Transition to Property Rights in Common-Pool Resources: Evidence from Alaska Fisheries

Rebecca Toseland

University of California, Santa Barbara

July 8, 2014 IIFET Conference

Motivation

- Theory of common-pool resources (CPRs) is well known.
 - Open access leads to over exploitation and complete rent dissipation (Gordon, JPE 1954).
 - Establishing property rights can solve the common-pool problem, but may be costly to implement (Cheung, JLE 1970).
- Empirical evidence that (property) rights-based management (RBM) approaches can alleviate common-pool problems.
 - Fisheries: Catch share programs improve biological and economic performance. Grafton et al. (JLE 2000), Newell et al. (JEEM 2005), Deacon et al. (JLE 2013), Costello et al. (Science 2008).
- Many CPRs managed with command and control regulation (CAC).
- Need for research on determinants of transition from CAC to RBM.

Research Question

Research Question

What are the determinants of the transition from command and control (CAC) regulation to rights-based management (RBM) in common-pool resources?

Conceptual framework

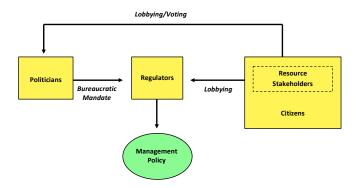
 Political economy of transition to RBM. Regulator's decision to adopt RBM regime in a common-pool resource currently under CAC.

• Empirical application: Alaska fisheries

 Duration analysis of catch shares adoption in a group of federally managed Alaska fisheries.

• Evolution of CPR Management Institutions

Contribution & Preview of Results


Contribution

- Broadly applicable conceptual framework of RBM adoption with empirically testable hypotheses.
- One of the first papers to identify empirical determinants of transition from CAC to RBM in a fisheries context.

• Main empirical results

- RBM adoption more likely if there are large expected benefits of mitigating rent dissipation arising from inefficient production.
- **Transaction costs** are barriers to RBM adoption.
- Limited empirical evidence that the resource depletion is an important factor in RBM program adoption.

Political economy of CPR management

Regulators balance bureaucratic mandate with lobbying in setting management policy.

Bureaucratic mandate: statutes governing regulatory agency policy-making. **Lobbying:** act of attempting to influence decisions made by officials in the government.

Cost-benefit framework for RBM adoption

Main argument: regulator will adopt RBM program if net benefits larger than status quo CAC regime.

- Benefits: mitigating rent dissipation along up to three dimensions:
 - Resource dimension: forgone rents from suboptimal extraction behavior.
 - Cost dimension: forgone rents from excess effort and capital investment relative to the social optimum.
 - **Value dimension:** forgone rents from failure to realize full potential market value of resource when sold as lower-value product.
- **Transaction costs:** costs of establishing and maintaining a new management policy.

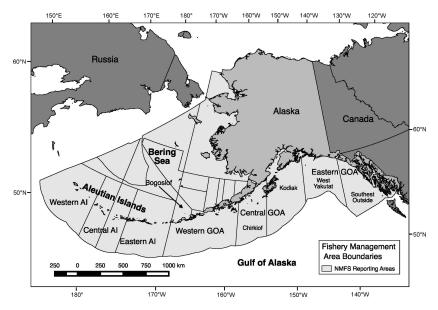
Transition from CAC to RBM: Four hypotheses

Hypothesis 1.

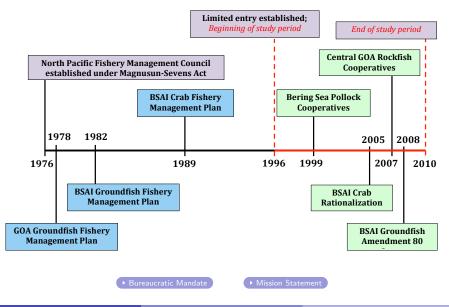
Rights-based management program adoption is more likely when the **resource dimension** of rent dissipation under the status quo regime is high.

