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Recent advances in multiagent learning have led to exciting new capabilities 

spanning fields as diverse as planetary exploration, air traffic control, military 

reconnaissance, and airport security. Such algorithms provide a tangible benefit 

over traditional control algorithms in that they allow fast responses, adapt to 

dynamic environments, and generally scale well. Unfortunately, because many 

existing multiagent learning methods are extensions of single agent approaches, 

they are inhibited by three key issues: i) they treat the actions of other agents as 

“environmental noise” in an attempt to simplify the problem complexity, ii) they 

are slow to converge in large systems as the joint action space grows 

exponentially in the number of agents, and iii) they frequently rely upon the 

presence of an accurate system model being readily available. 

This work addresses these three issues sequentially. First, we improve overall 

learning performance compared to existing state-of-the-art techniques in the field 



by embracing the exploration in learning rather than ignoring it or 

approximating it away. Within multiagent systems, exploration by individual 

agents significantly alters the dynamics of the environment in which all agents 

learn. To address this, we introduce the concept of “private” exploration, which 

enables each agent to present a stationary baseline policy to other agents in order 

to allow other agents in the system to learn more efficiently. In particular, we 

introduce Coordinated Learning without Exploratory Action Noise (CLEAN) 

rewards which improve coordination and performance by utilizing the concept of 

private exploration in order to remove the negative impact of traditional “public” 

exploration strategies from learning in multiagent systems. Next, we leverage the 

fundamental properties of CLEAN rewards that enable private exploration to 

allow agents to explore multiple potential actions concurrently in a “batch mode” 

in order to significantly improve learning speed over the state-of-the-art. Finally, 

we improve the real-world applicability of the proposed techniques by reducing 

their requirements. Specifically, the CLEAN rewards developed require an 

accurate partial model (i.e., an accurate model of the system objective) of the 

system in order to be computed. Unfortunately, many real-world systems are too 

complex to be modeled or are not known in advance, so an accurate system 

model is not available a priori. We address this shortcoming by employing 

model-based reinforcement learning techniques to enable agents to construct 

their own approximate model of the system objective based upon their 

observations and use this approximate model to calculate their CLEAN rewards. 
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Chapter 1 – Introduction 

Multiagent learning algorithms have gained popularity and acceptance in a variety 

of commercial (e.g., air traffic management), industrial (e.g., the “smart” electrical 

grid), military (e.g., distributed sensing), and scientific (e.g., fractionated satellites) 

domains. The complexity of tasks within these systems render preplanned agent 

control techniques inadequate as they are either too computationally expensive 

to compute or simply too slow to respond to the rapidly changing environmental 

dynamics. Instead, agents must discover their own control solutions, using learn­

ing approaches, where they continually interact with their environment in order 

to learn a mapping from their states to actions. As most multiagent learning al­

gorithms are extensions of single agent learning algorithms, they consist of agents 

taking actions and updating their internal parameters based on the reward they 

receive. The agents continually strike a balance between exploiting the knowledge 

they have already gained (i.e., taking actions that currently they believe will lead 

to good performance) and exploring new actions which may improve their knowl­

edge of the system and eventually lead to better performance. It is known that 

learning agents must balance these two behaviors and this has become known as 

the “exploration-exploitation” tradeoff in learning. 

In traditional single-agent reinforcement learning, an agent consistently takes 

exploratory actions to ensure that it does not prematurely conclude that a sub­
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Figure 1.1: When an agent “exploits” its policy, it takes its best known action. 
When an agent “explores,” it takes actions that it is less sure of in hopes that it 
will discover a good action. In single agent learning, once learning is complete, 
using the exploitive policy will almost always lead to higher performance since it 
is the best known policy. This is often not the case in multiagent learning since 
an agent will be exploiting a policy that assumed all other agents were exploring. 
In this figure, even on a relatively simple problem, performance actual goes down 
at the end of learning (episode 1000) when exploration is turned off and all agents 
exploit their best policy. 

optimal solution is its best option. Over time, these exploratory actions help the 

agent learn the real underlying values associated with its actions. In fact, it has 

been shown that in single agent learning, such exploration is necessary to converge 

to an optimal policy. Unfortunately, in multiagent systems, the exploratory actions 

of individual agents fundamentally alter the dynamics of the system the agents are 

attempting to learn (see Figure 1.1). Indeed, if an agent treats the other agents 

in the system as part of the environment, it has no way to distinguish between 
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environmental noise and the noise associated with exploratory actions of other 

agents. Learning what other agents are likely to do in a given state is critical for 

the success of a learning agent. But learning the exploratory noise of the other 

agents’ actions is not only difficult, but also self-defeating. In such a case, the 

agents are attempting to learn an artifact, one that will disappear when the agents 

start to converge to their true policies. 

In this work, we leverage our previous work on credit assignment to develop 

Coordinated Learning without Exploratory Action Noise (CLEAN) rewards, which 

address the exploratory noise problem [59, 7, 60, 63]. These rewards are based on 

the concept of counterfactual actions that to date have been used to enable indi­

vidual agents to determine their individual impact on overall system performance. 

CLEAN rewards extend and generalize this concept in order to allow agents to have 

private exploration, where they explore the values of their own actions without im­

pacting the learning of other agents. Overall, this algorithm lets agents distinguish 

when their peers are taking purposeful actions (e.g., exploiting their current knowl­

edge) from when they are taking exploratory actions (e.g., randomly sampling the 

action space to attempt to improve their system knowledge) by utilizing counter­

factuals to privatize exploration, and as we show, provides a tremendous leap in 

multiagent performance. 

A second, related problem in multiagent learning is the slow convergence of the 

system to good joint actions. This is partially caused by the noise associated with 

the exploration/exploitation trade-off described above, but also by the sheer size 

of the joint state-action space. Indeed, that space grows exponentially with the 
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number of agents, and a slow, traditional search through the solution space proves 

difficult, if not impossible, when the number of agents grow into thousands. In this 

work, we extend the concept of private exploration detailed above to enable agents 

using CLEAN rewards to update their perceived valuations of multiple actions at 

a time, resulting in “batch” updates. This is done by exploiting the concept of 

“privatized exploration” via counterfactuals introduced with CLEAN rewards. In 

particular, this enables agents to utilize counterfactuals combined with a reward 

model and system state information to approximate the impact they would have 

had on the system had they taken one of a set of alternate actions, resulting in a 

rewards for “potential” actions that were not explicitly taken. Allowing agents to 

perform multiple concurrent updates enables them to search the joint state-action 

space much more quickly and efficiently, which we show significantly improves 

learning speed. 

Finally, although the CLEAN rewards described above result in significantly 

improved performance and learning speed, they have a drawback in that they 

require an accurate partial system model (i.e., an accurate model of the system 

objective) in order to be computed. In fact, the requirement of either an accu­

rate full or partial system model is a key drawback of many existing multiagent 

learning techniques, and is a factor which significantly inhibits the real-world ap­

plicability of many multiagent techniques. For our final contribution, we extend 

the applicability of CLEAN rewards into real-world domains by enabling agents 

to learn without being given an accurate system model a priori. Here, we enable 

agents to utilize statistical function approximation tools to construct their own ap­
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proximate model of the system objective through repeatedly interacting with their 

environment. Agents are then able to use their approximate models of the system 

objective to calculate their CLEAN rewards. In this setting, agents utilize the ap­

proximate model of the system objective they create to calculate their individual 

CLEAN rewards. As we show, the performance of agents using CLEAN rewards 

with an approximate model of the system objective is comparable in performance 

to existing state-of-the-art reward shaping techniques that are given an accurate 

system model. 

1.1 Contributions 

Overall, these three issues have inhibited the long-term goal of the field of mul­

tiagent systems, which is to enable decentralized control over systems comprised 

of thousands of disparate agents. In this work, we directly address all three of 

these issues. First, we formulate a paradigm where we shift from a “public” explo­

ration strategy (i.e., all agents explicitly take exploratory actions and all agents 

observe each other’s exploratory actions) to a “private” exploration strategy (i.e., 

agents do not explicitly take exploratory actions, instead, agents implicitly take 

exploratory actions which are not visible to other agents). In particular, we intro­

duce Coordinated Learning without Exploratory Action Noise (CLEAN) rewards, 

which leverage the properties of a “private” exploration strategy in order to re­

move learning noise and improve coordination in multiagent systems. Second, 

we exploit the properties of CLEAN rewards in order to enable agents to obtain 
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“batch” rewards for multiple possible actions during each of their interactions 

with the environment, resulting in significantly improved learning speed. Finally, 

we use model-based reinforcement learning techniques to extend the applicability 

of these algorithms into real-world systems where accurate system models are not 

readily available and agents must learn within an unknown environment. This 

work is aimed at improving the capabilities of multiagent systems, as well as their 

real-world applicability. The particular contributions of this work are as follows: 

•	 We identify, formalize, and define the exploratory action noise caused by 

agent exploration in multiagent systems which is a previously unidentified 

issue that has been plaguing the field of multiagent systems. 

•	 We design a paradigm shift away from explicit “public” agent exploration 

strategies towards “private” implicit exploration strategies to address ex­

ploratory action noise. 

•	 We introduce and define Coordinated Learning without Exploratory Action 

Noise (CLEAN) rewards which eliminate exploratory action noise in multi-

agent learning, increasing system performance over existing state-of-the-art 

techniques (e.g., difference rewards). 

•	 We introduce Batch-CLEAN, which leverages the properties of “private” ex­

ploration to enable agents to perform multiple learning updates (i.e., control 

updates) per interaction with their environment, increasing learning speed 

over the state-of-the-art (e.g., difference rewards). 
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•	 We combine the CLEAN rewards paradigm with statistical function approx­

imation techniques which enable agents to utilize these methods in unknown 

environments, improving the real-world applicability of these techniques over 

the existing state-of-the-art (e.g., potential-based reward shaping, difference 

rewards). 

The remainder of this work is structured as follows. Chapter 2 provides background 

information on various aspects of multiagent systems and multiagent learning1 . 

Chapter 3 introduces the issue of exploratory action noise and presents Coordi­

nated Learning without Exploratory Action Noise (CLEAN) rewards as a solution 

to this problem. Chapter 4 demonstrates the performance of CLEAN rewards in 

two toy domains and demonstrates that CLEAN rewards outperform existing state­

of-the-art techniques (e.g., difference rewards). Chapter 5 proposes an extension of 

the concepts CLEAN rewards that leverages the concept of private exploration to 

enable agents to perform “batch” reward updates to significantly improve learning 

speed. Then, Chapter 6 demonstrates the performance of these Batch-CLEAN 

rewards in two real-world domains, comparing their performance to both standard 

CLEAN rewards as well as difference rewards. Chapter 7 outlines a methodology 

that extends the applicability of CLEAN based techniques into real-world domains 

with unknown environments by implementing model-based reinforcement learning 

techniques to enable agents to construct their own environmental models based 

upon their own observations instead of relying upon an accurate system model 

1This chapter can be skipped if the reader is already familiar with multiagent systems and 
multiagent learning 



8 

to be given a priori. Chapter 8 then demonstrates the performance of CLEAN 

rewards utilizing model-based reinforcement learning techniques to learn within 

initially unknown environments using two real-world domains. Finally, Chapter 9 

provides a discussion of the conclusions of this work, along with opportunities for 

future work. 



9 

Chapter 2 – Background 

2.1 Agent Learning 

Throughout this dissertation, we are interested in intelligent agents which are able 

to autonomously “learn” their own control policies (i.e., agents that are able to 

learn how to behave and act within an environment). Within this section, we 

will be introducing one of the most common frameworks for these learning based 

problems (e.g., Markov Decision Processes) and then outlining some standard ap­

proaches to agent-based learning (e.g., reinforcement learning). This section will 

outline the fundamental properties of single-agent learning systems and will set 

the stage for our introduction to learning within multiagent environments. 

2.1.1 Markov Decision Processes (MDPs) 

A Markov Decision Process (MDP) is a framework that can be used to describe a 

learning problem for agents that are learning within a stochastic environment. The 

MDP framework was created when planning methods failed to handle stochasticity 

in the environment and actions. Instead of transitioning deterministically from one 

state to another given a certain action, when the actions in a given state lead to 

a series of potential future states s’ for an action taken. An MDP is a four-

tuple {S, A, R, T }, consisting of a set of agent states S, actions A, a deterministic 
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reward function R, and a transition probability function T. The set of states S, is 

the complete set of states that an individual agent can observe itself in. The set of 

actions A, is the complete set of actions each individual agent is capable of taking. 

The reward function R provides a direct mapping from the observed current state of 

an agent s to the reward r associated with being in that state. Finally, T contains 

the probability of ending up in state s' at time t + 1 after taking action a in state 

s at time t. This four-tuple characterizes a Markov Decision Process. MDP’s are 

capable of handling stochasticity and environmental uncertainty associated with 

state-transitions (i.e. action a in state s will not always yield a specific state s') 

[116]. 

2.1.2 Reinforcement Learning 

Reinforcement learning can be considered a computational approach to under­

standing and automating goal-directed learning and decision making [125].1 Re­

inforcement learners observe the state of the environment and attempt to take 

actions that maximize their expected future reward.2 A reinforcement learning 

problem consists of at least one agent and an environment. A reinforcement learn­

ing agent has four key elements including a policy, reward function, value function, 

and optionally an environmental model [125]. 

An agent’s policy defines the way the agent behaves at any given time [125], 

1A comprehensive list of single and multiagent reinforcement learning algorithms can be found 
in [30, 125, 154]. 

2In this work, an agent’s environment consists of the world and all other agents and the 
problem is represented as a four-tuple MDP . 
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it can be thought of as the agent’s controller. This controller maps the agent’s 

perceived environmental state to the action it takes in that state. Initially, these 

policies are initialized in an arbitrary manner, and adjusted over time as the agent 

learns. Each agent’s policies are updated via the agent’s reward and value function. 

An agent’s reward function reflects the agent’s goal in a reinforcement learning 

problem [125]. The reward function provides an agent with a learning signal for 

actions taken. In general, the learning signal is positive if the agent’s actions were 

beneficial to its goal, and negative if the actions were detrimental to the agent’s 

goal. The rewards an agent receives are frequently coupled with a value function 

in order to update the agent’s policy (controller). 

A reinforcement learning agent uses some form of a value function in order 

to update its policy based upon the reward it receives. There are many forms of 

value updates in reinforcement learning, depending upon the domain. Here, we will 

introduce one of the most common forms of value functions known as a Q-function. 

At every episode an agent takes an action and then receives a reward evaluating 

that action. Agents select the actions corresponding to the highest Q-value with 

probability 1 − t, and chooses a random action with probability t. The constant 

t is an exploration rate. After taking action a and receiving reward R an agent 

updates its Q table (which contains its estimate of the value for taking action a in 

state s [125]) via the Q-update function as follows: 

Q ' (s, a) = Q(s, a) + α (R(s) − Q(s, a) + γQmax(s ' , a ' )) (2.1) 
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where, 

•	 Q ' (s, a) is the updated Q-value for taking action a in state s at time t 

•	 Q(s, a) is the current Q-value for taking action a in state s at time t 

•	 maxaI Q(s ' , a ' ) is the maximum possible Q-value associated with taking action 

a ' in state s ' at time t + 1 

•	 R(s) is the reward received for the agent being in state s at time t 

•	 α is the learning rate {0, 1} 

•	 γ is the discount factor {0, 1} 

Each of the Q(s, a) values provides an agent with a measure of the amount of 

reward it can expect to achieve over time for taking action a in state s. The learning 

rate α controls how quickly an agent learns. If α is set low, new rewards will not 

impact the agents Q(s, a) values as quickly, resulting in slower learning and slower 

changes in behavior. This is useful in domains where The environment changes 

slowly over time. When the α parameter is set high, learning occurs rapidly, 

pushing the Q(s, a) values to change quickly with respect to rewards received. 

This is very useful in domains where the environment is changing rapidly, and the 

agents policy needs to change accordingly. The discount factor γ on the other hand 

impacts how far ahead an agent looks when considering its actions. A discount 

factor of γ = 0 will consider only the immediate reward obtainable from taking an 

action a in the current state s. A higher discount factor causes an agent to consider 
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the down-stream effects of its actions, how the action it takes in the current state 

s will impact the cumulative reward it receives in the future. 

2.1.3 Model-Based Reinforcement Learning 

Model-based reinforcement learning is of particular interest to this work. Model-

based Reinforcement Learning refers to learning optimal behavior indirectly by 

learning a model of the environment by taking actions and observing the outcomes 

that include the next state and the immediate reward [107]. The models predict 

the outcomes of actions and are used in lieu of or in addition to interaction with 

the environment to learn optimal policies [107]. Many existing reward shaping 

techniques (e.g., Q-learning [125]) allow agents to learn without a model of the 

environment, simply through repeated interactions. Unfortunately, in many do­

mains (e.g., multiagent reinforcement learning domains) this type of learning can 

be prohibitively slow, as each piece of information agents receive from the en­

vironment is used once and then discarded. To address this shortcoming, there 

has been a plethora of research in the area of model-based reinforcement learning 

[84, 102, 75, 107, 96, 20, 144]. Model-based RL techniques enable agents to leverage 

knowledge about the environmental model (e.g., the environmental dynamics and 

system objective) to improve learning speed and performance [84, 102, 75, 107]. 

Reinforcement learning for MDPs are able to leverage models into improving 

performance in a couple of ways. If agents are given an accurate model of the 

system, they can utilize offline learning techniques which solve the modeled MDP 
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directly. With online model-based RL, agents can leverage the model to guide 

exploration and action selection during learning towards more “interesting” re­

gions of the search space (resulting in more efficient exploration) [102, 75]. Value 

iteration and policy iteration are perhaps the most popular methods of solving 

model-based reinforcement learning problems [125, 107]. 

Model-based RL algorithms either assume agents are given an accurate sys­

tem model a-priori, or that agents must construct their own approximate system 

model through repeated interactions with the environment. In this work, we first 

assume that agents are given an accurate partial system model (i.e., the system 

reward model) a priori in order to demonstrate the benefits of our reward shaping 

techniques. We then extend these techniques to the case where agents must learn 

their own approximate system model (i.e., an approximate model of the system 

objective), and then use this approximate model during learning. 

