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1 INTRODUCTION AND MOTIVATION 

An objective that stems from the National Research Council (NRC) commissioned exploration of 

student learning, How People Learn, is the need for ongoing research on the topic of formative 

assessment, or the practice of “making students’ thinking visible by providing frequent 

opportunities for assessment, feedback, and revision …” (Bransford, Brown, & Cocking, 2000). 

This is an important aspect of bridging the gap between the academic study of knowledge and 

learning, and real-world application to improve student learning outcomes in the classroom. 

Rather than informing one specific research direction, this recommendation seeks to present the 

value of targeting formative assessment to a diverse research community, with the goal of 

establishing a field of knowledge in the area. Many perspectives are needed to generate the 

foundational science of theory, rigorously test through application, and refine landscape of the 

practice of formative assessment.  

 

In a broad sense, targeting how people develop patterns of thinking, organize knowledge, and 

evolve expertise has long been a goal for human learning and development researchers; from the 

early pioneers, Vygotsky and Piaget, to modern researchers such as Michelene T.H. Chi and 

Ruth A. Streveler (Michelene T.H. Chi, Feltovich, & Glaser, 1979; John-Steiner & Mahn, 1996; 

Piaget, 1997; Streveler, Litzinger, Miller, & Steif, 2008). The influence of those eminent 

researchers has greatly shaped our current understanding of how humans, collectively, learn and 

serves as a strong undercurrent to the process of improving engineering education. The practical 

impacts are varied, but a very important one includes the creation of schemes to model complex 

psychological systems as researcher-recognizable cognitive structures and describe how those 

structures change throughout the process of knowledge acquisition (Blake and Pope 2008). Many 
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engineering education researchers are exploring the criticality of student conceptual 

understanding to the development of expertise, within the interconnected framework developed 

by the aforementioned researchers (Bransford et al., 2000; Litzinger, Lattuca, Hadgraft, & 

Newstetter, 2011; Svinicki, 2010).  

 

Despite the increasing focus on the cognitive factors underlying student learning, the challenge 

of translating elements of a broadly applicable understanding of human learning into curriculum 

level practice persists. In a 2010 study, Borrego, Froyd, & Hall investigated the diffusion of 

engineering education innovations among U.S. engineering departments. Each innovation had 

been developed with a modern awareness of the cognitive factors involved in student learning. A 

finding of this work was that departmental adoption of the practices dramatically under paced 

overall awareness of the selected innovations. The low rate of adoption may be explained in 

many different contexts but the fact that more than 80% of respondents were aware of the 

innovations appears to demonstrate the motivation and willingness of engineering faculty to seek 

out research based tools to improve educational outcomes. The desire to improve student 

learning stands in contrast to research findings into the actual efficacy of our engineering 

programs. A 2009 study compared the conceptual understanding of fundamental mechanics of 

materials principles among a particular group of U.S. sophomore and senior engineering students 

to find that the seniors did not show any significant difference in conceptual understanding 

(Montfort, Brown, & Pollock, 2009). Newcomer and Steif (2008) showed that many students 

were unable simultaneously apply the fundamentally related Statics concepts of force and 

moment equilibrium despite the class being structured in such a way to reinforce the interrelation 

of those concepts.  
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Despite targeted research into student conceptual understanding of core engineering concepts, 

the instructional and research devices being developed to encourage and make student learning 

visible have yet to be shown to be practically effective. Perhaps the tools needed to assess the 

state of a student’s conceptual understanding are unappealing to instructors due to some of the 

inherent barriers of translating research into practice, such as common constraints driven by cost, 

time, or overall situational appropriateness (Henderson & Dancy, 2011). An alternative 

explanation of low implementation is that it is quite hard to recognize when the instructional 

approaches are actually effective in increasing student conceptual understanding. Much of the 

established research into student leaning and cognition has focused on the development and 

substantiation of theory, while the overall efficacies of practical implementation are largely 

untested. This is partly the motivation behind NRC’s push for improved methods of student 

formative assessment. Traditional methods of assessing student conceptual understanding are 

incredibly time intensive and newly developing assessment tools have yet to reach broad 

consensus of efficacy. Can the findings of student learning researchers be immediately applied to 

the classroom? Does the maturation of the field directly translate into improved student 

outcomes? 

 

To answer these questions, better real-time modeling of the development of student conceptual 

understanding is needed. The goal of this research is to test the applicability of research findings 

from the fields of Natural Language Processing, Computational Linguistics, and Cognitive 

Psychology. Those individual fields take different approaches to assessing features of cognition 

and learning, which have not yet been widely applied within engineering education. Applying 
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those unique research approaches may help to overcome some of the endemic challenges in 

assessing student conceptual understanding. The effect of fusing different research areas must be 

rigorously tested before conclusions may be drawn. This study compares a traditional assessment 

of student conceptual understanding using qualitative research methods and newly developing 

methodologies from other fields.  

 

Of particular interest is ability to apply software-based Natural Language Processing tools that 

allow for automatic recognition of certain features of human speech. The immediate goal of this 

research is to investigate the impact of automating some intermediary steps of a qualitative 

analysis of student conceptual understanding. If some level of automation proves successful, 

benefits could include greater repeatability of analysis and increased interrater reliability. This 

would reduce the amount of time needed for a beginning qualitative researcher to gain 

proficiency. To test this goal, a standard qualitative assessment was performed on subjects 

participating in an interview-based study and compared with the results of an automated analysis 

of those same subjects. The results were interpreted with regard to their application in a 

traditional qualitative assessment. In this way, we may shed light on the context in which certain 

practices of assessing student learning can be supplemented with these new techniques, and 

perhaps even describe a new direction of research in our field. 

 

1.1 A Common Approach 

Current approaches to describing student conceptual understanding, skill acquisition, and the 

efficacy of our engineering programs tend to track with the guidelines laid out by researchers of 

effective student assessment, notably Bass & Glaser (2004), Baxter & Glaser (1998), Norton  
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(2009). The methodologies recommended by these researchers largely center on relating student 

performance to well-formed, measurable learning goals by comparing ideal and actual 

demonstrations of student learning outcomes. Such methods tend to look at the artifacts 

generated, both tangible and intangible, such as answers to test questions, implemented 

procedures, skills, reflections, habits, etc. They use what a student generates as a basis for 

assessing conceptual understanding. Unfortunately, using a student’s demonstrated solution to a 

problem as a direct indicator of conceptual understanding can be challenging, as highlighted by 

Montfort, Brown, and Pollock (2009). Engineering students, in particular, can be proficient in 

applying rote methodologies while simultaneously holding very little real understanding or even 

understandings contradictory to their memorized problem-solving algorithms.  

 

Therefore, solely relying on a student’s demonstrated problem solving can easily misrepresent 

their underlying conceptual understanding of a subject. Integrating a wide portfolio of student 

work and one-on-one interactions can illuminate the underlying knowledge structure the student 

holds, but this poses challenges to the practitioner in the time required to perform the evaluation 

as well as the subjective nature of the endeavor. A popular instrument for gaining an 

understanding of a student’s underlying conceptual framework is the Concept Inventory. The 

first widely used implementation in this genre was the Force Concept Inventory (Hestenes, 

Wells, & Swackhamer, 1992), which tests an individual’s competence in applying  an isolated 

fundamental concept of physics. In this diagnostic tool, a simple scenario is presented to a 

student along with a variety of possible solutions that are designed to highlight common student 

conceptual difficulties and competencies (see example in Figure 1).  
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Figure 3:Example of Force Concept Inventory problem. Adapted 

from Edward, Richard, Redish, & Steinberg (1999) 

 

The positive reception of the physics-based concept inventory has led to the implementation of 

this technique in the broad areas of Chemistry, Biology, and Engineering. Within engineering, 

the Foundation Coalition (foundationcoalition.org) has curated a broad collection of concept 

inventories that deal with subject matters that cover many engineering core classes. Each 

Concept inventory must be designed by an expert to test an individual concept in isolation, such 

that a student who answers the problem correctly can be seen to have demonstrated deep 

understanding of that concept. The designer of the concept inventory must have broad insight 

into common student misconceptions within the field (Evans, Gray, & Krause, 2003). A 

substantial benefit of the Concept Inventory is that it is packaged similarly to a traditional 

multiple choice assessment. As such, it is easy to distribute, quick to assess the outcome, and 

possible build a quantitative model of the knowledge capabilities of a group of students. Various 

concept inventories have since been created for application in many fields of study. However, 

some critics of the technique (Heller & Huffman, 1995; Smith & Tanner, 2010) have suggested 



7 

 

that while concept inventories can be valuable as a pedagogical tool and as an evaluation metric 

for a course, they are still lacking when it comes to making decisions about individual students.  

