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The study outlined in this dissertation elucidate the thermal and structural properties of 

ZrB2 based ceramics as choice materials for high temperature applications. Thermal 

properties were investigated to improve understanding on aspects that are affected by point 

defects and impurities at nanoscale and electron level using a combination of lattice 

dynamics, molecular dynamic (MD) simulations and density functional theory. Macroscopic 

approach to heat transfer is limited as characteristic time and length scale reduces and 

become analogous to phonon relaxation times and mean free path over the stages transfer. A 

correlation between atomic structure property and thermal parameters were investigated 

using phonon (lattice vibration) analysis.  In this study is described thermal contribution in a 

collaborative effort to develop a defect-adaptive predictive model for zirconium diboride 

(ZrB2) properties. This portion focuses on the thermal property of point defects and impurity 

defects of metallic and covalent form. Introduction of defects into perfect ZrB2 to tune or 

investigate the variations in its thermal conductivity, expansivity and heat capacity for 

desired application provides endless space for controllable parameters. 

Green-Kubo (GK) method which is well established in the study of transport phenomena 

was applied to compute thermal transport with expected differences in heat current in the 



 

	
  

various axial directions. It relates the thermal conductivity of solids to the integral of 

autocorrelation of heat current within the lifetime of the fluctuations. Evolution in the 

microstructure of ZrB2 under thermal stress was studied. Temperature dependency of the 

coefficient of thermal expansion (CTE) and anisotropy observed in the elongation of lattice 

parameter of ZrB2 were presented. Lattice vibration also characterizes the capacity for 

materials to store thermal energy storage. Phonon-based constant volume heat capacity trend 

with temperature is shown in the presence and absence of impurities (C, Si, Hf, W). The 

energy level changes in the valence and conduction region due to impurities were 

characterized. Calculations of total and projected density of states using density functional 

theory (DFT) to understand atomic level variation are shown and compared to phonon 

dispersion. Dynamic stability of structures in the presence of covalent and metallic impurities 

were correlated to the imaginary and non-imaginary modes of phonons. 
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1.   Introduction and Relevance of Research 
	
  

Next generation of materials for advanced thermal applications, particularly at the leading 

edges of hypersonic vehicles as well as missile systems require thermal properties and 

microstructural capability that can withstand temperatures in excess of 1500o C and erosion 

forces. Recent advances in technology have simultaneously demanded mechanically reliable, 

chemically resistant and advanced thermally stable materials [ 1, 2, 3, 4]. Transition metal 

diborides are ultra-high temperature ceramics (UHTC) with melting temperatures exceeding ~ 

3000o C, hence are favorable candidates for advanced thermal engineering (Fig. 1.1). In the space 

craft industry, leading edges and sharp nose design have required ultra-high temperature 

ceramics (UHTC) due to drag generated high temperatures at these locations which increases 

with decreasing radius at the stagnation points [ 1, 5]. Since temperatures at leading edges are 

high, hypersonic designs are only possible if the conduction and re-radiation of heat from these 

edges are improved by enhancing the thermal properties of the applicable materials. Therefore, 

tuning material property to improve thermal insulation or conductivity is critical for safer, more 

adaptable aircraft. Another applicable area of interest is in microelectronics where Moore’s law 

has continued to drive the size reduction of integrated circuits and thus challenges thermal 

diffusivity and material endurance. The aspect ratio shrinkage in complex integrated devices 

presents emerging challenges for device thermal efficiency contributing to failure due to leakage 

[6]. It is therefore necessary to determine ways to optimize the energy dissipation mechanism by 

improving properties of the materials used around the high heat-generating regions.  
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Fig. 1.1 Phase diagram of ZrB2 and HfB2 showing very high melting temperatures [65]. 

 

Quantized lattice vibration that carries energy through crystalline solids is termed 

phonons and has been known to dominate the atomic level heat transfer processes in insulating 

materials [7]. Depending on the application, either low or high thermal conductivity could be 

desirable for performance enhancement. While high thermal conductivity is required for 

downscaled integrated circuits in electronic devices, hypersonic flight and rocket propulsion, in 

thermoelectric applications low thermal conductivity is desirable in materials [9, 10].  It is 

therefore critical to understand the atomic level property and technique to adapt materials for 

particular applications.  

But there are challenges with micro- and nano- scale computations. Understanding the 

basic mechanism of heat propagation at the atomic scale in materials of interest is a major 

challenge. Phonons and Electron propagation are the underline vehicle for thermal transport in 

solids. While electronic transport dominates the mechanism in metals (conductors), phononic 
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transport is the primary carrier in semiconductors and insulators. However, solutions to 

Schrödinger’s equation for complex systems is difficult and immense computational resources is 

required. Thus, neglecting electrons to minimize computational resources. At atomic scale, the 

conventional model of heat transfer may not precisely explain the heat transfer in all materials as 

it assumes that the material is a continuum (classical), ignoring electronic contributions. Device 

performance and material structural endurance are dependent on nature and composition of its 

crystal structure which are both investigated in atomic level simulations. Imperfections such as 

point defects and impurities are among compositional and structural changes that impact phonon 

scattering and changes its group velocity [8,9,10]. Therefore, the thermal conductivity across 

crystal lattice is impacted mainly by scattering the heat propagating phonons due to the presence 

of impurities, vacancies, interstitials and grain boundaries. The modification of thermal 

properties of ultra-high temperature transition metal diboride ceramics by imperfections are 

investigated in this study. In depth understanding of defects and defect interaction with dissimilar 

materials is required for desirable modification of phonon dispersion curve for materials of 

interest. Wide variation in the literature reported thermal conductivity (Table 1) values of ZrB2 

can be attributed to intrinsic imperfections in microstructure from production process. 

 

Table 1.1: Variation in Thermal Conductivity at 25o C for pure ZrB2 and Sintering Techniques 

Corresponding 

Authors  

Synthesis and Sintering Processes of ZrB2 Thermal Conductivity 

@ 25°C (W/m•K)  

Guo et al [66] Reaction Spark-Plasma Sintering of ZrH2 and B 

powders that were ball-milled with SiC media  

133.01 

Zhang et al [67] Spark-Plasma Sintering of commercially available  108 
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Thompson et al 

[69] 

Hot-Press Sintering of commercially available ZrB2 

that was ball-milled with ZrB2 media  

92 

Thompson et al 

[69] 

Hot-Press Sintering of commercially available ZrB2 

that was attrition-milled with WC media  

58.7 

Zimmermann et 

al [68] 

Hot-Press Sintering of commercially available ZrB2 

that was attrition-milled with WC media  

56 

 

 

1.1 Conduction Heat Transfer in Solids 
 

Several studies in the 20th century advanced microscale and nanoscale physics to explain 

macroscale heat transfer formulation [60-61]. The famous Fourier and Cattaneo equations does 

not model microscopic heat transfer despite its vast application in macroscopic level. Majumdar 

et al reported that Fourier’s equation over predicts actual heat flux and is incomparable to 

experimental data at smaller time and length scales [61]. The form of conduction equation 

derived from combining energy conservation with Fourier law, assuming constant mass is 

expressed as;  

 𝑘∇)𝑇 = 𝜌𝐶.
/0
/1

      1.1 

where 𝐶., 𝜌, 𝑡 represents specific heat capacity, density and time respectively. And k refers to 

thermal conductivity of medium while T is temperature. It is noteworthy that thermal 

conductivity is a tensor property, and thus in highly anisotropic crystals, k here will be replaced 

by appropriate Cartesian indices. Equation 1.1 assumes that the energy carrier transport is 

diffusive, and also does not describe heat transport in materials when length and times scales are 

relative to relaxation time and mean free path of phonons (or electrons). Equation 1.1, is 
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therefore, not representative at small length and time scales characterization of transport. 

Approaches such as Boltzmann’s transport equation has been applied towards phonon transport 

and scattering mechanism in a bid to describe size and time scales of heat transfer capturing 

boundaries and imperfections but depend on bulk property predicted from phonon modes 

experimentally (e.g. carrier mean free path). Other computational methods such as classical MD 

simulations for lattice dynamics and density functional theory for electronic structure emerged to 

further advance studies on atomic level heat transfer. Molecular dynamic gives the time 

evolution of complex systems using phonon space that otherwise cannot be studied analytically. 

The atomic distortion due to lattice vibration is captured in particle position overtime. Phonon 

space correlates the time evolution to phonon population in the system using frequency and wave 

vector. 

  

1.2 Real Space and Phonon Region of Heat Conduction 

Phonon contribution to heat transfer depends on the amount of constructive lattice vibration 

and destructive ones which determines how far phonons travel in the material before scattering. 

Heat transport in diborides based ceramics is largely dependent on phonon propagation (or 

phonon scattering mechanism).  This work is focused on the transition metal diborides, ZrB2 

which are ultra-high temperature ceramics. Analysis of microstructure and phase changes are 

presented in a frequency (wave)-based model and intensity along path of high symmetry, which 

is described as the phonon space. Molecular dynamic (MD) approach was used to study the 

phonon properties of the material. MD simulations applies Newton’s law of motion to predict the 

position and momentum (real space) of a system of particles. Therefore, creating a bridge 

between real space analysis (macroscopic) and phonon space (atomic level behavior) given the 
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interatomic potential and lattice structure. Two approaches are adopted in MD simulations when 

computing thermal transport: (1) non-equilibrium system driven by perturbation to measure 

response, or (2) equilibrium system simulation to measure local fluctuations using Green-Kubo 

formulation. In this study, the equilibrium simulation approach was adopted for thermal 

conductivity calculations with our introduction of enthalpy correction technique.  

 

  Material modeling in heat conduction is divided into four sublevels based on spatial and 

temporal regimes. The characteristic sizes and times in material modeling are subdivided as 

shown in Table 1.2. Macroscopic and microscopic formulations have been popular in the 

literature, where nanoscale is commonly grouped with microscopic formulations due to size and 

time dependence transport mechanisms.   

Table 1.2: Characteristic sizes and times in material modeling [62]  

Sublevel Size (m) Time (s) 

Macroscale  >10-3 >10-3 

Mesoscale ~10-4 - 10-7 ~10-3 - 10-9 

Microscale       ~10-6 - 10-8 ~10-8 - 10-11 

Nanoscale ~10-7 - 10-9 ~10-10 - 10-14 

 

1.2.1 Time in Microscopic Thermal Transport 

Time and size characterizes simulations in the microscopic regime. Time stages (or parameters) 

heat transport processes or simulations are categorized [60]: 

The	
  time	
  is	
  takes	
  for	
  a	
  system	
  of	
  particles	
  to	
  reach	
  thermal	
  equilibrium	
  is	
  referred	
  to	
  as	
  

the	
  thermalization	
  time	
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The	
  time	
  that	
  elapsed	
  for	
  information	
  to	
  travel	
  through	
  an	
  entire	
  field	
  (medium)	
  is	
  

termed	
  the	
  diffusion	
  time	
  

The	
  time	
  it	
  takes	
  for	
  the	
  particle	
  (electron)	
  to	
  attain	
  average	
  velocity	
  between	
  

successive	
  perturbation	
  in	
  a	
  system	
  is	
  called	
  the	
  relaxation	
  time	
  

The	
  time	
  an	
  external	
  heating	
  source	
  (thermostat)	
  is	
  applied	
  to	
  a	
  system	
  is	
  called	
  heating	
  

time.	
  The	
  opposite	
  is	
  the	
  case	
  for	
  cooling	
  time	
  	
  

The	
  total	
  time	
  duration	
  of	
  interest	
  setup	
  for	
  the	
  physics	
  of	
  the	
  system	
  or	
  process	
  is	
  

regarded	
  as	
  the	
  physical	
  time	
  

When the relaxation time or the diffusion time is equivalent to the heating time, the finite speed 

of propagation becomes relevant. Similarly, when the thermalization time is equivalent to the 

heating time, the energy transferred (deposited) by the carrier becomes quantifiable. More 

importantly is, when the physical time becomes comparable to any of the above times in a 

system, the time scale is characterized as microscopic in time. 

 
1.2.2 Size in Microscopic Thermal Transport 

Goodson and Flik referred to two crucial size parameters that control thermal transport in 

a system, which are the (1) mean free path,	
  𝜆 and (2) the characteristic dimension, L of the 

material [60]. Fourier law becomes applicable when the mean free path is much less than the 

characteristic dimension as the heat transfer is diffusive and the system therefore is macroscopic. 

On the other hand, the system is characterized as microscopic in size if the mean free path is 

comparable to the characteristic dimension of the material or greater. Hence, different methods 

are often combined to explain transport mechanism and improve accuracy. 
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The objective of this work focuses on the impact of imperfections (point defects and 

impurities) on thermal properties of zirconium diboride ZrB2 and its relation to structural 

properties. The overall goal in a collaborative effort is to predict material composition and 

microstructure based on desired eleastic, electrical and thermal properties for specific 

application. In the course of my research, the first subject addressed was the intrinsic properties 

of defect-free ZrB2, explaining its phonon dispersion, density of states and thermal properties of 

the material. The properties in the presence of point defects using the equilibrium MD adopted 

and calculations of thermal conductivity performed in the Green-Kubo method (chapter 3). In 

chapter 4, structural changes and thermal storage potential of ZrB2 were evaluated with 

imperfections. It presents the thermal expansion coefficients, its temperature dependency and 

anisotropy in lattice parameters. Heat capacity analysis with energy changes was also presented 

and DFT calculations of impurities. The impact of covalent (Si and C) and metallic (Hf and W) 

impurities on the stiffness and thermal conductivity was presented in chapter 5. Some of the band 

structure properties from chapter 4 are repeated for corresponding impurities in chapter 5. It 

combined classical simulations data with results from first principle calculations to correlation 

the thermal changes with the energy changes. In each chapter (3-5), additional details on 

background and methods are included in the paper. The main introduction and background 

provides interesting literature references and the relevance of transition metal diborides (Chapter 

1 and 2). 
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2.   Background and Literature Review 

a.   Lattice Dynamics and Bonding of Zirconium Diboride 

Zirconium diboride belong to the family of hexagonal isostructural transition metal diboribes 

(TMB2) with a AlB2-type 4d crystal structure [11] with space group P6/mmm. The structure is a 

repeating layer of boron atoms with the zirconium atoms arranged in an alternating hexagonally 

closed packed layer as depicted in figure 2.1. Individual boron atoms are surrounded by three in-

plane boron atoms and six zirconium atoms in adjoining plane while zirconium atom in the 

hexagonal closed packed plane is surrounded by six zirconium atoms as nearest neighbors and 

twelve boron atoms as nearest neighbors on opposite sides of the plane. The strange properties of 

this material have been attributed to its multi-bonding types. The boron-layered structure is  

  

 

 

(a)
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Fig. 2.1 Depiction of zirconium diboride alternating layer of boron (red) and zirconium (green): 
(a) bonding, (b) side-view and top-view 

 

similar to the hexagonal planes of carbon atoms in graphite but unlike carbon, boron atoms only 

have three valence electrons. Like carbon atom in graphite, boron bonds to its nearest neighbor 

boron atoms to form strong sigma bond within the planes and weak pi bond between planes 

(interlayer bonding).  Thus, since there are only three valence electrons available in a boron 

atom, some of the sigma bonds are not filled and thereby enhancing lattice vibration in the boron 

planes [12]. Researchers have attributed the characteristic stiffness of ZrB2 to the strong boron-

boron covalent bonds and the thermal conductivities to the metallic bonds [13].  

