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advantages over other flat panel technologies. Specifically, ACTFEL panels are emissive 

displays, they have high brightness, wide viewing angles, and rugged construction. 
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device physics model is expanded by presenting evidence for the formation of space 

charge in the phosphor layer and the equations prescribing device response are modified 

accordingly. Also, a new technique for measuring the distribution of interface states in 

ACTFEL devices is presented. This gives new insight into device operation, as the 

interface state distribution is one of the most difficult parameters to estimate/measure in 

the device physics model. Finally, an experiment is presented which attempts to measure 

the maximum energy of hot electrons during conduction in the phosphor. This research 

leads to a recommendation of the complexity of the conduction band model needed for 

accurate Monte Carlo simulation of ACTFEL devices. 
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ALTERNATING-CURRENT THIN-FILM ELECTROLUMINESCENT DEVICE

PHYSICS AND MODELING 

1.0 INTRODUCTION 

The video display industry is currently undergoing a dramatic technology 

revolution. A few of the most evident technologies emerging in the last decade are high 

definition television (HDTV), heads-up displays, virtual reality, and flat panel displays. 

Each form of conveying visual information has particular attributes which make it very 

attractive for specific commercial, industrial, or military applications. Presently, the 

primary component of the conventional video display, the cathode ray tube or CRT, is 

being replaced with flat panel technology. Flat panel technology promises to eliminate 

bulky television and computer monitors with thin, light, and very durable alternatives. 

Several implementations of flat panel displays are currently available, namely, 

liquid crystal displays (LCD), plasma displays, and electroluminescent (EL) displays. 

Electroluminescence is the process of conversion of electrical energy into luminous 

energy. EL displays are believed to be promising due to their high brightness, wide 

viewing angle, high contrast, and emissive nature (i.e. they do not require an external 

lighting source). EL displays maybe made for either dc or ac operation using either power 

or thin-film phosphors. Alternating-current operation is prefered for matrix addressed 

displays and fabrication with thin-films is desirable since one can make use of existing 

solid-state processing technology. For these reasons, this thesis focuses on, alternating-

current thin-film electroluminescent (ACTFEL) displays. Recently, full color panels have 

been demonstrated with each kind of flat panel technology. Even though ACTFEL flat 

panels seem likely to play an important role in the future of display systems, there are 

many fabrication and electrical design problems which must be solved if ACTFEL flat 

panel technology is to become commonplace. 

First, processing issues are briefly considered. To replace large CRTs, 19" or even 

25" diagonal displays, thin-film EL displays must be manufacturable. This requires 
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extreme uniformily in deposition as the thin films are typically 5 to 6 thousand angstroms 

thick. Obviously, this poses a very significant potential yield problem as no defects are 

tolerable. Additionally, the materials must be chosen to generate appropriate wavelengths 

of light in the visible spectrum (ie. red, green, and blue). A sufficiently high brightness 

blue phosphor has proven very difficult to achieve. The materials must not react with one 

another, diffuse, or, in general, chemically change the operating characteristics of the 

device after prolonged use. 

Secondly, it is essential to have a clear understanding of the physics and electrical 

characteristics of the device. Understanding the device physics enables one to engineer an 

optimal set of fabrication parameters and maximize device efficiency. Electrical 

characterization allows one to monitor device performance, compare different devices, and 

identify aging phenomena. Finally, a physical understanding of the device is very 

important for driver circuit design since the matrixed array of pixels behaves as a 

distributed network or a transmission line. At this point the availability ofvery accuate 

models of device behavior becomes necessary. 

With this in mind, the goal of the research described in this thesis is to further the 

understanding of ACTFEL device physics with particular attention paid to enhancing the 

accuracy of device models. 

Chapter 2 is a review of literature relevant to fundamental device physics and 

modeling of ACTFEL devices. In Chapter 3, the simplest form of device modeling, the 

equivalent circuit model, is considered. An empirical model is developed which agrees 

with experimental device response to variations in the driving voltage waveform. Chapter 

4 and 5 describe an electrostatic device model proposed by Bringuierl. In Chapter 4, this 

model is expanded to include the special case of phosphor space charge and is shown to 

match experimental results. Chapter 5 presents a new method for measuring the interface 

state distribution; the greatest uncertainty in Bringuier's model. An experiment to 

determine the extent of electron heating during conduction is presented in Chapter 6. This 
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result indicates the level of model complexity required for accurate Monte Carlo modeling 

of ACTFEL devices. Finally, Chapter 7 presents conclusions and suggestions for future 

research. Most of the results presented in this thesis have been published, submitted for 

publication, or presented orally2-8. 
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2.0 ACTFEL DEVICES AND OPERATION: LITERATURE REVIEW 

In this chapter the relevant current literature is reveiwed and the basics of the 

AC11-EL device structure and operation are presented. 

2.1 Device Structure 

The structure of a typical ACTFEL device is shown in Fig. 1. The device is 

fabricated on a glass substrate and consists of a phosphor layer sandwiched between two 

insulating layers and a pair of electrodes. The lower electrode is usually indium-tin oxide 

(ITO). This material is used because it is transparent to visible light and it has a low sheet 

resistivity. The insulators are typically silicon oxinitride (SiON), barium tantalate (BTO), 

or aluminum-titanium oxide (ATO). These materials are chosen because they have high 

dielectric constants and a high resistance to electrical breakdown. The phosphor layer is 

typically zinc sulfide, a II-VI semiconductor, doped with manganese (ZnS:Mn). 

2.2 Device Fabrication 

The ACTFEL fabrication process begins with a glass, Corning 7059, substrate. 

Deposition of thin-film insulators and phosphors can be achieved with evaporation, 

sputtering, or various expitaxial methods. This work focuses on evaporated devices with 

SiON and BTO insulators, as well as devices grown by atomic layer epitaxy9 (ALE) with 

ATO insulators. 

2.3 Physics of Device Operation 

The ACTFEL device operates by applying a large ac voltage across the external 

electrodes. In a matrix-addressed configuration, as in a flat panel display, a voltage just 

below the threshold for light emission is applied to the row electrodes. Then another 

voltage pulse can be applied to the column electrodes such that the total voltage across the 

device exceeds the threshold voltage such that light is emitted10. For research purposes, a 

sequence of alternating, trapezoidal voltage pulses is applied to a test device. Note that 

other waveforms such as a triangle (sawtooth) or sinusoid have been used by other 
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researchers to extract specific kinds of information about ACTFEL devices. The total 

externally applied voltage is capacitively divided across the two insulator layers and the 

phosphor layer. 

Aluminum 
2000 Angstroms 

Silicon Oxynitride (SiON) 1800 Angstroms 

ZnS:Mn 6500 Angstroms 

Silicon Oxynitride (SiON) 
1100 Angstroms 

Indium Tin Oxide (ITO) 1750 Angstroms 

1.1 mm 

Figure 2-1. Typical ACTFEL device structure. 

Figure 2-2 shows the energy band diagrams of the device when driven with an ac 

voltage. Figure 2-2a depicts the device in a flat band situation with no external bias. 

When the phosphor voltage, or, more specifically, the phosphor electric field, reaches a 

critical value corresponding to the external threshold voltage, electrons tunnel out of 

energy states located at the ZnS/insulator interface into the ZnS conduction band. These 

states are distributed throughout the band gap and are referred to as interface states. The 

emitted electrons are accelerated by the phosphor electric field towards the opposite 

interface as shown in Fig. 2-2b. This pulse of current dissipates real power and is known 

as conduction current. As the electrons move in the field, they gain energy. If the 
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electrons gain sufficient energy before reaching the other interface they may be able to 

impact excite a luminescent impurity; about 2.0 eV is required for Mn. When the 

impurity atoms decay to their ground state, they emit photons with energy corresponding 

to the difference between the excited and ground states. For Mn, the emitted light is 

centered at 585 nm which is yellow-orange in color. Once the electrons reach the 

opposite interface, they are captured by interface states. In this process of moving 

electrons from one interface to another, a charge imbalance occurs. The emitting interface 

becomes net positively charged and the collecting interface becomes net negatively 

charged, as shown in Fig 2-2c. The absolute value of the charge which remains at one 

interface after the voltage pulse terminates is called polarization charge. Polarization 

charge gives rise to a phosphor field component that discourages additional conduction of 

electrons. The external voltage is zero until the next voltage pulse of opposite polarity 

arrives, as shown in Fig. 2-2d. Note that during this voltage pulse the polarity of the 

polarization charge is such that it assists in the emission of electrons. This is very 

significant in terms of device operation since the turn-on voltage is lowered. In other 

words, the presence of polarization charge establishes an internal field in the phosphor, 

therefore, reducing the amount of external voltage required for conduction. The voltage 

required for the initial onset of conduction without polarization charge is called the 

threshold voltage and the reduced voltage when polarization charge is present is termed 

the turn-on voltage. Also note that the resulting conduction current flows in the opposite 

direction with respect to Fig. 2-2b and, as before, Fig. 2-2e illustrates that the conduction 

of electrons results in a polarization charge of opposite polarity. This process continues 

cycling through the energy band diagrams emitting a burst of photons each time current 

flows in the phosphor. The process reaches steady state in about 2 or 3 periods. 
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ITO AI
ZnS:Mn

(a) 

Figure 2-2. Cycle of energy band diagrams. 
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In summary, with each alternating voltage pulse, conduction current flows in

alternating directions in the phosphor layer. Some of these electrons excite luminescent

impurity atoms (Mn) which radiatively decay, producing visible photons.

2.4 Electrical Measurement of Device Response 

Fundamentally, there are only a few electrically measurable quantities in any 

characterization of ACTFEL devices. These are separated into the external quantities, 

measured with respect to the external electrodes of the device, and internal quantities, 

measured with respect to the phosphor layer. Externally one can measure the applied 

voltage and the total current or charge flowing through the device as a function of time. 

Current is measured with either a current probe or as a voltage drop across a small resistor 

in series with the device. Total external charge is measured as function of time by placing 

a large capacitor in series with the device which effectively integrates the current. This is 

know as the Sawyer-Tower configuration11. Internal current flowing in the phosphor, 

conduction current, can be measured with a bridge circuit12. First a capacitor is 

connected in parallel with the device and balanced to match the total capacitance of the 

ACTFEL device. Then the current is monitored with a current probe; however, one wire 

from both the device and the parallel capacitor run through the current probe. The wires 

are run in opposite directions so that the currents cancel and the total current below 

threshold is zero. Once conduction occurs in the phosphor layer, there is a difference in 

the current flowing through each wire equal to the internal conduction current. 

There are many techniques for processing this seemingly limited set of data which 

yield tremendous amounts of information about internal device physics. The first 

technique is known as the charge-voltage (Q-V) method13. A Q-V curve is usually 

generated by plotting the time integral of the current or the Sawyer-Tower charge versus 

the external voltage. A typical Q-V curve is plotted in Fig. 2-3. This curve is obtained 

experimentally from a device which has reached the steady state condition. This plot is 

directly related to the energy band diagrams considered above. First, focus on the point of 
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0 external voltage and -50 nC. This amount of charge is the polarization charge perceived 

externally. The actual internal polarization charge can be related to the external charge by, 

Ci Cp 
QP°I = Qext (2-1)

Ci 

where Ci and Cp are the total insulator and phosphor capacitances, respectively. This 

ratio of capacitances occurs frequently when relating external to internal quantities. 

Further note that polarization charge is only defined at Vext = 0. In this case the 

polarization charge just before the positive voltage pulse is equal to the capacitance ratio 

multiplied by approximately -50 nanocoulombs. The same polarization charge is found 

just prior to the application of the negative pulse, however the charge is positive. The Q­

V curve is traversed counter-clockwise beginning with a positive voltage pulse. The 

constant slope for voltages less than 110 V is the total capacitance of the ACTFEL 

structure since, 

dQ
C = (2-2)

dV 

Figure 2-3. Typical Q-V curve. 
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At 110 V, the turn-on voltage, conduction current begins to flow in the phosphor. 

This non-destructive breakdown of the phosphor layer results in a change in slope of the 

Q-V curve. The new slope is the remaining capacitance; the two insulator layer in series 

as the phosphor capacitance is now effectively shorted. At this point note that if the 

applied voltage is lower than the threshold voltage, conduction current does not flow and 

no polarization charge accumulates. If this is the case, the Q-V loop collapses to a single 

line with a slope equal to the total capacitance. From Fig. 2-3 it is seen that the maximum 

voltage amplitude is over 200 V which exceeds the threshold voltage of the device and, 

therefore, opens the Q-V loop. Also note that the Q-V curve is symmetrical about the 

origin; however, this is not always the case. Some devices are asymmetrical with different 

turn-on voltages. In addition to capacitances, threshold voltages, and turn-on voltages 

one can also measure the amount of charge that leaks from the interfaces between voltage 

pulses (see the discontinuities in Fig. 2-3 at V=0), the relaxation charge (see Chapter 3), 

conduction charge, polarization charge, and the extent of device asymmetry with the Q-V 

curve. 

