

AN ABSTRACT OF THE DISSERTATION OF

Chris HolmesParker for the degree of Doctor of Philosophy in

Mechanical Engineering presented on April 15, 2013.

Title:

CLEAN Learning to Improve Coordination and Scalability in Multiagent Systems

Abstract approved:

Kagan Tumer

Recent advances in multiagent learning have led to exciting new capabilities

spanning fields as diverse as planetary exploration, air traffic control, military

reconnaissance, and airport security. Such algorithms provide a tangible benefit

over traditional control algorithms in that they allow fast responses, adapt to

dynamic environments, and generally scale well. Unfortunately, because many

existing multiagent learning methods are extensions of single agent approaches,

they are inhibited by three key issues: i) they treat the actions of other agents as

“environmental noise” in an attempt to simplify the problem complexity, ii) they

are slow to converge in large systems as the joint action space grows

exponentially in the number of agents, and iii) they frequently rely upon the

presence of an accurate system model being readily available.

This work addresses these three issues sequentially. First, we improve overall

learning performance compared to existing state-of-the-art techniques in the field

by embracing the exploration in learning rather than ignoring it or

approximating it away. Within multiagent systems, exploration by individual

agents significantly alters the dynamics of the environment in which all agents

learn. To address this, we introduce the concept of “private” exploration, which

enables each agent to present a stationary baseline policy to other agents in order

to allow other agents in the system to learn more efficiently. In particular, we

introduce Coordinated Learning without Exploratory Action Noise (CLEAN)

rewards which improve coordination and performance by utilizing the concept of

private exploration in order to remove the negative impact of traditional “public”

exploration strategies from learning in multiagent systems. Next, we leverage the

fundamental properties of CLEAN rewards that enable private exploration to

allow agents to explore multiple potential actions concurrently in a “batch mode”

in order to significantly improve learning speed over the state-of-the-art. Finally,

we improve the real-world applicability of the proposed techniques by reducing

their requirements. Specifically, the CLEAN rewards developed require an

accurate partial model (i.e., an accurate model of the system objective) of the

system in order to be computed. Unfortunately, many real-world systems are too

complex to be modeled or are not known in advance, so an accurate system

model is not available a priori. We address this shortcoming by employing

model-based reinforcement learning techniques to enable agents to construct

their own approximate model of the system objective based upon their

observations and use this approximate model to calculate their CLEAN rewards.

c©Copyright by Chris HolmesParker

April 15, 2013

All Rights Reserved

CLEAN Learning to Improve Coordination and Scalability in

Multiagent Systems

by

Chris HolmesParker

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented April 15, 2013

Commencement June 2013

Doctor of Philosophy dissertation of Chris HolmesParker presented on
April 15, 2013.

APPROVED:

Major Professor, representing Mechanical Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Chris HolmesParker, Author

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Kagan Tumer for his very valuable insight

on multiagent techniques, for his support, and for always pushing me to improve

the quality of my work.

Additionally, I would like to thank my committee, Dr. Belinda Batten, Dr. Ross

Hatton, Dr. Jonathan Hurst, Dr. Ravi Balasubramanian, and Dr. Richard

Nafshun for their time and patience throughout this project.

I would like to thank the AADI lab for their help and very useful comments.

I would like to extend a special thank you to the Portland chapter of the

Achievement Rewards for College Scientists (ARCS) foundation, without whom

my time in graduate school would not have been possible.

I would like to thank a number of people who have advised me over the years,

including: William Reiersgaard, Tom Overman, Robert Cava, Douglas Keszler,

Rich Josephson, William Hetherington, Brian Bloudek, Frank Oliver, Nahum

Gat, Linda Papermaster, Joel Gat, Billy Bloudek, Adrian Agogino, and Orville

Holmes. The support, advice, and help I have received from these people has

been extremely valuable and is the backbone behind my success.

I would like to thank my parents (Luana Parker, Martin Parker, and Larry

Holmes) and siblings (Lisa, Jessica, Jerry, and Orville) for all their support

throughout the years.

And last but not least, I would like to thank my amazing girlfriend Ilana Gat for

all her support, for her encouragements, for being there for me, and for being my

best friend.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Contributions . 5

2 Background 9

2.1 Agent Learning . 9

2.1.1 Markov Decision Processes (MDPs) 9

2.1.2 Reinforcement Learning . 10

2.1.3 Model-Based Reinforcement Learning 13

2.2 Multiagent Learning . 14

2.2.1 Considerations in Multiagent Learning 15

2.2.2 From Single Agent Learning to Multiagent Learning 17

2.2.3 Rewards for Multiagent Learning 19

3 CLEAN Rewards for Learning in the Presence of Exploration 27

3.1 Introduction . 28

3.2 Background and Related Work . 30

3.2.1 Exploration Exploitation Dilemma 31

3.2.2 Exploratory Action Noise . 32

3.3 CLEAN Rewards . 38

3.3.1 CLEAN 1: C1,i . 40

3.3.2 CLEAN 2: C2,i . 42

4 CLEAN Rewards in Toy Problems 44

4.1 Experimental Domains . 44

4.1.1 The Gaussian Squeeze Domain 44

4.1.2 The Defect Combination Problem 45

4.1.3 CLEAN Rewards for the DCP 47

4.2 Results . 49

4.2.1 The Gaussian Squeeze Domain 50

4.2.2 The Defect Combination Problem 52

4.3 Discussion . 55

TABLE OF CONTENTS (Continued)

Page

5 Batch-CLEAN Rewards for More Efficient Learning 60

5.1 Introduction . 61

5.2 Background and Related Work . 62

5.3 Batch-CLEAN Rewards . 66

5.3.1 Batch-CLEAN Rewards Based on CLEAN 1 68

5.3.2 Batch-CLEAN Rewards Based on CLEAN 2 70

6 CLEAN and Batch-CLEAN in Real-World Domains 72

6.1 Experimental Domains . 72

6.1.1 UAV Communication Network Domain 73

6.1.2 CubeSat Coordination Domain 79

6.1.3 Batch-CLEAN Rewards for the UAVCN Domain 90

6.2 Results . 93

6.2.1 UAV Communication Network Domain 94

6.2.2 CubeSat Coordination Domain 98

6.3 Discussion . 100

7 Utilizing Function Approximation for Learning with Shaped Rewards in

Unknown Environments 103

7.1 Introduction . 104

7.2 Background and Related Work . 106

7.2.1 Neural Networks . 107

7.3 Reward Shaping within Unknown Environments 110

7.3.1 Reward Modeling . 111

7.3.2 CLEAN Rewards for Unknown Environments 113

8 Learning with CLEAN Rewards in Unknown Real-World Domains 115

8.1 Results . 116

8.1.1 UAVCN Domain . 118

8.1.2 CubeSat Coordination Domain 120

8.2 Conclusions . 123

9 Conclusions

TABLE OF CONTENTS (Continued)

Page

125

Bibliography 129

LIST OF FIGURES

Figure	 Page

1.1	 When an agent “exploits” its policy, it takes its best known action.
When an agent “explores,” it takes actions that it is less sure of in
hopes that it will discover a good action. In single agent learning,
once learning is complete, using the exploitive policy will almost
always lead to higher performance since it is the best known pol­
icy. This is often not the case in multiagent learning since an agent
will be exploiting a policy that assumed all other agents were explor­
ing. In this figure, even on a relatively simple problem, performance
actual goes down at the end of learning (episode 1000) when explo­
ration is turned off and all agents exploit their best policy. 2

3.1	 t-greedy reinforcement learning agents were trained for 1000 episodes
and then learning was turned off and their policies were fixed. We
then test the performance of the learned policies under different
amounts of exploration actions (we replace the policies of some
agents with random exploratory policies). In these cases, agents
perform better in the presence of exploration than they do with­
out exploration. In particular, these policies perform the best when
the portion of agents taking exploratory actions is near the value of
t used during learning (t = 0.05 in this case). This is because the
agents learn to depend upon the exploratory actions of other agents.
Although the exploration-exploitation trade-off has been extensively
studied throughout the multiagent learning literature, relatively lit­
tle work has been done to address the biasing issues associated with
agents learning to depend upon the exploratory actions of other
agents. 35

LIST OF FIGURES (Continued)

Figure	 Page

3.2	 Here, agents learned for 1000 episodes and then learning was turned
off and their policies were fixed. We then test the performance of
the learned policies under different amounts of exploration actions
(we replace the policies of some agents with random exploratory
policies). In these cases, agents perform better in the presence of
exploration than they do without exploration. In particular, these
policies perform the best when the portion of agents taking ex­
ploratory actions is near the value of t used during learning (t = 0.10
in this case). This is because the agents learn to depend upon
the exploratory actions of other agents. Although the exploration-
exploitation trade-off has been extensively studied throughout the
multiagent learning literature, relatively little work has been done to
address the biasing issues associated with agents learning to depend
upon the exploratory actions of other agents. 36

4.1	 N = 500 agents learning in the Gaussian Squeeze Domain with
µ = 0.80N and σ = 0.80N , and 10% exploration. As seen, agents
using G and D experience significant decreases between their on­
line and offline performance. This is because agents learn policies
that depend upon the presence of exploratory action noise. CLEAN
rewards are robust to such noise and have improved performance. . 50

4.2	 Proportional Agent Scaling with µ = 0.80N and σ = 0.80N , where
N is the number of agents. This is a low-complexity setting in
the Gaussian Squeeze Domain (high variance). Again, the offline
performance for agents using G and D is frequently worse than the
online performance. This is because the underlying policies learned
by agents relied upon the exploratory actions of the other agents in
the system. 52

4.3	 Scaling the number of agents with µ = 100 and σ = 100. As the
number of agents increases, the coupling between agents increases
and the problem becomes more difficult and the exploratory action
noise has more of an effect on system performance. As seen, CLEAN
rewards are more robust than other rewards. 53

LIST OF FIGURES (Continued)

Figure	 Page

4.4	 The Defect Combination Problem with 300 agents. Exploratory ac­
tions can be especially damaging in this domain, as a single agent
can have a drastic impact on the overall system performance (Sec­
tion 4.1.2). CLEAN rewards maintain exploration while avoiding
the coordination issues that arise when agents attempt to coordi­
nate in the presence of exploration (Sections 3.2 and 3.3). 55

4.5	 The Defect Combination Problem scaling the number of agents from
10 to 2000. As seen, CLEAN rewards are highly scalable, outper­
forming other methods by up to three orders of magnitude for high
levels of scaling. 56

5.1	 Traditionally all agents take exploratory actions and each agent re­
ceives a reward that is dependent on its action and the actions of
other agents (top). The exploration of other agents causes noise on
the rewards. We propose having each agent take its non-exploratory
action in public, and in private take a counterfactual exploratory
action, and receive a reward for this counterfactual action (mid­
dle). Multiple counterfactual exploratory actions can be taken at
the same time (bottom). 67

6.1	 UAV Communications. A set of UAVs at high altitude transmit data
to a set of customers on ground over a single communication channel.
The task of the system is to maximize average bitrate customers
receive. Multiple UAVs may communicate to single customer. A
UAV communicates to at most one customer. 75

6.2	 Signal Dynamics. UAVs with high-gain antennas throw a strong
signal over a small area. UAVs with low-gain antennas throw weaker
signal over larger area (Left). The strength of the signal depends
on how far the customer is away from the center of the signal cone
(Right). 77

6.3	 Agent Actions. An agent can choose power level of UAV within
certain range. An agent can also choose orientation of antenna. The
Agent must choose power levels and orientations to balance giving
more signal to their customers and less noise to other customers. . . 80

LIST OF FIGURES (Continued)

Figure	 Page

6.4	 Small community needs CubeSat observations of a forest fire. Agents
handle observation request. Using one agent per CubeSat, an agent
bids for the observation of a particular CubeSat. As a collective
agents as a whole must bid for an appropriate number of observa­
tions with minimal cost. 85

6.5	 A set of CubeSats gain different levels of value, vi, from observing
their own point of interest. A potential customer would like satel­
lites observations of its own point of interest. The value of these
observations to the customer, vc depend on mix and number and
locations of satellites involved. 87

6.6	 100 UAVs and 100 customers in the UAVCN domain. Agents using
CB1 and CB2 rewards learn approximately one-hundred times faster
than agents using C1, C2, G and D rewards. Batch-CLEAN rewards
outperform D by 20% and G by 80%. 94

6.7	 Scaling the number of UAVs in the UAVCN domain. Agents using
Batch-CLEAN rewards CB1 and CB2 continue to maintain the same
converged performance as standard CLEAN rewards C1 and C2
(although they converge more quickly), and outperform the next
best method D by at approximately 15-20% when scaling between
100 and 1000 UAVs. 96

6.8	 100 agents in the CCD. As seen here, agents using Batch-CLEAN re­
wards CB1 and CB2 converge significantly faster than other learning
methods, including agents using standard CLEAN rewards. Addi­
tionally, agents using Batch-CLEAN achieve the same level of per­
formance as standard CLEAN rewards and outperforming D by 30%
and G by 600%. 98

6.9	 Scaling the number of agents in the CCD. As seen, agents using
CB1 and CB2 rewards maintain performance as scaling increases
and continue to outperform all other methods by at least 30%. . . . 99

7.1	 Network diagram for a two layer feed forward Neural Network (NN).
The input, hidden and output variables are represented by nodes,
and the weight parameters are represented by links between the
nodes. In feed forward NN the information flow through the network
from input to hidden and then to output layer. 108

LIST OF FIGURES (Continued)

Figure	 Page

8.1	 100 agents in the UAVCN domain. As seen, agents using CLEAN
rewards with an approximation of the system reward outperform
agents using global rewards, G, which have a complete and accurate
model of the system reward. Additionally, agents using CLEAN
rewards utilizing function approximation (e.g., C1NN and C2NN)
are able to perform approximately as well as agents using standard
difference rewards D with a complete analytical model of the system
in this case. 119

8.2	 100 agents in the Cubesat Coordination Domain. Agents using tra­
ditional global rewards, G, with a complete and accurate analytical
model of the system reward function are unable to perform as well
as agents using shaped rewards with an approximate system model.
Difference rewards utilizing an approximate model of the system re­
ward are able to outperform traditional global rewards due to their
ability to improve coordination by addressing the structural credit
assignment problem. Agents using CLEAN rewards with an approx­
imate model of the system objective are able to perform nearly as
well as difference rewards with an accurate model (D) because they
simultaneously address the structural credit assignment problem as
well as exploratory action noise. 121

Chapter 1 – Introduction

Multiagent learning algorithms have gained popularity and acceptance in a variety

of commercial (e.g., air traffic management), industrial (e.g., the “smart” electrical

grid), military (e.g., distributed sensing), and scientific (e.g., fractionated satellites)

domains. The complexity of tasks within these systems render preplanned agent

control techniques inadequate as they are either too computationally expensive

to compute or simply too slow to respond to the rapidly changing environmental

dynamics. Instead, agents must discover their own control solutions, using learn­

ing approaches, where they continually interact with their environment in order

to learn a mapping from their states to actions. As most multiagent learning al­

gorithms are extensions of single agent learning algorithms, they consist of agents

taking actions and updating their internal parameters based on the reward they

receive. The agents continually strike a balance between exploiting the knowledge

they have already gained (i.e., taking actions that currently they believe will lead

to good performance) and exploring new actions which may improve their knowl­

edge of the system and eventually lead to better performance. It is known that

learning agents must balance these two behaviors and this has become known as

the “exploration-exploitation” tradeoff in learning.

In traditional single-agent reinforcement learning, an agent consistently takes

exploratory actions to ensure that it does not prematurely conclude that a sub­

2

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
ys

te
m

 P
er

fo
rm

an
ce

Episodes

The Impact of Exploration on Learning

Figure 1.1: When an agent “exploits” its policy, it takes its best known action.
When an agent “explores,” it takes actions that it is less sure of in hopes that it
will discover a good action. In single agent learning, once learning is complete,
using the exploitive policy will almost always lead to higher performance since it
is the best known policy. This is often not the case in multiagent learning since
an agent will be exploiting a policy that assumed all other agents were exploring.
In this figure, even on a relatively simple problem, performance actual goes down
at the end of learning (episode 1000) when exploration is turned off and all agents
exploit their best policy.

optimal solution is its best option. Over time, these exploratory actions help the

agent learn the real underlying values associated with its actions. In fact, it has

been shown that in single agent learning, such exploration is necessary to converge

to an optimal policy. Unfortunately, in multiagent systems, the exploratory actions

of individual agents fundamentally alter the dynamics of the system the agents are

attempting to learn (see Figure 1.1). Indeed, if an agent treats the other agents

in the system as part of the environment, it has no way to distinguish between

3

environmental noise and the noise associated with exploratory actions of other

agents. Learning what other agents are likely to do in a given state is critical for

the success of a learning agent. But learning the exploratory noise of the other

agents’ actions is not only difficult, but also self-defeating. In such a case, the

agents are attempting to learn an artifact, one that will disappear when the agents

start to converge to their true policies.

In this work, we leverage our previous work on credit assignment to develop

Coordinated Learning without Exploratory Action Noise (CLEAN) rewards, which

address the exploratory noise problem [59, 7, 60, 63]. These rewards are based on

the concept of counterfactual actions that to date have been used to enable indi­

vidual agents to determine their individual impact on overall system performance.

CLEAN rewards extend and generalize this concept in order to allow agents to have

private exploration, where they explore the values of their own actions without im­

pacting the learning of other agents. Overall, this algorithm lets agents distinguish

when their peers are taking purposeful actions (e.g., exploiting their current knowl­

edge) from when they are taking exploratory actions (e.g., randomly sampling the

action space to attempt to improve their system knowledge) by utilizing counter­

factuals to privatize exploration, and as we show, provides a tremendous leap in

multiagent performance.

A second, related problem in multiagent learning is the slow convergence of the

system to good joint actions. This is partially caused by the noise associated with

the exploration/exploitation trade-off described above, but also by the sheer size

of the joint state-action space. Indeed, that space grows exponentially with the

4

number of agents, and a slow, traditional search through the solution space proves

difficult, if not impossible, when the number of agents grow into thousands. In this

work, we extend the concept of private exploration detailed above to enable agents

using CLEAN rewards to update their perceived valuations of multiple actions at

a time, resulting in “batch” updates. This is done by exploiting the concept of

“privatized exploration” via counterfactuals introduced with CLEAN rewards. In

particular, this enables agents to utilize counterfactuals combined with a reward

model and system state information to approximate the impact they would have

had on the system had they taken one of a set of alternate actions, resulting in a

rewards for “potential” actions that were not explicitly taken. Allowing agents to

perform multiple concurrent updates enables them to search the joint state-action

space much more quickly and efficiently, which we show significantly improves

learning speed.

Finally, although the CLEAN rewards described above result in significantly

improved performance and learning speed, they have a drawback in that they

require an accurate partial system model (i.e., an accurate model of the system

objective) in order to be computed. In fact, the requirement of either an accu­

rate full or partial system model is a key drawback of many existing multiagent

learning techniques, and is a factor which significantly inhibits the real-world ap­

plicability of many multiagent techniques. For our final contribution, we extend

the applicability of CLEAN rewards into real-world domains by enabling agents

to learn without being given an accurate system model a priori. Here, we enable

agents to utilize statistical function approximation tools to construct their own ap­

5

proximate model of the system objective through repeatedly interacting with their

environment. Agents are then able to use their approximate models of the system

objective to calculate their CLEAN rewards. In this setting, agents utilize the ap­

proximate model of the system objective they create to calculate their individual

CLEAN rewards. As we show, the performance of agents using CLEAN rewards

with an approximate model of the system objective is comparable in performance

to existing state-of-the-art reward shaping techniques that are given an accurate

system model.

1.1 Contributions

Overall, these three issues have inhibited the long-term goal of the field of mul­

tiagent systems, which is to enable decentralized control over systems comprised

of thousands of disparate agents. In this work, we directly address all three of

these issues. First, we formulate a paradigm where we shift from a “public” explo­

ration strategy (i.e., all agents explicitly take exploratory actions and all agents

observe each other’s exploratory actions) to a “private” exploration strategy (i.e.,

agents do not explicitly take exploratory actions, instead, agents implicitly take

exploratory actions which are not visible to other agents). In particular, we intro­

duce Coordinated Learning without Exploratory Action Noise (CLEAN) rewards,

which leverage the properties of a “private” exploration strategy in order to re­

move learning noise and improve coordination in multiagent systems. Second,

we exploit the properties of CLEAN rewards in order to enable agents to obtain

6

“batch” rewards for multiple possible actions during each of their interactions

with the environment, resulting in significantly improved learning speed. Finally,

we use model-based reinforcement learning techniques to extend the applicability

of these algorithms into real-world systems where accurate system models are not

readily available and agents must learn within an unknown environment. This

work is aimed at improving the capabilities of multiagent systems, as well as their

real-world applicability. The particular contributions of this work are as follows:

•	 We identify, formalize, and define the exploratory action noise caused by

agent exploration in multiagent systems which is a previously unidentified

issue that has been plaguing the field of multiagent systems.

•	 We design a paradigm shift away from explicit “public” agent exploration

strategies towards “private” implicit exploration strategies to address ex­

ploratory action noise.

•	 We introduce and define Coordinated Learning without Exploratory Action

Noise (CLEAN) rewards which eliminate exploratory action noise in multi-

agent learning, increasing system performance over existing state-of-the-art

techniques (e.g., difference rewards).

•	 We introduce Batch-CLEAN, which leverages the properties of “private” ex­

ploration to enable agents to perform multiple learning updates (i.e., control

updates) per interaction with their environment, increasing learning speed

over the state-of-the-art (e.g., difference rewards).

7

•	 We combine the CLEAN rewards paradigm with statistical function approx­

imation techniques which enable agents to utilize these methods in unknown

environments, improving the real-world applicability of these techniques over

the existing state-of-the-art (e.g., potential-based reward shaping, difference

rewards).

The remainder of this work is structured as follows. Chapter 2 provides background

information on various aspects of multiagent systems and multiagent learning1 .

Chapter 3 introduces the issue of exploratory action noise and presents Coordi­

nated Learning without Exploratory Action Noise (CLEAN) rewards as a solution

to this problem. Chapter 4 demonstrates the performance of CLEAN rewards in

two toy domains and demonstrates that CLEAN rewards outperform existing state­

of-the-art techniques (e.g., difference rewards). Chapter 5 proposes an extension of

the concepts CLEAN rewards that leverages the concept of private exploration to

enable agents to perform “batch” reward updates to significantly improve learning

speed. Then, Chapter 6 demonstrates the performance of these Batch-CLEAN

rewards in two real-world domains, comparing their performance to both standard

CLEAN rewards as well as difference rewards. Chapter 7 outlines a methodology

that extends the applicability of CLEAN based techniques into real-world domains

with unknown environments by implementing model-based reinforcement learning

techniques to enable agents to construct their own environmental models based

upon their own observations instead of relying upon an accurate system model

1This chapter can be skipped if the reader is already familiar with multiagent systems and
multiagent learning

8

to be given a priori. Chapter 8 then demonstrates the performance of CLEAN

rewards utilizing model-based reinforcement learning techniques to learn within

initially unknown environments using two real-world domains. Finally, Chapter 9

provides a discussion of the conclusions of this work, along with opportunities for

future work.

9

Chapter 2 – Background

2.1 Agent Learning

Throughout this dissertation, we are interested in intelligent agents which are able

to autonomously “learn” their own control policies (i.e., agents that are able to

learn how to behave and act within an environment). Within this section, we

will be introducing one of the most common frameworks for these learning based

problems (e.g., Markov Decision Processes) and then outlining some standard ap­

proaches to agent-based learning (e.g., reinforcement learning). This section will

outline the fundamental properties of single-agent learning systems and will set

the stage for our introduction to learning within multiagent environments.