 

2.2 Theory and Mechanism of Phonon Interaction in Molecular Dynamics Simulations. 

Atoms or molecules in crystalline solids are not at rest but in a state of continuous 

vibration about an equilibrium position at specific temperatures. These small amplitude 

(b)
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vibrations collectively give rise to the propagation of elastic waves in crystalline solids. The 

quantized unit of this vibration across the crystal lattice is termed Phonon [17]. In classical 

mechanics, time evolution analysis of the sequence of atomic or molecular displacements about 

their regular lattice sites are performed. This quantized vibrational wave called phonon can be 

characterized by its velocity of propagation, thermal (vibrational) energy, wave vector (or wave 

number) and frequency of vibration [14,15]. Phonon contributions to thermal properties are 

categorized by the type of vibrational modes (acoustic or optical phonons) exhibited across the 

crystal lattice. These are not independent, and the relationship between the wavevector and the 

frequency of a vibrational wave propagating through a crystal lattice is referred to as the 

dispersion relation.  

For acoustic phonons, the displacement of collective atoms by the same amplitude and 

direction, and are therefore in-phase resulting in increased group velocity while atoms in optical 

phonons are displaced in opposite direction and amplitude, giving a zero-group velocity. These 

two types of phonons are depicted in Figures 2.2 and 2.3. A distinctive relationship exists 

between the wave vector and the frequency of a vibrational wave propagating through a crystal 

lattice referred to as the dispersion relation. 



 

	
  

12 

 

Fig. 2.2: Depicting optical phonon- displacement of two atoms are in opposite amplitude and 
direction 

 

Fig. 2.3: Depicting acoustic phonon- displacement of two atoms are in same direction and 
amplitude. 

 

Dispersion Relation. Since phonons are the dominant heat carriers in ceramics, understanding 

the phonon- boundary scattering is vital for effective control. Introducing boundary conditions 

changes the scattering rates and therefore modifies the thermal properties [16]. One-dimensional 
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mass-spring representation is often used for the analogy of vibrations in crystals as shown in 

Figure 2.4. For an atom located at position Xna and X(n+1)a, the equations of motion are as 

follows: 

 

    𝑚7
89:;<
819

= −𝐶[2𝑋AB − 𝑋 AC7 B − 𝑋 AD7 B]    2.1 

         𝑚)
89: ;FG <

819
= −𝐶[2𝑋(AD7)B − 𝑋AB − 𝑋 AD) B]                 2.2 

where C is the spring constant, m1 and m2 are the masses of atoms subjected to spring force and 

Xia is the position of the atoms in the chain with separation a.  

  

Figure 2.4: 1-Dimensional chain representation of lattice vibration  

The solution to this 2-order differential equations, or equation of motion (equation 2.1) is the 

standing wave and the represents the dispersion relation [17, 18] ( see equation 2.2).  
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where k is the wavevector, with magnitude |k|=2p/l, a represents the equilibrium separation 

between atoms and w represents the frequency. 

Therefore, dispersion relation relates the wave vector, k to the energy (i.e., frequency) of a 

phonon. The solution in equation 2.3 gives two values of w for each k value. A plot of the 

frequency, w against the wavevector, k shows two branches in the dispersion relation which 

represent both values. These branches on the dispersion curve are referred to as acoustic and 

optical branch (see Figure 2.5). 

Although, there is a mathematical relationship between wave vector, k to the energy (i.e., 

frequency) of a phonon, dispersion curve clearly defines the allowable phonon modes 

(vibrational modes) because the atomic structure does not support all values of k. The speed of 

propagation of these phonons in the crystal or crystalline solid is given by group velocity, Vg 

(equation 2.4).  And it is obtained from the slope of the dispersion curve, and because phonons 

are quantized energy carriers in conductors and semiconductors, group velocity represents the 

velocity at which energy is transported in crystals. However, the phonons (and therefore the 

amount of energy) is limited for a given level due to the density of states. 

    VW =
XY
X𝐤
≈ a W

]
      2.4 
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Figure 2.5: 1-D representation of dispersion relation for diatomic crystal vibration [19] 

Phonon Density of States. It presents in a system, the number of states for a given energy level 

that are available and provides the energy distribution and the carrier concentrations within the 

system.  

2.3 Computational Methodology: Classical and Quanta-Mechanical 

 Molecular dynamics (MD) is one of many computer simulation methods used to model 

the behavior of complex systems in science and engineering, to gain insight or estimate 

performance into idea of interest [20]. MD comprises different techniques or algorithm to 

compute many particles interactions at the atomistic level. In classical MD, the position and 

momentum of these particles are simulated by integrating Newton’s laws of motion. The forces 

between atoms can be either computed from first principles by solving the Schrödinger’s 

equation, or approximated using system of non-linear response with properties and functional 

form that are tuned to fit empirical data. The computed results for the properties at the 
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microscale can therefore be optimized to estimate macro-scale properties based on the 

appropriate periodic boundary conditions. According to Heisenberg uncertainty principle, 

experimental methods have limitations in the accuracy of measuring both the positions and 

momenta of these particles. Thus, MD simulation is a valuable tool for resolving a variety of 

challenges in experimental thermal transport, strength of material, physics of atoms and chemical 

reaction processes. In some cases, improved force fields parameters and longer MD trajectories 

have yielded approximate quantum effect [21,22]. Other approaches apply quantum mechanics 

to calculate material behavior. For instance, density functional theory (DFT) simulation approach 

solves a simplified form of the many body Schrödinger equation in which the many body 

exchange and correlation effects are approximated in a single exchange-correlation functional of 

the electron density [58, 59]. The hybrid of both classical MD and electronic structure methods 

are also used in other approaches such as the Car-Parrinello formulation. Sections 3.3.1 and 3.3.3 

presents further details on these methods. However, Richard Lesar’s “Introduction to 

Computational Materials Science: Fundamentals to Applications” is a useful text for thorough 

detail on this subject [64]. 

 

2.3.1 Classical Molecular Dynamics (CMD) and Interatomic Potentials 

 Classical MD has been used to obtain both particles position and momentum with a 

degree of accuracy in the simulation based on computational resources. In many problems of 

interest, there has not been a key concern in the difference in the results obtained between 

classical and quantum. Computing thermodynamic and dynamic properties of different system 

does not necessitate quantum mechanics. Hence, classical MD has not been outdated by quantum 

mechanics (QM). Empirical potentials are considerably quicker to compute than DFT and so 
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while not accurate, they enable one to simulate much larger systems for much longer times. 

Furthermore, the long correlation times required for crystals to eliminate noise in the trends are 

possible through classical MD simulation due to significantly affordable computational 

resources. And therefore, thousands of atoms in one supercell can be simulated if required for 

improved accuracy. 

 The MD simulation generates a trajectory of all particles as sequence of points in phase 

space as a function time in the system. From the trajectory, various properties including time 

averages can be calculated. The time evolution of the system of particles in phase space is 

defined by Hamiltonian mechanics: 

𝑑𝑟
𝑑𝑡 =

𝜕𝐻
𝜕𝑝#

	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   2.5 
𝑑𝑝
𝑑𝑡 =

𝜕𝐻
𝜕𝑝#

	
  

      

The Newton’s equation of motion for each atom along independent coordinates is resolved 

numerical for all N particles: 

     𝑋 = /b
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where a is the acceleration of the atom of mass m in the x-direction, F is the force applied on the 

atom, V(x) is the potential energy and ni is the velocity. Figure 2.6 shows the steps-by-step 

procedure in setting up an MD simulation. It starts with selecting the correct interaction model 
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and boundary conditions required in force field and force calculations:

 

Figure 2.6: Flowchart for Setup and MD Simulation 

 

 Computing the force between all N particles is an important stage of the simulation.  

However, the appropriate time step (Dt) should be selected to obtain accurate subsequent 

positions and velocities at t + Dt from the calculations at t. After evaluating all the forces exerted 

between the particles, Newton’s equations of motion are solved (integrated) using several 

methods.  Algorithms such as the Verlet and the Gear predictor-corrector are commonly used but 
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Verlet is a more simplified and accurate algorithm [23-25].  Verlet system comprises the basic, 

leap- frog and the velocity Verlet algorithm [23]. The expression for the position at t + Dt is 

shown through the Verlet algorithm obtained from Taylor series expansion [26]: 

    xi(t	
  +	
  Dt)	
  =	
  xi(t)	
  +	
  v(t)	
  Dt	
  +	
  7)a(t)	
  Dt
2                     2.7 

    xi(t	
  -­‐‑	
  Dt)	
  =	
  xi(t)	
  -­‐‑	
  v(t)	
  Dt	
  +	
  7)a(t)	
  Dt
2                   2.8 

Adding equations 2.7 and 2.8, one can obtain the appropriate Verlet algorithm for new position 

	
  	
  	
  	
  xi(t	
  +	
  Dt)	
  =	
  2xi(t)	
  -­‐‑	
  xi(t-­‐‑Dt)	
  +	
  a(t)	
  Dt2     2.9 

where xi is the position of atom i, v (t) is initial velocity (1st derivative with respect to time) and a 

is the acceleration. Thus, the velocity, v is not required to compute the new position xi(t + Dt) 

[26]. Since the kinetic energy of the system depends on the velocities of the atoms, it is 

important to compute it. The velocity Verlet and the leap-frog are exploited to derive it using the 

mid-step velocity equation [27, 28]. The new velocity from the velocity Verlet scheme is given 

as: 

v(t	
  +	
  ∆t) =v(t)	
  +	
  7
)
{a(t)	
  +	
  a(t+∆t)}∆t    2.10 

 

The dynamics of molecular or atomic interaction is largely dictated by its interatomic 

potential. Therefore, the interatomic potential is very important in simulations. However, the 

interaction model of crystal structure is fitted by different parameters including bond types 

(ionic, covalent, metallic, van der Waals), bond angle and stiffness, structure (triangular and 

hexagonal as well as FCC, BCC and SC), neighboring atoms (many-body potential or pair 

potential) etc [29, 30]. Hence, it is a challenge for a single potential to perfectly depict a system 

of atoms. There are different functional forms of interatomic potentials to model different types 

of chemical bond. MD simulation is performed using interatomic potential forms that represent 
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the applicable properties of concern, and parameters used are selected based of previous research 

data [30]. One commonly used potential is Lennard-Jones (LJ). Lennard-Jones is a simple but 

effective model that depicts the interaction of uncharged and non-bonded atoms. 

    𝑉"s = 4𝜀[ v
w

7)
−	
   v

w

x
]      2.11 

where s and e represents the fitting parameters for length and energy scales, r represents the 

distance between particles. However, many-body systems require many adjustable fitting 

parameters, hence LJ cannot appropriately describe any real material. Closely related to Lennard 

Jones are Mie potential which has more fitting parameters, and Morse potential are modeled with 

respect to central-force system representing distance between particles [30]. These potentials are 

rarely used because ionic materials cannot be described their functional forms. Terms describing 

short (repulsive) and long (attractive) range Coulombic interaction are therefore introduced to 

describe ionic materials in many-body potentials [31]. The Morse potentials are infrequently 

used but have inspired a class of interatomic potential, bond pair potential used in MD 

simulations. Brenner potential is an example of bond pair potential while Tersoff is charge-

optimized many body potential [32-35]. 

Tersoff potential is an example of bond order potential and has been used in this study. 

Jerry Tersoff, proposed a new approach to potential instead of many-body potential [32]. The 

approach modeled coupling effect of two body and higher number of neighboring atoms 

correlations. Like Morse potential, it considers the interactions between pairs of atoms, but the 

Morse potential the interaction strength is modulated by the number of other bonds that the 

atoms form. Therefore, Tersoff developed bond pair potential which strength depends on the 

number of atoms in its environment. The general expression representing the energy of an atom 

in a crystal system by Tersoff bond-order potential is written in the form: 
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Ei	
  =7
)
f{ [f| r~� + 	
  B~�f�(r~�)	
  ],	
   i	
  ¹	
  j	
      2.12 

where	
  f�𝑎𝑛𝑑	
  f| are respectively attraction and repulsion pair potential, r~�	
  is the separation 

between atoms i and j, 	
  f{ is a smooth cutoff function and B~�is not a constant but a bond order 

function (decreased or increased by the presence of other bonds). 

 

2.3.2 Thermodynamics Constraint for MD Simulation 

 The controlled physical constraints on a system determine the appropriate function for its 

thermodynamics. Ensembles are an important in molecular dynamics for computing system 

properties from the law of classical mechanics. Observable macroscopic parameters of a system 

can be used to describe the different microscopic state using thermodynamic ensembles. 

Ensemble uses the probability distribution of the states in visual representation comprising of a 

large number of copies of a system to predict the real state of the bulk system following the 

principles of classical molecular dynamics [36, 37]. There are three common types of ensembles 

used with respect to the physical circumstance of the system (isolated and non-isolated): 

The Microcanonical Ensemble (NVE): This ensemble is defined for a completely 

isolated system from its surroundings with both a fixed total energy, E and a fixed 

number of particles, N. For systems comprising of different types of components, the 

number of particles of each component is also fixed, and therefore a constant volume 

system, V. In the imaginary representation of virtual copies of the isolated system, each 

copy has the same fixed energy, E [39]. Thus, the micro-canonical ensemble can be 

presented as a single system and used to analyze an isolated system in equilibrium [38, 

39]. Since E, N and V are all fixed independent parameters, the appropriate 

thermodynamic function used for isolated system entropy S (E, V, N). Therefore, at 
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equilibrium S should also be a single, constant value [39]. Micro-canonical ensemble is 

not often practical because isolated systems are hardly achieved in reality, and we often 

need to add or subtract energy that might be evolved during a chemical reaction. 

The Canonical Ensemble (NVT): Like the NVE ensemble, canonical ensemble is 

defined by a fixed number of particles, N and therefore a fixed volume system, V but in 

contact with a heat source that maintains a controlled temperature T. Thus, there is 

energy transfer between the heat source and the different virtual copies of the system. 

The temperature of the heat source is the same fixed temperature, T for all copies. The 

Helmholtz free energy, F (T, V, N) is the appropriate function to describe a system with 

variables T, V and N. At equilibrium, the variables of F are constant, therefore F returns a 

single, stable value at equilibrium [39, 40]. 

