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Abstract. This paper elaborates the use of distributed Genetic Algorithms (DGA) to study an artificial land rental market. The 
study is based on a spatial comparative-static model in which a number of spatially ordered agents (farms) compete in an auc-
tion for renting land. Each agent's behavior is determined by a genetic algorithm that is applied to an agent specific population 
of genomes representing particular bidding strategies. Agents interact directly through a migration mechanism that allows to 
spread renting strategies across the population of agents as well as indirectly over the rental market. Two market constella-
tions are considered and different simulations with a variety of parameter constellations (migration rate, placement of farms, 
etc.) are run: First, a situation of limited market access is defined. A series of simulation experiments shows that for this sce-
nario the DGA generates results that fit comparative static equilibrium conditions like allocative efficiency and zero-profits. 
Second, in a limited market access scenario, only under very special conditions the DGA generates results that comply with 
oligopolistic behavior. The results of the two scenarios are analyzed and discussed as to the influence of the DGA procedure 
itself and a possible economic and game theoretic interpretation. 
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1. INTRODUCTION 
 
Since their introduction by Holland in 1975 Genetic Algo-
rithms (GA) have been used in a number of disciplines. 
Based on the application of the evolutionary concepts of 
selection, crossover and mutation on a population of be-
havioral strategies, their primary use has been in the field 
of optimization. Besides this, GA have also become a 
means for modeling and representing particular types of 
economic problems. One reason for GA being an attrac-
tive tool for economic research has to do with the assump-
tion of a normative behavioral foundation of individual 
action. In economics this is a very common assumption, 
and it makes models analytically tractable. The downside 
of this procedure is that it demands other strong assump-
tions like homogeneity, unbounded rationality and con-
vexity. However, in reality one will hardly find economic 
agents perfectly behaving like economic models want 
them to behave. Therefore, instead of a normative behav-
ioral foundation, it appears to be a promising alternative 
among others to derive individual behavior from artificial 
intelligence methods, of which GA are one. Because they 
always involve a number of strategies competing against 
each other GA-based economic models can be interpreted 
particularly well in a game theoretic context.  
 
 
2. APPLICATIONS OF GENETIC 

ALGORITHMS IN ECONOMICS 
 
To motivate the kind of GA we apply in this paper, it is 
worth while looking at previous applications of GA to 
economic problems. Up to now, there have been quite a 

number of publications in this area (e.g. Marks 1992, 
Birchenhall 1995, Miller 1996, Axelrod 1997, Curzon 
Price 1997). In the majority of the papers GA are applied 
to well known standard economic models, such as cob-
web-type models, the prisoner's dilemma, or industrial 
organization problems. One such example is the paper by 
Arifovic (1994) in which she applies a GA to a simple 
cobweb model. In game theoretic terms the cobweb-model 
can be interpreted as a symmetric game with Nash equilib-
ria in pure strategies. The application of a GA to this 
problem is straight forward since the type of GA specified 
for this problem corresponds pretty much to standard GA 
specifications like the ones that can be found in GA text-
books (cf. Goldberg 1989, Mitchell 1996).  
 
Dawid/Kopel (1998) present another application of GA to 
models of the cobweb-type. Their kind of cobweb-model 
also describes a symmetric game. But, unlike in the Ari-
fovic model, the equilibrium is a Nash equilibrium in 
mixed strategies, i.e. some agents produce while others do 
not. As Dawid/Kopel show, for their model a simple ap-
plication of the standard type of GA, as done by Arifovic, 
does not lead to a convergence to the mixed strategy equi-
librium, but to a non-equilibrium situation. This indicates 
that it is necessary to adjust the GA-setup according to the 
specific problem in order to obtain a convergence towards 
a theoretically plausible results. 
 
In reality, the majority of market situations are not as sim-
ple as economic models would like to propose. This is 
especially the case for individual actors in an economy, 
who display heterogeneous behavior, individual character-
istics and goals. In terms of game theory this means that it 
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is mostly asymmetric games that we can observe in reality. 
An example for such an asymmetric game could be an 
agricultural land auction market. Because agricultural 
production takes place in space, both the land plots and 
agents on the land rental market, i.e. the farms, are usually 
heterogeneous per se.  
 