Hypothesis 2.

Rights-based management program adoption is more likely when the **cost dimension** of rent dissipation under the status quo regime is high.


Hypothesis 3.

Rights-based management program adoption is more likely when the **value dimension** of rent dissipation under the status quo regime is high.


Hypothesis 4.

Rights-based management program adoption is more likely when the **transaction costs** of program adoption are low.

Alaska fisheries federal management areas

Federally-managed Alaska fisheries timeline

Data

Panel data covering 68 groundfish and crab fisheries observed from 1996-2010; catch shares implemented in 18 fisheries.

Data Sources

- Stock Assessment and Fishery Evaluation Reports (SAFEs)
- NFMS Alaska Region Groundfish Catch Reports
- Groundfish ex-vessel production revenue data
- ADF&G Crab Annual Management Reports
- ADF&G crab fish tickets and eLandings
- NPFMC Fishing Fleet Profiles and Groundfish Species Profiles

Variables and Expected Signs

Category	Variable	Description		
	Stock status	B/B_{MSY} (or equivalent)	-	
Resource dimension	Overfishing status	(Aggregate catch/OFL) $ imes$ 100%	+	
of rent dissipation	Discard rate	% of total catch not retained		
	Bycatch closure	'1' if fishery closed due to bycatch	+	
Cost/value dimension	Season length	Number of days fishery is open	-	
of rent dissipation	TAC Exceeded	'1' if aggregate catch $>$ TAC	+	
	Vessels	Number of active vessels	-	
Transaction costs	Sectors	Number of fishing sectors	-	
	Gini coefficient	Vessel-level revenue equality (%)	-	
	Average price	Avg. ex-vessel price (2010\$/lb)		
Controls	Total catch	Total catch (thousand mt)		
Controls	FMP FE	Fishery management plan fixed effects		
	AREA FE	Management area fixed effects		

→ Kaplan-Meier survival

Descriptive Statistics and Differences in Means

		Catch Share	Non-Catch	
	All Fisheries	Fisheries	Share Fisheries	Difference
Resource Dimension				
Stock status	1.59	1.49	1.65	-0.16
	(0.09)	(0.16)	(0.12)	(0.20)
Overfishing status	37.78	44.77	35.16	9.60
	(3.09)	(6.11)	(3.54)	(6.88)
Discard rate	21.99	21.89	22.02	-0.13
	(2.12)	(3.63)	(2.59)	(4.85)
Bycatch closure	0.29	0.17	0.34	-0.17
	(0.06)	(0.09)	(0.07)	(0.13)
Cost/Value Dimension				
Season length	157.5	66.3	190.3	-124.1***
	(15.30)	(17.72)	(17.68)	(31.42)
TAC Exceeded	0.21	0.39	0.14	0.25**
	(0.05)	(0.12)	(0.05)	(0.11)
Transaction Costs				
Vessels	120.6	107.1	125.6	-18.42
	(15.03)	(17.30)	(19.51)	(34.25)
Sectors	2.34	1.50	2.64	-1.14***
	(0.18)	(0.12)	(0.23)	(0.39)
Gini coefficient	75.24	61.83	80.07	-18.24***
	(2.15)	(5.81)	(1.62)	(4.38)
Controls				
Average price	0.77	1.33	0.57	0.77**
	(0.15)	(0.46)	(0.10)	0.32
Aggregate catch	28.48	81.10	9.54	71.55*
	(16.55)	(60.53)	(4.89)	(36.75)
Fisheries	68	18	50	

Means reported using1996 data. Standard errors in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01.