Another form of electrical characterization is the capacitance-voltage (C-V) 

technique14-18. The C-V curve is generated by plotting the ratio of the current to the time 

derivative of the voltage versus the voltage since, from Eqn. 2-2, capacitance is also 

equal to 

i(t)
C= (2-3)dV(t)

dt

A typical C-V curve is shown in Fig. 2-4. Total device ( 0.5 nF) and total insulator (­

1.4 nF) capacitances can be read directly from this curve as can the threshold voltage (­

120 V). Davidson15-17 has used trends in C-V curves to characterize parasitic resistance, 

estimate interface state density, and study device aging phenomena. 

At this point it must be noted that the C-V technique only measures external 
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quantities, whereas the Q-V technique is capable of measuring internal quanties as well. 

The preferred method of processing the C-V data is to relate the external quantities to the 

internal (phosphor layer) values via simple electrostatics. The internal or polarization 

charge isl, 

Ci +Cp
Qint(t) = Qext(t) CpVext(t) (2-4) 

and the internal phosphor and insulator electric fields are, 

CiVext(t)Qipt(t)
Fp(t) = (2-5)

dp(Ci +Cp) 

and 

CpVext(t) +Q int(t)
Fi(t) = (2-6)

di(Ci + Cp) 

where d is the phosphor thickness. Note, that in this form one can substitute Eqn. 2-4 

into Eqn. 2-5 and find the internal phosphor field in terms of externally measurable 

quantities. This calculation is shown in the following equation, 

Fp(t). 1[Vext(t) Qext(t)]. (2-7)
dp C, 

2 Insulator 
Total CapacitanceCapacitance 

(1-1
o 1.5

1

.«!

0 0.5

0

-250 -150 -50 50 150 250

External Voltage (Volts) 

Figure 2-4. A typical C-V curve. 
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Furthermore, note that these calculations assume that there is no spatial distribution of 

charge in the phosphor layer (i.e. the field is constant across the phosphor). Calculations 

based on the existence of space charge are presented in Chapter 4. 

2.5 Phosphor Space Charge 

When space charge is present in the phosphor the energy bands in the phosphor are 

curved and the electric field is not constant across the phosphor. To determine the 

amount of curvature one must assume a distribution of charge and solve Poisson's 

equation. Most researchers believe that space charge occurs in ZnS:Mn ACTFEL devices 

when they are heavily doped with Mn. This leads to a phenomena known as brightness-

voltage (B-V) hysteresis or the memory effect19. There is no known method to measure 

the position of space charge other than building a device with heavily doped probe layers, 

thus forcing the space charge to occur at a specified position. Understanding the origin 

and influence of space charge is very important for two reasons. First, space charge 

causes a distortion of the electric field. If the charge is positive, the field near the emitting 

interface is increased and a run away or catastrophic breakdown situation may occur. 

Second, if one interface experiences an increased field relative to the other interface, the 

conducted charge may be asymmetrical which may cause asymmetrical device aging. The 

possible processes by which phosphor space charge can be created are field ionization, 

impact ionization, trapping or capture, electron hole pair generation, and Auger 

processes19. Numerous researchers20-26 have questioned whether or not the field is 

constant across the phosphor. Bringuier27 and Geoffroy28 have reported the presence of 

space charge in ALE devices using a "frequency scaling criterion". Neyts29 has also 

recently reported the presence of positive space charge in ZnS:Mn devices which occurs 

only in the first few pulses (the transient regime) with a Q-V measurement. A paper by 

Mikami et al.30 will prove to be very important as a verification of observations during the 

investigation of space charge effects. 
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2.6 Interface State Distribution 

The interface state distribution is one area of ACTFEL device physics which is still 

a great mystery. Knowledge of the interface state distribution would enable one to 

examine device asymmetry, aging, and provide the necessary feedback for interface 

engineering to optimize device performance. The origin of interface states is attributed to 

atomic disorder at the insulator/phosphor interface leading to a continuum of states or 

perhaps a specific set of traps states associated with an impurity atom or vacancy in either 

the insulator, the phosphor, or both. Most researchers agree, however, that the density of 

interface states becomes significant for energies from 0.6 eV to 1.0 eV from the edge of 

the conduction band1,19,31. Kobayashi et al.31 has suggested a technique for assessing the 

distribution of filled interface states. Their method leads to high trapped electron densities 

between 0.6 and 0.8 eV with evaporated ZnS:Mn devices with SiON insulators. Sano32 

reports interface traps as deep as 1.9 eV with thermally stimulated current measurements 

of evaporated ZnS:Mn devices with yttrium oxide insulators. This result seems too deep 

for electron emission at typical threshold electric fields of about 1.5 MV/cm. Zheng and 

Allen33 have reported deep levels in ZnS at 0.9 and 2.0 eV below the conduction band 

edge and 0.8 eV above the valence band edge with photocapacitance studies. A listing of 

various interstitial and substitutional impurities and vacancy trap states has been tabulated 

by KrOger34 and Landolt-BOrnstein35. These levels may be related to interface 

states/traps or possible states for the formation of space charge as mentioned in the 

previous section. Two papers from silicon technology are significant because of the 

theoretical derivation of electron emission rates from trap states36-37. This work is crucial 

of the technique for measuring interface states presented in Chapter 5. 

2.7 Electron Transport 

The topic of electron transport in ZnS ACTFEL devices is a source of much 

controversy between various researchers. The disagreement arises from the two very 

different predictions of the electron energy distribution function during conduction. Most 
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of the work in this area consists of theoretical ensemble Monte Carlo simulations and 

vacuum emission experiments. Brennan's calculations38 indicate that the highest energies 

achieved by the electrons is about 2.5 eV for a field of 1.0 MV/cm. This result is 

confirmed by Bhattacharyya et al.39 who found the maximum energy to be about 3.0 eV 

under the same electric field. However, other researchers4°-41 believe that a ballistic or 

loss free electron transport occurs giving rise to electron energies of9 eV or higher. 

These results seem to be correct as the simulation is apparently confirmed by vacuum 

emission measurements. However, the simulation did not include all of the relevant 

physics and the vacuum emission results are highly prone to errot4243. Also, since the 

energy range for efficient Mn excitation is 2.0 to 3.1 eV39, it is difficult to understand how 

these devices achieve their high level of efficiency with 9 eV electrons. 

Three papers are referenced3°,4445 which discuss time-resolved optical emission 

measurements of a broad-band "blue" or white emission in ZnS devices. This emission is 

believed to be related to electron radiative transitions within the conduction band and, 

therefore, the energy of the electron distribution during conduction. Finally, note that if 

the electrons obtain sufficient energy46, electron-hole pairs may be generated. 

2.8 Levels of Device Modeling 

This section of this literature review briefly covers ACTFEL device modeling. 

Device models can be categorized in three distinct classes. The simplest model, and 

therefore the least accurate, is the equivalent circuit as shown in Fig. 2-5. The breakdown 

voltage of the Zener diodes is set to the threshold voltage for the onset of conduction. 

From this circuit one can see that the phosphor capacitance is shorted during conduction, 

as required from the discussion in section 2.3. This model was proposed by Smith19 and 

refined by Davidson16-17. 

The next level of model complexity is referred to as the device physics or analytical 

mode11,27.47. At this level one includes all basics device physics and electrostatic 

equations in the description of the device. Solution requires assumptions about interfaces 

http:mode11,27.47
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state density, space charge, and interface occupancy functions, and usually some kind of 

numerical solution to nonlinear differential equations. 

ITO Electrode 

Insulator 

Capacitance 

Phosphor 
Zener Diodes 

Capacitance 

Insulator 

Capacitance 

Al Electrode 

Figure 2-5. Simplest ACTFEL equivalent circuit. 

The highest level of modeling is ensemble Monte Carlo simulation. Presently, this 

form of device modeling is only concerned with the bulk properties of ZnS, but spatial 

dependence could be included. Monte Carlo modeling simulates electron trajectories and 

scattering events as the electron moves under the influence of an electric field. Scattering 

rates for all relevant physical phenomena which effect electron energy and momentum 

must be included. Bhattacharyya et al.39 includes polar optical phonon, acoustic phonon, 

intervalley, ionized impurity, and neutral impurity scattering rates. Additionally, one must 

describe the Brillouin zone. This is often approximated with parabolic conduction band 

minima or via a detailed band structure calculation. Generally speaking, accurate Monte 

Carlo simulations are very computer intensive and depend highly on many material 

parameters which are not known with a high degree of certainty. 
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2.9 Discussion/Summary 

Much of the ACTFEL device literature relevant to this thesis is reviewed in this 

chapter. The ACTFEL device structure, basic device physics, and electrical 

characterization techniques are discussed. Literature pertaining to phosphor space charge, 

interface states, and electron transport are briefly reviewed as are the three levels of 

ACTFEL device modeling. 



17 

3.0 WAVEFORM VARIATION TRENDS/EQUIVALENT CIRCUIT MODEL 

3.1 Introduction 

In this chapter the electrical response of ZnS:Mn ACTFEL devices is studied as 

characteristics of the driving waveform are systematically varied. Specifically, the turn-on 

voltage, total external charge, and relaxation charge are measured as a function of 

variations in the maximum amplitude, pulse width, and rise/fall time of the driving voltage 

waveform. A revised equivalent circuit is presented which accurately models the 

experimental electrical trends. Furthermore, a new model which predicts the optical 

response with an electric circuit analogy is presented. 

3.2 Experimental Technique 

The devices measured in this work are fabricated by Planar Systems by 

evaporation in the typical AC 1k.b1, stack configuration shown in Fig. 2-1. The nominal 

driving waveform used in this experiment consists of alternating pulses of 210 V 

amplitude, 5 .ts rise and fall time, 30 .ts pulse width, and 1 kHz frequency to approximate 

normal panel operating conditions. The maximum amplitude, pulse width, and rise/fall 

time of the driving waveform are varied about this nominal waveform as shown in Fig. 3­

1. The electrical response of the of the device is characterized by digitally acquiringthe 

external voltage and current waveforms, integrating the current, and extracting three 

quantities from the Q-V curve. In Fig. 3-2 the parameters used to characterize the 

electrical response are defined. Qpuise is defined as the total charge transferred during a 

single voltage pulse, that is, 

2Ci 
Qpulse = 2Qe.t(0) = (3-1)

Ci + Cp 

Note that this externally measured quantity is just the width of the Q-V loop. Charge 

transferred after the voltage pulse reaches its maximum amplitude is also monitored. This 

charge, denoted as relaxation charge, is a significant fraction of the transferred charge as 

shown in Fig. 3-2. Finally, recall that Vtum_on is the external voltage at the onset of 
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induction in the phosphor layer. 

Figure 3-1. Waveform variation. 

Figure 3-2. Q-V loop with response definitions. 
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3.3 Experimental Results 

The systematic trends of Qpulse, Qreiax, and Vtum_on are presented in Fig. 3-3 

through Fig. 3-5. The results of SPICE simulation using the revised circuit model 

discussed in the following section are also included for comparison. Experimentally, 
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Figure 3-3. Maximum voltage amplitude variation. 

it is found that the maximum voltage amplitude has the strongest influence on the device 

response. Both Qpuise and exhibit a strong linear change over the range of 

voltage amplitudes employed. Variation of the pulse width results in similar trends, 

although the effects are of secondary importance. To first order, there is no change in the 

device response with variations in rise and fall time. These trends can be explained by 

considering the time-response of the phosphor electric field, as shown in Fig. 3-6. The 

total phosphor field is calculated using Eqn. 2-5 and the field is separated into two 

components, one due to the external bias and the other due to the polarization charge, in 

Eqn. 2-7. Once again, note that these equations presume that the phosphor layer is free of 



20 

space charge and, therefore, that the field is constant across the phosphor. Returning to 

Fig. 3-6, it is found that the initial value of the phosphor field is established by Qcond(0) 

Qpoi. When the external voltage pulse begins to rise, the phosphor field is eventually 

driven to a critical-field, F(t) = Fthresh where; Vext=Vturn_en. Notice that the field is 

essentially constant at Fthresh. This is phenomena in know as field-clamping. It occurs 

when sufficient charge can be emitted from the interface to exactly balance the effect of 

the ramping external voltage. Notice from Fig. 3-6 that the two field components, Fvext 

and Feend, have equal and opposite slopes during field-clamping. This means that the 

charge is emitted from the interface responds in direct proportion to the external voltage. 

This feedback effect is possible when there is an extremely high density of occupied 

interface states. More will be said about field-clamping in Chapter 4. 

