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The assurance that departure from nucleate boiling

(DNB) does not occur is an important basis for the design.

and operation of pressurized water reactors. In general,

previous analyses of the departure from nucleate boiling

ratio (DNBR), specifying the ratio of the heat flux at

which DNB occurs to the local heat flux, have been

deterministic and conservative. From these analyses it

is difficult to assess the probability of attaining a

critical value.

An alternative technique has been demonstrated in

this analysis Which results in a best-estimate calcula-

tion of the DNBR and its probability distribution.

computer code, COBRA III.C/MIT, was used to perform he

best-estimate calculation_ Additional computer runs

were made with the code to perform a sensitivity. anal



on the code input variables in order to identify signifi-

cant variables and minimize subsequent computational

effort. Eight of the input parameters, including the

fuel and clad physical properties and the grid spacer

loss coefficients, showed no effect upon the calculated

DNBR. Four other parameters, system pressure, coolant

inlet temperature, and average mass velocity and heat

flux, were shown to have an effect on the value of the

DNBR. With the less sensitive input variables eliminated,

the code was then used to evaluate the DNBR at selected

combinations of the significant input parameters as

prescribed by a central composite experimental design.

The resulting response surface used to represent the

functional relationship between the code input and out-

put was determined to be

DNBR = 2.7043 + 5. 6191 x 10-2 xi - 1.2256 x 10-1 x2

+ 1.4939 x 10 -1x3 8.8544 x 10-2x4 - 1.4075 x 10-2x22

where x
n

represents coded variables defined by

xi = (Pressure, psia - 2250.)/45

x2 = (Coolant temp.,°F - 552.5)/5.525

x3 = (Mass Flow, lb/hr-ft2 - 2.46 x 106)/1.488 x 105

x4 = (Heat Flux, Btu/hr-ft2 - 1.898 x 106)/3.796 x 103

The final estimate of the DNBR distribution was determined

using a direct Monte Carlo technique in which input values

were chosen at random from their respective distributions



and propagated through the response function. From the

resulting distribution it was demonstrated that, for the

given conditions, the realistic probability of attaining

a critical value of a DNBR was acceptably low.
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THERMAL HYDRAULIC ANALYSIS OF A
PRESSURIZED WATER REACTOR

I. INTRODUCTION

A large number of postulated accidents for pressurized

water reactors may result in the phenomena of the departure

from nucleate boiling (DNB). This is characterized by

the sudden deterioration in the heat transfer mechanism,

resulting in a significant temperature increase of the

heated surface of the fuel rod. An important design basis

is the assurance that DNB does not occur. This limit is

given by the departure from nucleate boiling ratio (DNBR),

defined as the ratio of the heat flux at which DNB is

expected to occur to the local reactor heat flux. If the

DNBR is greater than one, adequate heat transfer is assured

between the fuel rod and the reactor coolant and the pos-

sible damage to the fuel cladding is avoided.

Since the DNBR is such an important factor in the

operation of a pressurized water reactor, it is of interest

to determine how it is affected by variations in the para-

meters of which it is a function, such as reactor core

pressure, coolant inlet temperature, or core flow rate.

From a safety standpoint, it would also be useful to obtain

a realistic estimate of the probability that the local heat

flux will not exceed the critical limit at which DNB occurs.
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Analysis methods and correlations have been developed

to calculate the DNBR and, hence, verify reactor design

features. In general, however, these analyses are

deterministic and conservative rather than best-estimate

calculations. The parameter values are taken at their

respective conservative limits and the resulting DNBR is

assumed only to envelop or bound the actual result for

any specific case. With such analyses, it is difficult

to assess the probability of attaining a critical value of

less than one.

As an alternative to the conservative analysis a best-

estimate calculation of the DNBR can be made and its

probability distribution determined. With such informa-

tion, the suitability of a design could be demonstrated

by showing that the realistic probability of attaining a

DNBR less than one is acceptably low.

A best-estimate calculation can be made with a com-

puter code containing a mechanistic physical model of the

reactor core and with the nominal values of the input

parameters. In principle, it is also possible to obtain

the statistical distribution of the DNBR given.the statis-

tical distributions of the input parameters, but only

after a large number of computer runs. Since the analysis

of a nuclear reactor is very complicated and suitable

computer codes are complex and time consuming, the

acquisition of the DNBR distribution may be quite costly.
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It is therefore advantageous to find an inexpensive and

efficient method to obtain reasonably accurate estimates

of the probabilities without requiring a large number of

computer runs.

One method that has been suggested by Mazumdar
1

to

eliminate an excessive number of computer runs is to

approximate the computer code by a suitable graduating

function, called a response surface, and to estimate the

probability distribution of the output variable from this

fitted function using a Monte Carlo technique. Thus,

instead of running the code to make a large number of

evaluations of the DNBR resulting from variations in the

input parameters, the code is run only a limited number

of times, and the resulting data is used to fit an

appropriate function which then can be used instead of

the computer code in subsequent evaluations.

In this study, the COBRA IIIC/MIT computer code
2

is

used as the best-estimate model to calculate the limiting

DNBR of a typical four-loop pressurized water reactor.

This code determines the steady-state and transient core

thermal hydraulic behavior of a reactor by performing a

subchannel analysis. A description of the code and its

method of solution is included in-Chapter II.

Before beginning the analysis to determine the most

probable DNBR and its probability distribution, the basic
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input data to perform the calculations must be obtained.

This includes the input information, such as reactor core

pressure or coolant temperature, and the thermal hydraulic

parameters and correlations to be used in the code. This

information plus the reactor core modeling is described

in Chapter III.

To begin the analysis, a sensitivity study must be

performed to identify the significant input variables to

which DNBR is most sensitive. By determining these impor-

tant parameters initially, the computational effort due

to the relatively insignificant variables can be elimi-

nated while retaining those that will eventually result

in an appropriate response surface.

This initial significance screening is completed by

using a one-at-a-time design. The DNBR values are plotted

as a function of a single input variable while all other

parameters are kept fixed. This gives an indication of

the relative importance of each of the input variables

as well as the form of the response.

When the less significant variables have been elimi-

nated, the code is then used to evaluate the DNBR at

selected combinations of the input values, as prescribed

by a central composite design which includes interaction

effects. After selecting the probable significant inter-

acting input variables, a response surface can be fitted

to the data.
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Once a suitable function has been found that ade-

quately represents the functional relationship between the

code input and the resulting DNBR, the DNBR distribution

can be determined using a Monte Carlo technique in which

input values are chosen at random from their respective

distributions and propagated through the response function.

Thus, with a model in the form of a response surface and

with the statistical distributions of the significant

input variables, it is possible to derive an estimate of

the probability that the critical heat flux will be

exceeded and DNB will occur.
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II. BEST-ESTIMATE MODEL: COBRA IIIC/MIT

2.1 General Description

The COBRA IIIC/MIT computer program has been developed

to model the steady state and transient thermal hydraulic

behavior of a nuclear reactor core. It is capable of

computing the coolant flow and enthalpy along parallel

flow channels in a three-dimensional reactor core consist-

ing of rod-bundle fuel elements.