2.1.1 Markov Decision Processes (MDPs)

A Markov Decision Process (MDP) is a framework that can be used to describe a

learning problem for agents that are learning within a stochastic environment. The

MDP framework was created when planning methods failed to handle stochasticity

in the environment and actions. Instead of transitioning deterministically from one

state to another given a certain action, when the actions in a given state lead to

a series of potential future states s’ for an action taken. An MDP is a four-

tuple {S, A, R, T }, consisting of a set of agent states S, actions A, a deterministic

10

reward function R, and a transition probability function T. The set of states S, is

the complete set of states that an individual agent can observe itself in. The set of

actions A, is the complete set of actions each individual agent is capable of taking.

The reward function R provides a direct mapping from the observed current state of

an agent s to the reward r associated with being in that state. Finally, T contains

the probability of ending up in state s' at time t + 1 after taking action a in state

s at time t. This four-tuple characterizes a Markov Decision Process. MDP’s are

capable of handling stochasticity and environmental uncertainty associated with

state-transitions (i.e. action a in state s will not always yield a specific state s')

[116].

2.1.2 Reinforcement Learning

Reinforcement learning can be considered a computational approach to under­

standing and automating goal-directed learning and decision making [125].1 Re­

inforcement learners observe the state of the environment and attempt to take

actions that maximize their expected future reward.2 A reinforcement learning

problem consists of at least one agent and an environment. A reinforcement learn­

ing agent has four key elements including a policy, reward function, value function,

and optionally an environmental model [125].

An agent’s policy defines the way the agent behaves at any given time [125],

1A comprehensive list of single and multiagent reinforcement learning algorithms can be found
in [30, 125, 154].

2In this work, an agent’s environment consists of the world and all other agents and the
problem is represented as a four-tuple MDP .

11

it can be thought of as the agent’s controller. This controller maps the agent’s

perceived environmental state to the action it takes in that state. Initially, these

policies are initialized in an arbitrary manner, and adjusted over time as the agent

learns. Each agent’s policies are updated via the agent’s reward and value function.

An agent’s reward function reflects the agent’s goal in a reinforcement learning

problem [125]. The reward function provides an agent with a learning signal for

actions taken. In general, the learning signal is positive if the agent’s actions were

beneficial to its goal, and negative if the actions were detrimental to the agent’s

goal. The rewards an agent receives are frequently coupled with a value function

in order to update the agent’s policy (controller).

A reinforcement learning agent uses some form of a value function in order

to update its policy based upon the reward it receives. There are many forms of

value updates in reinforcement learning, depending upon the domain. Here, we will

introduce one of the most common forms of value functions known as a Q-function.

At every episode an agent takes an action and then receives a reward evaluating

that action. Agents select the actions corresponding to the highest Q-value with

probability 1 − t, and chooses a random action with probability t. The constant

t is an exploration rate. After taking action a and receiving reward R an agent

updates its Q table (which contains its estimate of the value for taking action a in

state s [125]) via the Q-update function as follows:

Q ' (s, a) = Q(s, a) + α (R(s) − Q(s, a) + γQmax(s ' , a ')) (2.1)

12

where,

•	 Q ' (s, a) is the updated Q-value for taking action a in state s at time t

•	 Q(s, a) is the current Q-value for taking action a in state s at time t

•	 maxaI Q(s ' , a ') is the maximum possible Q-value associated with taking action

a ' in state s ' at time t + 1

•	 R(s) is the reward received for the agent being in state s at time t

•	 α is the learning rate {0, 1}

•	 γ is the discount factor {0, 1}

Each of the Q(s, a) values provides an agent with a measure of the amount of

reward it can expect to achieve over time for taking action a in state s. The learning

rate α controls how quickly an agent learns. If α is set low, new rewards will not

impact the agents Q(s, a) values as quickly, resulting in slower learning and slower

changes in behavior. This is useful in domains where The environment changes

slowly over time. When the α parameter is set high, learning occurs rapidly,

pushing the Q(s, a) values to change quickly with respect to rewards received.

This is very useful in domains where the environment is changing rapidly, and the

agents policy needs to change accordingly. The discount factor γ on the other hand

impacts how far ahead an agent looks when considering its actions. A discount

factor of γ = 0 will consider only the immediate reward obtainable from taking an

action a in the current state s. A higher discount factor causes an agent to consider

13

the down-stream effects of its actions, how the action it takes in the current state

s will impact the cumulative reward it receives in the future.

2.1.3 Model-Based Reinforcement Learning

Model-based reinforcement learning is of particular interest to this work. Model-

based Reinforcement Learning refers to learning optimal behavior indirectly by

learning a model of the environment by taking actions and observing the outcomes

that include the next state and the immediate reward [107]. The models predict

the outcomes of actions and are used in lieu of or in addition to interaction with

the environment to learn optimal policies [107]. Many existing reward shaping

techniques (e.g., Q-learning [125]) allow agents to learn without a model of the

environment, simply through repeated interactions. Unfortunately, in many do­

mains (e.g., multiagent reinforcement learning domains) this type of learning can

be prohibitively slow, as each piece of information agents receive from the en­

vironment is used once and then discarded. To address this shortcoming, there

has been a plethora of research in the area of model-based reinforcement learning

[84, 102, 75, 107, 96, 20, 144]. Model-based RL techniques enable agents to leverage

knowledge about the environmental model (e.g., the environmental dynamics and

system objective) to improve learning speed and performance [84, 102, 75, 107].

Reinforcement learning for MDPs are able to leverage models into improving

performance in a couple of ways. If agents are given an accurate model of the

system, they can utilize offline learning techniques which solve the modeled MDP

14

directly. With online model-based RL, agents can leverage the model to guide

exploration and action selection during learning towards more “interesting” re­

gions of the search space (resulting in more efficient exploration) [102, 75]. Value

iteration and policy iteration are perhaps the most popular methods of solving

model-based reinforcement learning problems [125, 107].

Model-based RL algorithms either assume agents are given an accurate sys­

tem model a-priori, or that agents must construct their own approximate system

model through repeated interactions with the environment. In this work, we first

assume that agents are given an accurate partial system model (i.e., the system

reward model) a priori in order to demonstrate the benefits of our reward shaping

techniques. We then extend these techniques to the case where agents must learn

their own approximate system model (i.e., an approximate model of the system

objective), and then use this approximate model during learning.

2.2 Multiagent Learning

Learning is often an important component of multiagent systems. Learning

methods can generally be grouped into one of three main categories: supervised,

unsupervised, and reward-based learning. Supervised learning is learning in the

presence of a ‘teacher’, which tells an agent whether the action it took was right

or wrong. Supervised learning works well for classification problems in which a set

of training examples are available. However, in many complex real world domains,

dynamic interactions between agents and stochasticity in the environment make

15

it impossible to know what the correct actions are. Unsupervised learning occurs

when an agent is simply put in an environment and learns patterns from its inputs

and observations without receiving any explicit feedback. A common example of

unsupervised learning is clustering: detecting potentially useful or related clusters

from a set of input examples [116]. Reward based learning is often called “semi-

supervised” learning: there is no explicit target function, but there are rewards

which provide feedback for actions taken. In this work we will focus on reward-

based learning methods, namely multiagent reinforcement learning within an MDP

framework.3

2.2.1 Considerations in Multiagent Learning

When designing a multiagent system, there are a number of key system properties

that must be considered and determined by the system designer. Here we introduce

a few of these properties:4

Credit Assignment Problem: In cooperative multiagent learning problems,

credit assignment involves how to distribute rewards to each agent in the system

based upon their individual contribution to the system performance. Credit as­

signment has two key aspects: 1) How to divvy up credit among agents based upon

the actions they took individually and determine how they contributed to the sys­

tem performance (structural credit assignment), and 2) How to distribute credit

3A comprehensive list of single and multiagent reinforcement learning algorithms can be found
in [30, 125, 154].

4Additional information on these topics can be found in [116, 125, 153].

16

to agents for actions taken during previous time steps (temporal credit assignment

problem) [8]. In order to achieve good performance in multiagent learning, both

aspects of the credit assignment problem must be addressed [125].

Communication in Multiagent Systems: Communication is a critical element

in multiagent learning. Communication can be done either explicitly or implicitly.

Explicit methods involve direct agent-to-agent communication, negotiation, or in­

formation exchanging. In such cases, communication is typically limited by domain

attributes. Some domains have a maximum communication distance while others

have restricted data rates. Most approaches to explicit communication involve as­

signing a cost to communication and having agents try to coordinate in order to

minimize the communication costs incurred [149]. Implicit communication is in­

direct and commonly occurs through environmental interactions. A few examples

of implicit communication include coupling agent reward functions [8] or leaving

pheromones or trails that other agents in the environment can detect and follow

[89]. Tradeoffs between different types and levels of communication and system

performance is highly studied in multiagent systems research.

Centralized vs. Decentralized Learning: In general, there are two extremes

associated with controlling large sets of autonomous devices. The first extreme is

a centralized control approach which treats the individual agents as peripherals

of a single system controller5 . This approach is advantageous in that the central­

ized control prevents individual agents from taking conflicting actions. However,

5If a multiagent system has full communication in which all agents can communicate directly
with each other, it is effectively equivalent to a system with a single centralized controller [123].

17

there are several drawbacks and difficulties associated with centralized approaches.

These approaches become prohibitively expensive to compute as the number of

agents within the system increases, since the computation often increases exponen­

tially with additional agents due to agent-to-agent interactions within the system.

In addition, such approaches require the central node to receive complete “sensory”

information from each node in the system (full observability), which is unrealistic

in many real-world domains. An alternative is a fully decentralized approach, in

which each agent in the system develops its own view of the environment and pol­

icy of acting in it. A completely decentralized approach is advantageous because

it avoids single points of failure, easily adds and removes agents from the system,

and is readily reconfigurable to dynamically changing system requirements. De­

centralized approaches have been heavily researched in recent years due to these

capabilities. Current drawbacks associated with these methods lie in the difficulty

associated with designing individual-agent policies that collectively work together

to optimize the joint-actions of all the agents in the system and resultant system

performance.

2.2.2 From Single Agent Learning to Multiagent Learning

When extending single agent algorithms to multiagent learning, two new key issues

arise: How to account for the collective action of other agents in the system and how

to select actions that not only provide a direct benefit but also shape the actions of

other actions in the future. The first issue is an “input” problem, in that it forces an

18

agent to differentiate between the potentially stochastic changes to an environment

from the actions of intelligent agents and exploit this knowledge. The second issue

is an “output” issue, in that it forces the agent to determine a course of actions

that through its interaction with other agents influence the actions of other agents.

These two issues together provide both theoretical (convergence) and practical

(signal to noise in rewards) complications and render the direct application of

single agent learning algorithms problematic.

To date, most work focused on the output problem, particularly when focusing

on cooperative systems where agents aim to maximize a common goal [21, 47, 155].

Applications for such multiagent systems include managing air traffic [103, 136],

coordinating teams of unmanned aerial vehicles [47], managing the electrical grid

[87], controlling complex power plants [88], managing online digital auctions [37],

and data mining [155] to name a few. However, despite their benefits, multiagent

learning approaches must be improved to generalize to a larger set of coordination

problems, and both explicit and implicit coordination mechanisms are two options

to handle this issue.

Explicit coordination involves direct interaction and agent-to-agent communi­

cation between two or more agents within a system [6, 68, 74, 94]. Key examples of

explicit coordination mechanisms include auctions, bidding, and other forms of ne­

gotiations, which have been used for the allocation of goods and resources, as well

as task allocation in multiagent systems [37, 78, 91, 105, 110, 126]. Additionally,

techniques involving graph-based agent dependencies and message passing (e.g.,

max-plus, coordination graphs) have been used in a number of domains including

19

controlling multiple robots as well as swarms of UAVs [24, 47, 85, 94]. However,

the complexity and computational costs of explicit coordination techniques make

these techniques well suited to domains with a few sophisticated agents, but not

to domains where very large number of computationally limited agents must be

coordinated [5, 85, 116, 150, 156, 157].

Implicit coordination techniques rely solely upon an agent’s observation of the

environment, other agents, and the surrounding system to make decisions. Stig­

mergy, which enables agents to coordinate through their interactions with the envi­

ronment (e.g., leaving pheromone trails for other agents to detect and follow) is one

common form of implicit coordination that has shown success in a number of appli­

cations including controlling robot exploration and UAV swarms [55, 89, 94, 116].

Another approach to implicit coordination is through reward shaping, which de­

signs agent-specific rewards that reflect how well the agents interacted (i.e., how

their joint actions benefited the system performance) [15, 29, 43]. Key examples

of reward coupling include potential-based reward shaping and difference rewards

which have both been shown to increase both learning speed as well as overall

performance in a number of multiagent domains [14, 15, 42, 43, 103].

2.2.3 Rewards for Multiagent Learning

One of the most critical factors within multiagent learning is selecting the rewards

each agent should use to learn. The first and most direct approach is to let each

agent use the system reward as their individual reward. However, in many domains,

20

especially domains involving large numbers of agents, such a reward often leads to

slow learning. This is because each agent has relatively little impact on its own

reward. For instance if there were 100 agents and an agent takes an action that

improves the system reward, it likely that some of the 99 other agents will take

poor actions at the same time, and the agent that took a good action will not be

able to observe the benefit of its own individual action and how it impacted the

resultant system performance.

Another possibility for a reward is to use a local agent-specific reward that

only accounts for the action of the particular agent. While with such rewards an

agent can easily see the impact of its action on its reward, in most domains, the

local rewards are not aligned with the system reward G(z). In such domains, an

agent can maximize its own local reward, but in doing so it can reduce the overall

system reward. Local reward structures are primarily useful in problem domains in

which the local reward can be created in such a way that they are directly aligned

with the system performance. However, in many complex problem domains it is

notoriously difficult to derive agent-specific reward structures that are perfectly

aligned with the system objective function.

In this work, we develop novel reward mechanisms for promoting learning,

coordination, and scalability within multiagent systems. In particular, we focus

on designing a generalized class of reward structures which can be used across a

plethora of domains to improve performance in multiagent learning. These rewards

are able to maintain the benefits of global rewards G(z) (e.g., being positively

aligned with the objective of the system) while at the same time reaping the

21

benefits associated with localized rewards (e.g., the ability for agents to get clear

feedback on how their individual actions contributed to the reward they received).

The general term for the techniques used to create these rewards is reward shaping

2.2.3.1 Reward Shaping

Reward shaping is the practice of replacing an agent’s reward function with an

alternative reward that changes its learning [43, 132]. Frequently, reward shaping

is used to improve system performance or to make a problem easier to solve [13, 53].

Reward shaping has been used to increase performance by speeding up convergence

rates and improving coordination in problems involving reinforcement learning [13,

149]. In Q-learning, reward shaping can be represented by the following formula

[43, 95]:

Q(s, a) ← Q(s, a) + α[r + F (s, s ') + γmaxaI Q(s ' , a ') − Q(s, a)] (2.2)

where Q(s, a) is the Q-value associated with the agent taking action a in state s,

r is the standard reward, a ' is an alternate action, s ' is an alternate state, α is the

learning rate, γ is the discount factor, and F (s, s ') is the general form of the shaping

reward. As seen, the shaping reward F (s, s ') is an additional reward that is applied

on top of the agents original reward r in order to encourage better learning [43, 95].

Reward shaping techniques (e.g. Potential-based reward shaping [43]) have been

used to increase performance by speeding up convergence rates and improving

22

coordination in problems involving reinforcement learning [13, 43, 53, 149].

Many existing reward shaping techniques require a full system model in order

for them to be computed (i.e., agents or the system designer must have access

to both the transition probabilities T (s, a, s ') as well s the system reward model

R(s, a) [43, 53, 149]. Unfortunately, in complex multiagent systems, this infor­

mation is not always available, rendering many reward shaping techniques (e.g.,

potential-based reward shaping) inapplicable to many real-world applications.

Next, we will introduce a type of reward shaping technique which was developed

to both improve coordination and performance within multiagent systems, while

concurrently reducing the amount of information required by agents during learn­

ing. More specifically, we introduce difference rewards, which are shaped rewards

that only require agents to have knowledge of the system reward model R(s, a)

and eliminate the need for agents to have knowledge of the transition probabilities

T (s, a, s ').

2.2.3.2 Factoredness and Learnability

Ideally, a reward should provide an agent with two key pieces of information: 1)

How its action impacted the overall system performance, and 2) How its action

impacted the reward it received. Feedback on how its own actions impacted the

system performance allows agents to make decisions that are in-line with the system

objective. Providing agents with feedback on how its individual actions impacted

the reward it received allows the agent to adapt its actions in order to benefit both

23

itself and the system.

This first property has been formalized for an agent j, by defining the degree

of factoredness (also presented in [141, 152, 151]) between the agent-reward gj

and system reward G at state z, as:

u [(gj (z) − gj (z '))(G(z) − G(z '))]

Fgj =
z zI (2.3)

1
Iz z

where the states z and z ' only differ in the state of agent j, and u[x] is the unit

step function, equal to 1 if x > 0. The numerator keeps track of the number of

state pairs (z, z ') for which the agent reward, gj (z) − gj (z '), and system reward,

G(z) − G(z '), are aligned (have the same sign). A high degree of factoredness

means that agents improving their own local reward are concurrently improving

the system performance, while agents harming their local reward are also harming

system performance.

The second property has been defined as learnability, which is the degree to

which an agents reward, gj , was impacted by its own actions as opposed to the

actions of other agents. The learnability of a reward, gj , for agent j, evaluated at

z can be quantified as follows:

||gj (z) − gj (z − zj + zj
')||

Lgj = (2.4)
||gj (z) − gj (z ' − zj

' + zj)||

where in the numerator z ' differs from z only in the state of agent j, and in the

denominator the state of all other agents is changed from z to z ' . Intuitively, the

24

learnability provides a ratio between the portion of the agents reward signal that

depended upon its own actions (signal), and the portion of its reward signal that

depended upon the actions of all other agents (noise). The higher the learnability,

the easier it is for an agent to learn an accurate mapping between its actions and

its rewards.

2.2.3.3 Difference Rewards

Difference rewards are a particular type of shaped rewards which emphasize assign­

ing credit to individual agents in the system based upon their independent contri­

butions to the system’s performance [60, 12, 59, 132, 141, 151, 13, 141, 152, 151].

Difference rewards have been shown to work well in a number of domains and

conditions [7, 60, 59, 63, 13, 132]. Difference rewards are shaped rewards of the

form [13]:

Dj ≡ G(z) − G(z−j + cj) (2.5)

where G is the system objective, z is the complete system state vector and z−j

contains all the variables not affected by agent j. All the components of z that

are affected by agent j are replaced with the fixed constant cj (counterfactual

action).6 These rewards only require agents to have access to a model of the

system objective G and do not require agents to have any knowledge of the system

transition probabilities T , which significantly reduces the overhead requirements

6The only requirement of difference rewards is that agents have some approximation of the
shape of the underlying system objective, G [103].

25

compared to existing reward shaping techniques.

Difference rewards are factored no matter what the choice of cj , because the

second term does not depend on j’s actions [132]. Furthermore, they usually have

far better learnability than does a team reward, because the second term of D,

which removes a lot of the effect of other agents (i.e., noise) from j’s reward. In

many situations it is possible to use a value of cj that is equivalent to taking agent

j out of the system. This causes the second term to be independent of j (i.e.

the system performance without agent j), and therefore Dj evaluates the agent’s

contribution to the global performance. There are two key advantages to using Dj :

First, because the second term removes a significant portion of the impact of other

agents in the system, it provides an agent with a “cleaner” signal than G [13, 132].

Second, because the second term does not depend on the actions of agent j, any

action by agent j that improves D, also improves G (the derivatives of D and G

with respect to j are the same) [13, 132].

We also consider the Expected Difference Reward (EDR) which is given by:

EDRj ≡ G(z) − Ezj [G(z)|z−j] (2.6)

where Ezj [G(z)|z−j] gives the expected value of G over the possible actions of

agent j. Because this term does not depend on the immediate actions of j, this

reward is still aligned with G [132]. Furthermore, because it removes noise from

each agent’s own reward, EDR yields far better learnability than does G [132].

This noise reduction is due to the subtraction which (to a first approximation)

26

eliminates the impact of states that are not affected by the actions of agent j. The

major difference between EDR and D is in how they handle zj . EDR provides an

estimate of agent j ’s impact by sampling all possible actions of agent j whereas D

simply removes agent j from the system.

Any system capable of broadcasting the system performance G or passing state-

vector information can be minimally modified to allow agents to independently

calculate their own difference reward [132]. Although difference rewards have been

demonstrated to work well within a number of domains, they are still not applicable

to many real-world domains where an accurate partial system model (i.e., an ac­

curate model of the system objective) is unavailable and the agents must operate

within an initially unknown environment. In this work, we address this short­

coming by first introducing CLEAN rewards which have the same partial model

requirements as difference rewards (i.e., they require an accurate model of the sys­

tem objective in order to be computed) but that outperform difference rewards by

accounting for exploratory action noise which is introduced in Chapter 3. We then

developed techniques which enable agents to construct approximate models of the

system objective and then use these approximate models to calculate their individ­

ual CLEAN rewards, resulting in improved real-world applicability over existing

techniques.

27

Chapter 3 – CLEAN Rewards for Learning in the Presence of

Exploration

In cooperative multiagent systems, coordinating the joint-actions of agents is dif­

ficult. One of the fundamental difficulties in such multiagent systems is the slow

learning process where an agent not only needs to learn how to behave in a complex

environment, but must also account for the actions of the other learning agents.

Here, the inability of agents to distinguish the true environmental dynamics from

those caused by the stochastic exploratory actions of other agents creates noise

on each agent’s reward signal. Under these conditions, the solution (using agents)

actually becomes part of the problem. This learning noise can have unforeseen

and often undesirable effects on the resultant system performance. We define such

noise as exploratory action noise and introduce a reward structure that effectively

removes such noise from each agent’s reward signal. In particular, we introduce

two types of Coordinated Learning without Exploratory Action Noise (CLEAN)

rewards which are agent-specific rewards based on an agent estimating the coun­

terfactual reward it would have received had it taken an alternative action. Then,

in the next chapter, we empirically show that CLEAN rewards outperform agents

using both traditional global rewards and shaped difference rewards in two toy

domains.

28

3.1 Introduction

Learning in large multiagent systems is a critical area of research with applications

including controlling teams of autonomous vehicles [13], managing distributed sen­

sor networks [46, 149], and air traffic management [136]. A key difficulty of learn­

ing in such systems is that the agents in the system provide a constantly changing

background in which each agent needs to learn its task. As a consequence, agents

need to extract the underlying reward signal from the noise of other agents act­

ing within the environment. This learning noise can have a significant and often

detrimental impact on the resultant system performance. In this chapter, we first

define exploratory action noise present in multiagent systems and then introduce

Coordinated Learning without Exploratory Action Noise (CLEAN) rewards which

designed to promote coordination while removing exploratory action noise from

each agent’s reward signal.

Currently, there are two key ways for agents to account for each other within

decentralized multiagent systems: 1) agent-modeling techniques, and 2) treating

agents as a part of the environment. Agent modeling techniques have been shown

to work well in a number of settings, but they quickly become intractable as scaling

increases [71, 114, 123]. Other issues arise when agents are treated as a part of

the environment (e.g. exploratory action noise), and their exploratory actions are

seen by other agents as stochastic environmental dynamics. Here, the inability of

agents to distinguish the true environmental dynamics from those caused by the

stochastic exploratory actions of other agents creates noise on each agent’s reward

29

signal. This problem cannot simply be addressed by turning off exploration and

acting greedily (this has been repeatedly shown to result in poor performance

as agents always exploit their current knowledge which is frequently incomplete

or inaccurate [125]). We address this by introducing CLEAN rewards which are

designed to effectively remove much of the learning noise caused by agents taking

exploratory actions.

