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Droplet formation from a flexible nozzle plate driven by a prescribed-

waveform excitation of a piezoelectric is numerically investigated using a 

computational fluid dynamics (CFD) model with the VOF method. The droplet 

generator with a flexible nozzle plate, which is free to vibrate due to the pressure 

acting on the plate, is modeled in a computational domain. The CFD analysis 

includes the fluid-structure interaction between fluid and a flexible plate using 

large deflection theory. The problem is characterized by the nondimensional 

variables based on the capillary parameters of time, velocity, and pressure. The 

CFD model is validated with experiment results. This study examines the 

characteristics of the applied waveforms and nozzle plate material properties to 

change the vibrational characteristics of the nozzle plate. The effect of fluid 

properties on the droplet formation process is also investigated focusing on surface 

tension and viscous forces. The mechanism of the droplet formation excited by a 

drop-on-demand piezoelectric waveform is investigated using a step-function and a 



pulse waveform. The piezoelectric displacement plays an important role in 

generating either forward-driven momentum or a suction pressure inside the 

chamber. For the step-function waveform, the nondimensional applied impulse is 

defined and used to characterize the post-breakoff droplet volume. Increasing the 

impulse of the piezoelectric can be used to cause a faster droplet velocity and it is 

shown that the vibration of the nozzle plate has a strong effect on the droplet 

velocity, shape, and volume. Surface tension has strong influence on the droplet 

formation characteristics which is in contrast to a viscous force that makes little 

difference on the droplet formation for a range of viscosities studied. For the 

combination of a fluid with high surface tension and the most flexible nozzle plate, 

this system can cause the droplet not to be ejected from the nozzle.  

Successive droplet impingement onto a solid surface is numerically 

investigated using a CFD multiphase flow model (VOF method). The main focus 

of this study is to better understand the hydrodynamics of the non-splash 

impingement process, particularly the effect of a dynamic contact angle and fluid 

properties along with the interaction between successive droplets while they are 

impinging onto a solid surface. The pre-impact droplet conditions are prescribed 

based on a spherical droplet diameter, velocity, and inter-droplet spacing. The 

molecular kinetic theory is used to model the dynamic contact angle as a function 

of a contact line velocity.  The numerical scheme is validated against experiment al 

results. In the impact spreading and receding processes, results are analyzed to 

determine the nondimensional deformation characteristics of both single and 

successive droplet impingements with the variation of fluid properties such as 

surface tension and dynamic viscosity. These characteristics include spreading 

ratio, spreading velocity, and a dynamic contact angle. The inclusion of a dynamic 



contact angle is shown to have a major effect on droplet spreading. In successive 

droplet impingement, the second drop causes a surge of spreading velocity and 

contact angle with an associate complex recirculating flow near the contact line 

after it initially impacts the preceding droplet when it is in an advancing condition. 

This interaction is less dramatic when the first drop is receding or stationary. The 

surface tension has the most effect on the maximum spreading radius in both single 

and successive droplet impingements. In contrast to this, the viscosity directly 

affects the damping of the spreading-receding process.  
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NOMENCLATURE 

A1,A2    =  Overshoot and undershoot radii of the spreading droplet 

C, Ci =  Volume fraction, volume fraction of specie ith 

ci =  Mass fraction  

cl              =  Volume fraction  

Cө        =  Damping ratio of a droplet spreading-receding cycle 

Ca =  Capillary number, 
σ
µ clV

Ca =  

E =  Young modulus (GPa) 

E* =  Nondimensional stiffness, E/Pc  

Ec =  Capillary stiffness 

Fi,
icF    =  Source term in momentum equation, Source term of specie ith 

h =  Nozzle plate thickness 

I* =  Nondimensional impulse  

K       = Boltzmann’s constant 

l =  Position of the leading edge 

L* =  Nondimensional leading edge position, l/lc  

lc =  Capillary length 

m, mi =  Mass, mass of specie ith 

n       =  Number of adsorption sites per unit area 

P =  Pressure 

P* =  Nondimensional pressure, P/Pc 

Pc =  Capillary pressure  

r     =  Radial distance, or Instantaneous spreading radius of droplet  

R*        =  Spreading ratio, r/ R0 



NOMENCLATURE (continued) 

R*max   =  Maximum Spreading radius, rmax/ R0 

Re = Reymolds number, 
µ

ρ 00Re
UD

=  

rmax    = Maximum spreading radius of droplet  

 Ro      = Radius of a pre-impact droplet 

T          = Absolute temperature 

t = Time 

tc = Capillary time 
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U* = Nondimensional droplet velocity, u/uc 

U*CL      = Nondimensional contact line velocity, UCL / U0 

u,v,w = Velocity components  

uc = Capillary velocity 

UCL         = Contact line velocity 

Uo        = Pre-impact droplet velocity 

V = Volume 

V* = Nondimensional volume, V/Vc 

Vc = Capillary volume 

W         = Work per unit area done by surface tension force 

w  = Plate Displacement in equation  

We =  Weber number, 
σ

ρ 2
00UD

We =  

x,y,z     = Distances, rectangular coordinate 

x,y,z = Distances, rectangular coordinate 

 



NOMENCLATURE (continued) 

Greek symbols 

δplate =  Nozzle plate displacement  

δ*plate =  Nondimensional plate displacement scaled by h 

δ*piezo  =  Nondimensional piezoelectric displacement scaled by h  

δ*max   =  Nondimensional maximum piezoelectric displacement scaled by h  

κ =  Radii of curvature  (m) 

κω = Net frequency of molecular displacement (1/s) 

κo
ω = Equilibrium frequency of molecular displacement (1/s) 

λ         = Length of molecular displacement                       

µ, µl     = Viscosity, viscosity of heavy fluid in VOF method 

µ* = Dynamic Viscosity ratio between nominal fluid and water 

r, ri =  Density, density of specie ith 

ӨE = Equilibrium contact angle 

ӨD = Dynamic contact angle 

σ =  Surface tension (N/m) 

σ* =  Ratio of fluid surface tension to water’s surface tension 

τ  =   Nondimensional time, t/tc 

τrampup  =   Nondimensional rampup time, trampup/tc 

φ =   Airy stress function 

τ           = Nondimensional time, t U0 /R0 

∆τ        = Nondimensional inter-droplet time interval 
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NUMERICAL STUDY OF DROPLET FORMATION 

WITH NOZZLE DYNAMICS AND  

MULTIPLE DROPLET IMPINGEMENT 

 

CHAPTER 1 

INTRODUCTION 

Droplet formation is a microfluidics application in areas such as printer heads, 

medical dispensers, thin film coating, etc. The effort to control either the size or 

velocity of the droplet after break-off is of great importance. Drop-on-demand 

(DOD) systems were introduced to improve the quality of droplets while providing 

delivery control. One DOD systems is a piezoelectric DOD system, which can 

eject droplets under the applied excitation of the piezoelectric plate. This study 

investigates the dynamic mechanisms of piezoelectric DOD droplet formation 

along with the possibility of improving the characteristics of droplets after break-

off. The concept is to include a flexible nozzle plate on top of the fluid chamber. 

Droplet formation with a flexible nozzle plate was first patented by Tony Cruz-

Uribe from Hewlett-Packard (HP), US Patent number 7219970. The basis of this 

design is the use of flextensional technology, which relates to the deflection of a 

thin flexible membrane and the fluid boundary. In contrast to this, Yang and 

Liburdy [2004] studied the effect of a passively moving boundary (a flexible 

nozzle plate) and its effect on different characteristics of droplet formation. In this 

latter case, the fluid structure interaction needs to be taken into account.  
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Droplet impingement onto a solid surface is an important field of current 

research in heat transfer, inkjet printing, coating, etc. The major objective of 

droplet impingement works is usually to determine the characteristics of spreading 

and receding processes of droplet impingement on the solid surface. Most 

applications are governed by surface tension and the interactions between liquid–

solid interfaces. The characteristics of the flow and the change of the contact angle 

near the contact line are important in studying droplet impingement. This contact 

angle has a direct effect to both spreading and receding processes. Dynamic 

contact angle model has been well defined in the past years in which most of them 

are based on the empirical data and defined as function of contact line velocity. 

The contact angle has directly effect to the surface tension force at the contact line 

and consequently affects the spreading and receding of the droplet. Moreover, the 

successive droplet impingement is also the other major part in this thesis after the 

contact angle is well defined by using the validated model.   

The great motivation of this research is to study the behavior of multiphase 

flow under the influence of surface tension such as droplet formation and droplet 

impingement. The numerical method and the high-end technology of the latest 

computers and software are the tools that allow these complicated problems to be 

overcome. This computational study using numerical software is conducted to 

predict the characteristics of the flow; this research is mainly concerned with the 

free-surface flow with a focus on the droplet formation and droplet impact.  

The main objectives of the droplet formation in this study are to investigate the 

droplet formation under the effects of following parameters: flexibility of a nozzle 

plate, applied waveforms, and fluid properties (surface tension and viscosity). In 

this work, the geometries of a droplet generator, a piezoelectric plate and a nozzle 
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plate are modeled in a computational domain. Two types of piezoelectric 

waveforms are applied to the bottom plate as an impulse input to eject droplet out 

of the orifice hole. These two waveforms are defined as a piezoelectric 

displacement as a  function of time. The step-function input is first employed to 

obtain the droplet formation causing by the forward driving momentum without 

any suction pressure from the movement of the piezoelectric plate. For this step-

function input, the piezoelectric is held at its maximum displacement for all time 

after it reaches this maximum point. The other type of waveform is a pulse-

function where the piezoelectric is pulled back to the origin after reaching the 

maximum displacement for a certain time. During the fall of the piezoelectric 

waveform during the formation process, suction pressure is generated and causes a 

negative force from inside of fluid chamber which then pulls on the thread of the 

liquid jet. This phenomenon can cause different characteristics of droplet formation 

such as changes to the droplet volume and break-off time.  

For the study of the effect of nozzle plate flexibility on the droplet formation, 

the geometric parameters of a nozzle plate, diameter and thickness, are fixed. The 

varied variable is the stiffness of the nozzle plate. The variation of fluid properties 

is also included as part of the droplet study. In this section, two major fluid 

properties, surface tension and dynamic viscosity are varied to identify the effects 

on droplet formation. The results of this study are represented in nondimensional 

form using scales defined by the capillary pressure, capillary time and capillary 

length. The characteristics of droplet formation are reported as follows: droplet 

volume, post-break-off droplet velocity, and break-off time. 