The MIT version of the code is based on an earlier

code, COBRA IIIC, which was developed by Rowe.
3

'

4
In

COBRA IIIC/MIT the same code organization and governing

equations were used; however modifications were included

which allowed the code to solve much larger problems. In

one aspect the equations were solved by iteration rather

than by a Gaussian elimination scheme which led to

increased efficiency. In addition, internal generation

of the physical properties of water and steam were included,

and several new correlations were introduced.

The subchannel modeling technique used in COBRA

IIIC/MIT is based on the control volume approach. The

region of interest in the core is divided radially into

a number of flow channels with cross-sectional areas

defined by lines joining the fuel rod centers. These

channels are then segmented axially to establish the

control volumes. Within the channels, fluid properties
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such as density, pressure, and velocity are considered to

vary in the axial direction only and are assumed to be

constant within a control volume. Flow parameters such

as enthalpy, flow, pressure, and crossflow are defined at

control volume interfaces.

In order to determine the changes in flow conditions

between the inlet and outlet of each of the control

volumes, it is assumed that variations in the flow param-

eters are governed by the basic conservation equations

for mass, energy, and momentum in both the axial and

transverse directions. These governing equations are

developed in a finite difference form and solved by a

semi-explicit scheme, producing incremental changes in

the flow and enthalpy for all control volumes at a given

axial height. The procedure is then repeated stepwise up

the core using the outlet conditions from the previous

step to establish the inlet conditions for the next

level of control volumes.

A number of assumptions are made in the development

of the model in COBRA IIIC/MIT. First, it is assumed

that each subchannel contains a one-dimensional, two-

phase, slip flow and that the subchannel density can be

determined from flow, enthalpy, pressure, and velocity.

A straightforward one-dimensional analysis can then be

used within the channels. Secondly, the assumption is

made that the subchannels are coupled by both turbulent
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and diversion crossflow. However the former does not

result in any net flow redistribution. In addition, it

is assumed that the sonic velocity propagation of pressure

fronts can be ignored, limiting the use of the model to

transients with times that are longer than the time for a

sonic wave to pass through the subchannel.

2.2 Fluid Transport Model

The fluid transport model used as developed by Rowe
3

in COBRA IIIC/MIT is based on the equations for the mass,

energy, and momentum balance in both the axial and

transverse direction. The general form of these equations

can be constructed by applying the conservation principle

to a specific control volume in subchannel i and simpli-

fying the resulting equations by the assumptions previously

discussed. For simplicity, lateral interaction is repre-

sented as occurring between the volume of interest and

only one other adjacent channel j. For the inclusion of

all neighboring channels, the coupling terms in the

equations may be summed over all of the interconnected

subchannels.

The conservation equation

9p i
r1.1

A. 4. ax W.
at Dx ij

(1)

accounts for the net rate of flow change within subchannel

i in terms of the diversion crossflow per unit length, wij ..,



which is considered to be positive when the flow is out of

subchannel i, and the time derivative of density which

allows for flow changes due to fluid contraction or

expansion. Because turbulent crossflow is assumed to

cause no net flow change, it is not included in equation

(1) .

The energy equation used in COBRA IIIC/MIT is

1
Bh. ;

4.

111 .

1
qi

u at ax m

c..
(h.-h3

m.)

11 (T.-T.) m
13

1 . 1 3 .

w..1J
(2)
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The terms on the right side of the equation represent the

four means by which thermal energy can be transported into

a subchannel. The first is the power-to-flow ratio which

indicates the change in the enthalpy if thermal mixing is

ignored. The second term is the thermal energy transported

between adjacent subchannels by turbulent crossflow. The

third term in equation (2) is the thermal conduction

between adjacent subchannel which is assumed to be propor-

tional to the subchannel temperature difference. The

thermalconductioncoefficient,c13 ,is a function of

geometric and fluid parameters. The last term is the

thermal energy carried by the diversion crossflow. The

variablesuandh..*represent the effective velocity for
13

energy transport and enthalpy carried by the diversion

crossflow, respectively.



The first two terms on the left side of the equation

for the axial momentum balance

1
kn.

ap.1 n 1 1
=

A. at
+

at ax
1

m22 v.f ih kiwi1 1 i a
+ + Al. -n--

A. 2D. 2Lx ox
1 1

Al
-pig cose - t (u -u wig A

) w + (2u
i
-u

ij
*
) w.

ij
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(3)

are the transient components of the axial pressure gradient.

The first term is due to the time rate of change in the

flow, and the second, in the density. On the right side

of equation (3), the first two terms represent the

frictional, spatial acceleration, and elevation components

of the pressure gradient. The remaining crossflow terms

account for changes in the subchannel velocity. The

factor f
t

is included as a correction factor to modify

the turbulent crossflow since the analogy between thermal

and momentum transport may not be exact.

Because changes in the flow conditions along the

subchannels may produce radial pressure gradients, a

transverse momentum equation is required to characterize

lateral flow. Its purpose is to couple the subchannels

so that the pressure gradient determined from the axial

momentum equation can be used as the driving force for the

transfer of mass, momentum, and energy between subchannels.

This transverse momentum equation may be written as
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aw.
[sw +

ax ij
*

ij
C.. w.. [r] (P. -P.)

2.3 3
(4)

where C.. is a crossflow resistance function which depends
13

on the magnitude but not the direction of the diversion

crossflow. The factor u
ij

* is the axial velocity and (r

accounts for the importance of friction and pressure terms

versus inertial terms.

These governing equations represent the fluid trans-

port model in COBRA IIIC/MIT and are used to solve for the

flow, enthalpy, pressure, and crossflow in each subchannel

as a function of axial position and, in transient problems,

as a function of time. However, for any problem consisting

of more than a few subchannels, the number of governing

equations is large. It is therefore more convenient to use

vector notation. By using a rectangular matrix [S], and

its transpose, [S] T
, which specifies the relationships

between subchannels, equations (1) through (4) may be re-

written in a more compact form.

If { } is used to denote a column vector! the mass con,

servation equation becomes

[A]
at

{-la}
+ (ax} = -[s]T {w}

The energy equation can be written as

( 5 )
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m]

[s]TcAlli{w-}
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-[1][S]T[AT]{c} +-11-[h][S]T-[S]r[h*] {w} (6)

The axial momentum equation becomes

[1- am { 3P aP2u5E} + {,3:"} +

where

{a-} Li]
2

1
- ft A

vfd) kv' Aa (v-/A)
2D 2Ax ax

[s]T [Au] {w-}

The transverse momentum equation is

13141

at x

[2u][S]T [u*]{w} (7)

}+ pg cos°

[c]{w} = (11[S]{P} (8)

More detailed information on the derivation of these

equations can be found in References 3 and 4.