Balmann (1998) applies a GA to a model of such a land 
market in which a number of agents compete for renting 
the land from a central auctioneer. In his model in each 
iteration every farm agent follows only one bidding strat-
egy. The GA procedure is applied to the whole population 
of farms and consequently alters the bidding strategies of 
the farms. However, strictly speaking, the application of 
just one GA procedure to the population of farms does not 
appear appropriate in the case of heterogeneous condi-
tions. Firstly, to develop individual strategies for hetero-
geneous farms it would make more sense if farms would 
be able to evolve strategies which are adjusted to the their 
specific characteristics. Then, the effect of local interac-
tions would be taken into account. This cannot be accom-
plished with just one single GA. And secondly, for a sin-
gle GA, mixed strategies can only occur on the level of 
the population with the single farms playing pure strate-
gies. But it would be desirable to include the possibility of 
each farm playing a mixed strategy, too. This is important 
in the context of local neighborhoods and space in gen-
eral, as mentioned before. 
 
This paper takes up these shortcomings and proposes a 
GA-based modeling approach to heterogeneous land mar-
kets. The complexity of the model goes beyond the ana-
lytically and theoretically well understood, but often sim-
plistic models like the cobweb-model. In the following, 
first GA are introduced. Afterwards, the spatial and dy-
namic land allocation model to which the GA is applied is 
briefly sketched. Following this, three simulation scenar-
ios and the respective simulation results are presented, 
discussed, and conclusions are drawn. 
 
 
3. AN INTRODUCTION TO GENETIC 

ALGORITHMS 
 
GA have been developed in analogy to the concepts of 
biological evolution and even the terminology is quite 
similar. Even though there is no 'standard GA' but many 
variations of GA, there are some basic elements common 
to all GA (cf. Holland 1975, Goldberg 1989, Forrest 
1993, Mitchell 1996). The first task of an application of 
GA is to specify a way of representing each possible solu-
tion or strategy as a string of genes that is located on a 
chromosome. According to Figure 1 this can e.g. be 
achieved by transferring numbers into binary bits, i.e. ze-
roes or ones, that represent the genes. A complete set of 
genetic information is called a genome. A particular set of 

genes in a genome defines a genotype. The application of 
the genotype to a particular problem then gives the pheno-
type. 
 

encoded solution  
(genotype) 

decoded solution 
(phenotype) 

… 1 0 0 1 0 1 1 1 … ↔ rent offer: 906 DM/ha 
… 1 0 1 0 0 0 0 1 … ↔ rent offer: 966 DM/ha 
… 1 0 0 0 0 0 1 0 … ↔ rent offer: 780 DM/ha 

Figure 1: Example of genotype - phenotype relations for 
rental strategies on a land market 

 
The second task is to define a population of N genomes to 
which the genetic operators, i.e. selection, crossover and 
mutation, can be applied. Considering a population of 
solutions or strategies allows for a kind of parallel proc-
essing. The population size usually ranges between 10 to 
50 genomes.  
 
The basic GA-setup is very simple. In effect, in each gen-
eration GA process a population of genomes, and succes-
sively replaces one such population by another by means 
of genetic operators. The number of generations depends 
on the problem to be solved. It can range from some 50 to 
a couple of thousand. Most often a GA passes through the 
following steps. 
 
Initialization at the Startup 
In most GA applications the first generation of genomes is 
initialized with random values. 
 
Determination of Fitness  
Before the GA operators are applied, the effectiveness of 
the genomes in one population is evaluated by means of a 
fitness function. This function assigns a score to each ge-
nome in the current population according to its capability to 
solve the problem at hand. The better the solution solves the 
problem, the higher the fitness value. For the applications of 
GA to economic problems or to games, the fitness value is 
derived from the strategy's profitability or payoff.   
 
Selection and Replication 
Selection determines the genetic material that will be re-
produced in the next generation. The fitter the genome 
(i.e. the more adapted it is to the problem) the more likely 
it is to be selected for reproduction. The most well known 
selection scheme, among others, is probably fitness-
proportionate roulette wheel selection: Each genome is 
assigned a slice of the wheel, the size of the slice being 
proportional to the genome�s fitness. The next genera-
tion�s genome population is determined by spinning the 
wheel for each genome and replacing it by the genome at 
the slice where the marker stops. However, it is also pos-
sible not to spin the wheel for all members of the popula-
tion but only for genomes not meeting a certain criterion 
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like a minimum required fitness value or those genomes 
that randomly �die�. 
 