The objective of the droplet impact study is to understand the hydrodynamics 

of the impingement process with contact angle dynamics, particularly the 
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interactions between successive droplets while they are impinging onto a solid 

surface. The effects of several key parameters on the hydrodynamics of the 

collision are studied. These include: equilibrium contact angle, fluid properties, 

and the relative phase of successive droplet impingement. In simulating droplet 

impingement, the solid wall is created in the computational domain and it is 

assumed that a single spherical liquid droplet of diameter 0D  with constant surface 

tension impinges on a flat rigid stationary surface with velocity U0. This numerical 

model neglects the interaction between the droplet and air, and focus on the 

interface tension between the droplets and target surface while allowing for a 

variation of the dynamic contact angle. An appropriate dynamic contact angle 

model is determined and validated with experimental results.   

The first effect to be studied in droplet impingement is the equilibrium contact 

angle. This equilibrium contact angle normally indicates the wettability between 

droplet impingement and a solid surface. At an equilibrium contact angle higher 

than 90 degree, the process is considered as a nonwettable one. Next, in successive 

droplet impingement, a simple superposition of two single droplets is used as an 

initial condition. The initial inter-droplet spacing is used to define the phase of 

successive droplet impingement. The initial conditions of the second droplet such 

as the velocity and size are identical to the first droplet. The variation of fluid 

properties is also investigated in this work with the exact conditions for both single 

and successive droplet impingements. There are only two fluid properties 

considered of interest, which are surface tension and dynamic viscosity. The 

characteristics of droplet impingement are reported as follows: spreading rate, 

maximum spreading radius, contact angle, and contact line velocity versus time. 

Also included are a series of velocity vector field plots for both single and 
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successive droplet impingement used to explain the details associated with 

successive droplet impingement. 

The thesis is organized as follows. Chapter 2 presents a literature review for 

pertinent topics. The mathematical model of fluid flow model, nonlinear large 

deflection plate equations and molecular kinetic theory models are described in 

Chapter 3. The numerical methods used to solve the problem and the geometry of 

the computational domains is given in Chapter 4. Chapter 5 provides the validation 

of the numerical solutions with experimental results and the results of simulations 

for both droplet formation and successive droplet impingement. Chapter 6 contains 

the conclusion of this research including suggestions for future research related to 

this topic. 
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CHAPTER 2 

LITERATURE REVIEW 

The study of hydrodynamics and instability of the free surface flow such 

droplet formation and impingement started in late nineteenth century by the 

famous scientists such as Lord Rayleigh and Worthington. In this thesis, the 

understanding of the physics of the droplet formation and impingement was sought 

first, so most of physics perspectives from the previous literatures are presented in 

this section. The droplet formation and its mechanism are first discussed as 

follows: droplet-on-demand droplet formation, fluid-structure-interaction, and 

numerical solutions for both free surface flow and droplet formation. For the 

droplet impingement, the previous experimental and numerical results are 

reviewed. The other key concept in this work is to understand the impinging 

conditions: splash and non-splash. Moreover, the dynamics of contact angles along 

the spreading and receding process is one of major ideas to be comprehended.  

2.1 DROPLET FORMATION 

The phenomenon of droplet formation in a liquid jet has been studied by many 

authors. The earliest analysis appears to be that of Rayleigh [1892], who made a 

linearized stability analysis of a nonviscous liquid jet. His mathematical model was 

developed to meet the phenomena of uniform drop formation from a stream of 

liquid ejecting from an orifice based on a linearized stability analysis of a 

nonviscous liquid jet. Weber [1931] used a similar approach as Rayleigh, but 

produced a much more useful result by making several simplifying assumptions. 

The linearization makes closed-form solutions possible including solutions for 

stability of the stream and for drop breakup time under a given initial perturbation 

and external excitation.  
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The formulations of the Navier-Stokes equations for incompressible flow with 

a free surface became a useful model employed in a number of studies in an effort 

to understand the physical mechanisms governing droplet formation. The drop-on-

demand (DOD) study was initiated by Beasley [1977] with the model for the fluid 

ejection driven by an impulse jet. A few years later, Kyser [1981] designed the 

cavity containing the fluid for the Impulse Ink Jet. In the 1980’s, Fromm [1984] 

obtained the numerical solutions for DOD jets based on a 2D mathematical model. 

Sheild et al. [1987] compared a simplified 1D numerical simulation with 

experiment results. Also, for 1D numerical model of droplet, Adams and Roy 

[1986] present the Macormack’s predictor-corrector algorithm to solve one-

dimensional model equations of drop development from a drop-on-demand inkjet. 

In recent years, Drop-on-Demand (DoD) has been in a focus of fluid mechanist. 

The droplet breakup from a liquid jet of Newtonian fluid has been deeply 

investigated by several researchers based on a 1D jet approximation. Such models 

predicts the breakup of jets in finite time, described by a similarity solution by 

Eggers [1995]. On the other hand, it is well-known that viscoelasticity and other 

non-Newtonian effects slow down the breakup process by reducing the effect of 

surface tension as shown by Renardy [1994, 1995] and Yarin [1993]. However, 

pinch-off may still occur due to the surface tension force, which becomes dominant 

when the radius of the liquid jet is small. The droplet pinch-off process is a 

complex physical phenomenon where the traditional use of surface tension forces 

is not well understood. Egger [1993] investigated the break-off process by focusing 

on the singularity of a set of universal exponential forms of the solution of the 

Navier-Stokes equations. Moreover, the thread breakup was also studied by 

Henderson et al. [1997] and Brenner et al. [1997].  In recent CFD simulation using 
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the finite volume method, Fawehinmi et al. [2005] defined the break-off process by 

the scale of volume fraction corresponding to the mesh size in a computational 

domain.  

A method developed to track free surfaces is the Volume of Fluid (VOF) 

method introduced by C.W. Hirt [1981]. The VOF model has become a popular 

method in free surface models used in CFD computational programs. For this 

method, the volume fraction between light and heavy fluid is used to define the 

region occupied by fluid. An additional method used with VOF for modeling 

surface tension effects on fluid motion is the continuum surface force model 

developed by Brackbill et al. [1992].  This method is employed to determine the 

surface tension force between two immiscible fluids by the volume fraction at the 

interface.  

In this study, fluid structure interactions are important in determining the 

interplay of fluid internal pressure and nozzle plate deflection which then affects 

droplet formation. Considerable efforts have been made to develop models for the 

simulation of microfluidic devices by Yarin [1993], Bourounia and Grandchamp 

[1996], and Krevet and Kaboth [1998]. These methods are very complex and time 

consuming especially if coupled analyses are performed. Only a few studies model 

microfluidic devices with actuation mechanisms while  considering the full fluid 

structure interaction by Percin et al. [1998], Wijshof [1998], and Hermann and 

Joachim [2004]. 

In the nonlinear plate model, the large deflection plate equation is the model 

used to determine the response of plates when they are subjected to large scale 

force amplitudes. This massive force produces large deflection of the plate 

comparing to the thickness. Based on this nonlinear effect, the fundamental for 
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exact theory have been derived by Von Karman [1910]. The solutions of the large 

deflection plate equation can be determined by both analytical methods and 

numerical methods. There are in the literature some interesting numerical 

investigations, such as the one by Vogel and Skinner [1965], who studied nine 

combinations of boundary conditions; they considered simply supported, clamped 

and free edges at the inner and outer boundaries. Data references were also given 

in Leissa [1969] for various types of nonlinear plate geometries. 

Annular and perforated plates are often in contact with a fluid on one or both 

sides. It is well known that natural frequencies of a thin-walled structure are 

strongly affected by the presence of a heavy fluid. Kubota and Suzuki [1984] 

presented annular plates vibrating in an annular cylindrical cavity filled with a 

fluid were theoretically and experimentally studied. In the paper by Amabili and 

Frosali [1994], the free vibrations of annular plates placed on a free surface were 

theoretically investigated.  

2.2 DROPLET IMPINGEMENT 

The drop impingement problem was first studied by Worthington [1876]. The 

focus of most subsequent studies has been the prediction of several features such as 

the maximum impact pressure by Engel [1955], the resultant flow dynamics 

(splash, deposition, etc.), see Hartley and Brunskill [1958], Ford and Furmidge 

[1967], Stow and Hadfield [1981] and Rioboo [2002]. Also, Liu et al. [2005] 

investigated the effect of roughness on droplet impingement. In related studies 

Blake and Haynes [1969] examined the kinetics of liquid/liquid displacement 

during spreading, and Bradley and Stow [1978] investigated the collision of liquid 

drops. These studies discussed precursor liquid impingement and successive 

droplet impact. Recently, the impact of successive droplets on a substrate was 
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modeled as a superposition of two single droplets impacting successively on a 

substrate. Tong et al. [2004] generated a numerical model for successive droplets, 

with a second droplet impinging on a static droplet and compared results with 

experimental data. 

The interaction between the droplet and solid surface can be classified into 

conditions: splash and non-splash. For non-splash impinging condition, the 

momentum from an impingement is not sufficient to break up the main droplet into 

satellite droplets during the impact. Later, the spreading force from this momentum 

is dissipated along the spreading. For this reason, the droplet is able to spread and 

recede on the solid surface. Also, the non-splash condition is more likely to be able 

to be predicted and defined with some close form model for the spreading and 

receding. On the other hand, splashing occurs when a single droplet hits the surface 

and generates satellite droplets. Stow and Hadfield [1981] came up with a 

correlation of Reynolds and Weber numbers for the splashing threshold which is 

also depended on the surface roughness. Zhang and Basaran [1997] also defined 

the different splash correlations, but still a function of Reynolds and Weber 

numbers. These nondimensional variables measure the relative scale of inertial to 

surface tension force and viscous force to determine the condition of impingement.  

The first computational analysis of droplet impingement was introduced by 

Harlow and Shannon [1991] by using marker and cell (MAC) method, but this 

work can only determine the advancing stage of droplet impingement. It can not 

simulate the receding of the droplet when the rebounding force is generated from 

the surface tension force. Madejski [1976] also defined the analytical solution of 

the characteristics of droplet impingement such as a maximum radius and 

spreading ratio as function of time. Fukai et al. [1993] used the finite element 
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method to simulate droplet impingement by taking gravity, viscosity, surface 

tension, and inertia into account, but was simplified by using a constant contact 

angle.  Trapaga and Szekely [1986] first used a Volume of Fluid method (VOF) to 

investigate the spreading of droplet impingement. Their study shows the capability 

to simulate droplet deformation and breakup during impingement, but there are 

some physical discrepancies about the shape of the interface between two 

immiscible fluids. In recent year, the techniques of VOF method have been 

improved and have corrected many of its flaws. According to the latest scheme and 

algorithm of VOF method, Vadillo [2004] did both single and multiple droplet 

impact simulation and compared the results with experimental data, but this work 

only assumed the constant contact angle along the spreading/receding processes. 