The key innovation of our approach is that agents never explicitly take ex­

ploratory actions. Instead exploration is accomplished by agents privately com­

puting a “counterfactual” reward they would have received had they taken an

exploratory action. These counterfactual rewards and actions are then used to

update their policies. In this way exploration for an agent is kept “private” to

that agent, and does not result in noise being added to the system. Only an

agent’s non-exploratory action is seen by other agents. This paradigm promotes

agent-to-agent coordination (agents are constantly coordinating with each others’

current “best” policy) while maintaining the exploration needed during learning

(private counterfactuals provide agents with rewards that approximate the im­

pact of changing their current policies). Through utilizing “private” exploration,

learning with CLEAN rewards effectively removes the exploratory action noise as­

sociated with learning, which simplifies the coordination problem for agents and

improves scalability (Sections 3.2, 3.3, and 4.2).

The primary contributions of this chapter are to:

•	 separate environmental noise from noise caused by the exploratory actions

of agents by defining exploratory action noise.

30

•	 introduce two variations of Coordinated Learning without Exploratory Ac­

tion Noise (CLEAN) rewards (Section 3.3) which promote coordination and

remove the exploratory action noise associated with multiagent learning.

The remainder of this chapter is structured as follows: Section 3.2 provides back­

ground on exploratory action noise and reward shaping. Section 3.3 introduces two

variations of CLEAN rewards and discusses the benefits and drawbacks of each.

3.2 Background and Related Work

In this work, we focus on the impact one agent learning has on another agent’s

ability to learn. To ground our discussion, we will focus on reinforcement learn­

ing agents [125] (though our concepts naturally flow to other search and learning

concepts such as evolutionary algorithms). Reinforcement learning agents observe

the state of the environment, and take actions to maximize their expected future

reward. A reinforcement learning problem consists of at least one agent and an

environment. A reinforcement learning agent has four key elements including a

policy, reward function, value function, and optionally an environmental model

[125].

An agent’s policy defines the way the agent behaves at any given time and maps

the agent’s perceived environmental state to the action it takes in that state [125].

These policies are initialized in an arbitrary manner, and adjusted over time as

the agent learns. Each agent’s policies are updated via the agent’s reward and

value function. An agent’s reward function rates the performance of the agent.

31

The reward function provides an agent with a learning signal for actions that it

took. The reward may come directly from the environment or it can be shaped

to provide specific feedback to the agent. The value function captures the agent’s

internal valuate of a given action at a given time. In the limit, it converges to the

true reward (possibly discounted) the agent would receive for taking an action.

3.2.1 Exploration Exploitation Dilemma

In practice, reinforcement learning techniques are used to enable an agent to au­

tonomously learn its own control policies by repeatedly interacting with its en­

vironment [145, 158]. In this setting, the agent “learns” by continuously taking

actions in an effort to learn the underlying reward associated with those actions

[106, 120, 158]. For single-agent learning, it has been proven that reinforcement

learning techinques such as Q-learning will converge to the optimal control policy

in infinite time assuming the agent explores each possible state-action pair an in­

finite number of times [145, 146]. Of course in practice, this has to be achieved in

finite time, and exploration strategies are implemented. That is, agents balance

taking the best action (exploiting current knowledge) with querying the environ­

ment on other options (exploring). The way these two concepts are balanced is

known as the exploration-exploitation dilemma [125, 158, 109].

Exploration aims to improve long term performance by uncovering actions that

may provide beneficial in the future, whereas exploitation aims to maximize long

term performance by assuming that the currently known values are in fact the

32

correct ones. It has been proven that there is no optimal exploration strategy for

all situations [108, 130, 131, 142], and instead a number of different exploration

strategies have been developed for agent learning [31, 106, 108]. Perhaps the sim­

plest exploration strategy is the t-greedy strategy, where agents choose to exploit

their current knowledge (1−t) percent of the time, and choose to explore t percent

of the time [125, 145, 146]. Unfortunately, the computational costs of t-greedy ex­

ploration techniques increase exponentially with the size of the system [130, 131],

meaning that in many cases, more intelligent and efficient exploration strategies

need to be used. To that note, more complex strategies such as Boltzman explo­

ration, which weights exploration to more frequently explore actions that are cur­

rently believed to be “better” [125]. Additional exploration techniques with vary­

ing requirements and computational requirements exist such as using confidence

bounds [21], Kalman filter dynamics [120], linear perceptrons [142], and Bayesian

sampling [19]. This issue has been explored to great lengths in the context of

reinforcement learning [2, 3, 19, 23, 31, 99, 109, 127, 128, 98, 97, 80, 124, 148, 158].

3.2.2 Exploratory Action Noise

In cooperative multiagent systems, coordinating the joint actions of agents is dif­

ficult [43, 45, 51]. One of the fundamental difficulties in such multiagent systems

is the slow learning process where an agent may not only need to learn how to

behave in a complex environment, but may also need to account for the actions of

the other learning agents [16, 116, 125]. Here, the inability of agents to distinguish

33

the true environmental dynamics from those caused by the stochastic exploratory

actions of other agents creates noise on each agent’s reward signal [124, 21, 143].

Under these conditions, the solution (learning agents) actually becomes part of the

problem.

There are two broad approaches to handling the stochasticity due to agents,

which involve modeling other agents, and treating agents as a part of the environ­

ment. Extensive work has been done with agent modeling, though such approaches

are best suited to small multiagent systems where agents repeatedly interact with

the same agents[100, 123, 33]. Treating agents as a part of the environment on the

other hand has been shown to significantly impact both learning convergence and

learning performance [27, 38, 70]. There have been several approaches to address

this though, such as the “Win Or Learn Fast” (WOLF) framework which adjusts

the learning rate of individual agents based upon the stochasticity of the environ­

ment due to other agents (effectively controlling how rapidly agents change their

policies) [27, 28, 41]. Although these techniques have been shown to work well in

many situations, they do not explicitly allow the agents to remove the noise on

their reward signals associated with the exploratory actions of agents during learn­

ing. As a consequence, though they provide good results, they do not eliminate

the effects of learning noise on the resultant system performance.

It is common for agents treat each other as part of the environment such that

the exploratory actions of other agents are treated as stochastic environmental

noise. However, under such assumptions, the agents are unable to distinguish

when their peers are taking purposeful actions, from when they are taking random

34

exploratory actions. Here, agents are frequently adapting their policies to better

coordinate with the random exploratory actions of other agents, meaning that

agents will end up learning to bias their policies such that they actually depend

upon the exploratory actions of other agents in order to perform well. This means

that agents learning optimal policies in the presence of exploration may not be

optimal once learning is complete and exploration is turned off (Figure 1.1). In this

setting, the agents’ inability to distinguish between true environmental dynamics

and dynamics caused by the exploratory actions of other agents means that the

agents themselves (the solution) actually end up becoming part of the problem

(added complexity due to stochastic learning noise).

We define such noise as exploratory action noise, which can be defined as the

portion of an agent’s learning signal that is impacted by the exploratory actions

of other agents. We quantify exploratory action noise as follows:

|gi(a) − gi(a − aE))|
NE,i = (3.1)

|gi(a)|

where NE,i is the value of the exploratory action noise for agent i, gi is agent

i’s reward function, a is the joint-action vector for all agents in the system, and

aE is the subset of the joint-action vector containing all elements of a that were

exploratory actions. Intuitively, if the system exploration rate is t = 1.0, then

NE = 1.0 since the entire action vector contains exploratory actions. Similarly,

if t = 0 then no agents are taking exploratory actions and the value of NE = 0,

meaning there is no exploratory action noise present.

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
y
s
te

m
 p

e
rf

o
rm

a
n
c
e

Portion of Agents Taking Exploratory Actions

Performance of Policies Learned with 5% Exploration

Figure 3.1: t-greedy reinforcement learning agents were trained for 1000 episodes
and then learning was turned off and their policies were fixed. We then test
the performance of the learned policies under different amounts of exploration
actions (we replace the policies of some agents with random exploratory policies).
In these cases, agents perform better in the presence of exploration than they
do without exploration. In particular, these policies perform the best when the
portion of agents taking exploratory actions is near the value of t used during
learning (t = 0.05 in this case). This is because the agents learn to depend upon the
exploratory actions of other agents. Although the exploration-exploitation trade-
off has been extensively studied throughout the multiagent learning literature,
relatively little work has been done to address the biasing issues associated with
agents learning to depend upon the exploratory actions of other agents.

As an example, we consider the case of a set of agents learning in the Gaussian

Squeeze Domain used in this work (Section 4.1). In these experiments, a set of

learning agents are trained for 1000 episodes and then learning is turned off and

the set of learned policies are followed (Figure 1.1). As seen, after 1000 episodes

of learning, once the learning is turned off and the policies are fixed (meaning that

there is no longer any stochastic exploratory actions), agents that had learned good

policies in the presence of exploration actually perform worse when the exploration

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
y
s
te

m
 p

e
rf

o
rm

a
n
c
e

Portion of Agents Taking Exploratory Actions

Performance of Policies Learned with 10% Exploration

Figure 3.2: Here, agents learned for 1000 episodes and then learning was turned off
and their policies were fixed. We then test the performance of the learned policies
under different amounts of exploration actions (we replace the policies of some
agents with random exploratory policies). In these cases, agents perform better in
the presence of exploration than they do without exploration. In particular, these
policies perform the best when the portion of agents taking exploratory actions is
near the value of t used during learning (t = 0.10 in this case). This is because
the agents learn to depend upon the exploratory actions of other agents. Although
the exploration-exploitation trade-off has been extensively studied throughout the
multiagent learning literature, relatively little work has been done to address the
biasing issues associated with agents learning to depend upon the exploratory
actions of other agents.

is removed. This loss of performance is counterintuitive since in general, we would

assume that removing exploration noise would improve the performance of agents.

However, as seen here, this is not always the case. This is because these agents

have actually learned to depend upon the exploratory actions of the other agents

as a part of their solution.

An additional representation of the dependency on exploratory action noise

can be observed in Figures 3.1 and 3.2. Here, we train agents for 1000 episodes

37

as we did in Figure 1.1 under 5% and 10% exploration, respectively. We then

take the learned policies of the agents and test their performance under varying

degrees of exploration. In each case, agents learned a set of policies, such that

the joint-policy was Π = {π1, π2, ..., πN }, where Π is the learned joint-policy, πi is

the individual policy learned by agent i, and N is the total number of agents. In

Figures 3.1-3.2, we replace various portions of the policies πi with random policies.

By replacing the “true” policies with random policies, we simulated the presence

of exploratory action noise in the system. As seen, performance tends to be best

when a portion of the agents that is equivalent to the training exploration rate are

replaced with random policies. This is because during learning, approximately t

portion of the agents were taking random actions at any given time and the learned

joint-policy learned to account for these actions and incorporate them into their

solution. It is important to note that the learned policy is not always worse once

exploration is turned off and these examples are meant to demonstrate the potential

for exploration to interfere with learning in multiagent systems. In general, even

if the learned policies are better without exploration, it will still frequently be

the case that exploration noise inhibited the overall learning performance of the

system. CLEAN rewards are designed to avoid dependencies upon the exploratory

actions of other agents in the system by performing exploration via off-policy

counterfactual actions which do not create explicit environmental noise.

38

3.3 CLEAN Rewards

Designing intelligent behavior for autonomous systems becomes more difficult as

the complexity of these autonomous systems increases. This difficulty becomes

especially acute in multiagent systems, where even the simplest of agents can com­

bine to form complex behavior. Learning algorithms give a promising solution to

this problem. By automatically exploring the control policy space of the system

to find good behaviors, the burden of creating intelligent agents is taken off of

the system designer. At their core, all of these learning algorithms use an elegant

exploration loop, where an agent explores an action, receives feedback about the

performance of the action, and updates its control policy based this action. Ex­

ploration is key to this process, as we need to explore actions we know little about

to see if they are in fact good actions. However in both single agent and multia­

gent systems this leads to the “exploration / exploitation” dilemma: In complex

systems, most random actions will be bad, therefore exploratory actions in action

spaces we know little about are likely to be bad, yet it is most important to explore

action spaces we know little about because these spaces may contain the solution

we are looking for.

This core “exploration vs. exploitation” issue is a fundamental design challenge

for any learning system and is not addressed in this work, but leads us directly to

our focus. Here we focus on a second and important exploration dilemma unique to

multiagent systems: How can an agent effectively learn a good policy with respect

to other agents’ nominal behavior, when the other agents are not exhibiting their

39

nominal behavior, since they also need to explore for their learning process? In

other words, agents need to learn in the context of what other agents are doing, yet

the exploration “noise” of the other agents can fundamentally change the nature of

this context. Having multiple agents learn together inherently creates a complex

self-organizing system. Traditionally the outcome of such a system is unpredictable

as it depends on the complex interactions the objective functions agents are trying

to maximize and the concurrent exploration done to achieve this maximization.

These issues create a real challenge to a system designer, who has to design reward

functions and exploration policies that will lead to a satisfactory outcome. By

addressing multiagent exploration and completing our following objectives, we will

allow designers to create more stable multiagent systems, that are easier to design

and have higher performance.

In this section we introduce Coordinated Learning without Exploratory Action

Noise (CLEAN) rewards which were developed to address issues arising from learn­

ing noise caused by exploration in order to promote learning, coordination, and

scalability in multiagent systems.1 These rewards utilize reward updates based

upon privatized counterfactual actions which allow agents to approximate rewards

associated with actions that were not explicitly taken.2 The key requirements of

CLEAN rewards is that agents have an accurate model of the underlying system

objective, G, and that the agents in the system follow their current target poli­

cies. Traditionally, following target policies has been shown to perform poorly due

1CLEAN rewards were designed using the theory of collectives [11, 13, 136, 141].
2Similar rewards based upon counterfactual actions known as “difference rewards” have been

shown to work well in a number of domains and conditions [11, 13, 136].

40

to a lack of exploration, however, CLEAN rewards address this shortcoming via

privatizing agent exploration (Equations 3.2 and 3.3).

CLEAN rewards are structured in such a way that they promote implicit coor­

dination that leads to good system performance (agents improving their own local

reward are concurrently improving the system performance, while agents harming

their local reward are also harming system performance) and are also designed to

address the structural credit assignment by providing each agent with specific feed­

back on how its own actions impacted the reward it received (CLEAN rewards are

sensitive to the actions of the individual agent). Additionally, in order to remove

exploratory action noise, agents learning with CLEAN rewards do not perform

traditional explicit exploratory actions within the environment, instead agents all

greedily follow their current target policies at each time step. Exploration comes

from private counterfactual actions ci, which provide each agent with an approxi­

mation of the reward it would have received had it not followed its target policy,

but instead had taken some alternative action ci.

3.3.1 CLEAN 1: C1,i

Difference rewards (Section 2.2.3.3) have been shown to work well in a number of

domains and conditions [136, 141], however, they do not account for the learning

noise caused by exploratory actions of agents in the learning process which can have

unforeseen effects learning. CLEAN rewards maintain the strengths of difference

rewards, while at the same time removing noise associated with the exploratory

41

actions of agents in the system (Section 3.3). Our first variation of CLEAN rewards

is defined as follows:

' C1,i ≡ G(zT − zT,i + ci) − G(zT − zT,i + ci) (3.2)

where C1,i is the CLEAN reward of agent i, zT is the system state vector that results

from the agents following their current target policies, zT,i is the actual action of

agent i, ci and ci
' are two counterfactual actions of agent i (i.e. alternative actions

agent i could have taken instead of following its greedy target policy action zT,i),

and G is the system objective. These CLEAN rewards replace the contribution of

the agent’s target action zT,i with two different counterfactual actions ci and c ' i, in

the first and second terms, respectively. Here, the agent approximates the reward

it would have received if it would have taken actions ci and ci
' . Then, the agent

compares the counterfactual rewards associated with each action, and provides

the agent with a reward for action ci based upon the difference between the two

approximations (Equation 3.2). It is frequently possible to select a counterfactual

action ci
' that is equivalent to removing agent i from the system. In this setting,

the CLEAN reward would provide a reward approximation that tells the agent its

contribution to the system. Hence, when choosing a counterfactual for the second

term that is equivalent to removing the agent from the system, the C1,i reward will

provide the agent with a positive reward if the counterfactual action ci would have

been beneficial to the system, and a negative reward if the counterfactual action

ci would have been harmful to the system. With the C1,i rewards in this work,

42

the counterfactual ci is chosen “randomly” each episode of learning according to

an exploration strategy (effectively enabling the agent to calculate counterfactuals

for various “potential actions” and resulting in “privatized exploration”), and the

constant c ' i is selected in such a way that it is equivalent to removing agent i

from the system so the second term is effectively “the system without agent i”

(although alternate values for c ' i would also be valid - we discuss another way it

could be selected next).

3.3.2 CLEAN 2: C2,i

Although C1,i rewards promote good agent-specific feedback, agents must perform

two separate calculations per reward update (one calculation associated with ci

and one calculation associated with c ' i). Next, we will introduce an alternative

CLEAN reward which requires each agent to perform only one counterfactual ac­

tion calculation per reward update. Instead of computing CLEAN rewards based

upon two separate counterfactual actions ci and ci
' , if the agent uses its original

target action, zT,i, in the second term, it can avoid the calculation of the second

term for the counterfactual action ci
' . In this case, an agent’s CLEAN reward can

be represented as follows:

C2,i ≡ G(zT − zT,i + ci) − G(zT) (3.3)

43

where C2,i is the CLEAN reward of agent i, zT is the system state vector that results

from the agents following their current target policies, zT,i is the action of agent i,

ci is a counterfactual action of agent i (i.e. an alternative action agent i could have

taken instead of following its target policy), and G is the system objective. Here,

agents directly compare the system reward with their own counterfactual action

ci (first term of C2,i to the system reward associated with following following its

current target policy action (second term of C2,i). Intuitively, this gives the agent

a reward that represents how the system would have performed had it not followed

its target policy, but instead had taken some counterfactual action ci. In addition

to providing faster computation (agents no longer have to compute the second term

associated with ci
'), the C2,i reward also provides a reward signal that constantly

seeks to improve the agent’s target policy directly.

44

Chapter 4 – CLEAN Rewards in Toy Problems

In this chapter, we implement the CLEAN rewards introduced in the previous

chapter in two toy domains in order to demonstrate their performance benefits.

More specifically, we implement CLEAN rewards within a congestion problem

(i.e., the Gaussian Squeeze Domain) and a combinatorial optimization problem

(i.e., the Defect Combination Problem) to show their performance under varying

conditions. As a performance benchmark, we compare the performance of CLEAN

rewards against both traditional team-based “global” rewards, as well as against

existing state-of-the-art reward shaping techniques (e.g., difference rewards).

4.1 Experimental Domains

There are two domains used in this chapter, the first is a congestion domain called

the Gaussian Squeeze Domain (GSD) and the second is a combinatorial optimiza­

tion domain called the Defect Combination Problem.

4.1.1 The Gaussian Squeeze Domain

This domain assumes that there exists a set of agents which each contribute to a

system objective, and the agents are attempting to learn to optimize the system

objective (i.e. agents are attempting to coordinate their joint-action to optimize

45

for the ‘capacity’ in the Gaussian system objective) . The objective function for

the domain is as follows:

−(x−µ)2

G = xe σ2 (4.1)

where x is the cumulative sum of the actions of agents (i.e., x = i xi, where xi

is the “contribution” action of agent i), µ is the mean of the system objective’s

Gaussian (effectively the target “x” that the agents are aiming for), σ is the stan­

dard deviation of the system objective’s Gaussian. Here, the goal of the agents is

to choose their individual actions xi in such a way that the sum of their individual

actions is to optimize Equation 4.1. Here, each agent has 10 actions ranging in

participation value from zero to nine. The GSD is a congestion domain, where

adjusting the variance changes the coordination complexity for agents within the

system. The lower the variance, the higher the coupling of agents’ joint actions.

4.1.2 The Defect Combination Problem

Many real world sensing applications require large sets of disparate sensing devices

to coordinate their actions in order to collectively optimize their network atten­

uation, coverage areas, and sensing schedules [46, 111, 149]. In this domain, a

set of sensing devices must coordinate their sensing schedules in order to optimize

their aggregated attenuation. This is the Defect Combination Problem (DCP) do­

main introduced in [34]. This problem assumes that there exists a set of imperfect

sensors, X, which have constant attenuations due to manufacturing defects or im­

46

perfections. Each of the sensors, xi, has an associated attenuation, ζi, (which can

be positive or negative) in its reading, such that if it is taking a measurement of

A (actual value) it measures A + ζi where ζi is the device’s individual error. The

problem then becomes how to best choose a subset of the X sensors that minimizes

the aggregated attenuation of the combined readings:

N

niζi
i=1

G =

N

ni

i=1

(4.2)

where G is the aggregated attenuation of the combined sensor readings, ζi is the

attenuation of a particular sensor i, N is the number of sensors, and ni ∈ {0, 1}

based upon whether the sensor chooses to be “on” or “off”.

This is an NP-complete optimization problem [34, 136] and simply choosing the

single sensor with the best attenuation is an inadequate solution, as is choosing the

best K sensors (1 ≤ K ≤ N). To illustrate this, consider the case where there are 6

sensing devices whose attenuations are ζ1 = −0.19, ζ2 = 0.54, ζ3 = 0.1, ζ4 = −0.14,

ζ5 = −0.05, and ζ6 = 0.21. Choosing only the best sensor ζ5 would yield an

aggregated attenuation of |0.05|, while choosing sensors ζ3, ζ4, and ζ5 would yield

an aggregated attenuation of |0.03|, which is better than the single best sensing

device ζ5 alone. This is still not the optimal solution in this 6 sensor case however,

as combining sensors ζ1 and ζ6 results in an aggregated attenuation of |0.01|. In

this problem, individual sensors acting independently without coordinating their

47

actions can drastically decrease the system performance. Consider the case where

sensors ζ1 and ζ6 are turned on in conjunction with sensor ζ2, the aggregated

attenuation jumps to from |0.01| to |0.18|. Finding good solutions requires a great

deal of coordination between sensors, as any one sensor can heavily impact the

system performance.

4.1.3 CLEAN Rewards for the DCP

Both CLEAN reward structures C1,i and C2,i can be derived for any multiagent

domain. Here, we derive CLEAN rewards for agents in the Defect Combination

Problem (DCP) used in this work (CLEAN rewards can similarly be derived for

the GSD domain). First, we derived C1,i by combining Equations 4.2 and 3.2 as

follows:

' C1,i ≡ G(zT − zT,i + ci) − G(zT − zT,i + c) (4.3)i

N N

nj ζj − niζi + ciζi nj ζj − niζi + ciζi
j=1 j=1 C1,i = − (4.4)

N N

nj − ni + ci nj − ni + ci
j=1 j=1

As seen, many of the terms in the first and second terms cancel out. In particular,

many terms which are not directly impacted by agent i cancel out. This prop­

erty is important in addressing the structural credit assignment problem, as this

cancellation allows agent i to more clearly see how its own actions impacted its

reward as opposed to the actions of other agents. Further simplification yields the

48

following:

C1,i =

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if ci = 0 ,ci
' = 0,

N N '

i niζi i=j niζi + ciζi
=j
N −

N , ci = 0, c ' i = 1
'

i ni i ni + c
 =j =j i
N N

i niζi + ciζi i=j niζi
=j

N −
N , ci = 1, ci

' = 0
i ni + ci i ni=j =j

0, ci = 1, ci
' = 1

and similarly, we derived C2,i by combining Equations 4.2 and 3.3 to yield the

following:

C2,i =

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ci = 0, zT,i = 0
N N

i niζi i=j niζi + zT,iζi
=j
N −

N , ci = 0, zT,i = 1
i ni i=j ni + zT,i=j

N N

i niζi + ciζi i=j niζi
=j

N −
N , ci = 1, zT,i = 0

i ni + ci i ni=j =j

0, ci = 1, zT,i = 1

where in the above equations, C1,i and C2,i are the two variations of CLEAN rewards

for agent i in the Defect Combination Problem, ζi is the attenuation of agent i’s

sensing device, N is the total number of agents, and the variables ci, cf , nj , and ni

are all indicator variables with value 0 corresponding to a sensor turned off and 1

corresponding to a sensor turned on (Section 4.1). CLEAN rewards could similarly

be derived for the Gaussian Squeeze Domain, but are excluded here for brevity.