			Hazards Model
		Fisheries	Full Sample
	(1)	(2)	(3)
Stock status	11.21***		
	(6.54)		
Overfishing status	1.035***	1.023*	1.029**
0	(3.02)	(1.84)	(2.40)
Discard rate	0.968	0.973	0.948***
	(-1.51)	(-1.30)	(-3.33)
Bycatch closure	4.613***	11.90**	17.95**
bycatch closure	(2.72)	(2.50)	(0.71)
с I и	. ,	. ,	. ,
Season length	0.973***	0.979***	0.969***
	(-4.11)	(-2.69)	(-4.41)
TAC Exceeded	0.600	0.853	0.732
	(-1.43)	(-0.40)	(-0.59)
Vessels	0.990***	0.995*	0.994
	(-4.10)	(-1.73)	(-1.27)
Sectors	0.552***	0.467***	0.346***
	(-2.84)	(-2.96)	(-3.46)
Gini coefficient	0.976*	0.971**	0.959***
Gilli Coefficient	(-1.94)	(-2.35)	(-2.91)
	· /	· /	· · /
Average price	0.978	1.246	1.416
	(-0.11)	(0.83)	(0.93)
Aggregate catch	1.019***	1.014***	1.013***
	(7.29)	(8.50)	(5.79)
FMP FE	YES	YES	YES
Area FE	YES	YES	YES
Observations	612	612	914
Fisheries	47	47	68
Catch Share Programs	18	18	18
Log-likelihood	-34.48	-36.93	-28.13
Pseudo R-squared	0.481	0.444	0.615

Catch shares redefinition

More full sample results

Hazard ratios reported; t-statistics in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01.

Predicted Transitions to Catch Shares

		Predicted	Considering
Rank	Fishery	Adoption Year	Catch Shares?
1	Norton Sound red king crab	2007	No
2	Central GOA (Kodiak) pollock	2010	Yes
3	Central GOA (Chirkiof) pollock	2010	Yes
4	Central GOA Pacific cod	2011	Yes
5	BS Pacific Ocean perch	2011	No
6	AI Greenland turbot	2011	No
7	BSAI Pacific cod	2013	No*
8	AI pollock	2022	No
9	Central GOA rex sole	2024	Yes
10	BSAI arrowtooth flounder	2024	No
11	Central GOA deep-water flatfish	2027	Yes
12	Central GOA shallow-water flatfish	2027	Yes
13	Central GOA flathead sole	2028	Yes
14	Central GOA arrowtooth flounder	2031	Yes
15	Pribilof Islands golden king crab	2032	No

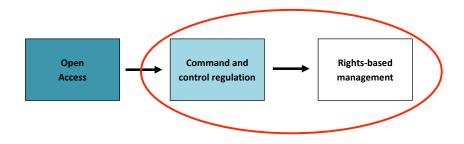
Notes: Predicted mean year of catch share program adoption computed from estimated model parameters from a Weibull regression model and 2010 covariate values.

*Voluntary cooperative began in August 2010.

Discussion

- **Summary:** empirical analysis generally verifies the conceptual framework hypotheses.
 - RBM programs are more likely to be adopted if there are large expected benefits of mitigating rent dissipation arising from inefficient production.
 - **Transaction costs** are barriers to RBM adoption.
 - Limited empirical evidence that the resource depletion is an important factor in RBM program adoption.

Future work


- Empirically identify role of other resource stakeholders (e.g., crew, processors, non-commercial sectors, communities, environmental groups).
- External validity similar patterns observed in other contexts?

Acknowledgements

This work was funded by the Pacific Fisheries Information Network (PacFIN), the NOAA Alaska Fisheries Science Center (AFSC), and the Property and Environment Research Center (PERC).

I acknowledge generous data and research support from Ron Felthoven, Ben Fissel, Brian Garber-Yonts, and other staff members at the AFSC Economic and Social Sciences Research Program and Kristen Green and Kamala Carroll at the Alaska Department of Fish and Game.

Evolution of CPR management institutions

- Open access: Unrestricted entry; no regulation possible.
- CAC: Uniform regulations to constrain user behavior.
- **RBM:** Exclusive use rights held by individuals or groups.