The collision dynamics of successive droplet impingement was performed by 

Minamikawa et al. [2007].  

The dynamic contact angle model is an essential feature in the study of droplet 

impingement, since it is important in the spreading rate, spreading velocity, and 

transport properties. Hoffman’s model [1975] was first developed to represent a 

universal model for dynamic contact angle as a function of contact line velocity. 

Roisman et al. [2002] used Hoffman’s model to investigate spreading and receding 

behavior of normal drop impact. Sikalo et al. [2005] employed Hoffman’s function 

with a finite volume numerical code to predict the dynamic contact angle of the 

inner region and then applied this angle to the computational domain to determine 

the apparent contact angle. Another model of the dynamic contact angle was 

defined by Blake [1993] based on molecular kinetic theory. The model parameters 

include frequency and length of molecular displacement, which are determined by 

empirical relationships between contact angle and contact line velocity. Xu et al. 
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[2004] employed molecular motion to study a droplet spreading on a precursor 

film. Bayer and Megaridis [2006] provided a measure of validation of the 

molecular-kinetic theory with experimental results.  
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CHAPTER 3 

MATHEMATICAL MODEL 

      The study of droplet formation from a flexible nozzle or orifice plate takes the 

interaction between the fluid and solid into account. Consequently, the nonlinear 

large deflection plate equation is defined and added into the numerical solver. For 

droplet impingement, the molecular kinetic theory model is used as a dynamics 

contact angle model. This model is defined as a function of contact line velocity 

and its parameters are based on empirical data of the specific solid surface and 

fluid properties such as surface tension and viscosity. 

3.1 NAVIER-STOKES EQUATIONS 

The mathematical model used in modeling fluid flow is the three-dimensional 

continuity equation and Navier-Stokes equations as follows:  

     ( )
0i

i

u
t x

ρρ ∂∂
+ =

∂ ∂
            (1) 

( )i
i i j j i i

D u
p g u F

Dt
ρ

ρ µ= −∂ + + ∂ ∂ +             (2) 

where iu  is the velocity vector with components of ,u υ and w , p is the fluid 

pressure. 

From Equation (2), the surface tension force can be considered as a source term 

where the external force, Fi, arbitrarily is applied to the fluid in the momentum 

equations. For a free surface flow, this force occurs at the interfaces of two 

immiscible fluids or liquid, gas and wall. The boundary condition is defined as a 

stress boundary where the tangential stress is assumed equal to zero and normal 

stress is determined by the product of the radii of curvature and surface tension. 

Thus, the stress boundary reduces to Laplace’s formula as shown in Equation (3):  



 14

liquid gasP p p σκ∆ = − =         (3) 

where ∆P is the surface pressure at the interface, σ  is the surface tension 

coefficient and κ  the mean surface curvature. The mean surface curvature is 

mathematically given by 

( ) ( )1ˆ nn n n
n n

κ
⎡ ⎤⎛ ⎞

= − ∇ ⋅ = ⋅∇ − ∇ ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  (4) 

where n is a normal vector of the free surface, and the unit normal n̂ is given by, 

ˆ nn
n

=      (5) 

For droplet impingement, the interaction between liquid, gas and solid is taken 

into account during droplet impingement. At the solid wall, the no-slip condition is 

assumed where the velocity components at the wall are equal to zero. However, the 

contact line is allowed to move due to the surface tension force and fluid internal 

pressure. The contact angle at a liquid-solid contact line needs to incorporate the 

contact angle in this boundary condition in which this angle would strongly affect 

the normal stress at the interface. The unit normal of the free surface, n̂ , at the wall 

contact can be determined as follow: 

ˆˆ ˆ cos sinW D W Dn n tθ θ= +  

where Dθ  is a contact angle, ˆWn is the unit normal directed into the wall, and Ŵt is 

the tangent to the wall 

3.2 LARGE DEFLECTION PLATE EQUATION 

In this work, the nonlinear large deflection plate equation is used in the fluid 

flow numerical domain. The main reason is to have the plate solution match the 

physical plate condition as much as possible. In general, a small deflection plate is 

a linear model that is limited to low pressure distribution on the plate and the small 
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deflection of plate responses. Here are several assumptions used for the large 

deflection plate equation in which is not valid for the linear small deflection plate 

model: 

- The deflection of the plate mid-surface is relatively high in comparison 

with the plate thickness. 

- The component of stress normal to the mid-surface is significant. 

- There are mid-surface straining, stretching, and contracting that occur as 

a result of bending. 

During droplet formation, the flexible nozzle plate is considered to be one of 

the boundary conditions. The governing equation used to determine the boundary 

deflection is based on the dynamics of nonlinear large deflection plate theory from 

Rao [19991] as: 

4
r rr

Eh w w
r

φ∇ = −  

( )4 1damping
r r r

cD Pw w w w
h h h r h

φ
ρ ρ ρ ρ

− ∇ − + + =
⋅

& &&   (6) 

where φ is airy stress function, w is the plate displacement, w&  is the plate 

velocity, w&&  is the plate acceleration, P is the pressure acting on the nozzle plate, D 

is the flexural rigidity, and cdamping is a damping ratio.  

From Equation (6), the nonlinear plate model is added to the numerical domain 

subjected to two types of boundary conditions: free edge and clamped edge along 

with a prescribed pressure distribution. These two boundary conditions are the 

constraints at the inner and outer edge of the plate respectively. These conditions 

can be considered as an annular plate as shown in Figure 3.1. 

        
Fig. 3.1.   Annular clamped plate 
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At the clamped edge, the definition for this clamped edge boundary condition can 

be expressed by 

     0=w       0=u  

     0=
∂
∂

r
w              0=rε   0=θε  

where rε  and θε are the strain in radial and angular axis. 

For the inner edge of the plate, a free edge is assumed, so the differential terms 

for symmetrical bending can be derived with the conditions of Mr = 0 (radial 

moment) and Vr =Qr = 0 (radial shear force and shear stress). The resulting 

expressions are given as follows: 
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The other major boundary condition on the plate is the pressure distribution 

boundary which is determined by the fluid interaction inside the chamber as shown 

in Figure 3.2.  

 

 

Fig. 3.2. Schematic of the pressure boundary of the plate model in the chamber. 

Considered is a distributed lateral load shown in Figure 3.2, which is from the 

fluid pressure acting on the plate surface. This pressure P, presented in Figure 3.2, 

is the excitation of the plate model and is the pressure P in Equation (6). This load 

causes the plate to bulge out by the bending moment and shearing stress directly 

applied from the fluid pressure at the wall boundary. This deflection changes the 

shape of wall boundary and consequently the pressure distribution in the fluid, so 

the interaction between fluid and plate inside the chamber is important and is taken 

into account. 

P
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3.3 DYNAMIC CONTACT ANGLE MODELS  

The most important physics for the droplet impingement is the dynamics of the 

contact angle. There are many dynamic contact angle models developed in the past 

years. Most of them are defined as functions of the contact line velocity. This 

correlation between contact line velocity and the contact angle are based on 

empirical data.  

The model used to track the dynamic contact angle in this work is the 

molecular kinetic (M-K) theory. It was first developed by Blake [1993] based on 

Eyring’s [1969] molecular kinetics theory. This theory assumes that the contact 

line velocity is depended on the contact angle in terms of the rate constant of the 

molecular displacement process at the solid surface. At equilibrium, the contact 

line is stationary, but not at the molecular level. However, the net rate of 

displacement is equal to zero because of the balance of both forward and backward 

direction of molecular displacement as follow: 

0
w w wκ κ κ+ −= =  

where wκ + is the frequency of molecular forward movement, wκ − is the frequency of 

molecular backward movement, 0
wκ is the frequency of molecular movement at 

equilibrium, and subscription w present the wetting process. 

From the Eyring’s theory of reaction rate, the molecular displacement 

frequency can be related to the molar free energy,   ∆G*
w:  

*
0 exp w
w

GkT
h NkT

κ
⎛ ⎞−∆⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
    (9) 

where k is Boltzman’s constant, T is temperature, h is Plank’s constant, and N is 

number of molecules in an energy state. 
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For the advancing contact line, the frequency of molecular forward 

displacement is greater than the backward displacement. This results in the change 

of shear stress at the contact line in both directions for the molecular displacement. 

The higher the contact line velocity, the higher the net rate of displacement and the 

more shear stress. The work done by shear stress per unit molecular displacement 

is W and the average work per adsorption site is W/2n where and n is the number of 

adsorption sites per unit area on the surface, related to the length of molecular 

displacement shown in Equation (11). The final expressions for both forward and 

backward frequencies are given by: 

*

2exp
w

w

WG
kT n
h NkT

κ +

⎛ ⎞⎛ ⎞− ∆ −⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

 

*

2exp
w

w

WG
kT n
h NkT

κ −

⎛ ⎞⎛ ⎞− ∆ +⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

 

and the net frequency of molecular displacement is  

w w wκ κ κ+ −= −  

0 exp exp
2 2w w

W W
nkT nkT

κ κ ⎛ − ⎞⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

02 sinh
2w w

W
nkT

κ κ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

    (10) 

Next, the velocity of the contact line can be related to the characteristics of 

molecular displacements as follow: 

                                   CL wU κ λ=                     (11) 

where CLU , wκ , and λ are the contact line velocity, the net frequency, and the length 

of molecular displacement, respectively, and n is related to λ by 21/n λ= . 
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From Equations (10) and (11), the velocity of the contact line is written as: 

    2 sinh
2

o
CL w

WU
n T

κ λ
κ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

             (12) 

The work per unit area of the shear stress, W, done by the spreading process is 

generated by the out-of-balance force between the surface tension of the 

instantaneous contact angle and the equilibrium contact angle at the contact line; W 

is expressed as 

      ( )cos cosE DW σ θ θ= −    (13) 

Using the dynamic contact angle, the resultant expression relating UCL and θD is  

                        ( )2 sinh cos cos
2

o
CL w E DU

nkT
σκ λ θ θ⎡ ⎤= −⎢ ⎥⎣ ⎦

   (14) 

In Equation (14), o
wκ  and λ can be determined by curve-fitting the data of the actual 

contact angle and its contact line velocity.  