2.2 Multiagent Learning 

Learning is often an important component of multiagent systems. Learning 

methods can generally be grouped into one of three main categories: supervised, 

unsupervised, and reward-based learning. Supervised learning is learning in the 

presence of a ‘teacher’, which tells an agent whether the action it took was right 

or wrong. Supervised learning works well for classification problems in which a set 

of training examples are available. However, in many complex real world domains, 

dynamic interactions between agents and stochasticity in the environment make 
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it impossible to know what the correct actions are. Unsupervised learning occurs 

when an agent is simply put in an environment and learns patterns from its inputs 

and observations without receiving any explicit feedback. A common example of 

unsupervised learning is clustering: detecting potentially useful or related clusters 

from a set of input examples [116]. Reward based learning is often called “semi-

supervised” learning: there is no explicit target function, but there are rewards 

which provide feedback for actions taken. In this work we will focus on reward-

based learning methods, namely multiagent reinforcement learning within an MDP 

framework.3 

2.2.1 Considerations in Multiagent Learning 

When designing a multiagent system, there are a number of key system properties 

that must be considered and determined by the system designer. Here we introduce 

a few of these properties:4 

Credit Assignment Problem: In cooperative multiagent learning problems, 

credit assignment involves how to distribute rewards to each agent in the system 

based upon their individual contribution to the system performance. Credit as­

signment has two key aspects: 1) How to divvy up credit among agents based upon 

the actions they took individually and determine how they contributed to the sys­

tem performance (structural credit assignment), and 2) How to distribute credit 

3A comprehensive list of single and multiagent reinforcement learning algorithms can be found 
in [30, 125, 154]. 

4Additional information on these topics can be found in [116, 125, 153]. 



16 

to agents for actions taken during previous time steps (temporal credit assignment 

problem) [8]. In order to achieve good performance in multiagent learning, both 

aspects of the credit assignment problem must be addressed [125]. 

Communication in Multiagent Systems: Communication is a critical element 

in multiagent learning. Communication can be done either explicitly or implicitly. 

Explicit methods involve direct agent-to-agent communication, negotiation, or in­

formation exchanging. In such cases, communication is typically limited by domain 

attributes. Some domains have a maximum communication distance while others 

have restricted data rates. Most approaches to explicit communication involve as­

signing a cost to communication and having agents try to coordinate in order to 

minimize the communication costs incurred [149]. Implicit communication is in­

direct and commonly occurs through environmental interactions. A few examples 

of implicit communication include coupling agent reward functions [8] or leaving 

pheromones or trails that other agents in the environment can detect and follow 

[89]. Tradeoffs between different types and levels of communication and system 

performance is highly studied in multiagent systems research. 

Centralized vs. Decentralized Learning: In general, there are two extremes 

associated with controlling large sets of autonomous devices. The first extreme is 

a centralized control approach which treats the individual agents as peripherals 

of a single system controller5 . This approach is advantageous in that the central­

ized control prevents individual agents from taking conflicting actions. However, 

5If a multiagent system has full communication in which all agents can communicate directly 
with each other, it is effectively equivalent to a system with a single centralized controller [123]. 
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there are several drawbacks and difficulties associated with centralized approaches. 

These approaches become prohibitively expensive to compute as the number of 

agents within the system increases, since the computation often increases exponen­

tially with additional agents due to agent-to-agent interactions within the system. 

In addition, such approaches require the central node to receive complete “sensory” 

information from each node in the system (full observability), which is unrealistic 

in many real-world domains. An alternative is a fully decentralized approach, in 

which each agent in the system develops its own view of the environment and pol­

icy of acting in it. A completely decentralized approach is advantageous because 

it avoids single points of failure, easily adds and removes agents from the system, 

and is readily reconfigurable to dynamically changing system requirements. De­

centralized approaches have been heavily researched in recent years due to these 

capabilities. Current drawbacks associated with these methods lie in the difficulty 

associated with designing individual-agent policies that collectively work together 

to optimize the joint-actions of all the agents in the system and resultant system 

performance. 

2.2.2 From Single Agent Learning to Multiagent Learning 

When extending single agent algorithms to multiagent learning, two new key issues 

arise: How to account for the collective action of other agents in the system and how 

to select actions that not only provide a direct benefit but also shape the actions of 

other actions in the future. The first issue is an “input” problem, in that it forces an 
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agent to differentiate between the potentially stochastic changes to an environment 

from the actions of intelligent agents and exploit this knowledge. The second issue 

is an “output” issue, in that it forces the agent to determine a course of actions 

that through its interaction with other agents influence the actions of other agents. 

These two issues together provide both theoretical (convergence) and practical 

(signal to noise in rewards) complications and render the direct application of 

single agent learning algorithms problematic. 

To date, most work focused on the output problem, particularly when focusing 

on cooperative systems where agents aim to maximize a common goal [21, 47, 155]. 

Applications for such multiagent systems include managing air traffic [103, 136], 

coordinating teams of unmanned aerial vehicles [47], managing the electrical grid 

[87], controlling complex power plants [88], managing online digital auctions [37], 

and data mining [155] to name a few. However, despite their benefits, multiagent 

learning approaches must be improved to generalize to a larger set of coordination 

problems, and both explicit and implicit coordination mechanisms are two options 

to handle this issue. 

Explicit coordination involves direct interaction and agent-to-agent communi­

cation between two or more agents within a system [6, 68, 74, 94]. Key examples of 

explicit coordination mechanisms include auctions, bidding, and other forms of ne­

gotiations, which have been used for the allocation of goods and resources, as well 

as task allocation in multiagent systems [37, 78, 91, 105, 110, 126]. Additionally, 

techniques involving graph-based agent dependencies and message passing (e.g., 

max-plus, coordination graphs) have been used in a number of domains including 
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controlling multiple robots as well as swarms of UAVs [24, 47, 85, 94]. However, 

the complexity and computational costs of explicit coordination techniques make 

these techniques well suited to domains with a few sophisticated agents, but not 

to domains where very large number of computationally limited agents must be 

coordinated [5, 85, 116, 150, 156, 157]. 

Implicit coordination techniques rely solely upon an agent’s observation of the 

environment, other agents, and the surrounding system to make decisions. Stig­

mergy, which enables agents to coordinate through their interactions with the envi­

ronment (e.g., leaving pheromone trails for other agents to detect and follow) is one 

common form of implicit coordination that has shown success in a number of appli­

cations including controlling robot exploration and UAV swarms [55, 89, 94, 116]. 

Another approach to implicit coordination is through reward shaping, which de­

signs agent-specific rewards that reflect how well the agents interacted (i.e., how 

their joint actions benefited the system performance) [15, 29, 43]. Key examples 

of reward coupling include potential-based reward shaping and difference rewards 

which have both been shown to increase both learning speed as well as overall 

performance in a number of multiagent domains [14, 15, 42, 43, 103]. 

2.2.3 Rewards for Multiagent Learning 

One of the most critical factors within multiagent learning is selecting the rewards 

each agent should use to learn. The first and most direct approach is to let each 

agent use the system reward as their individual reward. However, in many domains, 
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especially domains involving large numbers of agents, such a reward often leads to 

slow learning. This is because each agent has relatively little impact on its own 

reward. For instance if there were 100 agents and an agent takes an action that 

improves the system reward, it likely that some of the 99 other agents will take 

poor actions at the same time, and the agent that took a good action will not be 

able to observe the benefit of its own individual action and how it impacted the 

resultant system performance. 

Another possibility for a reward is to use a local agent-specific reward that 

only accounts for the action of the particular agent. While with such rewards an 

agent can easily see the impact of its action on its reward, in most domains, the 

local rewards are not aligned with the system reward G(z). In such domains, an 

agent can maximize its own local reward, but in doing so it can reduce the overall 

system reward. Local reward structures are primarily useful in problem domains in 

which the local reward can be created in such a way that they are directly aligned 

with the system performance. However, in many complex problem domains it is 

notoriously difficult to derive agent-specific reward structures that are perfectly 

aligned with the system objective function. 

In this work, we develop novel reward mechanisms for promoting learning, 

coordination, and scalability within multiagent systems. In particular, we focus 

on designing a generalized class of reward structures which can be used across a 

plethora of domains to improve performance in multiagent learning. These rewards 

are able to maintain the benefits of global rewards G(z) (e.g., being positively 

aligned with the objective of the system) while at the same time reaping the 
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benefits associated with localized rewards (e.g., the ability for agents to get clear 

feedback on how their individual actions contributed to the reward they received). 

The general term for the techniques used to create these rewards is reward shaping 

2.2.3.1 Reward Shaping 

Reward shaping is the practice of replacing an agent’s reward function with an 

alternative reward that changes its learning [43, 132]. Frequently, reward shaping 

is used to improve system performance or to make a problem easier to solve [13, 53]. 

Reward shaping has been used to increase performance by speeding up convergence 

rates and improving coordination in problems involving reinforcement learning [13, 

149]. In Q-learning, reward shaping can be represented by the following formula 

[43, 95]: 

Q(s, a) ← Q(s, a) + α[r + F (s, s ' ) + γmaxaI Q(s ' , a ' ) − Q(s, a)] (2.2) 

where Q(s, a) is the Q-value associated with the agent taking action a in state s, 

r is the standard reward, a ' is an alternate action, s ' is an alternate state, α is the 

learning rate, γ is the discount factor, and F (s, s ' ) is the general form of the shaping 

reward. As seen, the shaping reward F (s, s ' ) is an additional reward that is applied 

on top of the agents original reward r in order to encourage better learning [43, 95]. 

Reward shaping techniques (e.g. Potential-based reward shaping [43]) have been 

used to increase performance by speeding up convergence rates and improving 
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coordination in problems involving reinforcement learning [13, 43, 53, 149]. 

Many existing reward shaping techniques require a full system model in order 

for them to be computed (i.e., agents or the system designer must have access 

to both the transition probabilities T (s, a, s ' ) as well s the system reward model 

R(s, a) [43, 53, 149]. Unfortunately, in complex multiagent systems, this infor­

mation is not always available, rendering many reward shaping techniques (e.g., 

potential-based reward shaping) inapplicable to many real-world applications. 

Next, we will introduce a type of reward shaping technique which was developed 

to both improve coordination and performance within multiagent systems, while 

concurrently reducing the amount of information required by agents during learn­

ing. More specifically, we introduce difference rewards, which are shaped rewards 

that only require agents to have knowledge of the system reward model R(s, a) 

and eliminate the need for agents to have knowledge of the transition probabilities 

T (s, a, s ' ). 

2.2.3.2 Factoredness and Learnability 

Ideally, a reward should provide an agent with two key pieces of information: 1) 

How its action impacted the overall system performance, and 2) How its action 

impacted the reward it received. Feedback on how its own actions impacted the 

system performance allows agents to make decisions that are in-line with the system 

objective. Providing agents with feedback on how its individual actions impacted 

the reward it received allows the agent to adapt its actions in order to benefit both 
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itself and the system. 

This first property has been formalized for an agent j, by defining the degree 

of factoredness (also presented in [141, 152, 151]) between the agent-reward gj 

and system reward G at state z, as: 

  
u [(gj (z) − gj (z ' ))(G(z) − G(z ' ))]

Fgj =
z zI   (2.3) 

1 
Iz z

where the states z and z ' only differ in the state of agent j, and u[x] is the unit 

step function, equal to 1 if x > 0. The numerator keeps track of the number of 

state pairs (z, z ' ) for which the agent reward, gj (z) − gj (z ' ), and system reward, 

G(z) − G(z ' ), are aligned (have the same sign). A high degree of factoredness 

means that agents improving their own local reward are concurrently improving 

the system performance, while agents harming their local reward are also harming 

system performance. 

The second property has been defined as learnability, which is the degree to 

which an agents reward, gj , was impacted by its own actions as opposed to the 

actions of other agents. The learnability of a reward, gj , for agent j, evaluated at 

z can be quantified as follows: 

||gj (z) − gj (z − zj + zj 
' )||

Lgj = (2.4)
||gj (z) − gj (z ' − zj 

' + zj )|| 

where in the numerator z ' differs from z only in the state of agent j, and in the 

denominator the state of all other agents is changed from z to z ' . Intuitively, the 
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learnability provides a ratio between the portion of the agents reward signal that 

depended upon its own actions (signal), and the portion of its reward signal that 

depended upon the actions of all other agents (noise). The higher the learnability, 

the easier it is for an agent to learn an accurate mapping between its actions and 

its rewards. 

2.2.3.3 Difference Rewards 

Difference rewards are a particular type of shaped rewards which emphasize assign­

ing credit to individual agents in the system based upon their independent contri­

butions to the system’s performance [60, 12, 59, 132, 141, 151, 13, 141, 152, 151]. 

Difference rewards have been shown to work well in a number of domains and 

conditions [7, 60, 59, 63, 13, 132]. Difference rewards are shaped rewards of the 

form [13]: 

Dj ≡ G(z) − G(z−j + cj) (2.5) 

where G is the system objective, z is the complete system state vector and z−j 

contains all the variables not affected by agent j. All the components of z that 

are affected by agent j are replaced with the fixed constant cj (counterfactual 

action).6 These rewards only require agents to have access to a model of the 

system objective G and do not require agents to have any knowledge of the system 

transition probabilities T , which significantly reduces the overhead requirements 

6The only requirement of difference rewards is that agents have some approximation of the 
shape of the underlying system objective, G [103]. 
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compared to existing reward shaping techniques. 

Difference rewards are factored no matter what the choice of cj , because the 

second term does not depend on j’s actions [132]. Furthermore, they usually have 

far better learnability than does a team reward, because the second term of D, 

which removes a lot of the effect of other agents (i.e., noise) from j’s reward. In 

many situations it is possible to use a value of cj that is equivalent to taking agent 

j out of the system. This causes the second term to be independent of j (i.e. 

the system performance without agent j), and therefore Dj evaluates the agent’s 

contribution to the global performance. There are two key advantages to using Dj : 

First, because the second term removes a significant portion of the impact of other 

agents in the system, it provides an agent with a “cleaner” signal than G [13, 132]. 

Second, because the second term does not depend on the actions of agent j, any 

action by agent j that improves D, also improves G (the derivatives of D and G 

with respect to j are the same) [13, 132]. 

We also consider the Expected Difference Reward (EDR) which is given by: 

EDRj ≡ G(z) − Ezj [G(z)|z−j ] (2.6) 

where Ezj [G(z)|z−j ] gives the expected value of G over the possible actions of 

agent j. Because this term does not depend on the immediate actions of j, this 

reward is still aligned with G [132]. Furthermore, because it removes noise from 

each agent’s own reward, EDR yields far better learnability than does G [132]. 

This noise reduction is due to the subtraction which (to a first approximation) 
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eliminates the impact of states that are not affected by the actions of agent j. The 

major difference between EDR and D is in how they handle zj . EDR provides an 

estimate of agent j ’s impact by sampling all possible actions of agent j whereas D 

simply removes agent j from the system. 

Any system capable of broadcasting the system performance G or passing state-

vector information can be minimally modified to allow agents to independently 

calculate their own difference reward [132]. Although difference rewards have been 

demonstrated to work well within a number of domains, they are still not applicable 

to many real-world domains where an accurate partial system model (i.e., an ac­

curate model of the system objective) is unavailable and the agents must operate 

within an initially unknown environment. In this work, we address this short­

coming by first introducing CLEAN rewards which have the same partial model 

requirements as difference rewards (i.e., they require an accurate model of the sys­

tem objective in order to be computed) but that outperform difference rewards by 

accounting for exploratory action noise which is introduced in Chapter 3. We then 

developed techniques which enable agents to construct approximate models of the 

system objective and then use these approximate models to calculate their individ­

ual CLEAN rewards, resulting in improved real-world applicability over existing 

techniques. 
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Chapter 3 – CLEAN Rewards for Learning in the Presence of
 

Exploration
 

In cooperative multiagent systems, coordinating the joint-actions of agents is dif­

ficult. One of the fundamental difficulties in such multiagent systems is the slow 

learning process where an agent not only needs to learn how to behave in a complex 

environment, but must also account for the actions of the other learning agents. 

Here, the inability of agents to distinguish the true environmental dynamics from 

those caused by the stochastic exploratory actions of other agents creates noise 

on each agent’s reward signal. Under these conditions, the solution (using agents) 

actually becomes part of the problem. This learning noise can have unforeseen 

and often undesirable effects on the resultant system performance. We define such 

noise as exploratory action noise and introduce a reward structure that effectively 

removes such noise from each agent’s reward signal. In particular, we introduce 

two types of Coordinated Learning without Exploratory Action Noise (CLEAN) 

rewards which are agent-specific rewards based on an agent estimating the coun­

terfactual reward it would have received had it taken an alternative action. Then, 

in the next chapter, we empirically show that CLEAN rewards outperform agents 

using both traditional global rewards and shaped difference rewards in two toy 

domains. 
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3.1 Introduction 

Learning in large multiagent systems is a critical area of research with applications 

including controlling teams of autonomous vehicles [13], managing distributed sen­

sor networks [46, 149], and air traffic management [136]. A key difficulty of learn­

ing in such systems is that the agents in the system provide a constantly changing 

background in which each agent needs to learn its task. As a consequence, agents 

need to extract the underlying reward signal from the noise of other agents act­

ing within the environment. This learning noise can have a significant and often 

detrimental impact on the resultant system performance. In this chapter, we first 

define exploratory action noise present in multiagent systems and then introduce 

Coordinated Learning without Exploratory Action Noise (CLEAN) rewards which 

designed to promote coordination while removing exploratory action noise from 

each agent’s reward signal. 

Currently, there are two key ways for agents to account for each other within 

decentralized multiagent systems: 1) agent-modeling techniques, and 2) treating 

agents as a part of the environment. Agent modeling techniques have been shown 

to work well in a number of settings, but they quickly become intractable as scaling 

increases [71, 114, 123]. Other issues arise when agents are treated as a part of 

the environment (e.g. exploratory action noise), and their exploratory actions are 

seen by other agents as stochastic environmental dynamics. Here, the inability of 

agents to distinguish the true environmental dynamics from those caused by the 

stochastic exploratory actions of other agents creates noise on each agent’s reward 
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signal. This problem cannot simply be addressed by turning off exploration and 

acting greedily (this has been repeatedly shown to result in poor performance 

as agents always exploit their current knowledge which is frequently incomplete 

or inaccurate [125]). We address this by introducing CLEAN rewards which are 

designed to effectively remove much of the learning noise caused by agents taking 

exploratory actions. 

The key innovation of our approach is that agents never explicitly take ex­

ploratory actions. Instead exploration is accomplished by agents privately com­

puting a “counterfactual” reward they would have received had they taken an 

exploratory action. These counterfactual rewards and actions are then used to 

update their policies. In this way exploration for an agent is kept “private” to 

that agent, and does not result in noise being added to the system. Only an 

agent’s non-exploratory action is seen by other agents. This paradigm promotes 

agent-to-agent coordination (agents are constantly coordinating with each others’ 

current “best” policy) while maintaining the exploration needed during learning 

(private counterfactuals provide agents with rewards that approximate the im­

pact of changing their current policies). Through utilizing “private” exploration, 

learning with CLEAN rewards effectively removes the exploratory action noise as­

sociated with learning, which simplifies the coordination problem for agents and 

improves scalability (Sections 3.2, 3.3, and 4.2). 

The primary contributions of this chapter are to: 

•	 separate environmental noise from noise caused by the exploratory actions 

of agents by defining exploratory action noise. 
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•	 introduce two variations of Coordinated Learning without Exploratory Ac­

tion Noise (CLEAN) rewards (Section 3.3) which promote coordination and 

remove the exploratory action noise associated with multiagent learning. 