49

4.2 Results

This section includes the experimental results for both the Gaussian Squeeze Do­

main and the Defect Combination Problem Domain. All experiments consist of

r = 100 statistical runs, all Q-tables are initialized to zero, and the error in the
√

mean σ/ r was plotted in all experiments although it is so small that it is not

visible in many experiments (all results were statistically significant as verified by

a t-test with p = 0.05 for all experiments). In the GSD the learning rate and

exploration rate were set to α = 0.10 and t = 0.10 and in the DCP they were set

to α = 0.01 and t = 0.01, unless otherwise stated.

There are four types of reward structures used in this work: difference rewards

(Equation 2.5) denoted by D, global rewards denoted by G, and two variations

of CLEAN rewards denoted CLEAN 1 (Equation 3.2) and CLEAN 2 (Equation

3.3). In the following experiments, G, D, CLEAN 1, and CLEAN 2 represent the

online performance of agents during learning in the presence of exploration and

G OFF and D OFF represent the offline performance of the underlying policy

being learned by agents (the performance of the joint-policy learned up to that

point if learning and exploration were turned off, see Figure 1.1).1 Here, the

difference in the performance of the policies G and D as compared to G OFF and

D OFF can be directly contributed to exploratory action noise.

1The online and offline performance of CLEAN rewards are identical since agents explore via
off-policy counterfactual actions while continually following their target policies.

50

4.2.1 The Gaussian Squeeze Domain

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

 (
G

)

Episodes

G_OFF
D_OFF

G
D

CLEAN_1
CLEAN_2

Figure 4.1: N = 500 agents learning in the Gaussian Squeeze Domain with µ =
0.80N and σ = 0.80N , and 10% exploration. As seen, agents using G and D
experience significant decreases between their online and offline performance. This
is because agents learn policies that depend upon the presence of exploratory action
noise. CLEAN rewards are robust to such noise and have improved performance.

In Figure 4.1, we see the results for 500 agents learning in the Gaussian Squeeze

Domain with µ = 0.80N , σ = 0.80N , and t = 0.10. This experiment is meant

to show the potential for agents to learn to depend upon the exploratory actions

of other agents. As seen, learning with all reward structures perform well during

learning (G, D, CLEAN 1, CLEAN 2), however the actual policies being learned

by agents are drastically different for agents using global and difference rewards

(G OFF and D OFF). Once learning is turned off and agents using global and

difference rewards follow their fixed policies, agents using global rewards experience

51

a drop in performance of 3%-5%, while agents using difference rewards experience

a drop in performance of approximately 30% (Figure 4.1).

Next, we performed a set of experiments where we proportionally scaled the

number of agents, the mean, and the variance (Figure 4.2). This provides further

insight into some situations where the agents can learn to depend upon the ex­

ploratory actions of other agents. In Figure 4.2, the offline performance of agents

using global and difference rewards (G OFF and D OFF) are almost always worse

than the online performance where exploratory actions were present (G, D). It is

important to note that this is not always the case, for example Figure 4.2 shows

that in these experiments, when 100 agents are present G OFF slightly outper­

forms G. However, the purpose of these results is to show that exploratory action

noise does impact learning in multiagent systems in frequently unforeseeable and

unpredictable ways. As seen in both of these examples, CLEAN rewards perform

well in the presence of exploratory action noise.

Now that we have demonstrated that exploratory action noise does play a role

in learning in multiagent systems and that CLEAN rewards learn policies that

are robust to exploratory action noise, we want to demonstrate the performance

benefits of CLEAN rewards when the problem becomes more complex. In this

congestion domain, as the variance decreases, the agents become more coupled

and the exploratory action noise becomes increasingly important. In Figure 4.3,

we maintain a fixed mean and variance, while scaling the number of agents in the

system. This effectively increases the problem complexity and the importance of

exploratory action noise (more agents taking exploratory actions have more impact

52

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
e

rf
o

rm
a

n
c
e

 (
G

)

Number of Agents

G_OFF
D_OFF

G
D

CLEAN_1
CLEAN_2

Figure 4.2: Proportional Agent Scaling with µ = 0.80N and σ = 0.80N , where N
is the number of agents. This is a low-complexity setting in the Gaussian Squeeze
Domain (high variance). Again, the offline performance for agents using G and D
is frequently worse than the online performance. This is because the underlying
policies learned by agents relied upon the exploratory actions of the other agents
in the system.

upon the system performance in low variance settings). As seen in this setting,

CLEAN rewards are much more robust when the problem complexity is increased

(more agents and higher congestion) and the exploratory actions of agents play a

larger role in system performance.

4.2.2 The Defect Combination Problem

In the following experiments, we demonstrate the performance of agents using

CLEAN rewards in the Defect Combination Problem (DCP) domain, which is a

53

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
e

rf
o

rm
a

n
c
e

 (
G

)

Number of Agents

G_OFF
D_OFF

G
D

CLEAN_1
CLEAN_2

Figure 4.3: Scaling the number of agents with µ = 100 and σ = 100. As the
number of agents increases, the coupling between agents increases and the problem
becomes more difficult and the exploratory action noise has more of an effect on
system performance. As seen, CLEAN rewards are more robust than other rewards.

combinatorial optimization problem. In Figure 4.4, we see the performance of

300 agents in the DCP. Again, CLEAN rewards outperform agents learning with

both global and difference rewards, respectively. The key difference in performance

between D and CLEAN can be attributed to the filtering of exploratory action noise

(CLEAN rewards and difference rewards are similar in that they both attempt

to provide agent-specific feedback that promotes implicit coordination, however,

CLEAN rewards have the added advantage that they simplify learning by removing

exploratory action noise - Sections 3.2 and 3.3). Due to the combinatorial aspects of

the DCP, the offline performance tends to be greater than the online performance

for agents using global and difference rewards, this is because in the DCP the

54

exploratory actions of a single agent can drastically change the system performance

(Section 4.1.2). However, the presence of exploratory actions during the learning

process still impacts the performance of the policies learned by these agents, as

agents using global and difference rewards actively attempt to coordinate with

agents that are routinely taking random exploratory actions. CLEAN rewards

address this issue by having agents follow their current target policies and providing

agents with rewards based upon counterfactual actions, which effectively allows the

agents to explore without causing exploration noise on each others’ learning signals

(Section 3.3). As seen, agents using CLEAN rewards are able to achieve aggregated

attenuations that are nearly an order of magnitude better than other techniques

(Figure 4.4).

Next, we analyzed the performance of agents in the Defect Combination Prob­

lem for scaling the number of agents. As seen in Figure 4.5 agents using global

rewards perform poorly as scaling increases. Similarly, agents using difference re­

wards perform well with up to 300 agents, but then as the number of agents is

increased, their performance decreases. A key cause of this decrease in perfor­

mance is the inability of difference rewards to account for the exploratory actions

of agents. Although proportionally the same number of agents are exploring (e.g.

1% exploration), as the number of agents in the system increases, there are more

agents exploring. The learning noise caused by these agents can significantly inhibit

learning, especially in combinatorial optimization problems. In this setting, the

fact that agents are constantly attempting to coordinate their policies to account

for each others’ exploratory actions significantly inhibits performance. CLEAN

55

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1
 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

 (
G

)

Episodes

G
GOFF

D
DOFF

CLEAN_1
CLEAN_2

Figure 4.4: The Defect Combination Problem with 300 agents. Exploratory actions
can be especially damaging in this domain, as a single agent can have a drastic im­
pact on the overall system performance (Section 4.1.2). CLEAN rewards maintain
exploration while avoiding the coordination issues that arise when agents attempt
to coordinate in the presence of exploration (Sections 3.2 and 3.3).

rewards address this shortcoming by filtering out learning noise caused by agent

exploration, resulting in up to three orders of magnitude better performance when

scaling up to 2000 sensing agents (Figure 4.5).

4.3 Discussion

In multiagent learning (e.g., multiagent reinforcement learning), a set of agents

continually interact with their environment (e.g., take actions) in order to learn

how to behave within that environment (i.e., learn how to optimize their individual

objectives as a part of the larger system). In particular, agents begin with no prior

56

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1
 0 500 1000 1500 2000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

 (
G

)

Number Of Agents

G
GOFF

D
DOFF

CLEAN_1
CLEAN_2

Figure 4.5: The Defect Combination Problem scaling the number of agents from
10 to 2000. As seen, CLEAN rewards are highly scalable, outperforming other
methods by up to three orders of magnitude for high levels of scaling.

knowledge or experience with the environment, and iteratively learn how to behave

(i.e., gain knowledge of how to interact with the environment) through a process of

trial and error. Here, the agents continually strike a balance between exploiting the

knowledge they have already gained (e.g., taking actions that currently they believe

will lead to good performance) and exploring new actions which may improve

their knowledge of the system and eventually lead to better performance. It is

well-known throughout the multiagent and machine learning communities that

learning agents must balance these two behaviors and this has become well-known

as the “exploration-exploitation” tradeoff in learning [86, 125].

While there has been a lot of research involving the exploration-exploitation

tradeoff, relatively little work has been done to directly address the impact of learn­

57

ing noise caused by the exploratory actions of agents. Typically exploration noise

is handled at the same time as the core exploration / exploitation problem: The

system is “annealed”, where exploration rates are reduced throughout learning or

otherwise tinkered with to achieve better performance. However, this approach

confounds the two exploration dilemmas and forces agents to have low exploration

towards the end of learning. This may be when the agents can benefit from ex­

ploring the most, since the system has stabilized. In addition, the outcome of the

system now depends on a complex self-organizing process based upon not only the

system dynamics and the objective functions, but also the changing exploration

levels. A better solution is to eliminate exploration noise at all stages of learning,

while retaining the key benefits of the exploration process.

Unfortunately, in a multiagent learning setting, the exploratory actions of indi­

vidual agents actually make it more difficult for other agents to learn (i.e., agents

actually confuse each other when they take exploratory actions). This is because

in this setting, agents treat each other as a part of the environment such that the

exploratory actions of other agents are treated as stochastic environmental noise.

Under these assumptions, the agents are unable to distinguish when their peers

are taking purposeful actions (e.g., exploiting their current knowledge and taking

actions they “know” lead to good performance) from when they are taking random

exploratory actions (e.g., randomly sampling the action space to attempt to im­

prove their system knowledge). Here, agents are frequently adapting their control

policies to better coordinate with the stochastic exploratory actions of other agents,

meaning that agents will end up learning to bias their policies such that they actu­

58

ally depend upon the exploratory actions of other agents in order to perform well.

There has been a lot of research involving the exploration-exploitation tradeoff

within the multiagent learning literature. However, relatively little work has been

done to directly address the impact of learning noise caused by the exploratory

actions of agents.

In this work, we first showed the potential impact of such exploratory action

noise on learning, demonstrating that exploratory actions can cause agents to bias

their policies to depend upon the exploratory actions of others, which can lead to

suboptimal learning. We defined this learning noise as exploratory action noise.

We then introduced CLEAN rewards, which are shaped rewards designed specifi­

cally to promote coordination and scalability in multiagent systems by addressing

both the structural credit assignment problem, as well as the exploratory action

noise caused by agent exploration. Then we provided empirical results demon­

strating the performance of CLEAN rewards in two multiagent domains including

a Gaussian Squeeze Domain (congestion domain) and a Defect Combination Prob­

lem (combinatorial optimization domain). We showed that CLEAN rewards are

highly robust to exploration and scaling, significantly outperforming both global

rewards and difference rewards in the two domains used in this chapter.

Although CLEAN rewards address the issue of exploratory action noise, they

still have two key shortcomings. First, agents using these rewards are only able to

perform a single reward update per episode of learning, which significantly slows

down the learning speed of the system. Second, these rewards still require agents

to have access to an accurate model of the system objective in order to compute

59

their individual CLEAN rewards. In the coming chapters, we will address each

of these shortcomings sequentially. We exploit a natural extension of CLEAN

rewards which leverages the concept of privatized counterfactual exploration to

enable agents to perform multiple reward updates during each time step (resulting

in significantly increased learning speed). Then, we improve the real-world appli­

cability of CLEAN rewards by enabling agents to construct their own approximate

model of the system objective when an accurate system model is unavailable a

priori. Agents then use their approximate models to calculate their individual

CLEAN rewards. This extension significantly improves the real-world applicabil­

ity of CLEAN rewards by enabling them to be calculated in initially unknown

environments.

60

Chapter 5 – Batch-CLEAN Rewards for More Efficient Learning

Learning within multiagent systems such that agents jointly achieve a common goal

represents a complex coordination problem. This problem is exacerbated with scal­

ing as the joint policy space that agents must search through grows exponentially

with respect to the number of agents in the system. This exponential increase

in the policy space renders many traditional learning based techniques (including

the CLEAN rewards introduced in the previous chapters) inadequate for many

domains due to relatively slow learning updates (e.g., agents receive only a single

reward update per time step and may be unable to adapt to rapidly changing en­

vironmental conditions in a timely manner). To address this we introduce Batch

Coordinated Learning without Exploratory Action Noise (Batch-CLEAN) rewards

which allow agents to calculate multiple reward updates concurrently by providing

agents with rewards for each of its available action selections during each episode

of learning by leveraging the concept of privatized exploration to enable agents to

calculate their CLEAN rewards associated with several counterfactual actions at

a time. Enabling agents to calculate reward updates for multiple potential actions

during each episode will result in improved learning speed.

61

5.1 Introduction

Traditional online learning methods for agent-based systems provide agents with a

single reward update per atomic learning experience. However, in large multiagent

systems such learning updates can be prohibitively slow. More specifically, the

environment may change faster than the agents are able to adapt their policies due

to limited information, resulting in poor performance. To address this problem, we

leverage the properties of private exploration and CLEAN rewards introduced in

the previous chapters to provide agents with reward updates for multiple actions

during each episode of learning. More specifically, we introduce Batch-CLEAN

rewards by extending CLEAN rewards to include batch reward updates during

each episode. The concept of updating rewards for actions not taken is present

within the literature, for example, with learning automata the probability of taking

a particular action may change based upon similar actions’ results [139, 93, 143].

However, this work instead centers around rewards that explicitly aim to quantify

the reward an agent would have received had it taken an alternate action [139].

We explore the application of these rewards to dynamic domains where the rapidly

changing conditions put a premium on learning quickly.

In this chapter, we propose a multiagent learning approach that significantly

improves both learning speed (with respect to atomic learning experiences) and

performance by allowing an agent to update its estimate of the rewards (e.g. value

function in reinforcement learning) for all its available actions, not just the ac­

tion immediately taken by the agent. In particular, we introduce Batch-CLEAN

62

rewards which are designed to promote coordination by making efficient use of

experience data by providing each agent with multiple rewards and value updates

per atomic experience. Batch-CLEAN rewards are calculated based upon coun­

terfactual actions (actions not explicitly taken), which enables agents to calcu­

late approximate reward values for multiple ‘potential actions’ during each atomic

learning experience. Since these rewards are based upon counterfactual actions

that the agent does not actually take, each agent is able to calculate approximate

rewards and update the corresponding value associated with each of their potential

actions during each time step of learning, resulting in more information per atomic

learning experience

In this chapter, we provide background information on existing online mul­

tiagent learning techniques and introduce Batch-CLEAN rewards. In the next

chapter, we will demonstrate the performance of Batch-CLEAN rewards in two

real-world domains as compared to global rewards, difference rewards, and stan­

dard CLEAN rewards previously introduced.

5.2 Background and Related Work

Typically agents must address both the temporal credit assignment problem (how

to assign a reward received at the end of a sequence of actions to each of the

actions) and the structural credit assignment problem (how to assign credit to a

particular agent at the end of a multiagent task) [11, 69, 71, 125, 143, 147]. These

two problems have been addressed together with learning sequences of actions

63

for multiagent systems [32, 38, 64, 122]. Here, the learning needs of agents are

adjusted to account for their presence in a larger system [13, 65]. Although learning

sequences of actions has led to significant advances in multiagent systems, they

are principally based upon the iterative process of an agent sampling a single

action, receiving an evaluation for the action, and updating its value estimate

for taking that action in the given state. Such an approach is effective, but is

typically slow to converge, particularly in dynamic environments [13]. We explore

the concept of agents learning from actions they do not take by estimating the

rewards they would have received had they taken those actions, providing multiple

reward updates. These counterfactual rewards are estimated using the theory

developed for structural credit assignment [11, 13, 136].

Agent-based learning methods can be generally classified into two key cate­

gories: online learning algorithms and offline learning algorithms [45, 49, 51, 54,

72, 79, 121, 125]. In this chapter we utilize online reinforcement learning algorithms

which are well suited for multiagent learning as agents learn from taking sequential

actions within an environment [72, 82]. The main criticism of online reinforcement

learning methods is their inefficiency in the way they use experience data [26].

This is because agents make just one incremental learning update for each piece of

atomic experience data, and then discard the data [72]. Such incremental updates

have the advantage of requiring little computation and memory, in exchange re­

quiring a lot of data [72]. In many agent domains (e.g. physical robots or complex

real-time simulation environments) it is more expensive to gather training data

than it is to perform additional computations and data analysis [72]. In such do­

64

mains, the sheer time, tedium, or labor involved in gathering training experiences

could be the overriding concern [72]. We show that online learning which performs

multiple reward calculations per atomic learning experience can lead to significant

performance gains, with fewer atomic learning episodes.

Here, we address a key factor that is a known issue with multiagent learning,

which has to do with the speed with which a solution is found. Multiagent learning

focuses on learning to coordinate the actions of individual agents such that they

jointly achieve a common objective [50, 73, 74, 116, 125]. Due to the stochastic

nature of such problems, agents need to learn to adapt their policies quickly in

response to changing environmental dynamics. This can be difficult for a number

of reasons including the temporal (how to assign credit for a particular action in

a sequence of actions) and structural (how to assign credit to one agent based on

the actions of all the agents) credit assignment problems [9, 16, 137], as well as

the need for adequate data (information from interacting with the environment)

[16, 72, 125]. Traditional learning methods for agent-based systems provide agents

with a single reward update per interacting with the environment. However, in

large multiagent systems such learning updates can be prohibitively slow [64, 122,

127, 128, 136]. More specifically, the environment may change faster than the

agents are able to adapt their policies due to limited information, resulting in poor

performance [60, 129]. A potential solution is to provide agents with multiple value

updates based on one interaction with the environment using the theory developed

for counterfactual rewards and structural credit assignment [16, 137, 136]. The

concept of updating rewards for actions not taken is present within the literature,

65

for example, with learning automata the probability of taking a particular action

may change based upon similar actions’ results [93, 139, 143].

In this work we utilize reinforcement learning algorithms which are well suited

for multiagent learning as agents learn from taking sequential actions with an en­

vironment [72, 82, 116, 125]. One of the key drawbacks of online reinforcement

learning methods is their inefficiency in the way they use data (a drawback that

becomes much more pronounced in a multiagent setting) [26]. This is because

agents make just one incremental learning update for each interaction with the

environment and then discard the just collected data [54, 65, 72, 79, 125]. Such

incremental updates have the advantage of requiring little computation and mem­

ory, in exchange requiring a large number of interactions with the environment

[72, 125]. In many agent domains (e.g. physical robots or complex real-time sim­

ulation environments) it is more expensive to gather training data by interacting

with the environment that it is to perform additional computations and data anal­

ysis [45, 49, 51, 54, 72]. In such domains, the sheer time, tedium, or labor involved

in gathering training experiences could be the overriding concern [50, 72, 73]. Our

aim is to show that online learning which performs multiple reward calculations

per learning experience can lead to significant performance gains, while requiring

fewer actual learning episodes.

66

5.3 Batch-CLEAN Rewards

In this section we introduce two variations of Batch Coordinated Learning without

Exploratory Action Noise (Batch-CLEAN) rewards which were developed to pro­

mote learning and scalability in multiagent systems. These rewards have three key

benefits: i) they increase the amount of information each agent gets per episode

of atomic learning experience by providing agents with reward approximations

for multiple actions (agents approximate the reward they would have received for

taking multiple alternate counterfactual actions individually), ii) they promote

coordination by addressing the structural credit assignment problem (agents are

assigned feedback reflective of their individual actions’ contribution to the system

performance), iii) they remove learning noise caused by the stochastic exploration

of other agents.

Instead of calculating a single reward update based upon the action the agent

explicitly took (as global and difference rewards do), Batch-CLEAN rewards calcu­

late reward updates based upon a counterfactual action. Batch-CLEAN rewards

leverage this property, enabling each agent to calculate reward calculations for

multiple counterfactual actions during each atomic learning experience (as com­

pared to a single reward update with standard CLEAN rewards). The mathemat­

ics that allow the computation of difference rewards also enable the calculation

of counterfactual action based CLEAN rewards, and therefore Batch-CLEAN re­

wards [11, 13, 136]. Such rewards based upon counterfactual actions make the

assumption that agents have some approximation of the system objective G.

67

Generate'Reward'

Generate'Reward'

Generate'Reward'

Generate'Reward'

Generate'Reward'

Key:'
'

Op0mal'Ac0on' Exploratory'Ac0on' Counterfactual'
Exploratory'Ac0on'

Tradi0onal'
Mul0agent'
Learning'

Mul0agent'
Learning'with'
Counterfactual'
Explora0on'

Learning'with'
Mul0ple'
Counterfactuals'
at'Once'

Figure 5.1: Traditionally all agents take exploratory actions and each agent re­
ceives a reward that is dependent on its action and the actions of other agents
(top). The exploration of other agents causes noise on the rewards. We propose
having each agent take its non-exploratory action in public, and in private take
a counterfactual exploratory action, and receive a reward for this counterfactual
action (middle). Multiple counterfactual exploratory actions can be taken at the
same time (bottom).

Previous work involving counterfactual action based rewards has included dif­

ference rewards [11, 13, 136] and CLEAN rewards which were introduced previously

in this work. Though both of these rewards have been shown to provide a reward

that is tuned to an individual agent’s actions, they are still based upon an agent

iteratively sampling its actions over a potentially large number of atomic learning

experiences. In many domains (e.g. physical robots, expensive simulations [72]),

such experience can be expensive. In this section, we extend CLEAN rewards to

68

include multiple reward updates per atomic learning experience by leveraging the

theory developed for counterfactual action updates and structural credit assign­

ment [11, 13, 136].

5.3.1 Batch-CLEAN Rewards Based on CLEAN 1

Standard CLEAN rewards (introduced in previous chapters) addressed the struc­

tural credit assignment problem by providing each agent with a learning signal that

filters off the impact of other agents in the system using a differencing technique

(e.g. Equations 3.2 and 3.3). Additionally, these rewards require agents to follow

their target policies, which means that agents always follow their current ‘best’ pol­

icy. This removes much of the learning noise associated with exploratory actions

in multiagent learning (exploration is done privately, which improves learning and

coordination. Although CLEAN rewards provide tangible performance benefits,

agents using CLEAN rewards still have significantly inhibited learning speed as

they are only able to calculate a single reward update per episode of learning.

Batch-CLEAN rewards address this shortcoming by exploiting the fact that

these rewards are calculated based upon privatized counterfactual actions, enabling

each agent to calculate multiple reward updates per atomic learning experience.