There is another promising dynamic contact angle model developed in the past 

years by Hoffman [1975] based on his experiments on silicone oils displacing air 

in glass capillaries. The dynamic contact angle based on Hoffman’s Law is shown 

as follow: 

    )]([ 0
1 θθ −+= HoffHoff fCaf            (15) 

where 0θ  is the static contact angle, 
σ

µ clV
Ca = is the capillary number, clV  is the 

velocity of propagation of the contact line and )(1 ⋅−
Hofff  is the inverse function of 

the function )(⋅Hofff , which is defined as 
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However, this model is based on Hoffman’s experimental data and it is difficult 

to fit to other droplet impingement experimental setups.  
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CHAPTER 4 

NUMERICAL SIMULATION 

 In this chapter, the methodology and numerical method are presented. The 

Volume of Fluid (VOF) and Continuum Surface Force (CSF) models are employed 

to track the free surface flow with the effect of surface tension force. Some 

computational criteria and algorithm of the simulations are also mentioned in detail 

such as pinch-off criteria, fluid structure interaction, and determination of the 

contact line velocity. 

4.1 METHODOLOGY 

The commercially available StarCD (version 3.26) and Comet (version 2.11) 

CFD numerical codes were used in this study using a parallel cluster (40 nodes). 

The finite volume method with a VOF model and a Continuum Surface Force 

model (CSF) was implemented. 

Both droplet formation and impingement are modeled as a multi-phase flow 

under the influence of surface tension. The model used to track the free-surface 

flow is the volume of fluid (VOF) method developed by Hirt and Nichols [1981]. 

In this method, two types of immiscible fluids are assigned as the heavy and light 

fluids in which both densities, although different, are constant (incompressible 

flow). The existence of the heavy fluid and the interface of the two fluids are 

represented by a passive scalar lc  which is defined as the ratio of heavy fluid 

volume to the total volume in a computational cell. The relationship for lc  can be 

shown to be as follows: 

( ) 0l lc c u
t

∂
+ ∇ ⋅ =

∂
              (16) 
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where lc is equal to 1 when the cell is totally occupied by  heavy fluid, and lc = 0 

for light fluid. At the interface, lc ranges from 0 to 1. 

Volume of fluid method is not only to determine the cell that contains the 

interface boundary, but also defines where the fluid is located in an interface cell. 

The normal direction to the interface lies in the direction in which lc  changes 

rapidly. For this reason, the VOF method is able to track the arbitrarily oriented 

free surface and interface boundary with respect to the computational mesh. The 

advective term in Equation (16) is a key term in interface reconstruction which 

models the movement of the fluid through the mesh. 

All physical properties are based on the passive scalar function, lc , and the 

physical properties of the immiscible fluids as:  

(1 )

(1 )
g l l l

g l l l

c c

c c

ρ ρ ρ

µ µ µ

= − +

= − +
    (17) 

This scheme is modeled by the combination of upwind and downwind schemes 

with a correction factor based on Courant number. This number is the ratio of fluid 

velocity to the grid celerity (∆x/∆t) over the interface angle normal to the cell face 

surface. The primary variables resulting from the simulation are the local time-

varying velocity, pressure, and volume fraction.  

The continuum surface force (CSF) model is used to determine the surface 

tension acting at the interface between liquid and gas phases as developed by 

Brackbill et al. [1992]. Surface tension at the free surface boundary is modeled 

with a localized volume force prescribed by CSF model. This surface tension force 

is an external source term, Fi in Equation (2).  
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Consider the effect of surface tension on a fluid interface; the surface stress 

boundary condition can be expressed as follow: 

( ) ( )ˆ ˆliq gas
liq gas i ik ik k

i

p p n n
x
σσκ τ τ ∂

− + = − +
∂

   (18) 

where σ is the fluid surface tension coefficient, pliq and pgas are the pressure in the 

fluid, τ is the viscous stress tensor, and n̂  is the unit normal vector. 

In this model, the surface tension is a constant and the viscous force is 

neglected, so the expression of the boundary condition shown in Equation (18) 

reduces to,  

gas liqp p σκ− =  

where σ  is the surface tension coefficient and κ  the mean surface curvature. The 

curvature of a free surface, κ is calculated from 

    ( )n̂κ = − ∇ ⋅  

In the combination of VOF method CSF model, the interface is replaced by 

volume fraction, lc , whose normals are gradients of lc . 

                             ln c= ∇  

The unit normal is thus 

     ˆ l

l

cnn
n c

∇
= =

∇
 

where κ is determined by: 

            l

l

c
c

κ
⎛ ⎞∇

= −∇ ⋅⎜ ⎟⎜ ⎟∇⎝ ⎠
    (19) 

The computation of the surface tension force comes from the results from 

neighborhood mesh at the interface, so the effect of surface tension should be 

confined to the neighborhood of the interface.  



 23

4.2 SIMULATION FOR DROPLET FORMATION 

Numerical Grid 

A model of the droplet generator and its cross-sectional view and its 

computational mesh are shown in Figure 4.1 and 4.2 respectively. In the CFD 

solution domain, the entire chamber inside the droplet generator is modeled using a 

three-dimensional axisymmetric cylindrical mesh. The surrounding space outside 

the nozzle exit is also included in the domain to track the interaction between the 

two phases: liquid and gas. To validate the numerical solution, two criteria were 

used to check the accuracy of the CFD model: grid-dependent solution and 

experimental validation. In this section, the grid-independent is discussed and then 

the comparison with the experimental result is presented with the results. 

 

 

Fig. 4.1. Schematic of the droplet generator modeled in this study. 
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Fig. 4.2 Structured mesh of computational domain for droplet generator. 

In Figure 4.3, a grid-independent solution was sought by evaluating the 

changes of the numerical solutions upon decreasing the grid size. The rms 

differences of solutions of 0.025 and 0.0125 mm grid sizes (compared at the same 

coordinates) are 1.32% for velocity, and 1.17% for pressure, and the maximum 

difference occurs at the filament neck, 1.88% for velocity and 1.65% for pressure 

along the interface line. Based on this, the grid size used in the model is taken as 

2.5x10-5 m.  

(a)                                            (b) 
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  Fig. 4.3 Contour plots of the difference of two  grid-size solutions: (a) velocity 

and (b) pressure. 

Pressure boundary 

Wall boundary 

Solid cell 



 25

Pinch-off Criteria 

In this CFD simulation of droplet formation, the pinch-off criterion to 

determine a break-off is defined by the VOF fraction. During a necking process, 

the jet filament decreases in radius. When VOF fraction is less than 0.5 at the 

center-line cell along the liquid column, the break-off threshold is set. Based on 

this, the size of the filament is approximately 1.25x10-5 m, which is 1.25% of the 

nozzle diameter, when the break-off occurs, shown in Figure 4.4. James et al. 

[2003] use the same VOF value (0.5) to identify the break off with only 32 grids 

across the droplet (3.125%). 

 

Τ = 2.800                                          τ = 2.825 

Fig. 4.4 Pinch-off at the thread of fluid filament. 

Fluid-structure interaction 

The nonlinear large-deflection plate model is included in the CFD numerical 

computation by adding a user-defined subroutine to the CFD solver. In this 

subroutine, the pressure distribution on the nozzle plate is applied to the plate 

model to determine the actual displacement at every time step. Next, the deflection 

of a nozzle plate forms a new wall boundary used in fluid flow computation. 

Figure 4.5 shows how the fluid pressure interplays with plate deflection.  
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Fig. 4.5 Pressure distribution and fluid-structure-interaction inside the chamber. 

4.3 SIMULATION OF DROPLET IMPINGEMENT 

In droplet impinging, the surface tension force of the interface between the 

liquid phase and the solid surface is taken into account. This force affects the 

spreading and receding process. The normal of the interface of two immiscible 

fluids is determined by the gradient of the passive scalar cl from Eqn. (16). 

Therefore, the contact angle at the interface is required as a boundary condition. A 

dynamic contact angle model is included to determine the local contact angle along 

the impinging process. In this work, the molecular kinetic theory model (M-K) is 

used to specify the dynamic contact angle.  

         

Fig. 4.6. Computational mesh and domain in three dimensional axisymmetric 
cylindrical coordinates 

4 mm. 

3 mm. 

Wall boundary 

Pressure boundary 

Centerline 
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In the computational domain, the droplet impingement on a horizontal solid 

surface was modeled using a three-dimensional axisymmetric cylindrical mesh. 

Figure 4.2 presents the computational domain for the study of a droplet 

impingement. The computational domain extends to 4 mm in radius and 3 mm 

high using 50,000 wedged-like structured cells as shown in Figure 4.6. The finest 

mesh size, 0.01 mm, is assigned in the near wall region. To validate the numerical 

solution, two criteria were used to check the accuracy of the CFD model: grid-

independent solution and experimental validation. The comparison with the 

experimental results is presented in the Results section. A grid-independent 

solution was sought by the reduction of grid size while evaluating the change of 

the numerical solutions. In Figure 4.7, the rms percentage difference of solutions 

between 0.01 mm and 0.005 mm grid sizes are about 0.11% for velocity and 0.18% 

for pressure. The maximum difference between the solutions is about 0.5 % for 

velocity which occurs near the solid surface and the interface between gas and 

liquid. The maximum difference of the pressure is 1.03% which occurs near the 

liquid-air interface.  

(a)                                                              (b) 

  
Fig. 4.7. Contour plots of the % difference of two  grid-size solutions: (a) velocity 

and (b) pressure. 
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The M-K theory model is included in the CFD numerical computation by 

adding a user-defined M-K theory model to the CFD solver. In this user 

subroutine, the location of the edge of the droplet is recorded at each time step; the 

contact line velocity, UCL, is determined by the difference of the contact-line 

location of two consecutive time steps as shown in Figure 4.8. Then, the known 

UCL is used in the M-K theory model for the calculation of the dynamic contact 

angle. The contact angle determined from the M-K theory is prescribed in the CFD 

numerical solver as a boundary condition at the liquid-solid (solid wall) interface 

of the current time step.  

           

 
 

Fig. 4.8. Schematic of determining the contact line velocity. 
 

 

 

 

 

 

 

R* at Ti R* at Ti+1 
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CHAPTER 5 

RESULT AND DISCUSSION 

In this study, the numerical simulations are conducted for both droplet 

formation and droplet impingement by commercial CFD program. There are two 

major sections in this chapter: droplet formation and droplet impingement. In the 

droplet formation, the validation of the numerical solution by the experimental 

results is done by using a stiff nozzle plate condition. The different types of the 

excitation waveforms and input impulses are applied to the model to investigate 

their effects to the droplet formation characteristics. The variation of fluid 

properties is also studied. Later, the effect of a flexible nozzle plate is investigated 

along with the variation of fluid properties.  

Next, the numerical simulation of single droplet impingent is validated with the 

experimental results. The equilibrium contact angles, successive impinging phases 

and fluid properties are varied to determine the spreading/receding characteristics 

of both single and successive droplet impingements.  