2.3 Fuel Heat Transfer Model

To determine fuel temperatures a fuel heat transfer

model which considers radial heat conduction is included in

COBRA IIIC/MIT. Using this model, the fuel is divided into

N equally spaced radial temperature nodes plus one node for

the cladding located at its outer surface. Using a Taylor's
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series approximation to the heat transfer conduction equa-

tion

, aT D2T 1 DT
( P c ) = K + + q

p f at f Dr4 r Dr (9)

for each temperature node and the appropriate boundary

conditions, N+ 1 equations can be developed as shown in

Appendix B. From these equations which form a tridiagonal

matrix, the temperatures, defined at the control volume

center, are obtained by solving the system with a compact

Gaussian elimination routine.

In a specific problem, the heat flux from the fuel

surface, q"' , which is also defined at the control volume
3-11

center, can be computed in two ways. If the fuel tempera-

tures are required for the problem, the heat flux is

calculated as a function of the temperature difference

between the cladding wall and the fluid by

3-1/2 3
= h".

-1/2
(T
w

- T
b

. , (10)

where h' is the surface heat transfer coefficient which is

determined by a correlation. If the temperature calcula-

tions are not performed, an average heat flux is used.

2.4 Method of Solution

In COBRA IIIC/MIT the variations in the flow parameters

are assumed to be governed by the conservation equations for
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mass, energy, and momentum. To determine the distributions

of the flow parameters, these equations must be solved.

Due to the sequential nature of the solution method

used in the code, boundary conditions are required. These

may include the inlet enthalpy, mass flow, pressure, or

crossflow distributions. An option exists in the code to

specify any of these distributions as forcing functions

but, in general, the values are difficult to obtain. Since

the solution method is iterative, approximate values may be

used as inlet boundary conditions, such as an average mass

flow and zero crossflow. Within several iterations, the

code should converge on the correct inlet conditions for

the problem.

According to Masterson and Wolf,5 after the boundary

conditions have been specified, the next step in solving

equations (5) through (8) is to determine the crossflow

interaction between the subchannels at the first axial

level above the core inlet. Since the diversion crossflow

is assumed to be governed by pressure variations between

the flow channels, the pressure field in the region must

be determined.

To develop an equation defining the pressure vector

for all subchannels at a given axial location, equation (5)

for mass conservation and equation (7) for the axial momen-

tum balance are written in a difference form and combined

to eliminate the time derivative of the density.



m. -m.
CA " + [2u.] [A.]-1 rai

At 3 3 Ax

+ [2u.J[A.
3 J

[ {Pj -Pj-1}

Ex
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= {a3-1 } + [A.]-1E2uJESf{w.} [A.]-1[S]T[u.l{w.} (11)
3 3

Here, the overscore bar () indicates a value from a pre-

vious time step and the subscripts j and j-1 correspond to

axial locations xi and x
j-1.

The channel inlet corresponds

toj=1.Because[Ai ]-land[11Aare diagonal matrices and,

as such,

[2u.][A.] -1 [s]r{wi} -1
[21.1.][S]

T

3 3

equation (11) can be simplified to

[A ]-1{rai mi} + [2u . ][A,
]i{mi raj 1} +

Pj
pj-11

At 3 J Ax Ax

(12)

= fa ,

-1-

}-[A.]-1[S]T[u.*]{w.} (13)
3

Before this equation can be solved for the pressure distri-

bution, the crossflow term must also be expressed as a

function of pressure.

In order to evaluate the crossflow term, the pressure

vector {P} and. the crossflow resistance terms [C]{w} in
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equation (8) are first transformed into the following form:

{P} = y{1).} + (1 Y){P j-1} (14)

[c]{w} = y[c.]{w.3 } + 0.-y)[c.3-1 3
] {w.

-1
(15)

where y is a weighting function having an arbitrary value

between 0.0 and 1.0. By introducing these terms, equation

(8) for the transverse momentum balance can be written in

a difference form as

+
wj

At Ax

Is)

lR1
+ ly[ci]{wi} + (1 -

= t][s]{y{P } + (1 i) {Pj-1 }}
(16)

The significance of the weighting function can be seen in

that it allows the crossflow to be driven by any combina-

tion of pressure fields. A value of 0.0 specifies that

the crossflow is governed by the pressure field that exists

at the bottom of the control volume; a value of 1.0, by

the pressure field at the top. Any other value for y

between 0.0 and 1.0 represents a weighted average of the

pressures. For a specific problem, it is possible to

select an optimum value for the weighting function.
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In order to solve equation (16) for the crossflow

distribution at successive axial steps, it is rewritten

in the form

where

{w.} = [D.]
3 3

[D ] -1 =

wi...1

) w. ,}
At Lx

LC3-1 3-1

(37:][Di]-1[S]{Y{Pi} + (1-y){Pj_1}} (17)

- -1

C j

Now that the crossflow can be expressed as a function

of the pressure field, equation (17) is substituted into

equation (13), the combined mass-axial momentum equations,

and rewritten as

{Pi} = [I + yMi]-1 [I (1-y)Mi] {Pi_1} + [I + ymi] bi I (18)

where [I] is the identity matrix,

[M.] = Ax
3

I] [Ai ]-1 [S]r [ui* ] [Di
]-i

[S] and

{b.} = Ax{a' r 1-1
j-1 At] J

}

3 3 3-1

Ax[Aj r
EsfIt Eu*] .]-1

w .w. u .
3-1 3-1

At Ax 1(y-1)[C j-1 ]{wj-1
} }
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Note that in the first iteration, two of the vectors

required to compute {b,} are unknown: {m,}, the mass flow,

and {w. }, the diversion crossflow. However, by assuming

this initial crossflow to be zero and by estimating the

mass flow by an averaged value, an approximate pressure

field can be calculated using equation (18), when an inlet

pressure boundary condition is used to specify the vector

{Pj_i}.

With the initial pressure distribution determined by

equation (18), the crossflow distribution can be obtained

by solving equation (17). Once the crossflows have been

established, the mass flow can be computed using the mass

conservation equation in the form of

{mi = Ax Csf {w } [A ] Pi
At Ax

With the calculation of the mass flow at position j, the

first iteration for the initial set of control volumes is

completed. The second and successive iteration follow a

slightly different scheme which takes advantage of the

most recently calculated values. A new pressure field,

{1":). is generated by the difference form of the axial

momentum equation



m. -m

[Air-1{ 3 i} [2u.] Pi -177 } + {Pi -Pj-1}

At At Ax

= {a": ,} + [A.
j

[ s ]T - [s]r[u;]
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{w.} (20)

and using the previously computed values for the axial mass

flowdistribution,{m.}, and the crossflow distribution,

{wi}. This new pressure distribution is averaged with the

pressure field at the bottom of the control volume {Pj_1}

using the weighted function shown in equation (14). The

resulting composite pressure distribution is used to solve

for the crossflows by equation (17), which are then used

to compute the new axial mass flow distribution by equation

(19). This iteration procedure continues until the mass

flow changes fall below a chosen convergence criterion.