Crossover 
Crossover is a variety generating feature of GA, where 
pairs of solutions (parents) mate to produce offspring. 
Each offspring draws some of its genetic material from 
one parent and some from the other. Again, there exist 
many different forms in which this operator is applied to 
the population of genomes. Figure 2 shows the simplest 
case of a 1-point-crossover, where the coded strings of 
two parent genomes are split at a randomly chosen locus 
and the sub-strings before and after the locus are ex-
changed between the two parent genomes resulting in two 
offspring of the same string length.  
 

parent genomes offspring genomes 
… 1 0 0 1 0 1 1 1 …… 1 0 1 0 0 0 0 1 …

… 1 0 1 0 0 0 0 1 …… 1 0 0 1 0 1 1 1 …

Figure 2: Example of a 1-point-crossover after the 3rd bit 
position 

 
Mutation 
Mutation also implements new genetic varieties into the 
population of genomes. Furthermore, mutation serves as a 
reminder or insurance 
operator because it is able 
to recover genetic material 
into the population which 
was lost in previous gen-
erations. This insures the 
population against an 
early and permanent fixa-
tion on a particular geno-
type. Mutation works in a 
way that the mutation op-
erator flips each bit of a 
genome in each generation 
with a fixed probability 
that is generally very low 
(e.g. 1:1000 per bit). 
 
The simple GA, as it is 
described above, imitates 
the basic ideas of natural 
evolution on a very abstract 
level. It forms the basis for 
the theoretical analysis of 
GA. But, for real problem 
solving its power is limited 
in several respects. Simple GA ignore many useful ideas of 
biological evolution, like a multiplicity of chromosomes per 
genome, diploid chromosomes, and sexes. The encoding, 
the chosen fitness function and the implementation of the 
operators may not be the most effective ones. Therefore GA 

models often need to be extended to take account of the 
more complex reality (Mitchell 1996).  
 
Since GA parameters usually interact non-linearly they 
cannot be optimized one at a time. According to Mitchell 
it is unlikely that any general principles of parameter set-
tings can be formulated a priori considering the wide vari-
ety and complexity of problems. Choosing the probabili-
ties for the different operators, of the fitness function, the 
coding rules, etc. is very much a trial and error process. 
 
 
4. THE LAND ALLOCATION MODEL1 
 
The land allocation model to which the GA is applied 
assumes a comparative static spatial rental market for ar-
able land. The model interface in Figure 3 shows an agri-
cultural region that is divided into different plots of land 
of equal quality. It is assumed that each plot represents an 
area of 100 ha with a border length of 1 km. To avoid 
border effects for the region, the region is assumed to 
have the shape of a torus (i.e. the surface of a 'doughnut'). 
At the outset of the model a number of agents is randomly 
allocated to some plots in the region.2 The position of each 
agent is fixed on this plot. In an iterative auction the 
agents compete for renting the land. If an agent receives 

                                                           
1) The program can be downloaded from �http://www.agrar.hu-
berlin.de/wisola/fg/abl/ALFONS/GA/ga_ref.exe�. 
2) We interpret agents as potential farms because agents may choose 
not to take part in the land auction. And if they take part, whether the 
agent gets land or not depends on its neighbors' strategies, too.  

Figure 3: The model interface1 
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land and engages in agricultural production, the location 
can be interpreted as a farmstead. 
 
In Figure 3 the agents' locations are represented by boxes. If 
an agent rents land the particular plot is surrounded by a 
solid line, the line is dashed if the agent does not get any 
plots. Each color represents the plots rented by a particular 
agent (including the plot on which the agent is located). 
 
Different from the simple GA described in section 3 and 
the studies by Arifovic (1994), Axelrod (1997), Curzon 
Price (1997), Balmann (1998), etc. in which each agent 
was represented by a single genome and the GA was ap-
plied to the whole population of agents, in this study a 
multiple-population approach is followed (cf. Cantú-Paz 
1997). That is, each agent is associated with a separate 
population of 10 or more genomes - each of which repre-
sents a different renting strategy - and the GA procedure is 
applied separately to every population (Figure 4). 
 

Agent 
i

BMAX BMAXT dR IRIR

Genome 
i  1 0

Genome 
i  1

T dR
.........

 
Figure 4: An agent's genome population 

 
The application of individual GA should allow the agents 
to develop individual strategies that are adjusted to the 
individual location and neighborhood. Moreover, there 
are game theoretic implications. If an equilibrium of the 
model requires heterogeneous strategies, then a single GA 
would obtain this only by a heterogeneous genome popu-
lation, as mentioned in section 2. In terms of game theory 
a heterogeneous population would have to be interpreted 
as a mixed strategy. A multiplicity of GA, however, al-
lows the genome populations of the agents to be homoge-
nous. This means that an equilibrium could also be 
reached with asymmetric pure strategies.  

4.1 The Model Structure 
 
Figure 5 presents the order of events. At the outset of the 
simulation each agent is allocated randomly on a plot and 
random values are assigned to an agent's 10 genomes. In 
this particular GA model one generation consists of 12 
iterations, the so-called 'testing rounds'. By dividing a 
generation into testing rounds it is insured that each ge-
nome�s performance in the market can be tested at least 
once with a probability that is considered sufficient.3 If a 
genome is not drawn in one generation it is assigned the 
average fitness of the agent�s genomes. After this, the GA 
operates on the genome population of each agent. 
 
