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In this work, I examine the problem of understanding American football in video. In particular,
I present several mid-level computer vision algorithms that each accomplish a different sub-task
within a larger system for annotating, interpreting, and analyzing collections of American foot-
ball video. The analysis of football video is useful in its own right, as teams at all levels from
high school to professional football currently spend thousands of dollars and countless human
work hours processing video of their own play and the play of their opponents with the aim
of developing strategy and improving performance. However, because football is an extremely
challenging visual domain, with difficulties ranging from the chaotic motion and identical ap-
pearance of the players to the visual clutter on the field in the form of logos and other markings,
computer vision algorithms developed towards the end goal of understanding American football
are broadly applicable across a variety of visual problems.

I address four specific football-related problems in this thesis. First, I describe an approach
for registering video with a static model (i.e. the football field in the American football domain)
using a novel concept of locally distinctive invariant image feature matches. I also introduce a
novel empirical registration transform stability test, which we use to initialize our registration
procedure.

Second, I outline a novel method for constructing mosaics from collections of video. This
method takes a greedy utility maximization approach to build mosaics that achieve user-definable
mosaic quality objectives. While broadly applicable, our mosaicing approach accomplishes sev-

eral tasks specifically relevant to the analysis of football video, including automatically con-



structing reference image sets for our video registration procedure and for computing back-
ground models for initial formation recognition and player tracking algorithms.

Third, I present an approach for recognizing initial player formations. This approach, called
the Mixture-of-Parts Pictorial Structure (MoPPS) model, extends classical pictorial structures
to recognize multi-part objects whose parts can vary in both type and location and for which
an object part’s location can depend on its type. While this model is effective in the American
football domain, it is also broadly applicable.

Finally, I address the problem of tracking football players through video using a novel parti-
cle filtering formulation and an associated discriminative training procedure that directly maxi-
mizes filter performance based on observed errors during tracking. This particle filtering frame-
work and training procedure are also broadly applicable.

For each of these algorithms, I also present a series of detailed experiments demonstrating
the method’s effectiveness in the American football domain. As a further contribution, I have

made the data sets from most of these experiments publicly available.
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Chapter 1: Introduction

American football is at once chaotic and structured. Its chaos is evident: players run, cut, spin,
jump, and dodge to evade each other; they crash into one another to block or tackle; the ball is
blocked, or dropped, or intercepted, or fumbled; the wind blows; it snows or rains; it is foggy
or muddy. Yet within all this chaos, structure exists: the game’s rules dictate where players may
line up and when and how they may move; players move in highly coordinated patterns; these
players exhibit tendencies; coaches form detailed plans describing what plays the team will run
in specific situations; these coaches also exhibit tendencies.

It is this duality—this structure within chaos—that makes football a worthwhile domain to
study from a computer vision researcher’s perspective. In particular, football’s structure is both
interesting and valuable. Teams at all levels from high school to professional football spend
thousands of dollars and countless human work hours analyzing video of their own play and the
play of their opponents. The goal of this significant investment of labor and capital is to uncover,
analyze, and help create structure: to identify tendencies, to evaluate strategies, to develop plays
and formations, and so forth, all with the hope of improving the team’s performance. Because
of the value of this information and because of the current state of the technology used to obtain
it (nearly all of this work is currently done manually), there is a great opportunity to automate
the annotation and analysis of football video and to develop methods to discover tendencies and
other higher-level structure based on this annotation and analysis.

However, because of the chaotic nature of the game, the automatic analysis of football video
is a very challenging computer vision problem. The complicating visual factors in football video
are numerous. For example, in order to capture the game’s action, the camera typically pans,
tilts, and zooms rapidly to follow the evolution each play. In addition, because of the need to
capture all the action in each play, the video teams use is often shot at a wide angle and hence
captures players at rather low resolution. For this reason, players on the same team generally
appear essentially identical in this video. Moreover, there is often a great deal of visual clutter
and camouflage on the field in the form of large logos, numbers, yard lines, and other markings.
Combine all this with the fact that players move erratically and interact with each other in very

complex ways, and one can easily see why no successful system currently exists to perform the



automatic analysis of football video. On the other hand, these same factors make computer vision
research on the American football problem quite useful, since methods that can achieve success
in this domain will be tempered by fire, so to speak, and will typically be broadly applicable to
many other visual domains.

With all this in mind, I set out in this thesis to make progress on designing computer vi-
sion methods for analyzing American football video. My work represents part of a longer-term
project whose end goal is a complete vision system for understanding American football. In
particular, my contributions to this system are four mid-level computer vision methods that ac-
complish specific sub-goals of the larger task of understanding football in video.

The first of these methods solves the problem of video registration, which is a necessary first
step for solving nearly all later football video analysis goals. Video registration, specifically, is
the process of transforming every frame of a video to align with a static coordinate system. In
the case of American football, the coordinate system with which we wish to register is a 2D scale
model of the football field. This is necessary for football analysis because, as mentioned above,
football video is typically shot with a panning, tilting, and zooming camera, and thus, the raw
image coordinates of objects within this video are not meaningful. For example, even a player
who is standing still may appear to be moving in football video because of the motion of the
camera. By registering this video with a model of the football field, we may instead reference
object locations within the meaningful coordinate system of the football field. For example, we
may say that a player is on the bottom hash at the home 35 yard line. This information is useful
for later analysis tasks, such as recognizing initial player formations and tracking players, which
I also address in this work.

The registration approach I describe in Chapter 2 uses invariant local image feature match-
ing to compute transforms that map video frames to the model (i.e. the football field). However,
because many frames of football video lack globally distinctive image features, which are the
only features for which matches can typically be found using previous methods, I present a novel
concept of local distinctiveness, in which features are matched only within a restricted spatial
window. The concept of local distinctiveness can be employed to register football video even
in the absence of globally distinctive image features. In addition, I outline a novel empirical
stability test for registration transforms, which we use to help automatically initialize our regis-
tration procedure. I demonstrate through a set of detailed experiments on a data set of American
football video that our registration method achieves results that are accurate to within only a few

pixels, on average, and that it outperforms a benchmark method from the literature.



Second, I explore the problem of constructing a mosaic from a video collection, that is,
automatically selecting a set of representative frames from that collection and registering them
together in a common coordinate frame. In the American football domain, we use video mosaic-
ing to automate tasks such as building reference image sets for our video registration procedure
or for constructing background models for our initial formation recognition and player tracking
algorithms.

Previous video mosaicing approaches looked only at the single-video mosaicing problem,
and to our knowledge, we are the first to examine the problem of building mosaics from a col-
lection of videos. Our multi-video mosaicing procedure, which I describe in Chapter 3, takes
a utility maximization approach to achieve user-definable objectives for mosaic quality. Impor-
tantly, our method is efficient because it computes image features only in the handful of frames
selected for inclusion into the final mosaic, whereas previous single-video methods computed
image features in every video frame—a prohibitively expensive step when processing even a
moderately-sized video collection. I also give an account of several experiments on both sin-
gle videos and large video collections from American football and other domains showing that,
using a simple utility function, our method can efficiently select a small subset of frames that
achieve our stated goal of near-maximal scene coverage.

The third method I describe addresses the problem of recognizing initial player formations
from the beginning of each football play. Initial player formations are a key piece of structure in
a team’s offensive strategy. In particular, not only does the initial formation set the team up to run
a specific set of coordinated patterns (i.e. a play), it also forces the team’s defensive opponent
to line up in a way the play’s designer hopes will introduce vulnerability into that opponent’s
defensive strategy (the same can be said for an initial defensive formation, as well). Thus, any
useful system for football analysis must necessarily include formation recognition as one of its
capabilities.

Automatically recognizing an initial formation entails determining both the types of play-
ers present on the field at the beginning of a play and the initial locations of those players. In
Chapter 4, I describe an approach to this problem that views football formations as multi-part
objects whose constituent parts are the players in the formation. Under this view, we employ
a novel framework that extends the well-known pictorial structure model’s ability to recognize
object classes based on both the appearance and relative structure of their constituent parts to
give that model the ability to recognize object classes whose parts can vary in both type and

location (whereas classical pictorial structures assume a set of parts with fixed types). This
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Figure 1.1: The architecture of the four football video analysis procedures outlined in this thesis.
The results of the formation recognition and player tracking steps will be passed on to later
stages of a larger football understanding system.

extended model is called the mixture-of-parts pictorial structure model (MoPPS). I further de-
scribe a restricted but reasonable MoPPS representation that allows for efficient inference using a
branch-and-bound search procedure, and I present experimental results from the initial formation
recognition problem in the American football domain to show that our MoPPS representation is
both efficient and highly accurate.

Finally, I investigate the problem of tracking players through American football video (that
is, determining their spatial trajectories through the video). Again, player trajectories are a
key piece of the valuable structure we wish to unearth in football video because, once player
trajectories are known, we can determine what specific plays a team runs (or attempts to run).
This, in turn, opens up even further opportunities for analysis. However, player tracking is

the likely the single problem in which football’s chaos most manifests itself as an obstacle to



analysis. More simply put, for all the reasons discussed above, American football is one of the
most challenging object tracking domains being studied today.

In Chapter 5, I describe a tracking method designed to attempt to overcome football’s chaos.
This method is based on the well known particle filter, but it extends the classical particle fil-
tering framework in several key ways. First and foremost, we reformulate the particle filter as
an undirected, log-linear probabilistic model (in contrast to the traditional directed, generative
probabilistic model that is typically used). This formulation allows the user to define rich sets of
(arbitrary) features that capture joint properties of a tracked object’s state and the observations
and is strictly more expressive than the classical generative model. Moreover, we describe a
discriminative supervised training procedure for this new model (as well as an efficient approx-
imation to this procedure) that attempts to learn an optimal relative weighting of the features
based on observed errors during tracking. I also present a thorough set of experiments on Amer-
ican football video in which our particle filter is shown to outperform previous state-of-the art
filtering approaches.

The overall architecture of the four procedures I describe in this thesis is depicted in Figure
1.1.

I conclude in Chapter 6 by discussing our more recent, preliminary work on player tracking
in the football domain. Before entering into the rest of this thesis, however, I will review some

of the recent literature that is most relevant to the problem of football video analysis.

1.1 Previous Related Work

Despite its research appeal, we are aware of very little work addressing the larger problem of
analyzing American football video. One substantial earlier body of work on American football is
by Intille and Bobick and is summarized in Intille’s 1999 PhD thesis [31]. Indeed, though Intille
and Bobick’s work may be the most comprehensive to date on the football analysis problem, it
might best be thought of as a series of interesting failures. To a large extent, this can be blamed
on the fact that the state of the art in 1999 was simply not advanced enough to tackle many of the
challenges set forth by the American football domain. In particular, at that time, technologies
that have driven much of the success of our own research, such as invariant local image features,
pictorial structure models, and particle filter-based object trackers, were either undiscovered or
else obscure and little understood.

Indeed, Intille and Bobick attempted to solve many of the same problems addressed in this



thesis, but invariably, the solutions they proposed were unreliable to the point that their respec-
tive results could not be used in successive stages of their football understanding system. For
example, in [30], Intille proposed a video registration method that tried to detect and track in-
tersections of lines on the football field, a subset of which were then manually matched to the
corresponding locations on a 2D football field model in order to initialize the computation of
registration transforms for each video frame. However, this method proved ineffective and was
abandoned in favor of tedious manual registration in Intille’s thesis.

The main problem with this approach is its dependence on line intersections whose accurate
detection is inherently unreliable, considering that a) most football fields are not, in fact, planar
but are curved for drainage, so the yard lines on the field (i.e. the lines placed at five-yard intervals
that span the width of the field) do not actually project as true lines in video; and b) there is not
actually a set of lines that runs perpendicular to the yard lines on a football field, so Intille tried to
induce lines perpendicular to the yard lines using the centroids of the hash marks (i.e. the series
of short parallel lines that are placed at one-yard intervals). Ultimately, because of these factors,
the noise inherent in the low-level image processing algorithms that underlay the detection of
the intersections of these lines (and “lines”) introduced unacceptable levels of error into their
tracking and matching, which in turn led to unacceptable registration results.

Intille also attempted in his thesis to solve the problem of recognizing initial player forma-
tions using a SAT-like algorithm and a manually-constructed knowledge base of hard constraints—
such as “near,” “to the left of,” and “bit of vertical space between”—on the relationships between
player locations. However, not only did this approach require the manual input of players’ loca-
tions in the initial formation—it’s output was simply a set of player type tags associated with the
input locations—but the results Intille achieved using it were again too poor to pass on to later
stages of his football video analysis system.

The shortcomings of this approach were numerous. For instance, a tremendous amount of
manual effort was required to make this approach work. In particular, not only did it need all
initial player locations to be manually specified, it also required a large, manually-assembled
knowledge base of hard constraints, the construction of which Intille himself admitted to be
tedious and time-consuming. Perhaps most importantly, the use of hard constraints makes this
approach quite inflexible. For example, because even identical formations typically exhibit slight
differences in the relative locations of players, a database of discrete hard constraints engineered
to operate on a particular data set of formations might have trouble recognizing new instances

of the same formations. Moreover, incorporating new, previously-unseen formations into the



database would likely require hours of tedious constraint re-engineering.

Finally, much of Intille and Bobick’s early efforts were devoted to player tracking [30, 32,
33]. The common thread running through these three tracking papers is the concept of “closed-
world” tracking, in which small regions (i.e. closed worlds) are drawn around independent single
players and interacting groups of players in the current video frame, appearance templates are
computed for the players in each closed world (with the number and identities of the players in
each closed world being used to determine how the templates are computed), and these templates
are matched with the succeeding frame to determine each player’s location there. It is now well
known, however, that template-based tracking can be very unreliable, particularly for non-rigid
objects like football players, and, primarily for this reason, Intille and Bobick’s tracking results
were never satisfactory for their later work on football play recognition. Thus, again, for this
later stage of their football analysis system, Intille and Bobick were forced to use manually
generated tracking data.

Still, despite much of their system’s inability to produce reliable results, Intille and Bobick’s
work is still instructive. For example, the overall architecture we have employed in our own
system to date has aligned very closely with the architecture designed by Intille and Bobick (i.e.
video registration — initial formation recognition — player tracking — play recognition). In
addition, some aspects of the individual components of Intille and Bobick’s system—such as the
computation of registration transforms from video-to-model point matches—are present in the
corresponding components of our own system.

In addition to Intille and Bobick’s work, there has been a good deal of more recent work
on American football video. Liu et al. investigate the problem of extracting the portions of a
television football broadcast that contain football play action and discarding non-action portions
of the broadcast, such as commercials, etc. [48]. This work may have limited relevance to us
because we are interested in working with pre-existing databases of video recorded by football
teams themselves. This video is typically pre-segmented into single-play clips by the camera
operator.

Several other efforts employ various means to address the problem of football play classifica-
tion from video [72, 46, 67, 45]. Indeed, each of these papers attempts to perform essentially the
same very coarse classification of football plays (i.e. left/right/middle run, or short/deep pass).
Though we may wish to perform a more fine-grained analysis of football plays than is done in
this work (e.g. recognizing specific passing patterns or blocking schemes), some of it may still

be useful as we move to later stages of our own work. However, none of this work does much



to address the computer vision problems considered in this thesis. In particular, none of these
papers explore the problems of video registration or initial player formation recognition, and two
of them ([67, 45]) do not make use of any player tracking data at all, while one ([46]) uses only
manually generated tracking data, and the other ([72]) resigns to using data from only partial, in-
exact trackers. It is important to note that, without accurate tracking data, it may not be possible
to achieve some of the finer-grained play analysis we envision in later stages of our own system.

In addition to work on the American footall domain, there have been a number of research
efforts on analyzing video from other sports domains that are worth noting here. For example, a
research group led by James Little at the University of British Columbia is currently performing
work on analyzing ice hockey video and has addressed the problems of video registration [61],
player tracking [51, 7, 50, 62], and player action recognition [51, 50]. While most of this work
is satisfactory, it still exhibits shortcomings that make it inappropriate for our efforts in the
American football domain. For example, the video registration method Little’s group proposes
requires manual initialization of every video clip, which places an unnecessary burden on the
end user. Little’s group’s tracking method, the boosted particle filter, is well known, but it does
not provide mechanisms for reasoning about player types or identities, which is important in the
football domain, since player type information often helps us cope with the ambiguity inherent
in football video. Finally, Little’s group focuses only on classifying individual player actions at a
very coarse level (e.g. skating left/right or skating up/down). While action classifications of this
type may be of some use in the football domain, a great deal of higher-level activity recognition
will also be necessary for football.

A great deal of research work has also been done on soccer analysis, with a primary focus
on player tracking. For example, Sullivan et al. propose a tracklet-based approach for tracking
and identifying soccer players [57, 71]. Unfortunately this method relies on a panoramic video
stream of the soccer pitch recorded by calibrated cameras to facilitate near-perfect background
subtraction. Because we wish to design a system to work with the video football teams already
use, this is simply not possible for us. Moreover, Sullivan et al.’s method uses a very simple
nearest-neighbor data association algorithm for linking players from frame to frame, and this
approach is far too simplistic to cope with the complex interactions between American football
players.

A group of researchers from Disney Research and Georgia Tech have also explored soc-
cer player tracking [22]. However, their tracking method assumes the action is being recorded

by multiple cameras at different locations, and this assumption does not hold in our setting in



the football domain. This same research group also investigated a method for predicting the
evolution of a soccer play, i.e. predicting the region on the pitch towards which the play is un-
folding [39]. This method uses the tracks output by the method described in [22] to compute a
motion field over the entire soccer pitch, and this motion field is then used to detect points of
convergence. This method, while not directly relevant to the problems addressed in this thesis,
is interesting, and it could be useful in the American football domain, for example, to coarsely
classify the type of play being run (e.g. left/right run or short/deep pass) or to determine which
player is carrying the ball.

Finally, Lu et al. recently presented a method for determining the identities of players in
basketball video. This method learns an appearance-based classifier over player identities using
SIFT and MSER image features and color histograms and then applies this classifier at test time
on player regions determined using a player detection-based tracker. The role played by this
procedure is essentially analogous to the one played by an initial player formation recognition
procedure in the American football domain. However, because this method relies so heavily on
the ability to distinguish players based on features of their appearance, it is not suitable for our
American football video, in which the resolution is so low that all players on the same team have
virtually indistinguishable appearances.

Before moving on, I will note that there is, of course, other work on sports analysis in the
literature, but, aside from some additional research endeavors discussed in the chapters that
follow, the ones mentioned here are the most salient for our work on American football video

analysis.



10

Chapter 2: Video Registration!

An important first step in any system for interpreting American football video is to register the
video with a the static coordinates of the football field. This is necessary because football video
is typically recorded with a camera that rapidly pans and zooms to follow the action of the game,
causing even a physically stationary player to appear to be moving as the video progresses and
rendering raw player locations and trajectories meaningless from an interpretation standpoint.

Registering video frames with a static model is a common problem in many other computer
vision domains as well, including robot localization [66, 40], augmented reality [21, 68], analysis
of other sports[30, 61], and others [6]. In general, video registration is required whenever we
need to know what part of an object or scene a video frame depicts or where an object in that
frame is located relative to a fixed coordinate system.

The standard approach to the registration problem is to compute, for each frame in the video
sequence, a set of point correspondences between that frame and the model. These correspon-
dences are then used to numerically determine a registration transform that maps the video frame
to the model. The problem of finding such sets of correspondences was investigated specifically
within the American football domain by Intille [30], who hypothesized that since the football
field is (approximately) planar, the registration of football video with a 2D football field model
can be achieved by computing a planar homography mapping the video field surface to the
model. A planar homography, which maps one plane to another, is a linear transform with eight
degrees of freedom and can be computed from four or more 2D point correspondences [23].
Intille’s approach to finding these correspondences involved locating, classifying and tracking
line intersections on the field. Unfortunately, this method lacks generality, since many domains
do not have such a precisely structured set of high level features as the lines on a football field.
More importantly, because of the difficulty inherent in consistently detecting such high-level fea-
tures, Intille’s method proved to be unreliable and was abandoned in later work [31] in favor of
tedious manual registration. In a set of informal experiments, we also found Intille’s method to
be ineffective, and we are unaware of any other successful demonstrations of robust registration

of American football video.