The Isothermal-Isobaric Ensemble (NPT): This ensemble is used to evaluate systems 

with a fixed number of particles, N and a heat source (thermostat) at constant pressure. In 

this case, the constant exchange of heat keeps the system temperature constant while 

maintaining the system pressure by volume with the bariostat [40]. The characteristics 

thermodynamic function of this ensemble is the Gibbs free energy, G (N, P, T) [41].  

2.3.3 Density Functional Theory (DTF) Simulation 

Quantum mechanical wave-functions contain enormous information to accurately 

describe a system of atoms, molecules and condensed phases. Thus, solving the Schrodinger’s 

equation is vital to determine other properties of the electronic states of the system. However, it 

is impossible to solve the wave-function of a system as described by Schrödinger’s equation 

without assumptions to simplify it. Density functional theory (DFT) is a method that is used to 

obtain approximate solution of the Schrodinger’s equation for many-body (electron) system. 



 

	
  

23 

DFT codes are popularly used for electronic structure property calculations of molecules, bulk 

materials and defects. The equation has been reduced into time-dependent form or time-

independent. 

2.3.3.1 Time-independent Density Functional Theory 

Electron distribution determines the nature and type of bonding in materials and therefore 

its properties. Calculating the electronic structure is therefore of utmost importance. The energy 

of electrons in materials is described with the time-independent Schrodinger equation as 

𝐻Ψ = 𝑇 + 𝑉 + 𝑈 Ψ = (− ℏ9

)$c

�
# ∇#)) + 𝒱(𝑟#�

# ) + 𝑈(𝑟#,	
  𝑟��
#�� ) Ψ = 𝔼Ψ      2.13 

where 𝔼 is the total system energy, T is the kinetic energy, V is the potential, U is the electron 

interaction energy, Ψ the wave function and (− ℏ9

)$c

�
# ∇#)) + 𝒱(𝑟#�

# ) + 𝑈(𝑟#,	
  𝑟��
#�� )  

is the Hamiltonian (H). 

 The electron-electron interaction operator 𝑈	
  is the same for any system based on the 

Coulomb interaction, 

    𝑈 = 𝑈(𝑟#,	
  𝑟��
#�� ) = 	
   �9

|wcCw�|
�
#��               2.14 

Also, the kinetic energy operator 𝑇 is the same for any system of particles under nonrelativistic 

quantum mechanics. Therefore, for a system of particles whether atoms, molecules or a solid, 

depends solely on the potential. For a system of atoms, the potential is represented as, 

    𝑉 = 𝒱(𝑟#�
# ) = 	
   ��

|wC�|#         2.15 

And Q is the nuclei charges and R is the nuclei positions for all nuclei in the system. The 

fundamental differences between a spatial nuclei arrangements R, for atoms, molecules and 

solids are built into DFT. The above assumptions can only solve single-body quantum 

mechanics. 
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For many-electron quantum mechanics, DFT uses the relationship between the wave-function, Ψ 

and electronic density of the system: 

   𝜌 𝑟7 = 𝑁 … . |Ψ 𝒓� |)𝑑𝒓) …𝑑𝒓�    2.16 

Random electron position r1 and rN position of all N electrons are presented in the correlation. 

Therefore, individual wave function is mapped to a unique electronic density function as 

presented by Kohn and Sham [56].  

The concept of density functional theory was first presented in Thomas–Fermi model and 

then established by Hohenberg–Kohn (H-K) theorems. The first H–K theorems formulated for 

ground states properties and relates electron density for many-electron system to three spatial 

coordinates [58, 59]. And by the use of electron density functional simplify n-electrons system 

comprising three times n-spatial coordinates to just three spatial coordinates. Then, H-K 

describes the relationship between electron density and the energy functional n-electron system. 

The energy in terms of density function (from eqn.) can be written as, 

  𝔼 𝜌 = T 𝜌 + 𝑉 𝒓𝒊 𝜌 𝒓 𝑑𝒓 + 	
  𝑈(𝑟#, 𝑟�)[𝜌]    2.17 

where 𝑈(𝑟#, 𝑟�)[𝜌] represents the electron-electron interaction, T 𝜌  is the kinetic energy and the 

potential term, 𝑉 𝒓𝒊 𝜌 𝒓 𝑑𝒓 representing the nuclear-electron interaction.   

 

2.3.3.2 Time-dependent Density Functional Theory (TDDFT). 

Unlike time-independent, the time-dependent density functional theory solves the 

Schrodinger equation using particle position and time. The wave-function is therefore a function 

of position and time, Ψ	
  (𝐫, t). 

  𝑖 /
/1
Ψ 𝐫, t = 𝐻 𝒓, 𝑡 Ψ(𝐫, t)         2.18 



 

	
  

25 

where the Hamiltonian H(r, t) = (− ℏ9

)$c

�
# ∇#)) + 𝒱(𝒓𝒊, 𝑡�

# ) + 𝑈(𝑟#,	
  𝑟��
#�� )  and only the 

potential is time dependent in the Hamiltonian [56, 57]. The expression for the TDDFT potential 

is analogous to the potential for time-independent in equation 2.13, except that it may also have 

particle- electromagnetic field interaction component, Vint (see eqn. 2.19). The total energy in 

time-dependent DFT is not conserved and thus there is no general minimized as in time-

independent, in order to evaluate Schrödinger equation and electronic excited state. 

  𝑉 = 𝒱(𝑟#, 𝑡�
# ) = 	
   ��

|w(1)C�|#   + Vint.(r, t)     2.19 

Kohn-Sham formulated an approach from an existing Runge-Gross (R-G) theorem but applied it 

to non-interacting system (to assume zero interaction potential). Thereby simplifying further, the 

density correlation to potential. However, the assumption of non-interacting requires a new 

potential, (𝒱�) for non-interacting Hamiltonian (U does not affect),  

  𝐻(t) = 𝑇 + 𝑉	
  (t)         2.20 

to compute the new wave-function (f) based on the sets of n orbitals and represent the 

Schrodinger equation (equation 2.21) and rewrite the electron density (time-dependent) 

  𝑖 /
/1
	
  ϕ 𝐫, t = (− ℏ9

)$c
∇#) + 𝒱� 𝒓, 𝑡 )	
  ϕ(𝐫, t)     2.21 

2.3.4 Green-Kubo Relations and Direct Methods 

Several approaches have been used to compute thermal conductivity. The Boltzmann transport 

approach requires the input (lifetimes and mean free path) from other simulations or experiment 

to compute thermal conductivity. On the other hand, atomistic simulations are effective approach 

because it based on atomic level scattering and helps to establish the time evolution of system 

energy and structure behavior. There are two techniques to atomic level simulations: (1) Imposed 

temperature gradient across the crystal structure is one way to study heat flow and it is referred 
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to as the non-equilibrium molecular dynamic methods while (2) the equilibrium technique 

simulates the natural fluctuation dissipation in the system. The Green-Kubo formulation uses the 

equilibrium molecular dynamics approach and the steady-state non-equilibrium molecular 

dynamics uses the direct method. The Green-Kubo method correlates thermal conductivity tensor 

to the heat current tensor for equilibrium fluctuations using the fluctuation dissipation theorem. 

Thus, for heat flux in direction x, thermal conductivity can be expressed as; 

 

   𝑘� =
g

��09
𝐽� 𝑡 . 𝐽� 0 	
  𝑑𝑡,�

�      2.22 

where  𝐽� 𝑡  is x-component of heat current vector at time t and 𝐽� 𝑡 . 𝐽� 0  is the 

autocorrelation function evaluated at equilibrium while kB is Boltzmann constant and T is 

temperature. MD generates the heat current from atomic positions and velocities from which 

autocorrelation function (ACF) of the heat current is computed. The converged value of the ACF 

obtained after certain allowed correlation time is inputted for 𝑘� . 

 The direct method solves Fourier law to predict thermal conductivity from the 

temperature gradient in a long simulation cell. The heat applied in a certain direction is defined 

from Fourier’s law; 

    𝑞 = −𝒌 ∗ ∇𝑇        2.23 

It relates temperature gradient,	
  ∇𝑇 to heat flux vector, q across the material. The dependence of 

the direct method on phonon mean free path makes it challenging to converge as thermal 

conductivity increases with increase size of the simulation cell. Therefore, for direct method 

adopts linear extrapolation technique in cases where the thermal conductivity does not converge. 

Table 1.3 below highlights the obvious differences between the GK method and the direct 

method. 
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Table 1.3: Comparison of Green-Kubo Method and Direct Method of Thermal Conductivity 

  Green-Kubo Direct 

Theory 
Fluctuation-dissipation 
theorem Fourier law 

Approach Equilibrium simulation 
Steady-state non-equilibrium 
simulation 

Output 

full tensor, applicable to 
both isotropic and 
anisotropic materials 

One component of k tensor, applicable 
to isotropic material 

Size Effect  
Length Scale Phonon wavelength Phonon mean free path 

Challenge 
Specifying convergence 
heat current autocorrelation  Extrapolation to bulk properties 

 

 

2.4 Thermal Properties of Transition Metal Borides- Zirconium Diborides 

As discussed in the introduction, transition metal diborides low density to hardness, strength 

and melting point ratios are the outstanding proof of mechanical strength and durability. 

Zirconium diborides (ZrB2) is classified as an ultra-high temperature ceramic, due to its high 

melting temperatures (exceeding 3000oC). Additional choice properties including high wear 

resistance and chemical inertness have been harnessed in different applications [1,2,4-6]. 

However, like other materials, ZrB2 responds to changes in its lattice energy- vibrating atoms. 

The thermodynamic parameters and changes in the lattices are correlated with associated thermal 

properties such as thermal conductivity, heat capacity and thermal expansion. 

2.4.1 Phonons Thermal Conductivity 

Heat flux (J/s.m2) by unit temperature gradient through a material is quantified as its 

thermal conductivity (W/m.K). Thermal energy travels by conduction, convection and radiation. 

Radiation transport is by electromagnetic waves and cannot be accurately computed by 
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molecular dynamics simulation. On the other hand, convection requires fluid media for point-to-

point transport of heat. For instance, in a gas, thermal energy is transported through an air gap in 

a temperature gradient. The molecules from the hot zone accelerate with kinetic energy towards 

the cooler end and give up the amount of energy. Also, heat transport due to temperature gradient 

in solids is shown by Fourier’s law. However, for electrically non-conducting (dielectric) solids, 

the lattice vibration energy is proportional to thermal energy. The restrictive interatomic forces 

cause the atoms to vibrate around their fixed lattice sites, generating elastic waves. Of 

importance to this thesis, is thermal transport by conduction where lattice vibration (phonons) are 

the carriers of thermal energy [45].  

Therefore, considering the crystalline solid as a box, for experimental purposes, containing 

a gas of phonons, phonon-phonon scattering are the only interactions in a perfect crystal. In the 

presence of imperfections, the phonon scattering mechanism changes. Characterizing the 

scattering mechanism will result in an average distance, mean free path (𝜆) travelled by the 

phonon as expressed; 

     𝜆 = 𝑣�𝜏      2.23	
  

where 𝜏	
  𝑎𝑛𝑑 𝑣� are relaxation time and speed of sound respectively. Note that the relaxation time 

is the average time between successive scatterings. Considering location x, in the hypothetical 

box, all atoms at this location would have same average force 𝐹,  acting in the positive direction 

of x+, will possess energy, 𝐹 (x+	
  𝜆) while in the opposite direction (x-), <F> (x-	
  𝜆). The total 

energy across this constant x-plane, can be written as; 

    q = number of phonons * (energy to x-  –  energy to x+) 2.24 

but number of phonons, 𝑁%£ =
7
x
𝑛𝑣�     

thus,  
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    𝑞 = 7
x
𝑛𝑣�	
  . 𝐹 𝑥 − 𝜆 − 7

x
𝑛𝑣�. 𝐹(𝑥 + 𝜆)  2.25 

                𝑞 = 	
   7
x
𝑛𝑣�(	
  −2𝜆	
  . 𝐹)     2.26 

for differential distance dx, 

     𝑞 = 	
  − 7
¥
𝑛𝑣�(𝜆	
  . 𝐹

8�
8�

)    2.27 

     𝑞 = 	
  − 7
¥
𝑛𝑣�(𝜆

8¦
8�

)     2.28 

where n represents phonon density, 𝑁%£	
  represents number of phonons, d𝐸 ≈ 𝐹. 𝑑𝑥 is energy of 

phonons across dx. Applying separation of variables gives /¦
/�
= /¦

/0
/0
/�

 = cph 
/0
/�

, where cph is 

specific heat capacity. Therefore, equation 2.28 by substitution becomes 

  𝑞 = 	
  − 7
¥
𝑛𝑣�𝜆cph 

/0
/�

        2.29 

The phonon thermal conductivity is thus written in terms of heat capacity (Cph); 

                        Kph =	
  
7
¥
𝑛𝑣�𝜆cph,   or  7

¥
Cph𝑣�𝜆      2.30  

 

2.4.2 Phonon Contribution to Heat Capacity 

The heat energy storage capacity of materials is quantified using its heat capacity. It is the 

reference physical property in most application to determine the energy required to raise the 

temperature of a material. Phonon heat capacity, Cph is based on available vibrational modes for 

heat transfer hence related to the lattice vibration energy as discussed in section 2.4.1. Therefore, 

the heat capacity of solids is defined as Cph =
/¦
/0

 (see equation 2.29). But from equipartition the 

average energy of classical oscillator 𝐸 =Kinetic + Potential = 1 2𝐾ª𝑇 +
1
2𝐾ª𝑇 = 𝐾ª𝑇  

For a particle in 2-dimensional space, there are two degrees of freedom. Hence 𝐸 for a 

2D crystalline solid with N atoms is defined as 𝐸 = 2𝑁𝐾ª𝑇, the heat capacity is obtained to be 
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Cph = 2𝑁𝐾ª, and for 3D crystal Cph = 3𝑁𝐾ª. Where T refers to temperature and 𝐾ª	
  Boltzmann 

constant. The formulation of phonon heat capacity corresponds to the Dulong-Petit assertion 

(Fig. 2.7), that at the point of maximum lattice vibration, heat capacity become independent of 

temperature. The classical approach was unable to accurately quantify heat capacity at low 

temperatures. Einstein predictions of heat capacity through quantum mechanics by assigning 

vibrational frequencies to the vibrations of crystal particles is representative of the data from 

recent experiments. However, near absolute zero temperatures, Einstein’s model failed and was 

modified by Debye’s theory. The theory modified Einstein’s same frequency approach to a range 

of frequencies with a maximum cutoff frequency (𝜔«). At 𝜔	
  > 𝜔«, no normal modes are 

available.  