The remainder of this chapter is structured as follows: Section 3.2 provides back­

ground on exploratory action noise and reward shaping. Section 3.3 introduces two 

variations of CLEAN rewards and discusses the benefits and drawbacks of each. 

3.2 Background and Related Work 

In this work, we focus on the impact one agent learning has on another agent’s 

ability to learn. To ground our discussion, we will focus on reinforcement learn­

ing agents [125] (though our concepts naturally flow to other search and learning 

concepts such as evolutionary algorithms). Reinforcement learning agents observe 

the state of the environment, and take actions to maximize their expected future 

reward. A reinforcement learning problem consists of at least one agent and an 

environment. A reinforcement learning agent has four key elements including a 

policy, reward function, value function, and optionally an environmental model 

[125]. 

An agent’s policy defines the way the agent behaves at any given time and maps 

the agent’s perceived environmental state to the action it takes in that state [125]. 

These policies are initialized in an arbitrary manner, and adjusted over time as 

the agent learns. Each agent’s policies are updated via the agent’s reward and 

value function. An agent’s reward function rates the performance of the agent. 
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The reward function provides an agent with a learning signal for actions that it 

took. The reward may come directly from the environment or it can be shaped 

to provide specific feedback to the agent. The value function captures the agent’s 

internal valuate of a given action at a given time. In the limit, it converges to the 

true reward (possibly discounted) the agent would receive for taking an action. 

3.2.1 Exploration Exploitation Dilemma 

In practice, reinforcement learning techniques are used to enable an agent to au­

tonomously learn its own control policies by repeatedly interacting with its en­

vironment [145, 158]. In this setting, the agent “learns” by continuously taking 

actions in an effort to learn the underlying reward associated with those actions 

[106, 120, 158]. For single-agent learning, it has been proven that reinforcement 

learning techinques such as Q-learning will converge to the optimal control policy 

in infinite time assuming the agent explores each possible state-action pair an in­

finite number of times [145, 146]. Of course in practice, this has to be achieved in 

finite time, and exploration strategies are implemented. That is, agents balance 

taking the best action (exploiting current knowledge) with querying the environ­

ment on other options (exploring). The way these two concepts are balanced is 

known as the exploration-exploitation dilemma [125, 158, 109]. 

Exploration aims to improve long term performance by uncovering actions that 

may provide beneficial in the future, whereas exploitation aims to maximize long 

term performance by assuming that the currently known values are in fact the 
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correct ones. It has been proven that there is no optimal exploration strategy for 

all situations [108, 130, 131, 142], and instead a number of different exploration 

strategies have been developed for agent learning [31, 106, 108]. Perhaps the sim­

plest exploration strategy is the t-greedy strategy, where agents choose to exploit 

their current knowledge (1−t) percent of the time, and choose to explore t percent 

of the time [125, 145, 146]. Unfortunately, the computational costs of t-greedy ex­

ploration techniques increase exponentially with the size of the system [130, 131], 

meaning that in many cases, more intelligent and efficient exploration strategies 

need to be used. To that note, more complex strategies such as Boltzman explo­

ration, which weights exploration to more frequently explore actions that are cur­

rently believed to be “better” [125]. Additional exploration techniques with vary­

ing requirements and computational requirements exist such as using confidence 

bounds [21], Kalman filter dynamics [120], linear perceptrons [142], and Bayesian 

sampling [19]. This issue has been explored to great lengths in the context of 

reinforcement learning [2, 3, 19, 23, 31, 99, 109, 127, 128, 98, 97, 80, 124, 148, 158]. 

3.2.2 Exploratory Action Noise 

In cooperative multiagent systems, coordinating the joint actions of agents is dif­

ficult [43, 45, 51]. One of the fundamental difficulties in such multiagent systems 

is the slow learning process where an agent may not only need to learn how to 

behave in a complex environment, but may also need to account for the actions of 

the other learning agents [16, 116, 125]. Here, the inability of agents to distinguish 
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the true environmental dynamics from those caused by the stochastic exploratory 

actions of other agents creates noise on each agent’s reward signal [124, 21, 143]. 

Under these conditions, the solution (learning agents) actually becomes part of the 

problem. 

There are two broad approaches to handling the stochasticity due to agents, 

which involve modeling other agents, and treating agents as a part of the environ­

ment. Extensive work has been done with agent modeling, though such approaches 

are best suited to small multiagent systems where agents repeatedly interact with 

the same agents[100, 123, 33]. Treating agents as a part of the environment on the 

other hand has been shown to significantly impact both learning convergence and 

learning performance [27, 38, 70]. There have been several approaches to address 

this though, such as the “Win Or Learn Fast” (WOLF) framework which adjusts 

the learning rate of individual agents based upon the stochasticity of the environ­

ment due to other agents (effectively controlling how rapidly agents change their 

policies) [27, 28, 41]. Although these techniques have been shown to work well in 

many situations, they do not explicitly allow the agents to remove the noise on 

their reward signals associated with the exploratory actions of agents during learn­

ing. As a consequence, though they provide good results, they do not eliminate 

the effects of learning noise on the resultant system performance. 

It is common for agents treat each other as part of the environment such that 

the exploratory actions of other agents are treated as stochastic environmental 

noise. However, under such assumptions, the agents are unable to distinguish 

when their peers are taking purposeful actions, from when they are taking random 
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exploratory actions. Here, agents are frequently adapting their policies to better 

coordinate with the random exploratory actions of other agents, meaning that 

agents will end up learning to bias their policies such that they actually depend 

upon the exploratory actions of other agents in order to perform well. This means 

that agents learning optimal policies in the presence of exploration may not be 

optimal once learning is complete and exploration is turned off (Figure 1.1). In this 

setting, the agents’ inability to distinguish between true environmental dynamics 

and dynamics caused by the exploratory actions of other agents means that the 

agents themselves (the solution) actually end up becoming part of the problem 

(added complexity due to stochastic learning noise). 

We define such noise as exploratory action noise, which can be defined as the 

portion of an agent’s learning signal that is impacted by the exploratory actions 

of other agents. We quantify exploratory action noise as follows: 

|gi(a) − gi(a − aE))|
NE,i = (3.1)

|gi(a)| 

where NE,i is the value of the exploratory action noise for agent i, gi is agent 

i’s reward function, a is the joint-action vector for all agents in the system, and 

aE is the subset of the joint-action vector containing all elements of a that were 

exploratory actions. Intuitively, if the system exploration rate is t = 1.0, then 

NE = 1.0 since the entire action vector contains exploratory actions. Similarly, 

if t = 0 then no agents are taking exploratory actions and the value of NE = 0, 

meaning there is no exploratory action noise present. 



35 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S
y
s
te

m
 p

e
rf

o
rm

a
n
c
e

Portion of Agents Taking Exploratory Actions

Performance of Policies Learned with 5% Exploration

Figure 3.1: t-greedy reinforcement learning agents were trained for 1000 episodes 
and then learning was turned off and their policies were fixed. We then test 
the performance of the learned policies under different amounts of exploration 
actions (we replace the policies of some agents with random exploratory policies). 
In these cases, agents perform better in the presence of exploration than they 
do without exploration. In particular, these policies perform the best when the 
portion of agents taking exploratory actions is near the value of t used during 
learning (t = 0.05 in this case). This is because the agents learn to depend upon the 
exploratory actions of other agents. Although the exploration-exploitation trade-
off has been extensively studied throughout the multiagent learning literature, 
relatively little work has been done to address the biasing issues associated with 
agents learning to depend upon the exploratory actions of other agents. 

As an example, we consider the case of a set of agents learning in the Gaussian 

Squeeze Domain used in this work (Section 4.1). In these experiments, a set of 

learning agents are trained for 1000 episodes and then learning is turned off and 

the set of learned policies are followed (Figure 1.1). As seen, after 1000 episodes 

of learning, once the learning is turned off and the policies are fixed (meaning that 

there is no longer any stochastic exploratory actions), agents that had learned good 

policies in the presence of exploration actually perform worse when the exploration 
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Portion of Agents Taking Exploratory Actions

Performance of Policies Learned with 10% Exploration

Figure 3.2: Here, agents learned for 1000 episodes and then learning was turned off 
and their policies were fixed. We then test the performance of the learned policies 
under different amounts of exploration actions (we replace the policies of some 
agents with random exploratory policies). In these cases, agents perform better in 
the presence of exploration than they do without exploration. In particular, these 
policies perform the best when the portion of agents taking exploratory actions is 
near the value of t used during learning (t = 0.10 in this case). This is because 
the agents learn to depend upon the exploratory actions of other agents. Although 
the exploration-exploitation trade-off has been extensively studied throughout the 
multiagent learning literature, relatively little work has been done to address the 
biasing issues associated with agents learning to depend upon the exploratory 
actions of other agents. 

is removed. This loss of performance is counterintuitive since in general, we would 

assume that removing exploration noise would improve the performance of agents. 

However, as seen here, this is not always the case. This is because these agents 

have actually learned to depend upon the exploratory actions of the other agents 

as a part of their solution. 

An additional representation of the dependency on exploratory action noise 

can be observed in Figures 3.1 and 3.2. Here, we train agents for 1000 episodes 
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as we did in Figure 1.1 under 5% and 10% exploration, respectively. We then 

take the learned policies of the agents and test their performance under varying 

degrees of exploration. In each case, agents learned a set of policies, such that 

the joint-policy was Π = {π1, π2, ..., πN }, where Π is the learned joint-policy, πi is 

the individual policy learned by agent i, and N is the total number of agents. In 

Figures 3.1-3.2, we replace various portions of the policies πi with random policies. 

By replacing the “true” policies with random policies, we simulated the presence 

of exploratory action noise in the system. As seen, performance tends to be best 

when a portion of the agents that is equivalent to the training exploration rate are 

replaced with random policies. This is because during learning, approximately t 

portion of the agents were taking random actions at any given time and the learned 

joint-policy learned to account for these actions and incorporate them into their 

solution. It is important to note that the learned policy is not always worse once 

exploration is turned off and these examples are meant to demonstrate the potential 

for exploration to interfere with learning in multiagent systems. In general, even 

if the learned policies are better without exploration, it will still frequently be 

the case that exploration noise inhibited the overall learning performance of the 

system. CLEAN rewards are designed to avoid dependencies upon the exploratory 

actions of other agents in the system by performing exploration via off-policy 

counterfactual actions which do not create explicit environmental noise. 
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3.3 CLEAN Rewards 

Designing intelligent behavior for autonomous systems becomes more difficult as 

the complexity of these autonomous systems increases. This difficulty becomes 

especially acute in multiagent systems, where even the simplest of agents can com­

bine to form complex behavior. Learning algorithms give a promising solution to 

this problem. By automatically exploring the control policy space of the system 

to find good behaviors, the burden of creating intelligent agents is taken off of 

the system designer. At their core, all of these learning algorithms use an elegant 

exploration loop, where an agent explores an action, receives feedback about the 

performance of the action, and updates its control policy based this action. Ex­

ploration is key to this process, as we need to explore actions we know little about 

to see if they are in fact good actions. However in both single agent and multia­

gent systems this leads to the “exploration / exploitation” dilemma: In complex 

systems, most random actions will be bad, therefore exploratory actions in action 

spaces we know little about are likely to be bad, yet it is most important to explore 

action spaces we know little about because these spaces may contain the solution 

we are looking for. 

This core “exploration vs. exploitation” issue is a fundamental design challenge 

for any learning system and is not addressed in this work, but leads us directly to 

our focus. Here we focus on a second and important exploration dilemma unique to 

multiagent systems: How can an agent effectively learn a good policy with respect 

to other agents’ nominal behavior, when the other agents are not exhibiting their 
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nominal behavior, since they also need to explore for their learning process? In 

other words, agents need to learn in the context of what other agents are doing, yet 

the exploration “noise” of the other agents can fundamentally change the nature of 

this context. Having multiple agents learn together inherently creates a complex 

self-organizing system. Traditionally the outcome of such a system is unpredictable 

as it depends on the complex interactions the objective functions agents are trying 

to maximize and the concurrent exploration done to achieve this maximization. 

These issues create a real challenge to a system designer, who has to design reward 

functions and exploration policies that will lead to a satisfactory outcome. By 

addressing multiagent exploration and completing our following objectives, we will 

allow designers to create more stable multiagent systems, that are easier to design 

and have higher performance. 

In this section we introduce Coordinated Learning without Exploratory Action 

Noise (CLEAN) rewards which were developed to address issues arising from learn­

ing noise caused by exploration in order to promote learning, coordination, and 

scalability in multiagent systems.1 These rewards utilize reward updates based 

upon privatized counterfactual actions which allow agents to approximate rewards 

associated with actions that were not explicitly taken.2 The key requirements of 

CLEAN rewards is that agents have an accurate model of the underlying system 

objective, G, and that the agents in the system follow their current target poli­

cies. Traditionally, following target policies has been shown to perform poorly due 

1CLEAN rewards were designed using the theory of collectives [11, 13, 136, 141]. 
2Similar rewards based upon counterfactual actions known as “difference rewards” have been 

shown to work well in a number of domains and conditions [11, 13, 136]. 
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to a lack of exploration, however, CLEAN rewards address this shortcoming via 

privatizing agent exploration (Equations 3.2 and 3.3). 

CLEAN rewards are structured in such a way that they promote implicit coor­

dination that leads to good system performance (agents improving their own local 

reward are concurrently improving the system performance, while agents harming 

their local reward are also harming system performance) and are also designed to 

address the structural credit assignment by providing each agent with specific feed­

back on how its own actions impacted the reward it received (CLEAN rewards are 

sensitive to the actions of the individual agent). Additionally, in order to remove 

exploratory action noise, agents learning with CLEAN rewards do not perform 

traditional explicit exploratory actions within the environment, instead agents all 

greedily follow their current target policies at each time step. Exploration comes 

from private counterfactual actions ci, which provide each agent with an approxi­

mation of the reward it would have received had it not followed its target policy, 

but instead had taken some alternative action ci. 

3.3.1 CLEAN 1: C1,i 

Difference rewards (Section 2.2.3.3) have been shown to work well in a number of 

domains and conditions [136, 141], however, they do not account for the learning 

noise caused by exploratory actions of agents in the learning process which can have 

unforeseen effects learning. CLEAN rewards maintain the strengths of difference 

rewards, while at the same time removing noise associated with the exploratory 
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actions of agents in the system (Section 3.3). Our first variation of CLEAN rewards 

is defined as follows: 

' C1,i ≡ G(zT − zT,i + ci) − G(zT − zT,i + ci) (3.2) 

where C1,i is the CLEAN reward of agent i, zT is the system state vector that results 

from the agents following their current target policies, zT,i is the actual action of 

agent i, ci and ci 
' are two counterfactual actions of agent i (i.e. alternative actions 

agent i could have taken instead of following its greedy target policy action zT,i), 

and G is the system objective. These CLEAN rewards replace the contribution of 

the agent’s target action zT,i with two different counterfactual actions ci and c ' i, in 

the first and second terms, respectively. Here, the agent approximates the reward 

it would have received if it would have taken actions ci and ci
' . Then, the agent 

compares the counterfactual rewards associated with each action, and provides 

the agent with a reward for action ci based upon the difference between the two 

approximations (Equation 3.2). It is frequently possible to select a counterfactual 

action ci 
' that is equivalent to removing agent i from the system. In this setting, 

the CLEAN reward would provide a reward approximation that tells the agent its 

contribution to the system. Hence, when choosing a counterfactual for the second 

term that is equivalent to removing the agent from the system, the C1,i reward will 

provide the agent with a positive reward if the counterfactual action ci would have 

been beneficial to the system, and a negative reward if the counterfactual action 

ci would have been harmful to the system. With the C1,i rewards in this work, 
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the counterfactual ci is chosen “randomly” each episode of learning according to 

an exploration strategy (effectively enabling the agent to calculate counterfactuals 

for various “potential actions” and resulting in “privatized exploration”), and the 

constant c ' i is selected in such a way that it is equivalent to removing agent i 

from the system so the second term is effectively “the system without agent i” 

(although alternate values for c ' i would also be valid - we discuss another way it 

could be selected next). 

3.3.2 CLEAN 2: C2,i 

Although C1,i rewards promote good agent-specific feedback, agents must perform 

two separate calculations per reward update (one calculation associated with ci 

and one calculation associated with c ' i). Next, we will introduce an alternative 

CLEAN reward which requires each agent to perform only one counterfactual ac­

tion calculation per reward update. Instead of computing CLEAN rewards based 

upon two separate counterfactual actions ci and ci
' , if the agent uses its original 

target action, zT,i, in the second term, it can avoid the calculation of the second 

term for the counterfactual action ci
' . In this case, an agent’s CLEAN reward can 

be represented as follows: 

C2,i ≡ G(zT − zT,i + ci) − G(zT ) (3.3) 
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where C2,i is the CLEAN reward of agent i, zT is the system state vector that results 

from the agents following their current target policies, zT,i is the action of agent i, 

ci is a counterfactual action of agent i (i.e. an alternative action agent i could have 

taken instead of following its target policy), and G is the system objective. Here, 

agents directly compare the system reward with their own counterfactual action 

ci (first term of C2,i to the system reward associated with following following its 

current target policy action (second term of C2,i). Intuitively, this gives the agent 

a reward that represents how the system would have performed had it not followed 

its target policy, but instead had taken some counterfactual action ci. In addition 

to providing faster computation (agents no longer have to compute the second term 

associated with ci
' ), the C2,i reward also provides a reward signal that constantly 

seeks to improve the agent’s target policy directly. 
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Chapter 4 – CLEAN Rewards in Toy Problems 

In this chapter, we implement the CLEAN rewards introduced in the previous 

chapter in two toy domains in order to demonstrate their performance benefits. 

More specifically, we implement CLEAN rewards within a congestion problem 

(i.e., the Gaussian Squeeze Domain) and a combinatorial optimization problem 

(i.e., the Defect Combination Problem) to show their performance under varying 

conditions. As a performance benchmark, we compare the performance of CLEAN 

rewards against both traditional team-based “global” rewards, as well as against 

existing state-of-the-art reward shaping techniques (e.g., difference rewards). 

4.1 Experimental Domains 

There are two domains used in this chapter, the first is a congestion domain called 

the Gaussian Squeeze Domain (GSD) and the second is a combinatorial optimiza­

tion domain called the Defect Combination Problem. 

4.1.1 The Gaussian Squeeze Domain 

This domain assumes that there exists a set of agents which each contribute to a 

system objective, and the agents are attempting to learn to optimize the system 

objective (i.e. agents are attempting to coordinate their joint-action to optimize 
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for the ‘capacity’ in the Gaussian system objective) . The objective function for 

the domain is as follows: 

−(x−µ)2 

G = xe σ2 (4.1) 

 
where x is the cumulative sum of the actions of agents (i.e., x = i xi, where xi 

is the “contribution” action of agent i), µ is the mean of the system objective’s 

Gaussian (effectively the target “x” that the agents are aiming for), σ is the stan­

dard deviation of the system objective’s Gaussian. Here, the goal of the agents is 

to choose their individual actions xi in such a way that the sum of their individual 

actions is to optimize Equation 4.1. Here, each agent has 10 actions ranging in 

participation value from zero to nine. The GSD is a congestion domain, where 

adjusting the variance changes the coordination complexity for agents within the 

system. The lower the variance, the higher the coupling of agents’ joint actions. 