"The work described in this chapter was published in [26].
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Modern approaches to registration have taken advantage of recent breakthroughs in the de-
tection [53] and description [55] of transform-invariant, local image features which are designed
to facilitate consistent detection and easy, efficient matching between images. Using local fea-
ture techniques, the registration problem can be solved by assembling a set of reference images
to represent the model and then detecting and matching local features between the model images
and the video. [21], [66], and [40] are all examples of this type of approach.

Compared to Intille’s method, local feature-based registration is attractive because of its
generality and the proven robustness of finding reliable matches between distinctive local image
features. Current local feature-based registration methods work well in domains with an am-
ple supply of distinctive local features. It is important to note, though, that most current local
feature-based methods rely solely on the presence of distinctive visual features for registration.
Unfortunately, many domains can produce long segments of video without enough distinctive
local features to robustly compute registration transforms, though there may still be many infor-
mative but non-distinctive features. In these domains, as we demonstrate in Section 2.2, relying
completely on the presence of distinctive visual features for registration can result in crippling
inaccuracy.

The American football domain is a prime example of one in which total reliance on the pres-
ence of distinctive visual features can prove to be disastrous. Here, important, distinctive visual
features can be found at certain locations, such as within logos and around numbers on the field,
but large regions of the field also exist that contain either no distinctive visual features at all or
only a very small number of them. Often, video frames from the football domain depict only
these latter regions of the field, making registration via distinctive feature matching either impos-
sible or extremely unreliable. However, in video from the football domain, we can almost always
guarantee the presence of some visual features, though they might be non-distinctive ones. For
example, sets of identical hash marks, depicted in Figure 2.1, span the length of the football
field, spaced one every yard. Such non-distinctive features convey a great deal of information
about location on the field, and the ability to correctly match them to their corresponding model
features would allow for robust computation of registration transforms. However, because these
features are identical in appearance, they cannot be matched using common distinctive feature
matching techniques.

The main contribution of this chapter is to develop a generic registration approach that can
leverage modern invariant feature techniques in domains like American football, where distinc-

tive image features are often scarce but non-distinctive features are plentiful. Our method, which
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Figure 2.1: Some domains, such as the American football domain, shown here, produce images
without distinctive visual features that can be easily matched. However, in these domains, the
presence of non-distinctive visual features, such as the hash marks in the image above, can almost
always be guaranteed.

is discussed in detail in Section 2.1, takes advantage of such non-distinctive visual features to
register video, even in the absence of distinctive features. Specifically, we introduce a concept
of local distinctiveness that enables us to find model matches for nearly all visual features in
every video frame. In addition, we present a simple, empirical stability test that allows us to find
a stable set of distinctive features with which to initialize the registration process, resulting in
fully automatic registration.

Our approach is most similar in spirit to recent work by Okuma et al. [61]. Their approach
avoids relying on distinctive features by utilizing generic point correspondences computed using
the Kanade-Lucas-Tomasi tracking equation [74] along with edge-based model fitting. One
major drawback of this approach is that it requires manual initialization for every video sequence
to be registered. This can be cumbersome if a large collection of video must be processed, as is
the case in our application domain. While Okuma et al.’s method is conceptually similar to the

method we describe in this chapter, our use of invariant image features, in conjunction with our
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initialization technique, allows for fully automatic operation.

Our empirical evaluation in Section 2.2, shows that, compared to distinctive feature-based
approaches, our method is very effective in the challenging American football domain. We
also note that a secondary contribution of the work described in this chapter is our substantial
ground truth video dataset, which we hope can be used as a standard benchmarking tool for

video registration methods.

2.1 Method

Our method registers a video sequence with a predefined, static model by finding point corre-
spondences between the video and the model and using them to compute a registration transform
for each frame. Under our method, video-to-model point correspondences are found by matching
invariant image features in the video to a set of features assembled from reference images to rep-
resent the model. In what follows, we describe how invariant image features are detected in the
video and reference images; how the set of model features is assembled; how distinctive image
features are matched to form video-to-model point correspondences; how these correspondences
are used to compute registration transforms; and how accurate transforms can be computed, even
in the absence of distinctive image features, by finding matches between non-distinctive image

features using a concept of local distinctiveness.

2.1.1 Detecting Invariant Image Features

In this chapter, we use the Harris-affine detector [54] and SIFT descriptor [49] to detect and
describe image features. Given an image as input, the Harris-affine/SIFT operator computes a set
of feature points, each represented by a set of parameters describing the affine region surrounding
the feature as well as a 128-dimensional descriptor vector. These features are invariant in that,
in theory, the same ones will be detected in each of two images of the same object related by
a reasonable degree of affine transformation, including translation, scale, in-plane rotation, and,
to a limited extent, out-of-plane rotation. In addition, corresponding features in the two images

will have very similar descriptors.



14

Figure 2.2: A set of reference images from the American football domain is registered with an
overhead view of the field. Registering the set of reference images in this manner allows us to
know the field coordinates of image features in the reference images and so to localize video
frames on the field via feature matching.

2.1.2 Assembling a Set of Model Features

There are several possible ways to form the set model features, denoted below as II. Our goal
is to do so in such a way that the model coordinates of the features in II are known, thereby
allowing us to determine the model coordinates of video features via feature matching.

In some domains, where the locations of model features are only important in relation to each
other, II can be formed simply and automatically by iteratively registering a set of reference
images to each other [6, 21]. In other domains, however, the locations of features in II must
be known in reference to a specific global coordinate frame, such as a particular view of the
model. In the American football domain, for example, we want to know the field coordinates
(e.g. bottom hash on the home 35-yard line) of each model feature so that video frames can
be localized on the field and not just registered to an arbitrary view of it. This is achieved by
registering the set of reference images to a known view of the field, as depicted in Figure 2.2.

It is, in general, difficult to automatically register a set of reference images with specific
coordinate frame in a domain-independent manner. Fortunately, the amount of manual work

required to do so is minimal. For each reference image in the football domain, for example,
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Figure 2.3: Image features from a video frame in the American football domain are matched
using the 2NN heuristic to a portion of the model shown in Figure 2.2. There are very few false
positive and many true positive ones. Most true positive matches, however are between distinc-
tive image features, such as the field logo, with few correct matches between non-distinctive
ones, such as the hash marks.

we must specify just one set of four point correspondences to compute a planar homography
mapping that image to the desired view of the field, as was done to generate the model in Figure
2.2. It is also possible to automatically register the set of reference images with each other, as
when we are not aligning them with a specific coordinate frame, and thus to reduce the number
of manually specified point correspondences to a single set for all reference images instead of
one set per reference image.

Note that, in the work described in this chapter, we use a manually constructed set of ref-
erence images. However, in Chapter 3, we describe a method for efficiently and automatically

constructing a set of reference images from a video collection.

2.1.3 Matching Image Features

In practice, it is not always the case that two images of the same object will produce all of the
same image features, nor is it true that two descriptors belonging to matching features will be
identical. Therefore, it is necessary to have some way to compute feature matches in which we
can be highly confident. To do so, we make use of the 2NN heuristic proposed by Lowe in
[49]. Given a feature X from video, we find from the set II of model features X’s two nearest
neighbors, 71 (X) and 72 (X)), with respect to the Euclidean distance between descriptor vectors.
The 2NN heuristic considers X and 71 (X) to be a distinctive match if, for a fixed threshold
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where d(X) is the descriptor vector of feature X and || - || is the Euclidean norm. If (2.1) is not

satisfied, X remains unmatched, even if X and 71 (X) are, in fact, matching features. Figure
2.3 shows the results of matching features from a frame of football video to part of the model in
Figure 2.2 using the 2NN heuristic.

By choosing p appropriately (we use p = 0.6), the 2NN heuristic yields a very small number
of false positive matches. An unfortunate side-effect of this heuristic, however, is that it only
finds matches between features whose descriptors are very different from those of the rest of the
set of potential matching features. We call these features globally distinctive. The 2NN heuristic
is generally incapable of establishing correspondences for features whose correct match in 11 has
a descriptor that is similar to many others in II. Indeed, this is the case with any heuristic that
attempts to minimize false positive matches while using only local context information for each
feature. Unfortunately, as discussed above and as quantified in Section 2.2, relying solely on
correspondences from globally distinctive features can impair our ability to successfully register
video from some domains, such as American football. In Section 2.1.5, we discuss a method to
overcome this difficulty, but first we describe briefly how registration transforms are computed

from video-to-model correspondences.

2.1.4 Computing Registration Transforms from Sets of Point Correspon-

dences

Having constructed a set of model features and found a set of correspondences between each
video frame and the model, it is possible to compute a registration transform for each frame. In
the football domain, we can analytically compute homographies from four or more correspon-
dences via least squares. Specifically, given a set of n > 4 video-to-model correspondences
(i, 98), (i, i), where the (%, y}) are image coordinates in the video frame and the

(2t yi ) are the corresponding model coordinates, a least squares planar homography can be
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computed by forming and solving the following linear system:
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Here, the h;; are the entries of the homography matrix. Because the homography is defined
up to a scale factor, we may choose h3s = 1 [23]. We note that an alternative method for
homography computation is the direct linear transform (DLT), which can handle the special case
where hz3 = 0. See [23] for a complete discussion of this topic.

Unfortunately, both least squares and DLT are very sensitive to outliers in the set of cor-
respondences. In order to cope with the unavoidable presence of false correspondences, we
use RANSAC [19] in conjunction with least squares to find a consistent set of inlier correspon-
dences and a corresponding registration transform for each frame. We refer to the set of inliers
as a frame’s “core set”, since it is comprised of correspondences in whose verity we are highly

confident.

2.1.5 Using Local Distinctiveness to Find Additional Correspondences

The approach taken by current registration methods is to compute registration transforms using
the procedure described between sections 2.1.1 and 2.1.4 (or some slight variation of it), us-
ing only correspondences between globally distinctive features found with the 2NN heuristic.
As discussed above, and as demonstrated in section 2.2, this approach fares poorly in domains
where many frames lack globally distinctive image features. Our method attempts to maintain
registration through a sequence of these frames by inducing correspondences between globally
non-distinctive features using a concept of local distinctiveness. Specifically, we say that a fea-

ture X is locally distinctive relative to a spatial region R in a model or image if it passes a
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spatially restricted 2NN test,
d(X) — d(rf{(X
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where 7;*(X) is the i*h nearest neighbor of feature X within region R of the model or image.
Note that even if X is not globally distinctive it can be locally distinctive relative to a particular
R. If the region R can be selected so that it is likely to contain a correct match for X, then a
locally distinctive match is likely to be a correct one.

Matching via local distinctiveness plays two roles in our registration method. The first is
to track image features between frames. Because video is sampled at very high rates—typically
around 30 frames per second—the amount of change between any two consecutive frames is very
small, and a given image feature is likely to move at most only a few pixels between those frames.
We can take advantage of this fact by searching for a feature’s locally distinctive match in the
next frame within a small region R around the feature’s spatial location in the current frame. By
doing so, we essentially ensure our ability to find a correct match for that feature. The utility here
lies in the fact that if a feature tracked to the current frame has previously been matched to the
model, then that model match can be effectively carried over to the current frame. If the current
frame does not have a sufficient set of globally distinctive matches, then these additional tracked
matches, many of which may not be globally distinctive, can help produce a stable registration
transform.

The second role of matching via local distinctiveness is to find new model matches for non-
distinctive features. Specifically, if we can assume that we have found a core set of feature
correspondences for the current frame that is sufficient for computing an accurate registration
transform, we can use that transform to search for a locally distinctive model match for any
unmatched feature X relative to a small region R around X’s predicted model location. This
is useful because it allows us to compute model correspondences for non-globally distinctive
features whenever they appear in a video. These new matches can then be propagated through
the video using the above tracking approach.

Our overall registration procedure uses the above two applications of matching via local

distinctiveness as follows.

1. Initialize. Mark all frames as unprocessed and uninitialized. Select a frame for which
the set of correspondences from globally distinctive features results in the “most stable”

registration transform (see next section) after applying RANSAC. Initialize the core set of
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this frame to be the set of globally distinctive matches, and mark this frame as initialized.

2. Include Globally Distinctive Features. Select an unprocessed, initialized frame. Add
all correspondences from globally distinctive features in the frame to its initial core set
and use RANSAC on the entire set to compute a new expanded core set and its associated
registration transform. Note that this step will not affect the core set of the initial frame
selected in step 1.

3. Include Unmatched Features. For the selected frame, compute, as discussed above, a
set of correspondences from features that are locally distinctive relative to the frame’s
registration transform. Union these correspondences with the current core set and use
RANSAC to compute a final core set and the associated final registration transform for the
frame. Mark this frame as processed.

4. Model Match Propagation. For each neighboring frame of the selected frame that has
not been processed (either 1 or 2 frames), use the approach described above to attempt
to track each of the features in the core set to the neighbor, and propagate forward the
model matches of successfully tracked features. Initialize the neighbor’s core set to the
set of correspondences determined by the propagated matches, and mark the neighbor as
initialized.

5. Loop. If unprocessed frames remain, go to step 2.

This approach allows us to maintain a large core set of video-to-model correspondences and
to add new correspondences to that set as new features appear in the video frame. In this way,
as long as there are enough good features—either globally or locally distinctive—in the video
frame to produce an accurate registration transform, the core set, once formed, is self-sustaining,
since an accurate registration transform allows us to find model correspondences for all video
features matchable via local distinctiveness.

All that remains then is to determine, in step 1, which frame to select as the initial frame to
process. This should be a frame for which we are most certain that the set of correspondences
from globally distinctive features is sufficient for computing an accurate registration transform.
It is, in general, dangerous to assume that the first frame of video will always be such a frame.
We therefore make the assumption that at least one such frame exists in the video and develop a
test for finding one of them. This test is presented in the next section. If the single-good-frame

assumption does not hold, we can revert to manual initialization.
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Algorithm 1 Stability Test for Core Set Initialization
Input: C: Potential initial core set

K: User defined number of iterations
Output: S: Output stability

T < Registration transform from C
L + Set of randomly sampled image locations
L+ < Model coordinates of LL via T
S+ 0
fori « 1. K do
C + C perturbed with A (0, €) noise
T Registration transform from C
L7 < Model coordinates of L via T
S < S + ERROR (L4, L)
end for

R e A U S o i e

S

2.1.6 Stability Test for Core Set Initialization

The stability of a set of correspondences can be computed analytically by forming the least
squares system in (2.2) and measuring its conditioning using techniques from existing theory on
the conditioning of least squares problems. This theory, discussed at length in [76], provides
bounds on the error amplification factor that ensues from small perturbations in the input. Un-
fortunately, we have found that, in practice, this analytical approach often yields a poor choice
of initial core set. In turn, we have developed an empirical stability test, which is outlined in
Algorithm 1.

In general, sets of correspondences that produce stable transforms are large and widely dis-
tributed spatially. Sets of low cardinality whose correspondences are not well distributed, on
the other hand, are very sensitive to small amounts of noise. Figure 2.4 helps to elucidate the
difference between these two types of sets. Intuitively, our stability test identifies those sets of
correspondences that are the most invulnerable to small amounts of noise.

The value S in Algorithm 1 represents a measure of how drastically the predicted model
locations change with slight perturbations in the input set of correspondences. Sets that result
in very low values of S are least sensitive to measurement noise and produce the most stable
transforms. We initialize the registration process using the frame whose set of correspondences

from globally distinctive features yields the lowest value of S.
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(a) S =1.12 x 10? (b) S = 1.60 x 107

Figure 2.4: The large and widely distributed set of correspondences in (a) yields an acceptable
registration transform, but the small, isolated set in (b) yields one that is worthless. The quality
of each set as a core set initializer is reflected by the value S returned by the stability test outlined
in Algorithm 1.

2.2 Experiments

We tested our method on a set of 25 video sequences from the American football domain?,

each between 280 and 500 frames in length. Sequences in this data set were selected from
two different games to cover as much of the field surface as possible. Most of these sequences
contain a significant number of frames without distinctive field features. However, almost all
frames contain some field features, such as the hash marks depicted in Figure 2.1, for which a
model match exists. Every tenth frame of every video in our data set has an associated set of
hand-labeled ground truth video-to-model point correspondences. There are between 300 and
700 such hand-labeled correspondences for each video, for a total of about 12,000.

Our model was constructed from a set of 23 reference images as described in section 2.1.2
and as depicted in Figure 2.2 (note again that, while this reference set was constructed manually,

we describe in Chapter 3 a method for doing this automatically). Reference images were selected

2Qur dataset is available online at http: //eecs.oregonstate.edu/football/registration/dataset.
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Frame 1 Frame 150 Frame 250 Frame 300 Frame 325 Frame 407

232 Correspondences 50 Correspondences 31 Correspondences 15 Correspondences 10 Correspondences 2 Correspondences
(a) Registration with NR

Frame 1 Frame 150 Frame 250 Frame 300 Frame 325 Frame 407

525 Correspondences 480 Correspondences 390 Correspondences 333 Correspondences 210 Correspondences 125 Correspondences

(b) Registration with RIMLD

Figure 2.5: The sequences above illustrate typical registration results on a 407 frame video from
the American football domain. For this video, NR maintains accuracy as long as the frame
contains a stable set of correspondences from globally distinctive features. As early as frame
250, this set loses stability, and registration becomes slightly inaccurate. By frame 325, the set
of correspondences, down to 10 and concentrated within a small region of the image, yields
a transform that fails the sanity check, and registration reverts to the last good transform. On
the same video, RIMLD maintains a stable set of at least 100 video-to-model correspondences
throughout the run, and registration is accurate until the end of the video.

from video not included in the dataset unless achieving total field cover in the reference set
required us to select a frame from the dataset.

For comparison, we tested two other methods using the same dataset and model. The first,
which we call naive registration (NR), uses only correspondences between globally distinctive
features found using the 2NN heuristic (2.1). The second, registration with uninitialized match-
ing via local distinctiveness (RUMLD), uses matching via local distinctiveness as described in
Section 2.1.5 but always initializes the core set using the first frame instead of using the ini-
tialization technique described in Section 2.1.6. Our complete method is referred to below as

registration with initialized matching via local distinctiveness (RIMLD). All three methods in-
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clude a sanity check that reverts to the last good registration transform if the current frame’s
transform becomes grossly unacceptable.

Figure 2.5 illustrates some registration results from NR and RIMLD that are representative
for the American football domain. As is typically the case, both methods are accurate at the be-
ginning of the video, where there is generally a large set of globally distinctive image features in
the frame. However, as the video progresses, the set of correspondences used by NR to compute
registration transforms gradually dwindles to the point of instability. At this point transforms
computed by NR fail the sanity check, and NR reverts to the last known good transform, result-
ing in registration error that snowballs as the video proceeds to the end. RIMLD, on the other
hand, maintains a large, stable set of correspondences throughout the length of the video, and
registration is accurate to the end.

Registration accuracy for all three methods was quantified by computing the mean registra-
tion error for every tenth frame of every video in the dataset using the set of hand-labeled ground
truth correspondences described above. Results were normalized to equal length by partitioning
them into twenty quantums, where each quantum in a single video contains the same number of
frames, and both the mean and maximum errors were computed for each quantum.

Interestingly, the results for RIMLD and RUMLD differ significantly on only a single video
sequence. For this video, as might be expected, RUMLD’s error rate is quite high at the begin-
ning of the video, but it quickly reduces to nearly equal that of RIMLD after the core set has
been expanded through a combination of locally and globally distinctive features. The similar
performance of RIMLD and RUMLD can be explained by the fact that, with this one exception,
the first frame of every video sequence in the dataset contains a large portion of one or more of
the field logos or the end zones, where there are many distinctive features. Accordingly, these
frames produce a stable enough set of correspondences with which to initialize registration.