 
Fig. 2.7: Three Models of Heat Capacity, Dulong-Petit (blue), Debye(red) and Einstein(green) 
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The number of states with the same specific vibrational frequencies demonstrates the 

intensity as that vibration mode. Heat capacity depends on the phonon Density of States (DOS) 

following 2.31. The phonon DOS can be obtained from the phonon dispersion relations 

discussed in section 2.3.3. The Einstein and Debye models for the specific heat presented in 

equations 2.32 and 2.33 can be considered to differ only in the approximate form that they use 

for the DOS. 

 

  E = energy�
� occupation	
  function DOS    2.31 

 

   C¸ = 3N�k»
¼Y
½¾¿

À
ÁÂ
Ã¾Ä

(À
ÁÂ
Ã¾ÄC7)

      2.32  

 

   CÅ = 9N�k»
¿
¿Ç

ÈÉÀÊË

(7CÀÊË)9
dx

ÄÇ
Ä
�      2.33 

 

Debye’s approximation assumes that a lower temperature primarily elastic waves of long 

wavelengths are excited. Where kB is Boltzmann’s constant, 𝜔	
  is the vibration frequency, h is 

Planck’s constant, NA is Avogadro’s number, T is temperature and TD Debye temperature. 

Finding the defect offset for heat capacity of zirconium diboride is a property enhancement that 

is yet to be investigated. 

 



 

	
  

32 

2.4.3 Thermal Expansion Coefficient 

The volume change in a material that accompanies a change in temperature is a distinctive 

property since crystalline solids have different melting points and bonding properties. The 

coefficient of expansion or contraction predetermines choice materials for specific applications 

particularly around expansion joints. For crystalline solids, the fractional change in dimensions 

with temperature can be calculated along length, plane or volume. As most designs are 

macroscopic and three-dimensional, it is practical therefore to compute coefficient of thermal 

expansion (CTE) which is commonly the volumetric thermal expansion of solids materials. The 

energy level of lattice thermal vibration is related to the bond potential well. With increasing 

temperature (the bond energy) the larger amplitude vibrations sample more of the softer tail of 

the potential. Fig. 2.8 shows the maximum ionic distance displaced with increased 

temperature(larger amplitude lattice vibration). Transition metal diborides with high melting 

values and strong bonds will therefore have high elastic properties and stiffness. 

 

Fig. 2.8: Potential- Ionic Distance Curve denoting energy correlation to ionic radius and 
expansivity around the potential well [63] 
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It is therefore evident that lattice dynamics and lattice energy can be used to formulate the 

expansion coefficient in solids. Output for molecular dynamic simulations are used to calculate 

this parameter. The volumetric thermal expansion coefficient (𝛾) at negligible pressure can be 

expressed as; 

 𝛾 = 7
Î
	
  XÎ
X¿

      2.34 

The fractional (relative) change in volume 𝑑𝑉 𝑑𝑇 is also very important for micro changes 

in volume with temperature, where instantaneous CTE values does not change. Percent 

elongation indicating phase transformation (bond angle changes or spatial dependency) with 

temperature can be identified [63]. Fig. 2.9 shows thermal expansion of different solids. Fig. 

2.9(right) attributes increased covalent bonding with low expansion coefficient while the metal 

and ionic bonding solids showing high coefficient of expansion, corresponding to strong bond 

with high elasticity (stiffness). 

 

Fig.2.9: Thermal expansion of solids in volume fraction (left), spatial direction (right) [63] 

 
Some solids exhibit non-symmetric expansion also known as anisotropy in expansivity in 

certain directions (x, y or z). This can not only be observed in the curvature of the potential well 
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but also through calculations of the 1-dimensional (linear) expansion coefficient. Similar to 

equation 2.31, linear coefficient of thermal expansion, 𝛼 in any one-direction can be obtain from; 

 

     𝛼 = 1
L	
  
dL
dT      2.35 

Zirconium diboride is high melting temperature ceramics with iono-covalent bond, strong bonds 

and high lattice stiffness. ZrB2 also reportedly exhibits anisotropy in the c-place and hence 

variations in the lattice parameters with temperature are quantified in this study [50]. 

 

2.5 Phonon Scattering and Mathieson’s Rule 

Thermal resistance in solids is determined by the several scattering mechanisms. Inclusions in 

solids such as impurities, point defects, boundaries and carrier interactions (phonon-phonon or 

electron-phonon) vary the scattering mechanisms from perfect crystal lattice. Mathieson’s rule 

where applicable estimates total contributions thermal resistance from all the independent 

scattering variables. Generally, the total rate of scattering being the sum of all the rate from each 

type of active independent scattering mechanism. The additive resistance from lattice vibration 

and impurities scattering are depicted in Fig 3.0 and the total factor by virtue of Mathieson’s rule 

can be expressed as;  

rtot	
  =	
  rnormal	
  +	
  rimpurity	
   	
  	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2.36	
   	
  

Scattering resulting from lattice vibration is expected even in perfect crystals, therefore impurity 

induced resistance can be calculated knowing the combined. Thermal resistance, r inversely 

proportional to thermal conductivity, k, the expression can be presented in terms of k and 
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equation 2.36 can therefore be written as a function of scattering time which is an important 

phonon property.  

     7
ÒÓÔÓ

= 7
ÒÕÔÖ×ØÙ

+ 7
ÒÚ×ÛÜÖÚÓÝ

       2.37 

 

 

Fig. 3.0: Shows scattering time from lattice vibration (normal phonon-phonon), 𝑟" and from 
impurity, 𝑟#$%[70] 
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PAPER 

3. Thermal Conductivity of ZrB2 from Equilibrium Molecular Dynamics 
Simulations and the Impact of Point Defects  
 
Jude O. Ighere*, Laura de Sousa Oliveira and P. Alex Greaney 

Abstract 

Transition metal diborides are considered choice materials for thermal applications for its 

high melting temperatures and shock resistance. ZrB2 and HfB2 are found to be advantageous. In 

here is presented molecular dynamic simulations performed to obtain thermal conductivity using 

the Green-Kubo method for various point defects (vacancy, interstitials, isotopic). Tersoff 

potentials are used for atomic interactions and thermal conductivity computed for defective and 

defect-free ZrB2. The thermal resistance correlation to number of defects were explored. The 

simulated structure with point defects are presented. Computed thermal conductivity values 

showed that interstitial defects are detrimental to thermal transport in ZrB2 unlike vacancies. The 

defect formation energies were also investigated. The computed results are comparable to 

available experimental data and are presented to further the knowledge on ZrB2 based materials.  

 
 
Introduction  
 

Understanding the relationship between atomic-level correlation to macroscale prediction 

of thermal properties is essential for designs in new generation technologies including sharp 

leading edge hypersonic aircraft as well as complex integrated circuits and advanced nuclear 

plants [1-5]. As an ultra-high temperature ceramics (UHTC) with melting point of about 3240oC, 

ZrB2 is a favorable candidate for advanced thermal engineering. Based on its high thermal 

conductivity coupled with high melting point, this material offers the possibility of high thermal 

re-radiation from high temperature regions. Recent data have shown that small changes in the 
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impurity content of ZrB2-based ceramic resulted in significant thermal conductivity changes [6, 

7]. This property combined with its high strength and chemical inertness has been harnessed in 

different applications including thermal conductivity prediction by intrinsic phonons [18]. Even 

though ZrB2 is a conductor, studies have shown that its heat transport mechanism is dominated 

by phonons [16,18, 23]. It is essential to develop a structure-property multi-correlation for ZrB2 

materials. In this article, we predict thermal conductivity changes in theoretical materials in 

which defects dominate phonon scattering lifetimes. This has been done by modeling thermal 

transport using the Boltzmann transport equation in which the mean free paths of phonons are 

modeled as a function of wave vector and polarization, and how these scattering processes 

interact with the extreme anisotropy of the ZrBr2 crystal structure. To this end, in this work we 

use a combination of classical molecular dynamics and Boltzmann transport theory to: (1) 

characterize the intrinsic thermal transport in ZrB2, (2) compute structures and energies of point 

defects in ZrB2, (3) Compute the thermal conductivity and phonon lifetimes in defected ZrB2 

and finally (4) Quantify the phonon scattering cross-section of defects to phonons of different 

wave. 

The impact of imperfection on the thermal conductivity of transition metal diboride 

reported in recent articles presents interesting challenge on defect adaptive thermal properties 

[22, 25, 26]. Other researchers have reported varying thermal conductivity values for zirconium 

diboride ranging from 56 W/(mK) to about 133 W(mK) at room temperatures. However, the 

source of disparities in the thermal properties of zirconium diboride remain unclear [6, 22, 25-

27]. One could propose that imperfections and impurities in structure based on processing 

technique of ZrB2 and different sources of component elements play a role. There are enormous 
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amounts of defect types to investigate in a bid to harness thermal properties of ZrB2, however in 

this paper point defects are the focus. 
 
Bonding and Lattice Structure 

ZrB2 belong to the family of hexagonal isostructural transition metal diborides (TMB2) with 

a AlB2-type 4d crystal structure with space group P6/mmm [8]. The structure is a repeating layer 

of boron atoms with the zirconium atoms arranged in an alternating hexagonally closed packed 

layer. The unusual properties of this material have been attributed to its multi-bonding types in 

the structure. The boron-layered structure is similar to the hexagonal planes of carbon atoms in 

graphite but unlike carbon, boron atom only has three valence electrons. Like carbon atom in 

graphite, boron bonds to its nearest neighbor boron atoms to form strong s-bond within the 

planes and weak p-bond between planes. Thus, since there are only three valence electrons 

available in a boron atom, some of the s-bonds are not filled. Therefore, researchers have 

attributed the characteristic stiffness of ZrB2 lattice structure to the strong boron-boron covalent 

bonds and the thermal conductivities to the metallic bonds [10]. This disparity in stiffness of the 

different bond types along with the large mass difference between B and Zr creates distinct 

bands of high and low frequency lattice vibrations [9].  

 

(a)  (b)   

Fig. 1.1: Zirconium diboride lattice structure, showing (a) alternating stack of Zr and B and (b) hexagonal  

structure with unit cell 

To develop an atomistic understanding of defect impacts (types and concentrations) on the 
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thermal properties, an optimized structure of perfect ZrB2 was first obtained as in Fig. 1.1.  On 

the left (see Fig. 1.1a) is the stack of alternating layers of individual species in the hexagonal 

structure while Fig. 1.1b shows a slice of the structure with unit cell. The non-clustered atoms 

demonstrate position integrity of each atom type in the lattice. The within layer Zr-Zr metallic 

bond is visually depicted without bond lines while the B-B within layer bond stiffness with thick 

lines, represents the strong sigma bond. 

 
Characterizing Defect Structures 
 

Three groups of defects have been considered in this study: vacancies, interstitials and 

isotopic defects. Fig. 2.1a-b show the nature of the resulting point defects, non-clustering out-of-

plane Zr-interstitial, clustering in-plane B-interstitial. Zr interstitial (see fig. a and b) pulls 

adjacent Zr atoms creating a pseudo-cluster of defect. Zr vacancy (see fig. c and d) in the crystal 

lattice creates an in-plane atomic size void. While B interstitial deforms the B-B hexagonal 

structure without intra-plane interaction (fig. e and f). Like Zr, boron vacancy maintains 

structural integrity while creating atomic size void (fig. g and h). ZrB2 stiffness attributed to the 

B-B within layer bond strength is visible in its lattice point integrity [27]. Boron interstitials form 

monolayer bond with nearest atoms without protruding clusters unlike the zirconium interstitial 

clusters which form interlayer bonding. Boron-11 and zirconium-97 were used for the isotopic 

defects in the lattice structure. All defects were introduced by first generating a 6x6x9 unit cell 

dimension in LAMMPS with periodic boundaries in all directions. The structure was the relaxed 

and energy of the system computed. Point defects were introduced and the structure was relaxed 

again using energy minimization before computing new energy of the system. In the case of 

interstitial defects, structure was further annealed to obtain lowest energy configurations.    
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Fig.	
  2.1	
  Depiction of the defects computed in this work: (a-b) Zr interstitial and (c-d) Zr vacancy while (e-f) B 

interstitial and (g-h) B vacancy.  

 

Each defect type was created and then annealed by heating to 900K and then cooling slowly 

to 300K over 5psi before quenching and relaxing the structure. The energy of each defect was 
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computed and the hessian matrix of the atoms in the vicinity of the defect computed. The 

computed change in cohesive energy of the system was used to calculated the energy of defect 

formation. The defect formation energies were used to justify the likelihood of formation of 

specific defects type. The energy attributed to the defect was calculated by 

  𝑬𝒅 = (𝑬𝑫 + 𝑬𝑹) −
𝑵𝑫
𝑵𝒐
𝑬𝒐     (1) 

𝑤ℎ𝑒𝑟𝑒	
  𝐸«	
  𝑎𝑛𝑑	
  𝐸ç represents the final energy of the defective and defect-free ZrB2 crystal 

system while 𝑁«	
  𝑎𝑛𝑑	
  𝑁çrepresents the number of atoms in the defective and defect-free ZrB2 

crystal system respectively. Fig. 2.2 presents the energy values for the various defects types 

considered. A study by Martin et al shows that it cost energy to create vacancies for Ti and Zr 

due to increased valence electron unlike Nb and Mo. [29]. Other studies only consider the 

enthalpy of formation of ZrB2 including entropy of the system. The point defect creation and 

structural optimization to obtain energetically stable configuration is depicted in the schematic in 

Fig 2.2. Structures containing vacancies were not annealed, to minimize vacancy mobility from 

predetermined sites. It could be stated that structural stiffness of ZrB2 crystal is noticeable from 

the positive energy of interstitial and vacancy defect formation increased with the number of 

defects. Fig. 2.1(a-h) depicted that the atomic sites of Zr in the lattice are non-deviating, thereby 

forcing the interstitial atoms to out of the Zr-Zr plain (intra-layer). 
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Fig 2.2 (left)Schematic of defect injection technique and (right) corresponding energies for interstitials, vacancies and isotopic 
defects. The interstitials and vacancies are shown in Fig. 2.1. 

Calculation of Thermal Conductivity 

Lattice thermal conductivity is the elastic effect of its vibration (phonons). There are two 

atomistic techniques that have been established and commonly used to compute the thermal 

conductivity of materials using MD simulations. These are Green-Kubo Method (an equilibrium 

method) and simulation of heat transport under an imposed temperature gradient (non-

equilibrium method). The heat current autocorrelation function shows fluctuation about zero at 

equilibrium and therefore Green-Kubo method computes thermal conductivity based on the time 

it takes for the fluctuations to dissipate quantified by computing the integral of the heat current 

autocorrelation function. [11, 12]. It is given by [13] 

   κ = V
kBT

2 𝐉 t . 𝐉 t + τ 	
  dτ,�
�        2.2 

where 𝑱 𝑡 . 𝑱 𝑡 + 𝜏  is termed the heat autocorrelation function, J is the heat current vector, V 

denotes the system volume, kB is Boltzmann constant, and T is the system temperature. Green 

Kubo (GK) Theorem has been used extensively in studying the thermal conductivity of solid 
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materials but very limited analysis on zirconium diboride and its family of anisotropic ceramics. 