When convergence is achieved, the process is allowed to

sweep downstream to the next axial level at which the

previously calculated pressure, crossflow, and mass flow

distributions are now used as inlet conditions for the

next set of control volumes.

The energy balance is performed using the converged

solution to the axial momentum equation for the mass flow,

{m.3
}. This is accomplished by solving the difference

form of the energy equation, equation (6),



{ Ax

h. h.
{ .21 hi -17i {m.1-Trf-:'+

3
J At

- [S][Ah.
3-1

]{143.
-1 3

} [S]T[At. -1 3
][c.

-J.
,]}

+ {m.} -1 [h. 1][S]T -[s]Trh
j*13-

20

(21)

for the enthalpy of the fluid at a new axial level, {hj}.

The enthalpy value at the previous level, {hi_1}, and the

heat flux determined by the fuel heat transfer model are

used.

Once all of the flow conditions have been determined,

the critical heat flux at which DNB occurs can be calcu

lated from a correlation. From this and the heat flux

previously calculated, the DNBR can be determined.

For a transient problem, a time loop is used to

continue the numerical scheme through successive time

steps of At. At the beginning of each time step, the

boundary conditions are set as required by the problem

and the steady-state solution procedure is repeated as

described above until the flow field converges. This

scheme is followed until the end of the transient is

reached.
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III. COBRA IIIC/MIT INPUT DATA

3.1 Reactor Core Description

In this analysis the model of the reactor core is

based on the Trojan Nuclear Power Plant operated by

Portland General Electric Company. It is a Westinghouse

pressurized water reactor with a thermal rating of 3411

MW. The active core region is an approximate right

circular cylinder with an equivalent diameter of 132.7

inches (337.1 cm) and an active height of 143.7 inches

(365.0 cm). The core is composed of an array of fuel

assemblies which are square in cross-section, measuring

8.426 inches (21.4 cm) on a side. The fuel rods in the

assembly are arranged in a square array with 17 positions

per side and consist of uranium dioxide pellets encased

in a Zircaloy-4 cladding. Of the possible 289 locations

per assembly, 24 are occupied by guide thimbles and one

is used for in-core instrumentation.

In addition to the fuel rods and guide thimbles,

an assembly consists of a top nozzle, a bottom nozzle,

and eight grid spacer assemblies. The basic support for

the fuel rods in the assembly is supplied by these grid

spacers, which are fastened to the guide thimbles at

locations along the height of the fuel where lateral

support is required, and by the top and bottom nozzle.



Information required by COBRA IIIC/MIT to model the

core, including nominal operating conditions and core

design parameters, is given on Tables 1 and 2 and was

obtained from the Trojan Final Safety Analysis Report

(FSAR)

3.2 Thermal Hydraulic Input

22

COBRA IIIC/MIT was developed to analyze a wide variety

of problems. Since these problems may be described by a

broad range of conditions, not all thermal hydraulic

parameters may apply. They are therefore designed to be

introduced to the code as input parameters. These thermal

hydraulic parameters as used in the present analysis are

shown in Table 3.

Various correlations are also required in the code to

model the thermal hydraulic behavior of the reactor core.

A number of built-in correlations have been included in

COBRA IIIC/MIT. The code requires specification of the

correlations and the input coefficients applicable to the

problem. Table 4 lists those chosen for this analysis.

The critical heat flux and subcooled void correlations

are not shown due to their complexity but are described

in References 7 and 8.

In addition to the parameters and the correlations,

data concerning the grid spacer assemblies is required.



Table 1

NOMINAL OPERATING CONDITIONS AND THERMAL DATA

Core Power, MW
t

3411

System Pressure, psia 2250

Coolant Inlet Temperature, °F 552.5

Coolant Flow

Effective Flow Area, ft2 51.1

Core Flow Rate, lb/hr 132.7 x 106

Average Mass Velocity, lb /hr -f t2 2.48 x 106

Heat Transfer

Fraction of Heat Generated in Fuel, % 97.4

Total Core Heat Transfer Area, ft2

Average Heat Flux, Btu/hr-ft2

Average Linear Power, kW/ft

59,700

1.898 x 105

5.44

23
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Table 2

CORE DESIGN PARAMETERS

Fuel Assembly

Number per Core

Rod Array

UO2 Rods per Assembly

Rod Pitch, in.

Overall Dimension, in.

Number Grids per Assembly

Fuel Rod

193

17 x 17

264

0.496

8.426 x

8

50,952

0.374

.0065

.0225

8.426

Number per Core

Outside Diameter, in.

Diameter Gap, in.

Clad Thickness, in.

Clad Material Zircaloy-4

Fuel Pellet

Diameter, in.

Material

.3225

UO2 Sintered

Guide Thimble

Outside Diameter, in. .482
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Table 3

THERMAL HYDRAULIC PARAMETERS

Diversion Crossflow Resistance Factor 0.5

Turbulent Momentum Factor 0.0

Transverse Momentum Factor 0.25

Thermal Diffusion Coefficient 0.038

Flow Convergence 0.01



Table 4

THERMAL HYDRAULIC CORRELATIONS

Critical Heat Flux:

Heat Transfer Coefficient:

Single Phase--

Subcooled Boiling--

Subcooled Voids:

Void Fraction:

26

Westinghouse W-3 Correlation
7

Thom Two Phase Model

h' = 0.134 (K/D) Re"65 P

Tw = Tb + q'/h'

0.4

Tw Tsat
0.072 cr O. 5/eP/1260

h' = (Tw-Tb)/q

Levy Model

Homogeneous Model

a = 0. for X 1 O.

a
Xv

g
(1 -X)vf+Xv

for X > 0.

Two Phase Friction
Multiplier: Homogeneous Model

(P, = 1.0

Pf

=

for X< 0.

for X> 0.

-0.2
Single Phase Friction Factor: 0.184 Re

(wall viscosity correction to the friction factor
is included)

Subcooled Turbulent Mixing: 0.0062 Re-0.1
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The locations of the grid spacers and the associated loss

coefficients as used in this analysis are shown in Table 5.

The loss coefficient at the top of the fuel assembly

accounts for pressure drop through the nozzle as well as

the grid spacer assembly.

An axial heat flux is also required to calculate the

DNBR. Since this distribution can change as a result of

variations in the control rod locations, power level, or

xenon transients, a number of profiles may be specified.

The particular axial heat flux chosen for this study is

given as the reference DNB design axial shape used in the

Trojan FSAR. This distribution is a chopped cosine shape

with a peak average value of 1.55. Table 6 shows the

axial locations and relative heat flux used as input for

the code to represent this design axial shape.