The results for RIMLD and NR, however, do differ significantly on nearly all videos in the
dataset. The error for these two methods over the entire dataset is summarized in Figure 2.6. To
put these error rates into perspective, we note that six pixels in our model are equal to one yard
on the football field. This means that, even during important parts of the football play, NR’s
average error rate approaches 10 yards—quite significant if these results are to be used in an
interpretation system—while RIMLD maintains an average error of around one half yard.

The reason RIMLD is so much more accurate than NR is because RIMLD is able to maintain
a model match for nearly every visual feature in the video frame for which a model match exists.

Even at the end of a video sequence, the core set often contains on the order of one hundred or
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Figure 2.6: The above two plots depict (a) the mean and (b) the maximum registration error per
frame quantum for RIMLD and NR over the entire dataset of 25 video sequences. The error bars
in (a) indicate one standard deviation. By both measures, RIMLD is remarkably more accurate
than NR, especially later in the video, when many frames contain few or no globally distinctive
features. Note that six pixels in our model are equal to one yard on the football field.
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more well distributed correspondences. By comparison, the set of correspondences determined
by NR often shrinks to between 25 and 50, or even less, as early as halfway through the video,
dwindling soon afterwards to ten or less. If such a small set of correspondences is not widely
distributed, a small amount of error in either the video or model coordinates of the image features
can become dramatically exaggerated in the resulting registration transform.

Besides raw registration error, another important gauge of registration quality is “smooth-
ness.” Because the appearance of a physical feature changes slightly in the video as time pro-
gresses, its feature descriptor changes also, and correspondences with a 2NN heuristic value near
the threshold p may step back and forth over that threshold between frames. As the composi-
tion of the set of correspondences from globally distinctive features changes thus from frame
to frame, registration with NR is prone to jitter. Because of the nature of the matching process
in RIMLD, on the other hand, the composition of the core set of correspondences changes only
slightly as the video moves from frame to frame, and registration with RIMLD is thus much
smoother.

Of course, RIMLD is not perfect. As can be seen in Figure 2.6, RIMLD’s error rate does also
increase slightly towards the end of the video, reaching a maximum of around 30 pixels, or 5
yards in our model. The explanation for this slight increase is that, many times, in the last frames
of the video sequence, the camera is zoomed so far in that there simply are not enough features
in the frame, globally distinctive or otherwise, to robustly compute a registration transform from
feature correspondences. This is an issue future registration methods—especially those that
use only local image features—may need to address. However, in American football video,
the important action in the play is usually over by the time RIMLD begins to show signs of

inaccuracy, so we do not concern ourselves with this matter.

2.3  Conclusions

In this chapter, we introduced a method for video registration that uses invariant local image fea-
tures in conjunction with a matching technique based on a concept of local distinctiveness that
finds video-to-model correspondences between non-distinctive features. In addition, we pre-
sented a simple empirical stability test that provides a means by which our registration method
can be fully automated under the assumption that at least one frame in the video—not neces-
sarily the first—contains a stable set of correspondences from globally distinctive features. Our

technique was shown to yield significantly more accurate registration results in the challenging
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American football domain than methods that rely only on the presence of globally distinctive
features for registration. Finally, we offered our significant ground truth video dataset to the

community for use as a benchmarking tool for video registration methods.
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Chapter 3: Automatically Generating a Reference Set for Video

Registration

In Chapter 2, we investigated a method for registering video frames to a static model by matching
local image features to a set of reference images representing that model. In the work described
in that chapter, we constructed the set of reference images manually by hand selecting from a
large video collection individual video frames that together covered the model nearly completely
and then forming point correspondences by hand between each selected reference image and the
model. Needless to say, this manual work was tedious, and would be a burden for users in a
deployed football-understanding system. For this reason, we wish to be able to automate the
process of selecting a reference image set for video registration.

In this chapter, we investigate a method for doing this via video mosaicing. More specifically,
given a collection of videos, the problem we investigate in this chapter is how to select a set of
representative frames from a large collection of videos (where criteria for representativeness may
be user-defined) and to register those frames with one another in a common coordinate system.
This is a difficult problem with applications in many areas besides football analysis, such as
panorama construction [5], super-resolution [69, 35], summary and indexing [34], compression
[36], etc. [85, 86].

The primary challenge of the multi-video mosaicing problem is computational. In particular,
good methods already exist for generating accurate mosaics from an input set of still images (e.g.
[5]). However, because these methods are typically quadratic in the number of input images,
applying them out of the box to a collection of many videos, each potentially with hundreds or
thousands of frames, is simply infeasible.

To our knowledge, the multi-video mosaicing problem has never before been investigated.
Specifically, all research efforts on video mosaicing of which we are aware have focused on
the single-video problem, which, even for videos of reasonable length, is still computationally
challenging. Early approaches to this problem simply computed image-to-image transforma-
tions between contiguous video frames to register the video with the coordinate system defined
by the first video frame [34, 36]. Unfortunately, when transformations are computed locally

between frames, as in these approaches, instead of being optimized globally (e.g. using bundle



28

adjustment, as in [5]), small errors can compound and lead to severe inaccuracy.

In more recent single-video work, Steedly et al. [69] attempt to integrate bundle adjustment
in a tractable way by using an image feature-based method to select keyframes in the video based
on degree of overlap. Under this method, each keyframe is compared to all other keyframes dur-
ing bundle adjustment. However, each intermediate frame is compared only to the first keyframes
before and after it in the video, resulting in a reduction in the overall complexity of bundle ad-
justment compared to a naive approach that bundle adjusts all of the video frames. Specifically,
Steedly et al.’s bundle adjuster has an overall time complexity of O(K? + n — K), where n is
the total number of frames in a video and K is the number of keyframes selected, whereas the
naive approach has an overall complexity of O(n?).

Be that as it may, Steedly et al.’s method still involves detecting and matching image features
in every video frame. In our experience, these operations are prohibitively expensive, even for a
single video. For example, just computing SIFT features [49] in a single 500-frame, 720 x 480
video can take more than 20 minutes on a typical desktop machine. For a single video, this
order of feature computation time dominates the bundle adjustment times reported in [69], and
it is clear that, for even a moderately large video collection, computing image features for every
video frame poses a huge computational burden.

In this chapter, we present a novel approach for constructing single- or multi-video mosaics
that is designed to overcome the limitations of previous single-video approaches. In particular,
our method takes advantage of the fact that it is rarely necessary to include every video frame (in
a single video or in a collection) in the mosaic. Instead, our method attempts to select a minimal
subset of frames that achieve user-defined objectives for mosaic quality (e.g. a specific degree of
redundancy, anytime maximal scene area, complete connectedness of selected frames, etc.).

At the heart of our approach is a utility maximization procedure that allows us to compute
image features in only a fraction of the frames in a video collection by maintaining an estimate of
the location of each video frame with respect to the current mosaic and using those estimates to
greedily build the mosaic one frame at a time, selecting video frames that achieve the user’s qual-
ity objectives. Importantly, because we take an iterative greedy approach, our method exhibits
strong anytime properties.

Once frames are selected by our method, their mosaic-registration transforms are optimized
globally, using a bundle adjustment procedure similar to the one employed in [5]. Because we
take a greedy approach to frame selection, this style of full bundle adjustment is typically still

tractable, since at any given iteration of our procedure, the subset of selected video frames min-
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imally meets the user-defined quality objectives. However, a fast approximate bundle adjuster
like Steedly et al.’s [69] can also be employed in conjunction with our method if the user’s
quality objectives require the incorporation of a large number of frames into the mosaic.

In addition to allowing tractable and effective multi-video mosaicing, our approach also al-
lows for faster single-video mosaicing, since it computes image features in only a fraction of the
video frames. Indeed, we demonstrate our approach’s effectiveness with a number of compelling
single- and multi-video experiments for which we provide both qualitative and quantitative re-
sults. In one particular set of experiments, we use our approach to construct a reference image set
for American football video registration. The reference image set thus automatically constructed
is comparable to the one manually constructed for use in Chapter 2.

In what follows, we describe in detail our greedy utility maximization approach for frame
selection (Section 3.1), we discuss possible forms of the utility function (Section 3.2), and we
outline a function for quickly estimating mosaics without computing image features (Section
3.3). In Section 3.4, we present a full set of qualitative and quantitative experiments to demon-

strate our approach’s effectiveness, and we conclude by summarizing our work in Section 3.5.

3.1 Utility Maximization Framework

We model multi-video mosaicing as a utility maximization problem. In particular, let V1, ..., Vi
be a collection of IV videos, where each video V;,7 = 1,..., N, is itself a set of n; video frames,
ire. V; = {vgi), . ,vq(fi)}, and let V = V4 U --- U Vy, denote the set of all video frames. Let
M denote the space of possible mosaics, and let M : 2¥ — M be a function that computes
a mosaic from a subset of the video frames in the collection V (we discuss the form of M (-)
we use in Section 3.4.1). Finally, let U : M — R be a function that assigns utility values to
mosaics. (In general, U (-) may be designed to capture arbitrary properties of mosaic quality as
desired by the user. We discuss possible forms of U (-) in Section 3.2.) Then, our goal is to find
the subset of video frames S* C V that yields the highest mosaic utility:

S* = argglga\})( U(M(S)). (3.1)

It may be possible to maximize some utility functions U(-) by simply selecting S* = V.
However, because the state of the art in mosaic construction (including the mosaic builder we

use, described later in Section 3.4.1) involves computing image features in all of the input
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images—an extremely costly operation, as stated above—we wish to avoid including all of V
in the final mosaic.

While it is possible to embed preferences about the number of frames selected into most
forms of utility function, additional computational issues arise, since, even given the temporal
structure of each video, performing the maximization in (3.1) exactly is extremely difficult. In
fact, this problem is closely related to the set cover problem, which is known to be N'P-complete
[20]. On the other hand, it is well known that the greedy approximation to set cover is highly
effective [8]. Inspired by this fact, we use a greedy approach to approximately optimize (3.1).

Specifically, our method greedily builds an approximation to S* one video frame at a time
by repeatedly selecting the frame that, when added to the current mosaic, yields the new mosaic
with the greatest utility. In other words, given the approximation Sy from the current iteration of

our greedy procedure, we select a video frame vf € V' \ S; such that

vf = arg . U(M(S: U {v})), (3.2)
and we use v} to form a new approximation Sy = S; U {v;}. We repeat this step until some
stopping criteria are met.

Again though, an exact search for v} at each iteration of our greedy procedure (3.2) would
require computing image features in every video frame v € V in order to compute mosaics
M (S; U {v}). To avoid this, we further define a deterministic function M (v, S¢) that, without
computing image features, estimates the mosaic that would result from adding frame v to S; (we
discuss our specific design for this function in Section 3.3).

Our final greedy procedure is summarized in Algorithm 2. Under this approach, we compute
and match image features in only one frame per iteration (specifically, in v}) in order to compute
an accurate final mosaic in line 6. This design is efficient, and it exhibits strong anytime prop-
erties, since the set S; at any given iteration minimally achieves the mosaic quality objectives
specified by U(+).

In the next two sections, we discuss possible forms of the utility function U(-), and the

specific mosaic estimator M (+) we employ.
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Algorithm 2 Greedy procedure for multi-video mosaicing
Input: V=V, U---UV,, — Video collection

So=10

t=0

repeat
i = sngmas,con, U (1700, )
Sii1 = S U {U?}
Compute final mosaic M (S¢41)
t=t+1

until stopping criteria are met

e AN U > e

3.2 The Utility Function

The form of the utility function U (-) can vary depending on the user’s specific goals. For exam-
ple, the utility function can be defined to attain a desired level of redundancy across the space of
the generated mosaic, e.g. to enable super-resolution [69, 35] of the mosaic image, or it could be
defined to attempt to select a disjoint set of frames that summarizes the video collection.

Because this work is the first to examine the the design space of utility functions for the
multi-video mosaicing problem, we concentrate on a single class of utility functions that we
believe is broadly applicable. In particular, we focus on the class of utility functions that attempt
to cover as much of the area of the scene depicted in the video collection V as possible, while
keeping the number of frames selected to a minimum.

Perhaps the most straightforward utility function in this class is

A(M(S))

UM(S) = Tg

(3.3)
where A(M (S)) denotes the total pixel area of the mosaic generated from image set S. This
utility function corresponds loosely to the set-cover interpretation of multi-video mosaicing,
encouraging the creation of mosaics that cover the maximum area using the least number of
video frames.

It is important to note, however, that the utility function in (3.3) does not consider the number
of connected components present in the mosaic. In particular, because area is maximized when

there is zero overlap between images in the mosaic, this utility function will cause our greedy
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procedure to prefer to select video frames that are not connected with each other and to fill in
gaps only when necessary. This behavior may be useful for some applications such as video
collection summarization, but in many others, such as panorama construction or compression,
the user may desire a fully-connected mosaic instead. For these applications, a utility function
that encourages the selection of overlapping video frames is required.

One way to accomplish this objective is by penalizing the selection of frames that do not
connect to the current mosaic. For example, if we let Ng denote the number of connected
components in the mosaic M (S) and {S (k) }k=1,....Ng denote the collection of the sets of frames
in those connected components, where S = | J,, S (k) and S N SUW) = (), Vi # 5, we can craft a

utility function that penalizes the creation of new mosaic components:

Ng
UM(S)) = > AM(SM)) + ANs. (3.4)
k=1
Here, A is a parameter that determines how much to penalize the creation of each new mosaic
component. Intuitively, A helps determine a threshold on the amount of additional area a video
frame must contribute, at each iteration of our greedy procedure, to an already existing mosaic
component. Below this threshold, the greedy procedure will choose to begin a new, unconnected
component at the given iteration rather than add to an existing component.

It is straightforward to determine this threshold exactly. In particular, let O(v, M (S®*)))
denote the proportion of video frame v that overlaps with mosaic component S*), and let
A(v, M(S™))) denote the area of frame v within mosaic component S*). Then, under (3.4), a
frame will be added to an existing mosaic component at a given iteration of our greedy procedure
instead of being used to begin a new, unconnected component if we can find a video frame v and

a mosaic component S*) such that

AM(S®)) + [1 - O(v, M(S®))] A(v, M(S®)) + A Ng
> AM(S™)) + A(v) + A (Ns +1).

This reduces to the following condition:
[1—0(v, M(S®))] A(v, M(S®)) > A(v) + A (3.5)

In other words, under (3.4), if a frame v cannot be found that contributes new area of at least



33

the size of an untransformed video frame (i.e. A(v)) minus some slack (—\) to any mosaic
component S*), our greedy procedure will instead choose to begin a new, unconnected mosaic
component.

Because it may be difficult to characterize areas within the transformed mosaic space in
order to determine )\, we can replace the absolute component area A(M(S™*))) in (3.4) with
some form of normalized area A(M(S™*))). There are several ways in which we can choose to
define the normalized area A (M (S™)). A natural first choice might be to simply normalize the
absolute area of the mosaic component by the sum of the individual areas of its constituent video
frames, or, in other words, to compute the fraction of “effective area” contained within a mosaic
component. Unfortunately, under this definition of normalized area, the condition corresponding
to (3.5) requires that the effective area of a component be increased with each new frame added
to it, and this is only achieved when the fraction of an added frame’s non-overlapping area is
greater than the component’s fraction of effective area. In other words, under this definition
of normalized area, in order to grow a mosaic component, we must be able to continually add
frames that overlap less and less with the component. This can be difficult to achieve.

We can obtain more reasonable behavior by instead normalizing each component’s absolute

area by the average video frame area in that component, i.e. by defining

A(M(5®))
5] Luest Ao, M(SH))

A(M(S®))) = (3.6)

Intuitively, this form of normalized area corresponds to the number of average-sized video

frames required to comprise the total absolute area of mosaic component S*) without overlap.
If we replace the absolute area in (3.4) with the normalized area from (3.6), our greedy

procedure will choose to add to an existing mosaic component whenever a video frame v and a

component S (k) can be found such that
AM(S® U{v})) > AM(S®)) +1+ A

That is, a video frame will be added to an existing component as long as a frame v can be found
such that the number of average-sized frames comprising (without overlap) the absolute area of
mosaic component S¥) U {v} is at least 1 — (—\) more than the number comprising component
S*),

This condition leads to an intuitively appealing interpretation of \. Specifically, A acts as
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a threshold on overlap for video frames with average area. For example, if we set A = —0.5,
then a frame with average area can overlap with a component by at most 50% to be added to
that component. In other words, by setting A = —0.5, we encode a preference that each selected
frame should increase the area of some existing component by an amount greater than or equal
half the area of an average-sized frame. If no such frame and component can be found, our
greedy procedure will begin a new component.

In the experiments reported in Section 3.4, we use a utility function that takes this last form,

with normalized areas as in (3.6).

3.3 Efficient Mosaic Estimation

In order to avoid computing image features in every video frame in a collection, we use a de-
terministic function M (v, S) that quickly estimates the mosaic that would result from adding
video frame v to set S. By using this function instead of the full mosaic builder M (-) (which
computes image features in all input frames), we can rapidly assess the utility that results from
adding each individual frame in the video collection to the current mosaic. This, in turn, allows
us to make an efficient greedy choice at each iteration of our procedure in Algorithm 2.

The idea behind our mosaic estimator M (+) is to maintain a set of variables that describe
how each video frame relates to the current mosaic. These variables include the frame’s velocity
and location relative to the current mosaic, as well as additional variables that describe whether
we believe the frame is matchable to any component in the current mosaic. We discuss each of

these variables in turn below and then describe how they are combined to compute M (-).

3.3.1 Velocity and Location

The key component of our mosaic estimator M (-) is an estimate 1 of the location within the cur-
rent mosaic of each video frame v € V. In order to compute these location estimates, we model
each video’s velocity relative to the current mosaic. Specifically, for each video frame v](-z) eV,
@)
J

each of the frame’s four corners relative to the current mosaic (modeling the velocities of frames’

we maintain an estimate &’ of that frame’s velocity by estimating the speed and direction of

corners allows us to account for effects such as zoom, rotation, etc.).

)

The velocity estimates 55-1 are calculated based on the actual mosaic locations of frames

already selected for inclusion in the mosaic in previous iterations of our procedure. Specifically,
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before our procedure’s first iteration, all frames’ velocity estimates are set to an empirically

(@) (@)

determined initial value. Once two frames v; ’ and v j; , J1 < jo, from the same video are selected

J1
and assigned to the same mosaic component with no other intermediate frames also assigned to
i
J17 g2 ) T
velocities are computed using their exact known mosaic locations as 1?2) — lg-zl) /(42 — j1) (where

the same component (i.e. 3 k s.t. o W ¢ St(k) and # j s.t. j1 < j < jo and o e ka)), their

we assume jo > j1). The velocities of all other frames are set equal to the velocity of the closest
frame in the same video that is already included in the mosaic. In other words, for each frame
(4) :

v; " ¢ S, if we let 0

7 . .
vy = arg min |k — 3.7
(6 _ ()
;= 0 Jre
Once velocity estimates are computed, we can estimate each frame’s location relative to the

then we set §

current mosaic. Specifically, if, for each frame vj(-i) ¢ Sy, Uj(i) is defined as in (3.7), then we set

A . i
19 =12+ 3 6y (3.8)
k=j

(with the appropriate adjustments made if j < j*), where we assume unit time between contigu-

ous frames.