140 
Turn-on Voltage 

120 

100 Polarization Char e 
-o 

80 
Simulated 

60 Experimental 
Relaxation Charge40 8 -8 8 

20 

0

10 15 20 25 30 35 40 

Pulse Width (microseconds) 

Figure 3-4. Pulse width variation. 
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Figure 3-5. Rise/fall time variation. 
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Figure 3-6. Phosphor electric field components. 
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The trend in the maximum voltage amplitude can now be explained. It is apparent 

that if the amplitude of the external voltage component increases, additional charge 

transport is required to keep Ftotai at the clamped value, thus, Qpuise increases with 

external voltage amplitude. Also, as Qpuise increases, Qpoi, increases as given by Eqn. 3­

1. This means that the initial field, at t=0, is closer to Fthresh. Therefore, Vturn_on 

decreases with increasing pulse amplitude. This relationship can be summarized by the 

following expression which is based on the geometry of the Q-V curve, 

Ci Cp [ Qpulse
Vtumon = dpFthreshi . (3-2)

Ci 2Ci 

Notice in Fig. 3-6 that when the external voltage reaches its maximum amplitude, an 

overshoot in transferred charge occurs. This additional charge transport gives rise to a 

relaxation of the phosphor field; thus the name relaxation charge. The trends in the pulse 

width are explained by the modulation of the time for the relaxation charge to settle to a 

constant value. As the pulse width increases, Qrelax and, therefore, Qpoi, increases and 

Vturn_on decreases, as prescribed by Eqn. 3-2. 

3.4 Revised Circuit Model 

Attempts were made to develop an equivalent circuit model which includes the 

detailed physics of ACTFEL device dynamics. This proved extremely difficult, ifnot 

impossible, as the coupled differential equations which describe emission from interface 

states and the electric field transient (see Chapter 4) cannot be modeled with simple circuit 

elements. For these reasons, an empirical approach to modeling is pursued. 

Previous equivalent circuit models for ACTFEL devices15,17,19 typically consist of 

three capacitors connected in series to model the insulator/phosphor/insulator stack and a 

pair of back-to-back Zener diodes which shunt the phosphor capacitor which model 

conduction across the phosphor layer. Davidson et al.16-17, have refined this model, Fig. 

3-7, by including insulator and phosphor resistances and a resistor in series with the diodes 

as a fitting parameter to C-V curves. These equivalent circuits do not accurately model 
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the waveform dependence of the turn-on voltage and measured charge (relaxation charge 

cannot be assessed from dynamic C-V curves). Nor do they fit the dynamic electric field 

or relaxation charge trends described above. By primarily focusing on measured field 

dynamics and relaxation charge, the refined model shown in Fig. 3-8 was developed. 

Essentially, a parallel resistor-capacitor combination is added to Davidson's model. 

Operation of the revised circuit can be explained by considering the application of 

an external pulse waveform. Prior to the breakdown of the diodes, displacement current 

flows through the three series capacitors. After breakdown (turn-on), significant 

conduction current flows through Rd and CT begins to charge. When the external voltage 

reaches its maximum amplitude, the displacement charge goes to zero (dVext/dt = 0), and 

CT begins discharging through RT. Since the voltage across the diodes is still at the 

breakdown voltage, any change in voltage across CT is reflected in the voltage across the 

phosphor capacitor Cp. Thus, a slow decay in the phosphor voltage (phosphor field) is 

R.
Ito 

V
Ext 

Figure 3-7. Davidson's equivalent circuit model. 
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RR.
Ito 

V
Ext 

Figure 3-8. Revised equivalent circuit model. 

Circuit Element Value 

Rito 10 Ohms 

Cil,Ci2 1.5 nF 

Ril,Ri2 0.1 Gohms 

Cp 0.98 nF 

Rp 6.0 Mohms 

Rd 200 Ohms 

CT 7.0 nF 

RT 400 Ohms 

Diode Breakdown 100 Volts 

Figure 3-9. Revised circuit parameters. 
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obtained. The predicted field transients for all three models are compared to actual 

experimental data in Fig. 3-10. Furthermore, Fig. 3-10 illustrates how well the revised 

model accounts for relaxation charge. As mentioned before, the ability of the revised 

model to accurately predict the electrical trends of the device response are shown in Fig. 

3-3 through Fig. 3-5. 
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Figure 3-10. Field transients. 

Although the relationship between the new electrical circuit elements and the 

detailed device physics is not yet clear, the essential device dynamics and electrical trends 

as a function of variations in the driving waveform are taken into account. One cannot 

model the intricate device physics of the electrostatic model, see Chapter 4, with simple 

linear circuit elements and diodes. As a point of interest, note that this revised model is 

strikingly similar to MOS capacitor models18 for interfaces states in a flat-band condition. 

3.5 Optical Circuit Analogy 

Since primary interest in ACTFEL devices is with respect to their optical 

properties, the construction of an equivalent circuit which models the optical response of 
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the device is now considered. The radiative decay of the manganese emission after 

conduction is experimentally found to consist primarily of the sum two exponential terms. 

This decay in emission intensity is shown in Fig. 3-11. The time constants are found to be 

1.8 ms and 0.31 ms from a least-squares fit. Figure 3-12 illustrates a circuit which utilizes 
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Figure 3-11. Experimental and simulated intensity transient. 
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Figure 3-12. Optical circuit model. 
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a conduction current-controlled current source and a pair of parallel resistor/capacitor 

elements in a Foster configuration to realized the two decay constants. Thus, the current 

source in the optical circuit is identical to the conduction current which flows in Rd of the 

electrical circuit. The resistor-capacitor branches in the optical circuit model the two 

decay constants and the optical intensity is taken as proportional to the absolute value of 

Circuit Element Value 

R1 433 Ohms 

R2 206 Ohms 

Cl 4.2 p.F 

C2 1.5 AF 

R3 1.0 Mohms 

Current Gain 1.0 

Figure 3-13. Optical circuit parameters. 
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Figure 3-14. Experimental and simulated B-V curves. 
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the current through R3. This circuit is therefore simulated at the same time as the 

electrical circuit. The circuit element values used in the optical simulation are shown in 

Fig. 3-13. Finally, Fig. 3-14 illustrates the brightness-voltage (B-V) or equivalently 

intensity-voltage characteristics predicted by this optical model. There is extremely good 

agreement above the threshold voltage of 170 V. The curves deviate below threshold 

because actual ACTFEL subthreshold characteristics are not as abrupt as modeled by the 

back-to-back diodes. 

3.6 Discussion/Summary 

Both of the models presented in this chapter are derived from engineering intuition 

or fitting techniques. Although this seems somewhat unscientific, it is argued that since 

the goal is to develop an accurate equivalent circuit for device modeling, any path which 

leads to the desired goal is acceptable. The electrical circuit was arrived at by carefully 

studying the components of the electric field and conduction charge transients. The key 

observation is the presence of relaxation charge. This charge arises from continued charge 

transport across the phosphor, in the same direction as the main conduction charge, after 

the external voltage derivative goes to zero. A capacitive discharge phenomena seems like 

a reasonable way to account for this kind of effect, thus the new circuit elements RT and 

CT. 

Trends in ACTFEL device electrical response to variations in the applied 

waveform are measured, explained, and simulated. The greatest impact upon device 

performance is due to changes in pulse amplitude. Pulse width variation is of secondary 

importance and rise/fall time variations have no effect. The response due to amplitude 

variation is attributed to the requirement that field-clamping occurs in evaporated SiON 

devices. Pulse width dependence is attributed to modulation of the time for relaxation 

charge to reach a steady-state value. A revised equivalent circuit is presented which 

accounts for relaxation charge and, therefore, accurately models the device dynamics as 

well as trends due to variations in the applied waveform. Finally, the electrical model is 
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augmented by an optical circuit. Simulated brightness transient and B-V curves from the 

optical circuit are in excellent agreement with experimental data. 
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4.0 PHOSPHOR SPACE CHARGE/DEVICE PHYSICS MODEL 

4.1 Introduction 

In the device physics assessment of AC ikEL devices, it is usually assumed 1,13,19­

20 that the electric field is constant across the phosphor layer; this implies that no net 

space charge exists within the bulk portion of the phosphor layer. Although this 

assumption is almost universally employed, its validity has been questioned by numerous 

researchers"13,18-28. 

Most discussions of space charge in ACTFEL devices have focused on explaining 

the mechanism responsible for hysteresis in B-V curves21-26. B-V hysteresis is found to 

occur in ACTFEL devices when the Mn concentration exceeds about 0.5%24. Models 

accounting for B-V hysteresis invoke21-24 the existence of positive space charge in the 

ZnS phosphor due to hole trapping or impact ionization of deep levels within the ZnS 

bandgap. Although atomic identification of this positive space charge has never been 

clearly established, the existing evidence suggests22,24 that it is related to Mn and 

probably due to Mn clustering. 

Recently, evidence has been offered27-28 for the existence of space charge in non-

hysteretic, ALE ZnS:Mn ACTFEL devices. This conclusion is reached from a scaling 

analysis of the conduction current with respect to frequency. The purpose of this chapter 

is to provide supporting evidence for the existence of bulk space charge in ALE-grown 

ZnS:Mn ACTFEL devices as deduced from electrical and optical measurements at low 

temperature and to present a revised electrostatic model which includes space charge 

effects. 

4.2 Experimental Technique 

The ZnS:Mn ACTFEL devices measured in this work are fabricated by ALE in the 

typical stack configuration in which the ZnS:Mn phosphor layer is sandwiched between 

two ATO insulating layers. Figure 4-1 illustrates, the similarity to the evaporated device 

structure shown in Fig. 2-1. 
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The ACTFEL device is driven using an arbitrary waveform generator (Analogic 

model 2020) in conjunction with a high voltage operational amplifier (Apex model PA85) 

to obtain alternating bipolar pulses with amplitudes of magnitude 160 V, pulse width of 

Aluminum 
2000 Angstroms 

Aluminum-Titanium Oxide (ATO) 2700 Angstroms 

ZnS:Mn 5500 Angstroms 

Aluminum-Titanium Oxide (ATO) 
2700 Angstroms 

3000 AngstromsIndium Tin Oxide (ITO) 

Figure 4-1. ALE ACTFEL device structure. 

80 ps, a rise/fall time of 30 ps, and a frequency of 100 Hz. Electrical characterization is 

accomplished using a digitizing oscilloscope (Tektronix model 11402) to monitor the 

voltage across the ACTFEL device and a Sawyer-Tower11 capacitor as mentioned in Sec. 

2-4. The current is monitored using a current probe (Tektronix model A6302 with an 

AM503 current probe amplifier). 

Time-resolved luminescence spectra are measured using a SPEX 3/4 meter 

monochrometer and a cooled, extended range photomultiplier tube (PMT). Spectra are 

obtained by digitally acquiring the voltage across a resistor between the PMT and ground. 

A single-system correction to the raw data is performed which accounts for the lenses, 

grating, and detector. The complete experimental set-up is shown in the Fig. 4-2. 
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4.3 Experimental Results 

The voltage and current transients for an ACTFEL device at room temperature are 

given in Fig. 4-3. During the initial rising edge of the voltage pulse, the device behaves as 

a capacitive stack and all of the measured current is displacement current. Once the 

amplitude of the voltage becomes sufficiently large, electrons at the phosphor/insulator 

interface begin to emit and conduction current flows across the phosphor layer; this is 

referred to this as the primary conduction current. During the falling edge of the voltage 

pulse the device appears as a capacitive stack once again and the measured current is 

exclusively displacement current. 

High
Voltage
Amplifier

Z-N 

ACTFEL 
Cryostat

Arbitrary
Waveform

Generator

G -, 
TEK

Oscilloscope

Current 

Probe 

3/4 Meter 

Monochrometer 

PMT 

Figure 4-2. Experimental set-up. 
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As shown in Fig. 4-4, at low temperatures two additional current peaks, 

subsequently referred to as secondary conduction current, are observed during the falling 

edge of the voltage pulse. Using a bridge circuit12 to balance out the displacement current 

below threshold, these secondary current peaks are confirmed to arise from conduction 

current which flows in the opposite direction of the primary current. These secondary 

current peaks are found to occur only during the falling edge of a negative pulse applied to 

the Al electrode. 
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Figure 4-3. Voltage and field transients at room temperature. 

Additionally, with increasing temperature the magnitude of these secondary 

current peaks decreases and they shift in time closer to the initial transition of the voltage 

pulse, as shown in Fig. 4-5. Note that in Fig. 4-5 the current waveform of Fig. 4-4 is 

inverted and focuses on the secondary current peaks which occur between 250 4s to 400 

The appearance of secondary current, as manifest by these two current peaks, is 

correlated with changes in the shape of the primary conduction current. Notice in Fig. 4­

4, the top portion of the conduction current is essentially flat at 275 K whereas at low 
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Figure 4-4. Current transients at low and room temperature. 
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Figure 4-5. Secondary current peaks shift with changing temperature. 

temperature, this portion of the current waveform is peaked. Keep in mind that the same 

external voltage waveform is applied to the same device for both low and high 

temperatures. Focusing once again on the differences in the main conduction current, a 

change in the onset of conduction or equivalently a change in the turn-on voltage is 
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observed. Also, the top portion of the conduction currents should be the same amplitude 

at 120p,s. These two differences leads to the conclusion that the insulatorcapacitance of 

the ACTFEL device is a function of temperature, as demonstrated by the shift in the onset 

of conduction. Even if it is assumed that this is true, it does not account for the peak 

shape of the conduction current at low temperature. If the change in capacitance is taken 

into account, it is found that this extra peak is superimposed upon the flat portion of the 

primary conduction current. 