 

The problem arises in that student’s misconceptions are largely personal, being organically 

formed as a subliminal self-explanation or understanding of a physical phenomenon (Chi & 

Roscoe, 2002). If student responses to a concept inventory correlate strongly with experts’, this 

could indicate that the student holds a well-developed framework for understanding the 

underlying phenomena and relationships, similar to experts (Michelene T.H. Chi et al., 1979). 

However, student misconceptions triggered by distracters in a concept inventory, as termed by 

Hestenes et al. (1992), likely do not represent a common misunderstanding shared by all novices, 

due to the personal nature of those misconceptions. In addition to this drawback, Heller and 

Huffman (1995) posed the necessity of factor analysis or other statistical interpretation of student 

response patterns to validate the meaningfulness of the information. While the individual 

inventory items may accurately target intended misconceptions, at issue was the possibility that 

the interplay between items in the overall collection could engender further, unanticipated 

misconceptions resulting from the structure of the assessment instrument. A meta-analysis of 

response trends may account for this.  

 

Concept inventories can give a good representation of how closely a student’s performance 

tracks with a prescribed understanding, emphasizing normative student thinking, but they do not 

necessarily describe an individual’s reasoning. In particular, concept inventories are not designed 

to track changes in incorrect reasoning and these changes may be vitally important to guide 
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instructional feedback. Additional analysis is still needed to link non-expert student performance 

on a concept inventory to an individual student’s conceptual understanding of a subject.  

 

1.2 Moving Beyond Concept Inventories  

Progressing an assessment of student conceptual understanding beyond a concept inventory 

scoring poses a challenge for researchers. Evidence of student learning is not neatly available in 

worked out homework problems or recorded test answers, in fact previously mentioned research 

shows these artifacts to be commonly misleading.  Researchers interested in analyzing student 

learning must first generatively gather that data. It can be challenging and researchers are often 

faced with a large, ambiguous set of evidence. The materials typically used to assess deep 

conceptual understanding include written responses to open-ended questions and audio 

recordings of one-on-one interviews. The complexity of the data necessitates human 

interpretation of the subject’s behavior in order to grasp the reasoning behind the actions, a 

process described using the umbrella term of qualitative analysis. 

 

Qualitative analysis is a methodology rather than a specific approach, one which can be likened 

to practicing a craft of inductive reasoning (Saldana, 2009) while implementing an informal 

collection of best research practices. The reliability and importance of findings is determined by 

the competence of the researcher and there are few safeguards against misinterpretations. This is 

not a prescriptive process and is largely heuristic driven, based on expertise and intimate 

familiarity with the dataset (Saldana, 2009). It often takes the efforts of multiple researchers to 

gain greater confidence in the generalizability of the research findings, as often demonstrated 
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through metrics such as inter-coder reliability (Hruschka et al., 2004). This process is often 

hampered by limited resources and time available in a classroom setting.  

 

Many analytical approaches and software tools have been developed to aid the qualitative 

researcher operating under time and resource constraints. Software suites falling under the 

category of Computer Aided Qualitative Data Analysis Software (CAQDAS) are often employed 

to manage large quantities of data and automatically perform a variety of  complex analysis 

procedures (Carcayry, 2011; Jones, 2007). The core features of a CAQDAS program are the 

ability to search content, apply codes, create links between data, provide query tools, allow the 

user to make annotations, and provide the ability to create inter-data networks (Lewins & Silver, 

2009). Three examples of widely known commercial CAQDAS programs used are Atlas.ti, 

NVivo, and MAXQDA (Saldana, 2009). Each of these programs offer the researcher a slightly 

different approach to performing a detailed qualitative analysis, the relative merits of which are 

not covered in this discussion. There is a large body of work that exists (Carcayry, 2011; Jones, 

2007; Lewins & Silver, 2009) to aid the researcher in becoming a more proficient practitioner of 

qualitative methodologies using these complex software suites. Those materials typically give a 

broad framework of best practices for approaching rigorous qualitative analysis with CAQDAS. 

It is up to the user to iteratively develop the expertise needed for effective research. Ultimately, it 

is the still the interpretive insight of the researcher that is the basis for the quality of the research.  
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2 BACKGROUND  

2.1 Introduction to Automated Text Analysis Tools 

The development of automated research tools to analyze the meaning contained in text, with 

respect to the natural language used in daily communication, came into focus in the early 1960s 

with the refinement of grammar-rule based approaches to automatically parsing language. The 

approach quickly matured and developed into practical applications (Hobbs, Walker, & Amsler, 

1982; Sager, 1981). Early researchers focused on developing the computational approaches for 

automating analyses of linguistic structure in order to facilitate processes such as machine 

translation, speech recognition and synthesis, and keyword recognition (Hirschberg & Manning, 

2015). Despite long standing academic interest in programmatic parsing of human language, the 

limited computational power and analysis techniques of the time limited the practicality of such 

approaches. However, constant advances in computation approach, rapid increases in casually 

available computational power, and the proliferation of open source software tools have 

dramatically increased the feasibility of small scale text analysis implementations. 

 

The widening availability of text analysis software has led to a variety of implementation 

strategies and goals. These may range from a simplistic count of words with a predefined 

meaning, such as tracking the frequency of emotion words to estimate Facebook user sentiment 

(Settanni & Marengo, 2015), to a more dynamic analysis, like automatically assessing the 

correctness of student responses in a classroom setting using complex machine learning 

algorithms and artificial intelligence (Nehm, Ha, & Mayfield, 2012). To understand the 

similarities and differences in these different approaches, it will be useful to define some of the 

broader categories of technologies. Lexical analysis describes a general methodology by which 
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the content of spoken language or written text is assigned a natural language meaning through 

the use of syntax examining processes. In this process, literal character sequences are given 

language-based meaning and can be further examined. This type of analysis is widely used in 

Computational Linguistics, a field that fuses statistics-based modeling of the meaning contained 

in text and a study of the use of human language. Traditional computer science approaches are 

combined with the study of computational linguistics to form the discipline of Natural Language 

Processing (NLP), which is intended to “…learn, understand, and produce human language 

content” (Hirschberg & Manning, 2015) . It is a highly interdisciplinary field that can be applied 

in a variety of contexts for many different purposes. 

 

2.2 Trial Implementations of Automated Text Analysis Tools 

Developing a natural language processing approach is a growing interest in the academic field of 

assessing student understanding but has yet to be formalized into a common methodology. NLP 

is still in relative infancy and there are many equally valid approaches to addressing specific 

features of the process, without methods emerging as universally superior (Joshi, 2003). A recent 

application (Goncher, Boles, & Jayalath, 2014) attempts to use automated text analysis to judge 

student understanding by extracting high level concepts from open ended written responses to 

survey questions. Their method was to employ Leximancer, commercially available automated 

text analysis, to automatically code a text sample, with the intention of highlighting a student’s 

thinking and reasoning. A brief examination of the Leximancer product website shows that the 

software is meant to be ready for use with minimal input from the researcher. Goncher, et al. 

used open ended, written responses to survey questions as a dataset. This study demonstrates 

some positive benefits of the approach in terms of the speed of analysis but at the cost of 
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reporting a mix of correct and incorrect categorizations of student understanding. The automated 

portion of this study generated coded findings that were consistently different from those of 

human researchers. Furthermore, software derived thematic conceptual extractions were based 

on meaningless vocabulary 87% of the time (Goncher et al., 2014).   

 

In a similar vein, work conducted by Verleger & Beach (2014) also apply NLP tools to interpret 

open ended student response. However, their study was directly focused on the development of a 

custom software tool to influence team formation and assigning reviewers based on the content 

of academic papers. The process involved extracting complex content analyses based on student 

writing. The software they created looked at natural language text in order to generate coded 

measures such as audience readability and the occurrence of supportive argument rationale, 

which was then compared to a manual coding. Their tools had an accuracy as compared to 

human reviewers of 60 to 85 percent. In contrast to the commercially available Leximancer 

software, Verleger and Beach’s implementation involved considerable ‘training’ of the software 

to be able to detect idiosyncratic features of their specific dataset. This involved much more 

input on the the part of the researcher but led to more accurate results.  