Using Batch-CLEAN rewards, each agent calculates the set of rewards CB1j =

{CB1j (cj,k)}k≤n for its entire set of counterfactual actions during each episode of k=1

learning, where cj,k is the counterfactual associated with action k for agent j, and

there are n total actions. Here, each individual reward CB1j (cj,k) is calculated as

69

follows:

) (5.1)CB1j (caj,k) ≡ G(zT,−j + caj,k) − G(zT,−j + caj,kI

where CB1j(caj,k) is the reward that the agent uses to update its value associated

with action, aj,k, based upon the counterfactual constant, caj,k , used to calculate

that reward, zT,−j is the system state vector that results from agents greedily

following their current target policies without the portions dependent upon the

actions of agent j, G is the system objective function, and caj,kI is an alternate

counterfactual action. Agents using Batch-CLEAN rewards perform one reward

calculation for each of the n actions, meaning these rewards scale linearly with the

number of actions.

Each reward CB1j (caj,k) compares the relative benefit associated with two dif­

ferent counterfactual actions caj,k and caj,kI , respectively. These rewards compare

the difference in the approximate system performance, G, with counterfactual ac­

tions caj,k and caj,kI , respectively. Thus, if caj,k is more beneficial to the system

performance than the agent receives a positive reward update for action caj,kI ,

aj,k, and a negative reward otherwise. It is frequently possible to choose a coun­

terfactual caj,kI that is equivalent to removing the agent from the second term’s

performance calculation (as is done in this work). In this case, such a reward

provides an agent with an approximate contribution of its counterfactual action,

, to the system performance. These rewards promote coordination in that any caj,k

action good for the agent is also good for the system and they promote learning

by effectively “filtering” off much of the impact of other agents via the differencing

70

of the first and second terms with respect to the actions of other agents. Here the

impact of many of the agents in the system is removed from the agents learning

signal. Additionally, it is frequently possible to select a counterfactual action caj,kI

that is equivalent to removing the agent out of the system. This causes the reward

to yield the approximate contribution of agent j taking counterfactual, cj,k, to the

system.

5.3.2 Batch-CLEAN Rewards Based on CLEAN 2

Although Batch-CLEAN rewards of the CB1j type promote good learning, they

require two separate calculations to be computed for each individual reward calcu­

)}k≤nlation in the set CB1j = {CB1j (caj,k k=1 . This is because the agents are forced

to calculate a counterfactual based value for both the first and second terms of the

reward calculation. If instead of calculating a counterfactual action based value

for the second term, the agent simply used the actual system performance (which

is based upon the action the agent actually took), the agent would no longer need

to calculate the second counterfactual term (reducing the computational expense

for these rewards by approximately half).

To address this we introduce a second variation of Batch-CLEAN rewards which

have reduced computation requirements. Here, each agent calculates the set of

)}k≤nrewards CB2j = {CB2j (caj,k k=1 , where each reward is computed as follows:

) − G(zT) (5.2)CB2j (caj,k) ≡ G(zT − zT,j + caj,k

71

where CB2j (caj,k) is the Batch-CLEAN reward of agent j that depends upon the

counterfactual action of agent j denoted by caj,k , G(zT − zT,j + caj,k) estimates the

performance of the system had agent j taken the counterfactual action caj,k instead

of the action it actually took, and G(zT) is the actual system performance. In this

setting, the agent no longer needs to compute a counterfactual value of the second

term, meaning it only needs to perform half of the calculations compared to the

first type of Batch-CLEAN rewards.

Since all agents using Batch-CLEAN rewards are always following their current

target (greedy) policies, CB2j rewards provide an agent with feedback on whether

or not the proposed counterfactual action caj,k is more or less beneficial to the

system than its current “best” action. Thus, CB2j (caj,k) rewards encourage agents

to adjust their own individual actions to directly improve the current target joint-

policy for agents within the system (agents acting to improve their individual

Batch-CLEAN rewards simultaneously act to increase the system performance G).

72

Chapter 6 – CLEAN and Batch-CLEAN in Real-World Domains

In the previous chapters, we introduced CLEAN rewards to improve coordination

within multiagent systems and demonstrated their performance compared to ex­

isting state-of-the-art techniques. Then, in the previous chapter, we proposed an

extension of these techniques to improve overall learning speed by enabling agents

to perform multiple reward updates per learning episode. More specifically, we in­

troduced Batch-CLEAN which extends CLEAN rewards by exploiting the concept

of privatized exploration to enable agents to calculate batch updates for multiple

actions during each time step. In this chapter we implement Batch-CLEAN re­

wards in two real-world domains and demonstrate their performance benefits in

comparison to standard CLEAN rewards, global rewards, and difference rewards.

6.1 Experimental Domains

In this chapter we utilize two real-world domains in order to compare the tangible

benefits of CLEAN rewards and Batch-CLEAN rewards. The first is a UAV Com­

munication Network (UAVCN) domain originally introduced in [7]. The second is

a CubeSat Coordination Domain (CCD) based upon the idea of satellite resource

sharing and fractionated satellite systems which has previously been introduced in

[60]. We borrowed domain parameter values from those found for these domains

73

within the literature unless otherwise specified [7, 59, 60].

6.1.1 UAV Communication Network Domain

In the near future, solar UAVs will play critical roles in the military, industrial,

scientific, and academic communities [101, 113, 115]. These devices have seemingly

limitless applications including communications, reconnaissance missions, space

launch platforms, and wireless power beaming [57, 101]. Recent missions including

NASA’s Pathfinder-Plus and QinetiQ’s Zephyr (which remained airborne for over

two weeks nonstop) have advanced the state of the art in solar powered UAVs,

taking them from limited mission life and endurance to the point they can remain

operational for weeks at a time [57, 104]. As a result of the increasing capabilities

and availability of these devices coupled with their falling costs, a plethora of novel

domains and applications will emerge to utilize the newly developed technological

capabilities of these platforms [101].

As we progress into the information age, communication becomes an increas­

ingly critical component of every day life. Today, cellular phones, laptops, hand

held computers, and other wireless electronic devices have changed the way we see

and interact with the world. At the core of these advancements is a well designed

wireless communication network, which handles the workload and facilitates in­

formation sharing between devices connected to the network. Current networks

rely on a series of radio towers to facilitate this information sharing work load.

Traditional towers have worked well to date, but they have several key drawbacks:

74

1. They are expensive to build.

2. They are expensive to maintain.

3. They have limited communication due to obstructions (cannot communicate

“around” obstructions).

4. They have static placement (holes in coverage areas).

Here, we focus on a subset of this domain where there is a set of UAVs that are

flying at fixed locations (flying in small circles) for long periods of time (perhaps

months or years) and are transmitting data to a set of customers below (see Fig­

ure 6.1). UAVs have an advantage in sending data from high altitude in that they

can have line-of-sight communication to many customers. In addition by virtue of

being overhead, such UAVs can focus on what areas of the surface they will project

most of their signal power to, allowing for better coverage.

In this domain, each UAV can communicate to multiple customers. In addition

communication is done over a shared channel (over the same frequency band)

analogous to the way WiFi networks transmit data. Using a shared channel allows

the system to be very adhoc, where UAVs can come and go, and can decide whether

or not to participate in the system without any need for channel arbitration. Note

that for simplicity we only look at the download problem, where UAVs are sending

information down to customers. Also we make no assumptions on how the UAVs

get their data feeds. We believe that this half of the problem is the most important,

as typical internet use tends to be dominated by download traffic. Although the

75

uplink problem is fairly similar as long as it is done on a different channel than

the downlink.

Figure 6.1: UAV Communications. A set of UAVs at high altitude transmit data
to a set of customers on ground over a single communication channel. The task of
the system is to maximize average bitrate customers receive. Multiple UAVs may
communicate to single customer. A UAV communicates to at most one customer.

6.1.1.1 Signal Dynamics

We assume that the UAVs are all at similar altitudes and communicate through

directional antennas pointed towards the ground. The amount of area on the

ground that is covered by the UAV is determined by the gain of its antenna.

Antennas with low gain, transmit over a wider area, but within that area the

strength of the signal is lower (see Figure 6.2). Antennas with high gain, have

more signal power in the center of their area, but transmit over a smaller area.

The maximum signal received from a UAV is proportional to the inverse square of

76

the gain radius for the antenna:

Sj
max = aPj /rj

2 (6.1)

where a is a constant, Pj is the power transmitted from UAV j, and rj is the signal

Smaxhalf-power radius for UAV j. is the amount of signal received directly at the j

center of the transmission. Further from the center, the amount of signal received

decreases exponentially according to the signal radius:

ri,j−b
SmaxSi,j = e rj (6.2)j

where b is a constant and ri,j is the distance from customer i and the center of

UAV j’s transmission. The noise received by customer i is simply the sum of the

signal from all the UAVs it is not communicating with:

Ni = Si,j + k , (6.3)
j /∈Ji

where Ji is the set of UAVs customer i is communicating with and k is a constant

for background noise. The maximum communication rate for customer i can then

be estimated from the signal-to-noise ratio using Shannon’s law:

Ci,j = B log2(1.0 + Si,j /Ni) , (6.4)

77

where B is the bandwidth of the channel in Hz 1 . The total data rate for customer

i is the sum of the data rates for each UAV the customer is communicating with:

Ci = Ci,j . (6.5)
j∈Ji

rj

High Gain Low Gain Attenuation

ri,j

Figure 6.2: Signal Dynamics. UAVs with high-gain antennas throw a strong signal
over a small area. UAVs with low-gain antennas throw weaker signal over larger
area (Left). The strength of the signal depends on how far the customer is away
from the center of the signal cone (Right).

1For simplicity, certain factors, such as relative inverse square distance signal attenuation are
ignored that were determined to have little impact on performance.

78

6.1.1.2 System Evaluation Function and Agents

The objective of this problem is to maximize the average data rate of each cus­

tomer:

1
n

G = Ci , (6.6)
n

i=1

where there are n customers, and G is the system evaluation function. Combining

equation 6.1, 6.2, 6.3, 6.4, 6.5, we obtain:

⎛
 ⎞
ri,j
aPj −b

rjen
1
 2rj⎜⎝

⎟⎠
G = B log2 1.0 +
 , (6.7)
ri,j−bn aPj rj + ki=1 j∈Ji e
j /∈Ji r2
j

putting our global objective in terms of our control variables: UAV power level,

Pj , and indirectly, ri,j , through the orientation of the UAV.

These controls allow us to change the signal-to-noise characteristics at different

locations on the ground. However, this is a difficult problem as increasing the

signal for one customer may increase the noise for another. It is especially difficult,

since we want this communication network to be adhoc, where it is controlled in a

distributed way: UAVs are entering and leaving the system, and some UAVs fail

to cooperate or operate correctly. Fortunately, reinforcement learning algorithms

and multiagent techniques are a natural match to this problem.

There are many possible agent definitions and controls for the UAVs in our

domain, including altitude, antenna gain, power levels and antenna angle. Here

79

we focus on the last two: adjusting the power level Pj and orientation (the direction

the transmitter points to) of each UAV (see Figure 6.3). We control each of these

actions through agents. The solution to the full problem consists of the power

level and orientation values for all the UAVs. However to simplify the problem, we

break the task into a multiagent system, where a single agent controls both power

level and orientation for each UAV. To perform control, each agent makes discrete

actions. For adjusting power, the action is scaled exponentially to the action:

jPj = Pez
p

, (6.8)

where P is the base power and zp is the action of the agent for UAV j controlling j

its power. To control orientation, an agent chooses one of nine directions: either

straight down, or one of eight cardinal directions around the UAV. The angle of

the pointing is fixed so that the center of the new orientation is moved a distance

of r what it would have been if it had pointed strait down (see Figure 6.3 - right).

6.1.2 CubeSat Coordination Domain

Currently, satellites are very expensive resources that need to be coddled care­

fully. The costs of satellite missions can exceed billions of dollars, with teams of

engineers, managers and scientists working together to extract all the information

they can out of these missions. These missions are carefully planned and orches­

trated by large institutions over a period of many years. However, in the near

80

High Power Low Power Orientation

Figure 6.3: Agent Actions. An agent can choose power level of UAV within certain
range. An agent can also choose orientation of antenna. The Agent must choose
power levels and orientations to balance giving more signal to their customers and
less noise to other customers.

future this traditional satellite paradigm could change dramatically with the in­

troduction of very small satellites known as “CubeSats.” The number of CubeSats

will dramatically increase due to reduced costs coming from platform standardiza­

tion, availability of COTS (commercial off-the-shelf) parts and reduced launching

costs [112, 118]. These satellites will have numerous capabilities, including in situ

measurements of the thermosphere, interferometry, communication and Earth ob­

servation [90]. Collaborative networks of CubeSats offer mission capabilities that

are impractical for larger satellite platforms due to cost restrictions, including si­

multaneous in situ measurements of multiple locations in space and temporally

separated measurements of precise points in space[117, 81]. In addition, they offer

lower cost and increased robustness compared to traditional satellites due to sys­

tem reconfigurability [22]. In addition, networking clusters of CubeSats together

81

in order to boost performance is becoming a popular concept, similar to computer

clusters[1, 56]. However, while having numerous advantage, making effective use

out of large numbers of heterogenous CubeSats is a difficult problem.

As an example, consider an instance where a small community needs to observe

the realtime progress of a local forest fire. There are many aspects of this fire that

can be observed from orbit, including fire intensity, distribution, and movement.

A few dozen observations would be useful, but with diminishing returns beyond

this number. Currently, making these observations is difficult and expensive due

to the limited number of satellites. However, in the future, there may be tens of

thousands of tiny CubeSats able to make these observations. How can this small

community in an economical way take advantage of these resources?

A straight forward solution to this problem is a centralized satellite resource

broker. Under this scenario, our small community would register its fire observation

needs to the broker, and the broker would try to find the resources, trading off

the costs and benefits of all the other requests that were registered. While this

method is attractive for networks of large satellites, there are three main difficulties

this centralized system might have with a large, but disorganized collection of

CubeSats: 1) CubeSats are likely to be owned by many different countries and

institutions that may not trust having their resources used by a centralized resource

broker, 2) CubeSats will be in unpredictable states of repair and may be owned

by institutions unable to make reliable commitments, 3) There may be so many

CubeSats (perhaps millions), that a centralized system could simply not scale

efficiently.

82

As an alternative to a centralized solution, the community could buy observa­

tions directly from the owners of the CubeSats. For this process to be effective,

the community needs to do two primary things, 1) Buy the appropriate number of

observations taking into account the unreliability of CubeSats, 2) Buy the obser­

vations at the lowest possible price. For these two things to happen, the reliability

and expected cost of each of the CubeSats needs to be modeled so that an appro­

priate combination of request for observations can be made. While taking all these

considerations into account would ordinarily be difficult for a small institution or

community, an agent based system can help by modeling the satellites behavior

and evolving policies to maximize value.

6.1.2.1 Decentralized Agent Solution

We propose to have a decentralized solution to this problem, through the use of an

“agent” intermediary. But first we have to decide what an agent is in this domain.

What is an agent?

There are numerous ways agents can be used and defined. Here we explore a few

alternative types of agents:

1.	 Trivial: Just pass information between CubeSats and customer.

2.	 Owned by Customer: Every customer has its own agent buying observa­

tions for that customer.

83

3.	 Owned by CubeSat: Every CubeSat has its own agent selling observation

for that CubeSat.

4.	 Independent: One agent per CubeSat, buying observations for customer.

In the first definition, the agent is a simple intermediary. While this solution may

work for a very sophisticated customer, in general it does not solve the problem of

how a customer can buy an appropriate set of observations at a low price. In the

second definition, each customer has an intelligent agent that tries to make these

purchases for the customer. However, this solution has similar limitations to the

trivial agents, as the agent would have to be sophisticated enough to know the

properties of the thousands of CubeSats in existence and come up with a policy

satisfying the customer’s demands at a low price. In the third definition, the task

of the agent is much simpler. It knows all the properties of the single CubeSat that

owns it, and knows at what price points it can sell its observations for. However,

the issue with this approach is that it can be very inefficient, since agents trying

to maximize revenue for its CubeSat may try to sell observations that are not

valuable to the customer.

Here we focus on the final definition for an agent, where agents are independent,

there is one agent per CubeSat and the task of the agents is to buy an appropriate

set of observations for a given customer. With this definition, the requirements of

an agent is relatively simple. It needs to model the capabilities, reliability and price

point of only a single CubeSat. Then when a customer makes an observational

request to a set of agents, the agents coordinate to purchase an appropriate set of

84

observations. This agent model has a number of advantages:

1. CubeSats with any price structure can participate.

2. Unreliable CubeSat can participate.

3. CubeSat owner can choose not to participate on case by case basis.

4. Customers can choose not to buy resources from particular CubeSats.

5. Agents can scale with number of CubeSats.

With independent agents, CubeSats of all types can participate. An agent can

simply decide not to use its CubeSat if it is inappropriate for the task. The most

difficult task for an agent is to coordinate effectively with other agents. In this

paper, we will focus on this coordination problem, and how policies can be evolved

that allow agents to coordinate well. Note that this paper does not cover the

broader case where there are multiple customers at the same time. However we

believe that a similar mapping could be made in this case, where the agents are

trying to maximize a larger overall utility over all customers.

6.1.2.2 Proposed Solution

We propose a multiagent solution, where independent agents help a consumer of

satellite resources, buy an appropriate combination of resources at low cost (see

Figure 6.4). In this algorithm an agent is assigned to every CubeSat, and is

responsible for making a monetary bid to its CubeSat for its observation. The

85

Agent
Agent

Agent
Agent

Agent

Figure 6.4: Small community needs CubeSat observations of a forest fire. Agents
handle observation request. Using one agent per CubeSat, an agent bids for the
observation of a particular CubeSat. As a collective agents as a whole must bid
for an appropriate number of observations with minimal cost.

consumer makes a request to all of the agents for satellite observations, giving the

agents a utility equation representing the value of the benefit it would receive from

different numbers and types of observations. Each agent then makes a bid for an

observations, using a bidding policy. This policy is evolved from a population of

policies, using the value benefit equation given by the consumer, in combination

with the agent’s model of its CubeSat. These bids take into account the value

of an observation, the likelihood that the CubeSat will be able to carry out an

observation, and the likelihood that the CubeSat will be willing to carry out an

observation given the value of a bid. All these values have uncertainty, making this

a difficult problem. In addition the agents will need to coordinate the evolution

86

of their policies so that the collection of observations derived from all the winning

bids is beneficial to the customer and bought at a low cost. In this chapter, we

explore these aspects in more detail.

6.1.2.3 Coordinating CubeSats

Academic and industrial programs continue to launch CubeSats equipped with sci­

entific instruments into Low Earth Orbit (LEO) [76]. The capabilities of individual

CubeSats are fairly limited due to their size and mass restrictions. Yet, coordinat­

ing multiple CubesSats and collecting their combined resources greatly increases

their overall value. In this paper, we focus on a particular instance of a CubeSat

coordination problem where a customer can coordinate resource purchases for a

set of existing CubeSats.

6.1.2.4 Observational Values

Here we assume that there is a set of Earth-observing CubeSats in low Earth orbits,

where each satellite is owned by a separate institution 2 . Each of these CubeSats

is interested in observations of a particular geographic region of interest for rea­

sons such as crop monitoring, volcano monitoring, fire monitoring, reconnaissance,

search and rescue, and weather monitoring. We assume that each CubeSat places

some value on observing a particular point of interest (POI), but is able to observe

2For simplicity, we will anthropomorphize the CubeSats by treating a CubeSat and the insti­
tutions that own it, as the same thing.

87

v
1

vc

v
2

v
3

Figure 6.5: A set of CubeSats gain different levels of value, vi, from observing their
own point of interest. A potential customer would like satellites observations of its
own point of interest. The value of these observations to the customer, vc depend
on mix and number and locations of satellites involved.

any region of interest beneath its orbit (see Figure 6.5). Each CubeSat places a

different value on monitoring its own POI. In addition, this value depends on the

distance between the CubeSat and its POI. In general the further the CubeSat is

from its POI the less value it will have in monitoring it. Formally we express this

value for CubeSat i as:

vi(d
p
i) , (6.9)

where dpi is the distance between the CubeSat and its POI.

The goal of this paper is to figure out how a customer, with no satellites of his

own, can make use of these existing satellites to observe a point of interest that

this customer is interested in. In general the value of a set of CubeSat observations

88

to a customer is a function of the observational capabilities of the CubeSats (e.g.

resolution, heat sensing, particle sensing, etc.) and the distance of the satellite to

the customer’s POI. Formally we define this value function for the customer as:

v c(dc) , (6.10)

where dc is the vector of distances between the CubeSats and the customer’s POI

(note for simplicity the observational capabilities are rolled into vc). In general,

the more observations are better and observations closer to the customer’s POI

are better.

6.1.2.5 Customer Objective

The objective of the customer is find a set set of observations that have high value

to him, vc, at a low cost:

G(dc, dp) = v c(dc) − ci(di
p) , (6.11)

i

where ci is the cost paid to get an observation from CubeSat i. While we assume

that there is no direct cost for a CubeSat to observe a POI, we assume that a Cube-

Sat will not make an observation for a customer unless it is paid approximately

its opportunity cost for not observing its own POI vi(d
p
i). Therefore in generally

the cost paid ci(d
p
i) will be higher than opportunity cost vi(d

p
i) for successful bids.

While in some cases this opportunity cost is very high and a CubeSat will never

89

offer to make an observation for a customer, in other cases in could be close to

zero, especially if the CubeSat is not within range of its own POI.

6.1.2.6 Agent Model

Our overall goal is to figure out how a customer can maximize G; i.e. purchase

a set of observations that have high value to him at a low cost. In general this

will be possible when a set of CubeSats with appropriate capabilities is close to

the customer’s POI, increasing his value, and far from their own POIs, reducing

their opportunity cost. This leads to our central problem: How can a customer

sensibly buy a set of satellite resources, when he knows little about the CubeSats’

capabilities, their cost model, or even their willingness observe the customer’s POI?

We propose to address this problem using agents combined with reinforcement

learning (Chapter 2). In this paradigm a single agent is assigned to a single Cube-

Sat, and the action of an agent is to bid on the observations from its CubeSat on

behalf of the customer. As a whole, the goal of the agents is to balance the value of

all the observations to the customer, vc, with the cost of these observations. Note

that to do this effectively each agent has to take into account both local and global

considerations: 1) Locally an agent will make bids when its CubeSat has likely high

value, such as when it is close to the customer’s POI, and when its CubeSat has

likely low cost, such as when the CubeSat is far from its own POI, 2) Globally

an agent should only bid for an observation, when that observation increases the

total value, vc, for the customer - agents should not bid for observations that are

90

not needed or have low marginal value.

For an agent to accomplish its task, we assume that each agent is given the

value function for the customer vc(dc). We also assume that each agent has some

approximate model for the value of its CubeSat, vi(d
p
i). However, we make little

assumptions of the quality of this model or where it came from. For some agents

vi(d
p
i), may be given to it directly from the CubeSat. For other agents, its model

for vi(d
p
i) may be a crude approximation generated through previous interactions

with the CubeSat. Given these value functions, we have the agents maximize the

customer’s objective through evolution.

