Case studies: Using the zebrafish to evaluate neurobehavioral phenotypes

Abraham Garcia, Lisa Truong (PhD), Eric Johnson, Robert L. Tanguay (PhD), and Andrea Knecht (PhD)

Department of Toxicology, Oregon State University, Corvallis, Oregon 97331
Neurobehavioral Diseases

- Anxiety Disorders
- Autism
- Alzheimer’s
- Social disorders
Zebrafish as an Animal Model

- Physiologically + Genetically homologous
- Large number of progeny
- High Throughput screens
- Cost and space efficient
- Complex emotional behavior
Research Goals

Stage 1 Embryonic

Stage 2 Adults

Micronutrient Deficiency

Chemical Exposure
Stage 1: Embryonic Photomotor Response (EPR)

- Dark adapted embryonic zebrafish response to light stimulus
 - 17 hpf
- Two stages
 - Stage 1 (before light)
 - Infrequent coiling of body axis
 - Stage 2 (after light stimulus)
 - Vigorous coiling for 5-7s
Zebrafish Hindbrain

- Embryonic Photomor Response
 - Not fully understood
 - Cells in Hindbrain
Photomotor Response Analysis Tool (PRAT)

- At least 24 hours post fertilization
- Movement index
 - Frame pixel differences
- Light cycles

<table>
<thead>
<tr>
<th></th>
<th>1st light pulse</th>
<th>2nd light pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>30 Seconds</td>
<td>40 Seconds</td>
</tr>
<tr>
<td>Excitatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refractory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Normal EPR Activity

[Graph showing movement over time with peaks at different times]
EPR Developmental Time Series

• Goals
 • Generate baseline
 • Change throughout development time?

• Time series
 • 9 am-10 pm
 • PRAT run every hour
Spawning Tanks
Embryo collection

Embryo Loading

96 well plate and incubated for 24 hrs

Photomotor Response Analysis Tool (PRAT)

0-1 hpf

6 hpf

6 hpf

24 hpf
EPR Movement Activity Chart
EPR Movement Peaks

<table>
<thead>
<tr>
<th>Hours post fertilization</th>
<th>Time</th>
<th>Movement peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>9 am</td>
<td>43.66</td>
</tr>
<tr>
<td>26</td>
<td>10 am</td>
<td>22.89</td>
</tr>
<tr>
<td>27</td>
<td>11 am</td>
<td>39.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours post fertilization</th>
<th>Time</th>
<th>Movement peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>12 pm</td>
<td>105.57</td>
</tr>
<tr>
<td>29</td>
<td>1 pm</td>
<td>121.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours post fertilization</th>
<th>Time</th>
<th>Movement peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>7 pm</td>
<td>264.07</td>
</tr>
<tr>
<td>36</td>
<td>8 pm</td>
<td>295.12</td>
</tr>
<tr>
<td>37</td>
<td>9 pm</td>
<td>255.07</td>
</tr>
</tbody>
</table>
EPR Summary

- Optimal Times to use for EPR baseline?

<table>
<thead>
<tr>
<th>Hours post fertilization</th>
<th>Time</th>
<th>Movement peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>12 pm</td>
<td>105.57</td>
</tr>
<tr>
<td>29</td>
<td>1 pm</td>
<td>121.27</td>
</tr>
</tbody>
</table>

- Screen for hyperactivity or hypoactivity
- Values not too high or too low
Stage 1 Embryonic

Stage 2 Adults

Micronutrient Deficiency Chemical Exposure
Stage 2: Micronutrient Deficiency

- May have many negative effects
 - Tissue damage
 - Damage to nervous system
 - Negative behavioral effects
Vitamin E

- Micronutrient
- Almonds, Bell peppers, Papayas
- Antioxidant
- Protects lipid membranes
Vitamin E Research Questions

• Does Vitamin E deficiency have a negative effect on learning and memory in adult zebrafish?
• Does Vitamin E deficiency affect startle response?
Vitamin E Diets

54 days old

Commercial Feed

Vitamin E Diets

Shuttlebox Startle response

90 days old
Shuttlebox Design

- **Center divider:** forces fish under opening at bottom for detection by thru beam sensor.
- **Black acrylic shuttle box**
- **LED Light Bar:** one on each end.
- **LED optical window**
- **Thru beam optical window**
- **Stainless plate for shock delivery:** One at each end of shuttle box.
- **Thru beam transmitter/receiver lens mounts:** two side-by-side.
- **Thru beam Keyence transmitter/detector amplifiers and fiber optic leads to lenses**
- **Shuttle indicators, and shock PWM board (upper) under protective acrylic shield:** Arduino R3 controller with SMT power and USB jacks (lower).
Shuttlebox Protocol

- **Acclimation period**: 10 minutes
- **“Seek” period**: 8 secs
- **“Shock” period**: 16 secs
- **Rest period**: 60 secs

1 Trial

- Zebrasfish conditioned to associate dark side with shock
- Learn to swim to the light side
- 30 consecutive trials
- Fault out Feature
Vitamin E: Shuttlebox Results