5.1 DROPLET FORMATION 

In this section, the results of the CFD simulations are validated with the 

experimental data from Hawke [2007]. Table 1 lists the geometric and fluid 

parameters used in this study. The results are presented in nondimensional form 

scaled by the capillary parameters as shown in Table 2. Table 3 shows the 

conditions of applied waveforms and vibrating characteristics of the nozzle plate 

on droplet formation. The prescribed displacement of the piezoelectric plate is 

considered as the input applied to the system to eject the droplet from the nozzle. 

Two types of piezoelectric waveforms are used in this study: step-function and 
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pulse- function. The difference of the outcomes between these two waveforms is 

significant, especially in the meniscus and resultant volume after break-off.  

The nondimensional impulse (I*) is defined to represent the relation between 

the applied impulse and the droplet volume. I* is scaled by the system parameters 

indicating the size of the nozzle, total mass of fluid in the chamber, and 

piezoelectric diameter. The droplet formation using a flexible nozzle plate is 

discussed, focusing on the influence of plate vibration characteristics on the droplet 

formation. For different fluid properties, the droplet formation characteristics 

following break-off are changed such as droplet volume and velocity. For the 

computational experiments, the conditions of these two variables are listed in 

Table 4.  

 

Table 5.1. Geometric and nominal fluid parameters of droplet formation. 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

Properties Value 

Nozzle hole radius, a: (µm) 1000 

Nozzle plate radius, r : (µm) 15875 

Nozzle plate thickness, h: (µm) 100 and 800 

Density of fluid r: (kg/ m3) 1000 

Surface tension of fluid σ: (N/m) 0.074 

Dynamic viscosity of fluid µ: (kg/m.s) 0.001 
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Table 5.2. Capillary scales using fluid properties from Table 1. 
 

Variable Description Scale Value 

cE  Stiffness 
a
σ  148 Pa 

cl  Length a  0.0005 m 

cP  Pressure 
a
σ  148 Pa 

ct  Time 
3aρ

σ
 0.0013 s 

cu  Velocity 
a

σ
ρ

 0.385 m/s 

cV  Droplet volume 34
3

aπ  0.524 mm3 

 
Table 5.3. Nominal nozzle plate characteristics with the driving piezoelectric 

waveforms; all cases use step-function waveform except case 2 which uses the 

pulse-function waveform. Remark: Nominal fluid properties shown in Table 1 are 

used for cases 1 through 9.  

 

 
 

Case h(µm) E* δ*max τrampup 

1 800 STIFF 0.17 4.51 

2 800 STIFF 0.12 3.80 

3 100 3.38.109 0.183 1.54 

4 100 2.36.109 0.183 1.54 

5 100 1.35.109 0.183 1.54 

6 100 0.67.109 0.183 1.54 

7 100 0.34.109 0.183 1.54 

8 100 0.20.109 0.183 1.54 

9 100 0.07.109 0.183 1.54 
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Table 5.4. Nominal nozzle plate characteristics and fluid properties with the 
driving step-function piezoelectric waveforms 

 
 

 

 

 

 

 

 

5.1.1 Droplet formation with a stiff nozzle 

This section discusses the validation of the CFD model and shows the base 

case results using a stiff nozzle plate. The comparisons of quantitative data and the 

shape of the liquid jet during the formation process are provided to validate the 

model. Based on the piezoelectric displacement responses given by Hawke [2007], 

the time dependent trace of the prescribed piezoelectric displacement is defined by 

Equation (20) below and plotted in Figure 5.1 for two input waveforms, a step 

function and pulse function defined in Equation (20). The nondimensional 

piezoelectric displacement is presented by the following time-dependent function 

where τ is the nondimensional time using the capillary time scale given in Table 2. 

 

Step-function:        Equation 20 (a)  

 
* *

max
1 2sin

2piezo
rampup rampup

τ πτδ δ
τ π τ

⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                  0< τ<τrmapup   

                   *
maxδ=                                                       τrmapup<τ 

 

Case σ* µ* E* (109) 

10 0.5 1 E* = 0.07, 0.34, 0.67, 1.35, 3.38 

11 2 1 E* = 0.07, 0.34, 0.67, 1.35, 3.38 

12 3 1 E* = 0.07, 0.34, 0.67, 1.35, 3.38 

13 1 0.5 E* = 0.07, 0.34, 0.67, 1.35, 3.38 

14 1 2 E* = 0.07, 0.34, 0.67, 1.35, 3.38 

15 1 4 E* = 0.07, 0.34, 0.67, 1.35, 3.38 
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 Pulse-function:        Equation 20 (b)  

  
* *

max
1 2sin

2piezo
rampup rampup

τ πτδ δ
τ π τ

⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                  0<τ<τrampup 

          
*
max

2 ( )11 sin
2

rampup rampup

rampup rampup

π τ τ τ τ
δ

π τ τ

⎛ ⎞⎛ ⎞⎛ ⎞− −
⎜ ⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

   τrampup<τ<2τrampup 

          0=                          2τrampup < τ   
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Fig. 5.1. Piezoelectric waveforms: step-function and pulse-function. 

In Equation 20(a), the waveform is defined as a step-function with the rampup 

period from the rest position to the peak of the displacement. The main purpose of 

using this step-function waveform is to study how the total applied momentum 

would affect the formation of a liquid jet and the post-break-off droplet. The other 

waveform is a nondimensional pulse with τrampup = 3.80. This waveform given in 

Equation 20(b) is very close to the first one during the rampup interval, but after 5 

ms (τ =3.80), the piezoelectric plate is forced to move back down to the initial 

position.  



 34

 

Fig. 5.2. Comparison between experiment images and numerical simulation 
contour plots of the step-function input with a stiff nozzle plate. 

 

Figure 5.2 shows a series of images from the experiment and numerical 

simulation for the step-function case with the maximum piezoelectric 

displacement, δ*max, at 0.17 and the rampup time, τrampup, at 4.51 (case 1). During 

the rampup interval (τ < 4.5), the protrusion of the liquid jet exiting the nozzle 

appears as a uniform column without necking because the piezoelectric 

continuously transfers its momentum from the driven waveform directly to the 

fluid inside the chamber. No negative suction or pressure occurs inside the 

chamber for the step-function waveform. For τ > τrampup, the piezoelectric stops and 

is held at its peak. During this time, the necking becomes significant. The neck of 

the liquid thread appears close to the nozzle exit and continues decreasing in radius 

while the leading edge propagates outward. At τ = 8.45, the droplet breaks off from 

the main liquid column outside the chamber with a meniscus left at the nozzle exit.  
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Fig. 5.3. Leading edge position, L*, versus time, τ, for both experimental and 
numerical simulation results. 

 

Figure 5.3 is a comparison of experimental and numerical simulation results of 

the position of the droplet leading edge. Results include both functions. The step 

function results show a continual increase in position with a slowing of the leading 

edge right at break-off at τ = 8.5 However, after break-off, there is “rebound” 

acceleration with oscillatory behavior and a second deceleration at approximately τ 

~ 13. The results of the step-function input show that most of the momentum 

produced by the piezoelectric motion causes the leading portion of the liquid jet to 

accelerate more than the rear portion. This is because the trailing portion of the 

fluid leaves after the rampup period when the piezoelectric is stationary. This 

causes the necking to occur near the nozzle and break-off to occur outside of the 

chamber but very close to the nozzle as shown in Figure 5.2. 

The volume of the liquid column jetting out of the nozzle versus time is shown 

in Figure 5.4 for both waveforms. There is a discontinuous decrease of the volume 

that occurs right after break-off (τ = 8.5 for the step-function waveform), this is 

because the volume only includes the droplet after break-off. The difference 

between the maximum volume and the droplet volume is the volume of the 
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meniscus left near the nozzle exit. For the step-function waveform from 

approximately τ = 4.5 to 8.5, the volume remains constant up to break off even 

though the leading edge is moving forward. This indicates a balance of forward 

moving fluid and necking with no net ejection of new fluid from the nozzle exit. 

(a)                                                            (b) 

                 
Fig. 5.4. (a) Droplet formation for the two different waveforms, and (b) volume of 

the liquid column and droplet after break-off. 
 

Next, the pulse waveform is examined to determine whether the retreat of the 

piezoelectric causes any effect on the droplet formation process. From Figure 5.1, 

the pulse waveform has the piezoelectric reaching the maximum displacement 

(δ*max = 0.12) at τ = 3.80. The receding of the piezoelectric not only decelerates the 

propagation of the liquid column as shown in Figure 5.2, but also generates a 

suction pressure inside the fluid chamber. This suction pressure causes the leading 

edge to slow down and gradually move back towards the nozzle. The necking of 

the liquid filament occurs inside the fluid chamber and break-off happens at the 

nozzle exit, as shown in Figure 5.4 (a). The volume of the liquid column in Figure 

5.4 (b) substantiates the meniscus receding back into the nozzle showing a 

decrease in the volume after τ = 3.81. The pulsed waveform results in a faster 

break-off time, τ = 6.5 versus τ = 8.5, for the step function, and a smaller droplet 

volume, by approximately 40%. 
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A nondimensional impulse function, I*, is introduced to define the ratio of the 

total impulse from the piezoelectric displacement at a single time step to the 

product of the total mass of liquid in the chamber and the capillary velocity which 

is based on the ratio of surface tension and nozzle hole diameter. Based on this, the 

expression for I* is:  

1

0

( ) ( )
*

rampup

rampup

T

displaced piezoT

reservoir c

m t u t dt
I

M u
=

∫
        (21) 

where ( )piezo tδ  = displacement of the piezoelectric, ( ) ( )piezo piezou t tδ= & , 

2( ) ( )displaced piezo piezom t r tπ δ=  
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Fig. 5.5. Relationship between V* and I*, and the cutoff impulse. 

 

In Figure 5.5, the relationship between nondimensional impulses I* and droplet 

volume V* is presented for the step-function waveform. There is a nearly linear 

relation between I* and V* at the high impulse region (I* > 0.4). The cutoff 

impulse occurs at I* = 0.3 below which there is no droplet break-off. This result is 

expected to be dependent on the droplet generator geometry. 
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5.1.2 Droplet formation with a flexible nozzle 

The results of a passively vibrating nozzle plate are presented by comparing 

parameters such as droplet volume, velocity, break-off time, and pressure at the 

nozzle exit for several flexible nozzles with different values of Young’s modulus. 