The GK method connects the integration of the ensemble average of the heat current correlation 

function to the lattice thermal conductivity tensor 𝜅#�.  

   κ~� =
Î

½¾¿9
J~ 0 . J� τ dτ,

�
�    2.3 

where V is the system volume, kB is Boltzmann constant, i, j = x, y, z, and T is the system 

temperature.  The heat current vector can be calculated at time t, from the spatial configuration 

𝑱 𝑡 = 	
   7
g

𝑒#𝑣# + 𝑓#�. 𝑣� 𝑥#�#��#   where i and j represent atom i and neighbor j,	
  𝑣�is 

the velocity of atom i,  𝑒# is the per atom energy of atom i, 𝑓#� is the force on atom i due to atom j 

and 𝑥#� is the vector from 𝑥# to 𝑥�. Kaburaki et al. showed that the accuracy of the Green-Kubo 

method largely depends on the interatomic potential used for its implementation [46].  In order to 

simulate ZrB2 using molecular dynamics, the proper super cell and interatomic potential is 

required. Murray et al. have used Tersoff interatomic potentials for modeling Zr, Hf, and B 

properties and demonstrated repeatability [29]. These potentials have been reported to be stable 

across multiple test for different properties of these diborides [5, 13, 47]. In our study, we have 

adopted this well-defined potential to investigate the thermal properties of perfect ZrB2 lattice 

structure and some point defects. 

Following Daw et al., simulation for perfect ZrB2 was performed with 6 x 6 x 9 

supercells for the prediction of thermal conductivity, k [16]. In this study, however, initial gross 

analysis simulations were performed at 300K using different super cell sizes to predetermine 

optimal thermal conductivity values along the axial directions computed for perfect ZrB2. 

LAMMPS code were used to perform the MD simulation. The optimal 6 x 6 x 9 supercell boxes 

were created and simulated. The system was simulated in NPT ensemble to sweep average 



 

	
  

49 

volumetric expansion as a function of time under zero pressure. The system was them fixed at its 

average system dimensions at 300K and equilibrated in NVT ensemble at specified temperatures. 

This was followed by NVE ensemble to further equilibrate the system before starting to record 

the heat current autocorrelation. With maximum frequency of 30THz, the time for one full 

oscillation is 3.33x10-2s. Low timesteps of 0.5fs was used to optimize sampling rate within one 

oscillation and to maintain energy conservation at given simulation temperature. Each system 

configuration was simulated five times for improved data mean and control of variability in 

initial velocities. Another challenge of Green-Kubo (GK) is the convergence of the heat current 

(flux) indicating time for system equilibration. Recent studies have highlighted the relevance 

heat flux integral contribution (see equation 2.1) in predicting the thermal conductivity based on 

duration of the oscillation [17, 18]. However, researchers have presented different views on how 

much oscillation time is sufficient and its significance to thermal diffusivity. 

After system equilibration, autocorrelation of the heat flux was computed from the time 

series data from longer simulation time to reduce statistical noise. The averaged data from 

multiple correlation was considered to converge within 35ps of simulation time. Green-Kubo 

method uses the trapezoidal rule to integrate the heat current autocorrelation function (HCACF) 

< 𝐽# 0 . 𝐽� 𝜏 > as expressed in equation 2.2. The normalized autocorrelation function (ACF) is 

shown in fig. 3.2.  

 

Size Convergence 

The hexagonal closed packed unit cell of ZrB2 presents an opportunity to create data file 

of different box sizes. Defect-free crystalline system of ZrB2 of different box dimension were 

investigated for thermal conductivity values as presented in Fig. 3.1. Simulations were 
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performed for different system configurations to understand the size effect on the thermal values. 

Fig. 3.1a correlates the thermal conductivities of 3 x 3 x 3 and a larger supercell 9 x 9 x 15 across 

temperature range (200-2100K). The supercell size is less impactful on the k values. There is a 

wide variation in the computed thermal conductivity (k) ranging from 45-194 W/(mK) as 

presented in Fig.3.1b with box size configuration starting from 3 x 3 x 3 to 15 x 15 x 15 at 300K. 

It is interesting to note that in the x and y direction, thermal conductivity decreased with 

increasing box length. Thermal conductivity, k was computed using 6 x 6 x 9 supercell 

dimensions. Along the z-axis there is no conclusion on impact of box length on k values. Studies 

have shown that there are directionally dependent thermal properties [19], however in this case 

our study is to optimize the average thermal conductivity by first performing size convergence. 

The average k (Fig. 3.1a) is close to reported experimental data [20] but the contribution in each 

axial direction was not reported. Also, critical to using Green-Kubo is the convergence of the 

heat current autocorrelation function (HCAF). 
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Fig. 3.1. In (a) thermal conductivity, k for ZrB2 in different supercell sizes across temp range (b) is the directional k 
along the basal x and y directions and z-direction at 300K. 

 

 

HCACF Convergence 

Fig. 3.2 presents the normalized heat current autocorrelation function (nHCACF). The 

result below shows defect-free crystalline ZrB2 at T=300K as a control for variability in the 

presence of defects in subsequent simulations. The simple moving average model for the time 

series was applied to analyze the computed heat current. The decay and frequency of oscillation 

is similar on the basal direction along x and y but different from the decay in the z-direction. 

Although the initial oscillation in the z-direction is regular but converges faster. From Fig. 3.2, z-

direction (HCCFzz) shows a slower convergence with high oscillations between ~23 - 30ps. The 

HCCFzz demonstrates why the simulation time should be truncated to prevent any accumulation 

of noise over longer time, similar approach was adopted by L. S. Oliveira in the study of thermal 

properties of graphite [30]. Along the x- and y-axis, long lasting simulation is required due to 

slower but more regular decay. The HCACF result is comparable to that obtained by Lawson et 
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al., [16] as it presents the decay along all three directions. The simulation times was sufficient for 

heat flux convergence along all axial directions and therefore the result is computed with 

relatively minimum noise, at which T=300K is about 127W/(mK) on average. Other methods 

have been reported to use longer and shorter simulation times to compute thermal conductivity. 

However, true thermal conductivity can only be computed at infinite simulation time, to include 

all average fluctuations. 

 
Fig. 3.2. the normalized HCACF computed overlay along xyz-axis for perfect ZrB2 

 

Thermal Conductivity of Defected ZrB2 
 

Previous articles have reported thermal conductivity trend for ZrB2 with temperature but 

no characterization of thermally resistive processes due to point defects [20, 21]. Experiments 

have also shown differences in measured k values for single crystal and polycrystalline ZrB2, 

attributed mostly to grain boundaries resistance in polycrystalline [23]. Here we computed k 
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values in the presence of different point defects class in ZrB2 using a 6 x 6 x 9 supercell size at 

300K. Thermal conductivities for vacancies and isotopes were higher than interstitial defects 

both for boron (B) and zirconium (Zr) (see Fig. 3.3). While Zr atoms interstitials measured k 

values from 24.6, 13.9 and 5.4 W/(mK) for two, four and six interstitial atoms respectively, B 

atoms interstitials recorded 4.57, 11.3 and 6.72 W/(mK). For vacancy defects, measured k values 

were higher than that for perfect ZrB2 structure. Computed k 183 and 198 W/(mK) respectively 

for two B and two Zr vacancies. Lee et al also recorded increased conductivity due to vacancy 

defects in graphene but attributed them to changes in localized electrons. Also, recent study by 

Oliveira and Greaney suggests the presence of localized modes for certain defect types [30, 31]. 

Significant differences in the results can be attributed to changes in the frequency of vibrational 

modes but there is more work to be done to determine how the orientation influenced the heat 

flux in the axial directions.  
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Fig. 3.3. Thermal conductivity values for different ZrB2 defect systems at room temperature, (a) 

shows average k, (b) k in the x, y, z-directions for vacancy and interstitial defects. 
   

The vacancy and isotopic defects increased 𝜅 values in the z-direction and proportional change in 

the basal direction. Similar results were obtained using a different supercell size hence the results 

may be dependent on the interlayer spacing and defect alignments. Interstitial defects decreased 

thermal conductivity both on the x-y plane and z-axis. Indicative of the thermal resistance 

imposed in the presence of interstitials of both Zr and B in the structure. The impact of vacancy 

defects was different, the vacancy defects increased k values in the c-direction and proportional 

change in the basal direction however, this value decreased as the number of vacancies 

increased. It is unclear if the B vacancies allow for a stronger lattice vibration but the absence of 

B-B sigma bond would improve interlayer Zr-Zr metallic bond. It is unclear if the B vacancies 

(a) (b)
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allow for a stronger lattice vibration of the s-bonds [9], however, the absence of B would 

constitute a stronger Zr-Zr metallic bond and thereby increasing thermal conductivity [10]. 

Experimental estimate at 300K by Devon Lee [20] measured 88 W/(mK) and the 

simulation results are in agreement for perfect ZrB2 structure. This k value is lower than 108 

W/(mK) for sintered ZrB2 measured by Zhang et al. These k values are comparable to results at 

low temperatures published in other articles [9, 20-23]. The results presented in Fig. 3.3 do not 

indicate thermal conductivity variation with the number of defects in a cluster but rather the type 

of defects and maybe the spacing. There are little notable differences in the k values computed 

along the z-direction compare to the basal directions for the various defect types. The injection of 

these defects is expected to change neighbor orientations, bond types and lengths. These 

characteristic changes are anisotropic and impact directionally dependent components such as 

the heat flux. In Fig. 3.4, the anisotropic ratio computed for the basal directions is presented for 

the various ZrB2 classifications. Studies have not shown the changes in frequency modes to 

appropriately characterize thermal conductivity degeneracy or upswing.  

 
Fig. 3.4. Anisotropic ratio computed for the basal directions (x and y) in relation to z for the defect types. 

  

 Thermal conductivity values on Fig 3.3 indicate that the spatial orientation of the defect 

could be different and therefore pose variation in the overall conductivity of the system. There is 
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a dependence of k on the type of defects whether interstitial or vacancy. However, there is little 

difference with regards to the number of interstitials or vacancies. Influence of an extra B-atom 

or the absence of it on the s-bond within B plane and weak P-bond intra-plane is reflected in the 

change in k value recorded. In determining the resistance imposed by these defects relative to 

defect-free ZrB2, the Mathieson’s rule is applicable. If defect is considered a source of phonon 

scattering, according to Mathieson’s rule the total resistivity is the sum of resistivity due to the 

defects and the resistivity due to the lattice vibration in the crystal structure. Therefore, the 

imposed thermal resistance (r) due to defect is calculated as shown below: 

     𝑟8ñòñó1#.ñ = 	
   𝑟%ñwòñó1 + 𝑟8ñòñó1�   (3) 

but thermal resistance, r = 1/k, of the system 

 𝑟8ñòñó1 =
7

kôõöõ÷øcùõ
−	
   7

kúõûöõ÷ø
     (4) 

 If the assumption of Mathieson is applicable, that means each defect scattering 

contribution is independent and the thermal resistance of the system is additive. The additive 

contribution to the thermal resistance due to defect is given as 𝑟8ñòñó1 = 	
   𝑟8ñòñó1#.ñ − 𝑟%ñwòñó1. 

Fig. 3.5 presents the computed thermal resistance for a system size without defect (𝑟%ñwòñó1) and 

one with point defects (𝑟8ñòñó1#.ñ). It therefore suggests that the same system size with double 

the number of defects would be in the form	
  𝑟8ñòñó1#.ñC) = 	
   𝑟%ñwòñó1 + 2. 𝑟8ñòñó1�. The resistivity 

of the two interstitial Zr and B defects system are 0.09 and 0.24 mK/Wx10C¥ respectively. 

However, the respective resistivity of four interstitial defects are 0.08 and 0.11 mK/Wx10C¥. 

Therefore, doubling the number of point defects does not correspondingly double thermal 

resistance. It is however (worth noting) that there are no data regarding how the orientation and 
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stacking of the defect in the system will change the resistive contributions.      

   

 
 

 
Fig. 3.5. Independent thermal resistance contribution of (a) B and Zr interstitial (b) B and Zr vacancies in ZrB2 system 

 

Summary and Conclusions 

In this study, we have reported the thermal conductivity of both defect-free and imperfect 

ZrB2 by Green-Kubo simulations. Perfect crystal lattice of ZrB2 is different from real crystal 

structure due to variation in densification processes and nature of synthetic powder. Vacancy 

defects, packing and interstitials are common to real ZrB2 materials. With an optimized 6 x 6 x 9 

supercells, the Green-Kubo approach was used, and autocorrelation function converged within 

35ps correlations time. Frequency of oscillation and decay in the z-direction is different from 
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basal direction. At 300K vacancy defects gave higher thermal conductivity than defect-free ZrB2 

while interstitial defects lowered the thermal conductivity. The integrity of the lattice sites in the 

Zr interlayer, force the interstitial atoms to position between adjacent layers. Computed values of 

thermal conductivity below 750K (Debye temperature) are consistent with literature. Higher 

temperatures did not show significant difference with defect types, which could be attributed to 

size of the simulation system. In addition to computing the trend in thermal conductivity due to 

defects, we have correlated the change in cohesive property in terms of energy of ZrB2 crystal 

system with defect formation. There is increased energy required for interstitial and vacancy 

defect formation with the number of defects. 
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Abstract 

Due to thermal storage potential and thermal expansion properties, ZrB2 is favorably considered 

for advanced applications including supersonic aircraft and fusion reactors. This article presents 

density functional theory calculations of its states, microstructure and quasi-harmonic levels 

calculations of thermophysical properties. Band structure highlighted dynamical instability with 

metallic impurities in ZrB2 structure based on frequency modes. The observed projected density 

of states (PDOS) appropriate 4d orbital of Zr dominated at low frequency both in perfect crystal 

in the presence or absence of covalent impurities while B 2s and 2p orbitals dominate higher 

frequency states. Temperature dependency and anisotropy of coefficient of thermal expansion 

(CTE) were evaluated with various impurities. Various thermodynamic properties like entropy 

and free energy were explored for degrees of freedoms resulting from internal energy changes in 

the material. Computed results for heat capacity and CTE were compared to available numerical 

and experimental data.  

Introduction 

Zirconium diboride (ZrB2) attracts much attention as it is used in various high temperature 

applications including nuclear reactors, turbine engines and leading-edge aircraft due to its 

unique thermal properties at extreme conditions. This ultra-high temperature ceramics (UHTC) 

reportedly melts at the range of 3000-3245oC [5, 6]. The characteristic properties of expansion 

and heat capacity are therefore critical to inform life design methods for thermal stress 
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optimization. This article is concerned with the impact of defects on its thermal properties and 

the hexagonal lattice structure of ZrB2. With relatively low density, ZrB2 is a list of few 

candidates for hypersonic flight which generates high temperatures at its leading edges. Its atoms 

do not deviate from their lattice sites hence the thermal and mechanical stability which is 

ascribed to its well layered in-plane and out-of-plane bonding in the hexagonal honeycomb (Fig. 