Every testing round the model passes through three steps:  
 
Step 1: Initialization of Agents 
At the beginning of a testing round a genome n is drawn 
from each agent�s genome population to determine this 
agent�s strategy in the land auction in this particular test-
ing round. The strategy is given by four strategy parame-
ters: the participation in the land market (Ti),4 the initial 
rent offer (IRi), a rent differentiation coefficient (dRi), and 
the maximum desired area (BMAXi). For use in a GA these 
strategy parameters are transferred into binary code and 
aligned to a single bit string with the length of 48 bit.5 
Every string can be interpreted as one of the agent�s ge-
nomes.  
The rental price iP  agent i bids is determined by  
 





≥=
<=⋅−⋅−

=
iii

iiiiiii
i BBT

BBTTCBdRIR
P

max,

max,

or0forbid no 
and1for)( (1) 

 
where TCi(⋅) represents transportation costs to the next 
available plot depending on distance, acreage, and the 
marginal transportation costs 'tc', while Bi is the amount of 
land that agent i already has rented in the testing round's 
auction.  
 
Step 2: Land Auction and Allocation of Land to Agents 
According to (1) every agent makes a bid for the closest 
free plot in its neighborhood. The agent with the highest 
bid receives the desired plot for a price equal to the bid. 
Thereafter, this agent calculates a new bid for the next 

                                                           
3) This extension of the simple GA is necessary, because several 
genomes per agent cannot be tested simultaneously. 
4) The participation gene is a kind of switching gene, by which 
the strategy of an agent abruptly changes. The effect is that the 
GA can find Nash equilibria in mixed or asymmetric pure strate-
gies more easily (Dawid/Kopel 1998) because the recombination 
of Nash-equilibrium strategies leads to equilibrium strategies, 
again. 
5) Instead of binary code, the so called 'gray code' was used (cf. 
Nissen 1994). The advantage of gray code is that similar strate-
gies have a similar code, which is not the case for binary code. 

1. initialize the model 
2. intial generation n = 1  

a) testing round t = 0 
i) initialize farm agents 
ii) do land allocation 
iii) determine fitness 
iv) repeat i) through iii) until  

t = number of testing rounds 
b) do genome migration 
c) GA procedure: selection, crossover, mutation 

3. increment n by 1 (new generation) and iterate (go to step 2) 

Figure 5: Flow chart of the model 
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desired plot. The same 
applies to those agents 
who were also interested 
in the plot which was 
allocated last, but whose 
bid was not accepted and 
the bids are compared 
again. This process is 
repeated either until all 
plots are allocated or until 
there is no further posi-
tive bid.  
 
Step 3: Determination of 
Profit and Fitness 
After the auction in test-
ing round t (t = 1,...,12) 
agent i disposes over a 
certain amount of land 

tiREALB , , which serves as 
the variable in the agent's 
economic rent function 
irrespective of transportation costs )( ,, tiREALti BgX = . The 
economic rent function is based on a study by Peter 
(1993) who applied an engineering approach to compute 
the economic rent function for arable farms under favored 
conditions which may be found in several regions in Ger-
many. Figure 6 shows that for this setting the optimal farm 
size is about 2000 ha.  
 
Agent i's individual economic rent function 

)( ,, tiREALti BhW =  is derived by subtracting the transporta-

tion costs which depend on the agent's total acreage and 
the location of the various plots from 

tiX ,
. Thus, the dif-

ference between the individual economic rent and the total 
rent expenditure equals the agent's profit ti ,Π . The profit, 

again is an argument in the fitness function 
)( ,,, titin fF Π=  of the selected genome n, which in return 

influences the probability of selection and replication in 
the agent's GA procedure. 
 
 
4.2 The Genetic Algorithm in the Model 
 
The GA is executed after 12 testing rounds and leads to a 
new generation of genomes. Prior to the GA procedure 
there is a migration of individual genomes between agents 
to allow for an imitation of relatively successful agents� 
strategies by other agents. Migration is implemented in a 
way such that with a fixed probability one genome from 
each agent's genome population is replaced by a copy of a 
genome from another, relatively more successful agent.  
 

For our GA procedure we made the following assump-
tions: 
 
Initialization: The genomes and the locations of the 
agents are determined stochastically. 
 