In order to further investigate the nature of the secondary current peaks, time-

resolved luminescence measurements are performed. Figure 4-6 displays the luminescence 

transient at a wavelength of 460 nm and the electric field transient at a temperature of 50 

K. The first intensity peak, labeled main emission, is concomitant with the flow of primary 

conduction current (during field clamping) and the second emission peak, labeled 

secondary emission, occurs during the falling edge of the voltage waveform during which 

Figure 4-6. Time-resolved luminescence and electric field. 
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the secondary conduction current peaks are found. This is a very important observation. 

Notice that the secondary light peak occurs before the average electric field changes sign. 

If they occurred at the same time, one could explain this as electrons rushing back across 

the phosphor as the field changes signs. This is the most important piece of evidence 

supporting the conclusion that space charge is present in the phosphor. 

The low temperature luminescence spectra corresponding to the time integral of 

the primary and secondary emissions in Fig. 4-6 are given for both voltage polarities in 

Fig. 4-7. The legend indicates the electrode polarity of the emission intensity; the negative 

electrode is used since it corresponds to the interface from which electrons are emitted. 

Note that secondary emission is measured for both polarities even though secondary 

current peaks are observed only when the Al electrode is negatively biased. It is believed 

that secondary current flows for both polarities but that it is below the detection limit 

when the ITO electrode is negatively biased; this is consistent with the fact that as the 
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Figure 4-7. Emission spectra. 
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applied bias is ramped towards threshold, light in the ACTFEL device is always detected 

prior to the onset of measurable conduction current. 

Although there are differences in the spectra shown in Fig. 4-7, the similar shape 

and peak energy, 2.7 eV, is striking. Thus, the primary and secondary blue emission at 2.7 

eV = 460 nm, associated with both voltage polarities is attributed to the same physical 

process, as discussed later. Having emphasized the similarities between the spectra of Fig. 

4-7, note that there are also certain differences in the primary spectra. Since the spectra 

occur concomitant with the flow of conduction current, these differences are attributed to 

differences in the distribution of hot electrons giving rise to the measured blue emission. 

This assertion implies that the electron distribution is hotter when the ITO electrode is 

biased negatively. This hotter distribution is consistent with the observation that the 

phosphor clamping field (actually, this should probably be referred to as a pseudo-

clamping field since ALE devices do not exhibit hard field-clamping) at the onset of 

primary conduction current is greater when the ITO electrode is negatively biased. 

4.4 Discussion 

In this section a model is proposed which explains all of the observations noted in 

the experimental results section. It is shown that the experimental results can only be 

explained by assuming the existence of space charge in the phosphor layer. 

Begin by assuming that the space charge can be modeled as a thin sheet of charge 

somewhere inside the phosphor. The following is a summary of the various quantities 

defined by Fig. 4-8, 

Vext = External voltage applied to the device.

11,12 = Insulators

P I,P2 = Phosphor layer on either side of the space charge.

F = Electric field (subscript indicates the region where the field exists)

ds = Position of the space charge measured from the left interface at x = 0.

d = Film thickness' (subscript indicates the region)



38 

Qa = Charge residing at the left interface.

Qb = Space charge.

Qc = Charge residing at the right interface.

Qa Qb Q 

I P1 P2 I2 

F 
it 

Fp 1 Fp2 F exti2 

01 >X 

E ds-> 

i I 
d X X d i2 

Figure 4-8. Device definitions to account for space charge. 

All charges are assumed to be positive quantities. The derivation ofthe internal field in 

each region of the phosphor begins with the electrostatic boundary conditions, 

x Dn 1 rin 2 ) = ps (4-1) 

where x is the unit normal vector at the interface, Dn1 and Dn2 are electric field densities, 

and ps is the surface charge density. In terms of the dielectric constant or permittivity of 

the thin-films, 

6n1Fnl En2Fn2 = --Q . (4-2)
A 

Now, considering each of the sheets of charge, 
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Q.
6,1F,1 epFp 2 = (4-3a)

A 

Qb 
epFp 1 epFp 2 = (4-3b)

A 

Qc
epFp 2 ei 2 Fi 2 = . (4-3c)

A 

Also, from Kirchoffs Voltage Law, 

Veit = V,' + Vp1 Vp 2 + Vi 2 (4-4) 

and therefore, 

Vext = Fildo +Fpids+Fp2(dp +F,2d,2. (4-5) 

Note that the negative sign is included to conform with the convention originally 

established by Bringuierl. Substitution, of Eqn. 4-3 into Eqn. 4-4, leads to a system of 

four equations and four unknowns. However, first solve for Fp1 by substitution to obtain, 

dii . ep)± Qb dile ]+ d,2Q.FplI(dp d.) + (4-6)
6,1 A 6,1 J epA 6i2 6,2A 

. 

Collecting terms and solving for Fp1 leads to, 

1 )­
(-6p- +2QbC,1 

1 

1 [ 2C,Vext + Qe Qc 1 Cs CiFpi = (4-7)
dp 2(C, + Cp) dp 2(C, + Cp) 

where the capacitances are given by, 

6AC= (4-8)
d

with the appropriate permitivities and thickness. Equation 4-3b leads directly to 

Qb
Fp 2 = r p 1 . (4-9)

epA 

Fit and Fi2 can easily be determined from Eqn. 4-3a and Eqn. 4-3c. Finally, the average 

electric field across the phosphor is given by, 
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as dp 

F . = 1 [ f Fpldx + IFp2dx = Fp' + 42-b (1 ds (4-10)
(T, 0 epA dp )as 

Note that Eqn. 4-7 and Eqn. 2-3 given by Bringuierl are identical if Qb goes to 

zero or ds goes to dp. If Qb goes to zero, Qa = -Qc. This results in the cycle of energy 

band diagrams given in Fig. 2-2. However, if space charge is present in the phosphor and 

one assumes a delta function spatial distribution, the phosphor field will have two different 

values on either side of the sheet of charge. For completeness an expression for 

conduction current assuming interface a is emitting charge is included, 

. dQa dQb dQc
icond = = (4 -11)

dt dt dt 

and once again a reminder to the reader that all charge is assumed to be positive. Also, 

note that in this calculation Qb accumulates at the expense of Qc. 

Consider the case where interface a is net negatively charged and interface b is net 

positively charged (i.e. depleted of electrons with respect to flat band) and the external 

voltage and the space charge is zero. The internal field is, 

Fp = 
1 [ -Q. Qc 1 ) 

(4-12)
dp 2(C. + Cp) d (CL + CP) 

and the energy band diagram would appear as shown in Fig. 4-9. If positive space charge 
Qa Qc 

Figure 4-9. Energy band diagram with no space charge and no external bias. 
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is included, the energy band diagram is bent as indicated in Fig. 4-10. Notice that a 

negative field already exists, and the addition of positive space charge, increases the 

magnitude of the field in Fp1 and decreases the maginude of the field in Fp2. 

Qb Qc 

Figure 4-10. Energy band diagram with space charge and no external bias. 

This model is now used to explain all of the experimental results of the previous 

section. The unexpected observations at low temperature are; 

1) The main conduction current has a peaked shape instead of being flat. 

2) Two new "secondary" current peaks appear and their polarity is 

opposite to that of the main conduction current. 

3) The first secondary peak emits 2.7 eV light, but the second secondary peak 

does not. 

4) Both the current peaks and the emission have a greater magnitude when the 

aluminum electrode is biased negatively. 

5) The light is centered at 2.7 eV. 

6) The new current and light emission is thermally quenched. 

7) The secondary current peaks occur at earlier times as the temperature is 

increased. 
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To explain all of these observations, a steady-state energy band diagram cycle including 

space charge is presented in Fig. 4-11. Each of these energy band diagrams is discussed in 

detail and related to one of the experimental observations listed above. 

As an arbitrary starting position, consider Fig. 4-11a in the upper righthand corner 

of Fig. 4-11. In this case, there is no external bias, no space charge (Qb=0), and an 

internal field established by the polarization charge (Qa=-Qe). 

Figure 4-11b shows the application of a positive voltage, Vert, to the ITO 

electrode. This bends the conduction band further (i.e. the external field constructively 

adds to the internal field). 

Next, proceed to Fig. 4-11c which shows tunnel injection of electrons from the 

right interface (Al side) and the formation of space charge by impact ionization ofstates 

within the bandgap. This leads to a multiplication effect (i.e. one electron is emitted from 

the right interface and two electrons are collected at the left interface). The explains why 

the main conduction current has an additional peak (observation #1 and Fig. 4-4). Note 

that in this case the field starts with a positive magnitude and, in constrast to Figs. 4-9 and 

4-10, the field is reduced in region pl and increased in region p2. 

As the voltage pulse begins to decrease in Fig. 4-11d (i.e. Vext becomes less 

negative), the field in region pl changes sign. As this occurs, electrons at the left interface 

rush back and neutralize the space charge. This recombination results in the emission of 

light with a wavelength of 460 nm. This explains the first of the secondary current peaks, 

and the corresponding emission of light (observation #2). 

As the voltage pulse continues to decrease, the space charge is completely 

neutralized and electrons in shallow interface states flow back to the left interface. This is 

shown in Fig. 4-11e. It is this phenomena that gives rise to the second secondary current 

peak and explains why it does not emit the same intense spectrum as the first secondary 

peak (observation #3 and Fig. 4-6). Note that in Fig. 4-11c that main conduction current 

flows to the right (i.e. the electrons move to the left) and the the secondary current peaks, 
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shown in Figs. 4-11d and 4-11e, flow in the opposite direction as required by the 

observations. 

At this time, the voltage pulse returns to zero. Notice that Fig. 4-11f corresponds 

to the initial diagram given in Fig. 4-11a with the opposite charge state. 

Finally, Fig. 4-11g shows the application of a voltage pulse of the opposite polarity 

to the ITO electrode and the corresponding injection from the left interface (ITO side). 

These injected electrons, however, do not impact ionize bulk states and, therefore, do not 

form space charge or emit light during recombination. This can be attributed to the fact 

that the bulk states responsible for space charge occur predominately on the ITO side of 

the phosphor layer (observation #4). 

Now, consider the fact that the emission is peaked at 2.7 eV and thermally 

quenched (observation #5). Mikami et al.30 have performed photoluminescence (PL) 

spectra measurements of ZnS:Mn layers grown by halide-transport chemical vapor 

deposition. Specifically, Mikami et al. observe a strong blue PL emission with a peak at 

460 nm (2.7 eV) which exhibits thermal quenching by a factor of 1/3 upon raising the 

temperature from 77 to 300K. This is very similar to the experimental observation #5. 

Mikami et al. attribute this emission to radiative recombination from shallow chlorine 

donors on a sulfur site, Cls, to a deep acceptor state identified as a zinc vacancy, Vzn. It 

is interesting to note that the secondary current peaks and corresponding light emission 

are not observed in evaporated ACTFEL devices which do not use Cl during processing. 

This seems to imply that Cl is crucial for the formation ofspace charge. The ionization 

energy of Cls is reported35 to be about 0.1-0.3 eV which places the Vzn level at about 0.6 

eV above the ZnS valence band maximum, E. This level is probably due to the second 

acceptor state of the Vzn which has been crudely estimated34 to be located about 1.5 eV 

above E. This is summarized in Fig. 4-12. 
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Figure 4-11. Energy band diagram cycle with space charge. 
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Figure 4-12. Energy states associated with the formation of space charge. 

With these considerations in mind, the process of forming space charge, shown in 

Fig. 4-11c, is explained as follows. Main conduction electrons impact ionize zinc 

vacancies which reside approximately 0.6 eV from the valence band edge. This leaves the 

pair of Cl atoms and the zinc vacancy net positively charged. Some of the main 

conduction electrons recombine. In the recombination process the electrons are first 

trapped by Cl atoms, and then radiatively decay into the ionized zinc vacancies, thus 

neutralizing one unit of space charge. This radiative recombination process results in the 

2.7 eV emission observed when the main conduction current flows. When Al is negatively 

biased, not all of the space charge is neutralized by the main conduction current; some 

space charge remains until the falling edge of the voltage pulse. As the voltage is reduced 

during the falling edge, electrons in shallow interface states flow backwards, see Fig. 4­

11d, recombination occurs through Cl atoms, and the space charge is neutralized. This 

gives rise to the second emission peak at 2.7 eV. 