1). 

 

 

Fig. 1: Hexagonal Honeycomb layers of boron-boron atoms alternate with layers of Zirconium 
atoms centered in the hexagons. 

 

The behavior of the material under thermal stress are quantified using heat capacity and thermal 

expansion. However, the perfect crystal of ZrB2 rarely exist due to its partially covalent nature, 

and induced defects from synthesis and sintering processes [7-9]. Defects such as surface oxides, 

metallic impurities and carbides are unavoidably created during processing stages or exist in 

nature. These impurities, when present, results in microscopic structural changes, and hence 

redistribution in localized electron density. This induced variation in the mechanical reliability of 

the material creates phonon or electron (carrier) scattering differences evident in its thermal 

properties or processes. 
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 First principle calculations are critical at such microscopic levels to contrast the perfect 

ZrB2 crystals to one with impurities and correlate electrical and thermodynamic properties. In 

this article, band structures and density of states (DOS) were investigated and the defect 

commonalities to heat capacity and thermal expansion explored.       

Coefficient of Thermal Expansion of ZrB2 

In considering ZrB2 as the leading favorite in the internal design of nuclear reactors, one 

should critically evaluate its lifecycle potential based on expansivity [10,11]. Studies have shown 

that the thermal expansion of ZrB2 is anisotropic along the various lattice directions [1]. This 

directionally dependent property is attributed to the varying bond strengths along the different 

axes which determines stiffness and therefore the expansion [3, 4]. Researchers have attributed 

the characteristic stiffness of ZrB2 crystal structure to the strong in-plane boron-boron sigma 

covalent bonds (Fig. 1). [2, 3]. Generality of the expression for coefficient of expansion holds 

true on the assumptions: (i) that the expansion is insensitive to the individual axial-direction (ii) 

the individual molecules do not expand but merely vibrates due to kinetic energy. Therefore, for 

ZrB2, the essence of linear expansion is also considered to quantify the anisotropic thermal 

expansion especially in the z-direction. The coefficient of linear thermal expansion is given as 

𝛼�,ü,ý = (1 𝐿#)( 𝑑𝐿# 𝑑𝑇), where Li represents specific axial-length (x, y, z) at temperatures T. 

For a typical solid, the coefficient of thermal expansion (CTE) (or volumetric expansivity) is 

generally expressed as; 

     γ = Î!CÎÚ
ÎÚ ¿!C¿Ú

      (1) 

where 𝛾  is the volumetric expansion coefficient, 𝑉ò,# , 𝑇ò,#	
  are the respective initial and final 

volumes and temperatures. However, in potentially anisotropic materials, the linear (directional) 
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expansion along the different directions can be calculated using; 

     α l = 7
#

$#(¿)
$¿

                  (2) 

 

where 𝑙 dimension of the crystal lattice in any direction x, y, z and 𝛼 𝑙 	
  is respective linear 

coefficient of thermal expansion.   

 In leading edge applications (figure 2), aircraft moving through space with speed many 

times the speed of sound are subjected to extremely high thermal stress. Uneven expansion and 

contraction across the temperature gradient poses a threat to structural reliability of the material. 

Thus, this work investigated temperature dependency of CTE for ZrB2 and the impact of 

impurities.  

 

 
 
Figure 2: Depicting temperature gradient and regional component in ramping temperatures [18]. 

 

Specific Heat Capacity of ZrB2 

 Several studies have focused on thermal conductivity and diffusivity of ZrB2-based 

ceramics but only a few have given attention to its heat capacity. This property is essential in 

characterizing the state of the microstructure of materials for improved tailoring [12,13]. It can 

be defined at constant volume or pressure and correlated respectively to the internal energy or 



 

	
  

66 

enthalpy of the crystal structure. Phonon-based (lattice) constant volume heat capacity was 

formulated by Einstein and later modified by Debye for low temperatures are shown in equations 

3 and 4 respectively;  

 

    C¸& = 3NK»
È9ÀË

ÀËC7 9       (3) 

 

   𝐶«. = 9𝑁𝐾ª𝑇
0
(ô

¥ �Éñ)

(ñ)C7)9

(ô
0

� 𝑑𝑥       (4)  

where 𝜃« and N represent the Debye temperature and the Avogadro and 𝑥 = ℏ𝜔 𝐾ª𝑇. This 

relationship is simplified at low temperature and can be written as; 

    𝐶. = b	
  𝑇¥       (5) 

The coefficient, b (specific heat coefficient) is correlated to the Debye temperature 𝜃«(0) via; 

    𝜃« 0 = 7+NN
,

G
-          (6) 

 

Both models show that the transfer of phonons in lattices contribute to measurable change in the 

energy. And Debye’s model further attributes the interaction between harmonic oscillating atoms 

to the exponential increase in heat capacity with temperature. Also analyzed in this article are the 

free energy, entropy and enthalpy of the system in a bid to explain the heat capacity offset in the 

presence of impurities. 
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Computational Details 

The density function theory (DFT) calculations for this study were performed using Vienna 

Ab-initio Simulation Package (VASP) [14,15]. The projected augmented wave (PAW) exchange 

energy potential was used in combination with the correlation functional developed by Perdew, 

Burke, and Ernzerhof (PBE). A cutoff of 600eV was used for the kinetic energy for the 

planewave, and a Monkhorst-Pack k-point mesh of 4x4x4. The free (total) energy change and 

band structure energy change convergence point was set to less than 1x10-4eV between steps. For 

a more accurate band structure and density of states, higher k-point grid 12x12x12 was further 

used. A classical molecular dynamic simulation data was also employed for comparison. 

Phonopy (open source package) was used for phonon calculations. Package uses statistical 

thermodynamic expressions to compute free energy (F), heat capacity (C), entropy (S), and 

enthalpy (H). Smearing method was used via Phonopy to calculate the phonon density of states 

(DOS) on a sampling mesh.  

The classical MD simulations were performed using Large-Scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) to calculate the coefficient of thermal expansion 

(CTE) of perfect ZrB2 and contributions from impurities [16]. Tersoff interatomic potential was 

used to describe the atomic interactions [17]. Tersoff potential has been used previously to model 

the properties of Zr, B, Hf, ZrB2 and SiC [4,9,17]. Periodic boundary conditions were applied to 

model the ZrB2 crystal structure to enable interaction across boundary. Langevin thermostat was 

used to control the temperature within NPT ensemble. This mechanical ensemble allows for 

variable volume at equilibrium, at constant pressure and temperature. Defining the 

thermodynamic trend of the system. A timesteps of 0.5fs was employed with 0.6 ns equilibration 

time for within a simulation duration of 15 ns. Literature values for ZrB2 lattice constant were 
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adopted, 𝒂𝒐, 𝒃𝒐 = 𝟑.𝟎𝟑𝟓	
  Å and 𝒄𝒐 = 𝟑.𝟐𝟐𝟑	
  Å.	
  All atoms with same z-coordinates are termed 

same plane, with alternating B and Zr layer. Added validation procedure to ensure that the 

crystal lattice generated (see Fig. 3b) does not deviate was applied and VESTA was used to load 

and generate XRD patterns for the created lattice structure. Fig. 3, compares to published 

experimental XRD patterns for perfect ZrB2 [1]. 

 

 

Fig. 3 (a) XRD pattern for perfect ZrB2 crystal lattice (a) obtained from VESTA, (b) obtained 
from experiment (c) lattice structure created and used for simulations. 
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Results and Discussions 

Thermal Expansion Coefficient of ZrB2  

At near room temperatures (300K), the CTE for all configurations coincide at 

2.5~3.0x10-6 K-1. Thermal expansion shows early stable expansion with temperature from 300 to 

1200K and suffers contraction at temperature exceeding 2000 approaching melting values. CTE 

for Hf impurity stands out in its rate of expansion. Notable breakdown at temp above 3000K for 

all structures. NPT allows for dimension stabilization at given temperature which helps to 

predetermine the timesteps duration for thermodynamic equilibrium. Correlation showed early 

dependency on temperature which is consistent with reported analysis by Okamoto et al [19]. 

However, with temperatures reaching ~1500K, almost twice the Debye value for ZrB2 (750K), 

the expansivity peaked for all configurations (see Fig. 4a). Hafnium (Hf) impurities in ZrB2 was 

highest 7.9x10-6 K-1 at ~1500K while carbon (C), boron vacancies, boron interstitials defects 

were 6.1x10-5 K-1, 6.25x10-6 K-1, and 7.7x10-6 K-1 respectively. There is a slight correlation of 

CTE values to atomic radius (Hf > B > C) of the respective impurities added. The control 

simulation of perfect ZrB2 reported values within the ranges previously reported in experiments 

(6.66-6.93x10-6 K-1) compared to simulations (5.9-6.68x10-6 K-1) [1,4,18,19]. Fig 4(a) also shows 

at temperatures within melting range (2900-3500o C), there is a gradual break down, potentially 

structurally with uncontrollable expansivity. Also, the independent axial contribution to the 

expansion coefficient was investigated using the normalized values of the lattice parameters. 
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Fig. 4 (a) Coefficient of thermal expansion of ZrB2 w/o defects. (b) temperature dependency of 
lattice parameter w/o defects 

 

Fig 4. (b) shows the normalized lattice parameter with very uniform slow contraction along x and 

overlapping dimensions for all crystal lattice configurations. Along z, one can attribute 

expansion and dimension offsets to structural changes. It aligns with the results obtained from X-

ray diffraction study on ZrB2 anisotropy with matching reflections [1]. The structural and 

bonding properties of ZrB2 was highlighted in the first article. With a strong (stiff) B-B sigma-
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bond within-plane allowing the lattice structure to vibrate in the x-y plane only by first 

contracting, and thus enables the softer B-B pi-bond inter-plane to expand. 

Specific Heat Capacity and Structure of ZrB2  

To understand the effect of the impurities on the structural characteristics, the calculated 

total density of states (DOS) are plotted in Fig. 5. The number of states for perfect ZrB2 reduced 

with increasing energy level. DOS for the covalently bonding impurities (C and Si) are closely 

overlapped with the pure crystal but with more dominating states likely from the projected 

orbitals of Si and C impurities at higher energy. The metallic impurities showed some dynamic 

instability due to relaxation, and the non-imaginary states have been excluded from this analysis. 

Potential bonding interaction between the covalent nature of ZrB2 with both Si and C is 

noticeable in the overlap with perfect structure (when overlayed) which is not the same for 

metallic impurities. Si extended the conduction band to 34.1eV, while C impurities made 

negligible changes to the conduction band. Both Hf and W impurities extended both the 

conduction and the valence band. The conduction band in all cases are dominated by B orbitals. 

Increased width of valence band denotes increase in electron delocalization and therefore 

reduced band gap. On the other hand, decreasing width of conduction band indicates electron 

delocalization weakening. Occurrence of these impurities generated additional localized states 

and potential changes to conductive properties. Lattice contribution to heat capacity is be 

computed from the phonon density of states (DOS) as using the expression below;  

   𝐂𝐯 𝐭 = 𝐊𝐁
ℏ𝛚 𝐊𝐁𝐓 𝟐𝐞ℏ𝛚/𝐊𝐁𝐓

[𝐞ℏ𝛚/𝐊𝐁𝐓C𝟏]𝟐
𝐅 𝛚 𝐝𝛚   (7) 

where 𝑭 𝝎  represents the phonon DOS, lattice heat capacity (𝑪𝒗), ℏ represents Planck’s 

constant and 𝑲𝑩	
  denotes Boltzmann’s constant. 
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Fig. 5: Phonon total density of states (TDOS) and the projected contribution of Zr and B (PDOS) 

 
Fig. 6 Phonon density of states for ZrB2 lattice structure with impurities of C, Si, Hf, W. 
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Fig. 7 Phonon dispersion (a) showing frequency modes for perfect ZrB2 (b)frequency modes for 
ZrB2 with impurities in lattice structure. 
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stability is expected for structures with high atomic defect energy, low tendency for atomic 

distortion. In the presence of impurities, there are observable differences. C and Si impurities 

show dynamical stability similar to perfect structure but in addition to the dominant acoustic 

modes, there exist more low frequency optic modes. The added optic modes for Si are at 

relatively higher frequency than C. The case is different for the metallic impurities (Hf and W) 

with low and high frequency modes generated including more flat modes closing the gap 

between the conduction band and the valance band as shown in Fig. 7. The negative phonons 

(imaginary branches) created from non-relaxed Hf and W configurations were excluded from 

this analysis as it demonstrated dynamic instability for configurations with these impurities. It is 

noteworthy that some optic modes are also created by both Hf and W. The evolution of near zero 

frequency phonons transitioning, both normal and imaginary modes, points to changes in charge 

density area indicating that both of these metallic impurities have significantly distorted the 

original charge density distribution of ZrB2. Also, no phonon softening is exhibited in band 

structure due to increased weight from added impurities. 

The computed specific heat is plotted for the respective impurities as show in Fig 7a. The 

specific heat reaches a hard limit near the Debye temperature (~750K) following Dulong-Petit 

prediction. At maximum lattice vibration, phonon contribution to heat capacity will not change 

even with increased temperature based on Debye model. Phonopy applies quasi-harmonic 

approximations (QHA) which is not applicable at very high temperatures of complete 

anharmonicity. In this study, specific heat capacity in the temperature range of 0-1000K was 

investigated. The presence of 5%vol of Hafnium (Hf) and Tungsten (W) impurities shows 

specific heat capacity values of 91.8J/K/mol, closely matched to the perfect ZrB2 at reference 

Debye temperature (750K) of ZrB2 crystal structure. This value is similar to that of Carbon (C) 



 

	
  

75 

and Silicon (Si) impurities but both covalent impurities show a larger offset at lower 

temperatures. This can be described as stronger phonon scattering effects and reduced group 

velocity by Hf and W impurities in the ZrB2 crystal. The subplot in Fig. 7a also shows the offset 

between Si and C in Cv.  

Fig. 7b shows the changes in the thermodynamic properties with respect to lattice 

temperature. The dependences of free energy and entropy on lattice vibration and temperature 

are expressed in equations 8 and 9. The internal energy changes in the material is clearly 

observed in entropy dispersed. It is non-trivial but shows differences in the microstates (degrees 

of freedom) of the various material. Translating it by equipartition theorem, the small offsets in 

heat capacity values (Fig. 8a) is equivalent to changes in its degrees of freedom. The overlaps, 

further aligns with the differences in the phonon bands between the covalent (C and Si) and 

metallic impurities (Hf and W).  
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Fig. 8: (a) Overlay of calculated molar specific heat of ZrB2 with impurities (b) Thermodynamic properties: Free Energy, 

Entropy and Enthalpy of respective impurities with temperatures. 
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Summary and Conclusion 

Having presented the approaches used for heat capacity and thermal expansion calculations with 

microstructural explanation using phonon properties, it has been shown that volumetric 

coefficient of thermal expansion is driven by anisotropic z-direction expansion with temperature. 