Determination of Fitness: The fitness function for agent 
i�s genome n in testing round t is specified in (2) 
 

β

Π 


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
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=
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kn,

n
tn,i, A
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where An is the number of testing rounds that genome n 
was tested since it acquired its genotype and Πn,k is the 
profit of test k. K has a value of 50000 and can be inter-
preted as a kind of initial capital endowment for each ge-
nome; β takes a value of either 0.95, 1, or 1.05. The pa-
rameters K and β have to be understood as scaling factors 
that affect the intensity of selection. The fitness function 
and the locations of the agents remain the same for all 
generations. Thus, each agent's population meets similar 
external conditions during the simulation. It is only the 
competitive situation between the agents that changes due 
to the strategies modified by the GA-operators. 
 
Selection: In this model, selection is restricted to certain 
conditions. It is assumed that the selection operator only 
works on genomes with a fitness of zero and on genomes 
that 'die' with a probability of 1:5. The replacement hap-
pens as described in section 3.  
 
Crossover: Each genome is paired with another genome 
with a probability of 1:4. The mating genomes are chosen 
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Figure 6: Marginal and average economic rent per ha depending on acreage 
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randomly and they are paired in a 1-point-crossover with 
the two offspring genomes replacing the parent genomes. 
 
Mutation: The mutation operator is integrated into the 
model such that at least one bit is inverted in each genome 
with a probability of 1:50. 
 
 
5 SIMULATION 
 
In the following, the proposed GA procedure is applied to 
the land auction model. We define and simulate three dif-
ferent market scenarios. Each of the scenarios depicts a 
characteristic market situation. Scenario 1 describes a 
very competitive situation in which many agents can 
freely access the land market. Scenario 2 depicts a large 
region with as many agents as there are needed for an effi-
cient production structure. In this situation the market is 
'on the verge' to an oligopolistic market structure. And 
finally, in Scenario 3 a market on which oligopolistic be-
havior is very likely to appear is simulated. 
 
A detailed game theoretic interpretation of the market 
constellation and the strategic options of the farm agents 
is presented for the first scenario. As mentioned before 
each agent has an individual population of strategies. The 
fittest strategy in one such population is only the fittest 
relative to the other agents' behavior. Hence, the success 
of each agent's strategy depends on the strategies of the 
other agents. 
 
 
5.1 Scenario 1: Unlimited Market Access 
 
 
5.1.1 Some Ex Ante Equilibrium Considerations 
 
The region considered in Scenario 1 has a size of 57600 
ha and farms are located randomly on every 3rd plot, 
transportation costs amount to 20 DM per ha and km dis-
tance. 
 
To begin with, it is worth wile to take a closer look at the 
comparative static equilibrium conditions for this particu-
lar competitive scenario. According to (1) an agent can 
follow two pure strategies: rent land (A), do not rent land 
(B). Now one can imagine three possible behavioral set-
ups: All agents follow either A or B, or they follow a mix 
of strategies with a certain probability. 
 
If all agents followed strategy A with equal bids the aver-
age farm size would be 300 ha. According to Figure 6 this 
is significantly below the optimal farm size and yields 
only an average economic land rent of about 600 DM/ha 
if transportation costs of 20 DM per ha and km are as-
sumed. A farm operating near the optimum of about 2000 

ha would yield up to 1087 DM/ha. Hence this situation is 
unstable: On the one hand, if the overall rent level is 
higher than 600 DM/ha farms would make losses, and 
agents not participating in the auction would be more suc-
cessful because they wouldn't make any losses. On the 
other hand if rents are lower or equal 600 DM/ha, farms 
bidding marginally higher would be relatively more suc-
cessful and receive significantly more land which allows 
them to exploit economies of scale. If all farms followed 
strategy B, and would not produce, the solution would 
also be unstable. Because then one or more agents that 
start bidding at low levels could make significant profits. 
Hence, a heterogeneous behavior of agents, with some 
producers and some non-producers, is a necessary condi-
tion for an efficient organization of regional production.  
 
In Scenario 1 this efficiency condition is satisfied if about 
30 of the about 200 agents distributed equally over the 
region produce at a size of about 2000 ha, whilst the rest 
does not rent any land. However, this situation can only be 
an equilibrium if producers and non-producers are equally 
successful. Otherwise there would be an incentive to move 
to the more successful group. Since non-producers make 
no profit by definition, in equilibrium producers should 
hence make no profit as well, i.e. the average rental price 
for land should equal the average economic rent.  
 