3.3 Reactor Core Modeling

A subchannel layout must be set up in COBRA IIIC/MIT

in order for the code to evaluate the flow and enthalpy

in the core. Since computer storage capacity is limited

and running time should be optimized to save cost, it is

not possible to include every subchannel and fuel rod in

the core. It is therefore necessary to reduce the model

to a reasonable number of pseudo-flow channels which will

still enable the code to make an accurate prediction of

the DNBR.
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Table 5

GRID SPACER ASSEMBLY DATA

Spacer Number Position x/L Loss Coefficient

1 .001 3.10

2 .009 1.65

3 .179 1.65

4 .322 1.65

5 .464 1.65

6 .608 1.65

7 .751 1.65

8 .894 1.65

9 .999 4.75
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Two possibilities can be utilized in modeling the

reactor core and still maintaining a reasonable number of

channels. First, since the core of a PWR usually exhibits

one-eighth core symmetry it is possible to use a one-

eighth core model. Secondly, in regions of little signif-

icance for DNBR calculations such as at the core periphery,

the subchannels and fuel rods can be lumped together into

a larger unit. In regions of high interest such as in and

near the hot channel, the individual subchannels can be

maintained. Thus by making use of the PWR core property

of symmetry and by using channel lumping, it is possible

to retain as many subchannels as are required for hot

channel detail while allowing an adequate representation

of

and

the

the remainder of the core.

Figure 1 shows the assembly radial power distribution

core layout selected for this DNBR analysis. Due to

effects of fuel depletion and changes in control rod

positions and spatial xenon distribution during the normal

operation of a reactor, a number of power distributions

can be specified. This particular reference case is

representative of an unrodded core at hot zero power near

the beginning of life. The location of the hot assembly

for this power distribution is shown in Figure 1.

Using the core layout shown in Figure 1, a one-

.eighth core model can be designed as shown in Figure 2.

blackp
Text Box
p.29 missing from original.  Author unavailable to supply.



Figure 1

Assembly Radial Power Distribution and Core Layout

1.021---

.966 1.054

1

1.098
\

1.029 1.148

1.139 1.180 1.148 1.183

\
1.211

I

1.164 1.184 1.080
1.299*

1.131 1.165 1.105 1.108 .954 1.025

1.034 1.047 1.000 1.008 .854 .471

I

.718 .789 .662 .558

X.XXX Radial Power Factor

X.XXX Maximum Assembly Power

Location of hot assembly
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Figure 2

Model for Core-Wide DNBR Analysis

XX Flow channel

XX Fuel region

0 Thimble
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It incorporates fine detail in and around the hot channel,

yet lumps the remaining flow and fuel regions in order to

reduce the size of the problem. Tables 7 and 8, respec-

tively, show the fuel region and channel parameters calcu-

lated from this model which are used for the DNBR analysis.

In Table 7, the fraction of power to the adjacent

channels was calculated by a method described by Ladieu9

which is given in Appendix C. It includes allowances for

the engineering hot channel factors and the fraction of

heat which is generated in the fuel. For fuel regions 11

through 16, the large fraction of power to adjacent

channels is due to the greater number of fuel rods actually

located in the regions. The channel flow areas shown in

Table 8 for regions 6 through 11 also show the effect of

lumping. The spacing for crossflow to adjacent channels

listed represents the gap between the fuel rods at a

region boundary which creates the area available for

crossflow.

The radial power factors for the lumped fuel regions

are weighted averages obtained from the assembly radial

power distribution shown in Figure 1. Because the posi-

tion of the hot channel varies due to local conditions, a

reference design was chosen for the radial power factors

within the hot assembly in which detail rods are assumed to

be at peak power while all remaining lumped rods are at

the assembly average.



Table 7

FUEL REGION PARAMETERS FOR DNBR ANALYSIS

Rod
No.

Diameter
(in.)

Radial
Power
Factor Fraction of Power to Adjacent Channels (Adj. Channel No.)

1 0.3740 1.4050 0.2492 (1) 0.7476 (6)

2 0.3740 1.4050 0.2492 (2) 0.7476 (6)

3 0.3740 1.4050 0.2492 (1) 0.2492 (2) 0.2666 (3) 0.2492 (6)

4 0.3740 1.4050 0.2492 (1) 0.2666 (3) 0.2492 (4) 0.2492 (6)

5 0.3740 1.4050 0.2492 (4) 0.7476 (6)

6 0.3740 1.4050 0.2492 (2) 0.7476 (6)

7 0.3740 1.4050 0.2492 (2) 0.2666 (3) 0.2492 (5) 0.2492 (6)

8 0.3740 1.4050 0.2666 (3) 0.2492 (4) 0.2492 (5) 0.2492 (6)

9 0.3740 1.4050 0.2492 (4) 0.7476 (6)

10 0.3740 1.4050 0.2492 (5) 0.7476 (6)

11 0.3740 1.2990 125.3 (6)

12 0.3740 1.1130 542.1 (7)

13 0.3740 1.0100 542.1 (8)

14 0.3740 0.7430 1897.0 (9)

15 0.3740 1.1320 2575.0 (10)

16 0.3740 1.0530 847.0 (11)



Table 8

CHANNEL PARAMETERS FOR DNBR ANALYSIS

Channel
No.

Area
(Sq.-In.)

Wetted
Perim.
(In.)

Heated
Perim.
(In.)

Adjacent Channel No.,
Spacing for Crossflow

1 0.1180 1.260 0.8812 3, 0.122 6, 0.258

2 0.1362 1.175 1.1750 3, 0.122 6, 0.366

3 0.1362 1.175 1.1750 4, 0.122 5, 0.122

4 0.1362 1.175 1.1750 6, 0.366

5 0.1180 1.260 0.8812 6, 0.258

6 18.07 168.0 149.8 7, 2.068 8, 2.068

7 74.87 696.1 620.4 8, 5.018 10, 6.204

8 74.87 696.1 620.4 9, 6.204

9 262.0 2436. 2171. 10, 8.120

10 355.6 3306. 2947. 11, 5.170

11 117.0 1088. 969.3
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IV. SENSITIVITY ANALYSIS

The DNBR is a function of a number of variables and

can be calculated using COBRA IIIC/MIT. Before developing

a response surface which represents the functional rela-

tionship between the input variables and the resulting

DNBR, it is necessary to consider whether all input vari-

ables should play an equal part in the construction of

the approximate function to represent the computer code.

In order to determine the variables which are significant

and must be retained for the subsequent analysis, a sensi-

tivity analysis was performed.

The input variables used for this analysis are shown

on Table 9. Also included are the nominal values for each

variable and the magnitude of its uncertainty assumed for

a level of two standard deviations. These measurements

of uncertainty are established through engineering judg-

ment and are chosen to be representative. Variations in

the thermal hydraulic parameters and correlations are not

considered. Although the accuracy of these parameters

and correlations is not known exactly, their effect is

believed to be small. Sensitivity studies by Rowe
3

indicate only a minimal effect on the thermal performance

due to the variations in the thermal hydraulic parameters.