Impurity effects add to the knowledge gathering for better forecasting of thermal properties of 

ZrB2-based materials. Exponential elevation of CTE near the melting temperatures shows 

structural breakdown and needs further investigation for phase transition. The challenge 

surrounding specific heat calculation, particularly using Phonopy is the quasi-harmonic level 

considerations, approximating anharmonic dependencies. Where available, computed thermal 

expansion and heat capacity data are compared to numerical and experimental data and are found 

to be within the range of experimentally reported results. Noteworthy is the redistribution of 

available states around the femi level by metallic impurities, different from the covalent 

impurities in the electronic density of states. Further interest in structural differentiation in ZrB2 

and other transition metal diborides by analytical development is justified as the production 

process has presented wide variations in density and purity of the material. 
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5.0 Characterizing Thermal Conductivity Effects of Impurities (C, Si, Hf, W) 

in ZrB2: The role of Stiffness Matrices, Charge Density and Phonon Lifetimes  
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Abstract 

The scope of thermal applications of ZrB2 based ceramics depends on the effective engineering 

of heat carrier due to lattice vibration (phonons). Applying existing knowledge to characterize 

metallic (Hf and W) and covalent impurities (Si and C) effect on thermal transport determinants 

is presented in this study. Equilibrium simulation using Green-Kubo approach has been used for 

phonon thermal conductivity prediction at 300K. Simulated solid solutions with 5% impurities 

decreased thermal conductivity of perfect crystal structure of ZrB2 from greater than 88 Wm-1K-1 

to 39 Wm-1K-1 with C impurities, 46.5 Wm-1K-1 with Si, 88.3 Wm-1K-1 with Hf and 71.8 Wm-1K-

1 W impurities. The resistance to thermal transport is correlated to impurity concentration. 

Increased resistance with increasing number of impurity atoms observed with exception 

attributed to impurity orientation. Electronic structure through density of states were calculated 

to correlate pseudo-gap and intensity variation between low and high frequency modes to 

dominant atomic orbitals. Phonopy used to compute the dispersion property and obtained the 

density of states (DOS). Projected DOS presents atomic orbital dominating the different regimes 

of the energy level as available state increased with added of Si, Hf and W except for the boron-

like C impurity. 

 

Introduction 

The presence of impurities in bulk solid material is not avoidable based on occurrence in 

nature and the synthesis from constituent compounds and the densification procedure. These 
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impurities create distortion in physical property some of which are negligible based on the 

application. In-depth theoretical understanding of the physical properties and structure of the 

pure crystalline solid is fundamental to technological advancement. Zirconium diboride, ZrB2, is 

the one of interest in this study since it has found applications in advanced thermal systems. Its 

real form is obtained from high temperature chemical processing of zirconium compounds with 

boron substituents and annealing from 800o C to 1200o C [1].  At such high processing 

temperature, powdered ZrB2 is obtained, requiring densification. Due to it refractory nature, solid 

state sintering of powdered ZrB2 is very difficult. Different techniques have been used for 

improved sintering and densification requiring enhancement by additives (or sintering aids), 

since sintering is usually at below melting temperatures [1-3]. Variations in manufacturing 

processes, densification and attrition-milled with tungsten-carbon, silicon-carbon or other media 

introduces differing purity and density which differentiates real materials from perfect lattice [7-

9]. The impurities introduce electrostatic and geometric distortion resulting in new equilibrium 

positions for nearest neighbor atoms and new vibration frequencies. Although ZrB2, is popular 

for ultra-high temperature applications, other areas requiring tailored properties ceramic matrix 

composites include thermoelectric, metrology probes, electrodes etc. Figure 1 illustrates the basic 

steps in sintering powdered solid. 

 

Fig 1: Illustrating the microstructural stages in sintering process 
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Thermal conductivity in crystalline solids are both phonon and electron driven. The 

carrier which dominates heat transport process in crystalline materials characterize these solids 

into conductors, semiconductors and insulators. The electron (e) contribution to the thermal 

conductivity of ZrB2 can simply be obtained from the electrical conductivity using the 

relationship developed by Gustav Wiedemann and Rudolph Franz, 𝜅ñ = 𝜎𝐿𝑇. Where L denotes 

Lorenz constant, T is temperature and 𝜎	
  is electrical conductivity. This paper focuses on phonon 

(ph) contribution to thermal conductivity computed using molecular dynamics (MD) simulations, 

solving Green-Kubo (GK) formulation. Most recent work by Lawson et al reported 𝜅ñ	
  to be 

32W/(m.K) while 𝜅%£as 28W/(m.K) for polycrystalline ZrB2. Same article also noted that 𝜅1ç1for 

single crystal is much higher, with 140W/(m.K) along xy plane and 100W/(m.K) along the z-

axis.  

The mechanism of phonon heat transport correlates to the scattering mechanisms, phonon 

lifetimes, stiffness matrixes, density of states among other phonon properties. Essentially these 

properties are expected to vary between perfect lattice structure and one with defects. While GK 

solution is based on the fluctuation theorem and autocorrelation of heat flux, other direct non-

equilibrium methods may compute thermal conductivity directly from Fourier law applications 

hence non-equilibrium methods do not present the full tensor of thermal conductivity.  

 

Phonon Scattering, Lifetimes and Stiffness Matrix 

The concept of phonon propagation derived from the understanding of vibrations of 

individual sites connected by bonds in frames governed by central-force springs. Characterized 

structural-mechanical stability of frames as stiffness can explain local force changes with respect 

to nearest neighbors per frame in the presence of imperfection. The stress induced due to 
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changing force constants creates different rigidity and percolates through crystal structure. 

Maxwell’s rule (Maxwell’s frames) later denoted these frames as lattices and quantified stiffness 

using coordination number. The transition in stiffness from one rigidity level to another in the 

presence of localized external force is a critical component in microstructural evolution as it 

relates to vibrational modes. For ZrB2 which follows the family of AlB2 crystal structure with 

different bonding types within structure. The alternating B and Zr layers (see Figure2) in the z-

direction supports the covalent B-B sp2 bonding and interlayer ionic Zr-B bonding, responsible 

for structural stiffness and characteristic properties [22, 23]. In this study, we examine phonon 

properties further by looking at the scattering mechanisms in the presence and absence of 

defects.  

 

Fig. 2: Top view and Side view depiction of alternating layer of Zr and B in ZrB2  

 The scattering contribution from imperfection or phonon-phonon interaction to the 

Matthiessen’s resistance defines the extent of thermal transport [10]. Impurity changes 

periodicity in perfect crystal lattice. This induced disorder, strain, inhomogeneity changes the 

rate and mechanism of the scattering in the lattice. Analysis of the scattering rate in lattice 
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structure may include impurity, phonon-phonon, boundary, phonon-electron and vacancy 

scattering. And for independent scattering, the combined impact is computed using Mathieson’s 

Rule as expressed; 

    
7
ÒO
= 7

ÒÚ×Û
+ 7

ÒÛÁÊÛÁ
+ 7

Ò¾
+ 7

ÒÛÁÊP
+ 7

ÒQØR
   (1.1) 

The parameters τ~]S, τS¼CS¼, τ», τS¼CÀ, τ&T{ denote the scattering time due to 

phonon interaction with impurity, phonon-phonon, boundary, phonon-electron, vacancy 

respectively. For the sake of this study, a perfect lattice is assumed, devoid of any mechanical 

imperfection except for the impurities under investigation. Phonon-phonon scattering accounts 

for the temperature dependence of phonon mean free path, 𝜆%£ ∝ 1 𝑇 at elevated temperatures. 

Thus, from the combined relaxation rate, τV the scattering time is obtained to calculate thermal 

conductivity. Therefore, phonon decay and phonon lifetimes play important role in system 

relaxation energy and thermal conductivity [11]. Thus, using the classical phonon gas model, 

thermal conductivity is shown as a function of phonon average group velocity, VW constant 

volume specific heat capacity, C&	
  and mean free path, λS¼ [12] 

    κ = 7
xY9

VW C& λS¼     1.2 

 

Dissipation Function and Autocorrelation 

A well-established method of calculating thermal conductivity in solids is the Green-

Kubo formulation. The approach relates the heat flux density fluctuation resulting from thermal 

energy dissipation to the duration of the fluctuation. In this case, the dynamics for heat flux is 

attributed to small atomic level local fluctuations. Similar to fluctuation theorem, GK method 
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relates its linearized transport coefficient to the time dependence of equilibrium fluctuations in 

heat flux. The dependence on time-lag is obtained from the heat current autocorrelation. 

Denoting the heat current, J at times 𝑡 and 𝑡 + 𝜏 as J(𝑡) and J(𝑡 + 𝜏), the autocorrelation 

function, J(𝑡) J(𝑡 + 𝜏) is obtained. By integrating the resulting heat current autocorrelation 

function (ACF), Green-Kubo’s expression for thermal conductivity is written as; 

  𝜅 = g
¥��09

< 𝐽 𝑡�
� 𝐽 𝑡 + 𝜏 > 𝑑𝜏    1.3 

and the temperature dependent term, 𝑉 3𝑘ª𝑇) is as expressed for three-dimensional solids of 

volume, V. Where 𝑘ª and T denote Boltzmann constant and temperature respectively. ACF 

computation and use for Green-Kubo has been used for recent studies on transition metal 

diborides and allows for appropriate cross-referencing and data comparisons within the limits of 

error depending on interatomic potentials [12, 14-15]. 

 

Computational Procedure: 

Equilibrium Simulations and GK Calculations 

To evaluate impurity effects on conductivity property of ZrB2, molecular dynamics (MD) 

is used for all the simulations in this study. The Green-Kubo is an established method that uses 

the linear response theory to heat current fluctuation in an equilibrium homogenous system. All 

the dynamic variables required to compute the heat current are available in MD simulation 

process. Equation 2.1-2 show parameters required to quantify instantaneous heat current (J) in a 

simulation; 

   𝐉 = 𝐝
𝐝𝐭

𝐄𝐢 − 𝐡𝐢 𝐫𝐢     2.1 
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where Ei and h denote microscopic energy per atom and enthalpy per atom in the system. Under 

many body interaction, the derivative of the potential energy function gives the dynamic 

variables explicitly for the simulation to obtain heat current, J. It is expressed as; 

 

J = 𝑬𝒊 − 𝒉 𝒗𝒊 + 𝒓𝒊[	
  𝒗𝒊.𝑭𝒊 +
𝝏𝑬𝒊
𝝏𝒓𝒋𝒋 .𝒗𝒋] 	
  	
  𝒊     

    = 𝑬𝒊 − 𝒉 𝒗𝒊 + 𝒓𝒊 (	
  −𝒗𝒊.
𝝏𝑬𝒋
𝝏𝒓𝒊
)𝒋 + 𝒓𝒊

𝝏𝑬𝒊
𝝏𝒓𝒋𝒋 .𝒗𝒋 	
  	
  𝒊   

    = 𝑬𝒊 − 𝒉 𝒗𝒊 + 𝒓𝒊𝒋(
𝝏𝑬𝒊
𝝏𝒓𝒋
.𝒗𝒋)𝒋_𝒊 	
  	
  𝒊      2.2 

where 𝒗𝒋	
  is the velocity of atom j and 𝒓𝒊𝒋	
  is the position vector of atom, i due to 

neighbor j. These dynamic variables enable molecular dynamics compute heat 

current. As discussed in section 1, GK relates the phonon thermal conductivity to 

the time integration of the autocorrelation of the heat current function (2.2). 

Randomly distributed 5%vol impurities in a 3x3x3 supercell of ZrB2 at 300K with lattice 

parameters of a = 3.170	
  Å and c= 3.533	
  Å. All MD simulations used for thermal conductivity 

calculations were performed with the large-scale atomic/molecular massively parallel simulator 

(LAMMPS) [16]. Interactions between particles were modeled using the Tersoff potential 

developed by Tersoff and Benner [17].  Simulation boxes has been tested for convergence and 

optimal supercell size in our previous work and found no difference in convergence in 

comparison to 6x6x9 and 9x9x15. These are large enough sizes consistent with previous studies 

[15]. Two Microcanonical ensemble were employed in this study for optimal results. The 

structure was first thermalized and relaxed using mechanical thermodynamic ensemble, NPT to 

allow possible dimensional expansion or contraction. Equilibrium studies were then conducted 
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using NVE. A timesteps of 0.5 fs was used to simulate ten (10) configurations for every run. The 

heat current time trend simulation was collected under NVE for all directions of the lattice to 

compute the autocorrelation function (ACF) at thermal energy equivalence of T=300K. The 

initial simulations were performed for 5ns to ensure no noise or bump in the recorded ACF 

before truncating to 3ns on subsequent runs. 

Following Green-Kubo (GK) method, using the time series data from MD simulations, 

the heat current autocorrelation function (HCACF) was calculated and integrated using the 

trapezoidal rule. Perfect ZrB2 MD and subsequent thermal conductivity values obtained using 

GK method. Impurity heat current and thermal conductivity were similarly obtained from 

molecular dynamics and GK method with Lennard-Jones potential was used as additive potential 

with Tersoff interaction. Lennard-Jones prediction model has been shown to be consistent with 

experiments, particularly for solid argon [18]. More details about the usage or additive potential 

is in LAMMPs examples [16]. 

Density functional theory (DFT) was used for all the first principle calculations 

performed with Vienna ab initio simulation package [19, 20]. The projector augmented-wave 

(PAW) method with the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof 

(PBE) exchange correlation functional at 500eV energy cutoff point was used. Monkhorst-Pack 

k-point grid was used following Brillouin zone integration as recommended for hexagonal 

structures [21]. The k-point is optimal for convergence before the cutoff energy such that the 

product atoms in lattice structure and k value is greater than the cutoff. For all the calculations in 

DFT, supercell size 3x3x3 has been considered. After VASP simulations, Hessian computation 

(stiffness matrix) were obtained from the resulting force constants by Phonopy and the atomic 
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displacements. Other phonon properties such as Phonon dispersion and thus density of states 

evaluation were calculated from the resulting VASP calculations using Phonopy. 

 

Results and Discussions 

Impurities (C, Si, Hf, W) Thermal Conductivity of ZrB2  

The thermal conductivities of impurities in zirconium diborides (ZrB2) considered in this study 

are displayed in figure 3. The results clearly define decrease in thermal conductivity in the 

presence of impurities. With the thermal conductivity value for perfect ZrB2 matching the range 

87 to 99 W/m/K published in literatures [5, 15, 24]. Figure 3 shows the thermal conductivity 

(k)impact of 15 atoms (4%) impurities to the perfect lattice of ZrB2, at temperature of 300K. 