In game theoretic terms � this was already briefly men-
tioned in section 4 - the situation just described is a game 
with an asymmetric Nash equilibrium in pure strategies 
(30 of 200 potential agents rent land at prices near the 
optimum, while 170 rent no land). But, because we allow 
for mixed strategies on the farm level, one may also ex-
pect a symmetric mixed strategy Nash equilibrium. Then 
each farm plays the pure strategy A with a probability of 
30/200 and strategy B with a probability of 170/200. The 
mixed strategy equilibrium requires the agents' genome 
populations to be heterogeneous, i.e. to consist of differ-
ent strategies. This equilibrium, however, is less efficient 
then the one in pure strategies.6 
 
 
5.1.2 Scenario 1: Simulation Results 
 
Figure 7 shows the development of economic rents, rental 
prices and profits for a simulation over 4000 generations. 
The values in each generation are averages over all testing 
rounds and farms in the generation. For generation 2000 
to 4000 the average economic rent is 1059 DM/ha which 
is 97.5% of the maximum value of 1087 DM/ha. Conse-
quently, the farms operate at sizes that are close to the 

                                                           
6) For a further discussion of game theoretic implications see 
Balmann/Happe (2000). 
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optimum with regard to 
their productivity.7 The av-
erage acreage is 1970 ha, 
which is also very close to 
the optimum. Even though 
farm sizes fluctuate between 
1700 and 2200 ha, eco-
nomic rents which are close 
to the maximum are yielded. 
Rental prices and economic 
rents are almost congruent. 
For generations 2000 to 
4000, on average, there are 
slight losses of about 4 
DM/ha, which is less than 
0.5 % of the economic rent. 
Compared to a similar simu-
lation in Balmann (1998) 
(average economic rent of 
1048 DM/ha which is about 
96.5% of the optimal value, average acreage of 1651 ha) 
one can observe that the results have been improved with 
the use of a parallel GA. 
 
The average losses of 4 DM/ha are mainly caused by un-
favorable mutations, i.e. strategies which are associated 
with bids higher than the maximum economic rent. Alto-
gether, these results lead to the conclusion that under the 
considered market conditions the co-evolving, GA-based 
agents are able to identify 
states which are quite near 
to the economic optimum 
and equilibrium. The most 
interesting aspect of this 
result is that it is not the 
individual agents who de-
velop effective strategies. 
Rather, it is the fact that the 
collective of agents identi-
fies this state in a self-
organizing way without an 
external control. This has to 
be seen as an emergent 
property of the system (cf. 
Axelrod 1997, 4). 
 
 

                                                           
7) It is noticeable, how quickly the comparative static equilib-
rium is reached. In an additional simulation with all initial val-
ues set to zero it could be shown that this is not due to the initial 
random values assigned to the genomes at the outset of the 
simulation (cf. Balmann 1998). 

5.2. Scenario 2: Limited Market Access,  
Large Region 

 
The previous simulation led to plausible results for the 
case of unlimited market access. We now look at what 
happens for the case of limited market access in a large 
region. We have introduced limited market access by sig-
nificantly reducing the number of farm agents to a number 
such that all agents could theoretically produce at an op-
timal farm size an in cases. The GA parameters are chosen 

as described in section 3.2, though with a higher mutation 
rate. Because the access to the market is limited one could 
expect the farms to show oligopolistic behavior. This hy-
pothesis would have to be rejected if it could be shown 
that the rental prices are equal to the marginal productivity 
in which case the profits would have to be interpreted as 

Figure 7: Economic rents, rental prices, and profits  
(203 agents, 57600 ha, transportation costs 20 DM per ha and km, β = 0.95 
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resulting from farms producing with decreasing returns to 
scale. 
 
The simulation results are shown in Figure 8. For generations 
3000 through 5000 the average farm size is 2267 ha. The 
average economic rent of 1054 DM/ha contrasts an average 
rental price of 1020 DM/ha such that the average profit is 34 
DM/ha. Such profits are rather small to support the hypothesis 
of large farms showing oligopolistic behavior.  
 
To get deeper insights into this, 
a series of simulations was 
conducted for different trans-
portation costs, farm sizes, and 
region sizes. Table 1 shows for 
the simulations no. 1 through 6 
that profits increase particu-
larly with transportation costs. 
Unfortunately, due to the het-
erogeneous spatial distribution 
of farms the marginal produc-
tivity can hardly be computed. 
Alternatively, the average prof-
its Π /B can be compared to 
the difference between average 
and marginal economic rent 
(W/B-dW/dB).8 The most right 
column of Table 1 shows this 
difference for a farm size B of 

                                                           
8) Proof: If the rental price r is equal to the marginal economic 
rent of land ∂W/∂B, i.e. r = ∂W/∂B, and the profit Π is equal the 
difference of the total economic rent and the rental expenditures, 
i.e. Π = W- rB, then Π /B = W/B-∂W/∂B. 