 

These two examples are representative of the ambitions researchers have for implementations of 

NLP based software but display lackluster results. However, these cases also exemplify the 

potential trajectory of the approach seen in the field, as a whole. Developing targeted 

implementations of NLP based tools to be used on a specific datasets appear to yield much more 

useful results than generally exploratory applications. 

 



13 

 

 

2.3 Implications and Contemporary Approaches 

Automatically analyzing the abstract content of a text sample could be an extremely powerful 

tool once strong evidence of broad generalizability and accuracy is established. A corollary 

approach to enhancing a qualitative analysis would be to avoid direct, high level abstraction but 

rather decompose those features into simpler elements to be used in a more traditional research 

investigation. A promising path is looking at the underlying structure of written text for 

contextual grammatical features, or lexical structures. A goal of this approach is to glean some 

information about the content by examining the way in which it was communicated, possibly 

revealing phenomena with meaningful implications. A major inspiration for applying this 

approach to judging student conceptual understanding comes from the work done by Lu (2012), 

where natural language processing techniques were used to reveal a strong correlation between 

the written structure of ESL student’s work, task performance, and their proficiency with English 

language communication. 

 

Lu’s 2012 study employed NLP tools to evaluate transcript-based data from over 400 students 

and was able to extract information describing meaningful lexical structures independently from 

the literal content of the communication. Researching the application of natural language 

processing techniques to extract lexical information (the structure and context of the 

communication) of written text may avoid the pitfalls of trying to automate high level concept 

analysis. It is not anticipated that such a technique will eliminate the need for an in-depth 

qualitative analysis of student conceptual understanding but rather to supplement it. This work is 

largely exploratory in nature, combining elements from historically independent fields with the 
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intent of identifying useful commonalities. The analysis will focus on pre-existing records of 

communication between individuals and researchers, specifically targeting text interview 

transcripts.  

3 THEORETICAL BASIS 

3.1 Interactions between Conceptual Understanding, Cognitive Load, and 

Lexical Features 

Before searching for evidence of how a student’s conceptual understanding changes over time, it 

is necessary to describe what we mean by the term and what it means to ‘see’ evidence of 

conceptual understanding. Conceptual understanding is the fundamental knowledge a person has 

about a specific phenomenon, without performing a rote calculation or methodology. It is an 

underlying personal truth that describes how and why world works (Montfort et al., 2009). This 

internalized framework of understanding is more akin to experience-reinforced intuition than 

academic knowledge. Conceptual understanding can be used as an indicator or labeling tool to 

help describe and make sense of the phenomena of student learning, but does not specifically 

explore the underlying mental processes that lead to development of expertise in a subject. There 

are a variety of approaches for bridging the gap between theorized descriptions of knowledge 

formation and underlying phenomena. Such tools may involve innate features within a person or 

that subject’s varied social experiences. This study focuses on one particular avenue of tying the 

formation of conceptual understanding to a wider set of mental features by means of employing 

Cognitive Load Theory (CLT).  
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CLT is an area of research that posits a connection between how the physical brain functions and 

the thought processes it performs. A simplistic understanding of CLT is that a person has a finite 

capacity for varying types of mental processes, based in the physiology of the brain itself 

(Kalyuga, 2009). This capacity can be modeled as limited resource and the way in which that 

resource is used during a particular mental task, or allocated when performing simultaneous 

tasks, can yield valuable information about the individual. The amount and type of mental 

resources devoted to a task is termed cognitive load. One particular assertion in CLT is that there 

is a measurable relation between working and long term memory, as indicated by different types 

of cognitive load. Germane cognitive load has been connected to deep transferrable knowledge 

structures (Kalyuga, 2009) that are often representative of conceptual understanding. As a 

person’s conceptual understanding of a subject increases, the level of cognitive load required to 

make deep connections within that conceptual domain is lowered. An expert in a field is able to 

make deep conceptual connections between features without this dominating available cognitive 

resources. Contrastingly, a novice’s cognitive resources may be monopolized when employing a 

simplistic, surface level analysis. We can then use measures of cognitive load to indicate how 

well structured a conceptual area is for an individual, which implies a certain level of conceptual 

understanding in that area. An individual showing low cognitive load while displaying features 

of a highly interconnected conceptual domain points to high conceptual understanding in that 

area. 

 

CLT partly focuses on exploring the cognitive factors that affect a learner’s acquisition and 

development of schemas, or structures that contains a deep understanding of a particular problem 

domain. Abstract thought is seen to have a related physiological component. The idea that a 
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person has only a limited capacity for cognitive processing at any given time gives rise to the 

concept that tradeoffs between various cognitive processes (with associated physiological bases) 

exist in an individual (Chandler & Sweller, 1991; Sweller, 1988). Sweller (1988) notes the 

conflicting ability to engage in schema attainment and revision versus directed goal attainment; 

problem solving processes with implications of differing levels of conceptual understanding. In 

other words, if a person’s cognitive resources are dominated through elementary problem solving 

approaches within a poorly connected concept area, it is very hard to simultaneously develop or 

revise concept connections inside that same area. 

 

Measuring cognitive load, therefore, becomes a bridge between measurable physiological 

performance and certain thought processes. Testing methods for measuring relative levels of 

cognitive load in an individual was central to Chen et al.'s (2012) study which found that 

cognitive load could be measured in real time. In this single study, many modes of measurement, 

such as eye tracking, hand writing analysis, EEG monitoring (targeted measuring of brain 

waves), and lexical analysis were found to be strongly inter-correlated and that they reliably 

pointed to levels of cognitive load. This leads to an assumption that one individual measure may 

be enough of a basis to characterize an individual’s level of cognitive load. Chen’s summary 

includes lexical analyses that are shown to be reliable measures of cognitive load. Specifically, 

Chen used lexical density, which takes into account the variety and sophistication of the words 

used. Using lexical analysis may preclude the need for expensive physio-cognitive measuring 

equipment in order to extract information about a person’s thought process and can be applied 

retroactively. Lexical analysis techniques are available through open-source software that is 
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quick to implement and simple to disseminate. By using lexical analysis techniques, we can infer 

levels of conceptual load and make judgements about an individual’s conceptual understanding.  

 

3.2 Natural Language Processing Tools 

NLP tools involve complex linguistics procedures that rely on computational grammars, which 

are entire fields unto themselves. Fortunately, many research tools from those fields have been 

developed with open source ideals in mind and can be easily combined into existing research. 

For the sake of brevity, we will be briefly discussing what these procedures do, rather than 

heavily detailing how they work. The terminology, definitions, and use of software in this 

section are detailed by Bird, Klein, and Loper (2009). 

 

An important first step in applying NLP is determining the Part of Speech (POS) for each word 

in a text. The meaning behind the words we use are largely ambiguous and dependent on the 

context of their use. The meaning of each word will be important to for analysis in many ways. 

Consider the two different POS parsing trees shown in Figures 2a and 2b that chart the 

decomposition of one part of a common humorous phrase.  
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To a human reading the sentence: “Fruit flies like a banana”, humor arises as a result of the two 

simultaneously existing and conflicting meanings of the sentences. Is the subject a tiny, but 

enormously aggravating insect or an incorporeal concept that happens to shares flight 

characteristics with a certain yellow fruit? After slight reflection, it is easy for a person to settle 

the conflict and judge the correct meaning based on the context of the conversation but it is much 

harder for a software program to do so. In order for a machine to proceed, it must make 

probabilistic judgements based on the lexical syntax, or context, much like a person would. It 

must decide from the context if it is more likely to be a claim about insects’ diets or fruits’ 

modes of transportation. It must employ sophisticated algorithms to create probabilities of 

various interpretations being correct. Even then, it cannot be sure.  

 

The analysis makes use of the Stanford POS tagger (Toutanova, Klein, & Manning, 2003), which 

is a piece of software that accepts text input and determines the part of speech for each word in 

the text sample according to the Penn English Treebank tag set, as described by (Santorini, 

A

 

B

 

Figure 4A and B: Illustration of possible syntactic POS parsing tree ambiguity 
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1991).  The software allows the user to ‘train’ a POS model using a customized textual dataset if 

wanted, which may take into account application specific jargon and regional speech differences. 