6.1.3 Batch-CLEAN Rewards for the UAVCN Domain

In this section we calculate the CB2jI Batch-CLEAN rewards for the UAVCN

domain by combining Equations 6.7 and 5.2 (These rewards could similarly be

derived for the CCD domain, but are excluded here for brevity). Due to the

presence of heterogeneous agents in the UAVCN domain, there are two separate

types of rewards: one for agents governing transmission power, and one for agents

controlling antenna pointing (Section 6.1). CB2j rewards for power agents are:

91

) = G(zT − zT,jI) − G(zT) = + cajI,k
CB2jI (cajI,k ⎛
 ⎞
 ⎜⎜⎜⎝

⎟⎟⎟⎠

B

m

Fi,j Si,j
log2 1 +

Fi,jI Si,jI,ca + κ + Fi,j Si,ji/∈IjI j∈Ji jI,k

j /∈Ji

(6.12)

⎞⎛ ⎜⎜⎜⎝

⎟⎟⎟⎠

Fi,jI Si,jI,cajI,k

κ + Fi,j Si,j

B

log2 1 +
 +

m
i∈IjI j∈Ji

j /∈Ji⎛
 ⎞
 ⎜⎜⎜⎝

⎟⎟⎟⎠

B
 − log2
m

Fi,j Si,j
1 +

κ + Fi,j Si,ji j∈Ji

j /∈Ji

where CB2jI is an individual reward for the agent controlling transmit power

for UAV j ' , cajI,k
is one of the agent’s n counterfactual actions, Si,jI,cajI,k

is the

transmission power factor for agent j ' calculated with counterfactual action cajI,k
,

and all other variables are as described in Section 6.1. The set of all Batch-CLEAN

rewards for agent j ' is calculated by calculating CB2jI = {CB2jI (cajI,k
)}k≤n, where k=1

n is the total number of possible actions the agent can take.

Here, the counterfactual actions only change the power portion and the UAV

pointing remains constant. In this setting, these rewards provide the power agents

with a reward that tells the effectiveness of its counterfactual transmit power based

upon the UAVs current target pointing policy. Thus, during each atomic episode of

learning, the agent calculates rewards for each of its potential transmit powers that

92

approximates the impact each would have on the network bandwidth. Additionally,

due to the subtraction between the G(zT − zT,jI) and G(zT) terms of each + cajI,k

reward calculation, much of the impact of the actions of other UAVs is filtered off,

resulting in a much clearer learning signal for power agent j ' .

Next, we calculated the CB2jI rewards for each UAV’s pointing agent, yielding

Equation 6.13. Here, CB2jI is an individual reward for the agent controlling

the antenna pointing direction for UAV j ' is one of this pointing agent’s n, cajI,k

counterfactual actions, Fi,jI,ca is the signal strength weighting factor based upon
jI,k

the counterfactual pointing action of pointing agent j ' for counterfactual .cajI,k

Again, each agent calculates rewards for each of its potential n counterfactual

actions cajI,k
during each atomic episode of learning. In this setting, each reward

provides the agent with a clear reward signal that tells how each of its potential

counterfactual pointing actions cajI,k
would impact the network bandwidth.

93

CB2jI (cajI,k

B

) = G(zT − zT,j + cajI,k

Fi,j Si,j

⎛
) − G(zT) = ⎞
 ⎜⎜⎜⎝

⎟⎟⎟⎠

log2 1 +

m
 Fi,jI,ca Si,jI + k + Fi,j Si,ji/∈IjI j∈Ji jI,k

j /∈Ji

(6.13)

⎞⎛ ⎜⎜⎜⎝

⎟⎟⎟⎠

Fi,jI,cajI,k
Si,jIB

log2 1 +
 +
m k +
i∈IjI j∈Ji

j /∈JiFi,j Si,j⎛
 ⎞
 ⎜⎜⎜⎝

⎟⎟⎟⎠

B
 − log2
m

Fi,j Si,j
1 +

k + Fi,j Si,ji j∈Ji

j /∈Ji

6.2 Results

We conduct experiments in both the UAVCN and CCD domains. We use seven

types of agents:

• Agents taking random actions (R)

• Agents learning with Global rewards (G)

• Agents learning with Difference rewards (D)

• Agents learning with CLEAN rewards (C1)

• Agents learning with CLEAN rewards (C2)

94

• Agents learning with Batch-CLEAN rewards (CB1)

• Agents learning with Batch-CLEAN rewards (CB2)

In all experiments, agents are t-greedy reinforcement learners with a learning rate

of α = 0.20 and an exploration rate of t = 0.10. All Q-tables were initialized

with small random values. All experiments consisted of r = 30 statistical runs

with e = 3000 learning episodes and the error in the mean σ/r was plotted in all

experiments.

6.2.1 UAV Communication Network Domain

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 10 100 1000

B
a
n
d
w

id
th

 P
e
r

C
u
s
to

m
e
r

(K
B

/s
)

Episodes

UAVCN with 100 UAVs

R
G
D

C1
C2

CB1
CB2

Figure 6.6: 100 UAVs and 100 customers in the UAVCN domain. Agents using
CB1 and CB2 rewards learn approximately one-hundred times faster than agents
using C1, C2, G and D rewards. Batch-CLEAN rewards outperform D by 20%
and G by 80%.

The first experiment involved a set of 100 UAVs and 100 customers within

the UAVCN domain. As see in in Figure 6.6, agents taking both random power

95

and pointing actions perform poorly in this domain. Similarly, agents using global

rewards, G, are slow to learn and learn a policy that is far worse than other

learning agents. A key reason for this is that global rewards provide a noisy

learning signal to agents (each agent’s reward depends directly upon the actions

of all other agents). Difference rewards, D, address this shortcoming by effectively

filtering off much of the impact of other agents on the learning signal. As seen from

Figure 6.6, this additional filtering (which addresses structural credit assignment)

results increased performance compared to agents using G.

Next, we implemented CLEAN rewards (C1, and C2), which not only address

the structural credit assignment problem as difference rewards do, but also address

exploratory action noise which is a significant inhibiting factor for multiagent co­

ordination. As seen, CLEAN rewards outperform difference rewards by up to 20%

and global rewards by up to 80% in this domain. However, CLEAN rewards still

learn slow in comparison to Batch-CLEAN rewards as they are limited by the fact

that agents only receive a single reward update per episode of learning.

Batch-CLEAN rewards maintain the performance of CLEAN rewards (as they

are based upon the same structure), while at the same time significantly improving

learning speed over standard CLEAN rewards. The speed-up in learning stems

from the fact that Batch-CLEAN rewards leverage the properties of privatized

exploration which were developed to create CLEAN rewards to enable agents to

concurrently calculate reward updates for multiple actions during each episode of

learning. This extension enables learning speed to be improved over traditional

reward techniques such as global or difference rewards, as well as standard CLEAN

96

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 100 200 300 400 500 600 700 800 900 1000

B
a
n
d
w

id
th

 P
e
r

C
u
s
to

m
e
r

(K
B

/s
)

Number of UAVs

UAVCN, Scaling the Number of UAVs

R
G
D

C1
C2

CB1
CB2

Figure 6.7: Scaling the number of UAVs in the UAVCN domain. Agents using
Batch-CLEAN rewards CB1 and CB2 continue to maintain the same converged
performance as standard CLEAN rewards C1 and C2 (although they converge
more quickly), and outperform the next best method D by at approximately 15­
20% when scaling between 100 and 1000 UAVs.

rewards, which only allow a single reward update per learning episode.

As seen from Figure 6.6, Batch-CLEAN rewards converge to a better policy

than do agents using both global and difference rewards. The increased perfor­

mance is due to the structural credit assignment problem and the removal of ex­

ploration noise during learning. The improved learning rate is due to the fact

that each agent is receiving multiple action updates per episode of learning. It

is interesting to note that although the computational increase for agents’ reward

calculations using CB1 and CB2 rewards compared to G, D, C1, and C2 rewards is

ten fold, these agents learn one hundred fold faster (showing a nonlinear increase in

learning performance compared to computational costs). Here, Batch-CLEAN re­

wards CB1 and CB2 outperform agents using D by approximately 20% and agents

97

using G by 80%, while maintaining the performance of standard CLEAN rewards.

The next set of experiments involved scaling the number of UAVs and customers

in the system. The number of UAVs and customers was scaled proportionally in a

1:1 ratio. As seen in Figure 6.7, the general performance of all techniques slightly

decreases with scaling. This is to be expected, as the amount of noise present in

the system increases as the number of communication towers (UAVs) increases. In

a shared-channel network, this background noise necessarily reduces the amount

of signal throughput to any individual node in the system. It is important to

note however, that the total system bandwidth increases as the number of UAVs

is increased, even though the signal per customer gracefully degrades. As seen,

agents using random policies, R, continue to perform poorly as scaling increases.

Similarly, agents using global rewards, G, experience a 40% drop in performance.

Agents using D experience a 20% decrease in performance with scaling up to

1000 agents. Agents using both CLEAN and Batch-CLEAN rewards experience

only a 13% drop in performance and the degradation plateaus and stabilizes as

scaling increases. The key here is that both CLEAN and Batch-CLEAN rewards

outperform all other methods, however, Batch-CLEAN still learns significantly

faster than CLEAN in all of these cases (although this cannot be seen by the

convergence graph provided).

98

-2000

-1500

-1000

-500

 0

 500

 1000

 0 500 1000 1500 2000 2500 3000

S
y
s
te

m
 P

e
rf

o
rm

a
n
c
e
 (

G
)

Episodes

CCD with 100 CubeSats

R
G
D

C1
C2

CB1
CB2

Figure 6.8: 100 agents in the CCD. As seen here, agents using Batch-CLEAN re­
wards CB1 and CB2 converge significantly faster than other learning methods, in­
cluding agents using standard CLEAN rewards. Additionally, agents using Batch-
CLEAN achieve the same level of performance as standard CLEAN rewards and
outperforming D by 30% and G by 600%.

6.2.2 CubeSat Coordination Domain

Figure 6.8 shows the performance of agents within a 100 CubeSat system. As

seen, agents following random policies perform poorly in this domain. Similarly,

agents using global rewards, G, have difficulty coordinating their actions, leading

to poor performance. Agents using difference rewards perform significantly better

than these techniques as they attempt to address the structural credit assignment

problem present within learning-based systems. However, these rewards alone

are still insufficient as they do not address the issue of learning noise associated

with exploration which complicates coordination. As seen, CLEAN rewards which

address exploratory action noise again produce significantly better performance

than both global and difference rewards, however, they still only provide agents

99

with a single reward update which leads to slow learning.

Batch-CLEAN rewards achieve the same performance as CLEAN rewards as

they are based upon the same underlying principles and reward structure, while

at the same time significantly improving the learning speed of agents as compared

to CLEAN rewards. As seen, Batch-CLEAN techniques learn up to an order of

magnitude faster than agents using both difference rewards and standard CLEAN

rewards.

-2000

-1500

-1000

-500

 0

 500

 1000

 100 200 300 400 500 600 700 800 900 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n
c
e
 (

G
)

Number of Agents

CCD, Scaling the Number of CubeSats

R
G
D

C1
C2

CB1
CB2

Figure 6.9: Scaling the number of agents in the CCD. As seen, agents using CB1
and CB2 rewards maintain performance as scaling increases and continue to out­
perform all other methods by at least 30%.

The final set of experiments involves scaling the number of agents within the

CCD domain. Again, agents using random rewards perform poorly as they are

blindly making bids for satellite observations, without any regard for the ram­

ifications or outcomes from those transactions. Agents using G have a similar

pitfall. Although these agents are intelligently making bids and attempting to

100

learn, agents have difficulty determining the impact of their own bids compared

to the bids of other agents within the system. Agents using D are better able to

make decisions as each agent’s reward is heavily dependent upon its own actions.

However, difference rewards do not address exploratory action noise, which re­

sults in significantly impeded learning performance, especially as scaling increases

and exploration noise becomes an increasingly significant factor. To address this,

standard CLEAN rewards were implemented, and are shown to converge to signif­

icantly better performance. However, these rewards are still prohibitively slow for

many situations due to the fact that they only provide each agent with a single

reward update per episode of learning. Batch-CLEAN rewards are used again here

to not only achieve the same coordination and performance benefits as standard

CLEAN rewards, but to also significantly improve the overall learning speed for

agents within the system, enabling agents to be more adaptable to sudden and

unplanned changes within the environment.

6.3 Discussion

Existing adaptive learning-based control techniques are relatively inefficient in the

way they utilize data (e.g., data from individual interactions with their environ­

ment). In particular, existing techniques are only able to compute a single update

for their control policy for each piece of data they receive [16, 72, 125]. This fre­

quently results in slow learning, which can be problematic in a number of settings

including systems with large numbers of agents where the system size significantly

101

increases the complexity of the control problem which renders single control up­

dates per piece of data to be prohibitively slow (e.g., the environment may change

faster than the agents are able to adapt their policies). Effective multiagent control

techniques must be able to make more efficient use of data in order to increase the

speed at which they can reconfigure their control policies.

In everyday experience we can only take one mutually exclusive action at a time.

For instance we cannot go up and down simultaneously. This follows through to

traditional learning systems where an agent takes an action and receives a reward

based on that action 3 . However, with the CLEAN rewards paradigm, described

in the previous chapter, agents take two actions at the same time: 1) They take

their public non-exploratory action that is seen by others, and 2) They take their

private counterfactual exploratory action. Given the framework needed to enable

these counterfactual explorations, we can in fact perform additional exploratory

actions at the same time. In this chapter, we proposed batch-CLEAN rewards

which enabled agents to make multiple updates during each individual interaction

with their environment. This resulted in significantly improved performance and

learning speed over existing state-of-the-art techniques (e.g., difference rewards).

Such techniques are beneficial to learning in multiagent systems in that it enables

the agents to make more efficient use of their data (i.e., interactions with the

environment) through leveraging the concepts of “counterfactual action updates”

and CLEAN learning (developed in Chapter 3) to enable multiple control updates

3To simply discussion, actions discussed here are mutually exclusive so we are not included
cases where agents can take multiple non-mutually exclusive actions

102

per interaction with the environment.

Though these results are encouraging, there are multiple areas for further inves­

tigation with regards to rewards based upon counterfactual actions. For example,

the ability of such rewards to handle domains involving large numbers of agent

actions needs to be explored. The current Batch-CLEAN techniques were applied

to domains with up to one hundred joint actions, but these techniques may be pro­

hibitively slow in domains where thousands of actions are present. In such cases,

it may be beneficial to provide updates to a particular subset of the potential ac­

tions. Additionally, extensions of this work that enable Batch-CLEAN rewards to

be computed without the agents having an a priori model of the system objective

function would enable them to be utilized within initially unknown environments,

which is indicative of most real-world multiagent systems.

103

Chapter 7 – Utilizing Function Approximation for Learning with

Shaped Rewards in Unknown Environments

As we have shown previously, CLEAN reward techniques are capable of addressing

the complex coordination problems that arise with decentralized control of large

distributed systems such as satellite constellations, UAV swarms, and sensor net­

works when an accurate model of the system objective function is provided to the

agents a priori and the agents can use this model to calculate their CLEAN re­

wards. Unfortunately, in many real-world systems an accurate model of the system

objective function is not readily available to agents, meaning that CLEAN rewards

cannot readily be calculated. In this chapter, we address this shortcoming by en­

abling agents to construct their own approximate model of the system objective

by repeatedly interacting with the environment. Here, agents utilize statistical

function approximation tools (e.g., neural networks) to construct an approximate

model of the system objective and then use this approximate model to calculate

their CLEAN rewards. Enabling agents to generate their own approximate model

of the system objective which can then be used to calculate their CLEAN rewards

extends these techniques into many real-world domains where agents must oper­

ate within initially unknown environments, and a priori system knowledge is not

readily available.

104

7.1 Introduction

A key area of research within the area of MARL lies in the design of the rewards

agents use to learn. Traditionally, multiagent systems have centered around team

reward techniques (i.e., all agents receive the team performance as their individual

reward). However, system designers quickly realized that team rewards struggled

with scaling to large multiagent systems due to the structural credit assignment

problem (i.e., how to assign credit to individual agents for their contribution to

the team reward). In order to address this, researchers in the field developed

so-called reward shaping techniques (described in Chapter 2 of this work) which

provided agents with more individualized reward signals, resulting in improved

learning speed and performance.

Potential-based reward shaping was one of the first popular reward shaping

technique to arrive on the scene (Chapter 2), where agents would receive the

team reward plus an additional shaped reward that was tailored to the specific

contributions of each agent. Although potential-based reward shaping techniques

showed significant promise in addressing the multiagent coordination problem and

provided significant performance gains over traditional team rewards, they had

significant information requirements. In particular, potential-based reward shap­

ing techniques require that the system designer has access to a complete system

model a priori (i.e., requires the system designer to have both an accurate model

of the transition probabilities as well as the system objective). Such requirements

are unrealistic in many domains, where this information is simply not available.

105

In the late 1990’s difference rewards, which were a form of shaped rewards based

upon the film “its a wonderful life”, were introduced. These rewards enabled each

agent to calculate the performance of the system when they were present as well as

the performance of the system had they not been present. Here, the agents receive

a reward that is the difference between these two factors, resulting in a reward that

provides each agent with its “net impact” on the system performance. Difference

rewards resulted in significantly improved performance and scalability compared

to traditional team rewards. Additionally, difference rewards are advantageous

over many existing reward shaping techniques as they do not require a complete

system model to be computed, and instead require only an accurate partial model

of the system (i.e., they only require an accurate model of the system objective to

be known).

In this work, we introduced CLEAN rewards which are shaped rewards that are

similar to difference rewards in that they provide agents with feedback on their “net

impact” on the system and only require an accurate model of the system objective

to be computed. However, CLEAN rewards also address issues associated with

exploratory action noise (as shown in prior chapters), which leads to significantly

improved learning performance compared to difference rewards. In this chapter,

we look to further advance the state-of-the-art by enabling agents to use CLEAN

rewards to learn within environments where agents have no access to an accurate

system model, and instead must construct their own approximate model of the

system objective and then use the approximate model to calculate their individual

CLEAN rewards.

106

7.2 Background and Related Work

In cooperative multiagent systems, coordinating the joint actions of agents is dif­

ficult [43, 45, 51]. One of the fundamental difficulties in such multiagent systems

is the slow learning process where an agent may not only need to learn how to

behave in a complex environment, but may also need to account for the actions of

the other learning agents [13, 116, 125]. This is especially difficult due to the fact

that agents are routinely taking exploratory actions which are observed “publicly”

by other agents in the environment. Here, the inability of agents to distinguish

the true environmental dynamics from those caused by the stochastic exploratory

actions of other agents creates noise on each agent’s reward signal [124, 21, 143].

Under these conditions, the solution (learning agents) actually becomes part of

the problem. This problem is known as exploratory action noise and it can have a

significant detrimental impact on learning performance within multiagent systems

[61]. CLEAN rewards address this issue by enabling agents to shift from explicit

“public” exploration strategies towards implicit “private” exploration strategies.

Here, instead of explicitly taking an exploratory action within the environment,

each agent utilizes its own local reward model to implicitly approximate the reward

it would have received for taking a given exploratory action. In this setting, agents

are still able to explore, but their exploratory actions do not impact the learning of

other agents within the system. Although as we have shown in previous chapters,

CLEAN rewards show significant promise for addressing the coordination prob­

lem within multiagent systems, they currently require an accurate partial system

107

model to be computed. In this chapter, we address this shortcoming by enabling

agents to utilize reward modeling techniques to construct their own approximate

model of the system objective when it is otherwise unavailable. The agents then

use this approximate model to calculate their individual CLEAN rewards during

learning.

7.2.1 Neural Networks

A multilayer perceptron (MLP) neural network is a feed-forward supervised learn­

ing artificial neural network model. A MLP consists of multiple layers of nodes

in a directed graph, with each layer fully connected to the next one. Except for

the input nodes, each node is a neuron with a nonlinear activation function (in

this work we use a sigmoid activation function). A MLP can be trained with back

propagation.

Neural networks (NN) have been used in many applications including: control

problems, classification, function approximation, and nonlinear signal-processing [36,

52, 66, 83, 92]. They are useful tools for representing functions and can represent

both discontinuous and continuous functions to arbitrary accuracy [17, 36, 40, 52].

Neural networks are biologically inspired mathematical tools modeled after the

function of the brain. Each neural network maps a set of inputs to a set of out­

puts. A neural network consists of a set of input nodes, output nodes, and hidden

layer nodes which are connected with weights assigned to each connection (Fig­

ure 7.1). The weighted sum of the connections mapped from the inputs through

108

Input Layer

Hiden Layer

Output Layer

Figure 7.1: Network diagram for a two layer feed forward Neural Network (NN).
The input, hidden and output variables are represented by nodes, and the weight
parameters are represented by links between the nodes. In feed forward NN the
information flow through the network from input to hidden and then to output
layer.

the nodes of the neural network generate a set of outputs (where each node it­

self has an activation function, which is typically nonlinear) [48]. There are many

ways of training a neural network including supervised, unsupervised, and reward

based methods. A neural network controller utilizing supervised learning has a

“teacher” that knows the correct mapping from inputs to outputs, and provides

the neural network with constructive feedback on actions taken (improving the

neural networks performance over time). Using unsupervised learning with a neu­

ral network attempts to use the neural network to cluster a set of unlabeled data

using its similarities. Reward based learning with neural networks on the other

109

hand utilize reward feedback based upon actions taken in order to update the

neural networks [17, 40, 52, 83, 92]. In this work, a single hidden layer neural

network was used to approximate the underlying system reward function through

incrementally interacting with the environment.

In this work, our neural networks utilize a sigmoid activation function (Equa­

tion 7.1) ranging from 0 to 1.

1
φ1(x) = T (7.1)

(1 + e−w x)

Each layer n of our neural networks consist of q neurons, where xn are the acti­

vations of the neurons and yn are the outputs of the neurons derived by putting the

weighted activations through the activation function φ [66]. The neural networks

used are fully connected, and the output of layer n − 1 are connected to layer n’s

inputs xn via weights. The weight matrix is defined as Wn where the elements

wi,j corresponds to the weight from output j of the n − 1 layer to the input i of

the n layer [66]:

w0,0 ... w0,p

Wn =

wq,0 ... wq,p

Therefore xn is:

xn = Wnyn−1 (7.2)

110

and

yn = φ(Wnyn−1) (7.3)

Where xn is the vector of inputs to layer n, Wn is the set of weights on the

inputs from layer n − 1 to layer n, yn−1 is the vector of outputs from layer n − 1,

and yn is the vector of neural network outputs at layer n [66]. In this work, we

use back propagation to update the weights of the neural network during learning

according to the following back propagation update rule:

∂E
Wt+1

n = Wn
t + η (7.4)

∂Wm

Where η is the learning rate parameter. The goal of back propagation is to

backpropagate our error and apply gradient descent to learn our weights [66]. We

refer the interested reader to [25] for additional information on neural networks.

7.3 Reward Shaping within Unknown Environments

In order to calculate shaped rewards which require an accurate system model (e.g.,

difference rewards or the CLEAN rewards introduced in this section), agents have

previously been required to have access to a complete and accurate partial system

model (e.g., an analytical model of the team objective G(z)). Unfortunately, in

many real-world systems the agent-to-agent interactions and system dynamics are

too complex to be modeled analytically and are frequently too sophisticated to be

111

accurately modeled at all, rendering these techniques inadequate for many real-

world applications. We address this shortcoming by extending both existing and

novel reward shaping techniques (difference rewards and CLEAN rewards, respec­

tively) such that they are able to learn when an accurate analytical model of the

team reward is not available. This is achieved by enabling agents to construct their

own approximate model of the team objective when the environment is unknown

and an accurate model of the team reward is not available a priori. A key benefit of

our techniques is that they require the agents to have no a priori system knowledge

and they do not require the system designer to make any assumptions about the

system, meaning they are completely generalizable to any real-world system.

7.3.1 Reward Modeling

Within some simple multiagent domains, we can expect to be provided with an

accurate analytical equation for the team performance objective G(z), which can be

used to calculate partial-model based rewards such as difference rewards (Chapter

2). Unfortunately, in many domains (particularly real-world domains) the complex

interactions between agents coupled with the system dynamics make the system

too sophisticated to be modeled analytically, and in these systems an accurate

model of the team reward G is frequently not available. For this sort of “black­

box” systems, one simply has the vector z and some reward signal G(z) which tells

the team performance.