4.1.2 The Defect Combination Problem 

Many real world sensing applications require large sets of disparate sensing devices 

to coordinate their actions in order to collectively optimize their network atten­

uation, coverage areas, and sensing schedules [46, 111, 149]. In this domain, a 

set of sensing devices must coordinate their sensing schedules in order to optimize 

their aggregated attenuation. This is the Defect Combination Problem (DCP) do­

main introduced in [34]. This problem assumes that there exists a set of imperfect 

sensors, X, which have constant attenuations due to manufacturing defects or im­
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perfections. Each of the sensors, xi, has an associated attenuation, ζi, (which can 

be positive or negative) in its reading, such that if it is taking a measurement of 

A (actual value) it measures A + ζi where ζi is the device’s individual error. The 

problem then becomes how to best choose a subset of the X sensors that minimizes 

the aggregated attenuation of the combined readings: 

     

N 

niζi
i=1 

     

G =


N 

ni 

i=1 

(4.2)
 

where G is the aggregated attenuation of the combined sensor readings, ζi is the 

attenuation of a particular sensor i, N is the number of sensors, and ni ∈ {0, 1} 

based upon whether the sensor chooses to be “on” or “off”. 

This is an NP-complete optimization problem [34, 136] and simply choosing the 

single sensor with the best attenuation is an inadequate solution, as is choosing the 

best K sensors (1 ≤ K ≤ N). To illustrate this, consider the case where there are 6 

sensing devices whose attenuations are ζ1 = −0.19, ζ2 = 0.54, ζ3 = 0.1, ζ4 = −0.14, 

ζ5 = −0.05, and ζ6 = 0.21. Choosing only the best sensor ζ5 would yield an 

aggregated attenuation of |0.05|, while choosing sensors ζ3, ζ4, and ζ5 would yield 

an aggregated attenuation of |0.03|, which is better than the single best sensing 

device ζ5 alone. This is still not the optimal solution in this 6 sensor case however, 

as combining sensors ζ1 and ζ6 results in an aggregated attenuation of |0.01|. In 

this problem, individual sensors acting independently without coordinating their 
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actions can drastically decrease the system performance. Consider the case where 

sensors ζ1 and ζ6 are turned on in conjunction with sensor ζ2, the aggregated 

attenuation jumps to from |0.01| to |0.18|. Finding good solutions requires a great 

deal of coordination between sensors, as any one sensor can heavily impact the 

system performance. 

4.1.3 CLEAN Rewards for the DCP 

Both CLEAN reward structures C1,i and C2,i can be derived for any multiagent 

domain. Here, we derive CLEAN rewards for agents in the Defect Combination 

Problem (DCP) used in this work (CLEAN rewards can similarly be derived for 

the GSD domain). First, we derived C1,i by combining Equations 4.2 and 3.2 as 

follows: 

' C1,i ≡ G(zT − zT,i + ci) − G(zT − zT,i + c ) (4.3)i

N N 

nj ζj − niζi + ciζi nj ζj − niζi + ciζi 
j=1 j=1 C1,i = − (4.4)

N N 

nj − ni + ci nj − ni + ci 
j=1 j=1 

As seen, many of the terms in the first and second terms cancel out. In particular, 

many terms which are not directly impacted by agent i cancel out. This prop­

erty is important in addressing the structural credit assignment problem, as this 

cancellation allows agent i to more clearly see how its own actions impacted its 

reward as opposed to the actions of other agents. Further simplification yields the 
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following: 

C1,i = 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
 

0, if ci = 0 ,ci 
' = 0, 

N N '
 
i niζi i=j niζi + ciζi
=j  
N − 

N , ci = 0, c ' i = 1 
'
 

i ni i ni + c
 =j =j i 
N N
 
i niζi + ciζi i=j niζi
=j  

N − 
N , ci = 1, ci 

' = 0 
i ni + ci i ni=j =j 

0, ci = 1, ci 
' = 1 

and similarly, we derived C2,i by combining Equations 4.2 and 3.3 to yield the 

following: 

C2,i = 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


0, ci = 0, zT,i = 0 
N N
 
i niζi i=j niζi + zT,iζi
=j  
N − 

N , ci = 0, zT,i = 1 
i ni i=j ni + zT,i=j  

N N
 
i niζi + ciζi i=j niζi
=j  

N − 
N , ci = 1, zT,i = 0 

i ni + ci i ni=j =j 

0, ci = 1, zT,i = 1 

where in the above equations, C1,i and C2,i are the two variations of CLEAN rewards 

for agent i in the Defect Combination Problem, ζi is the attenuation of agent i’s 

sensing device, N is the total number of agents, and the variables ci, cf , nj , and ni 

are all indicator variables with value 0 corresponding to a sensor turned off and 1 

corresponding to a sensor turned on (Section 4.1). CLEAN rewards could similarly 

be derived for the Gaussian Squeeze Domain, but are excluded here for brevity. 
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4.2 Results 

This section includes the experimental results for both the Gaussian Squeeze Do­

main and the Defect Combination Problem Domain. All experiments consist of 

r = 100 statistical runs, all Q-tables are initialized to zero, and the error in the 
√ 

mean σ/ r was plotted in all experiments although it is so small that it is not 

visible in many experiments (all results were statistically significant as verified by 

a t-test with p = 0.05 for all experiments). In the GSD the learning rate and 

exploration rate were set to α = 0.10 and t = 0.10 and in the DCP they were set 

to α = 0.01 and t = 0.01, unless otherwise stated. 

There are four types of reward structures used in this work: difference rewards 

(Equation 2.5) denoted by D, global rewards denoted by G, and two variations 

of CLEAN rewards denoted CLEAN 1 (Equation 3.2) and CLEAN 2 (Equation 

3.3). In the following experiments, G, D, CLEAN 1, and CLEAN 2 represent the 

online performance of agents during learning in the presence of exploration and 

G OFF and D OFF represent the offline performance of the underlying policy 

being learned by agents (the performance of the joint-policy learned up to that 

point if learning and exploration were turned off, see Figure 1.1).1 Here, the 

difference in the performance of the policies G and D as compared to G OFF and 

D OFF can be directly contributed to exploratory action noise. 

1The online and offline performance of CLEAN rewards are identical since agents explore via 
off-policy counterfactual actions while continually following their target policies. 
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4.2.1 The Gaussian Squeeze Domain
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Figure 4.1: N = 500 agents learning in the Gaussian Squeeze Domain with µ = 
0.80N and σ = 0.80N , and 10% exploration. As seen, agents using G and D 
experience significant decreases between their online and offline performance. This 
is because agents learn policies that depend upon the presence of exploratory action 
noise. CLEAN rewards are robust to such noise and have improved performance. 

In Figure 4.1, we see the results for 500 agents learning in the Gaussian Squeeze 

Domain with µ = 0.80N , σ = 0.80N , and t = 0.10. This experiment is meant 

to show the potential for agents to learn to depend upon the exploratory actions 

of other agents. As seen, learning with all reward structures perform well during 

learning (G, D, CLEAN 1, CLEAN 2), however the actual policies being learned 

by agents are drastically different for agents using global and difference rewards 

(G OFF and D OFF). Once learning is turned off and agents using global and 

difference rewards follow their fixed policies, agents using global rewards experience 
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a drop in performance of 3%-5%, while agents using difference rewards experience 

a drop in performance of approximately 30% (Figure 4.1). 

Next, we performed a set of experiments where we proportionally scaled the 

number of agents, the mean, and the variance (Figure 4.2). This provides further 

insight into some situations where the agents can learn to depend upon the ex­

ploratory actions of other agents. In Figure 4.2, the offline performance of agents 

using global and difference rewards (G OFF and D OFF) are almost always worse 

than the online performance where exploratory actions were present (G, D). It is 

important to note that this is not always the case, for example Figure 4.2 shows 

that in these experiments, when 100 agents are present G OFF slightly outper­

forms G. However, the purpose of these results is to show that exploratory action 

noise does impact learning in multiagent systems in frequently unforeseeable and 

unpredictable ways. As seen in both of these examples, CLEAN rewards perform 

well in the presence of exploratory action noise. 

Now that we have demonstrated that exploratory action noise does play a role 

in learning in multiagent systems and that CLEAN rewards learn policies that 

are robust to exploratory action noise, we want to demonstrate the performance 

benefits of CLEAN rewards when the problem becomes more complex. In this 

congestion domain, as the variance decreases, the agents become more coupled 

and the exploratory action noise becomes increasingly important. In Figure 4.3, 

we maintain a fixed mean and variance, while scaling the number of agents in the 

system. This effectively increases the problem complexity and the importance of 

exploratory action noise (more agents taking exploratory actions have more impact 
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Figure 4.2: Proportional Agent Scaling with µ = 0.80N and σ = 0.80N , where N 
is the number of agents. This is a low-complexity setting in the Gaussian Squeeze 
Domain (high variance). Again, the offline performance for agents using G and D 
is frequently worse than the online performance. This is because the underlying 
policies learned by agents relied upon the exploratory actions of the other agents 
in the system. 

upon the system performance in low variance settings). As seen in this setting, 

CLEAN rewards are much more robust when the problem complexity is increased 

(more agents and higher congestion) and the exploratory actions of agents play a 

larger role in system performance. 

4.2.2 The Defect Combination Problem 

In the following experiments, we demonstrate the performance of agents using 

CLEAN rewards in the Defect Combination Problem (DCP) domain, which is a 
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Figure 4.3: Scaling the number of agents with µ = 100 and σ = 100. As the 
number of agents increases, the coupling between agents increases and the problem 
becomes more difficult and the exploratory action noise has more of an effect on 
system performance. As seen, CLEAN rewards are more robust than other rewards. 

combinatorial optimization problem. In Figure 4.4, we see the performance of 

300 agents in the DCP. Again, CLEAN rewards outperform agents learning with 

both global and difference rewards, respectively. The key difference in performance 

between D and CLEAN can be attributed to the filtering of exploratory action noise 

(CLEAN rewards and difference rewards are similar in that they both attempt 

to provide agent-specific feedback that promotes implicit coordination, however, 

CLEAN rewards have the added advantage that they simplify learning by removing 

exploratory action noise - Sections 3.2 and 3.3). Due to the combinatorial aspects of 

the DCP, the offline performance tends to be greater than the online performance 

for agents using global and difference rewards, this is because in the DCP the 
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exploratory actions of a single agent can drastically change the system performance 

(Section 4.1.2). However, the presence of exploratory actions during the learning 

process still impacts the performance of the policies learned by these agents, as 

agents using global and difference rewards actively attempt to coordinate with 

agents that are routinely taking random exploratory actions. CLEAN rewards 

address this issue by having agents follow their current target policies and providing 

agents with rewards based upon counterfactual actions, which effectively allows the 

agents to explore without causing exploration noise on each others’ learning signals 

(Section 3.3). As seen, agents using CLEAN rewards are able to achieve aggregated 

attenuations that are nearly an order of magnitude better than other techniques 

(Figure 4.4). 

Next, we analyzed the performance of agents in the Defect Combination Prob­

lem for scaling the number of agents. As seen in Figure 4.5 agents using global 

rewards perform poorly as scaling increases. Similarly, agents using difference re­

wards perform well with up to 300 agents, but then as the number of agents is 

increased, their performance decreases. A key cause of this decrease in perfor­

mance is the inability of difference rewards to account for the exploratory actions 

of agents. Although proportionally the same number of agents are exploring (e.g. 

1% exploration), as the number of agents in the system increases, there are more 

agents exploring. The learning noise caused by these agents can significantly inhibit 

learning, especially in combinatorial optimization problems. In this setting, the 

fact that agents are constantly attempting to coordinate their policies to account 

for each others’ exploratory actions significantly inhibits performance. CLEAN 
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Figure 4.4: The Defect Combination Problem with 300 agents. Exploratory actions 
can be especially damaging in this domain, as a single agent can have a drastic im­
pact on the overall system performance (Section 4.1.2). CLEAN rewards maintain 
exploration while avoiding the coordination issues that arise when agents attempt 
to coordinate in the presence of exploration (Sections 3.2 and 3.3). 

rewards address this shortcoming by filtering out learning noise caused by agent 

exploration, resulting in up to three orders of magnitude better performance when 

scaling up to 2000 sensing agents (Figure 4.5). 

4.3 Discussion 

In multiagent learning (e.g., multiagent reinforcement learning), a set of agents 

continually interact with their environment (e.g., take actions) in order to learn 

how to behave within that environment (i.e., learn how to optimize their individual 

objectives as a part of the larger system). In particular, agents begin with no prior 
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Figure 4.5: The Defect Combination Problem scaling the number of agents from 
10 to 2000. As seen, CLEAN rewards are highly scalable, outperforming other 
methods by up to three orders of magnitude for high levels of scaling. 

knowledge or experience with the environment, and iteratively learn how to behave 

(i.e., gain knowledge of how to interact with the environment) through a process of 

trial and error. Here, the agents continually strike a balance between exploiting the 

knowledge they have already gained (e.g., taking actions that currently they believe 

will lead to good performance) and exploring new actions which may improve 

their knowledge of the system and eventually lead to better performance. It is 

well-known throughout the multiagent and machine learning communities that 

learning agents must balance these two behaviors and this has become well-known 

as the “exploration-exploitation” tradeoff in learning [86, 125]. 

While there has been a lot of research involving the exploration-exploitation 

tradeoff, relatively little work has been done to directly address the impact of learn­
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ing noise caused by the exploratory actions of agents. Typically exploration noise 

is handled at the same time as the core exploration / exploitation problem: The 

system is “annealed”, where exploration rates are reduced throughout learning or 

otherwise tinkered with to achieve better performance. However, this approach 

confounds the two exploration dilemmas and forces agents to have low exploration 

towards the end of learning. This may be when the agents can benefit from ex­

ploring the most, since the system has stabilized. In addition, the outcome of the 

system now depends on a complex self-organizing process based upon not only the 

system dynamics and the objective functions, but also the changing exploration 

levels. A better solution is to eliminate exploration noise at all stages of learning, 

while retaining the key benefits of the exploration process. 

Unfortunately, in a multiagent learning setting, the exploratory actions of indi­

vidual agents actually make it more difficult for other agents to learn (i.e., agents 

actually confuse each other when they take exploratory actions). This is because 

in this setting, agents treat each other as a part of the environment such that the 

exploratory actions of other agents are treated as stochastic environmental noise. 

Under these assumptions, the agents are unable to distinguish when their peers 

are taking purposeful actions (e.g., exploiting their current knowledge and taking 

actions they “know” lead to good performance) from when they are taking random 

exploratory actions (e.g., randomly sampling the action space to attempt to im­

prove their system knowledge). Here, agents are frequently adapting their control 

policies to better coordinate with the stochastic exploratory actions of other agents, 

meaning that agents will end up learning to bias their policies such that they actu­
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ally depend upon the exploratory actions of other agents in order to perform well. 

There has been a lot of research involving the exploration-exploitation tradeoff 

within the multiagent learning literature. However, relatively little work has been 

done to directly address the impact of learning noise caused by the exploratory 

actions of agents. 

In this work, we first showed the potential impact of such exploratory action 

noise on learning, demonstrating that exploratory actions can cause agents to bias 

their policies to depend upon the exploratory actions of others, which can lead to 

suboptimal learning. We defined this learning noise as exploratory action noise. 

We then introduced CLEAN rewards, which are shaped rewards designed specifi­

cally to promote coordination and scalability in multiagent systems by addressing 

both the structural credit assignment problem, as well as the exploratory action 

noise caused by agent exploration. Then we provided empirical results demon­

strating the performance of CLEAN rewards in two multiagent domains including 

a Gaussian Squeeze Domain (congestion domain) and a Defect Combination Prob­

lem (combinatorial optimization domain). We showed that CLEAN rewards are 

highly robust to exploration and scaling, significantly outperforming both global 

rewards and difference rewards in the two domains used in this chapter. 

Although CLEAN rewards address the issue of exploratory action noise, they 

still have two key shortcomings. First, agents using these rewards are only able to 

perform a single reward update per episode of learning, which significantly slows 

down the learning speed of the system. Second, these rewards still require agents 

to have access to an accurate model of the system objective in order to compute 
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their individual CLEAN rewards. In the coming chapters, we will address each 

of these shortcomings sequentially. We exploit a natural extension of CLEAN 

rewards which leverages the concept of privatized counterfactual exploration to 

enable agents to perform multiple reward updates during each time step (resulting 

in significantly increased learning speed). Then, we improve the real-world appli­

cability of CLEAN rewards by enabling agents to construct their own approximate 

model of the system objective when an accurate system model is unavailable a 

priori. Agents then use their approximate models to calculate their individual 

CLEAN rewards. This extension significantly improves the real-world applicabil­

ity of CLEAN rewards by enabling them to be calculated in initially unknown 

environments. 
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Chapter 5 – Batch-CLEAN Rewards for More Efficient Learning 

Learning within multiagent systems such that agents jointly achieve a common goal 

represents a complex coordination problem. This problem is exacerbated with scal­

ing as the joint policy space that agents must search through grows exponentially 

with respect to the number of agents in the system. This exponential increase 

in the policy space renders many traditional learning based techniques (including 

the CLEAN rewards introduced in the previous chapters) inadequate for many 

domains due to relatively slow learning updates (e.g., agents receive only a single 

reward update per time step and may be unable to adapt to rapidly changing en­

vironmental conditions in a timely manner). To address this we introduce Batch 

Coordinated Learning without Exploratory Action Noise (Batch-CLEAN) rewards 

which allow agents to calculate multiple reward updates concurrently by providing 

agents with rewards for each of its available action selections during each episode 

of learning by leveraging the concept of privatized exploration to enable agents to 

calculate their CLEAN rewards associated with several counterfactual actions at 

a time. Enabling agents to calculate reward updates for multiple potential actions 

during each episode will result in improved learning speed. 
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5.1 Introduction 

Traditional online learning methods for agent-based systems provide agents with a 

single reward update per atomic learning experience. However, in large multiagent 

systems such learning updates can be prohibitively slow. More specifically, the 

environment may change faster than the agents are able to adapt their policies due 

to limited information, resulting in poor performance. To address this problem, we 

leverage the properties of private exploration and CLEAN rewards introduced in 

the previous chapters to provide agents with reward updates for multiple actions 

during each episode of learning. More specifically, we introduce Batch-CLEAN 

rewards by extending CLEAN rewards to include batch reward updates during 

each episode. The concept of updating rewards for actions not taken is present 

within the literature, for example, with learning automata the probability of taking 

a particular action may change based upon similar actions’ results [139, 93, 143]. 