However, we have opted to use the included English language Bidirectional Model which has a 

reported accuracy of over 90%, even when judging unknown words (Santorini, 1991).  This 

program is written in Java and released under GNU General Public License, which allows for 

copying, modification, and redistribution. It is used in our implementation without any 

modification.  

 

The next stage of lexical analysis is to simplify the words used into what are called lemmas. A 

lemma is a core meaning, or concept, that can define a group of related words. Lemmatizing is 

the process of grouping different forms of similar words into single entities, or meanings. The 

ability to do so is largely determined by the part of speech of the word and access to a database 

of word relationships for a specific culture. The meaning behind each word, rather than the literal 

character sequences are the subject of our future lexical analysis. Figures 3a and 3b demonstrate 

this effect. 

A 

 

B 

 

 

Figure 5A and B: Lemmatizing by word tense and by part of speech 

 

Figure 3A shows how different tenses of the word “have” can be collapsed into one meaning, or 

lemma. Figure 3B demonstrates the importance of part of speech in lemmatizing. “Cats” may 

refer to the concept of a small feline but the adjective “Cattiest” is likely not a descriptor of that 
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same animal.  Our ability to perform lemmatization is built around use of the Python Natural 

Language Tool Kit (NLTK), a software package of computational linguistics tools for the Python 

programming language. Python NLTK is an open source library. This study relies on a custom 

python program developed to interact with the Stanford POS Tagger and create carry out the 

lemmatization process. Using Python NLTK allows us to interact with Princeton WordNet 

(Miller, 1995). WordNet is an online lexical database, or machine readable dictionary which 

groups words of similar meaning based on their part of speech. The purpose of this step is to 

isolate the meaning of the words before further analysis and comparison.  

 

The third tool employed in this study is a lexical statistics analyzer, which has been adapted from 

the source code release by (Lu, 2012). It was originally developed to generate lexical indicators 

of English as Second Language learners’ written text but can be adapted for any purpose. It can 

generate information about the lexical complexity, density, and variation of text based on syntax, 

as well as word choice sophistication based on words used and their part of speech. Possible 

lexical statistics generated using an adaption of Lu’s code are of a similar type that Chen et al. 

(2012) correlated to measures of cognitive load. This study generates lexical indicators (ie, 

statistical descriptors of contextual language use) for a text to generate implications of a person’s 

cognitive load, as informed by Chen’s methodology.  

 

Computational linguists have developed many statistical indicators to describe features of 

communicated language (Lu, 2012). Some indicators are more useful for certain types of text 

than others; for example: short vs long, complex vs simple, word choice independent vs 

dependent, et cetera. The lexical indicator most appropriate to the interview transcripts analyzed 
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in this study is the Uber Index (Equation 1), as developed by Dugast (1979) to examine the 

relationship between the lexical types of words (ie, function descriptions) used and overall text 

length. The Uber Index is a descriptor of the lexical diversity of a text, or the relationship 

between the total numbers of lexical words (T) used and total number of lexical word types (N) 

used in a text. A high Uber index value would indicate that complex sentence structures are 

being used in an individual’s communication.  

 

 

 

 

This index was chosen prior to analysis because Uber is seen as as a better representation of 

lexical diversity for for texts of varying length than other similarly used lexical indices, as found 

by (Jarvis, 2002). This relaxation of a text length requirement is useful to the study, as detailed 

further in the Methodology Section. Another reason Uber is appropriate for this study is that it is 

very closely related to the specific indicator used in Chen’s study without placing value on the 

specific words used (Šišková, 2012). This study focuses on conceptual understandings of core 

engineering ideas. It was anticipated that individuals trained to solve these problems in a similar 

setting would use similar words in their responses even if their conceptual understandings were 

quite different. That complication can be avoided by focusing on lexical features that are 

independent of word choice. Uber is appropriate for our short text samples and linked to a 

component tested for in Chen’s 2012 study, which allows us to generate representations of 

cognitive load from on our analysis. 

 

 

 

Equation 1: Uber index from Dugast 

(1979) 
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If lexical structures can be linked to task performance and cognitive load, independently of the 

content of the communication, perhaps some metrics methods can be developed that that allow a 

researcher to link those same lexical structures to task performance that a researcher may 

associate with infer an individual’s conceptual understanding in a targeted subject area using 

only text-based records. Recent improvements of freely available NLP software (Bird et al., 

2009; Miller, 1995; Toutanova et al., 2003) have lowered the barriers to implementing such an 

approach, especially in automated applications. The tools in this discussion are interacted with 

using a by means of custom GUI developed in Python, which gives the user a simple point and 

click approach to using the described NLP tools simultaneously. This research is a preliminary 

investigation and uses simple implementations of the NLP tools on an easily accessible dataset to 

test the validity and utility of the approach.  

 

4 METHODOLOGY 

4.1 Procedural Overview 

The research findings of this study are the results of a direct comparison between a qualitative-

research based assessment and an exploratory, Natural Language Processing based assessment of 

an individual’s conceptual understanding of core engineering concepts. The research subjects 

involved in this study had been educated at the same university and engineering program. More 

details of of the participants, selection process, and multi-year study timeline are described in the 

next section.  

 

A representation of the qualitative research process is shown in Figure 4, below. A coding 

framework was developed and applied to interview transcripts using the qualitative research 
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suite, AtlasTI. This process aimed to assess the relative change in a subject’s conceptual 

understanding of a Mechanics of Materials and Fluid Dynamics based topic, on a three year time 

scale. Figure 5 shows the software based NLP process that tracks the change of lexical traits 

from the same time span After the individual analyses had been completed, the results were 

compared for the purpose of finding correlations between the approaches and identifying 

potential effects of using the results of the automated NLP process to inform a future qualitative 

analysis of conceptual understanding.  

 

 

 

Figure 4: Overview of Qualitative coding 

method 

Figure 5: Overview of Automated Natural 

Language Processing method 
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4.2 Dataset and Interview Methodology 

This paper draws on three years of longitudinal data on entry level engineers’ conceptual 

understanding of solid and fluid mechanics. This study began with 12 participating subjects that 

were selected from the senior-level civil engineering student body at a land-grant public 

university were tracked as they transitioned into engineering professionals. Interviews were 

initially conducted in person to allow for a natural rapport to develop between the interviewer 

and subject, then continued on a regular basis remotely. Over the course of the three year period, 

some subjects dropped out and some did not participate in the entire interview sequence. Only 

six subjects were found to suitable for direct self-comparison over the course of the interview 

time frame. Despite the small sample size, a large quantity of data was collected for each of the 

six subjects over a multiyear time span. Each participant in the study was asked to engage in five 

sets interviews between 2011 and 2013, which covered their senior years of undergraduate 

education though their second year of professional engineering practice. Figure 6 shows the 

timeline of the interviews and the relationship of repeated interview questions over that three 

year period. 

 

The average length of these interviews was 90-minutes, so about 7.5 hours of raw interview 

audio recordings were generated for each of the subjects. Transcripts were created from the 

resulting audio. In each interview, the subject was asked questions about a pair of solid and fluid 

mechanics problems, designed to highlight the conceptual understanding of the participant. Upon 

reaching the third year of the study, the interviewees were reintroduced to the same interview 

questions they first saw in 2011 to allow for direct comparison. The overall quantity of interview 

data generated for each of the six subjects is quite extensive, however this study only makes use 
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of a subset of that data, which pertains to specific concept areas described later. The subset is 

comprised of about 3 hours of recorded interviews for each of the six participants.  

 

 

Figure 6: Timeline of Interviews 

 

The students initially had a similar educational background, having progressed through a 

standardized curriculum. This study was aimed at capturing emergent phenomena of changing 

conceptual understanding as the students transitioned into varying professional engineering 

vocations. 

 

The interview sessions were semi-structured and relied primarily on verbal interaction as method 

for gathering data (Case & Light, 2011). Galletta and Cross (2013) explain the process of 

designing a semi-structured interview protocol, collecting the data, and analyzing the results. A 

standard list of questions was prepared for individual interview sets and the experienced 

interviewer was able to reflexively interact with the students to tease out the underlying meaning 

in the student’s response. (Barriball & While, 1994) have highlighted the advantages of 

conducting semi-structured interviews. Positive features of this interviewing structure include the 

ability to react to differences in the personal and educational histories of the interviewees, as well 

as the ability to clarify issues raised by the sample group on a person-by-person basis. (Barriball 
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& While, 1994) also emphasize the benefit of asking reactive, probing questions to decrease the 

influence of social pressures felt by the respondents in the interviews. Audio of the interviews 

was recorded and text transcriptions of the sessions were created for ease of analysis. The two 

forms of media were compared for accuracy and cross referenced to provide insight into the 

analytical information presented by the interviewee and to allow interpretation of nonverbal 

discourse.  