3.3.2 Matchability from Mosaic Overlap

In addition to just estimating the location of each frame within the current mosaic, we also need
to determine whether the final mosaic builder will be able to match each frame to an existing
component in the current mosaic instead of being forced to use that frame to begin a new mosaic
component. In the end, a frame’s final matchability to an existing mosaic component is deter-
mined by the mosaic builder’s ability to find and match distinctive image features between that
frame and the existing mosaic. However, since our goal here is to be able to estimate a mosaic
without computing image features, we use two separate heuristics to determine matchability.
The first of these heuristics is based on the frame’s estimated overlap with the existing mo-
saic. In particular, this heuristic measures matchability based on the assumption that frames with

a greater degree of overlap with the existing mosaic are more likely to contain image features
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that can be matched with the mosaic. Specifically, we define

3.9

‘ J
%

@ 1 3kst. 00", M(S™)) >0
]o otherwise,

where 6() estimates the proportion of overlap between a video frame and a mosaic component
(@)
J

that a frame will be unmatchable to the current mosaic due to a lack of matchable image features

using the frame’s location estimate 13, and 6 is a threshold on overlap below which it is likely

(we empirically set § = 0.35 in our experiments).

3.3.3 Matchability from Proximity to Unmatchable Frames

Our second matchability heuristic is based on the premise that it is likely possible to match
frames from the same video into a single mosaic component, and the reason a frame may not
be matchable to the rest of its video is because it does not contain enough distinctive image
features to match with other frames in the video, as is the case, for example, when a portion of
the video contains primarily repeated patterns. These types of frames will not be matchable to
the existing mosaic no matter how much they overlap with it. Thus, our second matchability
heuristic attempts to identify frames without enough matchable distinctive image features based
on their temporal proximity to other similar frames, with the rationale that frames in the same
temporal neighborhood of a video are likely to contain similar content.

To accomplish this for a given frame e , we define vj(.i) as the closest unmatchable frame

from the same video, and we set a threshold 7 on v]@ ’s temporal proximity to vj@, below which

v](-i) is also to be considered unmatchable. Specifically, we set

W) = P LI =TT (3.10)
0 otherwise

In practice, we vary 7 based on the distance between vj(.z) and the nearest frame in the same

video that is matched to the current mosaic, since the presence of nearby matchable frames also

indicates the presence of matchable image features.
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3.3.4 Final Mosaic Estimate

Once the variables 1, o, and u have been computed for a frame v using (3.8), (3.9), and (3.10),
respectively, the final mosaic estimate M (v, St) can be computed for that frame and the current
mosaic. If o = u = 1 (i.e. we believe the frame can be matched to the current mosaic), we
compute M (v, S;) by simply transforming v to its estimated mosaic location 1 and adding it
onto the appropriate mosaic component M (St(k)). Otherwise, if either o = 0 or u = 0 (i.e. we
believe the frame cannot be matched to the current mosaic), we compute M (v, S¢) by adding v

to M (S;) as a new, separate component.

3.4 Results

In this section, we demonstrate our mosaicing approach’s effectiveness by presenting qualitative
and quantitative results from a number of single- and multi-video experiments, including exper-
iments that test our method’s ability to construct a set of reference images for video registration
in the American football domain. We compare against the baseline methods of random frame
selection or selection of every k' frame. However, as our experiments show, these methods
exhibit major shortcomings. For example, random frame selection can yield highly variable
results, sometimes producing a reasonable mosaic, but often missing portions of the scene. Sim-
ilarly, attempting to set k to select every k' frame can be very difficult, since setting k too large
can result in missing portions of the scene, and setting k too small can lead to the selection of
far more frames than necessary, thus eliminating any potential efficiency gains. Essentially, our
procedure can be seen as attempting to set k£ dynamically at each iteration based on observed

properties of the videos and the current mosaic.

3.4.1 Implementation Details

In all of the experiments described below, our method uses a utility function that takes the form
of (3.4) but uses the normalized component area from (3.6) instead of absolute component area.
The final mosaic builder M (S;) we use is similar to the one described by Brown and Lowe in [5].
Specifically, it computes SIFT features' in each video frame in S; and matches these between

all pairs of frames in S; (these computations are cached to avoid duplicating them for Sy, 1).

"We compute SIFT features for this process using the author’s open-source implementation [24]:
http://eecs.oregonstate.edu/ hess/sift.html



38

Based on the number of feature matches between each pair of frames, frame-frame matches are
formed to construct the set of connected mosaic components {S,fk) }, and homographies relating
the frames in each component to each other are optimized jointly using a Levenberg-Marquardt-
based bundle adjuster. Note that, because final mosaic construction is not our focus, we use
a basic mosaic builder that assumes planar mosaics and does not perform any sophisticated

blending. As a result, some of our visual results exhibit parallax and ghosting effects.

3.4.2 Single-Video Experiments

It is important to note that, because it selects a minimal subset of video frames to meet the
user-defined goals encoded in the utility function, thereby avoiding the need to compute image
features over the entire video, our mosaicing approach offers superior performance for both
the single-video case and the multi-video case. For this reason single-video experiments are
equally as necessary for assessing our approach’s functionality and efficiency as multi-video
experiments. Thus, we first tested our approach on a number of single videos.

Each video in our single-video experiments was shot on one of two university campuses
with a handheld digital camera, and, in order to test our approach’s consistency under various
conditions, each scene was shot using several different camera motion patterns (e.g. left-right,
right-left, center-up-down, etc.). Since the results for each pattern were similar, we present here
representative results for one video of each scene. The final mosaics and timing results for these
videos are summarized in Figure 3.1. In each case, a high quality mosaic is constructed after
only 4-5 iterations of our greedy procedure (Algorithm 2).

Since Steedly et al.’s algorithm [69] requires computing image features in every video frame,
the time required to do so for each of our single-video examples is also reported in Figure 3.1
for reference. By comparison, our procedure’s total running time is a fraction of this time alone.
To get a better idea of the total running time for Steedly et al.’s algorithm, we can assume that
the K frames selected by our procedure for each video are the same ones that would be selected
as keyframes by Steedly et al.’s algorithm. Then the time spent in bundle adjustment in our
algorithm would cancel with the quadratic component of their algorithm’s bundle-adjuster, as
would the time spent computing image features in the K selected frames, and, in addition to the
time spent computing image features in the additional n — K non-keyframes, their algorithm

would also require an additional O(n — K') operations to bundle adjust those frames.



(a) 288 frames; 1280 x 720 (b) 96 frames; 1280 x 720 down-sampled to 711 x 400; shot right-
down-sampled to 711 x 400; left; 5 frames selected in 40 seconds vs. 159 seconds to compute SIFT
shot center-down-up; 5 frames features in all frames

selected in 57 seconds vs. 401

seconds to compute SIFT fea-

tures in all frames

(c) 192 frames; 1280 x 720 down-sampled to 711 x 400; shot left-right; 5 frames selected in 105
seconds vs. 303 seconds to compute SIFT features in all frames

(d) 1000 frames; 1280 x 720 down-sampled to 711 x 400; (e) 750 frames; 1280 x 720 down-sampled
shot right-left; 4 frames selected in 75 seconds vs. 1085 sec- to 711 x 400; shot nearly stationary at cen-
onds to compute SIFT features in all frames ter with a fast pan downwards and then up-

wards in the middle of the video; 4 frames
selected in 55 seconds vs. 1284 seconds to
compute SIFT features in all frames

Figure 3.1 (caption on following page).
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Figure 3.1: Mosaicing results for five single-video experiments. Depicted for each experiment
is the final mosaic generated after the specified number of iterations of our greedy procedure
outlined in Algorithm 2. In each case, high quality mosaics are constructed in only four or five
iterations of Algorithm 2, and SIFT features are computed for only the corresponding number
of frames. Included for reference in each subfigure caption is additional information for each
experiment, including the total time required to compute SIFT features in every frame of the
given video, which is necessary for Steedly et al.’s algorithm [69]. In each experiment, our
procedure’s running time is only a faction of the time required to compute SIFT features in all
frames.
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3.4.3 Multi-Video Experiments

Since our main focus is analysis of American football video, we assessed our procedure’s ability
to perform multi-video mosaicing on a data set containing 15 videos, each with between 400
and 600 720 x 480 frames, from the American football domain. The primary aim here is to be
able to efficiently and automatically compute a set of reference images for the video registration
procedure described in Chapter 2. The mosaics computed from football video collections are
also useful for computing background models for player tracking and other tasks described in
Chapters 4 and 5. The videos in the collection used for our mosaicing experiments are real videos
used by NCAA coaches to analyze teams’ performance. This data set poses a challenging test
for our procedure, since it was shot with a camera that rapidly panned, tilted, and zoomed to
follow the game’s action. Moreover, because of the nature of the football field, there are many
video frames that are difficult to match because they do not contain distinctive image features
(recall from Section 3.3 that our approach explicitly models this phenomenon).

Nonetheless, our procedure was quite successful on this collection. As depicted in Figure
3.4, our greedy procedure from Algorithm 2 was able to select frames that covered the football
field almost completely within 25 iterations, taking only about 41 minutes to do so. By compar-
ison, simply computing image features in every frame of each of the 15 videos in the data set, as
required by Steedly et al.’s algorithm [69], took over 4 hours. Similarly, manually constructing
a comparable mosaic for use in [26], [28], and [25] took several hours of tedious labor.

Figure 3.2 details our procedure’s progress per iteration in covering the football field scene
depicted in the video collection by plotting the proportion of the in-bounds football field con-
tained within the mosaic at each iteration. As a comparison, baseline results for the same data set
are given for random frame selection and selection of every 100, 250, and 1000 frames. In the
figure, the proportion of coverage was computed by registering the mosaic at each iteration with
a scale model of the football field and computing the proportion of the field covered by registered
mosaic pixels. As is clearly evident, our method comfortably outperforms the baseline methods.
In addition, the strong anytime properties of our approach, noted above, are apparent in this
example, with the connected scene coverage increasing at each iteration. By the 25" iteration,
our algorithm selects frames covering 96% of the in-bounds football field. This is even more
impressive when considering that there are small portions of the football field that are never seen
in the data set. In other words, within only 25 iterations, our procedure is able to select video

frames covering essentially the entire scene depicted in a challenging 15-video collection.
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In an additional multi-video experiment, we tested our method with a collection of 14 videos,
seven of which contained portions of the same scene and seven of which were “noise” videos.
Our greedy procedure from Algorithm 2 was able to identify the relevant videos and extract
frames representing essentially the entire scene in only 15 iterations, totalling 2450 seconds.

The resulting mosaic is depicted in Figure 3.3.

3.5 Conclusion

In this chapter, we presented a simple, flexible, and efficient method for building mosaics from
a collection of videos. Our approach builds mosaics one frame at a time by greedily optimizing
a utility function that can be defined to capture arbitrary properties of mosaic quality, as de-
sired by the user. Its efficiency stems from the fact that it avoids computing image features in
every video frame by making its greedy choices based on quickly estimated mosaics. Though
we were motivated by the problem of building a reference image set for the video registration
procedure described in Chapter 2, our mosaicing algorithm has a number of applications, and we
demonstrated using a number of single- and multi-video experiments that our approach can build
high-quality mosaics in a fraction of the time required to perform the operations undertaken by
existing video mosaicing methods.

This work represents the first known exploration of the multi-video mosaicing problem, so
there are obviously many potential directions for future work. In particular, in this work we
focused only on the class of utility functions that attempt to maximize the connected scene area
represented in the mosaic using the minimum possible number of frames. It would be interesting
to explore different classes of utility functions, such as ones that attempt to achieve a desired
degree of redundancy to allow for super-resolution, or ones that attempt to select a disjoint set

of representative frames that succinctly summarizes the video collection.
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Figure 3.2: Proportion of the in-bounds football field covered by the mosaic computed after each
iteration of our greedy procedure on the 15-video American football data set. Our approach ex-
hibits strong anytime properties, with the connected scene coverage increasing at every iteration.
Nearly the entire football field is covered by the mosaic after only 25 iterations of Algorithm
2, completed in 2464 seconds. For comparison the coverage attained from selection of every
100, 250, and 1000 frames is presented along with the average coverage attained over 5 runs
of random frame selection (with error bars indicating 2 standard deviations). For each run of
random frame selection and for selection of every 100 frames, a total of 40 frames were chosen,
with runtimes totaling 3746 seconds (on average) and 4251 seconds, respectively. For selection
of every 250 frames and every 1000 frames, the number of frames that could be selected was
limited by the number of videos and their lengths, so only 30 and 15 total frames, respectively,
were chosen for these methods, and they achieved total respective runtimes of 1475 seconds
and 234 seconds. Though selection of every 100 frames eventually achieves similar coverage,
our method from Algorithm 2 still clearly outperforms each of the baselines by a comfortable
margin.
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Figure 3.3: A mosaic generated from a collection of 14 short (100-200 frame), high-resolution
videos, seven of which contain a portion of the depicted scene, and seven of which were “noise”
videos. The mosaic contains essentially the entire scene and was constructed in 15 iterations of
Algorithm 2 in a total of 2450 seconds.
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(a) 5 iterations; 27 seconds (b) 10 iterations; 256 seconds
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Figure 3.4: Mosaics generated for the 15-video American football data set after 5, 10, 15, 20,
and 25 iterations of our greedy procedure outlined in Algorithm 2. The total run time after
each iteration is also given (note that these do not scale linearly with the number of iterations
because the utility function U (-) must be computed for additional videos as they are selected for
observation by our procedure in later iterations). Nearly the entire football field is covered with
a high-quality mosaic after only 25 iterations of our procedure, or only about 41 minutes. By
comparison, just computing SIFT features in every frame of each video in the data set took 4
hours and 7 minutes.
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Chapter 4: Recognizing Initial Player Formations with Mixture-of-Parts

Pictorial Structures!

Recognizing initial formations of players is a fundamental task in the analysis of American foot-
ball. Not only is initial formation information useful in its own right, as a component of a team’s
strategy, we can also use it to initialize a player tracker, as we do in Chapter 5. Recognizing ini-
tial football formations—that is, determining the starting location and type (QB, WR, DT, etc.)
of each player—is not an easy problem. Because of the general clutter on the field and the inade-
quacy of current object detection methods, simply detecting players to determine their locations
is infeasible. Moreover, player type is tied closely to player location in the initial formation, so
much so that, when we consider that players on the same team appear nearly identical, the lo-
cations of players relative to one another is the single most informative piece of information for
initial formation recognition. For this reason, we desire an algorithm that can leverage relative
location information in recognizing initial football formations.

Pictorial structures are one such model. Pictorial structures are graphical models for rep-
resenting and localizing objects with multiple spatially related parts. These models represent
an object as a set of parts with local appearance models for each part and deformable con-
nections between parts that describe their ideal relative locations. Given a pictorial structure,
object recognition/localization corresponds to jointly assigning locations to all parts that mini-
mize the combined local, appearance-based cost of each part plus the deformation cost based on
the connections between parts. For restricted—but useful—classes of pictorial structures, effi-
cient algorithms for performing this minimization have been developed that make recognition
quite reasonable in practice [17]. By jointly reasoning about part appearances and relative posi-
tions, pictorial structures can provide more robust inference than approaches that reason about
object parts in isolation, as has been demonstrated for a number of multi-part object recognition
problems [12, 44, 18].

However, a fundamental assumption underlying pictorial structures is that each object in-
stance contains the same set of parts with the same set of deformation constraints among those

parts. Unfortunately, this assumption does not hold for many multi-part object classes for which

!"The work described in this chapter was published in [28] and [27].
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the set of parts can vary not only in location but also in type. Examples of this type of object class
include furniture, such as chairs, which can have different types of arms, legs, backs, rockers,
etc.; the human figure, along with accessories such as watches, hats, footwear, etc.; houses and
other buildings; multi-agent sports scenes; car and airplane types; or any object class for which
occlusion can be an issue.

More importantly, if we think of initial formations in American football as multi-part objects
whose parts correspond to players, these are another object class whose parts can vary in both
location and type. In particular, each football formation involves various subsets of players, each
having a distinct player type corresponding to his role (e.g. left flanker, fullback, center, etc.),
and, as mentioned above and as illustrated in Figure 4.1, the spatial constraints between players
are determined largely by the particular subset of players in the formation.

While the pictorial structure model may seem prima facie useful for leveraging the spatial
layout of players to recognize a football formation, there are complicating factors that make this
difficult or impossible with pictorial structures out of the box. One of these factors is the rules of
football, which enforce certain hard constraints on formations that restrict the number of certain
types of players in the formation as well as their spatial configuration. These rules make it very
difficult to formulate a single pictorial structure to recognize all possible football formations.
In addition, because there are thousands of legal formations, formulating a pictorial structure
model for each one is practically infeasible and would ignore the significant degree of common
structure between similar formations.

In this chapter, we propose an extension of the classical pictorial structure model called the
mixture-of-parts pictorial structure (MoPPS) model for recognizing multi-part objects with vari-
able part sets (i.e. localizing and classifying the parts of these objects). The MoPPS model is
characterized by three components: a set of available parts, a prior distribution on part subsets
that assigns positive probability only to legal part sets, and a function that returns a pictorial
structure for any legal part subset. Intuitively, a MoPPS model can be viewed as an implicit rep-
resentation of a very large collection of pictorial structures that captures the possible variations
of objects with variable part sets. Under a generative view of this model, a subset of parts is first
drawn from the corresponding prior distribution, then, given the part subset, the corresponding
pictorial structure is used to generate locations and appearances for each of the parts. Inference
on a MoPPS model corresponds to jointly computing the most likely, or least cost, subset of
parts and their locations.

In the absence of special structure, exact inference in MoPPS models is a hopelessly com-
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(b)

Figure 4.1: The configuration of players in an American football formation can vary drastically
depending on the subset of players in the formation. Above are depicted, mapped to an overhead
view, two very different formations containing different subsets of players. Player locations are
marked along with confidence ellipses at two standard deviations based on distributions of the
relative locations of players. Because player appearances are nearly identical, this variation in
structure provides the necessary leverage point for formation recognition.

plex combinatorial optimization problem. Therefore, we describe a restricted but reasonable
representation for MoPPS models that facilitates their easy specification as well as practically
efficient inference. In particular, we represent MoPPS models in terms of a large pictorial tree
structure involving all possible parts along with hard constraints on legal part subsets. This rep-
resentation facilitates the computation of upper and lower cost bounds on part subsets that can
be integrated into branch-and-bound style optimization.

To validate the MoPPS model and tree representation, we apply them to the American foot-
ball formation recognition problem. In a previous attempt to solve this problem, Intille used a

knowledge base of purely hard constraints along with a SAT-like procedure for inference [31].



49

Unfortunately, Intille’s method was quite brittle, required significant human pre-processing, and
performed poorly enough to be deemed unacceptable for use in later stages of his football under-
standing system. In contrast, our results show that MoPPS models facilitate accurate recognition
and localization in a reasonable time frame without human preprocessing. To our knowledge,
there have been no other attempts—in the football domain or otherwise—to solve the recognition

problem for objects with variable part sets.

4.1 Pictorial Structures

Under the classical pictorial structure model, a class of objects is represented as a graph with n
vertices V' = {v1,...,v,} representing the parts of the object and a set of edges £ = {(v;,v;)}
representing the connections between parts. Associated with each object class is also a set of
model parameters © which includes part appearance parameters A = {ay,...,a,} and con-
nection parameters A = {d;; | (v;,v;) € E} describing the ideal relative locations of con-
nected parts. A particular instance of an object is represented as a set of locations of its parts
L=A{l,....ln}.
Given an image [ and a set of object model parameters O, the posterior distribution over the
set of part locations is
p(L|1,0) = ap(I|L6)pL]|e), @)

where « is a normalizing term, p(I|L, ©) measures the likelihood of the image data given a
particular configuration of the object, and p(L|©) is the prior distribution over object configura-
tions.