However, this work instead centers around rewards that explicitly aim to quantify 

the reward an agent would have received had it taken an alternate action [139]. 

We explore the application of these rewards to dynamic domains where the rapidly 

changing conditions put a premium on learning quickly. 

In this chapter, we propose a multiagent learning approach that significantly 

improves both learning speed (with respect to atomic learning experiences) and 

performance by allowing an agent to update its estimate of the rewards (e.g. value 

function in reinforcement learning) for all its available actions, not just the ac­

tion immediately taken by the agent. In particular, we introduce Batch-CLEAN 
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rewards which are designed to promote coordination by making efficient use of 

experience data by providing each agent with multiple rewards and value updates 

per atomic experience. Batch-CLEAN rewards are calculated based upon coun­

terfactual actions (actions not explicitly taken), which enables agents to calcu­

late approximate reward values for multiple ‘potential actions’ during each atomic 

learning experience. Since these rewards are based upon counterfactual actions 

that the agent does not actually take, each agent is able to calculate approximate 

rewards and update the corresponding value associated with each of their potential 

actions during each time step of learning, resulting in more information per atomic 

learning experience 

In this chapter, we provide background information on existing online mul­

tiagent learning techniques and introduce Batch-CLEAN rewards. In the next 

chapter, we will demonstrate the performance of Batch-CLEAN rewards in two 

real-world domains as compared to global rewards, difference rewards, and stan­

dard CLEAN rewards previously introduced. 

5.2 Background and Related Work 

Typically agents must address both the temporal credit assignment problem (how 

to assign a reward received at the end of a sequence of actions to each of the 

actions) and the structural credit assignment problem (how to assign credit to a 

particular agent at the end of a multiagent task) [11, 69, 71, 125, 143, 147]. These 

two problems have been addressed together with learning sequences of actions 
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for multiagent systems [32, 38, 64, 122]. Here, the learning needs of agents are 

adjusted to account for their presence in a larger system [13, 65]. Although learning 

sequences of actions has led to significant advances in multiagent systems, they 

are principally based upon the iterative process of an agent sampling a single 

action, receiving an evaluation for the action, and updating its value estimate 

for taking that action in the given state. Such an approach is effective, but is 

typically slow to converge, particularly in dynamic environments [13]. We explore 

the concept of agents learning from actions they do not take by estimating the 

rewards they would have received had they taken those actions, providing multiple 

reward updates. These counterfactual rewards are estimated using the theory 

developed for structural credit assignment [11, 13, 136]. 

Agent-based learning methods can be generally classified into two key cate­

gories: online learning algorithms and offline learning algorithms [45, 49, 51, 54, 

72, 79, 121, 125]. In this chapter we utilize online reinforcement learning algorithms 

which are well suited for multiagent learning as agents learn from taking sequential 

actions within an environment [72, 82]. The main criticism of online reinforcement 

learning methods is their inefficiency in the way they use experience data [26]. 

This is because agents make just one incremental learning update for each piece of 

atomic experience data, and then discard the data [72]. Such incremental updates 

have the advantage of requiring little computation and memory, in exchange re­

quiring a lot of data [72]. In many agent domains (e.g. physical robots or complex 

real-time simulation environments) it is more expensive to gather training data 

than it is to perform additional computations and data analysis [72]. In such do­
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mains, the sheer time, tedium, or labor involved in gathering training experiences 

could be the overriding concern [72]. We show that online learning which performs 

multiple reward calculations per atomic learning experience can lead to significant 

performance gains, with fewer atomic learning episodes. 

Here, we address a key factor that is a known issue with multiagent learning, 

which has to do with the speed with which a solution is found. Multiagent learning 

focuses on learning to coordinate the actions of individual agents such that they 

jointly achieve a common objective [50, 73, 74, 116, 125]. Due to the stochastic 

nature of such problems, agents need to learn to adapt their policies quickly in 

response to changing environmental dynamics. This can be difficult for a number 

of reasons including the temporal (how to assign credit for a particular action in 

a sequence of actions) and structural (how to assign credit to one agent based on 

the actions of all the agents) credit assignment problems [9, 16, 137], as well as 

the need for adequate data (information from interacting with the environment) 

[16, 72, 125]. Traditional learning methods for agent-based systems provide agents 

with a single reward update per interacting with the environment. However, in 

large multiagent systems such learning updates can be prohibitively slow [64, 122, 

127, 128, 136]. More specifically, the environment may change faster than the 

agents are able to adapt their policies due to limited information, resulting in poor 

performance [60, 129]. A potential solution is to provide agents with multiple value 

updates based on one interaction with the environment using the theory developed 

for counterfactual rewards and structural credit assignment [16, 137, 136]. The 

concept of updating rewards for actions not taken is present within the literature, 
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for example, with learning automata the probability of taking a particular action 

may change based upon similar actions’ results [93, 139, 143]. 

In this work we utilize reinforcement learning algorithms which are well suited 

for multiagent learning as agents learn from taking sequential actions with an en­

vironment [72, 82, 116, 125]. One of the key drawbacks of online reinforcement 

learning methods is their inefficiency in the way they use data (a drawback that 

becomes much more pronounced in a multiagent setting) [26]. This is because 

agents make just one incremental learning update for each interaction with the 

environment and then discard the just collected data [54, 65, 72, 79, 125]. Such 

incremental updates have the advantage of requiring little computation and mem­

ory, in exchange requiring a large number of interactions with the environment 

[72, 125]. In many agent domains (e.g. physical robots or complex real-time sim­

ulation environments) it is more expensive to gather training data by interacting 

with the environment that it is to perform additional computations and data anal­

ysis [45, 49, 51, 54, 72]. In such domains, the sheer time, tedium, or labor involved 

in gathering training experiences could be the overriding concern [50, 72, 73]. Our 

aim is to show that online learning which performs multiple reward calculations 

per learning experience can lead to significant performance gains, while requiring 

fewer actual learning episodes. 
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5.3 Batch-CLEAN Rewards 

In this section we introduce two variations of Batch Coordinated Learning without 

Exploratory Action Noise (Batch-CLEAN) rewards which were developed to pro­

mote learning and scalability in multiagent systems. These rewards have three key 

benefits: i) they increase the amount of information each agent gets per episode 

of atomic learning experience by providing agents with reward approximations 

for multiple actions (agents approximate the reward they would have received for 

taking multiple alternate counterfactual actions individually), ii) they promote 

coordination by addressing the structural credit assignment problem (agents are 

assigned feedback reflective of their individual actions’ contribution to the system 

performance), iii) they remove learning noise caused by the stochastic exploration 

of other agents. 

Instead of calculating a single reward update based upon the action the agent 

explicitly took (as global and difference rewards do), Batch-CLEAN rewards calcu­

late reward updates based upon a counterfactual action. Batch-CLEAN rewards 

leverage this property, enabling each agent to calculate reward calculations for 

multiple counterfactual actions during each atomic learning experience (as com­

pared to a single reward update with standard CLEAN rewards). The mathemat­

ics that allow the computation of difference rewards also enable the calculation 

of counterfactual action based CLEAN rewards, and therefore Batch-CLEAN re­

wards [11, 13, 136]. Such rewards based upon counterfactual actions make the 

assumption that agents have some approximation of the system objective G. 
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Figure 5.1: Traditionally all agents take exploratory actions and each agent re­
ceives a reward that is dependent on its action and the actions of other agents 
(top). The exploration of other agents causes noise on the rewards. We propose 
having each agent take its non-exploratory action in public, and in private take 
a counterfactual exploratory action, and receive a reward for this counterfactual 
action (middle). Multiple counterfactual exploratory actions can be taken at the 
same time (bottom). 

Previous work involving counterfactual action based rewards has included dif­

ference rewards [11, 13, 136] and CLEAN rewards which were introduced previously 

in this work. Though both of these rewards have been shown to provide a reward 

that is tuned to an individual agent’s actions, they are still based upon an agent 

iteratively sampling its actions over a potentially large number of atomic learning 

experiences. In many domains (e.g. physical robots, expensive simulations [72]), 

such experience can be expensive. In this section, we extend CLEAN rewards to 
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include multiple reward updates per atomic learning experience by leveraging the 

theory developed for counterfactual action updates and structural credit assign­

ment [11, 13, 136]. 

5.3.1 Batch-CLEAN Rewards Based on CLEAN 1 

Standard CLEAN rewards (introduced in previous chapters) addressed the struc­

tural credit assignment problem by providing each agent with a learning signal that 

filters off the impact of other agents in the system using a differencing technique 

(e.g. Equations 3.2 and 3.3). Additionally, these rewards require agents to follow 

their target policies, which means that agents always follow their current ‘best’ pol­

icy. This removes much of the learning noise associated with exploratory actions 

in multiagent learning (exploration is done privately, which improves learning and 

coordination. Although CLEAN rewards provide tangible performance benefits, 

agents using CLEAN rewards still have significantly inhibited learning speed as 

they are only able to calculate a single reward update per episode of learning. 

Batch-CLEAN rewards address this shortcoming by exploiting the fact that 

these rewards are calculated based upon privatized counterfactual actions, enabling 

each agent to calculate multiple reward updates per atomic learning experience. 

Using Batch-CLEAN rewards, each agent calculates the set of rewards CB1j = 

{CB1j (cj,k)}k≤n for its entire set of counterfactual actions during each episode of k=1 

learning, where cj,k is the counterfactual associated with action k for agent j, and 

there are n total actions. Here, each individual reward CB1j (cj,k) is calculated as 
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follows: 

) (5.1)CB1j (caj,k ) ≡ G(zT,−j + caj,k ) − G(zT,−j + caj,kI 

where CB1j(caj,k ) is the reward that the agent uses to update its value associated 

with action, aj,k, based upon the counterfactual constant, caj,k , used to calculate 

that reward, zT,−j is the system state vector that results from agents greedily 

following their current target policies without the portions dependent upon the 

actions of agent j, G is the system objective function, and caj,kI is an alternate 

counterfactual action. Agents using Batch-CLEAN rewards perform one reward 

calculation for each of the n actions, meaning these rewards scale linearly with the 

number of actions. 

Each reward CB1j (caj,k ) compares the relative benefit associated with two dif­

ferent counterfactual actions caj,k and caj,kI , respectively. These rewards compare 

the difference in the approximate system performance, G, with counterfactual ac­

tions caj,k and caj,kI , respectively. Thus, if caj,k is more beneficial to the system 

performance than the agent receives a positive reward update for action caj,kI , 

aj,k, and a negative reward otherwise. It is frequently possible to choose a coun­

terfactual caj,kI that is equivalent to removing the agent from the second term’s 

performance calculation (as is done in this work). In this case, such a reward 

provides an agent with an approximate contribution of its counterfactual action, 

, to the system performance. These rewards promote coordination in that any caj,k 

action good for the agent is also good for the system and they promote learning 

by effectively “filtering” off much of the impact of other agents via the differencing 
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of the first and second terms with respect to the actions of other agents. Here the 

impact of many of the agents in the system is removed from the agents learning 

signal. Additionally, it is frequently possible to select a counterfactual action caj,kI 

that is equivalent to removing the agent out of the system. This causes the reward 

to yield the approximate contribution of agent j taking counterfactual, cj,k, to the 

system. 

5.3.2 Batch-CLEAN Rewards Based on CLEAN 2 

Although Batch-CLEAN rewards of the CB1j type promote good learning, they 

require two separate calculations to be computed for each individual reward calcu­

)}k≤nlation in the set CB1j = {CB1j (caj,k k=1 . This is because the agents are forced 

to calculate a counterfactual based value for both the first and second terms of the 

reward calculation. If instead of calculating a counterfactual action based value 

for the second term, the agent simply used the actual system performance (which 

is based upon the action the agent actually took), the agent would no longer need 

to calculate the second counterfactual term (reducing the computational expense 

for these rewards by approximately half). 

To address this we introduce a second variation of Batch-CLEAN rewards which 

have reduced computation requirements. Here, each agent calculates the set of 

)}k≤nrewards CB2j = {CB2j (caj,k k=1 , where each reward is computed as follows: 

) − G(zT ) (5.2)CB2j (caj,k ) ≡ G(zT − zT,j + caj,k 
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where CB2j (caj,k ) is the Batch-CLEAN reward of agent j that depends upon the 

counterfactual action of agent j denoted by caj,k , G(zT − zT,j + caj,k ) estimates the 

performance of the system had agent j taken the counterfactual action caj,k instead 

of the action it actually took, and G(zT ) is the actual system performance. In this 

setting, the agent no longer needs to compute a counterfactual value of the second 

term, meaning it only needs to perform half of the calculations compared to the 

first type of Batch-CLEAN rewards. 

Since all agents using Batch-CLEAN rewards are always following their current 

target (greedy) policies, CB2j rewards provide an agent with feedback on whether 

or not the proposed counterfactual action caj,k is more or less beneficial to the 

system than its current “best” action. Thus, CB2j (caj,k ) rewards encourage agents 

to adjust their own individual actions to directly improve the current target joint-

policy for agents within the system (agents acting to improve their individual 

Batch-CLEAN rewards simultaneously act to increase the system performance G). 
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Chapter 6 – CLEAN and Batch-CLEAN in Real-World Domains 

In the previous chapters, we introduced CLEAN rewards to improve coordination 

within multiagent systems and demonstrated their performance compared to ex­

isting state-of-the-art techniques. Then, in the previous chapter, we proposed an 

extension of these techniques to improve overall learning speed by enabling agents 

to perform multiple reward updates per learning episode. More specifically, we in­

troduced Batch-CLEAN which extends CLEAN rewards by exploiting the concept 

of privatized exploration to enable agents to calculate batch updates for multiple 

actions during each time step. In this chapter we implement Batch-CLEAN re­

wards in two real-world domains and demonstrate their performance benefits in 

comparison to standard CLEAN rewards, global rewards, and difference rewards. 

6.1 Experimental Domains 

In this chapter we utilize two real-world domains in order to compare the tangible 

benefits of CLEAN rewards and Batch-CLEAN rewards. The first is a UAV Com­

munication Network (UAVCN) domain originally introduced in [7]. The second is 

a CubeSat Coordination Domain (CCD) based upon the idea of satellite resource 

sharing and fractionated satellite systems which has previously been introduced in 

[60]. We borrowed domain parameter values from those found for these domains 
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within the literature unless otherwise specified [7, 59, 60]. 

6.1.1 UAV Communication Network Domain 

In the near future, solar UAVs will play critical roles in the military, industrial, 

scientific, and academic communities [101, 113, 115]. These devices have seemingly 

limitless applications including communications, reconnaissance missions, space 

launch platforms, and wireless power beaming [57, 101]. Recent missions including 

NASA’s Pathfinder-Plus and QinetiQ’s Zephyr (which remained airborne for over 

two weeks nonstop) have advanced the state of the art in solar powered UAVs, 

taking them from limited mission life and endurance to the point they can remain 

operational for weeks at a time [57, 104]. As a result of the increasing capabilities 

and availability of these devices coupled with their falling costs, a plethora of novel 

domains and applications will emerge to utilize the newly developed technological 

capabilities of these platforms [101]. 

As we progress into the information age, communication becomes an increas­

ingly critical component of every day life. Today, cellular phones, laptops, hand 

held computers, and other wireless electronic devices have changed the way we see 

and interact with the world. At the core of these advancements is a well designed 

wireless communication network, which handles the workload and facilitates in­

formation sharing between devices connected to the network. Current networks 

rely on a series of radio towers to facilitate this information sharing work load. 

Traditional towers have worked well to date, but they have several key drawbacks: 
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1. They are expensive to build. 

2. They are expensive to maintain. 

3. They have limited communication due to obstructions (cannot communicate 

“around” obstructions). 

4. They have static placement (holes in coverage areas). 

Here, we focus on a subset of this domain where there is a set of UAVs that are 

flying at fixed locations (flying in small circles) for long periods of time (perhaps 

months or years) and are transmitting data to a set of customers below (see Fig­

ure 6.1). UAVs have an advantage in sending data from high altitude in that they 

can have line-of-sight communication to many customers. In addition by virtue of 

being overhead, such UAVs can focus on what areas of the surface they will project 

most of their signal power to, allowing for better coverage. 

In this domain, each UAV can communicate to multiple customers. In addition 

communication is done over a shared channel (over the same frequency band) 

analogous to the way WiFi networks transmit data. Using a shared channel allows 

the system to be very adhoc, where UAVs can come and go, and can decide whether 

or not to participate in the system without any need for channel arbitration. Note 

that for simplicity we only look at the download problem, where UAVs are sending 

information down to customers. Also we make no assumptions on how the UAVs 

get their data feeds. We believe that this half of the problem is the most important, 

as typical internet use tends to be dominated by download traffic. Although the 
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uplink problem is fairly similar as long as it is done on a different channel than 

the downlink. 

Figure 6.1: UAV Communications. A set of UAVs at high altitude transmit data 
to a set of customers on ground over a single communication channel. The task of 
the system is to maximize average bitrate customers receive. Multiple UAVs may 
communicate to single customer. A UAV communicates to at most one customer. 

6.1.1.1 Signal Dynamics 

We assume that the UAVs are all at similar altitudes and communicate through 

directional antennas pointed towards the ground. The amount of area on the 

ground that is covered by the UAV is determined by the gain of its antenna. 

Antennas with low gain, transmit over a wider area, but within that area the 

strength of the signal is lower (see Figure 6.2). Antennas with high gain, have 

more signal power in the center of their area, but transmit over a smaller area. 

The maximum signal received from a UAV is proportional to the inverse square of 
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the gain radius for the antenna: 

Sj
max = aPj /rj 

2 (6.1) 

where a is a constant, Pj is the power transmitted from UAV j, and rj is the signal 

Smaxhalf-power radius for UAV j. is the amount of signal received directly at the j 

center of the transmission. Further from the center, the amount of signal received 

decreases exponentially according to the signal radius: 

ri,j−b 
SmaxSi,j = e rj (6.2)j 

where b is a constant and ri,j is the distance from customer i and the center of 

UAV j’s transmission. The noise received by customer i is simply the sum of the 

signal from all the UAVs it is not communicating with: 

Ni = Si,j + k , (6.3) 
j /∈Ji 

where Ji is the set of UAVs customer i is communicating with and k is a constant 

for background noise. The maximum communication rate for customer i can then 

be estimated from the signal-to-noise ratio using Shannon’s law: 

Ci,j = B log2(1.0 + Si,j /Ni) , (6.4) 
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where B is the bandwidth of the channel in Hz 1 . The total data rate for customer 

i is the sum of the data rates for each UAV the customer is communicating with: 

Ci = Ci,j . (6.5) 
j∈Ji 

rj

High Gain Low Gain Attenuation

ri,j

Figure 6.2: Signal Dynamics. UAVs with high-gain antennas throw a strong signal 
over a small area. UAVs with low-gain antennas throw weaker signal over larger 
area (Left). The strength of the signal depends on how far the customer is away 
from the center of the signal cone (Right). 