 

The problems posed in the interviews were designed to represent material similar to what the 

subjects encountered in their coursework and targeted conceptual areas that the interviewees 

would possibly be expected to engage with in their professional life. In this way, the study 

intended to contrast how conceptual understanding developed in an academic context changed as 

that understanding was refined through practice. The interview questions were also open-ended 

enough to allow for the interviewer to pursue many possible lines of questioning. Visual 

depictions of two representative problems are shown in Figures 7 and 8.  

 

Figure 7: Static Wind Loading Visual Description 
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Figure 8: Residential Pipe Network Visual Description 

 

These two questions are only a part of the interview process and make up roughly half of the 

analytically based interview prompts. The questions posed in the interviews were designed to 

avoid encouraging the subject to apply rote methodologies or equations. In the structure loading 

problem (Figure 7), the subject was asked where the building would deflect the most under a 

given uniform load rather than being asked to quantify the value of maximum strain. The 

interview protocol used with the pipe network problem of Figure 8 questions about the effects of 

increased demand on the system rather than calculating frictional losses within a pipe. In general, 

the types of questions followed a similar format: What information would be necessary in order 

to describe or the system? How will system changes affect the relationship between state 

attributes? If a specific output was required, how should the parameters of the system be altered? 

In this way, the interviewer was trying to tease out what the subject intrinsically understands 

about the problem domain.  

 

4.3 Coding Protocol and Framework 

A basis for the validity of this study is the comparison of the newly applied technique of lexical 

analysis against the standard practice of a qualitative coding. Each transcript was qualitatively 



28 

 

analyzed to describe the conceptual understanding displayed therein. An a-priori coding 

framework was developed and is represented below in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Level of Understanding Code Description 

 C6 

 

Implicit relationship recognition  

C5 

 

Reformulation of problem (cross-domain analogy)  

C4 

 

Reflection on appropriateness of approach  

C3 

 

Reflection to see if answer makes sense  

C2 

 

Reformulation of problem (same-domain analogy)  

C1 

 

Relationship recognition (same domain) 

P3 

 

Step-by-step Approach (Action Sequence)  

P2 Recalling Specific named equation or definition  

 

P1 

 

Naming general Procedure  

Table 1: Coding Framework 

Conceptual 

Procedural 
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The theoretical basis of this coding framework is largely informed by the works of Rittle-johnson 

and Schneider (2015), Rittle-Johnson, Siegler, and Alibali (2001), and Van Merrienboer and 

Sweller (2005). A major feature is the division between codes indicative of conceptually heavy 

problem (beginning with the ‘C’ prefix) and procedurally based (beginning with ‘P’ prefix) 

problem solving strategies. These codings contain various explicit and explicit measures of the 

conceptual/procedural solving continuum but it should be noted that the processes can 

profoundly influence each other and may be hard to isolate (Rittle-Johnson et al., 2001). The 

implicit and explicit measures have been adapted from examples given by Rittle-johnson and 

Schneider (2015) to reflect specific features we might expect the interview subjects to display in 

their interview question sessions. A second major feature of this coding framework is a relative 

ranking of codings displaying procedural and conceptual processes. This ranking reflects 

assessments the cognitive complexity required for each of the coded features. It is suggested that 

the complexity of the problem solving feature employed is directly related to a learner’s 

conceptual understanding of the concept domain and cognitive load experienced by the 

individual (Van Merrienboer & Sweller, 2005). That is to say, a novice in a subject devotes a 

more substantial amount of cognitive load to a simple procedural approach than an expert might, 

precluding the possibility of devoting the needed cognitive resources for a more conceptual 

reflection.  

 

This coding framework is applied to inform a qualitative assessment of conceptual 

understanding. No direct quantitative values will be drawn from its use. While a hierarchical 

ranking of codes and a transition from procedural to conceptual processes is supported by 

research, this specific coding framework has not yet been directly verified. The relative meaning 
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of the magnitudes associated with each code is untested. We can’t conclude that a C6 shows 

twice as much conceptual understanding for a subject when compared to C3. Similarly, codes 

may have differing implications from person to person. To counter these ambiguous unknowns, 

this framework will only be used to make comparisons for specific individuals over time, not for 

making interpersonal assessments. A large number of Procedural codes and few Conceptual ones 

generated in a particular interview session will be evidence of a mostly procedural 

understanding. Similarly, a grouping of high ranked Conceptual codes will evidence strong 

conceptual understanding. A neutral response will be generated from a broad mix of middling 

ranked Conceptual and Procedural codes.  

 

4.4 Application of NLP and Lexical Analysis 

Before the previously laid out natural language processing steps can be applied, some 

manipulation of the dataset is needed. The raw texts were complete transcripts of the entire 

interaction between the subject and the interviewer. This tended to include ‘off topic’ 

conversation, such as introductions and idle small talk before interview questions were posed. 

Interview questions were prepared in advance and typically introduced using very similar if not 

identical wording. All response to standardized interview questions was deemed to be ‘on topic’ 

and used in the analysis, while ‘off topic’ conversation was ignored. Similarly, interviewer 

speech was removed to isolate the participant’s speech. Next, we decided to separate the 

individual subject matters of Fluid Mechanics and Mechanics of Materials. This was to allow for 

a more direct comparison if the interviewee showed differing levels of conceptual understanding 

between subjects. The ‘chunked’ text was then processed using previously described NLP 

software. The following series of excerpts tracks the transformation of a short question response 
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as it is manipulated by researchers and the NLP tools into a measurable lexical quantity. A very 

short response was chosen to limit the amount of data and illustrate the process clearly. The 

following is the raw interview text as transcribed by the researchers: 

 

Interviewer:  Okay. What about highest energy? 

Phillip:  Probably at the reservoir because it has the least amount of head loss. 

 

The text is then manually trimmed to remove interviewer speech and other non-participant 

response: 

 

Probably at the reservoir because it has the least amount of head loss. 

 

The first NLP process of POS tagging can then be performed using the Stanford POS tagger 

(Toutanova et al., 2003), with associated output displayed below, and the resulting lexical 

parsing tree is shown in Figure 9: 

 

Probably_RB at_IN the_DT reservoir_NN because_IN it_PRP has_VBZ the_DT 

least_JJS amount_NN of_IN _________NN ._. 
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Figure 9: POS parsing tree for NLP application example. 

 

Two transformations of the text are shown. The first is the output of the program using shorthand 

notation for POS tags. The second displays a POS parsing tree generated using the output, with 

the shorthand POS tags replaced by longhand descriptions. Two interesting features can be 

demonstrated here. First, the POS tagging of the sentence is highly accurate. The parsing tree 

describes a POS structure that recreated the intended communication of the interviewee. The 

second notable feature is the recognition of the engineering phrase ‘head loss’. Note that this 

term has been replaced with the stand in ‘____’ because it has unknown meaning to the POS 

tagger. The POS tagger was able to recognize that ‘head loss’ denoted a particular concept 

separate from the individual words ‘head’ and ‘loss’. It did this by examining the context of the 

sentence and judging that ‘head loss’ was the subject of a noun-phrase, indicating a single entity. 

It should be noted that the term was replaced but the lexical information of intra-sentence 

relationship and POS type was retained for use in later lexical analysis.  
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The next transformation is lemmatization using a custom implementation of Python NLTK (Bird 

et al., 2009) and WordNet (Miller, 1995): 

 

Probably_RB at_IN the_DT reservoir_NN because_IN it_PRP have_VBZ the_DT 

least_JJS amount_NN of_IN ________NN 

 

This example is not very especially dramatic due to the simple word choice the interviewee used. 