2200 ha. Its calculation is based on the 
productivity relation presented in Figure 6 and an 
ideal location of the plot relative to the farm-
stead.  
According to Table 1, for simulations No. 1 
through 6, the realized profits are lower or 
equal to the difference between the marginal 
and average economic rent. It can be concluded 
that these profits do not result from oligopolis-
tic behavior, but from polypolistic behavior of 
farms with decreasing returns to scale.  
 
Even though the considered limitation of mar-
ket access implies some distributive effects, 
its allocative effects are rather small. Consid-
ering marginal transportation costs of 20 
DM/ha and km, allocative effects are only 
apparent in the fact that the economic rent of 
simulation no. 2 is 1054 DM/ha compared to 
1059 DM/ha to 1080 DM/ha in the scenarios 
with unlimited market access. This is a loss of 
less than 2.5 %. On the one hand, this de-

crease in efficiency results from a less flexible spatial dis-
tribution of agents. On the other hand the lower efficiency 
is due to the fact that not all agents produce in each gen-
eration. Otherwise the average acreage per agent would 
only be 2093 ha instead of 2267 ha. Reasons for this can 
be found in mutations. According to Balmann (1998) it is 
possible that strategies arise which exploit the weaknesses 
of the GA, i.e. its fluctuations. For instance, farms follow-
ing very low bidding strategies may potentially receive 

significant amounts of land, and make enormous profits. 
In other periods the same strategies may not be successful 
at all and other farms rent more land. 
 

Table 1: Theoretical and realized profits depending on transportation costs 
(TC) in DM per ha and km, data in ha or DM per ha) 

  simulation results  
generations 3000 to 5000 

calculated  
figures a) 

No. TC region 
size 
(ha) 

β average  
acreage 

eco-
nomic 
rent 

rental 
price 

profit 
Π /B 

W/B-∂W/∂B  
for  

B = 2200 ha 
1 0 90000 0.95 2288 1117 1104 13  14 
2 20 90000 0.95 2267 1054 1020 34  36 
3  90000 0.95 2956b) 1030b) 961b) 69b)  76 f)  
4 60 90000 0.95 2240 950 888 62  79 
5 120 90000 0.95 2143 806 662 144 144 
6 200 90000 0.95 1927 667 482 185 231 
7 20 6400 0.95 3168c) 1052c) 551c) 501c)  76 f)  
8  12100 0.95 3000d) 1062d) 544d) 517d)  76 f)  
9  12100 0.95 2999e) 1047e) 543e) 504e)  76 f)  

a) Calculated differences between marginal and average economic rent (W) accord-
ing to Figure 6 for an acreage of 2200 ha and an ideal location of plots. 
b) Periods 2000 - 25000. c) Periods 7000 - 13000.  d) Periods 3000 - 10000.  e) Peri-
ods 2000 - 25000.  f) B=3000 ha. 

 
Figure 9: Economic rents, rental prices, and profits  

(4 agents, 12100 ha, transportation costs 20 DM per ha and km) 
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5.3. Scenario 3: Limited Market Access,  
Small Region 

 
Because there was no evidence for oligopolistic behavior 
in the previous scenario, we now look at limited market 
access in a small region of 12100 ha, in which only four 
farms compete for renting the land.9 Figure 9 shows the 
results. As one can easily see, significant profits do 
emerge. Moreover, as simulations no.7 through 9 in Table 
1 show, average profits amount to around 500 DM/ha. 
Compared to the calculated difference between the aver-
age and marginal economic rent of 76 DM/ha based on 
Figure 6 for a farm size of 3000 ha, this is clear evidence 
for oligopolistic rather than price-taking behavior of the 
farms in a small region. Hence, the results of Table 1 have 
to be interpreted in a way that oligopolistic behavior does 
not occur in sufficiently large agricultural regions, even 
though farms are large, market access is limited, and - due 
to substantial transportation costs - a rather small number 
of farms competes for a particular plot. Oligopolies only 
emerge in small closed regions, like islands. Obviously, 
the fact that each farm's neighbors compete with different 
other farms causes at least an indirect competition among 
all farms. In other words, overlapping neighborhoods lead 
to overlapping areas of competition. This seems to prevent 
local oligopolies. Probably, there is a strong parallel be-
tween this spatial effect and overlapping generations in 
dynamic models (cf. Arifovic 1996). 
 
 
6. FINAL REMARKS 
 
This paper analyzed the application of distributed or par-
allel GA to a spatial agent-based model. Three market 
scenarios were defined and simulated. The results were 
discussed with regard to their compliance with some com-
parative static equilibrium considerations. 
 