46 

It is believed that Cl is present throughout the phosphor layer as the ALE growth 

process relies on the following chemical reaction, 

ZnCl2 + H2S -->ZnS + 2HC1. 

However, it is reasonable to assume that there are more zinc vacancies and, in general, 

more atomic disorder on the first side of the phosphor grown. This agrees with the 

finding that the space charge occurs predominately on the ITO side of the phosphor which 

is the first grown. 

The presence of two energy states in the band gap explains why the emission is 

sharply peaked at 2.7 eV (observation #5). If there is only one state for recombination, 

the emission would be broad since the initial state of the recombining electrons would be 

spread over all available states in the conduction band. 

The thermal quenching of this phenomena agrees with observations30 by Mikami 

et al.; this thermal quenching phenomena is believed to be due to the fact that the 

probability of impact ionization increases with decreasing temperature (observation #6). 

Another possible explanation, although very unlikely, is related to the depopulation of the 

Cl state with thermal energy. In this case the electrons would be re-excited to the 

conduction band before recombination with the zinc vacancy occurs. 

The most difficult observation to explain is #7. This relates to the shift in time of 

the secondary current peaks as seen in Fig. 4-5. To understand this phenomena, return to 

the theoretical model for space charge discussed above. The average phosphor electric 

field and its components, given by Eqns. 4-7, 4-9, and 4-10, (assuming 10 % of the 

conducted charge results is space charge), are plotted in Fig. 4-13. First note that the field 

is constant across the phosphor thickness until conduction current begins to flow at 

approximately 75gs. With the initiation of conduction current the field splits into two 

components; this field-splitting is due to the formation of space charge. Note that positive 

space charge causes Fp', the field on the ITO side of the phosphor, to become less than 

the average field and Fp2, the field on the Al side of the phosphor, to become larger than 
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the average field. Notice that the Fp1 curve crosses through zero prior to Fp2. This is 

very important as the Fp1 crossing occurs when the first of the two secondary current 

peaks appears; this corresponds to the energy band diagram of Fig. 4-11d. When Fp1 

2­
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Figure 4-13. Electric field transients. 

crosses zero, the space charge begins to be neutralized and both field components, Fp1 and 

Fp2, converge back to one uniform field equal to Fave. The second secondary current 

peak occurs when Fave reaches the zero crossing point; this corresponds to Fig. 4-11e. 

Note that the amount of spread between Fp1 and Fp2 is proportional to the amount of 

space charge present in the phosphor. Therefore, if the amount ofspace charge increases, 

Fp1 shifts to lower field values and its zero crossing point occurs at earlier times. This is 

precisely the reason why the current peaks shift in time at various temperatures (see Fig. 

4-5). Apparently, lowering the temperature allows a significant amount of space charge to 

form in the phosphor. As the temperature is lowered more space charge is formed, Fp1 

shifts to lower field values, and the corresponding current peaks shift to earlier times. 

Also, note that the amplitude of the secondary peaks increase as the temperature is 
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lowered. This is consistent with the notion ofan inverse relationship between the amount 

of space charge and temperature. This explains observation #7. 

4.5 Summary 

In this chapter the results of an experiment that confirms the presence of space 

charge in ALE AC If EL devices operated at low temperatures is reported. The 

temperature dependence is attributed to the fact that space charge forms by impact 

ionization and that the probability of impact ionization increases as the temperature is 

lowered. The presence of space charge at low temperature yields two new current peaks 

superimposed on the room temperature current waveform. The first of the two new peaks 

is found to emit 2.7 eV photons while the second does not. The first peak is attributed to 

the radiative neutralization of space charge. The space charge is believed to originate 

from impact ionization of Zn vacancies. Electrostatic calculations accounting for the 

device response assuming a sheet of space charge are consistent with experimental 

observations. Finally, it is concluded that the space charge exists predominately on the 

ITO side of the phosphor which is the first grown side. 
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5.0 INTERFACE STATE DISTRIBUTION/DEVICE PHYSICS MODEL 

5.1 Introduction 

In this chapter an experimental technique for assessing the distribution of interface 

states in ACTFEL devices is presented. Interface states are energy states which are 

distributed throughout the bandgap and are physically localized at the phosphor/insulator 

interface. Knowledge of their distribution in energy is critical since these are the states 

which inject conduction current electrons into the phosphor. Knowledge of the interface 

state distribution could be very useful in assessing the origin of device aging and 

asymmetry, and could be valuable for interface-engineering and device optimization. Also, 

the interface state distribution is one of the greatest uncertainties in Bringuier's device 

physics model'. 

5.2 Theory 

First, recall that during normal device operation electrons are injected into the 

phosphor conduction band and excite luminescent impurities during transport. Electron 

emission from interface states may occur by one of three different mechanisms, 

1) thermal emission, 

2) phonon assisted tunneling, or 

3) pure tunneling. 

These mechanisms are shown pictorially in Fig. 5-1 along with a possible interface state 

distribution in which the states are occupied up to the quasi-Fermi level, Eqf. For an 

electron to reach the conduction band, it must either surmount the potential barrier 

established by the bandgap of the phosphor or tunnel through the barrier. Notice in Fig. 

5-1 that the top of the barrier is drawn as a curve rather than the more typical triangle. 

This barrier height lowering phenomena, known as the Frenkel-Poole effect, arises from 

the high electric field in the phosphor. The amount by which the barrier is lowered, AE, is 

given by,35 
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.1 qFp T/2 
(5-1)

7tCp 

where Fp is the phosphor field and ep is the permittivity of the phosphor. For example, if 

the electric field is 1.5 MV/cm and the relative permittivity of ZnS is 8.3, AE = 0.32 eV. 

This barrier lowering can be very significant in the emission rate equations as AE often 

occurs in exponentials. 

Nss(E) 

AE

Eqf Thermal Emission

Phonon Assisted Tunneling
e 

Pure Tunneling Eqf 

Insulator Phosphor Conduction Band 

E 

Figure 5-1. Emission mechanisms. 

Thermal emission is a process whereby an electron in an interface state gains 

energy from the thermal energy of lattice vibrations (phonons) which is sufficient to allow 

the electron to surmount the barrier . This emission rate, including barrier height 

lowering, is given by36, 

Eqf -DE
en (Thermal) = avthN. exp (5-2)

kT 

where k is Boltzmann's constant, T is the temperature in degrees Kelvin, a is the capture 
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cross section, ITc is the effective density of states, and with is the thermal velocity. 

Phonon assisted tunneling is a two-step process in which an electron gains energy 

from phonons, although not enough energy to surmount the barrier. The energy barrier 

seen by an energetic electron is effectively reduced and the electron tunnels through the 

reduced barrier into the conduction band. The phonon assisted tunneling emissionrate, 

en(PAT), is given by36, 

7t (m*)
1/2 

(kT)"2 (1_ AE )513)en (PAT) = en (Thermal )f exp[z (5-3)dz
hFp (zqkT ) 

where en(Thermal) is the thermal emission rate given by Eqn. 5-2, h is Plank's constant, 

m* is the effective mass of an electron, and z is the normalized energy, 

Eqf 
z = (5-4)

kT 
. 

Finally, the pure tunneling mechanism is due to direct electron tunneling from 

interface states to the conduction band. This emission rate is given by36, 

qFp 8n (2m 4)1/2 Elf AE )5/3eia, (PT) = ex* 1/2 (5-5) 
4(2M Elf) Eqf 

3 cillP 

The sum of all three mechanisms gives the total emission rate, 

en(Total) = en(Thermal) + en(PAT)+ en(PT). (5-6) 

In addition to understanding the mechanisms for electron injection into the 

conduction band, it is important to determine how the quasi-Fermi level, Eqf, changes as a 

function of time. The distribution of electrons at the phosphor/insulator interface is 

described by an occupancy function. In equilibrium semiconductor physics, this function 

is called the Fermi-Dirac distribution function and the Fermi level is the energy at which 

the probability of an electron having that energy is 1/2. In the case of an ACTFEL device 

the Fermi-level is called a quasi-Fermi level. This is due to the fact that the distribution 

function, f(E), is no longer "Fermi-Dirac"-like and changes as a function of time. The 
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nonequilibrium distribution function is given by the differential equation',

af(E)
= en(Total)f(E). (5-7)

at

The general solution is',

t 
f(E,t) = fo(E)exp[ f en(Total)de . (5-8) 

0 

where fo(E) is the inital distribution function at t=0. The time evolution of the electric 

field is given by Eqn. 2-3 in terms of the externally measured charge or in terms of the 

internal or conduction charge as, 

Fp(t) = 
1 

[C,Vext(t) Q (t)] (5-9)
dp(Ci +Cp) 

or, in terms of the occupancy function gE), 

E. 
Fp(t) = 

1 [CV..t(t) q j1\1.(E)[fo(E) f(E,t)]di (5-10)
dp(Ci +Cp) 

Note that the second term in the outer brakets is actually the transferred conduction 

charge, 0; ( ) in Eqn. 5-9. If the occupancy function f(E) is assumed to be close enough 

to a step function, the limits of integration in Eqn. 5-10 can be changed as follows, 

Eqf(t) 
Qint(t) = f qNs.s(E)dE (5-11) 

Efb 

where Efb is the quasi-Fermi level at flat-band. Flat-band is the condition shown in Fig. 2­

2a where both phosphor/insulator interfaces are neutral. 

To summarize, Eqns. 5-8 and 5-10 comprise a set of coupled differential 

equations. This system can be solved by assuming a step function for f(E) and a single 

discrete trap level for Nss(E)1. In the more general case, the system of differential 

equations becomes extremely difficult and would in general require a numerical solution. 
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The technique for measuring interface states is based on an observation that allows 

one to unravel this very complicated set of equations. The observation is based on Eqn. 5­

8 and the equations that describe the emission rates, Eqns. 5-2 through 5-6. First, notice 

that the only time dependence in the emission rates is implied through the electic field 

dependence. Furthermore, if the electric field is a constant, the total emissionrate is 

independent of time and can be removed from the integral in Eqn. 5-8 as follows, 

f(E,t) = fo(E)exp[en(Total) t]. (5-12) 

Assuming that the field is held constant and that pure tunneling is the dominant 

emission mechanism, Eqn. 5-12 is plotted at different times. Notice how fast the initial 
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Figure 5-2. Time evolution of the occupancy function at 1.5 MV/cm. 

occupancy function, fo, changes. The occupancy function at t>0 is not a Fermi-Dirac 

function; in fact, the function is not even temperature-dependent (assuming emission 

occurs exclusively by pure tunneling). The occupancy function is determined exclusively 

by the electric field strength. Another interesting point is that independent of whatever 

initial distribution is assumed, e.g. fo is assumed to be a step function at 0.5 eV in the 
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present case, it is immediately distorted by the electric field, as shown in Fig. 5-2. Finally, 

note that after 5 ms the occupancy function begins to reach steady-state. This means that 

the probability of any electrons deeper than 0.95 eV being emitted in less than 5 ms is very 

low. In Fig. 5-3 the occupancy function is plotted after 5 ms (steady-state) under a 

constant field, again assuming that emission occurs exclusively by pure tunneling. This 

figure illustrates how far the function moves through the bandgap for different constant 

field magnitudes after 5 ms. 
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Figure 5-3. Occupancy function after 5 ms at given field strengths. 

The previous discussion provides the key for understanding how the interface state 

distribution is measured. If the phosphor field is held constant at a given value long 

enough for the system to reach steady state ( 5 ms), the maximum depth in energy from 

which charge is emitted can be determined from Eqn. 5-12, as shown in Fig. 5-3. Then, 

by stepping the electric field from low to high values, the interface state distribution can be 

assessed through differentiation of Eqn. 5-11. This gives, 
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1 dQt(t.)ui 
Ns.,(Egf(t.cs)) = (5-13)

q dE 

where tss is the time to reach steady-state and Eqf(tss) is the position of the quasi-Fermi 

level at tss. In Fig. 5-3, Eqf(tss) corresponds to the point where f(E) equals 1/2. 

Most AC iTEL models that consider the occupancy function assume that it is a 

step function. A step function occupancy assumes that all states above Eqf are empty, 

while all states below Eqf are filled. A step function occupancy can be shown to be an 

excellent assumption by evaluating the derivative of gE), as indicated in Fig. 5-4, to 

access the width of the energy transition between filled and empty states. Note from Fig. 

5-4 that Eqf corresponds to the peak in these curves and that the FWHM is approximately 

0.1 eV or less and that it does not change significantly with the field strength; this 

demonstrates the validity of the step function approximation under a constant phosphor 

field. 
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Figure 5-4. Spread of the occupancy function after 5 ms at various fields. 