Recorded k values for covalent bonding impurities of Si and C are generally lower that the 

metallic impurities Hf and W. Harrington et al. reported that increased content of carbon 

impurity decreased ZrB2 thermal conductivity at different experimental temperatures due to 

lower mean free path [24]. Zimmerman in other reports observed that silicon carbide (SiC) 

impurity lowered the conductivity of ZrB2 [24, 25]. These are interesting findings that require 

further detailed electronic and phononic properties research. Considering thermal conductivity 

correlation to mean free path, 𝜆 and carrier density of states, 𝜌 in 𝑘 ≈ 7
)
𝑣� ∗ 𝐶 ∗ 𝜌 ∗ 𝜆, the lower 

k values can also be attributed to the potential drop in the number of available states due to 

impurities. From figure 5, the phonon density of states is obviously changed in the presence of 

various impurities both in the conduction region or/and in the valence region. Results presented 

is focused on impurity impact and microstructural implications and does not include temperature 

trend to minimize impurity migration [24, 25]. 
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Fig. 3: Thermal Conductivity of ZrB2 w/o impurities of C, Si, Hf, W (a) isotropic k (b) k in z-

plane and (c) xy-plane thermal conductivity 

 

 The resistance to thermal transfer through a material is critical, not only for tuning 

purpose but for characterizing impurity impact. For perfect crystals, this property (resistance) is 

inversely proportional to thermal conductivity. Impurities addition experimentally to powdered 

ZrB2 require different densification technique creating discrepancies in reported thermal 

conductivity data [1, 2, 7, 24,25]. The induced thermal resistance due to defect can be obtained 

as s 𝑟#$%aw#1ü = 	
   𝑟1ç1Bb − 𝑟%ñwòñó1. Where 𝑟1ç1Bb ,	
   𝑟%ñwòñó1 and 𝑟#$%aw#1ü denote the total resistance in the 

impure material, resistance in the pure material and the induced resistance due to impurity 

respectively.  In this article, we present thermal resistance trend with impurity concentration 

range from 0 to 4% impurity atom (see Figure 4). Increased thermal resistance with increasing 

concentration of impurities was observed, however, the nonlinear nature of the correlation at 5 

Hf atoms and 15 W atoms impurities suggest variation in the orientation of the impurity in the 

lattice structure. Using the impurity coefficient (slope), Si concentration impact can be proposed 
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as a property knob. Low thermal resistance (elevated k) values observed at 5 Hf atoms impurities 

and 15 W atoms impurities presents basis for future topics on the effects of orientation of 

impurities and its correlation to scattering mechanisms with variable concentration. For the 

metallic impurities, the decrease in k values is also related to size (radius) of the additive as W 

impurities lowered the thermal conductivity much more than Hf. Phonon properties observed are 

presented in the next section to provide further insight into the impact of impurities on thermal 

conductivity using microstructural parameters and variation in dynamic matrixes. 

 

Fig. 4: total thermal resistance correlation to number of impurity atoms (Hf, W, Si, C) 

 

 

 

0 5 10 15
0.005

0.01

0.015

0.02
Hf Impurities

0 5 10 15
0.005

0.01

0.015

0.02

0.025

0.03

0.035
W Impurities

0 5 10 15
0.005

0.01

0.015

0.02

0.025
Si Impurities

0 5 10 15
0.005

0.01

0.015

0.02

0.025

0.03

0.035
C Impurities

2.0

1.5

0.5

1.0

0.5

3.5
3.0
2.5

2.0

1.5
1.0

0.5

3.5
3.0
2.5

2.0

1.5
1.0

0.5

2.5

2.0

1.5

1.0

Th
er
m
al
(R
es
ist
an
ce
((m

KW
21
)

No. of Impurity Atoms (3x3x3 ZrB2)-1

x10(2 x10(2

x10(2 x10(2



 

	
  

91 

Impurities (C, Si, Hf, W) Impact on Phonon Properties 

Density of States: Enormous amount of data can be extracted from decay mechanism of phonons 

which is determined by scattering. Density functional theory (DFT) computation was performed 

for 81 atoms unit cell of ZrB2 from which phonon properties were extracted. Figures 5-7 presents 

the total and projected density of states showing induced variation due to impurities. The results 

from the projected density of states (PDOS) shows that Zr 4d orbitals dominates the low 

frequency states while the B 2s and 2p orbitals dominates the high frequency for perfect ZrB2 or 

with covalent impurities (C and Si). The electronic structure of C and the potential combination 

of hybrid orbitals (wave function) are similar to Boron and could best explain the project density 

of states in ZrB2 with the impurity. However, additional states at are observed on Fig. 6 in the B 

dominated region appropriated to the presence of Si impurities. The number of states for the 

perfect ZrB2 reduced with energy level. DOS for the covalently impurities are closely overlapped 

with the pure crystal but with more dominating states likely from the projected orbitals of silicon 

and carbon at higher energy. The metallic impurities show states dominating at lower energy and 

slow increase in the number of available states with frequency. Potential bonding interaction 

between the covalent nature of ZrB2 with both Si and C is noticeable in the overlap, unlike with 

metallic impurities. Si extended the conduction band to 34.1eV, while C impurities made 

negligible changes to the conduction band. Both Hf and W impurities extended both the 

conduction and valence band. The conduction band in all cases are dominated by B orbitals. 

Increased width of the valence band denotes increase in electron delocalization and therefore 

reduced band gap. On the other hand, decreasing width of the conduction band indicates electron 

delocalization weakening. Occurrence of these impurities generated additional localized states 

and potential changes to conductive properties.  
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Fig. 5: Overlay of Zr orbital dominated region of the projected density of states (PDOS) for ZrB2  

with impurities (C, Si, Hf, W) 

 
Fig. 6: Overlay of B orbital dominated region of the projected density of states (PDOS) for ZrB2  

with impurities (Si, C, Hf, W) 
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Fig. 7: Overlay of total density of states (TDOS) for ZrB2 with impurities (Si, C, Hf, W)  

 Density of states is not enough to characterize impurities in crystals, other phonon 

properties are required including stiffness variations in the lattice structure, lifetimes and group 

velocity. Phonon decay captured by its lifetime analysis can be obtained approximately from the 

normalized autocorrelation of total energy flux as; 

    τ&c =
¸Qd;f ¸Qd;�
¸Qd;� ¸Qd;�

dt�
�     3.1 

where 𝐸.g; 0 and 𝐸.g; 𝑡 are the normal mode total energy at initial time and time t. Equation 3.1 is 

particularly applicable to study disordered lattices [26] maybe due to imperfections. However, in 

this study me delved into a more defining stiffness property. 

 

Stiffness Matrix and Charge Density: Variations in stiffness properties of solid results in 

frequency drift across the quasi-harmonic range [26] which means changes in phonon scattering 

and lifetimes. The microscopic level distortion within the lattice structure as a result of phonon 

flux and geometric changes in the presence of impurities is captured in the stiffness matrix. 

Stiffness difference due to impurities is simply calculated by subtracting the stiffness property of 

the perfect ZrB2 unit cell from the new stiffness obtained by adding impurities. The stiffness 

property is a hessian matrix of each atom across the frames (function of many variables). It is the 

second derivative of the energy eigenstate with respect to displacement of each atoms. Fig. 8 

(right) shows the stiffness matrix plot for perfect ZrB2 2x2x2 lattice structure with natural 

stiffness between the bonds. For this 24 atoms unit cell, each with 3 degrees of freedom gives a 
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total of 72 degrees of freedom. Therefore, one degree of freedom displacement for instance Zr in 

the x-direction impacts quantifiable force on the rest of Zr and also on Boron, particularly nearest 

neighbors.  In Fig. 8(right), each block is modelled as a degree of freedom (number of unit cell 

atoms x 3. i.e. 24 atoms each with 3 displacement directions). Equation 3.2 presents the 

expression to calculate individual terms (coefficients) of stiffness matrix  

 

     𝐻#� =
/9¦

/ac/a�
      3.2 

where E represents the energy eigenstates of the atoms displaced in u-direction 

while i,j indices represent the ixj term on the nxn matrix.  
 

 
Fig. 8: (Right) Stiffness matrix plot for perfect ZrB2 2x2x2 crystal structure and (left) its charge 

density for alternating Zr and B layers 
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Fig. 9 shows the stiffness difference with C, Si, Hf and W impurities which is calculated by 

subtracting the stiffness of the perfect ZrB2 unit cell from the new stiffness obtained with 

impurity present. Hf shows no difference to the Zr stiffness but changes the stiffness around the 

B atoms, with alternating frames softer (orange) and stiffer (blue). W shows similar impact but 

slightly changes the stiffness around nearest Zr. For the covalent impurities as expected, there is 

not stiffness impact of Zr layers but interacts with the B-B bonds. The charge density difference 

was investigated to understand the underlying reasons for the observed interactions. The change 

in stiffness matrix is obtained using equation 3.3 below and plotted as presented in Fig. 9 

 

    ∆𝛨 = 	
  𝛨«ñòñó1 − 𝛨iñwòñó1     3.3 

 

 
Fig. 9: Stiffness matrix difference imposed by impurities 
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The charge density wave structure is defined by the interaction between constituent atoms in a 

molecule. However, as the interaction changes so is the charge density around the atoms. For 

perfect ZrB2, the charge density is conducted away from Zr atoms and are mostly clouding the B 

atoms (see Fig. 8(left)). Fig. 10 shows the charge density difference with the various impurities. 

The charge density for the perfect crystal was obtained from density functional theory 

calculations. Similarly, the charge density of the structure with individual impurities are 

computed on DFT. The charge density difference is obtained from VESTA visual kit. It subtracts 

the perfect crystal lattice from the one with impurities in the same isosurface. The impact of the 

impurities on Boron is evident from the induced charge density around the boron atoms (or 

bonds). 

 
Fig. 10: charge density difference imposed by impurities 

 

Understanding the stiffness contributions of various impurities and correlating it to the charge 
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appropriate inter atomic spacing after the computing the stiffness matrix (hessian). This is an 

avenue for continuous improvement in future work. 

  

Summary and Conclusion 

Thermal-structural challenges posed by leading edge designs require some compulsory ultra-high 

temperature materials. Transition metal diborides exhibit unique thermal-mechanical properties 

of interest for this application. Fundamental knowledge of thermal transport as it relates to the 

localized energy in lattice crystal is crucial in further development of these (diborides) ceramic 

materials. Experimental procedures have established concepts of thermal conductivity in solids 

but challenged in methods to collect information of interest, particularly at the microscopic level.  

Molecular dynamics (MD) simulations correlates thermal conductivity to the complexities in 

atomic structure. Mode transition of energy carriers (phonons) and polarizations are underling 

characters of its scattering mechanisms which varies due to imperfection in lattices. Green-Kubo 

(GK) method applied here to calculate thermal conductivities shows the respective change in the 

property in the presence of various impurities. The approach gives insight into the HCACF 

convergence variations in the different axial directions. Decrease in thermal conductivity is 

consistent with reported increase in thermal resistance. Ab initio calculations was performed 

using DFT to investigate impurities impact on atomic level structure. Phonopy used to compute 

the dispersion property and obtained the density of states (DOS). Interestingly additional states 

are observed by adding Si, Hf and W impurities. This text contributes to the knowledge of 

atomic level characterization of ZrB2 based UTHC and its correlation to thermal conductivity 

with or without impurities. 
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6. Conclusions 

A systematic study of a binary transition metal-diboride, zirconium diboride (ZrB2) is 

presented in this document. The impact of impurities from sintering aids and point defects on the 

thermal properties of ZrB2, particularly thermal conductivity, specific heat and thermal 

expansion. Paper I answered some vital questions on point defects formation energies and the 

impact on thermal conductivity of the material. It shows how these imperfections are structurally 

positioned, with Zr interstitials sticking out of plane while B remains in plane. The damaging 

impact of interstitial defects on thermal conductivity values computed using Green-Kubo method 

is different from the impact with vacancies. Paper II shows the heat capacity and thermal 

expansion of ZrB2 in the presence of impurities. Negligible changes in the heat capacity was 

reported with different impurities. Increase in coefficient of thermal expansion with temperature 

was observed but decreased as it approached melting temperature of material. An exception is Hf 

impurities which improved stability in rate of expansion.  

Paper III provides answers on stiffness matrix and charge density, induced by impurities as 

well as influence on thermal conductivity. The imposed changes in bond stiffness from the 

respective impurities computed by subtracting the stiffness matrix (hessian) of perfect ZrB2 from 

the resulting stiffness matrix using Mathematica. The presence of Hf impurities does not show 

any difference to Zr bond stiffness but changes the stiffness around boron. W shows some 

difference around its immediate area of the impurity attributed to higher valence electron than 

Hf. For C and Si impurities, no changes to the stiffness observed around Zr, however we see 

some bonding interactions with the boron. Bimodal thermal conductivity values were observed, 

with covalently bonding impurities showing lower values than metallic defects. Higher 

conductivity values were observed in the c-direction across all configurations. Also, on this 
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paper is presented the charge density difference to understand the electronical doping or non-

doping effects in the presence of impurities. 
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7. Future Work and Recommendations 

 For the next decade, resurging interest in ultra-high temperature ceramics such as ZrB2, HfB2, 

HfN, TaC will continue, mostly due to the limitations of hypersonic aircraft. Production of these 

ceramic materials and property tuning for advanced thermal design will determine extent of 

research.  Therefore, approaches to thermal properties quantification and microstructure 

visualization needs further improvement. 

 The Green-Kubo approach depends on the integral of the heat current autocorrelation function 

(HCACF) which is a function of the heat flux. The first task on the study was to investigate the 

convergence of the HCACF and therefore size independent thermal conductivity. Other studies 

have reported both size dependent and size independent phonon frequency. This discrepancy 

could be investigated further to develop an approach for characterizing the uncertainties 

associated with the HCACF to synchronize approach globally.   

 Decomposition of thermal flux into phonon components extends from characterizing the 

phonon modes (wave vectors), polarization (longitudinal and transverse waves) to acoustic and 

optical phonon branches contributing to is conductivity or refractory property. Further classical 

and quantum investigation of descriptive concepts of phonons to improve atomic based 

description of the microstructure for both stoichiometric and impurity defects. This will also 

require a standardized method for defect introduction for comparable data. 

 The role of density of states in calculating specific heat capacity as discussed in chapter 4 

warrants further study at it relates to impurities. Metallic impurities lowered the peak specific 

heat capacity for ZrB2 proportionally to the intensity curve. Whether the lower phonon density of 

states resulted in higher electronic density of states could not be investigated in this study. Also, 
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increased library of impurities including molecular impurities should be investigated for offset 

these refractory properties.  

 

  
 
 
 
 