1For simplicity, certain factors, such as relative inverse square distance signal attenuation are 
ignored that were determined to have little impact on performance. 
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6.1.1.2 System Evaluation Function and Agents 

The objective of this problem is to maximize the average data rate of each cus­

tomer: 

1 
n 

G = Ci , (6.6) 
n 

i=1 

where there are n customers, and G is the system evaluation function. Combining 

equation 6.1, 6.2, 6.3, 6.4, 6.5, we obtain: 

⎛
 ⎞
ri,j
aPj −b 

rjen
1
 2rj⎜⎝


⎟⎠
G = B log2 1.0 +
 , (6.7)
ri,j−bn aPj rj + ki=1 j∈Ji e
j /∈Ji r2 
j 

putting our global objective in terms of our control variables: UAV power level, 

Pj , and indirectly, ri,j , through the orientation of the UAV. 

These controls allow us to change the signal-to-noise characteristics at different 

locations on the ground. However, this is a difficult problem as increasing the 

signal for one customer may increase the noise for another. It is especially difficult, 

since we want this communication network to be adhoc, where it is controlled in a 

distributed way: UAVs are entering and leaving the system, and some UAVs fail 

to cooperate or operate correctly. Fortunately, reinforcement learning algorithms 

and multiagent techniques are a natural match to this problem. 

There are many possible agent definitions and controls for the UAVs in our 

domain, including altitude, antenna gain, power levels and antenna angle. Here 
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we focus on the last two: adjusting the power level Pj and orientation (the direction 

the transmitter points to) of each UAV (see Figure 6.3). We control each of these 

actions through agents. The solution to the full problem consists of the power 

level and orientation values for all the UAVs. However to simplify the problem, we 

break the task into a multiagent system, where a single agent controls both power 

level and orientation for each UAV. To perform control, each agent makes discrete 

actions. For adjusting power, the action is scaled exponentially to the action: 

jPj = Pez
p 

, (6.8) 

where P is the base power and zp is the action of the agent for UAV j controlling j 

its power. To control orientation, an agent chooses one of nine directions: either 

straight down, or one of eight cardinal directions around the UAV. The angle of 

the pointing is fixed so that the center of the new orientation is moved a distance 

of r what it would have been if it had pointed strait down (see Figure 6.3 - right). 

6.1.2 CubeSat Coordination Domain 

Currently, satellites are very expensive resources that need to be coddled care­

fully. The costs of satellite missions can exceed billions of dollars, with teams of 

engineers, managers and scientists working together to extract all the information 

they can out of these missions. These missions are carefully planned and orches­

trated by large institutions over a period of many years. However, in the near 
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High Power Low Power Orientation

Figure 6.3: Agent Actions. An agent can choose power level of UAV within certain 
range. An agent can also choose orientation of antenna. The Agent must choose 
power levels and orientations to balance giving more signal to their customers and 
less noise to other customers. 

future this traditional satellite paradigm could change dramatically with the in­

troduction of very small satellites known as “CubeSats.” The number of CubeSats 

will dramatically increase due to reduced costs coming from platform standardiza­

tion, availability of COTS (commercial off-the-shelf) parts and reduced launching 

costs [112, 118]. These satellites will have numerous capabilities, including in situ 

measurements of the thermosphere, interferometry, communication and Earth ob­

servation [90]. Collaborative networks of CubeSats offer mission capabilities that 

are impractical for larger satellite platforms due to cost restrictions, including si­

multaneous in situ measurements of multiple locations in space and temporally 

separated measurements of precise points in space[117, 81]. In addition, they offer 

lower cost and increased robustness compared to traditional satellites due to sys­

tem reconfigurability [22]. In addition, networking clusters of CubeSats together 



81 

in order to boost performance is becoming a popular concept, similar to computer 

clusters[1, 56]. However, while having numerous advantage, making effective use 

out of large numbers of heterogenous CubeSats is a difficult problem. 

As an example, consider an instance where a small community needs to observe 

the realtime progress of a local forest fire. There are many aspects of this fire that 

can be observed from orbit, including fire intensity, distribution, and movement. 

A few dozen observations would be useful, but with diminishing returns beyond 

this number. Currently, making these observations is difficult and expensive due 

to the limited number of satellites. However, in the future, there may be tens of 

thousands of tiny CubeSats able to make these observations. How can this small 

community in an economical way take advantage of these resources? 

A straight forward solution to this problem is a centralized satellite resource 

broker. Under this scenario, our small community would register its fire observation 

needs to the broker, and the broker would try to find the resources, trading off 

the costs and benefits of all the other requests that were registered. While this 

method is attractive for networks of large satellites, there are three main difficulties 

this centralized system might have with a large, but disorganized collection of 

CubeSats: 1) CubeSats are likely to be owned by many different countries and 

institutions that may not trust having their resources used by a centralized resource 

broker, 2) CubeSats will be in unpredictable states of repair and may be owned 

by institutions unable to make reliable commitments, 3) There may be so many 

CubeSats (perhaps millions), that a centralized system could simply not scale 

efficiently. 
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As an alternative to a centralized solution, the community could buy observa­

tions directly from the owners of the CubeSats. For this process to be effective, 

the community needs to do two primary things, 1) Buy the appropriate number of 

observations taking into account the unreliability of CubeSats, 2) Buy the obser­

vations at the lowest possible price. For these two things to happen, the reliability 

and expected cost of each of the CubeSats needs to be modeled so that an appro­

priate combination of request for observations can be made. While taking all these 

considerations into account would ordinarily be difficult for a small institution or 

community, an agent based system can help by modeling the satellites behavior 

and evolving policies to maximize value. 

6.1.2.1 Decentralized Agent Solution 

We propose to have a decentralized solution to this problem, through the use of an 

“agent” intermediary. But first we have to decide what an agent is in this domain. 

What is an agent? 

There are numerous ways agents can be used and defined. Here we explore a few 

alternative types of agents: 

1.	 Trivial: Just pass information between CubeSats and customer. 

2.	 Owned by Customer: Every customer has its own agent buying observa­

tions for that customer. 
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3.	 Owned by CubeSat: Every CubeSat has its own agent selling observation 

for that CubeSat. 

4.	 Independent: One agent per CubeSat, buying observations for customer. 

In the first definition, the agent is a simple intermediary. While this solution may 

work for a very sophisticated customer, in general it does not solve the problem of 

how a customer can buy an appropriate set of observations at a low price. In the 

second definition, each customer has an intelligent agent that tries to make these 

purchases for the customer. However, this solution has similar limitations to the 

trivial agents, as the agent would have to be sophisticated enough to know the 

properties of the thousands of CubeSats in existence and come up with a policy 

satisfying the customer’s demands at a low price. In the third definition, the task 

of the agent is much simpler. It knows all the properties of the single CubeSat that 

owns it, and knows at what price points it can sell its observations for. However, 

the issue with this approach is that it can be very inefficient, since agents trying 

to maximize revenue for its CubeSat may try to sell observations that are not 

valuable to the customer. 

Here we focus on the final definition for an agent, where agents are independent, 

there is one agent per CubeSat and the task of the agents is to buy an appropriate 

set of observations for a given customer. With this definition, the requirements of 

an agent is relatively simple. It needs to model the capabilities, reliability and price 

point of only a single CubeSat. Then when a customer makes an observational 

request to a set of agents, the agents coordinate to purchase an appropriate set of 
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observations. This agent model has a number of advantages: 

1. CubeSats with any price structure can participate. 

2. Unreliable CubeSat can participate. 

3. CubeSat owner can choose not to participate on case by case basis. 

4. Customers can choose not to buy resources from particular CubeSats. 

5. Agents can scale with number of CubeSats. 

With independent agents, CubeSats of all types can participate. An agent can 

simply decide not to use its CubeSat if it is inappropriate for the task. The most 

difficult task for an agent is to coordinate effectively with other agents. In this 

paper, we will focus on this coordination problem, and how policies can be evolved 

that allow agents to coordinate well. Note that this paper does not cover the 

broader case where there are multiple customers at the same time. However we 

believe that a similar mapping could be made in this case, where the agents are 

trying to maximize a larger overall utility over all customers. 

6.1.2.2 Proposed Solution 

We propose a multiagent solution, where independent agents help a consumer of 

satellite resources, buy an appropriate combination of resources at low cost (see 

Figure 6.4). In this algorithm an agent is assigned to every CubeSat, and is 

responsible for making a monetary bid to its CubeSat for its observation. The 
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Agent
Agent

Agent
Agent

Agent

Figure 6.4: Small community needs CubeSat observations of a forest fire. Agents 
handle observation request. Using one agent per CubeSat, an agent bids for the 
observation of a particular CubeSat. As a collective agents as a whole must bid 
for an appropriate number of observations with minimal cost. 

consumer makes a request to all of the agents for satellite observations, giving the 

agents a utility equation representing the value of the benefit it would receive from 

different numbers and types of observations. Each agent then makes a bid for an 

observations, using a bidding policy. This policy is evolved from a population of 

policies, using the value benefit equation given by the consumer, in combination 

with the agent’s model of its CubeSat. These bids take into account the value 

of an observation, the likelihood that the CubeSat will be able to carry out an 

observation, and the likelihood that the CubeSat will be willing to carry out an 

observation given the value of a bid. All these values have uncertainty, making this 

a difficult problem. In addition the agents will need to coordinate the evolution 
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of their policies so that the collection of observations derived from all the winning 

bids is beneficial to the customer and bought at a low cost. In this chapter, we 

explore these aspects in more detail. 

6.1.2.3 Coordinating CubeSats 

Academic and industrial programs continue to launch CubeSats equipped with sci­

entific instruments into Low Earth Orbit (LEO) [76]. The capabilities of individual 

CubeSats are fairly limited due to their size and mass restrictions. Yet, coordinat­

ing multiple CubesSats and collecting their combined resources greatly increases 

their overall value. In this paper, we focus on a particular instance of a CubeSat 

coordination problem where a customer can coordinate resource purchases for a 

set of existing CubeSats. 

6.1.2.4 Observational Values 

Here we assume that there is a set of Earth-observing CubeSats in low Earth orbits, 

where each satellite is owned by a separate institution 2 . Each of these CubeSats 

is interested in observations of a particular geographic region of interest for rea­

sons such as crop monitoring, volcano monitoring, fire monitoring, reconnaissance, 

search and rescue, and weather monitoring. We assume that each CubeSat places 

some value on observing a particular point of interest (POI), but is able to observe 

2For simplicity, we will anthropomorphize the CubeSats by treating a CubeSat and the insti­
tutions that own it, as the same thing. 
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Figure 6.5: A set of CubeSats gain different levels of value, vi, from observing their 
own point of interest. A potential customer would like satellites observations of its 
own point of interest. The value of these observations to the customer, vc depend 
on mix and number and locations of satellites involved. 

any region of interest beneath its orbit (see Figure 6.5). Each CubeSat places a 

different value on monitoring its own POI. In addition, this value depends on the 

distance between the CubeSat and its POI. In general the further the CubeSat is 

from its POI the less value it will have in monitoring it. Formally we express this 

value for CubeSat i as: 

vi(d
p
i ) , (6.9) 

where dpi is the distance between the CubeSat and its POI. 

The goal of this paper is to figure out how a customer, with no satellites of his 

own, can make use of these existing satellites to observe a point of interest that 

this customer is interested in. In general the value of a set of CubeSat observations 
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to a customer is a function of the observational capabilities of the CubeSats (e.g. 

resolution, heat sensing, particle sensing, etc.) and the distance of the satellite to 

the customer’s POI. Formally we define this value function for the customer as: 

v c(dc) , (6.10) 

where dc is the vector of distances between the CubeSats and the customer’s POI 

(note for simplicity the observational capabilities are rolled into vc). In general, 

the more observations are better and observations closer to the customer’s POI 

are better. 

6.1.2.5 Customer Objective 

The objective of the customer is find a set set of observations that have high value 

to him, vc, at a low cost: 

G(dc, dp) = v c(dc) − ci(di
p) , (6.11) 

i 

where ci is the cost paid to get an observation from CubeSat i. While we assume 

that there is no direct cost for a CubeSat to observe a POI, we assume that a Cube-

Sat will not make an observation for a customer unless it is paid approximately 

its opportunity cost for not observing its own POI vi(d
p
i ). Therefore in generally 

the cost paid ci(d
p
i ) will be higher than opportunity cost vi(d

p
i ) for successful bids. 

While in some cases this opportunity cost is very high and a CubeSat will never 
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offer to make an observation for a customer, in other cases in could be close to 

zero, especially if the CubeSat is not within range of its own POI. 

6.1.2.6 Agent Model 

Our overall goal is to figure out how a customer can maximize G; i.e. purchase 

a set of observations that have high value to him at a low cost. In general this 

will be possible when a set of CubeSats with appropriate capabilities is close to 

the customer’s POI, increasing his value, and far from their own POIs, reducing 

their opportunity cost. This leads to our central problem: How can a customer 

sensibly buy a set of satellite resources, when he knows little about the CubeSats’ 

capabilities, their cost model, or even their willingness observe the customer’s POI? 

We propose to address this problem using agents combined with reinforcement 

learning (Chapter 2). In this paradigm a single agent is assigned to a single Cube-

Sat, and the action of an agent is to bid on the observations from its CubeSat on 

behalf of the customer. As a whole, the goal of the agents is to balance the value of 

all the observations to the customer, vc, with the cost of these observations. Note 

that to do this effectively each agent has to take into account both local and global 

considerations: 1) Locally an agent will make bids when its CubeSat has likely high 

value, such as when it is close to the customer’s POI, and when its CubeSat has 

likely low cost, such as when the CubeSat is far from its own POI, 2) Globally 

an agent should only bid for an observation, when that observation increases the 

total value, vc, for the customer - agents should not bid for observations that are 
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not needed or have low marginal value. 

For an agent to accomplish its task, we assume that each agent is given the 

value function for the customer vc(dc). We also assume that each agent has some 

approximate model for the value of its CubeSat, vi(d
p
i ). However, we make little 

assumptions of the quality of this model or where it came from. For some agents 

vi(d
p
i ), may be given to it directly from the CubeSat. For other agents, its model 

for vi(d
p
i ) may be a crude approximation generated through previous interactions 

with the CubeSat. Given these value functions, we have the agents maximize the 

customer’s objective through evolution. 

6.1.3 Batch-CLEAN Rewards for the UAVCN Domain 

In this section we calculate the CB2jI Batch-CLEAN rewards for the UAVCN 

domain by combining Equations 6.7 and 5.2 (These rewards could similarly be 

derived for the CCD domain, but are excluded here for brevity). Due to the 

presence of heterogeneous agents in the UAVCN domain, there are two separate 

types of rewards: one for agents governing transmission power, and one for agents 

controlling antenna pointing (Section 6.1). CB2j rewards for power agents are: 
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where CB2jI is an individual reward for the agent controlling transmit power 

for UAV j ' , cajI,k 
is one of the agent’s n counterfactual actions, Si,jI,cajI,k 

is the 

transmission power factor for agent j ' calculated with counterfactual action cajI,k 
, 

and all other variables are as described in Section 6.1. The set of all Batch-CLEAN 

rewards for agent j ' is calculated by calculating CB2jI = {CB2jI (cajI,k 
)}k≤n, where k=1 

n is the total number of possible actions the agent can take. 

Here, the counterfactual actions only change the power portion and the UAV 

pointing remains constant. In this setting, these rewards provide the power agents 

with a reward that tells the effectiveness of its counterfactual transmit power based 

upon the UAVs current target pointing policy. Thus, during each atomic episode of 

learning, the agent calculates rewards for each of its potential transmit powers that 
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approximates the impact each would have on the network bandwidth. Additionally, 

due to the subtraction between the G(zT − zT,jI ) and G(zT ) terms of each + cajI,k 

reward calculation, much of the impact of the actions of other UAVs is filtered off, 

resulting in a much clearer learning signal for power agent j ' . 

Next, we calculated the CB2jI rewards for each UAV’s pointing agent, yielding 

Equation 6.13. Here, CB2jI is an individual reward for the agent controlling 

the antenna pointing direction for UAV j ' is one of this pointing agent’s n, cajI,k 

counterfactual actions, Fi,jI,ca is the signal strength weighting factor based upon 
jI,k 

the counterfactual pointing action of pointing agent j ' for counterfactual .cajI,k 

Again, each agent calculates rewards for each of its potential n counterfactual 

actions cajI,k 
during each atomic episode of learning. In this setting, each reward 

provides the agent with a clear reward signal that tells how each of its potential 

counterfactual pointing actions cajI,k 
would impact the network bandwidth. 
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6.2 Results 

We conduct experiments in both the UAVCN and CCD domains. We use seven 

types of agents: 

• Agents taking random actions (R) 

• Agents learning with Global rewards (G) 

• Agents learning with Difference rewards (D) 

• Agents learning with CLEAN rewards (C1) 

• Agents learning with CLEAN rewards (C2) 
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• Agents learning with Batch-CLEAN rewards (CB1) 

• Agents learning with Batch-CLEAN rewards (CB2) 

In all experiments, agents are t-greedy reinforcement learners with a learning rate 

of α = 0.20 and an exploration rate of t = 0.10. All Q-tables were initialized 

with small random values. All experiments consisted of r = 30 statistical runs 

with e = 3000 learning episodes and the error in the mean σ/r was plotted in all 

experiments. 

6.2.1 UAV Communication Network Domain 
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Figure 6.6: 100 UAVs and 100 customers in the UAVCN domain. Agents using 
CB1 and CB2 rewards learn approximately one-hundred times faster than agents 
using C1, C2, G and D rewards. Batch-CLEAN rewards outperform D by 20% 
and G by 80%. 

The first experiment involved a set of 100 UAVs and 100 customers within 

the UAVCN domain. As see in in Figure 6.6, agents taking both random power 
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and pointing actions perform poorly in this domain. Similarly, agents using global 

rewards, G, are slow to learn and learn a policy that is far worse than other 

learning agents. A key reason for this is that global rewards provide a noisy 

learning signal to agents (each agent’s reward depends directly upon the actions 

of all other agents). Difference rewards, D, address this shortcoming by effectively 

filtering off much of the impact of other agents on the learning signal. As seen from 

Figure 6.6, this additional filtering (which addresses structural credit assignment) 

results increased performance compared to agents using G. 

Next, we implemented CLEAN rewards (C1, and C2), which not only address 

the structural credit assignment problem as difference rewards do, but also address 

exploratory action noise which is a significant inhibiting factor for multiagent co­

ordination. As seen, CLEAN rewards outperform difference rewards by up to 20% 

and global rewards by up to 80% in this domain. However, CLEAN rewards still 

learn slow in comparison to Batch-CLEAN rewards as they are limited by the fact 

that agents only receive a single reward update per episode of learning. 