The Councils' bureaucratic mandate

Councils must uphold the following statutes in considering adoption of RBM programs (catch shares):

- Magnuson-Stevens Act 10 National Standards
- Executive Order 12866 Regulatory Planning and Review
- Sational Environmental Policy Act (NEPA)
- Regulatory Flexibility Act

In considering adopting a catch share program, the Council prepares an "Environmental Assessment/Regulatory Impact Review/Initial Regulatory Analysis" document.

North Pacific Fishery Management Council's "Mission Statement"

"In managing the fisheries under its jurisdiction, the North Pacific Fishery Management Council is committed to... provide the maximum benefit to present generations of fishermen, associated fishing industry sectors, communities, consumers, and the nation as a whole." (North Pacific Fishery Management Council, 1995)

Back

Catch Shares Redefinition

	Standard Model			Shared Frailty Model
	(1)	(2)	(3)	(4)§
Overfishing status	0.999	1.007	0.995	0.979
	(-0.09)	(0.82)	(-0.54)	(-1.11)
Discard rate	0.981**	0.980*	0.977	0.961
	(-2.09)	(-1.83)	(-1.56)	(-1.11)
Bycatch closure	1.111	1.357	0.890	0.261
	(0.14)	(0.39)	(-0.11)	(-1.27)
Season length	0.991*	0.991*	0.988**	0.993
	(-1.83)	(-1.89)	(-2.06)	(-1.12)
TAC Exceeded	1.538	0.957	1.071	0.727
	(0.83)	(-0.10)	(0.15)	(-0.39)
Vessels	0.999	1.002	1.001	1.008*
	(-0.24)	(1.04)	(0.62)	(1.87)
Sectors	0.942	0.867	0.999	4.956**
	(-0.30)	(-0.93)	(-0.01)	(2.26)
Gini coefficient	0.984	0.992	0.985	0.976
	(-1.55)	(-0.75)	(-1.09)	(-1.24)
Average price	1.817 ^{***}	0.886	1.225	1.129
	(3.61)	(-0.53)	(0.82)	(0.30)
Aggregate catch	1.012	1.007***	1.007***	1.008
	(1.48)	(4.97)	(4.63)	(0.98)
FMP FE		YES	YES	
Area FE			YES	
Observations Log-likelihood AIC Pseudo R-squared	899 -64.69 149.4 0.269	899 -60.39 144.8 0.318	899 -51.72 129.4 0.416	899 -56.85 133.7

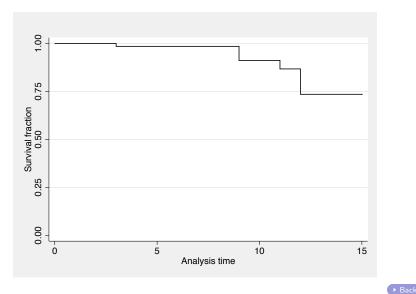
Hazard ratios reported; t-statistics in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01. Efron approximation for tied failures. [§] The estimated frailty variance is $\theta = 10.75$ (Sc = 5.84). The likelihood-ratio test of H_0 : $\theta = 0$ has p-value < 0.01.

Duration Analysis

Hazard function:

$$\lambda[t|\mathbf{X}(t)] = \lim_{h \to 0} = \frac{\Pr[t \le T < t+h|T \ge t, \mathbf{X}(t+h)]}{h}$$
(1)

Cox proportional hazards model:


$$\lambda[t|\mathbf{x}(t)] = \lambda_0(t) \exp[\mathbf{x}(t)\beta]$$
(2)

Cox proportional hazards model with shared frailty:

$$\lambda_{ij}[t|\mathbf{x}_{ij}(t)] = \gamma_i \lambda_0(t) \exp(\mathbf{x}_{ij}\beta)$$
(3)

i = 1, ..., n groups with $j = 1, ..., n_i$ fisheries in the *i*th group.