In summary, it has been shown that if the electric field in the phosphor is held at a 

constant value for approximately 5 ms, the quasi-Fermi level, Eqf, reaches steady-state, 

http:Ns.,(Egf(t.cs
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and all states above Eqf are depopulated to within an accuracy of 0.1 eV. This suggests 

that the interface state density may be assessed if the transferred charge is measured as the 

field is stepped from low to high values and held constant at each field for 5 ms to allow 

steady-state to be attained. The maximum emission energy, EqAtss), from which all the 

charge at a given field strength is emitted is given by Eqn. 5-12. With each increasing 

magnitude of the field, the increase in the total amount of emitted charge is attributed to 

the increased depth at which Eqf saturates. This is illustrated in Fig. 5-5. If field El is 

held constant for 5 ms, all electrons above Eqf(1) are emitted. Then, if the field is 

increased to E2, all electrons above Eqf(2) are emitted. Of course this assumes that there 

are electrons in the interface states to be emitted; this means that some initial polarization 

charge is present before the field can be set to a constant. 

e 

Phosphor Conduction Band 

E2 El 

Figure 5-5. Emission at various field strengths. 

Maintaining a constant field is very difficult because, as shown in Chapter 2 and 4, 

the electric field has two contributions, one due to the externally applied voltage and one 
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due to the internal polarization charge. As charge is emitted from interface states, the 

internal field changes. This internal feedback effect associated with the emission of 

interface charge leads to charge emission under a variable field condition. However, a 

technique to force the internal field to a constant value has been developed, as discussed in 

the next section. 

5.3 Experimental Technique 

The ability to measure interface state density hinges on being able to accurately 

hold the electric field at a constant value for a given duration. Consider the equation for 

the phosphor electric field which is given in terms of the charge measured externally by a 

Sawyer-Tower11 capacitor and the external applied voltage, 

Fp = I 
dp 

Qs` 
Ct 

Ve.t ). (5-14) 

Rearranging this equation yields, 

Cst (NT, Ci 

Ti( cst P P) 
(5-15) 

where QstCstVst. If Fp is set to a constant, Eqn. 5-15 prescribes howVext(t) must 

change in response to the measured value of Vst(t) in order to insure that Fp is indeed 

constant . Therefore, the equation that needs to be implemented in order to maintain a 

constant phosphor field is, 

Vext(t) = G(Vst(t) Vd.) (5-16)

where G is the gain, given by Cst/Ct, and Vdc is a dc voltage corresponding to the constant 

value of the field. The experimental set-up used to realized this is shown in Fig. 5-6. 

The experimental set-up shown in Fig. 5-6 periodically forces the phosphor electric 

field to a constant value during a portion of the driving waveform. Both the arbitrary 

waveform generators are synchronized. The upper generator creates the standard 

waveform, shown in Fig. 5-7, with a frequency of 100 Hz. This signal is amplified by the 

high voltage amplifier which in turn drives the ACTFEL device. The lower generator runs 
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at one-tenth the frequency of the upper generator (i.e. 10 Hz) and generates a field-control 

pulse which controls the position of the analog switch (i.e. during the field-control pulse 

the switch is closed) . Note that the duration of the field-control pulse is approximately 

High
Voltage
Amplifier

ACTFELAnalog 
Switch 

Field 
Arbitrary Control 
Waveform Circuit 
Generator TEKST// 

Oscilloscope 

Arbitrary 
DCWaveform 

VoltageGenerator 
Source 

Figure 5-6. Field-control experimental set-up. 

half a period of the standard 100 Hz waveform. It is therefore, 1/200 seconds or 5 ms as 

required to reach steady-state, as discussed in the previous section. The field-control 

waveform generator operates at 1/10 of the standard waveform frequency to insure that 

the device is allowed to re-establish steady-state with the standard waveform prior to the 

application of the subsequent field-control pulse. Typically, the ACTFEL device can re­

establish steady-state with the standard waveform after about 2 complete cycles 

subsequent to the application of the field-control pulse; 10 cycles are used to insure that 

steady-state is indeed reached. 
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Figure 5-7. Field-control waveforms. 

The voltage across the Sawyer-Towers l capacitor, Vst(t), and the external voltage 

across the device, Vext(t), are monitored with a digital oscilloscope. The Sawyer-Tower 

capacitor is typically very large (50 nF) compared to the total capacitance of the device. 

This ensures that there is very little voltage dropped across Cst. Note the Vst(t) is fed into 

the field-control circuit which synthesizes Eqn. 5-16. This circuit compensates for 

changes in the internal electric field due to the emission of charge from the interface states 

by changing the externally applied voltage. In effect, the internal feedback caused by the 

redistribution of transferred charge is canceled out by the external feedback of the circuit. 

The dc source is used to set the desired phosphor field in the ACTFEL device. 

The field-control circuit is illustrated in Fig. 5-8. Both the dc voltage supply and 

Vst are buffered with op-amps. Vst is buffered to ensure that no charge leaks off Cst, as 

the input impedance of the op-amp is very large. Both inputs are brought together in a 

summing node and are fed into a low-gain inverting amplifier. When the analog switch is 

closed, the total closed-loop gain is the product of the gains ofthe low-gain inverting amp 

and the high voltage amp. This gain is variable since it depends on the insulator 

capacitance of the device as indicated by the G factor in Eqn. 5-16. 

The procedure for calculating the interface state density as a function of energy is 

as follows; 

1) Step the electric field using the field-control circuit from low to high values 

(i.e. 0.1 to 1.6 MV/cm). 
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2) At each field calculate the total internal charge transferred, Eqn. 2-4, and 

the maximum depth from which the electrons are emitted, using Eqn.5-12. 

3) Approximate the derivative of Eqn. 5-13 between each pair of data points 

with a finite difference equation. 
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--/WV-­
AnalogFrom 1 KOhm 
SwitchWaveform 
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Voltage 
Amplifier 

ACTFEL10 KOhm 

DC 
Voltage + 
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Figure 5-8. Field-control circuit. 

The finite difference equation is, 

1 AQ 1 (N.,(Fp2) Q.(Fpi)
Ns.,(E) 4--, = (5-18)

q AE q Ef(Fp2) Eqf(Fpl) 

where 

Q.(Fp) = tisQ (te)dt' (5-19) 

0 



61 

is the total internal charge transferred while the field is held constant across the phosphor 

for a given field, Fp, and Eaf(Fp) is the position of the quasi-Fermi level after steady-state 

is reached (i.e. tss=5 ms). Note that each value of the differential Nss is plotted at an 

energy equal to the average of the two adjacent values of Eqf; i.e. [Ecif(Fp2)-Ecif(Fpi)]/2. 

The field steps should be very close in magnitude for the difference equation to be a good 

approximation to the derivative, but AE should not be less that 0.1 eV, as indicated by Fig. 

5-4. 

All of the equations derived thus far have considered pure tunneling to be the 

exclusive electron emission mechanism. If the interface state measurement is performed at 

room temperature, it is possible that other emission mechanisms need to be included. 

Note that the inverse of the total emission rate (pure tunneling + phonon assisted tunneling 

+ thermal emission) is the average time an electron at a given energy spends in an interface 

state before being injected into the conduction band. By setting the inverse of the 

emission rate to tss5 ms, one can calculate the relationship between the maximum 

electron emission energy; Eaf(max), as a function of the electric field. This relationship is 

plotted in Fig. 5-9. The main feature to notice is that at room temperature, one of the 

thermal emission mechanisms could dominate at low electric fields ifthe capture cross 

section, a, is large enough; it will be shown in the next section that this is not the case and 

that thermal emission mechanisms can be neglected. It is important to note that a is the 

only adjustable parameter utilized in the interface state assessment. Additionally, this 

parameter is only employed for the room temperature measurement while there are no 

adjustable parameters for the low temperature measurement. Since Nss is independent of 

temperature, this approach may be useful for assessing a. 

In summary, Nss is given by the discrete difference equation, Eqn. 5-18. The 

transferred charge, AQ, is calculated from the difference in total charge transferred 

between two adjacent fields. AE in the denominator of Eqn. 5-18 is obtained by 

calculating the difference in the steady-state Eqf between the same two fields. Different 
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Figure 5-9. Maximum electron emission energy under a constant field for 5 ms. 

field values are generated experimentally by discretely changing the phosphor field (from 

approximately 0.1 to 1.6MV/cm in steps of 0.1MV/cm) usingthe field-control circuit. Nss 

is calculated for each pair of phosphor fields and each value of interface state density is 

plotted at an energy corresponding to the average between the two steady-state values of 

Eqf. 

5.4 Experimental Results 

At low temperature, electron emission from interface states occurs exclusively by 

pure tunneling, whereas at room temperature, thermal emission or phonon-assisted 

tunneling could presumably play a role, as previously illustrated in Fig. 5-9. The 

temperature-dependence of the measurement can be understood by plotting Nss versus 

energy for the same device at room temperature and at very low temperature (40 K in this 

case) where all three emission mechanisms are included in Eqn. 5-12. At low temperature 

pure tunneling is the only significant emission mechanism. Since the Nss calculation must 

be temperature-independent, a, the only variable parameter in the room temperature plot 

of Nss, can be adjusted so that both the room and low temperature curves match. For all 
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devices measured in this work a is found to be less than 10-20 cm2 in order to provide 

agreement between the room and low temperature values of Ns. This forces the 

conclusion that the capture cross section is so small that all thermal emission mechanisms 

are insignificant at room temperature. In retrospect, an extremely small capture cross 

section is quite reasonable. Traps with this small of a capture cross section are usually 

assumed to be Coulombically repulsive. In AC I kEL devices, electrons approaching a 

charged interface would indeed feel an immense amount of Coulombic repulsion due to all 

of the deeper traps which are filled with electrons. 

Figure 5-10 shows the interface state distribution ofa standard evaporated 

ACTFEL device with SiON insulators at room temperature and 40 K. The notation Al + 

and Al - correspond to the two different interfaces of the ACTFEL device. Al + means 

that the field-control pulse is asserted immediately following a positive pulse applied to the 

Al electrode from the driving waveform generator; see Fig. 5-7. Notice that the 

interfaces, Al + and Al -, are symmetric. The difference between the low and high 
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Figure 5-10. Interface state distribution for a SiON ACTFEL device. 
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temperature curves only occurs at high energy. If this difference were due to a thermal 

emission mechanism, Fig. 5-9 predicts that this difference would be evident in the low 

energy portion of the curve. Thus, this high energy difference is attributed to the 

temperature dependence of the capacitance of the AC IfEL device. This will become 

more apparent as the driving voltage amplitude dependence is explored. 

Figure 5-11 illustrates that a difference in the amplitude of the driving waveform 

affects the shape of the Nss plot. This is due to the fact that the amplitude of the driving 

waveform determines the amount of charge transfer during the pulse; the larger the 

amplitude, the more charge transferred. The present technique for measuring interface 

states depends on filling the interface with excess electrons, i.e. polarization charge, and 

then observing the amount of charge and the depth from which the charge is transferred 

under a constant field. This means that the interface states must be filled with electrons 

before the density of interface states can be measured. In the case of Fig. 5-10, the 

difference between Nss curves with temperature is attributed to a change in capacitance. 

A change in capacitance implies that the amount of voltage dropped across the phosphor 

is different, and therefore the extent to which the states are filled initially is different. 

To summarize, it is shown that there is negligible temperature dependence in the 

emission rate and in the electron distribution at the interface. Any temperature 

dependence observed in the measurement is due to variations in the insulator and/or 

phosphor capacitances. This difference in capacitance leads to a difference in the initial 

occupancy of the interfaces and leads to a difference in the high energy portion of the Nss 

plot. 

Figure 5-11 shows the transferred charge versus energy for an evaporated 

ACTFEL device with BTO insulators. The Nss curve can be calculated by differentiation. 

Charge verus energy plots yield the same information as an Nss plot but avoid the problem 

of the numerical "noise" associated with the differentiation operation. Notice that as the 

driving voltage amplitude is increased the transferred charge curves shift to lower 
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energies. This is due to the fact that increasing the voltage increases the amount of charge 

at the interface (i.e. the initial occupancy function, fo, shifts to lower energies). This 

additional charge must occupy shallower states since the deeper states are filled. The 

origin of the transferred charge at low energy is not clearly understood at present. The 

occupancy functions shown in Figs. 5-2 and 5-3 show that the shallow states should be 

empty. As mentioned previously, the field control pulse is applied immediately following 

the driving waveform pulse. The existance of transferred charge at low energy may be 

caused by electrons that have not reached equilibrium prior to the field-control pulse. 
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Figure 5-11. Transferred charge versus energy for an ACTFEL device with BTO 

insulators. 

Figure 5-12 shows a plot similar to Fig. 5-11 except that this data corresponds to 

an ALE grown ACTFEL device with ATO insulators. This device has an asymmetrical 

interface state distribution. The asymmetery is particularly evident at 195 V. This implies 

that the difference in the interface state distribution is probably in shallow states that 

become filled once the driving amplitude reaches high voltage levels. Figure 5-13 shows 
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data taken from the same ALE sample before and after 10 hours of aging at 200 V. 