Locating a single object in an image corresponds to maximizing (4.1), and Felzenszwalb and
Huttenlocher have shown that if £, p(I|L, ©), and p(L|©) satisfy certain, reasonable conditions,
then efficient algorithms exist to perform this maximization exactly [17]. Specifically, if the
edges in E form a tree and p(I | L, ©) can be factored as a product of individual part appearance
models, then the posterior distribution takes the form

e [0, 0)er Uiyl | 6ij)

L I @ — I li, 1 n 9
p( | ) ) a}_{p( ‘ a)Hi:1p(li|®)deg(vi)fl

(4.2)

where the p(I | l;, a;) are individual part appearance models, p(l;,[;|d;;) are priors over relative

locations of connected parts, p(/;|©) are priors over individual part locations, and deg(v;) is the
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degree of vertex v;.
Under this factorization, finding the optimal configuration L* of an object corresponds to the

following well known cost minimization problem:

n
L* = arg InLin Zml(lz) + Z dij(li, lj) , 4.3)
=1 (vivj)eE
where m;(l;) = —logp(I|l;,a;) + (deg(v;) — 1)logp(l;|©) is the local match cost for each
part and d;; = —log p(l;, [j];;) is the deformation cost between each pair of connected parts. If

p(li,lj | 6;;) is Gaussian, then (4.3) can be computed exactly in O(hn) via distance transforms,

where h is the number of possible part locations [17, 16].

4.2  Mixture-of-Parts Pictorial Structures

As discussed at the beginning of this chapter, the classical pictorial structure model’s assumption
of a static part set undermines its ability to recognize some multi-object classes whose parts can
vary not only in location but also in type. To overcome this limitation, we introduce in the next
two subsections an extension of classical pictorial structures called the mixture-of-parts pictorial
structure (MoPPS) model and a specific, restricted MoPPS model representation that facilitates

practically efficient inference.

4.2.1 General MoPPS Model

The MoPPS model is a triple M = (V, p,, f) where V is a finite set of parts, p, is a probability
distribution over 2V (i.e. subsets of V), and f is a function that assigns a pictorial structure model
to each subset V' € 2V with p, (V) > 0 (later, we discuss a particular representation for p,, and
f). We use Oy to denote the parameters of the pictorial structure assigned to part set V' and
take the vertices and edges of the structure to be implicit in the parameters. Intuitively, a MoPPS
model can be viewed as generating image data by first drawing a part subset V' according to
P, and generating the image according the generative process dictated by the pictorial structure
parameterized by Oy .

In the case of American football, the set of parts V' corresponds to all possible players, each

of which has a specific role (e.g. fullback, left flanker, shotgun quarterback, etc.). The probability
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distribution p,, assigns non-zero probability only to those formations that contain exactly 11 parts
(the number of players required in a formation) and that obey the formation constraints dictated
by the rules of football (e.g. there must be 7 players on the line). Given a legal subset of players
V, the corresponding pictorial structure ©y encodes the spatial constraints among the players in
V' along with local observation models for each player. Note that in this domain, the observation
models for each player/part are identical since players have very similar appearances.

Given an image / and a MoPPS model M = (V, p,, f), we are interested in inferring the
most likely part set V' and the locations L of those parts. The joint posterior distribution over V'

and L is given by

where « is a normalizing term, p(I|L, ©y ) measures the image data likelihood under the picto-
rial structure model for V, and p(L|Oy ) is the corresponding prior distribution over part loca-
tions. Note that under this model the marginal probability of the image data can be viewed as a
mixture distribution of pictorial structure components, with one per legal subset of parts; hence
the name MoPPS.

Let C(L | I,V) = —log(p({ | L,©v) p(L | Oy)) denote the cost assigned to locations L
for parts V' by pictorial structure ©y. We can then write our objective of finding the most likely

locations and parts as computing

(L*,V*) = arg rin‘? C(L|1,V)—logp,(V). 4.5)
Assuming all pictorial structures Oy allow for efficient minimization of C'(L | I,V), e.g. by
assuming tree structures and Gaussian edge potentials, then the primary complexity in this min-
imization problem is the exponentially large set of part subsets that must be considered. An
exhaustive enumeration of these will typically not be tractable. However, if one does not make
any assumptions about the MoPPS model, then in the worst case exhaustive search is the best
we can do (it is straightforward to show NP-completeness). To achieve practically efficient in-
ference, therefore, we developed the MoPPS tree representation for a restricted class of MoPPS
models. We present this representation in the next subsection. To simplify the discussion, we
will assume for the remainder of the paper that p, is a uniform distribution over all legal sets

of parts. There are straightforward ways in which the inference procedure we describe later can
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incorporate non-uniform priors.

4.2.2 The MoPPS Tree Representation

A MoPPS tree representation is a triple (), ©, T'), where V is again a finite set of available parts,
O is a tree-structured pictorial structure (the global pictorial structure) over the entire set of
parts, and T is a boolean function that maps each part subset V' to either true or false depending,
respectively, on whether or not it is a legal part subset. We will denote by O|y the projection
of © onto V, which is just the subgraph of © induced by the part set V. Given a MoPPS tree
representation the corresponding MoPPS model is given by (V. p,, ©|y), where p, is uniform
over subsets V' with T'(V') = true.

This representation can be viewed as compactly specifying f(V) = O]y using the global
pictorial structure by returning the projection of part set V' onto this structure for any legal V.
The set of pictorial structures allowed by this model is constrained so that the pictorial structures
returned for any two part sets V' and V/ must be consistent for parts in V' N V. Furthermore the
pictorial structures © |y will all be tree structured. An important property of this representation
utilized in the inference procedure described in the next section is the monotonicity of the pic-
torial structure cost function. In particular, if C*(,V) = min;, C(L | I,V) is the minimum
pictorial structure cost for part set V, then for any part subsets (legal or illegal) V' and V', if
V CV'then C*(I,V) < C*(1,V").

Clearly MoPPS trees cover only a subclass of possible MoPPS models. Intuitively, they are
unable to represent object classes for which the spatial relationships between parts are not pair-
wise independent. MoPPS trees also cannot represent models in which one legal part set is a
subset of another because, due to the monotonicity property of MoPPS trees, the larger part set
will always achieve a higher cost and so will never be selected as the best solution. However,
despite these restrictions, MoPPS trees are rich enough to represent interesting object classes, as
we demonstrate in Section 4.4, and they provide structure that can be leveraged to help achieve
practically efficient inference. Extending to allow for richer subclasses while maintaining prac-

tical inference is an interesting direction for future work.
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4.3 MoPPS Inference

Given a MoPPS model M represented as a MoPPS tree (V, ©, T') we wish to solve the minimiza-
tion problem defined in (4.5). Note that that if we know V'*, then we can efficiently compute L*
via the pictorial structure ©|y«. Thus, the fundamental problem here is to compute V*. Under

our assumption of a uniform p,, we can formulate the optimization problem as

V*=arg min C*(I,V). (4.6)
{v:r(vV)} ( )
In other words, we simply wish to find a legal part set with minimum pictorial structure cost
among other legal sets.
Our approach to solving this optimization problem is to cast it in the framework of branch-
and-bound search (BBS) and to leverage the special structure of the MoPPS tree representation

to efficiently compute informative upper and lower cost bounds as required by BBS.

4.3.1 Branch-and-bound search

Branch-and-bound search is a classical approach to combinatorial optimization that searches
through a tree structure in which every node represents a subset of a space of combinatorial ob-
jects. Leaves of the BBS tree typically represent singleton sets or single combinatorial structures.
As BBS proceeds, it continually expands new tree nodes and prunes any node from consideration
whenever it can be proven that all structures it represents are suboptimal. Finding these nodes is
done by computing both an upper and a lower bound on the cost of the combinatorial structures
represented by each expanded node. A node can be pruned without sacrificing optimality if its
lower bound is greater than any other node’s upper bound.

In the case of MoPPS inference, the combinatorial objects of interest are legal part sets, and,
hence, each node of the search tree represents collections of part sets. Each node is labeled by
a set of parts V, indicating that the node represents all legal part sets V' that contain the parts
in V. More formally, we assume that a search space (Vjp, s) is available for a given MoPPS
optimization problem, where V{y represents the initial search node (1} is just a set of parts or
possibly the empty set), and s is a successor function that for any node of the tree V' returns
s(V) ={V{,...,V/} where the V/ are successor part sets of V" and it is assumed that the space
satisfies V' C Vi’ for all successors.

For a particular application it is generally easy to hand-specify the search tree. However, it
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is also relatively easy to automatically compile such a search from a MoPPS tree representation.
In particular, we need only assume the availability of a function 7" that returns true for a part
subset V' iff it is a subset of some legal part set. Given the function 7" one can automatically
specify a space by setting Vp = () and then having s(V') return the set of all part sets V' that
result from adding one part to V' and such that 7"(V") is true. We take this latter approach in
our application.

The other basic elements that must be specified to cast MoPPS inference as BBS are methods
for computing an informative upper bound ¢, (V') and lower bound ¢;(V') on the cost of the set
of part sets represented by a search node V.

Given a search space and upper and lower bound functions, we use a best-first search strategy
for BBS, which additionally requires an ordering relation <, with which to maintain a priority
queue of encountered search nodes. Under this strategy, each search step removes the first node
from the priority queue, expands it according to s, and adds its successors to the priority queue
according to <,. Search stops when all search nodes have been eliminated except a single leaf
node representing the optimal solution. In our experiments we consider two ordering relations:
<, which orders nodes according to their lower bound, and <,,, which orders according to the
upper bound. The effect of using different ordering relations is that a better ordering will expand
good leaf nodes earlier than a poor one.

Algorithm 3 gives pseudocode for best-first BBS.

4.3.2 Lower bound computation

An important property resulting from the subset relationship maintained by the successor func-
tion s is that any descendent V' of a search node V' is a superset of V' and hence, due to the
monotonicity of the MoPPS tree representation, we have C*(I,V) < C*(I,V"). In particular,
the cost of a node V' will never be greater than that of any leaf node (i.e. legal part set) under
V. This means that to compute a lower bound on the cost of any complete part set represented
by V, i.e. the any of the leaf nodes under V', we need only to compute C*(I, V'), which can be
done efficiently using the pictorial structure ©|y,. Thus, one choice for the lower bound is to take
a(V)y=C*(1,V).

This lower bound can be easily improved in cases where one can find out the minimum
number of parts in any leaf node under V. This is straightforward in the football domain since

each formation must contain exactly 11 players. In general, suppose that the minimum size leaf
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Algorithm 3 Best-first branch-and-bound MoPPS tree search

Input: (Vp, s) — Input search space
<, — Ordering relation
¢; — Lower bound function
¢, — Upper bound function
I — Input image

I: ¢ < 0
2: Q + NIL
3: ENQUEUE(Q, Vp, <,)

4: repeat

5.V «<DEQUEUE(Q)

6: if s(V) =0 then

7 if C*(1,V) < ¢* then
8

9

<« C*(I,V)
: V¥« V
10: end if
11: ifVV'inQ, ¢ <¢(V’) then
12: RETURN V*
13: end if
14:  else
15: {Vi,....Vi} «+s(V)
16: fori <+ 1.k do
17: ENQUEUE(Q, V/, <,)
18: end for
19: PRUNE(Q, ¢, ¢y,)
20: end if

21: until forever

// initialize minimum cost

// initialize priority queue
with initial search node

// get best node on queue

// check for new minimum cost leaf node

// expand V/

// prune dominated nodes in @

node has & additional parts beyond V, and let C; = min,gy C*(I, {v}) denote the minimum

cost of any pictorial structure ©|y,}, where v is a part that is not in V' (note that each such cost

is based only on the corresponding part’s local match cost). It is straightforward to verify that in
this case ¢;(V') = C*(1,V) + k C; is still a lower bound.
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4.3.3 Upper bound computation

The main idea of our upper bound calculation is to quickly find a legal set of parts V,, that is a
superset of the current node V' and that we expect will have low (though perhaps not optimal)
cost. If we can find such a set of parts, then we can use C*(1, V,,) as an upper bound on the cost
of V. The key then is to quickly compute V,,, which we can do by leveraging the MoPPS tree
representation.

In particular, prior to search, we use the global pictorial structure © to compute locations
L for the entire set of parts V. Then, to compute an upper bound on the cost of a node V'
during BBS, we select V,, as the minimum cost legal subset of V containing V' with the location
of each part in V,, fixed at the one specified in £. That is, we select the V,, that minimizes
C(L[Vy] | I,V,) suchthat V C V,, CV, T(V,) = true, and where L[V,,] is the set of locations
in £ for parts in V,,. We can then use ¢,,(V') = C(L[V4] | I, V,,) as an upper bound on the cost of
V. This upper bound may be tightened at the expense of an extra pictorial structure optimization
by computing ¢, (V') = C*(I,V,,).

The key to this upper bound is the fact that evaluating C(L[V,,] | I, V4,) for different subsets
V., is many orders of magnitude faster than computing V*, which involves optimization over
both locations and part sets. This permits for the search for the optimal V,, to be done via another
branch-and-bound search or exhaustively, if computationally feasible. If exact optimization of
V. 1s still too costly, V,, may be approximated with a greedy, approximate hill-climbing search
which at every step selects from the parts remaining in V' the minimum cost part that does not
make V,, an illegal part set. Such an approximation will typically yield a useful upper bound,
though this will not always be the case. Ultimately, if a legal part set V,, has a low cost relative
to C(L | I,V) (above) and ¢;(V') (below), it is likely that that V/, is a reasonably good part set.

4.4 Experiments in American Football

In this section, we demonstrate the capability of the MoPPS tree model by applying it to the
challenging American football formation recognition problem. As described above, our goals in
this domain are to classify the players that constitute the formation as well as to determine their

locations.



Figure 4.2: Some formations in American football differ only very subtly. The offensive forma-
tions depicted above (the orange and black players, with inferred locations and types overlaid)
are two such ones. These formations differ by three players, but the differences between their
spatial configurations are very slight and may be difficult even for an untrained human eye to
detect. Still, as shown, the MoPPS tree model correctly locates and classifies all of the players
in both images.

4.4.1 Domain Description

The dataset on which we tested the MoPPS tree model contains 25 images of the initial forma-
tions of American football plays.? Each formation consists of 11 players who may be one of 16
basic types. The rules of football impose certain restrictions on formations such as the require-
ment that there be exactly seven players on the line of scrimmage (the imaginary line between
offense and defense), the requirement that the rest of the players be at least one yard behind the
line of scrimmage, and the requirement that there be a quarterback and five down linemen.

The images in our dataset depict several formations, but as illustrated in Figure 4.2 (a) and
(b), the differences between them are sometimes very subtle. However, because player appear-
ances are very similar in our low-resolution imagery, these cannot be used as an indicator of
player identity. Instead, we must rely on the relative spatial configuration of the players, which
is determined by the particular subset of players that constitutes the formation.

As discussed above, classical pictorial structures cannot cope with the variation in player
types in the class of American football formations. Intille attempted to solve the football for-

2This dataset is available at http://eecs.oregonstate.edu/football/formations/dataset/.
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Figure 4.3: MoPPS tree representation for initial player formations in American football.

mation recognition problem [31], but his recognition system had many major shortcomings. For
instance, whereas we attempt to jointly compute the most likely set of players and their loca-
tions, Intille’s system took as input a set of manually specified player locations and attempted
only to assign player type labels to those locations. To do this, Intille manually constructed a
knowledge base of hard constraints, such as “near”, “to the left of”, and “bit of vertical space
between”, relating player locations—in itself an enormously time consuming and tedious task.
He used this knowledge base to cast formation labeling as a SAT-like problem that was solved
approximately using a number of search heuristics. In the end, the results of this system were
poor, largely because of the strong numerical aspects of the problem, and could not be used in

later stages of Intille’s football understanding system.

4.4.2 MoPPS Model for Football Formations

For formation recognition, we use a MoPPS tree model with a total of 34 available parts corre-
sponding to the 16 basic player types as well as several subtypes that capture different attributes
of certain players (such as whether the quarterback is in shotgun formation or under center).
These parts, subject to a set of hard constraints based on the rules of football, combine to form
over 3200 legal formations. Our MoPPS tree for football formations is depicted in Figure 4.3.
Each image in our dataset is automatically registered to an overhead view of the football
field, as depicted in Figure 4.1, using the technique described in Chapter 2, allowing us to model
the relative locations of players in 2D football field coordinates. Specifically, the connection pa-

rameters J;; are the mean and diagonal covariance of a Gaussian distribution over each player’s
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ideal location in field coordinates relative to a “parent” player in the MoPPS tree. These param-
eters were manually set using a small set of training images.

Each player is treated as being identical in appearance, and the observation model p(I|l;, a;)
for players is a combination of two models: one, p,(I|l;, a;), based on background segmentation
and another, py(1|l;, a;), based on color histogramming.

To compute p,(I|l;, a;), we register a large collection of football video with the planar over-
head field model and, for each pixel in the model, draw a set of samples uniformly from the set
of all RGB values that register to that pixel. This sample set is used to compute a kernel density
estimate of the field color distribution for the pixel under the (valid) assumption that the pixel
exhibits it’s true field color for all but a small fraction of the video frames in which it appears.
This process is repeated for every pixel in the field model. Player likelihoods for the image I are
computed using this model by projecting I into field model space and computing the probability
of each pixel under its corresponding field color distribution. Pixels whose probability is below
a manually specified threshold are considered foreground pixels, and all others are considered
background pixels. The likelihood py(I|l;, a;) is computed for each pixel in the original image
space as the proportion of foreground pixels within a player-sized rectangular region anchored
to that pixel at the bottom center (to put high likelihood at players’ feet), and these likelihood
values are projected back into field model space for compatibility with the structure model.

Because py(I]l;, a;) does not differentiate between players on opposing teams, we also use
an HSV histogram-based model py,(I|l;, a;) to help separate the players on the team of interest
from the players on the other team. To compute py (I|l;, a;), we use the method described by
Pérez et al. in [63]. Specifically, we compute a reference histogram of HSV player color using a
small set of manually segmented player regions. The likelihood py, (I|l;, a;) is computed at each
pixel in the original image space based on the similarity between the reference histogram and
the histogram defined by the player-sized rectangular region anchored to that pixel at the bottom
center. These likelihoods are also projected back into field model space.

Unfortunately, the simple combination of these two models is imperfect because it can over
count evidence. Some authors attempt to mitigate the effects of overcounting by applying a
smoothing factor to the observation likelihood [17, 75]. However, we have found that this ap-
proach accentuates false peaks in the observation likelihood that are due to slight errors during
registration with the field model. Instead, we apply a multiplicative reward term /3; to the obser-
vation likelihoods of players whose ideal locations make over counting the evidence associated

with them unlikely. Thus, the final player likelihood p(I|l;, a;) is the product of py(I|l;, a;),
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pr(I|l;,a;), and f3;, and the appearance parameters a; for each player are the background color
model, the HSV histogram model, and (;.

4.4.3 Search strategies considered

In our experiments, we consider two different variants of best-first BBS. The first of these, re-
ferred to below as LB BBS, uses ordering relation <; and the lower bound function described
in Section 4.3.2. Because a best-first search ordered by <; must consider all nodes V' with
(V) < C*(I,V™), the first leaf node drawn from the priority queue in LB BBS necessarily
corresponds to V*, and no nodes before V* can be pruned. For this reason, we simply use
constant oo as an upper bound function for LB BBS to avoid the cost of a more expensive com-
putation. The second variant of BBS, referred to below as UB BBS, uses ordering relation <,
and the lower and upper bound functions described in Sections 4.3.2 and 4.3.3, respectively. For
comparison, we also consider exhaustive search and greedy hill-climbing as described at the end
of Section 4.3.3.

4.4.4 Results

Table 4.1 summarizes the quantifiable statistics of the search procedures we consider for MoPPS
inference. We use two different metrics to quantify error in predicted location, both of which
compare the set of player types V* and associated locations L* inferred by the MoPPS model
to a corresponding set of hand-labeled ground-truth player types and locations. The first met-
ric, e.(V*, L*), computes the mean pixel distance between the locations of correctly classified
players and the corresponding ground-truth locations. The second metric, e, (V*, L*), associates
ground-truth locations with incorrectly classified players by finding the minimum matching be-
tween the locations of incorrectly classified players and ground-truth locations not associated
with correctly classified players and then computes the mean pixel distance between the loca-
tions of all players and their associated ground-truth locations.