One example of lemmatization actively occurs in the excerpt. The word ‘has’ was transformed 

into its lemma, ‘have’. A similar transformation would have occurred if the text included the 

words ‘had’ or ‘having’. With this process complete, the lexical analyzer (Lu, 2012) can be 

applied to compute the Uber statistic. The Uber statistic forms a representation of the lexical 

diversity of the excerpt and a manual calculation example is shown below: 

 

Probably1 at2 the3 reservoir4 because5 it6 have7 the3 least8 amount9 of10 ___11 

 

Equation 2: Demonstrated Uber Calculation 

 

In this simple demonstration of calculating an Uber index value, each unique lexical word is 

given an increasing, superscripted numerical label. The only repeated lexical word in the short 

sentence was ‘the’. The total number of lexical of words (T=12) and number of lexical word 

types (N=11) are used to calculate the Uber index (Equation 1). It should be noted that while 

Uber is appropriate for varying length texts (Jarvis, 2002), the sample sentence used is many 
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orders of magnitude smaller than the overall transcript dataset. Consequently, the numerical 

results cannot be directly compared. Indeed, lexical statistics are intended to describe 

characteristics of entire manners of communication and quickly lose demonstrable meaning 

when applied to small fragments of text. Nearly every word in this example is unique, showing 

that and Uber value of 30 is an extremely high lexical diversity. In this case, only one word was 

repeated and this is unlikely to occur in actual speech. Having virtually no repeated lexical word 

types in a text dataset constitutes an extreme case.  

 

As an illustration, consider a text made of two exact duplicates of the sentence “probably at the 

reservoir because it have the least amount of ___”. In this case (T=24, N=11) and the Uber value 

would be about 5.6. If the sentence was duplicated 10 times (T=120, N=11, the resulting Uber 

value would equal about 4.2 (note that this is a decreasing logarithmic function as N goes to 

zero). Together, these examples provide a reference of extreme high value (30) and an extreme 

low value (5). It may be hard to predict the actual upper and lower bounds of lexical diversity 

expected from a participant in this study, but the extremes discovered in this simple example 

inform the range of values we might expect to see. In addition to this single sentence example, 

values of Uber index from other studies (Jarvis, 2002; Lu, 2012) tend to fall in the range of 11-

26. These values were established for different datasets but indicate the general range we can 

expect to see in typical speech. 

 

Although these methods rely primarily on the freely available available software programs 

already mentioned previously, some programming was needed to combine the disparate elements 

and create an all-in-one GUI. These open source tools were written in differing languages and 
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program inputs/ output are not standardized. These tools typically see use in ad-hoc applications. 

Figure 9 shows a screen capture of the all-in-one software graphical user interface that allows the 

simple importation of text, selection of metrics, and display of analysis results. The software 

created specifically for this research makes it easy to select text files for analysis and quickly 

display visual results in one window. It gives the researcher easy control over variables that 

influence the POS tagging, lemmatizing, and lexical analysis procedures. In addition, it is not 

tied to any specific application. It is flexible enough to allow the researcher to simultaneously 

run lexical analyses on an arbitrary number of texts, manipulate many options, and chose which 

lexical indicators should be displayed. 

 

The visual display can summarize any of the generated lexical indices, as specific indices may be 

more relevant depending on the nature of the analyzed text. An optional feature is the ability for 

the researcher to represent newly supported lexical indices from the literature, or even create 

their own lexical indices out of basic linguistic feature ‘building blocks’ as a further path of 

research. A secondary goal of this project was to introduce a computational linguistics approach 

to a field of research where is shows promise. As such, the interface for the tools needs to be 

simple to apply and robust in operation. 
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Figure 9: Python based GUI for POS tagging, Lemmatizing, Lexical 

Analysis and visualization of results. Results are exported in a ‘.csv’ 

spreadsheet format. 

 

5 RESULTS AND DISCUSSION 

After the qualitative coding and lexical analysis processes had been completed, the results were 

compared on an individual and group-wide basis.   

 

5.1 Overview 

The following table compiles and visually compares the results from both the qualitatively coded 

process and the automated, NLP-based lexical analysis (Uber index). The results for the six 

pseudonymous study participants have been grouped by interview problem set to show change 

over time in a particular subject area. Change in conceptual understanding is represented in three 

possible states: increase, decrease, or no change. The evaluation was the result of a qualitative 
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assessment of the quantity and values of codes generated according to the coding framework, 

shown previously in Table 1.  Change in Uber index is presented as two possible values: increase 

or decrease. This result was a simple quantitative comparison of the value generated by the Uber 

formula, show previously in Equation 1. The color of each cell indicates if the two approaches 

agree in their assessment of change in student conceptual understanding over time. A green 

shading represents that the results of the qualitative analysis and lexical analysis agree. A red 

shading shows disagreement. No shading shows that no direct comparison can be drawn as an 

effect of unchanging conceptual understanding. 
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     Subject 

Area 

Name 

L-Building 

2011      2013 

Pipe Network 

2011      2013 

Phillip 

        

Roberta 

        

Brian 

        

Terrance 

        

Zander 

        

Sally 

        

 

Symbols 

/ /  : Conceptual Understanding Increase/ No Change/ Decrease 

/  : Uber Index Value Increase, Decrease 

: Agreement between Uber and Conceptual Understanding Change 

: Disagreement between Uber and Conceptual Understanding Change 

: No direct comparison between Uber and Conceptual Understanding Change 

Table 2: Relative change in conceptual understanding and 

Uber index by subject area, over time 
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5.2 Change in Conceptual Understanding 

5.2.1 Results 

The qualitative coding of conceptual understanding for the majority of participants shows either 

positive or no change at all, with equal frequency. A Decrease in conceptual understanding is 

only seen in one individual from the study, simultaneously occurring in both problem domains. 

Only one other person showed consistent change, in the case of conceptual understanding 

increasing across both domains. Additionally, most individuals showed Increase of conceptual 

understanding in the L-Building problem rather than the Pipe Network, but only by a small 

margin. Occurrences of No Change in conceptual understanding was seen moderately often in 

both problem domains. Decrease in conceptual understanding was seen the least, in only two out 

of twelve occurrences.  

 

Most codes created in this study were grouped around moderate value Procedural problem 

solving features or low Conceptual problem solving features. No occurrence of the highest 

ranked conceptual code (C6) was seen and only sixteen C5’s were recorded. High ranked 

Conceptual codes were rare in the overall study. Additionally, high ranked Conceptual codes did 

not typically indicate a low number of Procedural codes would be present. No significant 

tradeoff, or mutual exclusion between Conceptual and Procedural was seen.  
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5.2.2 Discussion 

The relative lack of change demonstrates the durable nature of conceptual understanding and 

knowledge frameworks. Once a conceptual understanding is developed, it is very hard to change 

and doing so often requires a metacognitive approach. This is still surprising given that the 

participants in the study are actively using, and presumably building upon, their engineering 

knowledge in their daily professional lives.  

 

Interviewees often voluntarily brought up connections between the concepts discussed and their 

professional work, particularly when giving supporting evidence. A general trend, which existed 

outside the scope of the coding framework, was that many more personal examples or 

explanations were drawn when discussing the L-building problem. Job responsibilities for some 

of the participants included designing or assessing physical structures, analyzing loading 

scenarios, and generally dealing with mechanics of materials subject matter. This might be 

expected to raise the occurrences of increasing conceptual understanding but this was only 

reflected in a small number of participants.  

 

Participants also tended to respond with a coding that fit an expectation created by the 

interviewer’s question. A Procedural code often resulted when the interviewer asked a simply 

directed question, such as: “Where is the highest pressure in the system?”. The responses to this 

type of question were often short and cited a single piece of evidence or simple reference to an 

equation. There was usually no further exploration once the participant had given, as seen by 

themselves, a ‘correct’ answer. Conversely, the highest value Conceptual codes were only 

portrayed when participants were asked to describe general features of a system or make 
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judgments of the relative importance of problem features, or relationships. This is not entirely 

unexpected. When there is no perceived single answer, solvers are more likely to follow 

connected concepts to seemingly divergent ends within a conceptual understanding. A response 

of this type would indicate that the individual holds a well-developed conceptual understanding. 

It is perhaps an unsurprising correlation to note the infrequency of such responses with the low 

occurrences of positive changes in conceptual understanding.  

 

5.3 Change in Uber Index 

5.3.1 Results 

The change in Uber index was fairly constant across the entire dataset, with nine out of twelve 

cases showing increase. To further examine Uber response, the individual Uber indices for all 

participant interview sessions are compiled in Figure 10.  