Our approach to solving this problem is to allow the agents to construct an

112

approximate model of the team objective G(z) by enabling agents to construct an

approximate model of the team objective fG(z)(z) through repeatedly interacting

with the environment. In particular, agents will interact with the environment,

generating a tuple including the system state vector z and the resultant reward

signal G(z), and agents use this information to incrementally train an approxi­

mate team reward model. This model can then be used by individual agents to

calculate rewards (e.g., difference rewards, CLEAN rewards) which need a model

of the team objective in order to learn. For example, with our second variation of

CLEAN rewards, the calculation becomes Ci = fG(z)(z − zi + ci) − fG(z)(z − zi + cj).

In this case, the approximate model of the team objective fG(z)(z) is used in place

of the accurate analytical model of the team objective G(z) when calculating both

difference rewards and CLEAN rewards. This solution, while conceptually sim­

ple, addresses a major criticism of partial model based reward shaping techniques

(e.g., difference rewards, CLEAN rewards) in the past: that they are difficult to

use if an accurate analytical equation for G(z) is unavailable. In this work we cou­

ple these reward modeling techniques with both difference rewards and CLEAN

rewards, expanding the applicability of both techniques into a large number of

new domains. The key property that distinguishes this approach from standard

function approximation is that the structural form of both difference rewards and

CLEAN rewards have built-in bias reducers. The subtraction operation ensures

systematic errors in the function approximation are eliminated, particularly if the

two terms fG(z)(z) and fG(z)(z − zi + ci) are close to one another. In this paper, we

explore using neural networks (discussed previously) as the function approximators

113

to model G(z) (although other function approximation techniques such as tabular

linear functions and support vector machines are also valid). A key benefit of the

techniques used in this work is that we did not bias our reward model in any way

and we performed uniformly random sampling of {z, G(z)} tuples, meaning that

these techniques are completely generalizable to any multiagent system.

7.3.2 CLEAN Rewards for Unknown Environments

Once the agents learn an approximate reward model via repeatedly interacting with

their environment and training a function approximator (discussed previously),

they will use this reward model to calculate their individual CLEAN rewards.1 .

For example, agents using CLEAN rewards will use the model to calculate their

rewards as follows:

Ci = fG(z)(z − zi + ci) − fG(z)(z − zi + cj) (7.5)

where C is the CLEAN reward of agent η, G(z) is the system objective, fG(z)(z) is

the neural network function approximation of the system objective, z is the system

state vector containing all key state and action variables. In this work, we assume

that the agents have access to the complete z vector, although previous work has

shown that similar reward shaping techniques can perform well with only partial z

vector information. Here, the precise choice of counterfactual actions ci and cj are

1Although we also compare the performance of CLEAN rewards with function approximation
against difference rewards utilizing the same techniques

114

dependent upon the specific CLEAN reward design the system designer chooses to

use (e.g., Equation 3.2 or 3.3, respectively).

In this setting, agents can begin with no a priori knowledge of their environ­

ment, incrementally construct an approximate reward model of the system objec­

tive, and then utilize this objective to calculate their shaped CLEAN rewards. In

this work, we utilized these techniques in two domains. In this setting, the system

is a black box model and agents have no access to the underlying system model

other than the team objective function approximation fG(z)(z) they generated.

115

Chapter 8 – Learning with CLEAN Rewards in Unknown

Real-World Domains

Although both CLEAN rewards and Batch-CLEAN rewards have shown significant

promise for improving both the speed and performance within multiagent systems,

they required an accurate model of the system reward in order to be computed.

Unfortunately, in many real-world domains, such information is not available a pri­

ori, rending the standard versions of these techniques inadequate. We address the

shortcomings of these approaches by enabling agents to learn with both CLEAN

and Batch-CLEAN rewards by utilizing model-based reinforcement learning tech­

niques that allow agents to construct their own approximate model of the system

reward. Here, agents repeatedly interact with the environment in order to con­

struct an approximate model of the system reward function and then they use

this approximate model to compute their individual CLEAN and Batch-CLEAN

rewards. In this chapter, we demonstrate this concept for standard CLEAN re­

wards, although it is a trivial extension to extend these results to Batch-CLEAN

rewards.

116

8.1 Results

In this chapter we utilize two multiagent domains to test the performance of Batch-

CLEAN rewards. The first is a UAV Communication Network (UAVCN) domain

originally introduced in [7] and previously described in Chapter 6. The second is

a CubeSat Coordination Domain (CCD) based upon the idea of satellite resource

sharing and fractionated satellite systems which was introduced in [60] and previ­

ously outlined in Chapter 6 of this dissertation. We borrowed domain parameter

values from those found for these domains within the literature unless otherwise

specified [7, 59, 60]. These are the domains outlined in the previous chapter (all

necessary domain details including descriptions and equations can be found in the

previous chapter). The only key difference between the two implementations is

that in this version of the UAVCN domain, agents control power only and always

point straight down.

All of these experiments were conducted for 3000 episodes and 30 statistical

runs. The learning rate was set to α = 0.10 and the exploration rate was set

to t = 0.05. The results were validated via a t-test with t = 0.05. All agents

utilized the standard reinforcement learning update rule: Q ' (s, a) = Q(s, a) +

α (R(s) − Q(s, a)). The learning parameters were set to α = 0.10 and t = 0.10.

In the UAVCN domain, the neural network function approximator had a single

input for each agent’s action, 100 hidden units (excluding the bias unit), and 1

output unit. In the CubeSats domain, the neural network had a single input

for each agent’s action, 500 hidden units (excluding the bias unit), and 1 output

117

unit. In both cases, the neural network was trained on a sample of 100,000,000

data points from the environment (corresponding to only a minute portion of the

overall action space which is of size 10100) and were trained using standard back

propagation with a neural network learning rate of γ = 0.05. The neural network

weights were initialized randomly between 0 and 0.50.

It is important to note that in these settings, although the neural network

function approximator is computationally expensive to train, the overall portion

of the joint-action space being explored by the agents to construct this model is

miniscule. For example, in the two domains in this work, there are 10100 possible

joint-actions, and the agents are only exploring one hundred billion of these pos­

sibilities. Additionally, it is important to note that there are likely significantly

better function approximation techniques that could both improve performance

and significantly reduce the number of samples required to train. Here, we chose

to use neural network function approximation techniques due to their generality

and robustness. Neural networks are a high variance function approximation tool,

and it is likely that alternate function approximation techniques (e.g., support vec­

tor machines) would be able to perform as well or better than the techniques used

here, at a fraction of the computational costs. Additionally, we did not attempt to

re-use any of the training data. However, it has been repeatedly shown that tech­

niques such as cross-validation can significantly improve the efficiency of the usage

of training data. Combining tools such as cross validation (which attempt to make

optimal use of a given set of training data) with alternate function approximation

techniques such as support vector machines (which are less computationally ex­

118

pensive than neural network techniques) would likely result in a reduction in the

computational costs of such function approximation techniques. Based upon our

experience with in this work, we would predict that a reduction of at least two or

three orders of magnitude with regards to the computational cost of training the

function approximator can be achieved using these techniques.

8.1.1 UAVCN Domain

First, we applied CLEAN learning with a function approximation of the system

model to a state-less action-value domain. Here, we tested the performance of

CLEAN rewards using function approximation in a 100 UAV communication net­

work. Initially, the agents began with no knowledge of the system. Then, they

incrementally constructed an approximate model of the system’s reward function

by repeatedly interacting with the environment. This model was then passed out

to all the agents and used by each agent to calculate their individual local rewards

(e.g., global, difference, and CLEAN rewards, respectively) except in the case of

standard global rewards G. Agents using G were provided with a complete and ac­

curate model of the system reward function, as this was to be used for a benchmark

to test the performance of the other techniques.

As seen in Figure 8.1, agents using traditional global rewards struggle to coordi­

nate their actions due to their inability to address the structural credit assignment

problem. Additionally, agents using global rewards with function approximation,

GNN also struggled as they were unable to address the credit assignment problem

119

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

B
a
n
d
w

id
th

 P
e
r

C
u
s
to

m
e
r

(k
B

s
/s

)

Episodes of Learning

UAVCN with 100 Agents

r_G
r_D

r_GNN
r_DNN

r_C1NN
r_C2NN

Figure 8.1: 100 agents in the UAVCN domain. As seen, agents using CLEAN re­
wards with an approximation of the system reward outperform agents using global
rewards, G, which have a complete and accurate model of the system reward.
Additionally, agents using CLEAN rewards utilizing function approximation (e.g.,
C1NN and C2NN) are able to perform approximately as well as agents using stan­
dard difference rewards D with a complete analytical model of the system in this
case.

and had an inherently inaccurate system reward model. Agents using difference re­

wards with function approximation, DNN were able to address these shortcomings

in order to slightly outperform traditional global rewards with respect to over­

all performance (although they learned much slower than agents using traditional

global rewards due to the inaccuracies in their reward model as well as their in­

ability to address the coordination issues brought on by exploratory action noise).

CLEAN rewards are able to affectively address the credit assignment problem,

as well as exploratory action noise in order to achieve significantly improved per­

formance over all other techniques. The key result here is that CLEAN rewards

with function approximation techniques are able to significantly outperform global

120

rewards with a model, and difference rewards with an approximate model. This

places CLEAN rewards not only at the forefront of the state-of-the-art with regards

to reward shaping techniques that require a model, but at the forefront with respect

to shaped rewards that are capable of learning within unknown environments.

8.1.2 CubeSat Coordination Domain

In this setting, we analyze the performance of agents using CLEAN rewards with

function approximation in a domain that has both states and actions. Here, we

explored the performance of a 100 agents CubeSat system in which the agents

initially had no underlying knowledge of their environment. First, the agents

learned an approximate model of the system objective of their environment, then

this reward model was used by the agents to calculate their individual rewards.

As seen in Figure 8.2, agents using traditional global rewards, G, perform poorly

overall. This is because the agents are unable to address the structural credit

assignment problem (i.e., how to determine the contribution each individual agent

had on the resultant system performance), resulting in poor coordination during

learning. Similarly, agents learning using a neural network function approximation

of the system objective GNN also perform poorly for the same reasons. It is

interesting to note that the system objective model of G achieved very comparable

performance to agents using the exact analytical model of the system objective,

G. This suggests that accurate models of the underlying system objectives can be

learned by agents. Although in the future, less computationally expensive models

121

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 0 20 40 60 80 100 120 140 160 180 200

S
y
s
te

m
 P

e
rf

o
rm

a
n
c
e
 (

G
)

Number of Orbits

CCD, 100 CubeSat System

G
D

G_NN
D_NN

C1_NN
C2_NN

Figure 8.2: 100 agents in the Cubesat Coordination Domain. Agents using tradi­
tional global rewards, G, with a complete and accurate analytical model of the sys­
tem reward function are unable to perform as well as agents using shaped rewards
with an approximate system model. Difference rewards utilizing an approximate
model of the system reward are able to outperform traditional global rewards due
to their ability to improve coordination by addressing the structural credit as­
signment problem. Agents using CLEAN rewards with an approximate model of
the system objective are able to perform nearly as well as difference rewards with
an accurate model (D) because they simultaneously address the structural credit
assignment problem as well as exploratory action noise.

would be preferred. There are a plethora of function approximation techniques that

would likely require significantly less computation burden than neural networks.

We chose neural networks because they are effective function approximators in a

wide range of situations (it has been said that neural networks are second best at

most things).

Figure 8.2 also shows us that agents using difference rewards with function ap­

proximation, DNN , outperform agents using both G and GNN , which is noteworthy.

As seen here, agents using DNN are able to perform significantly better than agents

122

using standard global rewards (even when agents using the global rewards have ac­

cess to a complete and accurate system reward model, G). Here, difference rewards

perform better because even with an approximate reward model, their ability to

address the structural credit assignment problem enables them to achieve signif­

icantly better coordination than global reward techniques. This is an important

result because there is currently no work throughout the literature that supports

the ability of difference rewards to function effectively when no accurate model

of the system is available (especially in a setting like this work, where we use a

completely general function approximation technique and we make no assumptions

about the system or its behavior when training the function approximator).

Finally, we applied CLEAN rewards with function approximation to this do­

main, as seen, the CLEAN rewards techniques significantly outperform all of the

other methods used in this work. This is because CLEAN rewards are able to

address the structural credit assignment problem like difference rewards do, but

they are also able to address the issues associated with exploratory action noise.

This is an important result for two key reason: i) it demonstrates the ability of

CLEAN rewards to learn when an accurate system reward model is unavailable (as

is the case in many real-world systems), and ii) it demonstrates that exploratory

action noise is still a critically important learning factor, even when the reward

model being used to learn is inherently inaccurate.

123

8.2 Conclusions

Traditional single-agent learning systems have an elegant and intuitive relationship

with how we expect learning to work in everyday life: We take an action; That ac­

tion has consequences; We learn from those consequences. In a multiagent system,

this paradigm becomes a little more muddled: Everyone takes actions; these actions

have multiple consequences; We all learn from all these consequences. The issue

is that the reward we learn from is now a function of actions of other agents and

to make things worse, many of these actions are exploratory. The issue of having

other agents’ actions affecting a reward function can be handled through previ­

ously researched counterfactual reward shaping, and the exploratory action noise

can be handled through our counterfactual exploration method utilized by CLEAN

rewards introduced in Chapter 3. However, both these methods break our elegant

learning paradigm: We cannot naturally see the consequences of counterfactual

actions on our environment, since these actions never actually happened. Instead

we depend on models of how actions lead to their consequences. The difficulty of

creating such models range from implementing a few equations to Herculean efforts

of combining multiple complex simulators. Making such models efficient leads to

even more complexity, increasing the burden to the system designer (who likely

wanted to use a learning system to reduce the design burden). In this chapter,

we reduced these burdens by enabling agents to build statistical models of their

rewards through iteratively interacting with the environment. These statistical

models were then utilized in conjunction with CLEAN rewards. The ability to

124

develop statistical models of the agents’ rewards will enable these techniques to be

applied to real-world systems.

Although these results were promising, there are several directions for future

work. First, the neural network function approximation techniques were not op­

timized with respect to the neural network parameters (e.g., number of layers,

number of nodes, or learning rate) which may have been partly to blame for the

significant computational cost of constructing the approximation of the reward

model. Second, the neural networks in this work were computationally expensive,

in the future alternate function approximation techniques should be used which

are able to establish a relatively accurate system model which provides good per­

formance at a fraction of the computational costs of the neural network techniques

used in this work. Finally, the function approximation techniques developed in

this work were constructed offline and then used online during learning. These

techniques must be extended to the case where the approximate reward model can

be learned online.

125

Chapter 9 – Conclusions

Our previous work on multiagent coordination focused on deriving reward func­

tions for agents to ascertain their contribution to a system wide objective [10, 12,

16, 18, 15, 137, 134, 136, 132, 138, 140]. In this work, we used and extended that

framework to estimate the impact of agent actions on their own and by extension

the system objective functions. In this work, we:

1. Developed a multiagent learning algorithm that accounts for the “background

noise” caused by the exploratory actions of all agents (CLEAN Rewards).

2. Developed a “one-action,	 multiple updates” algorithms to improve scaling

and learning speed in multiagent learning (Batch-CLEAN Rewards).

3. Derived statistical models to extend CLEAN rewards to domains where the

functional form of the system objective function is unknown.

The long-term goal of this work is to enable the widespread use of multiagent learn­

ing in the control and coordination of large systems. To that end, we introduced

and investigated a new learning paradigm that explicitly considers the impact of an

agent’s exploratory “noise” (so-called exploratory action noise) on another agent

in a large model-based multiagent reinforcement learning systems. Next, we in­

troduced a novel reward shaping technique called Coordinated Learning without

126

Exploratory Action Noise which eliminated this noise for agents learning within a

multiagent system, resulting in improved learning and performance. Additionally,

CLEAN rewards promoted coordination by addressing the structural credit assign­

ment problem present during learning. We then generalized this concept to allow

agents to explore and assess the potential values of multiple action for each of their

interactions with the environment. Then, we improved the real-world applicability

of the developed techniques by reducing the reward model requirements.

The discovery of exploratory action noise and CLEAN rewards is a major con­

tribution to the field of multiagent systems. Developing multiagent learning tech­

niques which account for learning noise caused by the exploratory actions of agents

required new theoretical insights (e.g., how to quantify the impact of learning noise

on resultant system performance) and practical advances (e.g., how to maintain

the exploration necessary for learning, while eliminating the noise it causes in the

learning process). This work quantified the impact of exploratory actions on mul­

tiagent learning performance and subsequently developed learning techniques (i.e.,

CLEAN rewards) which eliminated the learning noise associated with such explo­

ration actions. Here, we demonstrated the benefits of CLEAN rewards for learning

within multiagent environments which are inherently non-stationary.

Next, we developed Batch-CLEAN which extended the benefits of CLEAN re­

wards while increasing the learning speed. Eliminating the non-stationarity in the

environment for a multiagent systems is a key step in improving system perfor­

mance, but does not, by itself, rectify the slow convergence speeds of multiagent

systems. Indeed, that issue stems also from the exponentially large joint action

127

spaces prevalent in multiagent systems. The third objective aims at significantly

speeding up learning in multiagent systems by enabling agents to perform reward

updates for multiple actions after each interaction with the environment. The im­

pact of this objective is to enable agents to search through a much larger portion

of the search space, significantly improving the learning speed compared to exist­

ing techniques. This is particularly critical to applying multiagent algorithms in

real world domains where the dynamic and stochastic environment requires con­

trol techniques that can quickly adapt to changing system needs. To address this,

Batch-CLEAN rewards enabled agents to calculate reward updates for multiple

actions during each time step. This approach maintained the benefits of CLEAN

rewards (i.e., performance gains) while at the same time significantly increasing

learning speed.

Finally, we extended the real-world applicability of CLEAN rewards based tech­

niques by extending them to domains where the functional form of the system

objective is not known or cannot be defined. In many real world systems the envi­

ronment cannot be queried for the impact of alternative actions without actually

taking those actions. Here, we enabled agents to construct statistical models of

the system reward function. The agents then used this approximate model of the

system reward when calculating their individual CLEAN rewards. Such approxi­

mation techniques are ideal for extensions to Batch-CLEAN rewards due to their

low computational expense (compared to complete re-simulation).

Although this work significantly advanced the state-of-the-art in multiagent

learning by introducing several new reward shaping techniques, there is still a sig­

128

nificant amount of work to be done. First, a thorough exploration of the types of

approximate rewards modeling tools should be conducted, and the trade-offs should

be analyzed. It is likely that both reduced computational costs and significant per­

formance gains could be achieved over the simple neural networks applied in this

work. In particular, combining cross-validation training with lower variance re­

gression modeling techniques for developing approximate reward models can likely

be applied in order to improve performance over the model-based reinforcement

learning techniques utilized in this work. Additionally, in order to further improve

the real-world applicability of CLEAN rewards, work needs to be done to extend

them to domains where agents have neither an accurate system model (i.e., agents

use function approximation techniques to develop an approximate system reward

model for learning) nor access to information about all other agents in the system

at any given time (i.e., under communication restrictions). This work would make

these techniques directly applicable to almost any real-world system (i.e., limited

information and only an approximate reward model) and these extensions should

be fairly straight forward to implement.

129

Bibliography

[1] O. Abdelkhalik and D. Mortari. Satellite constellation design for earth ob­
servation. 15TH AAS/AIAA Space Flight Mechanics Meeting, 2005.

[2] Y. Achbany, F. Fouss, L. Yen, A. Pirotte, and M. Saerens. Optimal tuning
of continual, online, exploration in reinforcement learning. Proceedings of the
International Conference on Artificial Neural Networks (ICANN), 2006.

[3] Y. Achbany, F. Fouss, L. Yen, A. Pirotte, and M. Saerens. Tuning continual
exploration in reinforcement learning: An optimal property of the Boltzmann
strategy. Neurocomputing, 71, 2008.

[4] N. Agmon, C. Fok, Y. Emaliah, P. Stone, C. Julien, and S. Vishwanath. On
coordination in practical multi-robot patrol. Proceedings of the International
Conference on Robotics and Automation (ICRA), 2012.

[5] N. Agmon and P. Stone. Leading ad hoc agents in joint action settings with
multiple teammates. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, 2012.

[6] N. Agmon, D. Urieli, and P. Stone. Multiagent patrol generalized to complex
environmental conditions. Proceedings of the Twenthy-Fifth Conference on
Artificial Intelligence (AAAI), 2011.

[7] A. Agogino, C. HolmesParker, and K. Tumer. Evolving large scale uav com­
munication system. In Proceedings of the Genetic and Evolutionary Compu­
tation Conference (GECCO), Philadelphia, PA, July 2012.

[8] A. Agogino and K. Tumer.	 Unifying temporal and structural credit assign­
ment problems. In Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, 2004.

[9] A. Agogino and K. Tumer.	 Unifying temporal and structural credit assign­
ment problems. In Proceedings of the Third International Joint Conference
on Autonomous Agents and Multi-Agent Systems, New York, NY, July 2004.

130

[10] A. Agogino and K. Tumer. Multi agent reward analysis for learning in noisy
domains. In Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Utrecht, Netherlands, July
2005.

[11] A. Agogino and K. Tumer. Entropy based anomaly detection applied to space
shuttle main engines. In In Proceedings of the IEEE Aerospace Conference,
2006.

[12] A. Agogino	 and K. Tumer. Quicr-learning for multi-agent coordination.
American Association for Artificial Intelligence (AAAI), 2006.

[13] A. Agogino and K. Tumer.	 Analyzing and visualizing multi-agent rewards
in dynamic and stochastic domains. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS), pages 320–338, 2008.

[14] A. Agogino and K. Tumer.	 Learning indirect actions in complex domains
action suggestions for air traffic control. Advances in Complex Systems,
12:493–512, 2009.

[15] A. Agogino and K. Tumer.	 A multiagent approach to managing air traffic
flow. Journal of Autonomous Agents and Multiagent Systems (JAAMAS),
2012.

[16] A. K. Agogino and K. Tumer. Analyzing and visualizing multiagent rewards
in dynamic and stochastic environments. Journal of Autonomous Agents and
Multi Agent Systems, 17(2):320–338, 2008.

[17] A. K. Agogino and K. Tumer.	 Efficient evaluation functions for evolving
coordination. Evolutionary Computation, 16(2):257–288, 2008.

[18] A. K. Agogino and K. Tumer. Learning indirect actions in complex domains:
Action suggestions for air traffic control. Advances in Complex Systems,
12:493–512, 2009.

[19] J. Asmuth, L. Li, M. Littman, A. Nouri, and D. Wingate. A bayesian sam­
pling approach to exploration in reinforcement learning. In Proceedings of
The 25th Conference on Uncertainty in Artificial Intelligence, 2009.

[20] J. Asmuth, M. Littman, and R. Zinkov.	 Potential-based shaping in model-
based reinforcement learning. Association for the Advancement of Artificial
Intelligence (AAAI), 2008.

131

[21] J. Audibert, R. Munos, and C. Szepesvari.	 Exploration-exploitation trade-
off using variance estimates in multi-armed bandits. Theoretical Computer
Science, 2009.

[22] D. Baker and S. Worden. The large benefits of small-satellite missions. EOS,
Transactions American Geophysical Union, 89(33), 2008.

[23] C. Baldassano and N. Leonard.	 Explore vs. exploit: Task allocation for
multi-robot foraging. Preprint, 2012.

[24] S. Barrett and P. Stone. An analysis framework for ad hoc teamwork tasks.
In Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2012.

[25] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[26] Y. Bjornsson, V. Hafsteinsson, A. Johannsson, and Einar Jonsson. Efficient
use of reinforcement learning in a computer game. Computer Games - Arti­
ficial Intelligence, Design, and Education (CGAIDE), 2004.