For the case of Scenario 1 (unlimited market access) the 
simulation results comply with comparative static equilib-
rium conditions. If one looks at the limited market access 
in Scenario 2 and the question of emerging oligopolistic 
behavior, the results are not as clear. But as Scenario 3 
shows, oligopolistic behavior does only emerge under 
very restrictive conditions, such as a small number of 
farms in a small region. Even if in Scenario 2 transporta-
tion costs are very high such that large farms compete 
locally with only a few farms, oligopolistic behavior did 
not emerge in sufficiently large regions, despite the fact 
that farms did make some profits in this case. But, since 
these profits do not exceed the difference between average 
                                                           
9) It has to be mentioned that rental prices and profits in this case 
are not as stable as in the simulations presented before. This is 
because the strategies' fitness is very sensitive to the other farms 
behavior. Hence, in the case of a few farms only, mutations have 
a particularly strong impact on the results. 

and marginal costs, even under these conditions farms act 
as price takers. 
 
This and other conclusions, however, assume the model to 
be valid. Despite our claim to present an application of 
GA to a complex economic problem which takes account 
of agents' heterogeneity and other stylized characteristics 
of the agricultural sector, there are still many shortcom-
ings which need to be mentioned, too. 
 
The land allocation was based on an auction, while in re-
ality, rental contracts usually result from bilateral negotia-
tions. Moreover, the assumption of a comparative static 
production function neglects significant dynamical as-
pects. In fact, there are a number of frictions in agricul-
tural product and factor markets (quotas, sunk costs) that 
stabilize existing structures even if they are not in equilib-
rium. Such frictions can explain severe differences in 
rental prices, too (cf. Balmann 1999). Consequently, the 
land market model should be dynamic, too. But this would 
require the GA to be applied to the problem for several 
hundred if not a couple of thousand generations per time 
step (period). If computing time increases multiplicatively 
with the number of periods, a dynamical model will 
quickly become intractable.10  
 
Furthermore - as the simulations show - there are some 
more general problems related to GA. Since GA are still a 
rather young field of study and therefore not entirely ana-
lytically explored, there is a particular danger to generate 
artifacts. Due to the general difficulties to validate com-
plex models, it is often difficult to attribute certain results 
to characteristics of the GA, to the specification of the 
model, or to the research question. Helpful for a better 
understanding of the behavior of GA is evolutionary game 
theory (cf. Dawid 1998). Existing theoretical studies con-
centrate rather on topics that deal with the technicalities of 
GA rather than on the practical problems with applications 
of GA to economical questions. Moreover, a multiplicity 
of interacting GA is very complex in itself. Its exact be-
havior is very difficult to study and understand since it is 
determined by a large number of parameters whose impact 
on the quality of the results is not well understood, yet 
(Cantú-Paz 1997, 1999). Therefore, if GA are to be ap-
plied to complex, analytically intractable problems, model 
development and analysis resemble much more a (time-
consuming) trial and error process than a systematic pro-
cedure. Hence, the success of their applications depends 
on experience and reason as well as on opportunities to 
generate similar results by other means.  
 

                                                           
10) Just for the purpose of illustration: The computing time for 
the presented static simulations ranged up to almost a week on a 
fast PC for run each. Thus, a dynamic simulation might take 
months or would need exceptionally fast computers. 
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The evolution in a GA-based model should also not be 
confused with economic evolution. Even though the evo-
lution of a GA can be understood as a kind of learning 
process (Arifovic 1994) GA learning is substantially dif-
ferent from the patterns of human and economic learning 
(cf. Chattoe, Dawid 1996, 1998). One should also be care-
ful with transferring evolutionary ideas too naively. Terms 
like 'survival of the fittest' are misleading. Chattoe (1998) 
stresses that it is neither in nature nor in economies it is 
exclusively the fittest who survive. Rather, a firm's strat-
egy has to be considered as viable if it is appropriately 
adapted, relative to other firms' behavior and success.  
 
Last but not least, the agents' rationality in GA models is 
not only limited by the abilities of the GA itself, but also 
by the model concept. For instance in the presented 
model, the price differentiation of the individual agents 
only allowed for a linear variation of bids. Since the pro-
gression of the economic rent function is non-linear, the 
bidding function can only be optimized approximately by 
the GA. Otherwise, a more flexible decoding function 
would have to be defined.  
 
A brief outlook at the end: The application of GA to the 
study of social processes is still at the beginning. Al-
though GA will hardly replace conventional analytical 
approaches, they may serve as an alternative to conven-
tional approaches in order to gain new insights into prob-
lems. GA can also contribute to a general reflection on 
conventional models in the light of new methods in the 
field of multi-agent systems. It is also possible to further 
develop normative models with the help of GA in order to 
use less restrictive assumptions. In the end, the scope of 
future applications of GA depends on the resourcefulness 
of potential users. 
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