A far more important measure of performance in the football formation recognition domain
is the percentage of correctly classified players. This is because the huge number of possible for-
mations precludes naming all of them, so every football team uses their own language to describe
formations. Player type information, however, can be translated into any team’s formation lan-

guage. Thus, the ability to correctly recognize which players are on the field along with special
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Search Running time (min.) Nodes Expanded

Strategy Mean \ Min. \ Max. | Mean \ Min. \ Max.

LB BBS 435 | 048 | 11.18 | 392 51 988

UB BBS 9.00 | 1.44 | 24.14 | 412 57 | 1148

UB BBS, 15t Leaf || 2.45 | 1.90 | 5.23 52 36 110

Greedy 0.57 | 053 | 0.63 11 11 11

Exhaustive 41.69 | 41.40 | 41.92 | 3264 | 3264 | 3264
Search % Correct ec(V*, L") eq(V*, L¥)
Strategy Class. Mean | Std. [ Max. | Mean | Std. | Max.
LB BBS 98.55 % 436 | 7.00 | 17.46 | 5.65 | 16.09 | 37.11
UB BBS 98.55% 436 | 7.00| 1746 | 565 | 16.09 | 37.11
UB BBS, 15! Leaf 92.00 % 472 796 | 2720 | 936 | 23.27 | 66.07
Greedy 80.72 % 9.14 | 8.01 | 47.10 | 19.33 | 28.42 | 167.05
Exhaustive 98.55 % 436 | 7.00 | 17.46 | 5.65 | 16.09 | 37.11

Table 4.1: These tables summarizes the quantifiable statistics of various search strategies for
MoPPS inference over the entire dataset of 25 images. Location error rates are in pixel units,
six of which in our field model are equal to one yard on the football field. The optimal searches,
LB BBS, UB BBS and exhaustive search yield excellent results in terms of both location error
and classification rate. However, LB BBS provides a significant speedup over UB BBS, which
is naturally much faster than exhaustive search. Halting UB BBS as soon as it encounters its first
leaf node yields good results within a modest time frame, and greedy, approximate hill-climbing
search yields reasonable results fairly quickly.

attributes of some (e.g. whether the quarterback is in shotgun formation) is akin to the ability to
correctly recognize entire formations. This information, therefore, would be used to index plays
in a coach’s database.

Because best-first BBS is an optimal search, the location error rates and player classification
rate for LB BBS and UB BBS are the same as those achieved through exhaustive search. By
both measures, MoPPS inference with these methods is very accurate.

In particular, they achieve a mean location error rate of 4.36 pixels for correctly classified
players. Considering that six pixels in our field model are equal to one yard on the football field,
this error rate is quite good. Moreover, many of the higher individual errors we observed can be
attributed to the fact that the low resolution of our imagery led the MoPPS inference method to
locate some players at their waist instead of at their feet.

Even more striking is the 98.55% correct classification rate these methods achieved, repre-
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senting a total of four misclassifications out of a possible 275 players. In each of of these cases,
the misclassified player was placed either on a false peak in the observation likelihood around
one of the several logos on the field, all of which are composed of colors identical to the ones in
the players uniforms, or on a second peak in the likelihood generated by a single player.

Of course, both LB BBS and UB BBS considerably outperform exhaustive search in terms of
running time, with LB BBS beating UB BBS by about a factor of two. To obtain further insight
on the running times of LB BBS and UB BBS, we measured their anytime behavior, which is
plotted in Figure 4.4. Both search strategies perform similarly in terms of location error, achiev-
ing very low error rates with one minute of computation and near-optimal rates within two min-
utes. However, in terms of the percentage of correctly classified players, LB BBS consistently
outperforms UB BBS for any given amount of computation time, again achieving near-optimal
results within two minutes. This can be mostly attributed to the fact that UB BBS must spend
additional processing time during the upper bound computation at every node searching for the
optimal superset V,, and tightening the bound via pictorial structure minimization.

Overall, these results are very promising. While it is true that our dataset of 25 images
directly represents only a small fraction of the over 3200 possible football formations, we are
reassured by the fact that many other formations can be composed by combining correctly rec-
ognized pieces of our 25, suggesting the MoPPS model will likely work well for these other
formations, too. In addition, informal evaluation on unlabeled images convinces us that the

model is robust outside the test set.

4.5 Summary and Future Work

In this chapter we introduced the mixture-of-parts pictorial structure (MoPPS) model for recog-
nizing object classes whose parts can vary in both location and type. We formulated a restricted
but reasonable tree-structured representation of the MoPPS model and described how practically
efficient inference could be performed on that model to jointly compute the most likely set of
parts and their locations. Finally, we demonstrated the effectiveness of the model and inference
procedure through experiments on recognizing initial player formations in American football.
We believe the MoPPS model will be generally useful whenever detailed internal object
structure is needed and not just object existence/location. An important direction for future work
will be to evaluate the merits of this model in terms of its expressiveness and computational

speed on other recognition domains, such as furniture, which can be composed of various types
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Figure 4.4: The plots above depict the anytime behavior of MoPPS inference with LB BBS and
UB BBS over the entire dataset of 25 images in terms of (a) the percentage of correctly classified
players and (b) & (c) the mean location error rates. For both strategies, a solution was computed
using greedy, approximate hill-climbing search whenever a complete solution was not found in
the alloted time. While both search strategies perform well in terms of location error, LB BBS
clearly outperforms UB BBS in terms of the percentage of players it classifies correctly within
a given amount of time. This is notable because classification accuracy the most important
measure for our application.
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of legs, arms, backs, rockers, etc.; the human figure, along with accessories such as hats, watches,
footwear, etc., of which exponentially many combinations are possible; specific types of cars,
which can have exponentially many combinations of different parts like spoilers, rims, etc.; and
similarly for specific types of airplanes. In addition, we believe the MoPPS paradigm is partic-
ularly well suited for coping with occlusion during general object recognition and localization
and would like to explore its capacity in this regard.

Many other directions for future work exist including extending MoPPS to richer representa-
tions than trees, such as k-fans [12]; incorporating richer sets of hard or nearly-hard constraints
and logic-based reasoning; developing a part set prior that incorporates the image data to permit
more efficient inference; and developing proposal distributions for MCMC sampling methods to
allow for probabilistic queries (e.g. “what is the probability there is a tight end?”). There are
also several opportunities to incorporate learning into the MoPPS paradigm, which we discuss
in detail in [27].
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Chapter 5: Player Tracking with Discriminatively Trained Particle Filters!

American football is one of the most challenging object tracking domains being studied today.
There are several complicating factors in tracking football players, including the erratic move-
ment of players, the complexity of interactions that sometimes involve upwards of ten players,
a camera that rapidly moves to follow the action, clutter and camouflage on the football field,
the near-identical appearance of players on the same team, and the strong dependence of player
behavior on the player’s type and the stage of the play. To date, there has been very limited
success in developing tracking algorithms for American football.

In this chapter, we describe a conceptually simple particle filtering framework for multi-
object tracking (Section 5.2), motivated by the problem of tracking players in American football.
Particle filtering is a widely used framework for visual object tracking that is highly extensible
and offers the flexibility to handle non-linearity and non-normality in the object models. In recent
years, many new particle filter-based approaches have been proposed to solve difficult multi-
object tracking problems [62, 38, 82]. However, most of this work has paid little attention to how
to best tune the parameters of the proposed models and has instead relied on some combination
of manual tuning and simple generative learning to set these parameters. These approaches,
though, are often ineffective and/or extremely labor intensive.

The particle filtering framework we describe here is easy to extend and customize because
it allows the user to define rich sets of features to capture essential properties of the tracking
domain. Our main contribution is an error-driven, discriminative algorithm for training this
model’s parameters (Section 5.3). Our training is tightly integrated into the filtering process and
attempts to optimize parameters in response to observed tracking errors. In addition, we describe
an important practical approximation to this algorithm (Section 5.4) that can significantly reduce
training time for domains where many objects must be tracked.

Our decision to use a discriminative approach is motivated by several factors. First, there is a
growing body of empirical evidence from a number of fields [47, 1, 11, 83] along with theoretical
results [56] suggesting that discriminative training outperforms generative training when enough

data is available. Second, unlike generative training methods, our discriminative approach does

!The work described in this chapter was published in [25].
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not make strong independence assumptions about the features, which would ignore important
dependencies. Third, our discriminative approach is aimed at directly solving the problem we
really care about: maximizing the accuracy of the learned filter. In contrast, generative training
attempts to achieve this objective indirectly by maximizing the joint likelihood of the training
data, which does not always relate well to filtering accuracy when the assumed model is wrong.

We apply our approach to tracking the 22 players and one referee in low-resolution Ameri-
can football video (Section 5.5). Our experiments show that some state-of-the-art multi-object
tracking methods do not work well in this domain. In comparison, we show that filters trained
using our method substantially outperform untrained filters and these other methods and, to the

best of our knowledge, represent the state-of-the-art in tracking in the American football domain.

5.1 Related Work

Here we discuss related work on particle filter-based multi-object tracking and discriminative
filter training.

Particle Filter-Based Multi-Object Tracking: Since particle filter-based visual object track-
ing was first proposed, much progress has been made on tracking single objects using parti-
cle filters. Tracking multiple objects, however, poses the challenge of dealing with the high-
dimensionality of the state space, which grows with the number of objects. A naive solution is
to use an independent single-object particle filter for each object, but this can break down when
similar objects interact, leading to objects “hijacking” filters from other objects.

Some notable recent attempts to improve upon this naive approach include Okuma et al.’s
boosted particle filter [62], which attempts to avoid hijacking by using a Haar-style object detec-
tor to terminate and resume tracks during and after an interaction; Khan et al.’s MCMC-based
particle filter [38], which tracks objects in their joint state space and uses a Markov random field
(MRF), built at each time step, that helps prevent hijacking by enforcing separation between
nearby objects while allowing far apart objects to be tracked independently; and Yu and Wu’s
mean field Monte Carlo algorithm [81, 82], which also uses an MRF to enforce object separation
but uses Monte Carlo variational inference.

While each of the above methods has been shown to outperform the naive approach, there is
still much room for further improvement. For example, Okuma et al.’s method does not explic-
itly reason about object interactions, but rather attempts to improve on the purely naive approach

by using more powerful proposal and observation distributions. The approach is prone to losing
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object identities and locations when tracks are terminated. Khan et al.’s method tracks in the
objects’ joint state space and thus, in our experience, does not scale well when the number of
objects is large and more uncertainty exists about objects’ locations due, for example, to erratic
object motion. Similarly, the joint inference approach employed in Yu and Wu’s method suffers
from quadratic complexity in the total number of particles used to track all of the objects. For
both of these methods, it can be difficult to set the parameters of the interacting MRF model
components to maximize accuracy, and they are currently set manually and/or learned genera-
tively.

Discriminative Filter Training: There has been much recent work on discriminative train-
ing of sequential filters. For example, discriminatively trained conditional random fields (CRFs)
for sequence data [43] have been shown to outperform generatively trained hidden Markov mod-
els (HMMs) in many domains. Collins has also proposed a generalized perceptron algorithm
for sequential data [9] to train HMMs for natural language problems. This work has been fur-
ther extended to large-margin discriminative training of HMM-style sequential models [73, 77].
Unfortunately, all of these methods assume small state spaces where exact, efficient filtering is
possible, e.g. via dynamic programming, and hence are not directly applicable to object tracking.

In more recent work, discriminative training was used to set the noise parameters of contin-
uous state extended Kalman filters (EKFs) for robot localization [1]. However, it is generally
recognized that EKFs are not powerful enough for complex object tracking due to the normality
assumptions they make. Our work can be seen as extending this approach to a more general class
of process models.

In more closely related work, Limketkai ef al. train large state-space CRFs for robot local-
ization using Collins’ perceptron algorithm within a particle filtering framework [47]. As far as
we are aware, this is the only prior work to attempt any form of discriminative training of particle
filters.

All of the above discriminative methods can be viewed as driving the learning process by
iteratively using the current filter to perform inference on a set of training sequences and then
updating parameters based on some measure of the disparity between the filter’s output and the
desired output. For example, Limketkai et al.’s approach computes a MAP state sequence for
each training example using the current filter and then attempts to adjust filter parameters so that
the ground truth sequences become more probable than the current MAP sequences. However
because filters sometimes fail badly, often early in training, the filter parameter updates these

approaches make can be dominated by the portion of the sequence that occurs after the failure
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rather than focused on correcting the original point of failure. Our experience in multi-agent
tracking suggests that such parameter updates can be counterproductive.

To address this issue, the perceptron algorithm has been extended to focus training directly
on points of filter failure. For example, recent work has proposed performing updates based only
on the part of the predicted sequence up to and including the first failure [10]. Later work has
extended this idea by updating at successive points of failure [13, 80]. The learning approach
we describe in Section 5.3 can be viewed as extending these failure-driven approaches to the
particle filtering framework.

Finally, we note that there has been work that uses discriminative learning to produce certain
individual components of particle filters, for example by learning object-detection classifiers to
be included as part of the particle filter’s proposal distribution [62]. However, such indirect
learning approaches never take into account the actual filter performance and hence offer no
guidance to improve the filter further after the original components have been learned. Our
approach is complimentary, as such learned components could be included in a filter and the

filter then further improved based on actual filtering performance.

5.2 Pseudo-Independent Log-Linear Filters

Below we first review the standard Bayesian particle filter, and then describe our specific particle
filter-based multi-object tracking framework, which uses pseudo-independent filters parameter-
ized by log-linear models.

Particle Filters: Particle filtering is a Monte Carlo approximation to the optimal Bayesian
filter [15], which monitors the posterior probability of a first-order Markov process through the
following formula:

p(elyne) = aplyelxe) / (el )p(Xe1 |y 15t-1)- 5.1)

Here, x; is the process state at time ¢, y; is the observation, y . is all of the observations through
time ¢, p(x¢|x;—1) is the process dynamical distribution, p(y|x;) is the observation likelihood
distribution, and « is a normalizing factor.

The integral in (5.1) does not have a closed form solution, except in the most basic cases, so
particle filters are used to approximate (5.1) using a set of weighted samples {xgi), Wt(i) Yi=1,mo
where each xgi) is an instantiation of the process state, known as a particle, and the 7rt(i) ’s are the
corresponding particle weights. Under this representation, the approximation to the Bayesian
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filtering equation (5.1) is

p(xely1:) = ozp(ytlxt)zﬂt(?l p(x7x ). (5.2)
=1

To implement a standard particle filter, one must choose a state representation x;, which,
in the case of object tracking might include object locations, scales, etc. In addition, one
must design three distributions: the process dynamical distribution, p(xgi)|x@1), which, in
object tracking, describes how objects move between time steps; the proposal distribution,
q(xgi) |x(()271, v1:t), which is sampled at each time step to update the particle distribution; and the
observation likelihood distribution, p(yt\xii)), which, in tracking, describes how objects appear
within the video data, y;.

At each time step, given the previous particle set {xgi_)l, wg?l }, a basic sequential importance

resampling [15] particle filter updates the particles as follows:

1. Sample n particles xgi_)l with replacement from current particle set according to probabil-
ities 77151_)1.
2. Generate an updated particle set by sampling from the proposal distribution,

xt) ~ g X1 yi)-

3. Reweight each particle according to the following formula and normalize so that the 7rt(i)
sum to 1: . @

(i) pyelxy )p(xy % 21)

T X .

TG 5.3)
Q(X§ )‘X(():i—h)’l:t)

In tracking and and many other applications, it is typical to estimate the process state at each
time step as the sample mean of the particles £[x;] = Yoy ﬂii)xii).

Pseudo-Independent Filters: When multiple interacting objects must be tracked, the joint
state space of those objects is high dimensional and renders the straightforward application of
particle filtering impractical. As discussed in Section 5.1, extensions to the basic particle filter-
ing framework have been explored that utilize more complex MRF dynamic models to capture
important object interactions in a more tractable way. In contrast to those methods, we use a

simple particle filtering framework for multi-object tracking. Specifically, we assign each object
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of interest its own single-object particle filter. These filters are not completely independent, how-
ever, but are pseudo-independent, in the sense that each tracker estimates only a single object’s
state but has the previous state estimates of other trackers available as observations to use during
inference.

Unlike the more sophisticated MRF approaches, our pseudo-independent approach does not
increase the computational complexity of filtering over that of purely independent filters, but it
still allows some amount of dependency between trackers through observations of one another’s
internal states from previous time steps. While the pseudo-independent approach is more re-
stricted in the types of dependencies it can represent, we believe that it will be sufficient for
many applications because the log-linear filtering framework described below enables straight-
forward representation of rich features of both individual objects and relations among objects,
which the pseudo-independent filtering approach can exploit for improved performance.

Log-Linear Filters: To allow for maximum flexibility, we wish to allow the designer to
devise arbitrary features that can capture joint properties of a tracked object’s state, its obser-
vations, and the previous state estimates of other objects and to incorporate these features into
the individual filters. For example, by including features that measure the distance between an
object’s proposed state and the predicted locations of other objects, it is possible to bias the filter
against allowing two objects to occupy the same space.

While in principle one can attempt to define the dynamic and observation distributions in
terms of such features, doing so is quite difficult in practice. In particular, one must decide how
to weight the potentially many features against one another and/or make the assumption that
features are independent in order to support traditional generative learning. In this work, we
instead utilize a more flexible combination of features based on log-linear modeling.

From an algorithmic perspective, the main difference between our particle filtering frame-
work and the traditional framework is in the way we compute particle weights. The traditional
reweighting computation in equation (5.3) is the result of trying to account for dynamics, obser-
vations, and proposal bias all at once by combining their associated generative model terms. In
contrast, we attempt to learn a single reweighting function defined in terms of arbitrary features,
which can encompass all of those terms but is not restricted to the specific form of equation (5.3).

In particular, our particle weighting function takes the form of a log-linear combination of

weighted features:

ng) X exp (Z w; f5(yts xgi))). (5.4)
J
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Here the f;(-)’s are user-defined feature functions and the w;’s are the weights of the features,
which parameterize the model. By including features that correspond to the logarithms of the
process dynamics, observation likelihood, and proposal distribution terms in equation (5.3), the
log-linear model can be made strictly more expressive than the traditional formulation. Note
that, for our pseudo-independent filters, each y; contains traditional observation data as well as
information about the previous states of other filters to allow the features to model interactions
between objects. In Section 5.5, we describe a number of feature functions for multi-object
tracking in the American football domain.

There are two ways to view this log-linear filtering model. From an algorithmic perspective,
it can be seen as a more flexible parameterization of the standard particle filtering algorithm.
From a modeling perspective, it can be viewed as an undirected, log-linear probabilistic model
over sequences—as in the work on CRF-filters [47]—for which a particle filtering inference
procedure based on non-parametric belief propagation can be derived. In either case, the ultimate

goal is to learn feature weights that optimize filter performance as described next.

5.3 Error-Driven Discriminative Filter Training

We take a supervised approach to training our individual log-linear particle filters. The train-
ing set contains examples of the form (XS:T, y1.7), where y1.7 is an observation sequence, for
example, a video of a football play, and x;;.;- is the ground-truth or target state sequence, for
example, the trajectory of a particular player in the football play. The goal is to optimize the
filter weights so that the filter output is as close to the target state sequences as possible.

The basic training approach iterates through the training examples and, for each one, calls
Algorithm 4, which produces updated filter weights that are used as the initial weights for the
next call. The iteration continues until a maximum number of steps is reached or performance
no longer improves. In practice, we average the weights learned across iterations to arrive at the
final weight vector, which is a common technique that has been shown to improve performance
of online learning [9].