 

Figure 10: Combined comparison of participant Uber Indices over time 
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While it is clear that while there are relative changes in Uber value over time, the magnitude of 

those changes is very small. The median value for all the responses is 14.29 with a standard 

deviation of only 1.3. This study determined whether Uber increased or decreased over the three 

year time span but the magnitude of the change was not used as a factor. The largest changes in 

Uber index were found with participants Terrance and Sally, each seeing increases of nearly four 

points. Through the data, there were only two instances of a decrease in value from year to year 

within the same problem domain. Magnitudes of Uber scores were not utilized in determining 

relative levels of increase and decrease because of the difficulty of making direct lexical 

comparisons between individuals in such in a small sampling. Creating a metric influenced by 

the magnitude of change was not seen to be justified considering the relatively small sample size.  

 

5.3.2 Discussion 

While it is possible that the magnitude of change in Uber index has real meaning in this study, 

some drawbacks of adopting that approach were discovered. The literature finding Uber to be a 

good representation of lexical diversity for variable length texts (Jarvis, 2002) did not 

specifically test using Uber as a direct comparison between texts showing extremely large 

differences in length, such as we saw in the study. It was found to be the most accurate way to 

describe the lexical diversity of an arbitrary length text, but these results tend to call into 

question use in our specific application. Nonetheless, the literature supporting the index is leads 

us to believe that it is still useful as a metric to supplement an assessment of student conceptual 

understanding but may appropriate to quantify it.  
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The values of Uber represent lexical diversity of a text and generates an effectively unit-less 

index, calculated from the the total number of lexical words (T) and the number of different 

lexical words used (N). The Uber index described in Equation 1 shows that the response to a 

linear variation of either variable produces a characteristic logarithmic curve. The Uber results 

for Brian will be show in an exploratory example. Brian’s example was chosen to illustrate some 

specific features that complicate using the magnitude of Uber as an evaluation metric.  

 

Two data points were chosen based on the similarity of calculated Uber index to highlight some 

unexpected findings. The value calculated in the 2011 Pipe Network interview excerpt was 15.22 

and the value calculated in the 2013 Pipe Network interview excerpt was 14.36. It might be 

tempting claim that the difference between the values are minute compared to their magnitudes, 

indicating that lexical diversity did not appreciable change between these two interviews. 

However, some factors complicate that conclusion. First, the lengths of the excerpts, or the total 

number of lexical words, (T), were quite different. The 2011 excerpt had 557 lexical words and 

the 2013 excerpt had 1920. The characteristic curves were generated using N as the independent 

variable and Uber value as the dependent Table 3, below: 
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Equation: 

y=log(557)^2/log(557/x) 

Equation: 

y=log(1920)^2/log(1920/x) 

 
 

2011 Pipe Network T=557, N=132 

Calculated Uber= 15.22 

2013 Pipe Network T= 1920, N=260 

Calculated Uber=14.36 

Table 3: Exploration of Uber Index – Brian 

 

These graphs represent a total possible range of Uber values (Y-axis) for text length 557 and text 

length 1920. As lexical diversity increases, the Uber value logarithmically increases toward an 

asymptotic value equal to the text length, T. The intents behind the linguistic derivation of the 

Uber value was intended to create a good representation of the lexical diversity of a typical 

population. In this case, the total length of text increases by a factor of 3.5 and the number of 

different lexical words only increases by a factor of 2 while the Uber value is only changed a 

small amount. While this would be a good indication of similarity in lexical diversity for an 

average respondent, we cannot definitively say our sample population is close to that average 

standard. This makes direct comparison of magnitudes between texts difficult. 

 

 

5.4 Individual Case Studies 

Individual analyses of the qualitatively derived and lexically quantified measures of conceptual 

understanding likely have differing utility in our particular dataset. However, it is not enough to 
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judge overall efficacy of the approach entirely by comparing agreement between the measures. It 

is necessary to take a human centered approach and actually see how effective each measure is in 

illuminating the complexities of the interviews. The first case we will investigate is Phillip, 

where the results of change in conceptual understanding track well with the recorded change in 

Uber index. The following case of Roberta illustrates a case where these assessments disagree.  

 

5.4.1 Case Study Phillip 

Phillip’s interview transcripts showed results that might have been predicted before completing 

this research. Conceptual understanding in both subject areas increased slightly over the three 

year span. Figure 11 details the number of codes generated in his response to the Pipe Network 

and L-Building problem over the course of the interview period. Phillip’s highest conceptual 

proficiency was in the area of the L-building problem. The value of Uber index increased in both 

instances. 
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Figure 11: Comparison change in coding frequency over time for Phillip 

 

The resulting codes from the 2011 interview showed a grouping of Procedural codes and a single 

low value Conceptual code. This would indicate a low conceptual understanding of the subject 

where solving techniques were limited to simple, surface level connections. By 2013, the 

resulting codes had changed to include more Conceptual codes of higher values in both cases. 

Even when given seemingly simple question prompts, Phillip was able to reflect on the context 

of answers and make connections to indirectly related concepts. His language complexity also 

increased, resulting in higher Uber values. This could be casually seen in his interview 

transcripts. Sentences became shorter and less ponderous. Various concepts were quickly raised 

and addressed. There was less verbal searching for an appropriate explanation.  
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The following interview excerpt demonstrates evidence of increasing levels of Phillip’s 

conceptual understanding between the years 2011 and 2013. The interviewer is referencing the 

visual problem statement shown in Figure 7 that concerns wind loading on an L-shaped building. 

Phillip is asked if he can describe any general potential areas of concern when constructing such 

a building.  

 

2011 

Interviewer:  Okay.  Do you see any potential problems that could occur with the wind 

loading in the building? 

Phillip:  Well, yeah, especially if these are like open corridors or whatever in some area 

and some aren't, and just because they're open, you have no way to put shear walls and 

things like that, so you have nothing to take the load.  Well, I guess more from the like 

the […] load and stuff, which the wind could affect, so it could affect their uplift, because 

it can get in the building.  It can like push up.  So cause, I guess, the diaphragms.  That's 

technically what we call the uplift and twist and rip off and, plus building failure. 

 

2013 

Phillip:  You don't need walls on a building, the only reason we have walls is if we like 

privacy. And elements, we like to be warm and, or cold in the summer. Really you just 

need the roof and the floor. 

Interviewer: What could be done to counteract the problems? 

Phillip:  A lot of foundation haha. And, kind of design it in the way, like if the ocean is 

right here, which I know they designed it facing the ocean because of the views. That's 
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not necessarily the best solution. You want to try to make it narrower, the narrow part 

where the wind is going to blow so it's easier to go around and not… nothing is built like 

that because that's not how architects want it.  

Interviewer: What about the window problem, is there anything you can do to counteract 

that? 

 

 

In the example from 2011, Phillip demonstrates a step-by-step, or action sequence, solution 

strategy. Wind loading on a building will cause shear forces and shear forces are counteracted by 

the addition of shear walls. This would be indicative of a moderate to low level of conceptual 

understand where the analysis of a problem is simply solved by a standard if-then approach, 

which would not be out of  place in any recent engineering graduate’s toolkit. His response in 

2013, however, shows a relatively higher level of deep understanding of the problem domain. In 

this second excerpt, he tends to regard the walls as much smaller aspects of the previously seen 

problem, which now includes the motivation behind putting a building in a potentially high risk 

area in the first place. This underlying reason for constructing the building informs his 

acceptance that modifying the geometry to reduce wind loads might not be a feasible option, 

given that the requirements of the building likely include non-technical features of aesthetics. 

This takes into account requirements from the architects and the customers, as well as the 

engineer. The increase in generated Uber index looks to reflex this more nuanced problem 

solving strategy as well. This could potentially indicates a wider breadth of the subject matter he 

used to describe the problem.  
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Phillip did display high level Conceptual codes, which increased in both subjects. Interestingly, 

this did not reduce the number of Procedural codes found. It may be that Procedural answers 

were totally appropriate for procedural questions and did not indicate a low level of conceptual 

understanding. In this case, interpreting the Uber index might be valuable because it is theorized 

to increase with conceptual understanding.  

