trees/ac) (ft

2
/ac) (trees/ac) (ft

2
/ac) 

       BL13 111 168 21 13 132 181 

       KM17 158 286 15 12 173 298 

       KM18 246 245 15 11 261 256 

       KM19 215 217 5 4 221 221 

       KM21 136 197 17 15 153 212 

       OM36 150 152 15 11 165 163 

       TH46 167 260 0 0 167 260 

       TH75 194 244 74 27 268 271 

 411 
412 



 

Table 2: Clark-Evans (CE) index values by species and site. The CE index takes on values of: 0 413 

if the spatial distribution is extremely aggregated; 1 if the spatial distribution is completely 414 

random; and 2.14 if the spatial distribution is extremely uniform. 415 

Species BL13 KM17 KM18 KM19 KM21 OM36 TH46 TH75 

        

Douglas-fir 1.03 0.8 1.05 0.93 0.8 1.22 1.11 1.12 

         

western hemlock - 1.08 0.97 0.9 0.75 - 0.84 - 

         

western redcedar - - 0.81 0.82 0.86 - - 0.48 

         

red alder - 0.36 0.37 - 0.54 - - 0.24 

         

bigleaf maple 0.21 - - - - - - 0.58 

         

all combined 0.99 1.22 1.09 0.96 0.99 1.25 1.14 1.08 

 416 
417 



 

Table 3. Fixed plot sampling (FPS) plot sizes, horizontal point sampling (HPS) basal area 418 

factors, and maximum inclusion areas under HPS, by site, for n = 6. 419 

  FPS Plot Size HPS Basal Area Factor HPS Max. Inclusion Area 

    
Site (ac) (ft

2
/ac) (ac) 

    BL13 0.045 30 0.244 

    KM17 0.035 50 0.100 

    KM18 0.023 43 0.111 

    KM19 0.027 37 0.133 

    KM21 0.039 35 0.114 

    OM36 0.036 27 0.209 

    TH46 0.036 43 0.088 

    TH75 0.022 45 0.080 

 420 