[27] M. Bowling and M. Veloso.	 Simultaneous adversarial multi-robot learning.
In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2003.

[28] Michael Bowling.	 Convergence and no-regret in multiagent learning. Ad­
vances in Neural Information Processing Systems (NIPS), 2005.

[29] O. Buffet, A. Dutech, and F. Charpillet. Shaping multiagent systems with
gradient reinforcement learning. Journal of Autonomous Agents and Multi
Agent Systems (JAAMAS), 2007.

[30] L. Busoniu, R. Babuska, and B. Schutter. A comprehensive survey of multi-
agent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C - Applications and Reviews, 2008.

[31] M. Castronovo,	 F. Maes, R. Fonteneau, and D. Ernst. Learning explo­
ration/exploitation strategies for single trajectory reinforcement learning.
In Proceedings of the 10th European Workshop on Reinforcement Learning,
2012.

132

[32] G. Chalkiadakis and C. Boutilier. Coordination in multiagent reinforcement
learning - a bayesian approach. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2003.

[33] G. Chalkiadakis and C. Boutilier.	 Sequentially optimal repeated coalition
formation under uncertainty. Journal of Autonomous Agents and Multiagent
Systems (JAAMAS), 2012.

[34] D. Challet and N. Johnson.	 Optimal combination of imperfect objects.
Physics Review Letters 89, 2002.

[35] Y. Chang, T. Ho, and L. Kaelbling. All learning is local: Multi-agent learning
in global reward games. Computer Science Journal, 2004.

[36] Tianping Chen and Robert Chen.	 Universal approximation to nonlinear
operators by neural networks with arbitrary activation functions and its ap­
plication to dynamical systems, 1995.

[37] M. Chhabra and S. Das.	 Learning the demand curve in posted-proce digi­
tal goods auctions. In Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2011.

[38] C. Claus and C. Boutilier. The dynamics of reinforcement learning coopera­
tive multiagent systems. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, 1998.

[39] M. Colby, C. HolmesParker, and K. Tumer.	 Coordination and control of
large distributed sensor networks. In Future of Instrumentation International
Workshop (FIIW), 2012.

[40] Mitch Colby,	 Ehsan Nasroullahi, and Kagan Tumer. Optimizing ballast
design of wave energy converters using evolutionary algorithms. July 2011.

[41] V. Conitzer and T. Sandholm. Bl-wolf - a framework for loss-bounded learn-
ability in zero-sum games. In Proceedings of the Twentieth International
Conference on Machine Learning (ICML), 2003.

[42] S. Devlin and D. Kudenko.	 Plan-based reward shaping for multiagent re­
inforcement learning. Fourth IEEE International Conference on Intelligent
Systems, 2008.

133

[43] S. Devlin and D. Kudenko.	 Theoretical considerations of potential-based
reward shaping for multi-agent systems. In Proceedings of the 10th Inter­
national Conference on Autonomous Agents and Multiagent Systems (AA­
MAS), 2011.

[44] E. Durfee.	 Distributed Problem Solving and Planning. Springer-Verlag New
York, Inc, 2001.

[45] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research (JMLR), 2005.

[46] A. Farinelli, A. Rogers, and N.R. Jennings. Maximising sensor network ef­
ficiency through agent-based coordination of sense/sleep schedules. In Pro­
ceedings of the International Workshop on Energy in Wireless Sensor Net­
works, 2008.

[47] F. Fave, A. Rogers, Z. Xu, S. Sukkarieh, and N. Jennings. Deploying the
max-sum algorithm for decentralised coordination and task allocation of un­
manned aerial vehicles for live aerial imagery collection. IEEE International
Conference on Robotics and Automation, 2012.

[48] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from
architectures to learning, 2008.

[49] T. Gabel and M. Riedmiller. Evaluation of batch-mode reinforcement learn­
ing methods for solving dec-mdps with changing action sets. In Recent Ad­
vances in Reinforcement Learning - Lecture Notes in Computer Science Vol­
ume 5323, 2008.

[50] A. Galstyan. Continuous strategy replicator dynamics for multi-agent learn­
ing. Journal of Autonomous Agents and Multiagent Systems (JAAMAS),
2011.

[51] S. Gelly and D. Silver. Combining online and offline knowledge in uct. In Pro­
ceedings of the 24th International Conference on Machine Learning (ICML),
2007.

[52] Uli Grasemann, Daniel Stronger, and Peter Stone. A neural network-based
approach to robot motion control. In Ubbo Visser, Fernando Ribeiro, Takeshi
Ohashi, and Frank Dellaert, editors, RoboCup-2007: Robot Soccer World Cup

134

XI, volume 5001 of Lecture Notes in Artificial Intelligence, pages 480–87.
Springer Verlag, Berlin, 2008.

[53] M. Grzes and D. Kudenko.	 Online learning of shaping rewards in reinforce­
ment learning. Neural Networks, 23, 2010.

[54] A. Guez, R. Vincent, M. Avoli, and J. Pineau. Adaptive treatment of epilepsy
via batch-mode reinforcement learning. In Association for the Advancement
of Artificial Intelligence (AAAI), 2008.

[55] K. Hadeli, P. Valckenaers, C. Zamfirescu, H. Brussel, B. Germain,
T. Holvoet, and E. Steegmans. Self-organizing in multiagent coordination
and control using stigmergy. In Engineering Self-Organizing Systems, 2003.

[56] M. Hapgood, S. Eckersley, R. Lundin, M. Kluge, and U. Prechtel an P. Hyvo­
nen. Nano satellite beacons for space weather monitoring. In In Proceedings
of the 5th ESA Round Table on Micro/Nano Technologies for Space, 2005.

[57] S. Herwitz, L. Johnson, J. Arvesen, R. Higgins, J. Leung, and S. Duna­
gan. Precision agriculture as a commercial application for solar-powered
unmanned aerial vehicles. In American Institute of Aeronautics and Astro­
nautics (AIAA), 2002.

[58] T. Hester and P. Stone. Learning and using models. Reinforcement Learning:
State of the Art, 2011.

[59] C. HolmesParker and A. Agogino.	 Agent-based resource allocation in dy­
namic cubesat constellations (extended abstract). In Proceedings of the 10th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2011.

[60] C. HolmesParker, A. Agogino, and K. Tumer. Evolving distributed resource
sharing for cubesat constellations. In Proceedings of the Genetic and Evolu­
tionary Computation Conference (GECCO), Philadelphia, PA, July 2012.

[61] C. HolmesParker, A. Agogino, and K. Tumer.	 Clean rewards for improving
multiagent coordination in the presence of exploration (extended abstract).
In the 12th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2013.

135

[62] C. HolmesParker, A. Agogino, and K. Tumer.	 Exploiting structure and
utilizing agent-centric rewards to promote coordination in large multiagent
systems (extended abstract). In the 12th International Conference on Au­
tonomous Agents and Multiagent Systems (AAMAS), 2013.

[63] C. HolmesParker and K. Tumer.	 Combining difference rewards and hierar­
chies for scaling to large multiagent systems. In Proceedings of the Adaptive
and Learning Agents Workshop (ALA), 2012.

[64] J. Hu	 and M. Wellman. Multiagent reinforcement learning - theoretical
framework and an algorithm. In Proceedings of the Fifteenth International
Conference on Machine Learning (ICML), 1998.

[65] J. Hu and M. Wellman.	 Online learning about other agents in a dynamic
multiagent system. In Proceedings of the Second International Conference
on Autonomous Agents, 1998.

[66] J.L. Hudson, M. Kube, R.A. Adomaitis, I.G. Kevrekidis, A. Lapedes, and
R. Farbar. Nonlinear signal processing using neural networks: Prediction and
system modeling. In Los Alamos National Laboratory Theoretical Division,
pages 2075–2081, July 1987.

[67] A. Iscen, C. HolmesParker,	 and K. Tumer. Handling communication re­
strictions with shaped rewards. In Adaptive and Learning Agents Workshop
(ALA 2011), 2011.

[68] M. Jain, M. Taylor, and M. Tambe.	 Dcops meet the real world: Explor­
ing unknown reward matrices with applications to mobile sensor networks.
International Joint Conference on Artificial Intelligence, 2009.

[69] N. Jennings, K. Sycara, and M. Wooldridge.	 A roadmap of agent research
and development. Journal of Autonomous Agents and Multiagent Systems
(JAAMAS), 1998.

[70] S. Jensen, D. Boley, M. Gini, and P. Schrater. Non-stationary policy learning
in 2-player zero sum games. In Proceedings of the 20th National Conference
on Artificial Intelligence (AAAI), 2005.

[71] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning - a survey.
Journal of Artificial Intelligence Research (JAIR), 1996.

136

[72] S. Kalyanakrishnan and P.	 Stone. Batch reinforcement learning in a com­
plex domain. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2007.

[73] S. Kamboj, W. Kempton, and K. Decker.	 Deploying power grid-integrated
electric vehicles as a multiagent system. In Proceedings of the 10th Inter­
national Conference on Autonomous Agents and Multiagent Systems (AA­
MAS), 2011.

[74] S. Kar, J. Moura, and H. Poor.	 Qd-learning: A collaborative distributed
strategy for multi-agent reinforcement learning through consensus and inno­
vations. IEEE Transactions on Signal Processing, 2012.

[75] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial
time. Machine Learning, 2002.

[76] B. Klofas, J. Anderson, and K. Leveque. A survey of cubesat communication
systems. Technical report, California Polytechnic State University, 2008.

[77] S. Kraus.	 Negotiation and cooperation in multi-agent environments. Artifi­
cial Intelligence, 1997.

[78] P. Krysta, T. Michalak, T. Sandholm, and M. Wooldridge.	 Combinatorial
auctions with externalities. 9th International Conference on Autonomous
Agents and Multiagent Systems, May 2010.

[79] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samples in batch rein­
forcement learning. In Proceedings of the 25th International Conference on
Machine Learning (ICML), 2008.

[80] L. Li, M. Littman, and C. Mansley. Online exploration in least-squares policy
iteration. Proceedings of the Eight International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2009.

[81] Z. Li, J. Chen, and E. Baltsavias, editors.	 Advances in Photogrammetry,
Remote Sensing, and Spatial Information Sciences: 2008 ISPRS Congress
Book, London, United Kingdom, 2008. The Taylor Francis Group.

[82] L. Lin. Self-improving reactive agents based on reinforcement learning, plan­
ning and teaching. Machine Learning, 1992.

137

[83] Peter X. Liu, Ming J. Zuo, and Max Q.-H. Meng.	 Using neural network
function approximation for optimal design of continuous-state parallel-series
systems. Computers & Operations research, 30(339-352), July 2001.

[84] M. Lopes, T. Lang, M. Toussaint, and P.	 Oudeyer. Exploration in model-
based reinforcement learning by empirically estimating learning progress.
Advances in Neural Information Processing Systems (NIPS), 2012.

[85] K. Macarthur, R. Stranders, S. Ramchurn, and N. Jennings. A distributed
anytime algorithm for dynamic task allocation in multi-agent systems. As­
sociation for the Advancement of Artificial Intelligence (AAAI), 2011.

[86] H.	 Maei, C. Szepesvari, S. Bhatnagar, and R. Sutton. Toward off-policy
learning control with function approximation. In In Proceedings of the 27th
International Conference on Machine Learning, 2010.

[87] S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziagyriou,
F. Ponci, and T. Funabashi. Multi-agent systems for power engineering
applications - part i: Concepts, approaches, and technical challenges. IEEE
Transactions on Power Systems, 22(4), 2007.

[88] S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziagyriou,
F. Ponci, and T. Funabashi. Multi-agent systems for power engineering
applications - part ii: Technologies, standards, and tools for building multi-
agent systems. IEEE Transactions on Power Systems, 22(4), 2007.

[89] N.	 Monekosso, P. Remagnino, and A. Szarowicz. An improved q-learning
algorithm using synthetic pheromones. Lecture Notes in Computer Science,
2296, 2001.

[90] A. Muteanu. Nanosat/cubesat constellation concepts. Masters thesis, Cran­
field University, Bedfordshire, UK, 2009. Thesis.

[91] R. Nair, M. Tambe, and S. Marsella.	 Role allocation and reallocation in
multiagent teams: Towards a practical analysis. Proceedings of the 2nd
International Conference on Autonomous Agents and Multiagent Systems,
2003.

[92] K. Narendra and K. Parthasarathy.	 Identification and control of dynamical
systems using neural networks. IEEE Transactions on Neural Networks,
March 1990.

138

[93] K.	 Narendra and M. Thathachar. Learning Automata - An Introduction.
Prentice Hall, 1989.

[94] E. Nasroullahi and K. Tumer.	 Combining coordination mechanisms to im­
prove the performance of multi-robot teams. In Artificial Intelligence Re­
search, 2012.

[95] A.	 Ng, D. Harada, and S. Russell. Policy invariance under reward trans­
formations: Theory and application to reward shaping. In International
Conference on Machine Learning, 1999.

[96] T. Nguyen, T. Silander, and T. Leong. Transferring expectations in model-
based reinforcement learning. Advances in Neural Information Processing
Systems (NIPS), 2012.

[97] A. Nouri and M. Littman. Multi-resoultion exploration in continuous spaces.
In Proceedings of Neural Information Processing Systems (NIPS), 2009.

[98] A. Nouri and M. Littman.	 Dimension reduction and its application to ex­
ploration in continuous state spaces. Machine Learning Journal, 2010.

[99] O. Ozcan and J. Alt.	 Balancing exploration and exploitation ratio in rein­
forcement learning. In Proceedings of the 2011 Military Modeling and Simu­
lation Symposium, 2011.

[100] L. Panait and S. Luke.	 Cooperative multi-agent learning - the state of the
art. In the Journal of Autonomous Agents and MultiAgent Systems, 2005.

[101] N. Picon. Effects of wireless power beaming in the space industry: Modern
applications and future possibilities. Triple Helix - Explorations in Science,
Society and Law, 2011.

[102] P.	 Poupart and N. Vlassis. Model-based bayesian reinforcement learning
in partially observable domains. The International Symposium on Artificial
Intelligence and Mathematics, 2008.

[103] S. Proper and K. Tumer. Modeling difference rewards for multiagent learning.
In Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2012.

[104] QinetiQ. http://www.qinetiq.com/pages/default.aspx. Online, 2011.

http://www.qinetiq.com/pages/default.aspx

139

[105] S. Ramchurn, P. Vytelingum, A. Rogers, and N. Jennings. Agent-based
control for the decentralised demand side management in the smart grid. In
Proceedings of the 10th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2011.

[106] D. Ray,	 A. Mandal, S. Mazumder, and S. Mukhopadhay. Application of
single agent q-learning for light exploration. IEEE, 2010.

[107] S. Ray and P. Tadepalli. Model-based reinforcement learning.	 Encyclopedia
of Machine Learning, 2010.

[108] L. Rejeb,	 Z. Guessoum, and R. MHallah. The exploration-exploitation
dilemma for adaptive agents. In Proceedings of the Fifth European Work­
shop on Adaptive Agents and Multi-Agent Systems, 2005.

[109] S. Reynolds.	 Reinforcement learning with exploration. PhD Dissertation,
University of Birmingham, United Kingdom, 2002.

[110] V. Robu, I. Vetsikas, E. Gerding, and N. Jennings. Flexibly priced options
a new mechanism for sequential auction markets with complementary goods
(extended abstract). Proceedings of the 9th International Conference on Au­
tonomous Agents and Multiagent Systems, pages 1485–1486, May 2010.

[111] A. Rogers, A. Farinelli, and N. Jennings.	 Self-organising sensors for wide
area surveillance using the max-sum algorithm. Lecture Notes in Computer
Science. Self-Organizing Architectures, 2010.

[112] A.Q. Rogers and L.J. Paxton. Small satellite constellations for space weather
and space environment measurements. International Astronautical Congress,
2008.

[113] G. Romeo, G. Frulla, and E. Cestino.	 Design of solar high altitude long
endurance aircraft for multi payload and operations. Aerospace Science and
Technology, 10(6):541 – 550, 2006.

[114] S. Ross and J. Pineau. Model-based bayesian reinforcement learning in large
structured domains. In Proceedings of the 24th Conference on Uncertainty
in Artificial Intelligence (UAI), 2008.

[115] H. Runge, W. Rack, A. Ruiz-Leon, and M. Hepperle. A solar powered hale­
uav for arctic research. 1st CEAS European Air and Space Conference, 2007.

140

[116] S. Russell and P. Norvig.	 Artificial Intelligence A Modern Approach (Third
Edition). Prentice Hall, Pearson Publication Inc, 2010.

[117] R. Sandau, H. Roser, and A. Valenzuala, editors.	 Small Satellite Missions
for Earth Observations New Developments and Trends, New York, NY, 2010.
Springer Heidelburg Dordrecht London.

[118] K. Schilling.	 Networked distributed pico-satellite systems for earth ob­
servation and telecommunication applications. Technical report, Julius-
Maximilians Universitat Wurzburg, 2008.

[119] Y. Shoham, R. Powers, and T. Grenager.	 If multi-agent learning is the
answer, what is the question? Artificial Intelligence, 2006.

[120] A. Simpkins, R. Callafon, and E. Todorov. Optimal trade-off between explo­
ration and exploitation. American Control Conference, 2008.

[121] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma.	 Online adaptation of
game opponent ai in simulation and in practice. In Proceedings of the 4th
International Conference on Intelligent Games and Simulation (GAME-ON),
2003.

[122] P. Stone. Layered Learning in Multiagent Systems - A Winning Approach to
Robotic Soccer. MIT Press, 2000.

[123] P.	 Stone and M. Veloso. Multiagent systems - a survey from a machine
learning perspective. Autonomous Robots, 2000.

[124] A. Strehl. Probably approximately correct (pac) exploration in reinforcement
learning. In Dissertation, 2007.

[125] R. Sutton and A. Barto.	 Reinforcement Learning An Introduction. MIT
Press, Cambridge, MA, 1998.

[126] M. Tambe. Implementing agent teams in dynamic multi-agent environments.
Applied Artificial Intelligence, 1997.

[127] M. Taylor, M. Jain, P.	 Tandon, and M. Tambe. Using dcops to balance
exploration and exploitation in time-critical domains. In Proceedings of the
Annual Workshop on Distributed Constraint Reasoning at IJCAI-09, 2009.

141

[128] M. Taylor, M. Jain, P. Tandon, M. Yokoo, and M. Tambe.	 Distributed on­
line multi-agent optimization under uncertainty balancing exploration and
exploitation. Advances in Complex Systems, 2011.

[129] W. Teacy,	 G. Chalkiadakis, A. Farinelli, A. Rogers, N. Jennings, S. Mc-
Clean, and G. Parr. Decentralized bayesian reinforcement learning for online
agent collaboration. Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2012.

[130] S. Thrun. The role of exploration in learning control. Handbook for Intelligent
Control: Neural, Fuzzy, and Adaptive Approaches, 1992.

[131] S. Thrun. Exploration in Active Learning. Handbook of Brain and Cognitive
Science, MIT Press, 1995.

[132] K. Tumer.	 Designing agent utilities for coordinated, scalable and robust
multi-agent systems. In P. Scerri, R. Mailler, and R. Vincent, editors, Chal­
lenges in the Coordination of Large Scale Multiagent Systems, pages 173–178.
Springer, 2005.

[133] K. Tumer and A. Agogino.	 Coordinating multi-rover systems: Evaluation
functions for dynamic and noisy environments. In The Genetic and Evolu­
tionary Computation Conference, Washington, DC, June 2005.

[134] K. Tumer and A. Agogino.	 Coordinating multi-rover systems: Evaluation
functions for dynamic and noisy environments. In The Genetic and Evolu­
tionary Computation Conference, Washington, DC, June 2005.

[135] K. Tumer	 and A. Agogino. Distributed agent-based air traffic flow man­
agement. In Proceedings of the Sixth International Joint Conference on Au­
tonomous Agents and Multiagent Systems, pages 330–337, Honolulu, HI, May
2007.

[136] K. Tumer	 and A. Agogino. Distributed agent-based air traffic flow man­
agement. In Proceedings of the Sixth International Joint Conference on Au­
tonomous Agents and Multiagent Systems, pages 330–337, Honolulu, HI, May
2007.

[137] K. Tumer, A. Agogino, and D. Wolpert.	 Learning sequences of actions in
collectives of autonomous agents. In Proceedings of the First International

142

Joint Conference on Autonomous Agents and Multi-Agent Systems, pages
378–385, Bologna, Italy, July 2002.

[138] K. Tumer, A. K. Agogino, and Z. Welch.	 Traffic congestion management
as a learning agent coordination problem. In A. Bazzan and F. Kluegl,
editors, Multiagent Architectures for Traffic and Transportation Engineering.
Springer, 2009. to appear.

[139] K. Tumer and N. Khani.	 Learning from actions not taken in multiagent
systems. Advances in Complex Systems, 12(4 and 5):455–473, 2009.

[140] K. Tumer and D. Wolpert, editors.	 Collectives and the Design of Complex
Systems. Springer, New York, 2004.

[141] K. Tumer and D. Wolpert.	 The theory of collectives. Collectives and the
Design of Complex Systems, 2004.

[142] H. Valizadegan, R. Jin, and S. Wang. Learning to trade off between explo­
ration and exploitation in multiclass bandit prediction. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2011.

[143] K. Verbeeck, M. Peeters, A. Nowe, and K. Tuyls.	 Reinforcement learning
in stochastic single and multi-state games. Adaptive Agents and Multiagent
Systems II, Lecture Notes in Artificial Intelligence, 2005.

[144] T. Walsh, S. Goschin, and M. Littman. Integrating sample-based planning
and model-based reinforcement learning. Association for the Advancement
of Artificial Intelligence (AAAI), 2010.

[145] C. Watkins.	 Learning from delayed rewards. In PhD Thesis, University of
Cambridge, England, 1989.

[146] C. Watkins and P.	 Dayan. Technical note q-learning. Machine Learning,
1992.

[147] S. Whiteson, M. Taylor, and P. Stone.	 Empirical studies in action selection
for reinforcement learning. Adaptive Behavior, 2007.

[148] E. Wiewiora. Efficient exploration for reinforcement learning.	 Thesis, Uni­
versity of Pittsburgh, 2004.

143

[149] S. Williamson, E. Gerding, and N. Jennings.	 Reward shaping for valuing
communications during multi-agent coordination. In Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems,
2009.

[150] S. Witwicki and E. Durfee. Towards an unifying characterization for quanti­
fying weak coupling in dec-pomdps. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2011.

[151] D. Wolpert, K. Tumer, and J. Frank.	 Using collective intelligence to route
internet traffic. In Advances in Neural Information Processing Systems, 1999.

[152] D. H. Wolpert and K. Tumer.	 Optimal payoff functions for members of
collectives. Advances in Complex Systems, 4(2/3):265–279, 2001.

[153] M. Wooldridge.	 An Introduction to Multiagent Systems. John Wiley and
Sons Ltd, 2002.

[154] E. Yang and D. Gu. A survey on multiagent reinforcement learning towards
multi-robot systems. Proceedings of IEEE Symposium on Computational
Intelligence and Games, 2005.

[155] C. Zhang. Scaling multi-agent learning in complex environments.	 Disserta­
tion, 2011.

[156] C. Zhang and V. Lesser.	 Coordinated multi-agent reinforcement learning
in networked distributed pomdps. Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, 2011.

[157] C. Zhang and V. Lesser. Coordinated multi-agent learning for decentralized
pomdps. In Proceedings of the Seventh Annual Workshop on Multiagent
Sequential Decision-Making Under Uncertainty (MSDM), 2012.

[158] K. Zhang and W. Pan.	 The two facets of the exploration-exploitation
dilemma. In Proceedings of the IEEE/WIC/ACM International Conference
on Intelligent Agent Technology, 2006.