As shown in Table 3, the nozzle-plate vibration is investigated using case 

numbers 3 to 9. For these seven cases, the applied waveform is a step function with 

total displacement δ*max = 1.5.10-3 at τ = 1.45. Figure 5.6 (a) shows the deflection 

of the nozzle plate at the nozzle exit versus τ. The smaller the Young’s modulus, 

the larger the displacement. Moreover, the oscillating frequency of the plate 

response is also related to the flexibility of the nozzle plate, with a higher 

frequency response for lower Young modulus values. Figure 5.6 (b) shows the 

comparisons of the large-deflection plate model between the results from the CFD 

solution and the analytical closed-form solutions from Ugural [1981]. This solution 

is for a uniform applied pressure. So to compare results, the CFD pressure was 

averaged along the bottom of the plate and compared to a uniform applied pressure 

for the analytical solution. The CFD result shows good agreement with the 

analytical results; and also the distributed pressure condition has essentially no 

effect on the nozzle deflection compared to that of a uniform load. 

(a)                                                          (b) 
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Fig. 5.6. (a) Nozzle plate response with respect to τ, and (b) validation of plate 

model with the solution given by Ugural [1981]. 
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Fig. 5.7. Series of droplet formation for different values of E* for the nozzle plates 

at six different times after the activation of the piezoelectric diaphragm with 
σ*=µ*=1. 

 
A series of snapshots of the droplet formation process are shown in Figure 5.7 

for different nozzle stiffness values. It is evident that the droplet formation from 

the more rigid nozzle plate (large E*) has a longer break-off distance and faster 

droplet velocity. The filaments for the more rigid plates become thinner quicker, 

resulting in longer filaments. Figure 5.8 shows the pressure just beneath the nozzle 

exit, the equivalent of one plate thickness below the nozzle exit for different values 

of E*. It is seen that the pressure rises quickly, decreases, goes negative, and then 

stabilizes. The ripple noted τ > 3 is due to droplet break-off. By examining the 

detailed flow, it is found that the nozzle plate starts to deflect outward when the 

fluid inside the chamber is accelerated by the piezoelectric movement. The peak of 

each pressure profile occurs between 0.5 < τ < 0.75 with increasing magnitude of 

the pressure for increasing values of E*, since the higher values of E* have lower 

nozzle deflection. The  time  to  reach  the peak is approximately the same for each  
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Fig. 5.8. Nondimensional pressure, P*, versus time, τ, for different values of 
nondimensional Young’s modulus, E*. 

 
case because this peak is reached well before the plate begins to recede, as shown 

in Figure 5.6. The pressure decreases with the expansion of the   volume   of   fluid  

from the nozzle exit. For this reason, the pressure at the nozzle varies directly with 

Young’s modulus. It should be noted that, for times τ > 1, the negative pressure is 

created nearby the nozzle exit because the piezoelectric plate is decelerated to stop 

at its maximum displacement. 
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Fig. 5.9. Nondimensional droplet volume, V*, versus time, τ, for different values 
of nondimensional Young’s modulus, E*. 

 

The nondimensional volume, V*, of the liquid column ejected from the nozzle 

is presented in Figure 5.9 versus τ. For each nozzle plate stiffness, the fluid volume 

increases with time until a maximum is reached, and this time is essentially 
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independent of stiffness. The volume slowly decreases beyond the peak until a 

sharp decrease occurs. This decrease, which is largest for the more flexible 

nozzles, occurs at droplet break-off where only the separated fluid is included in 

V*. Comparing the P* and V* results, in Figure 5.8 and 5.9, it is apparent that the 

pressure has a significant effect on the volume of the droplet. The higher the 

maximum pressure at the nozzle exit, the larger the volume after break-off. The 

decrease of the volume of the fluid after the peak is more significant for the most 

flexible nozzles, indicating that more fluid retreats back into the nozzle the greater 

the plate deflection.  

The trends of droplet formation parameters with respect to the values of 

nondimensional Young’s modulus, E*, are given in Figure 5.10. There is a steep 

decrease of the break-off time for increasing values of E*, which corresponds to 

much larger droplet volumes. The volume of the droplet is shown to increase 

significantly with E*. For the most flexible nozzle, the droplet volume is 

approximately one-third of the volume for the stiff case. However, this trend is 

highly nonlinear, showing a large decrease in volume for very low values of E*. 

This rapid decline in droplet volume occurs when E* is less than 109. The velocity 

after break-off can be related to the pressure at the nozzle, which decreases with 

decreasing values of E*. Therefore as shown in Figure 5.10 (c), there is a 

significant decrease in velocity for the more flexible nozzle plate.  
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Fig. 5.10. Droplet formation flow characteristics versus E*: (a) break-off time, (b) 

droplet volume and (c) velocity. 
 

5.1.3 Droplet formation with variation of fluid properties 

The effects of fluid property variations on droplet formation were evaluated for 

surface tension and viscosity at different vibrating characteristics, E*. These cases 

are given in Table 4. The stiff nozzle condition was first evaluated using E* = 

3.38×109. In Figure 5.11, a series of droplet formation images are presented for 

four different values of surface tension. The surface tension is defined by σ* which 

is the ratio of the fluid to water surface tension. At σ* = 0.5, the droplet after 

break-off has the highest volume and velocity compared with higher surface 

tension cases. For the very high surface tension case, the droplet volume more 

rapidly forms a shape without a trailing filament. 
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Fig. 5.11. Series of snapshots of droplet formation process for different σ* with 
µ*=1 and E*=3.38x109. 

 
Figure 5.12 shows the droplet formation characteristics of the results for cases 

10 to 13. Post-breakoff droplet volumes are presented in Figure 5.12 (a) Here, it is 

shown that there is no droplet break-off for the cases with the most flexible nozzle 

plate, E* = 0.07×109 when the surface tension is high, σ* ≥ 2. The droplet volume 

decreases almost linearly with surface tension. The droplet volume decreases faster 

with increasing surface tension as the stiffness of the nozzle plate decreases. 

Consequently, the combination of large plate flexibility and large surface force 

results in a large decrease in droplet volume. The post-breakoff droplet velocity is 

shown in Figure 5.12 (b) Results show a trend similar to the volume, as expected. 

For the case with σ* ≤ 1, droplet velocity is always greater than the capillary 

velocity even with the most flexible nozzle plate.  Figure 5.12 (c)  shows  that  the  
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(a)                                                       (b) 
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Fig. 5.12. Flow characteristics: (a) droplet volume, (b) velocity, and (c) break-off 
time versus σ* 

 
increase in surface tension results in larger break-off times. Overall, the flexible 

nozzles enhance the ability to decrease droplet size and provide lower momentum 

drops as the surface tension increase. 

For case 13 with E* = 0.07×109 and large surface tension, the droplet is not 

ejected from the nozzle due to the strong effect of surface tension and the lower 

pressure developed at the nozzle due to the large displacement of the nozzle plate. 

Figure 5.13 shows a series of images of the meniscus for the non-breakoff 

condition. It is obvious that the surface tension force deters the liquid jet from 

jetting out of the nozzle and later pulls the meniscus back to the chamber.  
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Fig. 5.13. Series of images for non-breakoff case with σ* = 3 and E* = 0.07.109 

The effect of fluid viscosity on droplet formation is quantitatively presented in 

Figure 5.14 similar to Figure 5.12. The viscosity has a weak influence on the 

droplet formation process for the system being studied. Overall, increasing 

viscosity reduces droplet volume, but actually slightly increases droplet velocity. 

This combination results in essentially no change in droplet momentum. This 

consequence indicates that surface tension is the dominant fluid property in this 

process. 
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Fig. 5.14. Flow characteristics: (a) break-off time, (b) droplet volume and  

(c) velocity versus µ* 
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5.2 DROPLET IMPINGEMENT 

In this section, the results of the simulations are presented along with validation 

with the experimental data from Hawke [2007]. Cases for a single drop, successive 

drops impinging at different phases of spreading for the first drop, and for different 

fluid properties are presented.   The initial conditions and nominal fluid properties 

of the droplet are given in Table 4.  Single droplet impingement on a solid flat 

surface using the M-K theory dynamic contact angle model is presented first and 

then followed by results for successive droplet impingement and results for a range 

of fluid property conditions.  

Table 4. Geometric and nominal fluid parameters of droplet impingement. 

Properties Value 

Pre-impact droplet radius, Ro: (mm) 0.55 

Pre-impact droplet velocity, Uo: (m/s) 1.1 

Density of fluid, r: (kg/ m3) 998 

Surface tension of fluid, σ: (N/m) 0.074 

Dynamic viscosity of fluid, µ: (kg/m.s) 0.00114 

Solid surface Plexiglass 

Experimental equilibrium contact angle, ӨE 75o 

 

The simulation cases for both single and successive droplet impingement are 

divided into two parts for the variations of an equilibrium contact angle and fluid 

properties. In the first part, the equilibrium contact angle and the phase of 

successive droplet impingement are assigned as the varied variables. The 

equilibrium contact angle was changed from 45o to 120o at 15 o increments. The 

different time intervals between two successive drops are defined based on the 

phase of the first impinging droplet spreading: advancing, receding, and at rest. In 
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each phase of successive droplet impingement, ∆τ is defined as the time interval 

between the impingement of the first drop and impingement of the second drop 

onto the first drop. The values of ∆τ are 0.1, 2, and 12 for advancing, receding, and 

at rest phases respectively. For the cases focusing on the effects of fluid properties, 

σ* and µ* are used to define the ratio of fluid surface tension and viscosity to that 

of the nominal fluid, which essentially has properties of water. In each successive 

impinging phase, the nondimensional surface tension was varied as 0.5, 1, 2, and 3 

for µ*=1. For the viscosity, µ* was varied as 0.5, 1, 2, and 4 with σ*= 1 for all 

cases. 

5.2.1 Droplet impingement with dynamic contact angle 

This section discusses the validation of the CFD droplet impingement model 

and shows the results with a single droplet impingement using the M-K theory 

model. The comparisons of quantitative data and the shape of the droplet during 

the impinging process are presented. Experimental results given by Hawke [2007] 

for a water droplet of 1.1 mm diameter with an impact velocity of 1.1 m/s hitting a 

Plexiglass surface were used to calibrate the M-K theory model. After impinging 

on the solid surface, the droplet spreads and reaches equilibrium with a 75 degree 

contact angle, which is considered a wettable condition. The nonlinear least square 

method was used to fit the data of measured dynamic contact angle and contact 

line velocity. This was used to determine κw and λ given in Equation 14. Shown in 

Figure 5.15, the optimal fitting of the experiment data is at κw = 4.62x107 and λ = 

6.25x10-10 with a root-mean-square and standard deviation error of the predicted 

contact angle of 9.23o and 7.03o, respectively. 
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Fig. 5.15. Comparison of the dynamic contact angle, ӨD, between experimental 
results and a least square curve fit using M-K theory model. 

 

Fig. 5.16. Comparison of experimental data of Hawke [2007] and CFD results of 
the droplet impingement process for a single drop. 