Batch-CLEAN rewards maintain the performance of CLEAN rewards (as they 

are based upon the same structure), while at the same time significantly improving 

learning speed over standard CLEAN rewards. The speed-up in learning stems 

from the fact that Batch-CLEAN rewards leverage the properties of privatized 

exploration which were developed to create CLEAN rewards to enable agents to 

concurrently calculate reward updates for multiple actions during each episode of 

learning. This extension enables learning speed to be improved over traditional 

reward techniques such as global or difference rewards, as well as standard CLEAN 
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Figure 6.7: Scaling the number of UAVs in the UAVCN domain. Agents using 
Batch-CLEAN rewards CB1 and CB2 continue to maintain the same converged 
performance as standard CLEAN rewards C1 and C2 (although they converge 
more quickly), and outperform the next best method D by at approximately 15­
20% when scaling between 100 and 1000 UAVs. 

rewards, which only allow a single reward update per learning episode. 

As seen from Figure 6.6, Batch-CLEAN rewards converge to a better policy 

than do agents using both global and difference rewards. The increased perfor­

mance is due to the structural credit assignment problem and the removal of ex­

ploration noise during learning. The improved learning rate is due to the fact 

that each agent is receiving multiple action updates per episode of learning. It 

is interesting to note that although the computational increase for agents’ reward 

calculations using CB1 and CB2 rewards compared to G, D, C1, and C2 rewards is 

ten fold, these agents learn one hundred fold faster (showing a nonlinear increase in 

learning performance compared to computational costs). Here, Batch-CLEAN re­

wards CB1 and CB2 outperform agents using D by approximately 20% and agents 
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using G by 80%, while maintaining the performance of standard CLEAN rewards. 

The next set of experiments involved scaling the number of UAVs and customers 

in the system. The number of UAVs and customers was scaled proportionally in a 

1:1 ratio. As seen in Figure 6.7, the general performance of all techniques slightly 

decreases with scaling. This is to be expected, as the amount of noise present in 

the system increases as the number of communication towers (UAVs) increases. In 

a shared-channel network, this background noise necessarily reduces the amount 

of signal throughput to any individual node in the system. It is important to 

note however, that the total system bandwidth increases as the number of UAVs 

is increased, even though the signal per customer gracefully degrades. As seen, 

agents using random policies, R, continue to perform poorly as scaling increases. 

Similarly, agents using global rewards, G, experience a 40% drop in performance. 

Agents using D experience a 20% decrease in performance with scaling up to 

1000 agents. Agents using both CLEAN and Batch-CLEAN rewards experience 

only a 13% drop in performance and the degradation plateaus and stabilizes as 

scaling increases. The key here is that both CLEAN and Batch-CLEAN rewards 

outperform all other methods, however, Batch-CLEAN still learns significantly 

faster than CLEAN in all of these cases (although this cannot be seen by the 

convergence graph provided). 



98 

-2000

-1500

-1000

-500

 0

 500

 1000

 0  500  1000  1500  2000  2500  3000

S
y
s
te

m
 P

e
rf

o
rm

a
n
c
e
 (

G
)

Episodes

CCD with 100 CubeSats

R
G
D

C1
C2

CB1
CB2

Figure 6.8: 100 agents in the CCD. As seen here, agents using Batch-CLEAN re­
wards CB1 and CB2 converge significantly faster than other learning methods, in­
cluding agents using standard CLEAN rewards. Additionally, agents using Batch-
CLEAN achieve the same level of performance as standard CLEAN rewards and 
outperforming D by 30% and G by 600%. 

6.2.2 CubeSat Coordination Domain 

Figure 6.8 shows the performance of agents within a 100 CubeSat system. As 

seen, agents following random policies perform poorly in this domain. Similarly, 

agents using global rewards, G, have difficulty coordinating their actions, leading 

to poor performance. Agents using difference rewards perform significantly better 

than these techniques as they attempt to address the structural credit assignment 

problem present within learning-based systems. However, these rewards alone 

are still insufficient as they do not address the issue of learning noise associated 

with exploration which complicates coordination. As seen, CLEAN rewards which 

address exploratory action noise again produce significantly better performance 

than both global and difference rewards, however, they still only provide agents 
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with a single reward update which leads to slow learning. 

Batch-CLEAN rewards achieve the same performance as CLEAN rewards as 

they are based upon the same underlying principles and reward structure, while 

at the same time significantly improving the learning speed of agents as compared 

to CLEAN rewards. As seen, Batch-CLEAN techniques learn up to an order of 

magnitude faster than agents using both difference rewards and standard CLEAN 

rewards. 
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Figure 6.9: Scaling the number of agents in the CCD. As seen, agents using CB1 
and CB2 rewards maintain performance as scaling increases and continue to out­
perform all other methods by at least 30%. 

The final set of experiments involves scaling the number of agents within the 

CCD domain. Again, agents using random rewards perform poorly as they are 

blindly making bids for satellite observations, without any regard for the ram­

ifications or outcomes from those transactions. Agents using G have a similar 

pitfall. Although these agents are intelligently making bids and attempting to 
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learn, agents have difficulty determining the impact of their own bids compared 

to the bids of other agents within the system. Agents using D are better able to 

make decisions as each agent’s reward is heavily dependent upon its own actions. 

However, difference rewards do not address exploratory action noise, which re­

sults in significantly impeded learning performance, especially as scaling increases 

and exploration noise becomes an increasingly significant factor. To address this, 

standard CLEAN rewards were implemented, and are shown to converge to signif­

icantly better performance. However, these rewards are still prohibitively slow for 

many situations due to the fact that they only provide each agent with a single 

reward update per episode of learning. Batch-CLEAN rewards are used again here 

to not only achieve the same coordination and performance benefits as standard 

CLEAN rewards, but to also significantly improve the overall learning speed for 

agents within the system, enabling agents to be more adaptable to sudden and 

unplanned changes within the environment. 

6.3 Discussion 

Existing adaptive learning-based control techniques are relatively inefficient in the 

way they utilize data (e.g., data from individual interactions with their environ­

ment). In particular, existing techniques are only able to compute a single update 

for their control policy for each piece of data they receive [16, 72, 125]. This fre­

quently results in slow learning, which can be problematic in a number of settings 

including systems with large numbers of agents where the system size significantly 
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increases the complexity of the control problem which renders single control up­

dates per piece of data to be prohibitively slow (e.g., the environment may change 

faster than the agents are able to adapt their policies). Effective multiagent control 

techniques must be able to make more efficient use of data in order to increase the 

speed at which they can reconfigure their control policies. 

In everyday experience we can only take one mutually exclusive action at a time. 

For instance we cannot go up and down simultaneously. This follows through to 

traditional learning systems where an agent takes an action and receives a reward 

based on that action 3 . However, with the CLEAN rewards paradigm, described 

in the previous chapter, agents take two actions at the same time: 1) They take 

their public non-exploratory action that is seen by others, and 2) They take their 

private counterfactual exploratory action. Given the framework needed to enable 

these counterfactual explorations, we can in fact perform additional exploratory 

actions at the same time. In this chapter, we proposed batch-CLEAN rewards 

which enabled agents to make multiple updates during each individual interaction 

with their environment. This resulted in significantly improved performance and 

learning speed over existing state-of-the-art techniques (e.g., difference rewards). 

Such techniques are beneficial to learning in multiagent systems in that it enables 

the agents to make more efficient use of their data (i.e., interactions with the 

environment) through leveraging the concepts of “counterfactual action updates” 

and CLEAN learning (developed in Chapter 3) to enable multiple control updates 

3To simply discussion, actions discussed here are mutually exclusive so we are not included 
cases where agents can take multiple non-mutually exclusive actions 
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per interaction with the environment. 

Though these results are encouraging, there are multiple areas for further inves­

tigation with regards to rewards based upon counterfactual actions. For example, 

the ability of such rewards to handle domains involving large numbers of agent 

actions needs to be explored. The current Batch-CLEAN techniques were applied 

to domains with up to one hundred joint actions, but these techniques may be pro­

hibitively slow in domains where thousands of actions are present. In such cases, 

it may be beneficial to provide updates to a particular subset of the potential ac­

tions. Additionally, extensions of this work that enable Batch-CLEAN rewards to 

be computed without the agents having an a priori model of the system objective 

function would enable them to be utilized within initially unknown environments, 

which is indicative of most real-world multiagent systems. 
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Chapter 7 – Utilizing Function Approximation for Learning with 

Shaped Rewards in Unknown Environments 

As we have shown previously, CLEAN reward techniques are capable of addressing 

the complex coordination problems that arise with decentralized control of large 

distributed systems such as satellite constellations, UAV swarms, and sensor net­

works when an accurate model of the system objective function is provided to the 

agents a priori and the agents can use this model to calculate their CLEAN re­

wards. Unfortunately, in many real-world systems an accurate model of the system 

objective function is not readily available to agents, meaning that CLEAN rewards 

cannot readily be calculated. In this chapter, we address this shortcoming by en­

abling agents to construct their own approximate model of the system objective 

by repeatedly interacting with the environment. Here, agents utilize statistical 

function approximation tools (e.g., neural networks) to construct an approximate 

model of the system objective and then use this approximate model to calculate 

their CLEAN rewards. Enabling agents to generate their own approximate model 

of the system objective which can then be used to calculate their CLEAN rewards 

extends these techniques into many real-world domains where agents must oper­

ate within initially unknown environments, and a priori system knowledge is not 

readily available. 
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7.1 Introduction 

A key area of research within the area of MARL lies in the design of the rewards 

agents use to learn. Traditionally, multiagent systems have centered around team 

reward techniques (i.e., all agents receive the team performance as their individual 

reward). However, system designers quickly realized that team rewards struggled 

with scaling to large multiagent systems due to the structural credit assignment 

problem (i.e., how to assign credit to individual agents for their contribution to 

the team reward). In order to address this, researchers in the field developed 

so-called reward shaping techniques (described in Chapter 2 of this work) which 

provided agents with more individualized reward signals, resulting in improved 

learning speed and performance. 

Potential-based reward shaping was one of the first popular reward shaping 

technique to arrive on the scene (Chapter 2), where agents would receive the 

team reward plus an additional shaped reward that was tailored to the specific 

contributions of each agent. Although potential-based reward shaping techniques 

showed significant promise in addressing the multiagent coordination problem and 

provided significant performance gains over traditional team rewards, they had 

significant information requirements. In particular, potential-based reward shap­

ing techniques require that the system designer has access to a complete system 

model a priori (i.e., requires the system designer to have both an accurate model 

of the transition probabilities as well as the system objective). Such requirements 

are unrealistic in many domains, where this information is simply not available. 
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In the late 1990’s difference rewards, which were a form of shaped rewards based 

upon the film “its a wonderful life”, were introduced. These rewards enabled each 

agent to calculate the performance of the system when they were present as well as 

the performance of the system had they not been present. Here, the agents receive 

a reward that is the difference between these two factors, resulting in a reward that 

provides each agent with its “net impact” on the system performance. Difference 

rewards resulted in significantly improved performance and scalability compared 

to traditional team rewards. Additionally, difference rewards are advantageous 

over many existing reward shaping techniques as they do not require a complete 

system model to be computed, and instead require only an accurate partial model 

of the system (i.e., they only require an accurate model of the system objective to 

be known). 

In this work, we introduced CLEAN rewards which are shaped rewards that are 

similar to difference rewards in that they provide agents with feedback on their “net 

impact” on the system and only require an accurate model of the system objective 

to be computed. However, CLEAN rewards also address issues associated with 

exploratory action noise (as shown in prior chapters), which leads to significantly 

improved learning performance compared to difference rewards. In this chapter, 

we look to further advance the state-of-the-art by enabling agents to use CLEAN 

rewards to learn within environments where agents have no access to an accurate 

system model, and instead must construct their own approximate model of the 

system objective and then use the approximate model to calculate their individual 

CLEAN rewards. 
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7.2 Background and Related Work 

In cooperative multiagent systems, coordinating the joint actions of agents is dif­

ficult [43, 45, 51]. One of the fundamental difficulties in such multiagent systems 

is the slow learning process where an agent may not only need to learn how to 

behave in a complex environment, but may also need to account for the actions of 

the other learning agents [13, 116, 125]. This is especially difficult due to the fact 

that agents are routinely taking exploratory actions which are observed “publicly” 

by other agents in the environment. Here, the inability of agents to distinguish 

the true environmental dynamics from those caused by the stochastic exploratory 

actions of other agents creates noise on each agent’s reward signal [124, 21, 143]. 

Under these conditions, the solution (learning agents) actually becomes part of 

the problem. This problem is known as exploratory action noise and it can have a 

significant detrimental impact on learning performance within multiagent systems 

[61]. CLEAN rewards address this issue by enabling agents to shift from explicit 

“public” exploration strategies towards implicit “private” exploration strategies. 

Here, instead of explicitly taking an exploratory action within the environment, 

each agent utilizes its own local reward model to implicitly approximate the reward 

it would have received for taking a given exploratory action. In this setting, agents 

are still able to explore, but their exploratory actions do not impact the learning of 

other agents within the system. Although as we have shown in previous chapters, 

CLEAN rewards show significant promise for addressing the coordination prob­

lem within multiagent systems, they currently require an accurate partial system 
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model to be computed. In this chapter, we address this shortcoming by enabling 

agents to utilize reward modeling techniques to construct their own approximate 

model of the system objective when it is otherwise unavailable. The agents then 

use this approximate model to calculate their individual CLEAN rewards during 

learning. 

7.2.1 Neural Networks 

A multilayer perceptron (MLP) neural network is a feed-forward supervised learn­

ing artificial neural network model. A MLP consists of multiple layers of nodes 

in a directed graph, with each layer fully connected to the next one. Except for 

the input nodes, each node is a neuron with a nonlinear activation function (in 

this work we use a sigmoid activation function). A MLP can be trained with back 

propagation. 

Neural networks (NN) have been used in many applications including: control 

problems, classification, function approximation, and nonlinear signal-processing [36, 

52, 66, 83, 92]. They are useful tools for representing functions and can represent 

both discontinuous and continuous functions to arbitrary accuracy [17, 36, 40, 52]. 

Neural networks are biologically inspired mathematical tools modeled after the 

function of the brain. Each neural network maps a set of inputs to a set of out­

puts. A neural network consists of a set of input nodes, output nodes, and hidden 

layer nodes which are connected with weights assigned to each connection (Fig­

ure 7.1). The weighted sum of the connections mapped from the inputs through 
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Input Layer

Hiden Layer

Output Layer

Figure 7.1: Network diagram for a two layer feed forward Neural Network (NN). 
The input, hidden and output variables are represented by nodes, and the weight 
parameters are represented by links between the nodes. In feed forward NN the 
information flow through the network from input to hidden and then to output 
layer. 

the nodes of the neural network generate a set of outputs (where each node it­

self has an activation function, which is typically nonlinear) [48]. There are many 

ways of training a neural network including supervised, unsupervised, and reward 

based methods. A neural network controller utilizing supervised learning has a 

“teacher” that knows the correct mapping from inputs to outputs, and provides 

the neural network with constructive feedback on actions taken (improving the 

neural networks performance over time). Using unsupervised learning with a neu­

ral network attempts to use the neural network to cluster a set of unlabeled data 

using its similarities. Reward based learning with neural networks on the other 
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hand utilize reward feedback based upon actions taken in order to update the 

neural networks [17, 40, 52, 83, 92]. In this work, a single hidden layer neural 

network was used to approximate the underlying system reward function through 

incrementally interacting with the environment. 

In this work, our neural networks utilize a sigmoid activation function (Equa­

tion 7.1) ranging from 0 to 1. 

1 
φ1(x) = T (7.1)

(1 + e−w x) 

Each layer n of our neural networks consist of q neurons, where xn are the acti­

vations of the neurons and yn are the outputs of the neurons derived by putting the 

weighted activations through the activation function φ [66]. The neural networks 

used are fully connected, and the output of layer n − 1 are connected to layer n’s 

inputs xn via weights. The weight matrix is defined as Wn where the elements 

wi,j corresponds to the weight from output j of the n − 1 layer to the input i of 

the n layer [66]: 

w0,0 ... w0,p
 

Wn = ... ... ... .
 

wq,0 ... wq,p
 

Therefore xn is:
 

xn = Wnyn−1 (7.2) 
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and 

yn = φ(Wnyn−1) (7.3) 

Where xn is the vector of inputs to layer n, Wn is the set of weights on the 

inputs from layer n − 1 to layer n, yn−1 is the vector of outputs from layer n − 1, 

and yn is the vector of neural network outputs at layer n [66]. In this work, we 

use back propagation to update the weights of the neural network during learning 

according to the following back propagation update rule: 

∂E 
Wt+1 

n = Wn
t + η (7.4)

∂Wm 

Where η is the learning rate parameter. The goal of back propagation is to 

backpropagate our error and apply gradient descent to learn our weights [66]. We 

refer the interested reader to [25] for additional information on neural networks. 

7.3 Reward Shaping within Unknown Environments 

In order to calculate shaped rewards which require an accurate system model (e.g., 

difference rewards or the CLEAN rewards introduced in this section), agents have 

previously been required to have access to a complete and accurate partial system 

model (e.g., an analytical model of the team objective G(z)). Unfortunately, in 

many real-world systems the agent-to-agent interactions and system dynamics are 

too complex to be modeled analytically and are frequently too sophisticated to be 
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accurately modeled at all, rendering these techniques inadequate for many real-

world applications. We address this shortcoming by extending both existing and 

novel reward shaping techniques (difference rewards and CLEAN rewards, respec­

tively) such that they are able to learn when an accurate analytical model of the 

team reward is not available. This is achieved by enabling agents to construct their 

own approximate model of the team objective when the environment is unknown 

and an accurate model of the team reward is not available a priori. A key benefit of 

our techniques is that they require the agents to have no a priori system knowledge 

and they do not require the system designer to make any assumptions about the 

system, meaning they are completely generalizable to any real-world system. 

7.3.1 Reward Modeling 

Within some simple multiagent domains, we can expect to be provided with an 

accurate analytical equation for the team performance objective G(z), which can be 

used to calculate partial-model based rewards such as difference rewards (Chapter 

2). Unfortunately, in many domains (particularly real-world domains) the complex 

interactions between agents coupled with the system dynamics make the system 

too sophisticated to be modeled analytically, and in these systems an accurate 

model of the team reward G is frequently not available. For this sort of “black­

box” systems, one simply has the vector z and some reward signal G(z) which tells 

the team performance. 

Our approach to solving this problem is to allow the agents to construct an 
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approximate model of the team objective G(z) by enabling agents to construct an 

approximate model of the team objective fG(z)(z) through repeatedly interacting 

with the environment. In particular, agents will interact with the environment, 

generating a tuple including the system state vector z and the resultant reward 

signal G(z), and agents use this information to incrementally train an approxi­

mate team reward model. This model can then be used by individual agents to 

calculate rewards (e.g., difference rewards, CLEAN rewards) which need a model 

of the team objective in order to learn. For example, with our second variation of 

CLEAN rewards, the calculation becomes Ci = fG(z)(z − zi + ci) − fG(z)(z − zi + cj ). 