- Time to Accept Side (TimetoASide)
- Initial decision time
- Each fish fit with linear regression
- P value of 0.00338
- Effect on learning
Vitamin E: Startle Response

- Reflex invoked by unexpected Stimulus (Tap)
- Possible Threats
- Cognitive Processing of stimuli
- Can be used to study cognitive deficits
- Characterized in Adult Zebrafish
 - High velocity swimming
Startle Response Assay

- Taps generated using Solenoids
- Tracked with Noldus EthioVision XT

zebrafish Visual Imaging System (zVIS)
Startle Response Protocol

- Acclimation period: 10 min
- 5 min taps
- 5 min taps
- 5 min taps
Normal Startle Response
Startle Response in Vitamin E diet groups

![Graph showing total movement (cm) for different diet groups at Tap 1, Tap 2, and Tap 3. The graph compares E- and E+ diets, with asterisks indicating significant differences.]
Startle Response Assay Results

• Vitamin E- fish do not get desensitized to tap stimulus
 • Nervous system
Stage 1 Embryonic

Stage 2 Adults

Micronutrient Deficiency Chemical Exposure
Stage 2: Chemical Exposure

• Lead to abnormal behavior
 • Social
 • Fear responses
 • Negative effect on learning
Benzo[a]pyrene
Research Question

• Does Benzo[a]pyrene Developmental Exposure cause transgenerational effects?
Three Generations of Fish

- Only F0 generation directly exposed

Behavioral effects seen in F0
 - Mainly used F1 and F2 due to availability
 - F0 for shuttlebox
Exposing zebrafish to Benzo[a]pyrene (BaP)

Dechorionated embryos

6 hpf

96 well plate

1.25 ppm BaP
2.5 ppm BaP
0.1% DMSO controls

Rinsed and raised

120 hpf
Shoaling a Social behavior

• Not Schooling
 • Coordinated swimming
• Form Close groups
• Predator Defense
• Increased mating opportunity
Why Shoaling Assay?

- Humans are social
- Neurodevelopmental Disorders
 - Anxiety disorders
 - Depression
 - Autism
- Zebrafish Homology
 - Brain layout
 - Brain neurochemistry
Shoaling Parameters

• Inter-individual Distance (iid)
 • Average distance between farthest fish

• Nearest Neighbor Distance (nnd)
 • Average distance between closest fish

• Polarization
 • Direction of shoal as a vector
 • Higher value = Higher disassociation
Inter-individual Distance (iid)
Nearest Neighbor Distance (nnd)
Polarization
Shoaling Results

• Based on iid, nnd, and polarization
 • Disassociation
 • F1 1.25 ppm BaP fish
 • F2 2.5 ppm BaP fish

• Some generational effects
 • Some recovery as BaP Values decrease between F1 and F2 generation
 • DMSO control values also decrease
 • May effect behavior
Fear Response

- Related to Fitness
- Natural Response to Predators
- Clinical Relevance
 - Neurobiological disorders
 - Exaggerated responses
Predator Video
Zebrafish Visual Imaging System

- 8 tanks per zVIS
- Tanks have clear side
- Video monitors
- Noldus EthioVis.
- Arenas
- Close zone
- Middle zone
- Far zone
Predator Close. Cumulative Duration

Time (seconds)

Average Duration (%)
Fear Response Results

• Generational effects seen between F1 and F2 2.5 ppm BaP fish
• Generational effects in F1 and F2 1.25 ppm BaP fish but not as strong
• Duration in far zone between F1 and F2 0.1% DMSO controls decreases
Benzo[a]pyrene Shuttlebox Results

• 0.1% DMSO fish learn quicker with each generation
• F0 2.5 ppm, 1.25 ppm BaP learn quicker than F0 controls
• No real significant generational effects
• Possible effect on learning
 • Non DMSO controls
Conclusion

Embryonic Photomotor Response Study
- Optimal Baseline EPR activity at 28-29 hpf

Adult Vitamin E Study
- Vitamin E+ learn quicker
- Vitamin E- don’t desensitize to Tap Stimulus

Adult Benzo[a]pyrene Study
- Possible trangenerational effects seen in Shoaling and Fear Response due to Benzo[a]pyrene exposure
- Possible effect on learning
- DMSO exposure may effect behavior
Future Directions

• High throughput screening of EPR phenotype
• Neuropathology tests on Vitamin E- fish
• Confirmation to see if the behavioral effects that were seen in the F2 generation are also in the F3 generation fish
• Using non-DMSO exposed fish in shoaling, fear response, and shuttlebox assays
Acknowledgements

Tanguay Lab
Dr. Robert Tanguay
Dr. Michael Simonich
Dr. Lisa Truong
Dr. Andrea Knecht
Dr. Maret Traber
Melissa McDougall
Eric Johnson
Carrie Barton
Rest of Tanguay Lab

Funding
USDA NIFA MSP Grant
References