Notice that both curves shift upward with aging and remain symmetrical since the 

operating voltage is 180 V. 
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Figure 5-12. ALE ACTFEL device transferred charge versus energy. 

Figure 5-14 shows the same device operated at 200V. In this case the device 

shows the same asymmetry before and after aging. Once again the curves shift upward. 

This confirms the observation that the device is asymmetrical at high voltage, yet it ages 

symmetrically. Whatever mechanism is responsible for device aging occurs symmetrically 

and any asymmetrical characteristics existed prior to aging. 

5.5 Discussion 

Notice that all of the data presented shows a rapid increase in charge (or Nss) at 

approximately 0.9 eV. This is consistently observed for all three different phosphor/ 

insulator systems studied. Devices with SiON, BTO, and ATO insulators have been 

studied and in all cases the phosphor is ZnS. This leads to two possible conclusions; 1) 

the interface state distribution is determined primarily by the phosphor and is relatively 
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independent of the insulating material, or 2) the shape of the transferred charge or Nss 

curves is determined by the intial occupancy function, fo. 
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Figure 5-13. ALE ACTFEL device aged at 200V and operated at 180V. 
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Figure 5-14. ALE ACTFEL device aged and operated at 200V. 
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The interface state density measurement technique introduced herein has several 

limitations. First, note that in all cases the inital occupancy function has not populated 

states shallower than about 0.5 eV nor has this technique been able to probe states deeper 

than about 1.0 eV. The low energy limit is due to the fact that the amplitude of the 

driving voltage waveform determines the extent of electron filling at the interface; to fill 

shallower states would require driving voltages that would cause destructive breakdown 

of the device. The high energy limit is determined by the maximum electric field that can 

be generated by the field-control circuit without destroying the device because of 

excessive charge transfer. Therefore, this technique is limited to an Eqf range of 

approximately 0.5 to 1.0 eV. 

5.6 Summary 

A new technique for measuring the density and distribution of interface states in an 

ACTFEL device is described. The total emission rate and electron distribution are found 

to be independent of temperature. This is due to a very small electron capture cross 

section of the interface states and the a field-dominated distribution function, respectively. 

It is shown that the best energy resolution one can expect in an interface state 

density measurement is approximately 0.1 eV due to the spreading of the occupancy 

function. The measured data shows that the interface state distribution rises fairly abruptly 

at about 0.9 eV in all of the ACTFEL devices measured. This is attributed to an energy 

state in the ZnS phosphor, possibly a sulfur vacancy, or to the position of the edge of the 

initial occupancy function. At present, the initial occupancy function position explanation 

seems the most likely considering the fact that the energy corresponding the rapid increase 

in the transferred charge curves, shown in Fig. 5-11, shifts to lower energies as the driving 

voltage is increased (i.e. increasing the driving voltage fills the interface states with more 

charge and, therefore, the occupancy function shifts to shallower energies). The fact that 

the curves shift, leads to the conclusion that Ns technique is measuring the edge of the 

occupied states which happens to lie at approximately 0.9 eV. 
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ALE grown ZnS/SiON devices have symmetric interface state denisties for driving 

voltages below 195V, whereas the interfaces are asymmetric for driving voltages above 

195V. This is attributed to a difference in the interface state density at shallow energies. 

Thus, the higher driving voltage fills shallow states that are present only at one of the 

interfaces. From Fig. 5-12 it seems that the interface on the Al side of the device is 

emitting more charge at high voltage and must, therefore, be the interface with these 

additional shallow states. These shallow states are probably due to a chemical difference 

in the interfaces that originates during device processing. Aging is found to cause an 

upward shift in the transferred charge curves; this shift occurred symmetrically at both 

high and low driving voltages. Thus, the interface state density is changed by the same 

physical mechanism at both interfaces. This is probably due to atomic rearrangement due 

to impact by hot electrons. 

Finally, with regard to the limitations of this technique, ACTFEL interface state 

densities can be measured for energies between 0.5 and 1.0 eV on either interface. 

This work has obvious applications in aging studies, interface-engineering, and it is 

a valuable technique for refining ACTFEL device models. Bringuier's1 device physics 

model assumed a discrete trap level at 1.0 eV and a step function occupancy. In light of 

this work, it seems that these assumptions are quite reasonable for typical ACTFEL 

devices. 
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6.0 HOT ELECTRON LUMINESCENCE/MONTE CARLO MODEL 

6.1 Introduction 

In this chapter hot electron luminescence experiments performed on both doped 

and undoped ZnS ACTFEL devices are described. The purpose to these experiments is to 

determine the extent to which the electron distribution is heated. This measurement 

provides an experimental basis to help establish the required complexity of the model used 

in Monte Carlo simulation. To obtain accurate simulation results one must consider how 

to model the conduction band structure. For low-field electron transport a simple 

parabolic valley approach is sufficient. However, as the electrons reach higher and higher 

energies, this approximation fails dramatically. The purpose of the hot electron 

luminescence measurement is to establish the energy of the hot electron tail which then 

deterrmines the required complexity of the band structure model for accurate Monte Carlo 

simulation. 

Electron transport in ACTFEL devices is the source of some controversy. One 

point of view40 -41 contends from Monte Carlo calculations and vacuum emission 

measurements that electrons travel ballistically through the ACTFEL device and reach 

exceedingly high energies. Other workers have concluded from Monte Carlo 

calculations38-39 and lucky-drift modeling42 that the average energy of the electron 

distribution is approximately 1-2 eV with high energy tails out to perhaps 3-4 eV for 

phosphor fields at which ACTFEL devices typically operate ( 1.5-2.0 MV/cm). 

The hot electron luminescence measurements discussed in this chapter are similar to those 

reported previously" using ZnS Schottky diodes subjected to dc bias. The hot electron 

luminescence spectrum observed under dc bias was interpreted" as originating from hot 

electron radiative recombination within the conduction band; it is assumed that the ac hot 

electron luminescent spectrum measured in the present case arises from the same physical 

process. 
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6.2 Experimental Technique 

The ACTFEL devices used in this work are fabricated by evaporation in the typical 

stack configuration shown in Fig. 2-1. The measurement is performed on both doped and 

undoped ACTFEL devices. The undoped sampled were used to avoid possible confusion 

of the emission spectrum by the intense manganese emission at 585 rim. 

The hot electron luminescence experiment consists of driving an AC1 EL device 

with the standard voltage waveform and monitoring the luminescence spectrum. The 

amplitude of the voltage pulses is approximately 20 V above the threshold for the onset of 

conduction at a frequency of 100 Hz. 

High Current 
Voltage 

ProbeAmplifie 

ACTFEL 

/ 
Field TEK 

Arbitrary 
Waveform 

Control 
Circuit 

ST 
Oscilloscope 

Generator 

Arbitrary 
DCWaveform 

VoltageGenerator 
Source 

3/4 Meter 

Monochrometer 
PMT 

Figure 6-1. Hot electron luminescence experimental set-up. 
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Hot electron luminescence is measured at three phosphor fields: Fp=1.2, 1.4, and 

1.6 MV/cm. These phosphor field values are obtained using the field-control circuit 

discussed in the previous chapter and shown in Fig. 5-8. The experimental set-up is 

shown in Fig. 6-1. 

The hot electron luminescence spectra are measured using a SPEX 3/4 meter 

monochrometer and a cooled, extended range photomultiplier tube (PMT). Spectra are 

obtained in a time-resolved manner by digitally acquiring the voltage across a 50 IS/ 

resistor between the PMT and ground. A single-system correction to the raw spectral 

data is performed which accounts for lens, grating, and detector response. 

Optical absorption measurements of the ACTFEL stack are performed using a 

SPEX Fluorolog System which includes a xenon lamp and a pair of 0.22 meter double 

monochrometers. 

6.3 Experimental Results 

Phosphor field and hot electron luminescence transient curves are shown in Fig. 6­

2 for a wavelength of 460 nm. The first peak in the FD(t) curve corresponds to the 
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Figure 6-2. Time-resolved electric field and 460 nm luminescence.
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application of an external voltage pulse; note that field-clamping occurs at approximately 

1.6 MV/cm. The 1.4 MV/cm constant field portion of the Fp(t) curve occurs when the 

field-control circuit is operational. Note that although the duration of the hot electron 

luminescence is very short (microseconds) and is concomitant with the flow ofconduction 

current, the duration of the measured luminescence transient is approximately 100 us 

which is determined by the RC time constant of the 50 kn resistor and the PMT. Also, 

notice that the 1.4 MV/cm luminescence signal is weak compared to that of the first peak; 

1.2 MV/cm is found to be the smallest phosphor field at which an adequate signal intensity 

can be obtained with the present set-up. Hot electron luminescence spectra are plotted in 

Fig. 6-3 for Fp=1.2, 1.4, and 1.6 MV/cm. The structure observed in Fig. 6-3 is attributed 

Figure 6-3. Hot electron luminescence at various fields. 

to optical interference since these peaks shift, as shown in Fig. 6-4, when the emission 

angle of the sample is rotated by approximately 45° with respect to the monochrometer. 

As apparent from Fig. 6-3, the high energy, hot electron luminescence cut-off occurs at 

about 3.7 eV. Optical absorption spectra for the ACTFEL stack, the glass substrate, and 
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ITO on glass are given in Fig. 6-5. It is clear from Fig. 6-5 that the absorption edge at 

about 3.7 eV arises from absorption within the ZnS layer. 

Thus, a comparison of the hot electron luminescence spectra of Fig. 3 and the 

optical absorption spectra of Fig. 5 indicates that the high energy, hot electron 

luminescence cut-off arises from optical absorption within the ZnS layer. Therefore, a 

correction is made for optical interference and absorption effects, the hot electron 

luminescence spectrum is broad and rather structureless out to energies approaching 3.7 

eV, the bandgap of ZnS. 

Figure 6-4. Rotated and normal incidence hot electron luminescence at 1.6 MV/cm. 

The hot electron luminescence spectrum arises from radiative transition of 

energetic electrons within the ZnS conduction band44-45 and, therefore, is related to the 

hot electron distribution. Thus, it is concluded that a significant fraction of the hot 

electrons transiting the ZnS possess kinetic energies near to, and most likely in excess of, 

the 3.7 eV bandgap of ZnS. Moreover, although the intensity of the hot electron 

luminescence scales with the magnitude of the applied field, as indicated in Fig. 6-3, the 

shape of the hot electron luminescence spectrum is relatively independent of field. In 
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particular, the high energy tail extends out to 3.7 eV for all of the fields investigated. This 

implies that for any field large enough to cause significant tunnel emission from interfaces 

states, a substantial number of the emitted electrons will reach at least bandgap energies. 

Nothing can be inferred about the hot electron distribution for energies in excess of 3.7 eV 

since these energies are inaccessible to this experiment. 
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Figure 6-5. ACTFEL film transmission spectra. 

Further attempts were made to optically measure the high energy tail of the 

electron emission. A sample was broken and edge emission monitored. The edge 

emission spectrum contains the same 3.7 eV cut-off as before. This implies that the 

intensity of edge-emitted, high energy photons is so low that they are completely 

undetectable. 

The fact that conduction electrons reach very high energies greatly complicates 

Monte Carlo simulation of ACTFEL devices. Figure 6-6 shows the conduction band 

density of states for Bhattacharyya et al.'s39 non-parabolic approximation and a more 

realistic density of states. Notice that Bhattacharyya el al.'s calculation overestimates the 
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density of states for energies in excess of 2.7 eV. This causes more electron scattering in 

the simulation and, therefore, predicts a cooler distribution. Bhattacharyya et al.'s 

simulation predicts electron energies up to 3.5 eV for a field of 1.5 MV/cm. It is 

speculated that if a more realistic density of states is utilized, a significant fraction of the 

electrons would reach 3.7 eV even at fields as low as 1.2 MV/cm, as found 

experimentally. 

6.4 Discussion 

One implication of the high energy of the electron distribution inferred from the 

hot electron luminescence experiment is that it now seems not only possible but likely that 

band to band impact ionization occurs in undoped devices. The threshold energy for 

impact ionization, Eth, is given by46, 

2Me + Mh 
Eth = EG (6-1)

Me ± Mh 

where46 me= 0.34rne is the electron effective mass, mh=1.76me is the heavy hole effective 

mass, and EG=3.7 eV is the bandgap. This results in Eth of approximately 4.3 eV. 

Figure 6-6. ZnS conduction band density of states. 
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Extrapolation of Fig. 6-3 suggests that band-to-band impact ionization would likely 

occur in ZnS ACTFEL devices under normal operating conditions. 

A second implication of the work reported herein is that the achievement of 

efficient blue AC Jr EL devices should not be impeded by the transport properties, if ZnS 

is employed as the host phosphor. 