The first four parameters on Table 9, including the

system pressure, inlet temperature of the coolant,
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Table 9

VALUES OF INPUT PARAMETERS FOR
SENSITIVITY ANALYSIS

20

UncertaintyNominal
Parameter Value (%)

1) Reactor System Pressure, psia 2250 2

2) Coolant Inlet Temperature, °F 552.5 1

3) Average Mass Velocity, lb /hr -ft2 2.48 x106 6

4) Average Heat Flux, Btu/hr-ft2 1.898 x 105 2

5) Gap Coefficient, Btu/hr-ft2-°F 1000. 30

6) Fuel Density, lb/ft3 650. 10

7) Clad Density, lb/ft3 500. 10

8) Fuel Heat Capacity, Btu/lb-°F 0.085 10

9) Clad Heat Capacity, Btu/lb-°F 0.09 10

10) Fuel Heat Conductivity,
Btu/hr-°F-ft 1.5 10

11) Clad Heat Conductivity,
Btu/hr-°F-ft 12.0 10

12) Grid Spacer Loss Coefficients

Type 1 3.1

Type 2 1.65 10

Type 3 4.75
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and average mass velocity and heat flux have been shown

to directly affect the value of the DNBR in previous work

done by Chunis.1° Parameters 5 through 11 do not affect

DNBR directly but are used in the code to calculate the

fuel temperature distribution, the results of which are

used to determine the local heat flux for the DNBR.

These seven parameters are included in the sensitivity

analysis because, though utilized in COBRA IIIC/MIT as

constants, they are functions of temperature. The

effect of using these input parameters as constants may

contribute to the overall error in the analysis, so that

it is important to determine the significance of each

parameter. The last parameter listed on Table 9 is the

grid spacer loss coefficients which are used to calculate

the pressure drop along the subchannel due to flow

through the spacer assemblies. Though the coefficients

have been shown to be functions of coolant flow condi-

tions,
11

they too are treated as constants within the

code.

The sensitivity analysis begins by varying each

parameter over a range of values while all others are

held fixed at the nominal values. A total of five values

is used for each input variable including its nominal

value, 1.1, and the four values u ± 2a and II ± 4c where a

is the standard deviation specified on Table 9.
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Over the range of five points used in this initial

analysis, the last eight input parameters, including the

fuel and clad physical properties and the grid spacer

loss coefficients, showed no effect upon the calculated

DNBR. Because of this apparent insensitivity, they were

eliminated from the subsequent analysis and were used

only at the chosen nominal values. From these results,

it appears that the use of these parameters as constants

has no effect upon the DNBR calculation for this steady-

state analysis.

Figure 3 shows the results of the analysis for the

first four parameters. For each, a profile based on the

five points has been plotted to represent the effect of

the variable on the DNBR when all other variables are

held fixed at the nominal values. Notice that the

horizontal scale is generalized in terms of standard

deviation such that

yi- Yi ui
2a.

1

where yi is the transformed variable corresponding to the

original yi. Because the values of the standard devia-

tions vary, the actual scale depends on the input

parameter to which it refers.
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This method allows a visual appreciation of the form

of the response and also serves to indicate if variable

transformation is required on significant variables,

assuming only a second-order polynomial is to be used to

fit the response surface.

The results obtained indicate that the DNBR is most

sensitive to coolant mass velocity; as it increases, so

does the DNBR. The DNBR is also shown to be directly

related to the core pressure but is inversely related to

the coolant inlet temperature and average heat flux.

Though the individual responses in Figure 3 are non-

linear, the need for variable transformation is not

indicated by the profiles.

On the basis of the sensitivity analysis for the

twelve input parameters, the DNBR calculation appears to

be relatively insensitive to variations in eight of the

input parameters. These eight parameters can be elimi-

nated from the subsequent response surface analysis.

The remaining four variables, core pressure, coolant

inlet temperature, average mass velocity and heat flux,

do have a significant effect upon the DNBR and are

retained for the development of the response surface.
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V. RESPONSE SURFACE DEVELOPMENT

5.1 Background

A computer code such as COBRA represents some

functional relationship between the calculated DNBR and

the input variables. Over the range of the input, this

relationship defines a multi-dimensional surface.

Because this surface is obtainable only by extensive use

of the code, the complete or true surface cannot be

determined easily. Instead, an approximate surface can

be developed from the systematic sampling of the true

response surface in the form of a polynomial equation

including the independent input variables as terms.

This polynomial approximation to the true response

surface can then be used to examine the behavior of the

true surface without the extra cost of repeated runs of

the computer code.

The method of sampling the true response surface

is controlled by the experimental design. This estab-

lishes how best to locate the points at which the

computer code is run in order to obtain the maximum

statistical information from the fewest possible runs.

In general, this statistical information consists of

obtaining estimates of the coefficients of the poly-

nomial equation used to approximate the true response

surface.
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One of the more commonly used experimental designs

is the two level factorial designi2 in which each variable

or factor is evaluated at two different levels or values.

As the name factorial implies, the input variables are

perturbed simultaneously over the two chosen levels

rather than one-by-one. This approach is useful in

assessing the combined effects of two or more factors

so that the interaction among variables can be measured.

To complete a factorial design consisting of two levels,

the required number of computer runs would be 2
k where k

is the number of input variables of interest.

A two level factorial design is adequate to estimate

the linear and second order interaction coefficients,

but not quadratic terms. In order to estimate surface

curvature, additional runs are required in which each

variable is altered in a one-at-a-time design. The

quadratic terms may then be estimated from the base

factorial cases plus these additional runs.

Once the sampling of the true response surface is

completed as required by the chosen experimental design,

the approximating surface function can be generated using

a simplified multiple regression routine. At this point,

an analysis of variance can be performed in order to

develop an adequate model to represent the true response

surface in the subsequent evaluations.
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5.2 Experimental Design

Experimental designs for fitting a second order

response surface must involve at least three levels of

each variable. As a factorial design, this would

represent 3
k

evaluations.

An alternate class of designs, called composite

designs, can also be applied to second order response

surfaces. The composite designs are first factorial

designs that are augmented by a number of additional

points which allow the coefficients of the second order

surface to be approximated. Fewer computer runs are

generally required for the composite designs.

For this analysis, the central composite design
13

was selected. It consists of a 2
k factorial design plus

a center point at which all variables are at their

nominal values and 2k axial points at which the input

variables are perturbed one at a time. Considering the

four input variables identified in the sensitivity

analysis, this represents a total of 25 evaluations of

the DNBR using the computer code. Table 10 lists the

design matrix, [D], and the corresponding DNBR evalua-

tions, {y}. The input variables for reactor system

pressure, (P), coolant inlet temperature, (T), average

mass velocity, (G), and average heat flux, (Q), are

variables xl, x2, x3, and x4, respectively. The matrix



[D]=

Table 10

DESIGN MATRIX AND CORRESPONDING DNBR

X' X2 X3 X4

-1 -1 -1 -1 2.701
1 -1 -1 -1 2.793

-1 1 -1 -1 2.438
1 1 -1 -1 2.565

-1 -1 1 -1 2.992
1 -1 1 -1 3.111

-1 1 1 -1 2.753
1 1 1 -1 2.858

-1 -1 -1 1 2.542
1 -1 -1 1 2.639

-1 1 -1 1 2.284
1 1 -1 1 2.376

-1 -1 1 1 {y} = 2.830
1 -1 1 1 2.941

-1 1 1 1 2.527
1 1 1 1 2.707
-1.414 0 0 0 2.629
1.414 0 0 0 2.771
0 -1.414 0 0 2.818
0 1.414 0 0 2.528
0 0 -1.414 0 2.475
0 0 1.414 0 2.904
0 0 0 -1.414 2.863
0 0 0 1.414 2.576
0 0 0 0 2.706
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elements represent coded values corresponding to the

transformation used in the sensitivity analysis (equa-

tion 22). The measured level for the variables

associated with each of the five coded levels used in

the experimental design are given in Table 11.