 

Figure 5.16 shows the experimentally obtained images of the shape of the 

droplet during the impinging process along with the CFD contour plots using the 

M-K theory dynamic contact angle model. The CFD simulation is able to capture 

most of the details in the impinging process. For the impinging process in Figure 

5.16, the rim of the droplet is formed during spreading and the height of the 
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lamella, a dome-like thin film at the center of the impinging drop, starts to 

decrease. The spreading process stops as the droplet reaches its maximum 

spreading radius. After reaching its maximum radius, the droplet begins to recoil 

under the effect of surface tension forces. During the receding process, the contact 

angle at the outer edge is always less than the equilibrium contact angle due to the 

added momentum of the fluid near the receding contact line. 

Figure 5.17 shows details of the velocity vector field in the region of the 

advancing and receding contact line for a single drop.  During advancing, Figure 

5.17 (a), a small recirculation region develops as fluid is drawn down towards the 

surface at the contact line. Once the droplet begins to recede, shown in Figure 

5.17(b), fluid near the contact line flows back against the outward flow near the 

center of the droplet. The interaction between these two flows shows up as an 

upward flow which then turns back towards the center of the drop.  Later during 

receding, shown in Figure 5.17 (c), the flow near the contact line becomes rather 

complex as the contact angle becomes very large because the viscous forces retard 

the flow near the surface, while the flow away from the surface has higher inward 

momentum.  
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(a) 

                        
 

(b) 

                  
(c) 

 

    
 

Fig. 5.17. Velocity vector field of the single droplet impingent with ӨE = 75o, 

µ*=1, and σ*=1; (a) advancing phase,  τ= 0.6 and U*CL= 0.163 advancing, (b) 

receding phase,  τ= 2.2 and U*CL= 0.042 receding, (c) receding phase,  τ= 2.6 and 

U*CL= 0.067 receding 
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5.2.2 Single droplet impingement under variation of equilibrium contact angle 
 

In this study, it is assumed that both κw and λ in the M-K theory model are 

constant and valid for all equilibrium contact angles.  Although this assumption has 

not been tested by experiments, a range of equilibrium contact angles were studied 

to determine the sensitivity of results on variations of this parameter. The 

investigation of the effect of the equilibrium contact angle was conducted using the 

single droplet impingement with a variation of an equilibrium contact angles. 

Figure 5.18, presents a series of snapshots of the droplet impingement at a series of 

times with different equilibrium contact angles. For a higher equilibrium contact 

angle, the spreading process forms a larger rim because of the higher surface 

tension forces which confines more fluid within the rim. In most of the cases, the 

maximum spreading radius is reached at τ = 1.8 with varying sizes of the rim and 

lamella height. At τ = 3.4 (receding phase), the case of ӨE = 105o has the highest 

lamella, the largest contact angle, and the smallest receding radius among the other 

equilibrium angles shown in the figure. 

 
Fig. 5.18. Contour plots of the droplet impingement process for a range of values 

of equilibrium contact angle. 
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Results for the time-dependent spreading radius, R*, contact line velocity, 

U*CL, and dynamic contact angle, ӨD, are given in Figure 5.19 for all cases of 

equilibrium contact angle studied. In Figure 5.19 (a), the greatest spreading radius 

occurs for ӨE = 45o (R* = 2.7) and the smallest spreading radius is for ӨE = 120o 

(R* = 1.8). For ӨE = 45o, the receding phase propagates relatively slower than the 

other wettable cases (45o < ӨE < 90o). The higher the equilibrium contact angle, the 

further the droplet recoils. In Figure 5.19 (b), it is difficult to find major differences 

in the spreading velocity, because the trend and magnitude of each velocity profile 

are about the same except for small changes during rebound movement.
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Fig. 5.19. Single droplet impingement parameters versus equilibrium contact angle, 

(a) R* vs τ, (b) U*CL vs τ, and (c) ӨD vs τ. 
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When the droplet initially hits the solid surface, the dynamic contact angle is 

largest and then reduces while the droplet is advancing outwards, shown in Figure 

5.19 (c). At the maximum spreading radius, the contact-line velocity is zero and 

the contact angle is equal to the equilibrium angle. The recoiling process starts 

suddenly and the contact angle decreases below the equilibrium contact angle due 

to the opposite direction of the contact-line velocity. At later times, the droplet 

spreading and receding processes oscillate back and forth for a few cycles until 

equilibrium is reached. 

For the drops with different equilibrium contact angles, the levels of energy 

dissipation during spreading are different. The damping ratio of the first spreading-

receding cycle for the wettable condition (ӨE < 90o) is introduced to represent how 

the system dissipates energy during the impinging process. The damping ratio is 

expressed in terms of the ratio between the first two spreading radius peaks during 

oscillation.  From Rao [1986], the damping ratio is then defined as:  
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Fig. 5.20. Damping ratio vs. equilibrium contact angle for the wettable condition. 
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This damping ratio is based on the overshoot and undershoot magnitudes of the 

first cycle of the impinging process. From the simulations, the damping ratio for 

each equilibrium contact angle was determined and is presented in Figure 5.20. 

The drop with the lowest equilibrium contact angle (ӨE = 45o) has the highest 

damping ratio; this system dissipates kinetic and surface tension energies faster and 

reaches its equilibrium state sooner than the other cases. In Figure 5.20, the 

relationship between the damping ratio and the equilibrium contact angle shows an 

essentially monotonically decrease.  
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Fig. 5.21. Nondimensional droplet radius during impingement for different (a) 
viscosities and (b) surface tensions. 

 

5.2.3 Single droplet impingement with variation of fluid properties 
 

The effects of viscosity and surface tension, normalized by the nominal fluid 

value (water) are shown in Figure 5.21 for an equilibrium contact angle of 75o.  

Increasing the fluid viscosity dampens spreading as well as the oscillation 

amplitude.  In fact for the case of the viscosity four times greater than that of water 

there is no rebound spreading after the first recession and the droplet forms its 

equilibrium conditions very rapidly.   For increasing surface tension, shown in 

Figure 5.21 (b), the oscillating amplitude and period are both decreased 
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significantly.  These results indicate that a combined effect of increasing viscosity 

and surface tension will result in non-oscillating droplet impingement with a time 

scale for reaching static equilibrium approximately two to four times the capillary 

time scale. 
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Fig. 5.22. (a) Re vs R*max, and We vs R*max. 
 

For the study of the effect of fluid properties on droplet impingement, the 

relation between both Reynolds and Weber numbers with the spreading conditions 

are investigated. Figure 5.22 (a) presents the relation between the Reynolds 

number and the spreading rate. Here it is shown that the maximum spreading 

radius does not change significantly when Re is higher than 500. A large decrease 

in the maximum radius occurs at very low Reynolds number. Consequently, the 

value of viscosity have to be very high to affect the spreading process. In contrast 

to viscosity, the surface tension obviously has a linear relation to the maximum 

spreading radius as shown in Figure 5.22 (b). 
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The results of the maximum spreading radius during oscillations versus 

variations in fluid properties are represented in Figure 5.23 in terms of (ReWe)1/2, 

where Re and We are the Reynolds number and Weber number, respectively, 

based on the impingement velocity and droplet radius. Although the results may 

not indicate a well defined mathematical trend, it is apparent that there is a 

increasing nearly linear trend, with a standard deviation of the curve fit of 5.42%.  

It should be noted that other combinations of Re and We were attempted with none 

yielding any definite trend.  Since in this study only viscosity and surface tension 

were varied this result shows that a combined variation of viscosity times surface 

tension squared (as is the case for (ReWe)1/2) shows an inverse relationship with 

the maximum spreading. 

 

Fig. 5.23. Maximum spreading ratio vs 2ReWe , and its curve fit for the trend of 
the data. 
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5.2.4 Successive droplet impingement under variation of equilibrium contact 
angles 
 

In this section, the numerical results of successive droplet impingement are 

presented by comparing results from spreading and receding radii of four different 

phases of successive droplet impingement. The main objective of varying the 

timing of the successive droplet impingement is to study how the phase of 

successive impingement could affect the spreading and receding cycle of 

successive droplet impingement. Series of droplet profiles for four cases of droplet 

impingement processes at ӨE = 75o are shown in Figure 5.24 at different impinging 

phases along with a single drop. The main processes shown are pre-successive-

impinging, liquid-liquid collision, surge of spreading, and receding.  

 

Fig. 5.24. Series of images during spreading with ӨE = 75 for single drop and 
successive drop impingement for different impinging phases. 
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For the case of successive impingement during first droplet advancing, the 

inter-droplet time interval is chosen as ∆τ = 0.1. The lamella of the first droplet is 

still high and the rim is not yet well-formed when the second droplet impinges on 

the first droplet. The momentum from the second droplet causes a surge in the 

spreading radius, adding momentum from successive impingement to the outward-

driving momentum of the first droplet. For the case of the first droplet receding 

when impingement occurs, ∆τ = 2, the first droplet is forming a small lamella with 

a completely-formed rim around the outer edge of the droplet, when the successive 

droplet impinges. In the later stage, at τ = 2.6, the rim disappears because of the 

recoiling of the contact line. However, the lamella is increased due to the 

successive droplet. At successive impingement, the direction of the contact-line 

displacement is suddenly reversed; the edge of the droplet is spreading out again 

due to the impact from the successive droplet. However, the momentum from the 

successive impingement is somewhat lower because of the interaction with the 

opposite-direction momentum from the receding of the first droplet. The 

successive impingement on a static droplet is also investigated. The momentum 

from liquid-liquid interaction drives the droplet spreading. The impinging process 

is almost identical to the single droplet impingement case except that the lamella 

and rim are approximately twice the height. However, as expected, the spreading 

radius has a larger advancing distance than the single droplet case, but not twice as 

large. 

The above mentioned effects are shown quantitatively in Figure 5.25, which 

plots the spreading radius (R*) of the outer edge of the droplet versus 

nondimensional time for three different cases of successive impingement. The 

successive impingement during the advancing phase has the greatest maximum
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spreading radius, and the successive impingement on the receding phase has the 

smallest spreading radius. However, the difference is not large and the rebound 

seems to be essentially the same with the expected phase shift.  

Detailed velocity vector fields are given in Figure 5.26 at different times for 

impingement during the advancing phase of the initial droplet.  Details near the 

contact line are also given for the latter two times.  The ridge is seen to have a 

fairly complex flow with recirculation on both the bottom and top portions of the 

ridge.  The bottom one is a consequence of viscous forces and the top a 

consequence of interaction of high and lower momentum fluids.  There is 

significant vertical flow compared to the single droplet advancement as higher 

momentum is provided by the impingement of the successive drop, accelerating 

the fluid into the ridge region.  This type of complex recirculating flow may prove 

to be important in surface transport phenomena with impinging droplets.   
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Fig. 5.25. R* vs. τ at four different phases of successive impinging, ӨE = 75o. 
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(a)                                                       (b) 

  
(c) 

                                      
(d) 

                         
Fig. 5.26. Velocity vector field of successive impingement during the advancing 
phase with ӨE = 75o, µ*=1, and σ*=1; (a) τ = 0.8,U*CL= 0.244, (b) τ = 1.0, U*CL= 

0.166, (c)  τ = 1.2, U*CL = 0.123, and (d) τ = 1.4, U*CL = 0.11. 
 