Algorithm 4 is identical to the log-linear filter of Section 5.2 with the addition of training
mechanisms in lines 6 through 12. Each call to this algorithm monitors the filter’s performance
on the current example and tunes the feature weights each time the filter fails. Specifically, at
each time step, a new particle set is proposed and reweighted according to the log-linear model.

After particle reweighting, the filter’s current state estimate X; is compared to the ground truth
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Algorithm 4 Error-driven particle filter training

Input: (x{.,,y1.7)— Training sequence
w — Input feature weight vector
~ — Learning rate
A — Update threshold
Ar — Restart threshold (> \,)
1: Initialize particles: xél) = x{, and TF(()Z) = %, i=1,...,n
2: fort =1toT do '
3:  Sample n particles xgi)l from current particle set
4:  Sample new particle set from proposal distribution:
xi') ~ g xii) . Vi)
5:  Reweight each particle using current weights:

) o exp (Zj wjfj(}’t,xgi)))

i
Ty

6:  Compute € = ||x; — X¢||, where X; is the current state estimate

7. if e > )\, then

8: Update feature weights w (one of equations 5.5, 5.6, or 5.8)

9:  end if
10: if e > )\, then
11: Reset particle filter to ground truth state at time ¢ by setting all particle states to x;
12:  endif

13: end for

state x;, and, if the distance between the two is above a user-specified threshold \,, a weight
update is performed (see below). Additionally, if the distance between Xx; and xJ is greater than
a second threshold A, the filter is reset to the current ground truth state.

By updating the feature weights when an error is made during inference and by restarting the
filter when a large enough error is made, the filter is allowed to focus its attention on meaningful
points of failure, resulting in more purposeful weight updates. In addition, performing successive
restarts can be seen as reducing training time by allowing the filter to encounter a variety of errors
within a training iteration. If instead the filter is never reset for large errors, which is essentially
Limketkai et al.’s approach [47], many weight updates would be performed on wildly diverging
state estimates due to cascading errors. We have found this approach to work poorly in our
tracking domain where filters often diverge badly in earlier training iterations.

Using the generic error-driven approach described above, we can optimize a number of dis-

criminative objective functions by specifying appropriate weight update equations (line 8), along
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with the type of state estimate X; to be used (line 6). In what follows, we specify these choices
for three different objective functions.

Perceptron Updates: Collins’ perceptron update [9] can be viewed as an approximation to
the gradient of the conditional log-likelihood of the training data log p(x{.|y1.7) with respect
to the feature weights, and thus, the perceptron algorithm can be thought of as attempting to
maximize this probability via approximate gradient ascent.

The batch perceptron update of Collins can easily be modified into an iterative update for

use in our error-driven training approach. The update to weight w; takes the form:

wj = wj+7 (fi(X5,y:) — fi(%e,¥1)), (53)

where + is the learning rate. In this case, the state estimate X; used by the filter is taken to be the
particle with the highest particle weight (i.e. the MAP state estimate). Thus, filters learned with
the perceptron update aim at making the filter’s MAP state close to ground truth at every time
step.

Minimizing the Squared Residual of Mean: In the case of object tracking, the perceptron
update is somewhat unsatisfactory because it places emphasis on the MAP particle instead of
on the sample mean E’[xt], which is typically used as the state estimate in particle filter-based
object tracking and in our experience typically leads to more robust tracking. To remedy this,
we can use an error-driven learning instantiation where the sample mean is taken as the state
estimate (i.e. X; = E[xt]), and the objective function is to minimize the squared residual of the
sample mean ||E[x;] — x*||2. We update the weights upon each error in the gradient direction

of this objective, which for weight w; yields the following update:
A * T A~ A A~
w; = wj+v (Elx] —x7) (E[xefj(xe, y0)] — E[xe]E[f5(xt,y¢)]) (5.6)

Using this update, w; converges when the state x; is uncorrelated with feature f;(-) according
to the sample distribution. Using this update in our error-driven framework can be viewed as
performing stochastic gradient descent on the truncated squared residual, which is set equal to
zero when the residual is less than our update threshold \,,.

Minimizing Mean Squared Error: The above update has the unfortunate property of ig-

noring the sample variance var(x;) of the state x;. In particular, we have

1Bxe] = x;|* = E [[lxe — x| — vai(xe). (5.7)
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This shows that it is possible to minimize the mean’s residual while both the mean squared error
(MSE) and the variance take on very large values, which is quite undesirable. For example, in
object tracking this would be akin to minimizing the residual to a ground truth location at the
center of the video frame by placing an equal number of equally weighted particles at each of
the four corners of the frame.

Thus, we here consider minimizing the MSE E [|Ix¢ — x;||] as a potentially more robust
objective, which from (5.7), corresponds to minimizing the sum of the mean’s squared residual
and the sample variance. In tracking, minimizing this objective corresponds to having all of the
particles bunched tightly around the ground truth location. Differentiating £ [| |x¢ — x| \2] with

respect to w; yields the following gradient descending weight update:

w; = wi+ v (B [[Ilxe — %7 | fi(x0,30)] — B [[Ix = % |P] E[fi(x, 7)) (5.8)

This update has the intuitively satisfying property of converging when the MSE is uncorrelated
with feature f;(-). Again, using this update, our error-driven training process can be viewed as

stochastic gradient descent on a truncated version of MSE.

5.4 Improving Training Computation Time

Since each iteration of error-driven training involves running the particle filter once for each
training example, this approach can become computationally expensive when each run of the
particle filter has a non-trivial computational cost. This is particularly true in tracking domains
in which a large number of objects must be tracked at once, necessitating many calls to feature
functions involving expensive pixel-level operations on sizable regions of the video frame, which
form a computational bottleneck.

In order to overcome the computational burden associated with performing many of these
calculations repeatedly, we use an approximate method that operates on strategically drawn state
samples with pre-computed values for these features. Specifically, we pre-process each train-
ing example (x{.,, y1.7) by drawing a large set of samples {igk)} k=1,...,n hormally distributed
around each of the ground truth states x; with large variance and, for each of these samples,
pre-computing the values of all features involving expensive pixel-level operations.

Then, during training, the particle filter is modified by only allowing the proposal distribution

to propose states at time ¢ that are represented in {igk)} k=1,..N. This can be implemented by
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turning the continuous proposal distribution into a discrete distribution in a straightforward way.
Specifically, given the state history xg.;—; and the observation sequence y;.; at time ¢, the filter
makes a proposal Xgi) for each particle xgizl according to the normal proposal rules. Each >’<§")
is then compared to the samples in its own sample set and those in the sample sets of all objects

within a certain distance, and the proposal is selected as the closest sample, i.e.

(@ _ - (k)

x = argmin [l — %"
X
In this way, during the particle re-weighting step, the available pre-computed feature values are
used for all of the particles, while all other features are computed online.

This approach allows training to proceed significantly faster than when using the full particle
filter while still providing a close approximation to the way the full filter performs. Performance
may suffer in tracking domains where most errors are made due to background clutter and other
factors rather than to hijacking by other objects. However, in such domains, it is possible to
use a slightly modified version of this method that generates sample sets during actual runs of
the tracker and iteratively augments those sets after they have been used for several iterations of

training. We are currently investigating such an approach.

5.5 Experiments and Results

We test our approach by tracking the 22 players and one referee in low-resolution videos of
American football. Each video contains footage of a single football play shot from a panning,
tilting, and zooming camera with a sideline view high above the center of the field. Figure 5.1
depicts a typical view from this camera. Every video is pre-processed to register frames to an
overhead model of the football field using the method described in Chapter 2, thereby enabling
us to determine players’ locations in football field coordinates.

The football domain is an extremely challenging testbed for any multi-object tracking algo-
rithm. The players being tracked in this domain move very erratically, and the characteristics of
players’ motion change substantially depending on the player’s type and the time stage of the
video. In the first several seconds of each video, for example, nearly all of the players stand vir-
tually still, while perhaps one or two move only gradually. However, after the ball is snapped (a
one-time event that occurs in every football play), all of the players begin to move very quickly,

and the tracker must be able to adapt accordingly. In addition, football players interact in com-
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Figure 5.1: A typical video frame from our dataset.

plex ways, frequently in very large groups. For example, in every play, a group of five linemen
on the offense stand shoulder to shoulder in a line and attempt to block a group of about three
to five defensive players who, in turn, attempt to break through the offensive line. Many other
complicated interactions take place between smaller groups of players throughout the course of
a play. In what follows, we first describe the filter models and feature functions we use to capture
these interactions and other salient aspects of the football domain. We then move on to present

the results of our experiments.

5.5.1 Football domain modeling

In the football domain, we represent each player as a rectangular region defined by his location in
football field coordinates and the scale of the region (i.e. x = {z,y, s4, Sy }). Players” motion is
modeled using the second-order autoregressive dynamical model that is common in the tracking
literature, in which x¢ ~ N (g(x¢—1,X¢—2), Xq), where N (p, 2) is the normal distribution with

mean g and covariance X2,

g(xt—1,%t—2) = A1xi—1 + Aoxy_o, (5.9
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and A and A, define a constant acceleration model.
The proposal distribution we use is slightly non-standard. Specifically, it takes the form of
the process dynamical distribution above but uses the previous sample means in place of the state

values x;_1 and x;_o. In other words, the proposal distribution we use is,
xi ~ N(g(Elxe-1], Elxe-2]), ), (5.10)

where g(-) is as in (5.9). We have found that this form of proposal distribution works well in
practice and is more stable than the motion model.

We use a variety of feature functions to describe different aspects of players’ appearances,
their motion, and the interactions between players. In order to model motion patterns that change
depending on the time stage of the football play, each feature we describe below is replicated
once for each possible time stage. All features that do not correspond to the current time stage
take on zero values. In all, each filter uses 15 base features, described below, and 4 time stages
for a total of 60 features.

Player motion features: We use 11 different features to describe player motion. The first
of these is the logarithm of the Gaussian probability density value of the player state x; evalu-

ated under the proposal distribution. The second is the negative squared distance between the
12

N

player’s current state and the state estimate from the previous time step, i.e. —||x; — E[x;_1]
Intuitively, these features allow for a trade-off between rewarding a particle for being close to
the proposal’s prediction and not straying too far from the player’s previous location.

We also use a set of binary features that indicate in which of the eight compass directions a
player is moving. These are calculated by quantizing the player’s motion vector (x; — E[x;_1]).
These features allow us to model motion tendencies that occur regularly across all football
plays. For example, the quarterback nearly always moves backwards immediately after the ball
is snapped.

Appearance features: We use two features to describe players’ appearances. The first
of these is an RGB histogram-based feature, which is calculated based on the Bhattacharyya
coefficient-based histogram distance (as in [63]) between a reference histogram and the his-
togram of the region defined by x;. The second appearance feature is based on background
modeling and is computed by using a pre-computed background color model to count the num-
ber of foreground pixels inside the player region defined by x; to the total area of that region.

Player interaction features: The final two features describe interactions between players.
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The first of these is similar to the MRF edge potential used in [38], which penalizes overlap
between player regions in the video frame. The second is similar to the MRF edge potential used
in [81], which penalizes proximity between players in state space. Intuitively, these features
cause trackers to “repel” one another, thereby helping them to to better cope with interactions

between players by avoiding hijacking.

5.5.2 Results

Our dataset contains 20 videos of different football plays, each around 400 frames long, along
with hand-labeled ground truth data for every player in every frame?.

We used a four-fold cross validation approach to evaluate our training method on this dataset.
Specifically, we divided the entire set into four folds of five videos each and, for each fold, trained
trackers on the other three folds over 100 iterations of the method described in Section 5.4 using
each of the weight updates in equations (5.5), (5.6), and (5.8). To account for the different
characteristics of various player types, we learned 13 separate sets of weights, one for each
individual player type, with filters for players of the same type sharing the same set of weights
in both tracking and learning.

We evaluated each fold after every 10 training iterations using the full pseudo-independent
log-linear filtering model with averaged feature weights for each player type. In addition, we
also evaluated each video using Khan et al.’s MCMC-based particle filter [38] and Yu and Wu’s
mean field Monte Carlo algorithm [81], two state-of-the-art multi-object particle-filter trackers.
For all of these methods, player types and initial locations are computed automatically using
mixture-of-parts pictorial structures as described in Chapter 4. We also tried to use the CRF-
Filter perceptron algorithm of Limketkai et al. [47] on our data set and found that it did not
converge well in training. We believe that this is due to the non-incremental nature of the updates,
which are based in large part on extremely erroneous filtering runs.

Figures 5.2 and 5.3 compare the performance of pseudo-independent log-linear filters trained
using the weight updates in equations (5.5), (5.6), and (5.8) and of Khan ef al.’s and Yu and Wu’s
methods. Figure 5.2 depicts the mean squared per-frame pixel error (%X; — x})2, while Figure
5.3 depicts the failure rate, which is the proportion of frames in which a player was considered

to be lost (i.e. in which the tracker is at least 5 yards in error). Results are given averaged over

2Qur entire hand-labeled tracking dataset is available at
http://eecs.oregonstate.edu/football/tracking/dataset.
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Figure 5.2: Mean squared per-frame pixel error at every 10 training iterations, averaged over all
players in (a) the testing and (b) the training folds for each of the three weight update equations
(5.5), (5.6), and (5.8). Included for reference are MSE values for Yu and Wu’s method [81] and

Khan et al.’s method [38].
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Figure 5.3: Failure rate at every 10 training iterations, averaged over all players in (a) the testing
folds and (b) the training folds. Failure rate is computed as the proportion of a player’s frames
in which the player was lost by the tracker.
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all players for both the training and testing folds.

First, these results make it clear that the training algorithm is able to significantly reduce
the training error, indicating that the optimization approach is effective. Further, by both error
measures, pseudo-independent log-linear filters trained using each of the weight updates achieve
substantially better results than untrained pseudo-independent log-linear filters (iteration 0) and
the previous state-of-the-art methods on the test set. It is especially important to note that the
significantly lower lost-player rates attained by our filters indicate that our discriminative error-
driven training approach is effective in achieving its goal of improving filter performance by
learning to overcome failures. This also suggests that the approximate method described in
Section 5.4 is a valid approximation to the full tracking process.

We also see that the MSE and residual updates perform better than the perceptron updates
on this data, with the MSE update having an edge in peak accuracy. As is common for incre-
mental learning methods, the error does not monotonically decrease. In practice one would use
a validation set to select the best stopping point for training.

As an additional assessment of tracking performance, we also counted the number of players
that were never lost by the tracker during testing. Interestingly, our untrained filters lost every
player for at least a very small portion of the video, while Yu and Wu’s and Khan et al.’s methods
were successful on 174 and 119 players (out of a total of 440), respectively. In comparison, the
best performing filters trained with the MSE update, the residual update, and the perceptron
update were successful on 280, 264, and 223 players, respectively. Examining these players
further, we found the best performing trained filters achieved an average per-frame MSE of 74.0
(MSE update), 76.3 (residual update), and 82.4 (perceptron update), while Yu and Wu’s and
Khan et al.’s methods respectively achieved average per-frame MSEs of 110.0 and 100.1. These
results show that our trained filters can fully track a significantly larger number of players more
accurately. In our model 6 pixels corresponds to one yard on the field, so the MSE and residual
updates achieve an error of approximately 1.5 yards for these players. In our experience, this is
more than enough to infer many types of player behavior.

Average run times for pseudo-independent log-linear filters, Yu and Wu’s method and Khan
et al.’s method are summarized in Table 5.1. We can see that, in addition to improved filter

performance, pseudo-independent log-linear filters also offer faster tracking times.
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PILLFs | Yuand Wu | Khan et al.
Avg. run time | 1830 m | 30.55m 84.50 m

Table 5.1: Average run time in minutes for pseudo-independent log-linear filters, Yu and Wu’s
method [81], and Khan et al.’s method [38]. These are computed over the entire football dataset
on a standard desktop computer.

5.6 Summary and Future Work

We have described a framework for multi-object tracking based on pseudo-independent log-
linear particle filters. Our main contribution is an error-driven discriminative training algorithm
for this model. We gave results in the domain of American football that show the effectiveness
of the method in comparison to recently proposed multi-object trackers. To our knowledge, our
learned trackers are state-of-the-art in the football domain. In future work, we plan to extend
our approach to learn the parameters of more complex MRF-style models to allow for more
significant joint inference about object interactions. In addition, we plan to study the theoretical

convergence of our error-driven algorithms.
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Chapter 6: Conclusion

In this dissertation, I described novel mid-level computer vision algorithms for accomplishing
several sub-tasks within a larger system for understanding American football in video. In par-
ticular, I addressed the problems of video registration (Chapter 2), video mosaicing (Chapter 3),
football formation recognition (Chapter 4), and football player tracking (Chapter 5). For video
registration, I described a method based on localized matching of invariant image features and
an empirical stability test that we use to initialize our registration procedure. For video mosaic-
ing, I described a greedy, utility maximization-based approach and explored a particular class of
utility functions that attempt to maximize the scene area covered by the mosaic. For formation
recognition, I described mixture-of-parts pictorial structures (MoPPS), an extension of classical
pictorial structures designed to recognize objects whose parts can vary in both location and type.
Finally, for player tracking, I described a particle filter-based formulation and an error-driven
discriminative training procedure. I demonstrated the effectiveness of each of these methods
with in-depth experiments in the American football domain.

We believe that the video registration, video mosaicing, and formation recognition methods
described here are suitable solutions to the research problems for which they were designed. Of
course, more could always be done to improve upon any of these methods: our video registration
approach could be extended to use line- and region-based features to handle cases where image
gradient-based features, like those computed by SIFT, are unavailable; additional classes and
instances of utility functions could be explored for our video mosaicing approach; or the MoPPS
model could be converted into an undirected log-linear probabilistic model (i.e. a conditional
random field) to allow a richer set of spatial and appearance features to be incorporated and a
model over these features discriminatively learned, as we touched on in [27]. Indeed, in order to
advance these methods out of the laboratory and into production, many details such as these will
certainly need to be resolved.

In contrast to these other three methods, however, the tracking approach described in Chapter
5, while still representing a legitimate advance in the state of the art of multi-object tracking and
likely an acceptable solution to many less challenging tracking problems, has not yielded results

for our football video data set sufficient enough to call it an acceptable solution to the football
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player tracking problem, and more work on this problem is necessary. Thus, our most recent
efforts have been directed towards improving upon our tracking results in the American football
domain.

Based on our reflection upon the results we’ve obtained with our particle filter-based track-
ing approach, we believe this approach’s main failing lies in its short-sightedness. Specifically,
because the particle filter is first-order Markovian, that is, because it computes player location
estimates on a frame-to-frame basis and does not incorporate longer-term information about
players’ trajectories, it is prone to being “hijacked” by temporary distractions in the evidence,
such as peaks in appearance-based features around field markings or other players. If such dis-
tractions persist long enough to occupy a player’s tracker for several video frames, the player
may move too far away in the meantime for the tracker to be able to find him and recover from
its error after the distracting factors fade. Training our filters using the discriminative procedure
we describe in Chapter 5 can help them overcome their short-sightedness to some degree, as ev-
idenced by the significant improvement in their performance after training. However, even after
training, hijacking errors are still not uncommon in our filters’ results in the football domain.

We believe that, to succeed in the American football domain, we need a tracking approach
that takes a longer-term view, one that can look forward (or backward) to reason through the
situations that typically lead to particle filters being hijacked. Such an approach could either
attempt to ignore the factors that lead to hijacking given enough evidence on either side of those
factors, or it could attempt to recognize and recover from an instance of hijacking after it has
occurred.

We have experimented with several approaches in an attempt to find a suitable long-view
tracking algorithm. I discuss a few of these in Appendix A, including a promising approach
based on limited-discrepancy search (LDS) [14], which attempts to identify errors made by out
particle filter trackers and to fix those errors by placing location constraints on specific play-
ers’ trackers. Before concluding, I will review some of the more recent efforts on multi-object

tracking from the literature.