Finally, it should be noted that although all of the data shown in this chapter is for 

undoped samples, the high energy portion of the hot electron luminescence spectrum is 

identical for Mn-doped samples, to within the accuracy of the experiment. Thus, the Mn 

luminescent impurities do not significantly cool the electron distribution. This result is 

consistent with the Monte Carlo simulation39 of Bhattacharyya et al., who find the Mn 

impact excitation scattering rate to be several orders ofmagnitude smaller than that of 

polar optical phonon or intervalley scattering. 

6.5 Summary 

The hot electron luminescence spectrum is measured for an AC EL device in 

which the ZnS is grown by evaporation. The luminescence spectrum is broad and 

featureless and is cut off at the ZnS bandgap due to optical absorption. This result 

provides evidence that a substantial fraction of the electrons transiting the AC l'EEL device 

have energies near to or in excess of the ZnS bandgap. 

As far a Monte Carlo modeling of an ACTFEL device is concerned, the work 

described in the chapter demonstrates the need to accurately model the conduction band 

density of states up to energies greater than 3.7 eV above the conduction band minimum. 
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7.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The research presented in this thesis focuses on the physics of ACTFEL devices 

with emphasis placed on refining ACTFEL device models. In this chapter, the 

experimental results of this thesis are reviewed, the impact to ACTFEL device modeling is 

considered, and recommendations for future research are presented. 

7.1 Waveform Variation Trends\Equivalent Circuit Model 

Chapter 3 presented a refined equivalent circuit model for the ACIPEL device. It 

is found that by adding an additional RC time constant in the conduction current path, 

relaxation charge which flows across the phosphor layer while the driving voltage pulse is 

at its maximum value, can be modeled. This observation provides a better fit to the time-

dependent device response. More importantly, accounting for relaxation charge allows 

one to fit the ACTFEL device response over a wide range of variations in the shape of the 

driving waveform pulse. 

It is known that in a matrixed display each row or column looks like a distributed 

network or a transmission line. This work is very applicable to the design of full panel 

displays because as the pulse propagates down the line, the pulse shape changes. This 

equivalent circuit should predict the electrical behavior of the first pixel as well as the last 

pixel in the line. 

Chapter 3 also presented a "optical" equivalent circuit where the current flowing 

through one of the branches can be interpreted as the intensity of light emitted by the 

device. This model, which is simulated with the electrical model, allows a designer to 

model both the electrical and optical variation across the panel. 

One aspect of these models that is disappointing is the fact that they are derived 

empirically and are, therefore, difficult to associate with the device physics or processing. 

Many attempts were made to relate the device physics equations presented in Chapter 4 to 

the equations which describe the equivalent circuit response. Attempts were also made to 

linearize the device physics equations. Unfortunately, these methods did not succeed in 
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simplifying the problem. 

The following are a few suggestions for future work. 

1) Refine diode models. 

Further work may be possible in the refinement of the back-to-back diode models. 

Specifically, it may be possible to relate the I-V characteristics of the diodes to the I-V 

characteristics of the phosphor layer. This fit could be performed theoretically ifone 

assumes that emission occurs via pure tunneling (a reasonable assumption based on the 

conclusions of Chapter 5). In this case, one would fit a SPICE simulated diode curve to 

the emission rate, Eqn. 5-5. The fit could also be performed experimentally by fitting the 

SPICE diode I-V curves to a measured conduction current versus phosphor field curve. 

2) Simulate device performance with state-space analysis. 

Another possible approach to ACTFEL device simulation is to use state-space 

analysis from systems theory. This would require one to look at the device as a non-linear 

system which is, in general, very difficult. If successful, this may allow one to construct a 

matrix to model the response of a single device and extend this to a full panel simulation 

by multiplication of successive matrices which represent individual pixels. This would be a 

very significant contribution in terms of simulation speed. Note that with the equivalent 

circuit model presented in this thesis, hundreds of pixels connected in parallel must be 

simulated in order to observe the effects of pulse degradation. 

7.2 Phosphor Space Charge/Device Physics Model 

In Chapter 4 the possibility of a spatial distribution of charge in the phosphor is 

considered. Very convincing evidence is found for space charge in ALE devices at low 

temperature. In particular, two additional current peaks on the falling edge of the voltage 

pulse are observed. The first current peak occurs before the phosphor electric field 

(assuming no space charge) changes sign. This leads to the conclusion that space charge 

is present at low temperature. Also, the first peak emits 460 tun light and this emission is 

thermally quenched. This agrees with observations made by other researchers and leads to 
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the conclusion that the emission is due to recombination between Cl atoms and Zn 

vacancies. The space charge is believed to originate from the impact ionization of Zn 

vacancies by energetic electrons. Finally, this space charge is found to form predominately 

on the ITO or first grown side of the phosphor layer. 

The impact of space charge is primarily with respect to asymmetrical device 

operation and aging. However, one must keep in mind that this effect is only observed at 

very low temperatures and at driving voltages of approximately 160 V. Space charge is 

believed to originate at high temperatures when larger driving voltages are employed. 

However, at higher voltage the effects of space charge are believed to be present during 

the main conduction current pulse. The secondary current peaks are not visible. This 

implies that space charge effects are much more difficult to isolate at room temperature. 

With these conclusions in mind, the following recommendations for future work 

are presented. 

1) Establish impact and identify of cause ofspace charge. 

Generally speaking, the first step in pursuing future research in this area is to 

identify the impact of space charge to devices under normal, room temperature operation. 

It is recommended that future work focus on device aging and/or B-V symmetry during 

any study of space charge. If strong evidence for space charge is observed, some kind of 

chemical profile of the phosphor layer should be attempted. A possible technique for this 

measurement is ion milling the phosphor to obtain a depth profile and performing either 

Auger electron emission or x-ray fluorescence to determine the chemical concentration. 

This kind of research would be well received as it would address the impact of space 

charge and identify its chemical origin. 

2) Study space charge in other types of ACTFEL devices. 

Another possible area for future work is to consider space charge in other types of 

ACTFEL devices; for example, SrS:Ce devices grown by ALE. Researchers at Planar 

International are very interested in understanding and modeling a dissipative current which 
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flows during the falling edge of the voltage pulse. Assessment of the dissipative current 

may lead to observations similar to those made in Chapter 4 and the measurement may be 

possible at room temperature. 

3) Space charge modeling with an equivalent circuit. 

Finally, additional work is certainly possible in the area of space charge modeling. 

If, for instance, blue devices are shown to have significant space charge effects at room 

temperature, it would be very helpful to refine the equivalent circuit model presented in 

Chapter 3 to include this effect. Equation 4-7 of Chapter 4 indicates that the phosphor 

field has two components when space charge is present. Perhaps another capacitor could 

be connected in series with the phosphor capacitor. This capacitor should be shorted until 

conduction current flows. The charging and discharging could be controlled with Zener 

diodes with various breakdown voltages. Another approach would be to model the effect 

as a capacitor located somewhere in the conduction current path. This is less physical, but 

it is easier to visualize the various techniques for charging (with conduction current) and 

discharging (during the falling edge of the voltage) the capacitor. 

7.3 Interface State Distribution/Device Physics Model 

Chapter 5 introduced a new technique for measuring the distribution of interface 

states in an ACTFEL device. The technique is based on a new field-control circuit which 

forces the electric field to a constant value during conduction. This is achieved by 

changing the external bias to compensate for the change in the phosphor field due to the 

redistribution of charge. The interface state measurement technique can measure the 

distribution at either interface for energies between approximately 0.5 to 1.0 eV. The 

distribution is found to rapidly increase at 0.9 eV for all devices measured. This common 

feature is attributed to that fact that ZnS is used as the phosphor material in each device 

measured. 

This work has great potential for studying device aging mechanisms and interface 

engineering. With respect to aging studies, it may be possible to determine which 
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interface changes as the device ages. Also, if the resolution of the measurement can be 

improved, it may be possible to determine the energy range in which the changes occur 

and, therefore, identify the source. With respect to interface engineering, studying the 

distribution of states for devices with different phosphors, insulators, and deposition 

processes may lead to a procedure for tailoring the interface to optimize the efficiency of 

the device or reduce the operating voltage. It may also be possible to control the energy 

at which electrons are emitted from by depositing thin interfacial-layers between the 

insulator and phosphor materials. 

Of all the experiments performed in this thesis, the interface state distribution 

measurement is the most highly recommended for future work. The following lists areas 

which deserve particular attention. 

1) Identify possible measurement error at low energies. 

In Chapter 5, the presence of transferred charge at low energies is identified as a 

possible error in the measurement. From the calculation of the occupancy function, states 

shallower that about 0.5 eV should not be filled. This is a problem that needs to be 

addressed. Two likely causes of the charge a low energies are 1) a non-equilibrium 

electron distribution and, 2) error in the field-control voltage. The first cause is attributed 

to electrons that have not had sufficient time to reach a stable occupancy function prior to 

the assertion of the field-control circuit. Figure 5-7 shows the field-control circuit 

asserted immediately following the driving voltage pulse. In this figure, relaxation charge 

flows while the voltage pulse is at maximum amplitude. Therefore, relaxation charge may 

lead to a non-equilibrium electron distribution. If this is the cause, moving the field-

control pulse to later times may correct the low energy charge problem. The second 

possible cause is attributed to the fact that the field-control circuit generates a voltage, 

Veit, which is applied to the device after measuring the Sawyer-Tower voltage. However, 

Vst is actually applied across both the device and the Sawyer-Tower capacitor rather that 

just the ACTFEL device. This may lead to an error of a few volts because of the voltage 
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drop across C. If this is the cause of the error at low energy, the problem could be 

solved modifying the field control circuit to subtract Vst from Eqn. 5-16 before Vext is 

calculated. 

2) Study the interface state distribution of other types of ACTFEL devices. 

As all of the studies to date have been performed on ZnS devices with ATO, BTO, 

and SiON insulators, it is recommended that the interface characterization be performed 

on other devices with different phosphors, such as SrS and CaS. If these devices show 

similar characteristics, measurements should be performed on non - sulfur based ACTFEL 

devices. This is suggested because sulfur vacancies are speculated to be a possible cause 

of the rapid increase in the density of states at 0.9 eV. Therefore, non-sulfur based 

phosphors may demonstrate more distinctive features in the distribution. 

7.4 Hot Electron Luminescence/Monte Carlo Model 

Chapter 6 presents a measurement of the electron luminescence which is used to 

determine the extent to which the electrons are heated during transport. The measurement 

shows that for any field sufficient for electron emission, a significant fraction of the 

electrons reach energies in excess of 3.7 eV. Hotter electrons are likely, but photons 

corresponding to these high energy electrons are absorbed by the ZnS layer before exiting 

the device. Therefore, the current technique is not capable of specifyingthe extent of 

heating in these devices. 

Future work in this area can be pursued by Monte Carlo simulation and in 

experimental measurement of electron energies during transport. 

1) Refine Monte Carlo simulation with a full band structure calculation. 

This work indicates that electrons obtain much higher energy than originally 

thought and that a non-parabolic model of the conduction band is not sufficient. To 

accurately predict bulk ZnS transport properties a more realistic conduction band model is 

necessary. This will most likely involve a full band structure calculation. 
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2) Measure hot electron luminescence in a low-field regime and compare with 

Monte Carlo simulation. 

A slightly modified experiment may be able to generate additional experimental 

data to compare with Monte Carlo results at low fields. Specifically, a new device could 

be fabricated where both electrodes are formed with ITO and no insulators are deposited. 

Thus, the structure is Glass/ITO/ZnS/ITO. A dc bias is applied across the electrodes 

giving rise to a low, constant electric field. Then, a laser is used to inject carriers from the 

ITO electrode into the conduction band of ZnS. These electrons gain energy from the 

field and radiatively recombine to shallower conduction band states exactly like the 

previous electron luminescence experiment. Therefore, once the excitation spectrum has 

been accounted for, the remaining portion of the emission is due to hot electron 

luminescence. In this low field regime, the electrons should not reach 3.7 eV, so the 

maximum in the emission spectrum can be measured. By stepping the field through 

several values, one should be able to provide a comparison to the results predicted by 

Monte Carlo simulation at low fields. 

3) Assess maximum electron energy with a variable insulating barrier. 

Another technique that may allow one to assess the high energy tail of the electron 

distribution is a variable insulating barrier. The details are still unclear, but essentially one 

would modify the device so that the insulating barrier that the electrons impact after 

transport is variable. The device might be fabricated as follows; 

glass/ITO/SiON/ZnS/ITO(thin)/Insulator(Thin)/Al. The thin ITO layer (probably a few 

hundred Angstroms thick) is used to bias the device (i.e. to create the high field). The 

outer Al electrode can be used to bend the top of the thin insulating layer and thus form a 

variable barrier for electrons. If the bias on the thin insulating layer is swept during 

conduction, one may actually be able to map the distribution of electrons during 

conduction. A similar technique has been used to map the electron distribution in bipolar 

transistors where the base is formed with a GaAs superlattice48. 
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