In this case, the approximate model of the team objective fG(z)(z) is used in place 

of the accurate analytical model of the team objective G(z) when calculating both 

difference rewards and CLEAN rewards. This solution, while conceptually sim­

ple, addresses a major criticism of partial model based reward shaping techniques 

(e.g., difference rewards, CLEAN rewards) in the past: that they are difficult to 

use if an accurate analytical equation for G(z) is unavailable. In this work we cou­

ple these reward modeling techniques with both difference rewards and CLEAN 

rewards, expanding the applicability of both techniques into a large number of 

new domains. The key property that distinguishes this approach from standard 

function approximation is that the structural form of both difference rewards and 

CLEAN rewards have built-in bias reducers. The subtraction operation ensures 

systematic errors in the function approximation are eliminated, particularly if the 

two terms fG(z)(z) and fG(z)(z − zi + ci) are close to one another. In this paper, we 

explore using neural networks (discussed previously) as the function approximators 
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to model G(z) (although other function approximation techniques such as tabular 

linear functions and support vector machines are also valid). A key benefit of the 

techniques used in this work is that we did not bias our reward model in any way 

and we performed uniformly random sampling of {z, G(z)} tuples, meaning that 

these techniques are completely generalizable to any multiagent system. 

7.3.2 CLEAN Rewards for Unknown Environments 

Once the agents learn an approximate reward model via repeatedly interacting with 

their environment and training a function approximator (discussed previously), 

they will use this reward model to calculate their individual CLEAN rewards.1 . 

For example, agents using CLEAN rewards will use the model to calculate their 

rewards as follows: 

Ci = fG(z)(z − zi + ci) − fG(z)(z − zi + cj ) (7.5) 

where C is the CLEAN reward of agent η, G(z) is the system objective, fG(z)(z) is 

the neural network function approximation of the system objective, z is the system 

state vector containing all key state and action variables. In this work, we assume 

that the agents have access to the complete z vector, although previous work has 

shown that similar reward shaping techniques can perform well with only partial z 

vector information. Here, the precise choice of counterfactual actions ci and cj are 

1Although we also compare the performance of CLEAN rewards with function approximation 
against difference rewards utilizing the same techniques 
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dependent upon the specific CLEAN reward design the system designer chooses to 

use (e.g., Equation 3.2 or 3.3, respectively). 

In this setting, agents can begin with no a priori knowledge of their environ­

ment, incrementally construct an approximate reward model of the system objec­

tive, and then utilize this objective to calculate their shaped CLEAN rewards. In 

this work, we utilized these techniques in two domains. In this setting, the system 

is a black box model and agents have no access to the underlying system model 

other than the team objective function approximation fG(z)(z) they generated. 
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Chapter 8 – Learning with CLEAN Rewards in Unknown
 

Real-World Domains
 

Although both CLEAN rewards and Batch-CLEAN rewards have shown significant 

promise for improving both the speed and performance within multiagent systems, 

they required an accurate model of the system reward in order to be computed. 

Unfortunately, in many real-world domains, such information is not available a pri­

ori, rending the standard versions of these techniques inadequate. We address the 

shortcomings of these approaches by enabling agents to learn with both CLEAN 

and Batch-CLEAN rewards by utilizing model-based reinforcement learning tech­

niques that allow agents to construct their own approximate model of the system 

reward. Here, agents repeatedly interact with the environment in order to con­

struct an approximate model of the system reward function and then they use 

this approximate model to compute their individual CLEAN and Batch-CLEAN 

rewards. In this chapter, we demonstrate this concept for standard CLEAN re­

wards, although it is a trivial extension to extend these results to Batch-CLEAN 

rewards. 
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8.1 Results 

In this chapter we utilize two multiagent domains to test the performance of Batch-

CLEAN rewards. The first is a UAV Communication Network (UAVCN) domain 

originally introduced in [7] and previously described in Chapter 6. The second is 

a CubeSat Coordination Domain (CCD) based upon the idea of satellite resource 

sharing and fractionated satellite systems which was introduced in [60] and previ­

ously outlined in Chapter 6 of this dissertation. We borrowed domain parameter 

values from those found for these domains within the literature unless otherwise 

specified [7, 59, 60]. These are the domains outlined in the previous chapter (all 

necessary domain details including descriptions and equations can be found in the 

previous chapter). The only key difference between the two implementations is 

that in this version of the UAVCN domain, agents control power only and always 

point straight down. 

All of these experiments were conducted for 3000 episodes and 30 statistical 

runs. The learning rate was set to α = 0.10 and the exploration rate was set 

to t = 0.05. The results were validated via a t-test with t = 0.05. All agents 

utilized the standard reinforcement learning update rule: Q ' (s, a) = Q(s, a) + 

α (R(s) − Q(s, a)). The learning parameters were set to α = 0.10 and t = 0.10. 

In the UAVCN domain, the neural network function approximator had a single 

input for each agent’s action, 100 hidden units (excluding the bias unit), and 1 

output unit. In the CubeSats domain, the neural network had a single input 

for each agent’s action, 500 hidden units (excluding the bias unit), and 1 output 
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unit. In both cases, the neural network was trained on a sample of 100,000,000 

data points from the environment (corresponding to only a minute portion of the 

overall action space which is of size 10100) and were trained using standard back 

propagation with a neural network learning rate of γ = 0.05. The neural network 

weights were initialized randomly between 0 and 0.50. 

It is important to note that in these settings, although the neural network 

function approximator is computationally expensive to train, the overall portion 

of the joint-action space being explored by the agents to construct this model is 

miniscule. For example, in the two domains in this work, there are 10100 possible 

joint-actions, and the agents are only exploring one hundred billion of these pos­

sibilities. Additionally, it is important to note that there are likely significantly 

better function approximation techniques that could both improve performance 

and significantly reduce the number of samples required to train. Here, we chose 

to use neural network function approximation techniques due to their generality 

and robustness. Neural networks are a high variance function approximation tool, 

and it is likely that alternate function approximation techniques (e.g., support vec­

tor machines) would be able to perform as well or better than the techniques used 

here, at a fraction of the computational costs. Additionally, we did not attempt to 

re-use any of the training data. However, it has been repeatedly shown that tech­

niques such as cross-validation can significantly improve the efficiency of the usage 

of training data. Combining tools such as cross validation (which attempt to make 

optimal use of a given set of training data) with alternate function approximation 

techniques such as support vector machines (which are less computationally ex­
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pensive than neural network techniques) would likely result in a reduction in the 

computational costs of such function approximation techniques. Based upon our 

experience with in this work, we would predict that a reduction of at least two or 

three orders of magnitude with regards to the computational cost of training the 

function approximator can be achieved using these techniques. 

8.1.1 UAVCN Domain 

First, we applied CLEAN learning with a function approximation of the system 

model to a state-less action-value domain. Here, we tested the performance of 

CLEAN rewards using function approximation in a 100 UAV communication net­

work. Initially, the agents began with no knowledge of the system. Then, they 

incrementally constructed an approximate model of the system’s reward function 

by repeatedly interacting with the environment. This model was then passed out 

to all the agents and used by each agent to calculate their individual local rewards 

(e.g., global, difference, and CLEAN rewards, respectively) except in the case of 

standard global rewards G. Agents using G were provided with a complete and ac­

curate model of the system reward function, as this was to be used for a benchmark 

to test the performance of the other techniques. 

As seen in Figure 8.1, agents using traditional global rewards struggle to coordi­

nate their actions due to their inability to address the structural credit assignment 

problem. Additionally, agents using global rewards with function approximation, 

GNN also struggled as they were unable to address the credit assignment problem 
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Figure 8.1: 100 agents in the UAVCN domain. As seen, agents using CLEAN re­
wards with an approximation of the system reward outperform agents using global 
rewards, G, which have a complete and accurate model of the system reward. 
Additionally, agents using CLEAN rewards utilizing function approximation (e.g., 
C1NN and C2NN ) are able to perform approximately as well as agents using stan­
dard difference rewards D with a complete analytical model of the system in this 
case. 

and had an inherently inaccurate system reward model. Agents using difference re­

wards with function approximation, DNN were able to address these shortcomings 

in order to slightly outperform traditional global rewards with respect to over­

all performance (although they learned much slower than agents using traditional 

global rewards due to the inaccuracies in their reward model as well as their in­

ability to address the coordination issues brought on by exploratory action noise). 

CLEAN rewards are able to affectively address the credit assignment problem, 

as well as exploratory action noise in order to achieve significantly improved per­

formance over all other techniques. The key result here is that CLEAN rewards 

with function approximation techniques are able to significantly outperform global 
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rewards with a model, and difference rewards with an approximate model. This 

places CLEAN rewards not only at the forefront of the state-of-the-art with regards 

to reward shaping techniques that require a model, but at the forefront with respect 

to shaped rewards that are capable of learning within unknown environments. 

8.1.2 CubeSat Coordination Domain 

In this setting, we analyze the performance of agents using CLEAN rewards with 

function approximation in a domain that has both states and actions. Here, we 

explored the performance of a 100 agents CubeSat system in which the agents 

initially had no underlying knowledge of their environment. First, the agents 

learned an approximate model of the system objective of their environment, then 

this reward model was used by the agents to calculate their individual rewards. 

As seen in Figure 8.2, agents using traditional global rewards, G, perform poorly 

overall. This is because the agents are unable to address the structural credit 

assignment problem (i.e., how to determine the contribution each individual agent 

had on the resultant system performance), resulting in poor coordination during 

learning. Similarly, agents learning using a neural network function approximation 

of the system objective GNN also perform poorly for the same reasons. It is 

interesting to note that the system objective model of G achieved very comparable 

performance to agents using the exact analytical model of the system objective, 

G. This suggests that accurate models of the underlying system objectives can be 

learned by agents. Although in the future, less computationally expensive models 
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Figure 8.2: 100 agents in the Cubesat Coordination Domain. Agents using tradi­
tional global rewards, G, with a complete and accurate analytical model of the sys­
tem reward function are unable to perform as well as agents using shaped rewards 
with an approximate system model. Difference rewards utilizing an approximate 
model of the system reward are able to outperform traditional global rewards due 
to their ability to improve coordination by addressing the structural credit as­
signment problem. Agents using CLEAN rewards with an approximate model of 
the system objective are able to perform nearly as well as difference rewards with 
an accurate model (D) because they simultaneously address the structural credit 
assignment problem as well as exploratory action noise. 

would be preferred. There are a plethora of function approximation techniques that 

would likely require significantly less computation burden than neural networks. 

We chose neural networks because they are effective function approximators in a 

wide range of situations (it has been said that neural networks are second best at 

most things). 

Figure 8.2 also shows us that agents using difference rewards with function ap­

proximation, DNN , outperform agents using both G and GNN , which is noteworthy. 

As seen here, agents using DNN are able to perform significantly better than agents 



122 

using standard global rewards (even when agents using the global rewards have ac­

cess to a complete and accurate system reward model, G). Here, difference rewards 

perform better because even with an approximate reward model, their ability to 

address the structural credit assignment problem enables them to achieve signif­

icantly better coordination than global reward techniques. This is an important 

result because there is currently no work throughout the literature that supports 

the ability of difference rewards to function effectively when no accurate model 

of the system is available (especially in a setting like this work, where we use a 

completely general function approximation technique and we make no assumptions 

about the system or its behavior when training the function approximator). 

Finally, we applied CLEAN rewards with function approximation to this do­

main, as seen, the CLEAN rewards techniques significantly outperform all of the 

other methods used in this work. This is because CLEAN rewards are able to 

address the structural credit assignment problem like difference rewards do, but 

they are also able to address the issues associated with exploratory action noise. 

This is an important result for two key reason: i) it demonstrates the ability of 

CLEAN rewards to learn when an accurate system reward model is unavailable (as 

is the case in many real-world systems), and ii) it demonstrates that exploratory 

action noise is still a critically important learning factor, even when the reward 

model being used to learn is inherently inaccurate. 
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8.2 Conclusions 

Traditional single-agent learning systems have an elegant and intuitive relationship 

with how we expect learning to work in everyday life: We take an action; That ac­

tion has consequences; We learn from those consequences. In a multiagent system, 

this paradigm becomes a little more muddled: Everyone takes actions; these actions 

have multiple consequences; We all learn from all these consequences. The issue 

is that the reward we learn from is now a function of actions of other agents and 

to make things worse, many of these actions are exploratory. The issue of having 

other agents’ actions affecting a reward function can be handled through previ­

ously researched counterfactual reward shaping, and the exploratory action noise 

can be handled through our counterfactual exploration method utilized by CLEAN 

rewards introduced in Chapter 3. However, both these methods break our elegant 

learning paradigm: We cannot naturally see the consequences of counterfactual 

actions on our environment, since these actions never actually happened. Instead 

we depend on models of how actions lead to their consequences. The difficulty of 

creating such models range from implementing a few equations to Herculean efforts 

of combining multiple complex simulators. Making such models efficient leads to 

even more complexity, increasing the burden to the system designer (who likely 

wanted to use a learning system to reduce the design burden). In this chapter, 

we reduced these burdens by enabling agents to build statistical models of their 

rewards through iteratively interacting with the environment. These statistical 

models were then utilized in conjunction with CLEAN rewards. The ability to 
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develop statistical models of the agents’ rewards will enable these techniques to be 

applied to real-world systems. 

Although these results were promising, there are several directions for future 

work. First, the neural network function approximation techniques were not op­

timized with respect to the neural network parameters (e.g., number of layers, 

number of nodes, or learning rate) which may have been partly to blame for the 

significant computational cost of constructing the approximation of the reward 

model. Second, the neural networks in this work were computationally expensive, 

in the future alternate function approximation techniques should be used which 

are able to establish a relatively accurate system model which provides good per­

formance at a fraction of the computational costs of the neural network techniques 

used in this work. Finally, the function approximation techniques developed in 

this work were constructed offline and then used online during learning. These 

techniques must be extended to the case where the approximate reward model can 

be learned online. 
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Chapter 9 – Conclusions 

Our previous work on multiagent coordination focused on deriving reward func­

tions for agents to ascertain their contribution to a system wide objective [10, 12, 

16, 18, 15, 137, 134, 136, 132, 138, 140]. In this work, we used and extended that 

framework to estimate the impact of agent actions on their own and by extension 

the system objective functions. In this work, we: 

1. Developed a multiagent learning algorithm that accounts for the “background 

noise” caused by the exploratory actions of all agents (CLEAN Rewards). 

2. Developed a “one-action,	 multiple updates” algorithms to improve scaling 

and learning speed in multiagent learning (Batch-CLEAN Rewards). 

3. Derived statistical models to extend CLEAN rewards to domains where the 

functional form of the system objective function is unknown. 

The long-term goal of this work is to enable the widespread use of multiagent learn­

ing in the control and coordination of large systems. To that end, we introduced 

and investigated a new learning paradigm that explicitly considers the impact of an 

agent’s exploratory “noise” (so-called exploratory action noise) on another agent 

in a large model-based multiagent reinforcement learning systems. Next, we in­

troduced a novel reward shaping technique called Coordinated Learning without 



126 

Exploratory Action Noise which eliminated this noise for agents learning within a 

multiagent system, resulting in improved learning and performance. Additionally, 

CLEAN rewards promoted coordination by addressing the structural credit assign­

ment problem present during learning. We then generalized this concept to allow 

agents to explore and assess the potential values of multiple action for each of their 

interactions with the environment. Then, we improved the real-world applicability 

of the developed techniques by reducing the reward model requirements. 

The discovery of exploratory action noise and CLEAN rewards is a major con­

tribution to the field of multiagent systems. Developing multiagent learning tech­

niques which account for learning noise caused by the exploratory actions of agents 

required new theoretical insights (e.g., how to quantify the impact of learning noise 

on resultant system performance) and practical advances (e.g., how to maintain 

the exploration necessary for learning, while eliminating the noise it causes in the 

learning process). This work quantified the impact of exploratory actions on mul­

tiagent learning performance and subsequently developed learning techniques (i.e., 

CLEAN rewards) which eliminated the learning noise associated with such explo­

ration actions. Here, we demonstrated the benefits of CLEAN rewards for learning 

within multiagent environments which are inherently non-stationary. 

Next, we developed Batch-CLEAN which extended the benefits of CLEAN re­

wards while increasing the learning speed. Eliminating the non-stationarity in the 

environment for a multiagent systems is a key step in improving system perfor­

mance, but does not, by itself, rectify the slow convergence speeds of multiagent 

systems. Indeed, that issue stems also from the exponentially large joint action 
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spaces prevalent in multiagent systems. The third objective aims at significantly 

speeding up learning in multiagent systems by enabling agents to perform reward 

updates for multiple actions after each interaction with the environment. The im­

pact of this objective is to enable agents to search through a much larger portion 

of the search space, significantly improving the learning speed compared to exist­

ing techniques. This is particularly critical to applying multiagent algorithms in 

real world domains where the dynamic and stochastic environment requires con­

trol techniques that can quickly adapt to changing system needs. To address this, 

Batch-CLEAN rewards enabled agents to calculate reward updates for multiple 

actions during each time step. This approach maintained the benefits of CLEAN 

rewards (i.e., performance gains) while at the same time significantly increasing 

learning speed. 

Finally, we extended the real-world applicability of CLEAN rewards based tech­

niques by extending them to domains where the functional form of the system 

objective is not known or cannot be defined. In many real world systems the envi­

ronment cannot be queried for the impact of alternative actions without actually 

taking those actions. Here, we enabled agents to construct statistical models of 

the system reward function. The agents then used this approximate model of the 

system reward when calculating their individual CLEAN rewards. Such approxi­

mation techniques are ideal for extensions to Batch-CLEAN rewards due to their 

low computational expense (compared to complete re-simulation). 

Although this work significantly advanced the state-of-the-art in multiagent 

learning by introducing several new reward shaping techniques, there is still a sig­
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nificant amount of work to be done. First, a thorough exploration of the types of 

approximate rewards modeling tools should be conducted, and the trade-offs should 

be analyzed. It is likely that both reduced computational costs and significant per­

formance gains could be achieved over the simple neural networks applied in this 

work. In particular, combining cross-validation training with lower variance re­

gression modeling techniques for developing approximate reward models can likely 

be applied in order to improve performance over the model-based reinforcement 

learning techniques utilized in this work. Additionally, in order to further improve 

the real-world applicability of CLEAN rewards, work needs to be done to extend 

them to domains where agents have neither an accurate system model (i.e., agents 

use function approximation techniques to develop an approximate system reward 

model for learning) nor access to information about all other agents in the system 

at any given time (i.e., under communication restrictions). This work would make 

these techniques directly applicable to almost any real-world system (i.e., limited 

information and only an approximate reward model) and these extensions should 

be fairly straight forward to implement. 
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