6.1 Recent Related Work on Multi-Object Tracking

There have been two interesting and significant thrusts in the recent literature on multi-object
tracking. In particular, one major body of work addresses the problem of tracking in very

crowded, unstructured scenes [41, 65, 52, 3, 2]. Another major body of work has explored
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similar graph-based formulations of the general multi-object tracking problem [4, 79, 64, 42,
46, 84, 29, 37]. Aspects of both of these bodies of research are relevant to the football player
tracking problem.

Some of the work on tracking in crowded scenes focuses only on the setting where a large
crowd of people, such as runners in a marathon, are all moving in the same general direction
[41, 3, 2]. While this work is interesting, it does not apply directly to the football domain, where
players move in a more chaotic, irregular fashion. Other efforts on this topic, however, are more
interesting in the context of football player tracking.

Mehran et al., for example, investigated crowd behavior using a social force model that at-
tempted to explain how people behave as they interact with one another in a crowd [52]. Mehran
et al. use a method called particle advection, in which a grid of particles is overlaid on top of
the video image, and each one is moved according to the average velocity of optical flow vectors
in its surrounding neighborhood. They use differences between the local motion of individual
particles and the average motion of a neighborhood of particles to compute a local interaction
force that causes objects to move out of sync with the rest of the crowd. Rodriguez et al. also
take an approach in which local optical flows are compared against learned crowd behaviors in
order to make local predictions about object motion [65]. A method comparable to either of
these latter two may be useful in the football domain for helping to model the interactions of
individual players within larger groups.

A larger and perhaps more significant body of recent years’ work has examined slightly
different variations on a particular graph representation for the multi-object tracking problem.
In particular, each of these recent papers [4, 64, 42, 46, 84, 29, 37] describes a method for
tracking in which a graph is built on top of a set of object detections. Typically, nodes in these
graphs correspond to the object detections, either individually or in sets, and edges correspond
to potential transitions between detections/detection groups. Both nodes and edges in these
graphs have some form of associated weight or cost to measuring the value of including the
corresponding detection/detection group or transition in an object trajectory, and the goal is to
find high-weight or low-cost paths through the graph. These paths are then output as object
trajectories. Along with implementation details, the main differences between these methods lie
in the way they perform graph inference.

Ram Nevatia’s research group at University of Southern California has published several
methods all utilizing the same basic graph structure for tracking [42, 46, 84, 29]. In this model,

nodes correspond to object detections, with each node’s weight representing an appearance-
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based measure of the likelihood of the corresponding detection being truly generated by an
object. Edges in this model link detections in contiguous frames between which an object could
feasibly transition, and edge weights measure the plausibility of an object transitioning between
the two linked detections. The method described in [84] determines object trajectories by finding
paths through this graph using a network-flow algorithm, while the methods described in [42,
46, 29] all use an ad hoc inference procedure based on the Hungarian algorithm. The method
described in [46] additionally uses an AdaBoost-based procedure to learn an edge weighting
function, while [42] employs a different AdaBoost-based procedure to learn a node-weighting
function.

Berclaz et al. [4], Pirsiavash et al. [64], and Jiang et al. [37] all use a graph formulation
nearly identical to the one used by Nevatia’s group. Jiang et al. [37] include extra nodes in the
graph to facilitate occlusion reasoning and convert this graph into a linear program, which they
solve using a standard LP solver. Pirsiavash et al. [64] cast the graph as a network flow problem
and employ a dynamic programming-based successive shortest paths algorithm for inference.
Berclaz et al. [4] propose both a linear programming formulation and a k-shortest paths formu-
lation to inference in this graph structure and show that the k-shortest paths formulation is the
less computationally complex of the two. The authors of all the papers mentioned in this para-
graph and the previous one provide more-or-less compelling results in the pedestrian tracking
domain.

Unfortunately, because all of these methods employ a common graph structure, they all share
a common flaw that restricts their applicability to tracking American football video. Specifically,
because each of these methods operates on a single graph structure, in which each node and each
edge has a single associated weight/cost, it is extremely difficult to incorporate object type-
specific characteristics into the overall trajectory scoring mechanism. In the American football
domain, however, player type-specific characteristics are extremely important. In particular,
because appearance is nearly identical among football players on the same team, player type-
specific information—such as motion and interaction tendencies—is sometimes the only way to
disambiguate between players after they engage in a complicated interaction. Thus, while each
of these approaches satisfies our desire for long-view reasoning about trajectories, none of them
are ultimately suitable for our work in American football tracking. Informal experiments we
have conducted using some of these approaches has, in fact, borne this out.

In [79], Wu et al., describe a tracking approach that uses a graph structure slightly different
than the one used by the above methods. Wu et al.’s approach constructs tracklets by group-
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ing object detections that unambiguously form spatio-temporally consistent chains across a set
of contiguous video frames. These tracklets are detected using basic Kalman filter trackers.
Specifically, Wu et al.’s method processes a video forward in time, and each time a detection is
encountered that is not accounted for by an existing Kalman filter, a new Kalman filter is started
at the location of that detection. Then, each existing Kalman filter makes a prediction into the
next frame, and each detection that unambiguously matches a single Kalman filter’s prediction
is assigned to the tracklet corresponding to that filter.

The nodes in Wu et al.’s graph structure correspond to these tracklets. The edges in their
graph, then, represent possible links between tracklets and are computed based on tracklet
merges and splits detected during the Kalman filtering step. Inference in this graph entails link-
ing tracklets together into trajectories. To achieve this, Wu et al. use a greedy set cover-based
method in which they enumerate all possible paths through the graph, compute a cost for each
path based on its spatio-temporal smoothness (they do not use an appearance-based term in their
cost computation), and then greedily select paths in such a way as to achieve a maximal cover-
ing of the set of non-spurious detections that accumulates the least possible cost. They achieve
fairly compelling results on a data set of infra-red videos of bats exiting a cave. Unfortunately
the enumeration of all possible paths performed by this algorithm appears to be prohibitively
expensive. In addition, because of the nature of the graph structure this method employs, this
method, too, will suffer from the same inability to incorporate player type characteristics as the

methods above.

6.2 Closing Thoughts

While we see promise in the LDS-based tracking approach described in Appendix A and be-
lieve it is ultimately capable of achieving much lower tracking error rates than the particle filters
we describe in Chapter 5, it is still unclear whether the LDS approach will yield results that
are acceptable for later use in our larger football understanding system. Indeed, concerns still
remain with this approach. For example, as it is currently formulated, the LDS approach can
only fix errors that involve a player being altogether lost by our trackers, thus leaving behind
a chain of unaccounted-for player detections for our error recognition procedure to find. How-
ever, our particle-filter based trackers sometimes make errors such as swapping players, where
two or more trackers may each end up tracking the wrong player without leaving behind any

detection-based evidence that an error has been made. It is unclear whether our LDS method
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can be extended to handle these kinds of tracking errors, and more work will need to go into
investigating this issue.

In addition, it is unclear whether our LDS-based approach will be able to handle the most
complicated player interactions in football video. For instance, in every football play, there are
extremely complex interactions between the offensive and defensive linemen. These interactions
often involve ten or more players. It may not be possible for our LDS-based approach to do
more than simply identify that one of these players accounts for a given error without actually
identifying which of the players accounts for the error, and lower-level processing, perhaps of
the type described in the literature on tracking in unstructured, crowded scenes [65, 52, 3, 2, 41],
might be required for this task.

Once the tracking task is completed, there is still much work to do on the larger problem of
football video analysis. The next logical step in our own system is recognizing the actions taken
by individual players (e.g. individual passing patterns, blocking assignments, or run specifica-
tions). Indeed, we have already looked briefly at the problem of recognizing passing patterns
from player trajectories [70], but much more work is needed here. After that, work will be
needed on recognizing entire offensive plays and defensive schemes based on observed individ-
ual actions. Particular attention will need to be paid here to being able to recognize and adapt
to previously unseen plays and schemes. Finally, work must be done on taking the results of all
of the previous analysis and mining it for tendencies, so teams can predict what their opponents
will do in various game situations. Some day, perhaps, our system will even have the ability
to identify teams’ weaknesses and strengths and to suggest strategies to coaches to help them
exploit this information.

Of course, much of this work is very far down the road from here. Regardless, the problem
of football video analysis should continue to serve as a fertile proving ground for new, broadly-
applicable computer vision research, as the game’s chaos and structure continue to combine to

provide interesting vision challenges.
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Appendix A: Our Recent Efforts in Multi-Object Tracking

In this chapter, I describe some of our recent efforts to design a tracking algorithm for the
American football domain that takes a longer-term view than our shortsighted particle filter-
ing approach. In one of our first such attempts, we examined an MCMC-based data association
algorithm similar to the one outlined in [58, 60, 59], in which we attempted to use an MCMC
procedure to link player detections into tracklets and tracklets into complete trajectories. The
MCMC procedure could propose steps such as linking a string of detections into a tracklet, link-
ing two tracklets into a longer track/trajectory, unlinking a subset of the detections in a tracklet
(up to unlinking all of the tracklet’s detections), swapping portions of two tracklets, etc. We
applied this method to player detections of various types, including ones from the well-known
Viola-Jones-style object detector [78] and ones based on a particle advection-style approach as
described in [52, 2]. However, in each case, inference over these detection sets—which, by
their nature, contained many false positive detections, missing detections, and multiply detected
players—was too complex, and the method achieved very poor results.

We also experimented with a Viterbi-like algorithm that attempted to link player detections
into longer trajectories. In particular, we expanded Viterbi to perform a beam search, where, in-
stead of finding a player’s best single trajectory through the detection set, as the standard Viterbi
algorithm would, our extended algorithm found the best b trajectories through the detection set.
Our hope was that, by allowing the algorithm to maintain multiple trajectory hypotheses for each
player, it would be able to continue to keep track of a player’s true trajectory through a hijacking
situation (i.e. while also maintaining the hijacked track). We also included a trajectory cluster-
ing step to avoid situations where a player’s beam included two nearly-identical trajectories that
differed by only a single detection. Unfortunately, allowing the Viterbi algorithm to maintain a
beam for each player instead of a single trajectory made it very difficult to include player inter-
action features like the ones we used in our particle filter-based method, in which each tracker
maintained only a single, known state. Thus, because it could not explicitly reason about player
interaction, this Viterbi-based approach ended up being just as susceptible to hijacking as our

particle filters (if not more so) and never yielded satisfactory results.
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A.0.1 Limited-Discrepancy Search for Multi-Object Tracking

The most promising long-view tracking approach we have explored is one based on limited-
discrepancy search (LDS) [14]. This work is preliminary, but it is worth discussing here at some
length.

LDS is a search-based framework for structured prediction, in which a combinatorial search
space is defined by the output of an imperfect but mostly-accurate recurrent structured classifier,
i.e. a classifier that constructs structured outputs by making a series of decisions, each of which
can depend on the input and the previously made decisions. The approach taken by LDS is to
try to correct the errors made by the classifier, one at a time, and then to re-run the classifier with
the fixed errors held constant. The idea is that by correcting individual errors, the performance
of the classifier can be greatly improved, and, thus, only a very shallow search should be needed
to find the correct structured output corresponding to a given input. Indeed, the LDS approach
described in [14] learns a cost function over candidate error fixes (or discrepancies) to try to
guide the search quickly to the correct output.

To illustrate more concretely how LDS works, consider an example from the visual word
recognition problem. Let us assume we have a trained recurrent classifier that, given an image of
a handwritten word, predicts the word depicted in the image, and assume that we pass as input
to that classifier an image containing the word “search.” It is quite possible that if that word is
sloppily written, our classifier might mistake the ‘e’ for a ‘c’. Once this decision is made, this
error might propagate to further decisions causing our classifier to output “scared” instead of
“search.” However, if we correct the intial error of mistaking ‘e’ for ‘c’ and hold this constant
while we re-run the classifier, it is likely that the classifier will be able to correct the rest of the
word without further search.

For the tracking problem, we use the particle filters described in Chapter 5 as our recurrent
classifier. The basic idea here, assuming we are operating in the American football domain, is as

follows:

1. Run our particle filter trackers to obtain an initial prediction about the trajectories of the

players.

2. Identify potential space-time locations where the trackers might have made an error (more

on identifying potential errors below).

3. Identify which players could possibly fix the errors found in step 2. The player-error pairs
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thus formed are our candidate discrepancies.

4. For each discrepancy formed in step 3, re-run the trackers with the constraint that the
tracker whose player is associated with the discrepancy being examined is forced to fix
the corresponding error. To make this step more efficient, we may duplicate the input
tracking results until a player is involved in a discrepancy. At that point we activate that
player’s tracker and may continue to duplicate the input results for the other players until

they are either involved in a discrepancy or interact with a player whose tracker is active.

5. Rank all of the tracking results from step 4 (more on ranking below). If running a greedy
search, repeat at step 2 with the highest-ranked tracking results and the corresponding
discrepancy. If running a beam search, repeat at step 2 with the b highest-ranked tracking
results and the corresponding discrepancies. Repeat for a maximum number of iterations

or until no more errors are available to be fixed.

In practice, re-running the trackers and ranking tracking results for all discrepancies can be
time consuming, so we insert a filtering step prior to step 3 in which we heuristically approximate
the tracking results for each discrepancy by assuming only the tracking results for the player
involved in the discrepancy will differ from the input results. Then, we simply modify this
player’s tracking results to force the player to fix the error asociated with the discrepancy. We
rank these heuristically approximated results for each discrepancy and pass only the & highest-
ranked ones on to step 4.

We use player detections that are not accounted for by the tracking results to identify poten-
tial errors in step 2. Specifically, we identify temporal strings of unaccounted-for detections in
which the spatial overlap between detections in contiguous video frames is above certain thresh-
old, and we take all such strings of at least a given duration to be potential errors. Errors selected
this way are reliable, with a few exceptions where a long string of detections is generated around
a field logo. However, as we discuss below, the discrepancies corresponding to these erroneous
detection strings can be filtered out using the ranking function by including ranking features that
measure stationarity and proximity to field logos.

To determine what players might possibly explain a given error, we examine a short temporal
window directly before the beginning of the error. In each frame within that temporal window,
we look at a spatial window centered around the location of the beginning of the error and whose

radius is determined based on the player dynamics equation (5.9). In particular, as the time until
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the beginning of the error increases, the radius of the spatial window also increases so that the
beginning location of the error can always be reached from the boundary of the spatial window
by dynamics that are feasible under (5.9). Any player that falls within this combined spatio-
temporal window is considered as potentially explaining the error in question, and a candidate

discrepancy is generated for this player-error pair.

A.0.1.1 Ranking Function

We use a linear ranking function of the form r(x,y) = w - f(x,y), where x and y are the
output tracks and input observation data, respectively, f(-) is a feature vector over the tracks and
observations, and w is the feature weight vector. The features we use in this function include the

following:

e Unexplained detections. The proportion of player detections left unexplained by the
tracks. This is used to encode a preference for tracks that explain more detections.

e Double-counted detections. The proportion of player detections that are accounted for
by more than one track. This is used to encode a preference for tracks that double-count
fewer detections.

e Spatio-temporal histogram comparisons. A histogram for each of the following spatio-
temporal properties is computed for each player and compared to a distribution of refer-
ence histograms for players of the same type. These are used to try to encourage tracked
player trajectories to be compatible with the distribution of trajectories players of the same

type are known to take.
— Field region. The field is divided into eight regions relative to the starting location of
the ball, and player location at each time step is discretized into one of these regions.

— Motion direction. Player motion at each time step is discretized into one of the eight
compass directions.

— Motion magnitude. The magnitude (in pixels) of player motion at each time step is
discretized into bins.

— Distance from scrimmage. Player distance from the line of scrimmage at each time

step is discretized into bins.

e Error-characterization features. The errors in the selected discrepancies are quantified

in several ways.
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— Time from player to error. The number of frames between the beginning of the
error in question and the location of the player when he is first constrained by the
discrepancy. This is included to encourage the selection of discrepancies in which

the player is closer to the error.

— Error length. The duration of the error in question, in frames, as a proportion of the
total length of the video. This is included to encourage the selection of discrepancies

representing longer errors.

— Error frames near logo. The proportion of the error in question’s duration during
which it is near a field logo. This is included to discourage the selection of discrep-
ancies whose errors remain mostly within field logos. Such errors are likely to be

false positives.

We learn weights for our ranking function using a procedure similar to the one described in
[14]. Specifically, we run LDS search as described above with the untrained ranking function,
and we record the tracking results and the set of candidate discrepancies at each search iteration.
Then, when the search is complete, we order each set of candidate discrepancies by their true
squared error, and we perform a pairwise perceptron update on the feature weights w between the
best candidate discrepancy, according to squared error, and each other candidate that is ranked
above it. In addition, for searches of more than one iteration, we keep track of the best candidate
seen so far at each search iteration and perform weight updates if that candidate is ranked lower

than any of the candidates at the current iteration.

A.0.1.2 Preliminary Experiments

We have run a number of preliminary experiments to test our LDS-based tracking approach on
our American football data set, and I briefly describe them here. Though we have not achieved
any significant improvement over our original particle filter-based trackers in these experiments,
we have seen promising signs that the LDS-based method is worth continuing to pursue.

Our experiments with the LDS-based method are set up similarly to the ones we describe in
Chapter 5. In particular, we use the same data set of 20 videos of American football plays, and
we divide this data set into four folds of five videos each.

To date, we have only run experiments testing a single iteration of search, i.e. we have only

used LDS to look for a fix to a single error in the original tracking results. For each of the folds in
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the data set, we trained our ranking function on the single-iteration search results for the videos
in the other three folds and then looked at the performance of the learned ranking function on
the first-iteration search candidates in the testing fold.

The learned ranking function has given mixed results, and we are not convinced that any
overall improvements in tracking error it has yielded are not just the result of random noise
in the approach. In particular, while in multiple runs of these experiments we have seen the
learned ranking function correctly select several true error-fixing discrepancies, we have also
seen it occasionally select error-increasing discrepancies as well. Indeed, it is often the case
that, for a given video, no error-fixing discrepancies survive our preliminary heuristic filtering
step, and thus, in these cases, no error-fixing discrepancies are available for the ranking function
to select. However, even when we hard code a guarantee that the best error-fixing discrepancy
(i.e. the one that yields the lowest true tracking error) must survive the preliminary filtering step,
the learned ranking function does not always select this discrepancy as the best one. We have
also experimented with training the preliminary filtering function, but these experiments yielded
similar results.

Nonetheless, despite their mixed results, we do see promising signs in these experiments.
For example, while the preliminary filtering step often filters out any good discrepancies, we
have noted that good, error-fixing discrepancies are always present before the preliminary filter-
ing step. Often, discrepancies exist before the preliminary filtering step that reduce the overall
tracking error for a single video by more than 50%. The consistent presence of these error-fixing
discrepancies validates the error identification and player-error pairing steps of our procedure.

To explore the effectiveness of our ranking function learning procedure, we ran a set of ex-
periments in which we included the true tracking error as a ranking feature. As expected, our
training procedure learned a very large negative weight for the true error feature, signifying that
the learning procedure was able to identify the fact that error is correlated with itself, and the
overall learned ranking function was able to almost perfectly order the candidate discrepancies
by increasing tracking error. The fact that the trained ranking function could successfully achieve
the correct ordering when obviously discriminating information was present in the ranking fea-
tures demonstrates the validity of our training procedure. Indeed, these results suggest that this
overall approach may simply need better ranking features in order to be successful. This is likely
also the case for the preliminary filtering function, since it uses the same features as the ranking
function. Unfortunately, we have not yet had a chance to test any additional ranking features,

but attempting to improve upon the information provided to the LDS-procedure in the form of
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ranking features appears to be a logical next step in exploring this approach.