5.3 Response Surface Fitting

Using the data obtained at the experimental design

points, a second-degree polynomial must now be fit.

For the second order response model

4 4

= bo + b. x. b.. x.2 +
i=1 1 1 i=1 li 1
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b..1 x.x. (23)i 13 3
3

i<3

where y represents the estimated response, the coefficient

estimation matrix, [x], is shown in Table 12. The equa-

tions representing the system can then be written in vector

notation as
[x]{b} = {Y} (24)

where {b} represents the polynomial coefficients vector.

A technique for estimating these coefficients is the

method of least squares
14 for which the normal equations

may be written as

[x]TExi{b} = [x]T{y} (25)

The column vector, {ID}, can then be defined by multiplying



Table 11

MEASURED AND CODED FACTOR LEVELS

-1.414 -1.000 0.000 1.000 1.414

xl System Pressure, psia 2186. 2205. 2250. 2295. 2314.

x2 Coolant Inlet Temp., °F 544.7 547.0 552.5 558.0 560.3

x3 Average Mass Velocity, 1061b/hr-ft2 2.270 2.331 2.480 2.629 2.690

x4 Average Heat Flux, 105 Btu/hr-ft2 1.844 1.860 1.898 1.936 1.952



[x]

Table 12

COEFFICIENT ESTIMATION MATRIX

X1 X2 X3 X4 XI 2X2 ,2 2 X1X3 XIX4 X2X3 X2X4 X3X4

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 -1 -1 -1 1 1 1

1 1 1 1 1 -1 1 1 -1 -1 1

1 1 1 1 1 1 -1 -1 -1 -1 1

1 1 1 1 1 1 -1 1 -1 1 -1
1 1 1 1 1 -1 1 -1 -1 1 -1
1 1 1 1 1 -1 -1 1 1 -1 -1
1 1 1 1 1 1 1 -1 1 -1 -1
1 1 1 1 1 1 1 -1 1 -1 -1
1 1 1 1 1 -1 -1 1 1 -1 -1
1 1 1 1 1 -1 1 -1 -1 1 -1

= 1 [D] 1 1 1 1 1 -1 1 -1 1 -1
1 1 1 1 1 1 -1 -1 -1 -1 1

1 1 1 1 1 -1 1 1 -1 -1 1

1 1 1 1 1 -1 -1 -1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 2 0 0 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0 0 0 0

1 0 2 0 0 0 0 0 0 0 0

1 0 2 0 0 0 0 0 0 0 0

1 0 0 2 0 0 0 0 0 0 0

1 0 0 2 0 0 0 0 0 0 0

1 0 0 0 2 0 0 0 0 0 0

1 0 0 0 2 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0



each side of equation (25) by the inverse of [x]
T
[x].

fbl = (rx]T[x])-1[x]T{y}
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(26)

The second order response surface developed by this

method is given in Table 13. The polynomial is listed

in a vertical format so that the DNBR is the sum of

terms consisting of the product of each variable and

its coefficient. The coefficients of multiple determina-

tion, denoted by R2, for the full model is 0.9951. (When

all observations correspond directly to the fitted

response surface, R2 takes on the value of 1.)

An analysis of variance can be conducted at this

point to test for the significance of regression due to

the full model variables. Table 14 summarizes the

results. Due to the use of a computer code to evaluate

the DNBR, the analysis includes no experimental error.

Hence, the error term in the analysis of variance table

represents lack-of-fit for the data, not error due to

the random variation between observations under the same

conditions.

An F-statistic, the ratio of the regression variable

mean square to mean square error, can be used to test for

the significance of the variable in accounting for

model-data variation. Using a significance level of 0..10,

nine out of the fourteen total terms can be eliminated.
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Table 13

FULL MODEL RESPONSE SURFACE

Coefficient Variable

2.7021 1

5.6191 x 10-2 XI

-1.2256 x 10-1 X2

1.4939 x 10-1 X3

-8.8544 x 10-2 x2

-5.7492 x 10-4 Xi

-1.4075 x 10-2 X2
2

-5.8250 x 10-3 X3

9.1753 x 10-3
2

X4

5.3125 x 10-3 X1X2

6.6875 x 10-3 xix3

2.3125 x 10-3 xlx4

-1.0625 x 10-3 X2X3

-4.6875 x 10-3 x2x4

-3.3125 x 10-3 x3x4

R2 = 0.9951
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Source of
Vatiation

Sum
Squares

Table 14

ANALYSIS OF VARIANCE

of Degrees of Mean
Freedom Square

Regression

Linear 9.667 x 10-1 4 2.417 x 10-1

X1 6.315 x 10-2 1 6.315 x 10-2 132.34*

X2 3.004 x 10-1 1 3.004 x 10-1 629.55*

X3 4.463 x 10-1 1 4.463 x 10-1 995.35*

X4 1.568 x 10-1 1 1.568 x 10-1 328.61*

Quadratic 2.532 x 10-3 4 6.331 x 10-4

2Xi 2.645 x 10-5 1 2.645 x 10-5 .005
2X2 1.584 x 10-3 1 1.584 x 10-3 3.32*

.....-2

..,-3 2.714 x 10-4 1 2.714 x 10-4 .57

....2

'''.4
6.734 x 10-4 1 6.734 x 10-4 1.411

Interaction 1.798 x 10-3 6 2.996 x 10-4

X1X2 4.516 x 10-4 1 4.516 x 10-4 .95

X1X3 7.156 x 10-4 1 7.156 x 10-4 1.50

x1x4 8.556 x 10-5 1 8.556 x 10-5 .18

x2x3 1.806 x 10-5 1 1.806 x 10-5 .04

x2x4 3.516 x 10-4 1 3.516 x 10-4 .74

x3x4 1.756 x 10-4 1 1.756 x 10-4 .37

Error 4.772 x 10-3 10 4.772 x 10-4

Total 9.758 x 10-1 24

*Significant at a = 0.10
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The remaining five terms (xl, x2, x3, x4, and x22)

represent a reduced but statistically adequate model of

the true response surface.

The final response surface, consisting of four

linear terms and one quadratic, to be used in the

remainder of this DNBR analysis is given in Table 15.

As before, the polynomial is listed in a vertical format.