The velocity vector field successive impingement during the receding phase of 

the initial droplet is shown in Figure 5.27. Compared to the results shown in Figure 

5.25 of impingement during the advancing stage the droplet shape is very different.  

The interaction of the receding phase with the second droplet causes a secondary 

bulge to occur which propagates outward and eventually forms into the ridge, 

which is much larger than that of the advancing impingement case.  There is little 

or no recirculation in the ridge. 
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(a)  

 
(b) 

          
(c) 

               
  (d) 

                   
 
 

Fig. 5.27 Velocity vector field of successive impingement during the receding 
phase with ӨE = 75o, µ*=1, and σ*=1: (a) τ = 2.4, U*CL= -0.083, (b) τ = 2.6,  

U*CL= 0.041, (c)  τ = 2.8, U*CL = 0.082, and (d) τ = 3.0, U*CL = 0.123 
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(a) 

 
(b) 

           
(c) 

             
 (d) 

      .               

 
Fig. 5.28. Velocity vector field of successive impingement during the at-rest phase 

with ӨE = 75o, µ*=1, and σ*=1; (a) τ = 12.6, U*CL= 0.018, (b) τ = 12.8, 
U*CL=0.101, (c)  τ = 13.0, U*CL = 0.159, and (d) τ = 13.2,U*CL = 0.210.  
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Final velocity vector field data is given in Figure 5.28 for the case of 

successive impingement when the initial drop is at static equilibrium.  In this case 

the advancing fluid in the successive drop accelerates the initial droplet fluid 

outward, with a secondary ridge forming on top of the initial droplet.  In this case 

there is very little or no recirculation that occurs.  It should be noted that the 

contact line is moving faster than the bulk fluid in the ridge during the latter phases 

of spreading resulting a relatively thinner spreading layer than if this were a single 

droplet with twice the volume of the initial droplet.  

The effect of the equilibrium contact angle on successive droplet impingement 

is shown in Figure 5.29. These plots show the spreading radii of successive droplet 

impingement at three different phases of the impinging droplet: advancing, 

receding, and equilibrium, with six different equilibrium contact angles. Note that 

in Figure 5.29 (c), the plot of the spreading radius for ӨE = 120o is not given 

because the equilibrium time for the initial droplet is much longer than the other 

cases. For the advancing case shown in Figure 5.29 (a), the droplet spreading 

surges outward after successive droplet impinging. Moreover, the trend of the 

spreading characteristics is the same as for single droplet impingement in which 

the largest spreading radius occurs for the smallest equilibrium contact angle. For 

the case of ӨE = 45o, the maximum spreading radius is almost twice that of the 

single droplet impingement case. On the other hand, at ӨE = 120o, the successive 

droplet impingement has a small effect on the spreading process in that it increases 

the spreading radius by about 20%. Figure 5.29 (b) presents the spreading radius of 

the receding-phase successive droplet impingement. It is seen that the additional 

momentum from the successive drop can increase the spreading radius by 

approximately 30% of the largest first-cycle spreading radius for the receding-



 64

phase successive impingement. Moreover, at the higher equilibrium contact angle, 

this enhanced spreading decreases. In Figure 5.29 (c), the first droplet is static 

when the successive drop impinges on top of it. The trend of this case is essentially 

the same as the other two cases with the largest spreading radius less than the 

advancing-phase case, but slightly larger than the receding-phase case. 
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Fig. 5.29. Droplet impingement radius, R*, vs. τ for successive impingement at 
three different phases of the initial droplet; (a) advancing, (b) receding, (c) at rest. 

 

Figure 5.30 (a) provides a measure of the effects of the equilibrium contact 

angles on the successive droplet impingement by plotting the maximum spreading 

radius versus successive impingement phase. Successive impingement during the  
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Fig. 5.30. Successive droplet spreading radius, R*max vs (a) equilibrium contact 
angle, (b) phase of the first impinging droplet subjected to successive 

impingement, (c) final radius of the at-rest droplet. 
 

advancing phase has the greatest advancing radius (R*max). For the nonwettable 

cases (ӨE > 90o), the phases of the successive impingement do not have as much of 

an effect on the maximum spreading radius (R*max). Figure 5.30 (b) shows the 

relationship between the phases of successive impingement and the maximum 

spreading radius (R*max) of each equilibrium contact angle. For the case of high 

wettability (ӨE < 90o), the phase of successive droplet impingement has a great 

influence on the maximum spreading radius. For example, at ӨE = 45o, the 

decrease of the maximum radius (R*max) between the advancing, and receding 

cases is approximately 20%, but for ӨE = 120o it is less than 5%. Figure 5.30 (c) 

shows the final radius of the droplet after it reaches equilibrium. For ӨE = 120o, an 

extremely nonwettable condition, the final radius of wetting process is almost zero. 



 66

Hence, there are only five equilibrium angles listed on the plot legend. The plot 

shows only two trends of single and successive impingement. For the successive 

droplet impingement, the final radii of all three successive phases are the same. 

The trends of both single and successive impingements are a linear decrease, 

varying inversely with the equilibrium contact angle.  

5.2.5 Successive droplet impingement with variation of fluid properties 
 

The effects of property values of viscosity and surface tension on successive 

impingement are shown in Figure 5.31 using the nondimensional values µ* and σ*, 

respectively.  Increasing viscosity reduces the radius, as might be expected, 

consistently for all successive impingement cases.  The reduction seems to be 

insensitive to impingement phase condition.  Shown in Figure 5.31 (b), there is a 

greater reduction of radius between the advancing and receding cases for the low 

surface tension case when compared to the high surface tension case.  This seems 

to indicate that when the surface tension is high, the phase condition has little 

effect on total spreading.  However, when the surface tension is low, the phase 

relationship is important, indicating that the viscosity has a more important effect 

on the total spreading extent when the surface tension is low.    
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Fig. 5.31. Successive droplet spreading radius, R*max vs phases of the first 

impinging droplet subjected to successive impingement phase with ӨE = 75o: (a) 
effect of viscosity, µ*, and (b) effect of surface tension, σ*. 
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CHAPTER 6 

CONCLUSION 

6.1 DROPLET FORMATION 

Computational simulations are provided and used to investigate the droplet 

formation process with fluid structure interaction causing nozzle plate deflection. 

The effect of the piezoelectric waveform causes different characteristics of the 

droplet formation process. The step-function waveform ejects the droplet from the 

nozzle with a greater velocity than the pulse-function waveform. The required 

impulse needed to eject the droplet for a step function is determined to be I* = 0.3. 

The drop volume does not change significantly with a decrease in I*. For a flexible 

nozzle plate it is found that the major parameter that determines the characteristics 

of the droplet formation process is the pressure at the nozzle exit. Results show that 

it is possible to control the droplet volume and velocity by the characteristics of the 

vibrating nozzle plate. Surface tension is an important parameter dominating the 

droplet formation process. The combination of a large surface tension and very 

flexible nozzle plate can result in no droplet formation. The desired characteristics 

of the droplet formation (volume and momentum) can help determine the design of 

a flexible nozzle plate to deliver appropriate drops. For full understanding of a 

droplet generator design capabilities, a range of waveforms and generator 

geometries would need to be studied. 

6.2 DROPLET IMPINGEMENT 

Numerical simulations are presented which investigate single and successive 

droplet impingement with consideration of the effects of the dynamic contact 

angle, equilibrium contact angle, surface tension and viscosity.  With the 

empirical-based molecular kinetic (M-K) theory, the dynamic contact angle during 
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the spreading and receding processes is determined. It is found that the equilibrium 

contact angle, in the droplet impinging process, affects not only the dynamic 

contact angle, but consequentially the spreading characteristics which include the 

damping ratio and maximum spreading radius. On the other hand, the equilibrium 

contact angle is shown to have a small effect on the contact line velocity. The 

higher level of wettability results in a significantly greater spreading radius and a 

smaller recoiling radius. This behavior is represented by the damping ratio (Cө). 

For wettable conditions (ӨE < 90 o), the spreading process has a higher damping 

ratio for the system with the lower equilibrium contact angle. Also, the successive 

droplet impingement shows that during the advancing phase of the first droplet, the 

impinging of the successive droplet causes the largest spreading radius compared 

to later phases: during receding, and at equilibrium. For nonwettable condition, the 

phases of successive droplet impingement do not greatly affect the maximum 

spreading radius, but they still generate greater spreading radii as compared to 

single droplet impingement.  The viscosity and surface tension interaction is shown 

to affect successive droplet spreading.  By impinging a successive droplet during 

the advancing phase of the initial droplet a complex recirculating flow pattern is 

found to exist which may enhance transport characteristics. 

5.3 FUTURE REASEARCH WORK ON DROPLET FORMATION AND 

IMPINGEMENT 

 According to the results from this research, the numerical computation tools 

used show promising results to better understand the hydrodynamics of droplet 

formation and droplet impingement. Below are some fields of study suggested for 

future work.  
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1. Experimental and numerical studies of the pinch-off criteria are one 

important field of work to understand the behavior of the fluid filament at 

break-off. In this work, the pinch-off criteria is defined by the grid size and 

value of VOF variable. To gain more accurate results, the pinch-off model 

might be added to the numerical solver, and this may better match the 

physics at the pinch-off thread. 

2. The effect of surface roughness on the droplet spreading and receding 

process would be an important research area. By applying the dynamic 

contact angle model along with the variation of the surface friction forces, 

the characteristics of droplet impingement could be studied. The friction 

force from wall roughness would be applied to the source term, Fi, 

determined by the viscous force and near-wall velocity.  

3. The complete experimental study of the dynamic contact angle model is an 

important area to help find a proper model that could present the contact 

angle simply as a function of contact line velocity and the fluid properties 

and to validate the constants used from the curve fit of the M-K theory to 

other experimental results. 

4. Splash droplet impingement is also a promising area that may be extended 

from this research. In the current work, the non-splash condition of droplet 

is assumed. To move this work into a splash condition, the un-

axisymmetric impinging results would be required. The numerical model 

needs to use a 3D arbitrarily refined mesh in order to capture the fine detail 

of the splash impingement. 
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