 

5.4.2 Case Study Roberta 

Contrary to the case of Phillip, the results from Roberta’s analysis are slightly more 

contradictory. The collection of codes shown in Figure 12 relays that Roberta holds a much 

higher level of conceptual understanding in the L-Shaped Building problem than she holds in the 

Pipe network example. 
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Figure 12: Comparison change in coding frequency over time for Roberta 

 

A hallmark of the codes generated for Roberta was the relative lack of variability in one of the 

problem domains. The Pipe Network problem generated a similar number of codes with identical 

values over the three years. Showing the opposite effect, a moderate number of Conceptual codes 

(including a high valued one) were generated in the L-shaped building problem given in 2011 

and seemingly degraded in value over time. Roberta’s profession commonly involved analysis of 

buildings under construction, which led to the prediction that 2013 codes would be demonstrably 

higher. Instead, the overall values of the codes actually fell but the quantity of the Procedural 

ones increased significantly. When posed with a question in the L-building interview process, 

she was likely to give more rationales for answers but they tended to be less representative of 
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strong conceptual understanding. It may be that the workplace environment she operated in 

supported simplistic concept connections as compared to the conceptual understanding 

developed in her engineering program.  

 

When we compare this result to the change in Roberta’s Uber Index, we notice a discrepancy. 

While a researcher’s qualitative assessment of Roberta’s conceptual understanding did not 

appreciably change in the Pipe Network problem, the Uber index decreased, which indicates the 

opposite. A sample of the interview transcript is excerpted to explore this further. In this 

selection, the interviewer is probing the relationship she holds between volumetric flow rate, 

velocity, and pressure in the Pipe Network problem.  

2011 

Interviewer:  Okay. How might you increase velocity? 

Roberta:  You could change the area. 

Interviewer:  Of the pipe? 

Roberta:  Yeah. 

Interviewer:  Okay. And which ones? 

Roberta:  And adding pressure could also kind of affect, I mean, your- no, ignore that. I 

would say initially my first guess would be area, area of the pipe. 

Interviewer:  Okay. And which, if you increase it, what happens to the velocity? 

Roberta:  If you increase the area of the pipe, it's going to decrease. That's what I would 

say. 

Interviewer:  Okay.  
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Roberta:  There's a bigger area for the water to flow through and, if it's a small area, it's 

going to be more confined and it's going to want to flow faster, I think. 

 

2013 

Interviewer:  Okay. Umm, okay. So we take away those ten houses. Now what if we 

change this six-inch to a twelve-inch pipe, how do you think that would change the 

system? 

Roberta:  And then what, what would these go to? [Referring to another pipe size within 

the problem] 

Interviewer:  They stay the same. 

Roberta:  They stay at two and four? 

Interviewer:  Mhmm. 

Roberta:  Oh, so it's just like a reducer. It would increase the pressure at these, both of 

them. 

Interviewer:  Okay. How come? 

Roberta:  Because now you have a bigger pipe here, so more water is going to be able to 

flow into here. So your flow rate here is going to be higher. Since your flow rate at this 

point has to equal the sum of those two, you know your flow rate there has to increase as 

well, in both of these lines. So, the increase in your flow rate, your pressure should 

increase too? I think? Isn't it? I don't remember that equation. Yeah, I don't remember 

but, that's what I would say. 
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In both years, we see that she is describing relationships between concepts that are definitely in 

the general problem domain but only a very fragile association exists between them. From this 

interaction we can infer that some level of procedural understanding exists; that when a concept 

such as flow rate is brought up, pressure or velocity likely has some role. However, not enough 

evidence exists to point to a moderate or high level of conceptual understanding. To the 

qualitative researcher, the responses in both years might be very similar. When the generated 

Uber Index is examined, we would expect to see constancy. However, the actual value 

decreased. It is possible that the varying length of the transcripts had an outsized effect on the 

Uber values. In general, Roberta’s answers tended to be longer in 2013. The qualitative analysis 

suggests that similar levels of conceptual understanding exists in both years, which would be 

reflected in similar conceptual connections being demonstrated. The length of text may dominate 

the Uber analysis if the specific engineering vocabulary and justification don’t appreciably 

change. In this case the qualitative assessment was deemed to be more reliable.  

 

 

5.5 Comparison of Change in Conceptual Understanding to Change in Uber 

We feel confident that noted change in conceptual understanding using qualitative analysis is 

accurate and reflective of the participants. This assessment was carried out by an experienced 

researcher and each code was given based on evidence found. This level of certainty is a mirror 

to the widespread adoption in the field. Determination of the Uber index was based on more 

assumptions that would be hard to assess without sifting through large amounts of procedurally 

generated data. This reason led to the impression that the Uber index was less reliable and 

informative.  Various unaccounted for features such as total text length along with unverified 
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POS tags and lemmatization contributes to this. Despite this uncertainty, there seems to be a 

strong correlation between increases in conceptual understanding and increases in Uber index but 

Uber tended not to reflect the decreases in conceptual understanding when it was seen.  

 

6 CONCLUSION 

One of the most striking features of these results is the lack of agreement between these two 

methods, which occurs about half of the time. This indicates that we cannot immediately use 

values of Uber index as a surrogate for a qualitative analysis of conceptual understanding. There 

does seem to be a low level of experimental validation of literature linking lexical features and 

conceptual understanding, as would be expected based on the supporting literature. That low 

level of support is not enough to justify immediate application of this approach without further 

testing and refinement of the interview protocol and experimental procedure.  

 

A positive outcome of this study was the development of a coding framework tailored to 

conversational-style responses of an engineering problem solving process. The framework 

provided an easily applicable structure that was able to classify most responses. The results of 

the individual assessments of participants’ conceptual understanding appear to be repeatable and 

may be applied to different datasets. This not only allowed for a reliable benchmark to base this 

study on, but may serve as a validation for future refinements of the lexical analysis procedure.  

 

Set the groundwork for further refinement of the study and validation of the process.  
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There is potential application for the approach of supplementing a qualitative coding with 

automatically generated Natural Language Processing in pre- and post-assessment across 

different subject areas.  

 

 

6.1 Limitations of Current Approach  

While individual comparisons of the Uber index to a qualitatively derived understanding of 

conceptual understanding shows merit, the lack of response variability in our sample is 

somewhat troubling. Uber index does seem to be a good indication of change in conceptual 

understanding but only when that change is large and the texts lengths are similar. When little 

conceptual change was seen, the resulting Uber values were not similarly correlated. 

 

The experimentally determined lack of change in conceptual understanding was unanticipated 

and prevented a direct comparison to the Uber index in many cases. This resulted from the Uber 

index only being used to reflect a binary change in conceptual understanding. The confidence in 

determining lexical indicators for texts of widely varying length was not high enough to establish 

Uber as a high resolution instrument.  

 

The qualitatively determined assessment of conceptual understanding was viewed as very strong 

indicator of change in conceptual understanding but some limitations of the interview procedure 

were not address when this study was implemented. Few precautions were in place to guard 

against the basic format of interview questions unduly influencing the response of interview 

participants. Short questions tended to get procedural answers. Without control of question type 
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as an experimental parameter, there are few protections against the wide variety if interviewee 

responses.  

 

6.2 Implications for Future Research 

The surprisingly consistent Uber values derived in this study may have been accurate and 

reflective of the lexical diversity and conceptual understanding of the participants. This would be 

the case if the the participants in this study communicate incredibly similarly. The participants 

had graduated from the same engineering program at the same time, which they had all self-

selected to participate in, indicating that to be a very real possibility. A broad base line of overall 

communication diversity needs to be established before the Uber findings can be strongly refuted 

or supported. This may be possible using a similar procedure and toolset but with differing 

metrics and literature support. Further experimentation should take care to select a more diverse 

participant pool. 

 

The review of the techniques carried out in this research determined that this approach is likely 

to be more accurate if text length can be sufficiently managed and homogenized. This would be a 

strict control on a study designed to focus on largely spontaneous reasoning. Another approach 

would be to increase the dataset sufficiently such that differences in length can be statistically 

recognized and accounted for. However, this would make a complementary qualitative analysis 

very time consuming.  

 

While the Uber index is well suited to short length responses, the style of the interview process 

might have been a hindrance. It is possible that a more robust representation of an engineer’s 
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conceptual understanding could be elicited through a different data collection method. Short 

written responses may serve to force the participants to better reflect on, and relay the 

understandings they hold. This may reduce the variability we found in Uber response due to text 

length in instances where demonstrated conceptual change is small.  
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