Kaplan-Meier survival estimate

Cox Proportional Hazards Model Results

	Standard Model			Shared Frailty Model		
	(1)	(2)	(3)	(4) [§]	(5)†	(6)#
Overfishing status	1.008	1.045***	1.029**	0.990	1.045**	1.029
	(0.72)	(2.93)	(2.40)	(-0.54)	(2.02)	(1.15)
Discard rate	0.953**	0.959***	0.948***	0.942	0.959	0.948
	(-2.29)	(-2.60)	(-3.33)	(-1.22)	(-1.20)	(-1.27)
Bycatch closure	16.98**	46.92***	17.95**	2.493	46.92***	17.95*
	(2.31)	(2.96)	(2.29)	(0.71)	(2.76)	(1.78)
Season length	0.967***	0.965***	0.969***	0.982**	0.965***	0.969***
	(-3.23)	(-3.18)	(-4.41)	(-2.09)	(-3.27)	(-3.33)
TAC Exceeded	0.851	0.477	0.732	1.148	0.477	0.732
	(-0.23)	(-1.58)	(-0.59)	(0.15)	(-0.91)	(-0.35)
Vessels	0.992**	0.997	0.994	0.999	0.997	0.994
	(-2.15)	(-1.64)	(-1.27)	(-0.09)	(-0.75)	(-0.91)
Sectors	0.259**	0.252***	0.346***	0.299	0.252**	0.346**
	(-2.34)	(-4.19)	(-3.46)	(-1.39)	(-2.41)	(-2.23)
Gini coefficient	0.956***	0.955***	0.959***	0.970	0.955**	0.959
	(-3.32)	(-2.96)	(-2.91)	(-1.31)	(-2.12)	(-1.61)
Average price	2.611***	0.912	1.416	1.846	0.912	1.416
	(3.76)	(-0.38)	(0.93)	(1.29)	(-0.18)	(0.57)
Aggregate catch	1.026***	1.016***	1.013***	1.012	1.016**	1.013**
	(4.15)	(3.99)	(5.79)	(1.05)	(2.44)	(2.36)
FMP FE		YES	YES		YES	YES
Area FE			YES			YES
Observations	914	914	914	914	914	914
Log-likelihood	-36.06	-31.85	-28.13	-34.51	-31.85	-28.13
AIC	92.12	87.71	82.26	89.01	87.71	82.26
Pseudo R-squared	0.507	0.564	0.615			

Hazard ratios reported; t statistics in parenthese. * Significant at 10% level; ** significant at 5% level; *** significant at 1% level. Erron approximation for tied failures. The failty variance is given by θ . ¹ The likelihood-ratio test of $H_0: \theta = 0$ has p-value = 0.388. ¹ The likelihood-ratio test of $H_0: \theta = 0$ has p-value = 0.500. ² The likelihood-ratio test of $H_0: \theta = 0$ has p-value = 0.500. 🕨 Back

Weibull vs. Cox Models

	Cox (1)	Weibull (2)
Overfishing	1.029** (2.40)	0.975 (-1.64)
Discard rate	0.948 ^{***} (-3.33)	0.964 (-1.64)
Bycatch closure	17.95** (2.29)	8.233* (1.93)
Season length	0.969*** (-4.41)	0.969** (-2.09)
TAC Exceeded	0.732 (-0.59)	0.877 (-0.28)
Vessels	0.994 (-1.27)	1.001 (0.27)
Sectors	0.346 ^{***} (-3.46)	0.489** (-2.57)
Gini coefficient	0.959*** (-2.91)	0.969 (-1.54)
Average price	1.416 (0.93)	1.227 (0.33)
Aggregate catch	1.013 ^{***} (5.79)	1.014 ^{***} (4.45)
FMP FE	YES	YES
Area FE	YES	YES
Observations Fisheries Catch Share Programs Log-likelihood Pseudo R-squared	914 68 18 -28.13 0.615	914 68 18 2.667

Hazard ratios reported; *t*-statistics in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01. Efron approximation for tied failures.

► Back