The table also gives the correspondence between the

standardized variables and the physical variables of the

analysis. The coefficient of multiple determination,

R2, for this final model is 0.9923.
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Table 15

RESPONSE SURFACE MODEL FOR DNBR ANALYSIS

Coefficient Variable Definition of Variables

2.7043 1

5.6191 x 10-2 xi xl = (P-2250)/45

-1.2256 x 10-1 x2 x2 = (T-552.5)/5.525

1.4939 x 10-1 x3 X3 = (G- 2.46x 106)/1.488x 105

-8.8544 x 10-2 x4 x4 = (Q-1.898 x 105)/3.796 x 103

-1.4075 x 10-2
2

X2

R2 = 0.9923
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VI. DETERMINATION OF THE DNBR PROBABILITY DISTRIBUTION

6.1 Monte Carlo Technique

Monte Carlo methods, in general, determine quanti-

tative results regarding an estimate of the value of a

multiple integral. In this analysis the multiple

integral of interest consists of the probability that

the local heat flux will not exceed the critical limit

at which DNB occurs.

In order to estimate this probability by direct

Monte Carlo procedures, the distributions of the input

parameters of which the DNBR has been shown to be a

function are randomly sampled. These selected values

for the input are then propagated through the response

surface chosen to represent the functional relationship

between the computer code and the input variables. As

the input selection and propagation procedure continues,

a representative form of the DNBR distribution is

established.

The accuracy of probabilities predicted from Monte

Carlo-produced distributions are dependent upon the

sample size. 15 When the probability of interest, p, is

a very small number, which occurs when it is located in

the tail of a distribution, the required sample size, n,

is large. To estimate the accuracy of the estimate of
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the probability for a given sample size, 1511, the variance

can be calculated by

Var(Pn) P(1 -13) (27)

Thus, in order to estimate a probability of 10-4 to within

ten percent of its value, a sample size of 106 is required.

Because of the large sample size requirement for the

direct Monte Carlo technique, refined Monte Carlo methods

have been developed which include some variance-reduction

features and reduce the required sample size. For this

analysis, however, due to the uncomplicated nature of

the fitted response surface, the direct method was

judged to be acceptable. It is also an efficient means

of determining the mean and standard deviation of the

DNBR distribution.

6.2 DNBR Distribution

In order to obtain a DNBR distribution, a direct

Monte Carlo code was written and is included in Appendix

D. In the code, values of the significant input param-

eters, selected in Chapter IV, are chosen from each

respective normal distribution by means of normal random

number selection developed by Box and Muller.
16 The

DNBR is then evaluated at the specified input variables
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by means of a fitted polynomial, developed in Chapter V,

and partitioned for ease of interpretation.

The outcome from a direct Monte Carlo run with a

sample size of 106 is shown in Figure 4, representing a

minimum accuracy at 10% for probabilities down to 10-4.

This DNBR distribution gives an estimated mean value of

2.704 with a standard deviation of 0.110. A probability

table as extracted from this distribution is given in

Table 16. As can be seen by this table, the probability

that the DNBR will be less than 2.125 is only 10-6.

This indicates a wide margin of assurance that the

critical heat flux will not exceed the critical limit

at which DNB would occur.
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Reference DNBR

Table 16

DNBR PROBABILITY TABLE

(±.025) Probability DNBR< Reference DNBR

2.125 .000002
2.150 .000005
2.175 .000015
2.200 .000024
2.225 .000059
2.250 .000145
2.275 .000327
2.300 .000662
2.325 .00134
2.350 .00270
2.375 .00520
2.400 .00941
2.425 .0163
2.450 .0276
2.475 .0448
2.500 .0699
2.525 .105
2.550 .151
2.575 .210
2.600 .280
2.625 .361
2.650 .448
2.675 .539
2.700 .628
2.725 .710
2.750 .784
2.775 .846
2.800 .894
2.825 .931
2.850 .957
2.875 .974
2.900 .986
2.925 .992
2.950 .996
2.975 .998
3.000 .9992
3.025 .9997
3.050 .99986
3.075 .99995
3.100 .99998
3.125 .99999
3.150 .99999
3.175 1.00
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VII. SUMMARY AND CONCLUSIONS

The assurance that departure from nucleate boiling

(DNB) does not occur is an important basis for the design

and operation of pressurized water reactors. In general,

previous analyses of the departure from nucleate boiling

ratio (DNBR), specifying the ratio of the heat flux at

which DNB occurs to the local heat flux, have been

deterministic and conservative. From these analyses it

is difficult to assess the probability of attaining a

critical value.

An alternative technique has been demonstrated in

this analysis which results in a best-estimate calcula-

tion of the DNBR and its probability distribution. A

computer code, COBRA IIIC/MIT, was used to perform the

best-estimate calculation. Additional computer runs

were made with the code to perform a sensitivity analy-

sis on the code input variables in order to identify

significant variables and minimize subsequent computa-

tional effort. With the less sensitive variables elim-

inated, the code was then used to evaluate the DNBR at

selected combinations of the input values as prescribed

by a central composite experimental design. Using the

results of the design runs, a response surface was

developed to simulate the computer code in subsequent
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evaluations. The final estimate of the DNBR distribution

was determined using a direct Monte Carlo technique in

which input values were chosen at random from their

respective distributions and propagated through the

response function. From the resulting distribution it

was demonstrated that, for the given conditions, the

realistic probability of attaining a critical value of

a DNBR was acceptably low.

For this analysis, a number of assumptions were

made and therefore must be taken into account when con-

sidering the results. First of all, it is assumed that

the DNBR is a function of only four significant param-

eters, each with uncertainty specified by a normal dis-

tribution with known means and standard deviations.

It is also assumed that the deterministic relationship

between the code inputs and the output as defined by

the COBRA IIIC/MIT code is adequately represented by the

fitted response surface. Any change made in these

assumptions, either in the form of the initial input

distributions or in the code, would alter the results

and require a complete rerun of the Monte Carlo analysis.

However, if the suitable approximating function does

adequately represent the computer code, the statistical

distribution for the DNBR is found by a means both

inexpensive and efficient.
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APPENDIX A

NOMENCLATURE

a Pressure gradient without crossflow in equation (7)

A Channel cross-sectional flow area

c Thermal conduction coefficient

C Crossflow resistance function

cp Specific heat

D Hydraulic diameter, 4A/Pw

f Friction factor based on all-liquid flow

f
h

Fraction of power generated in fuel

fp Flux spike peaking factor

f
t

Turbulent momentum factor

f. .....Geometric fraction of heat from rod i which enters
1-j

channel j

Fi_j....Overall fraction of heat from rod i which enters
channel j

F
Ah Engineering enthalpy rise hot channel factor

Fq Engineering heat flux factor

g Gravitational constant

G Mass velocity

h Enthalpy, Xhg + (1 - X)hf

h" Heat transfer coefficient

h* Enthalpy carried by diversion crossflow

K Grid spacer loss coefficient

k Fluid thermal conductivity



63

k
f
,k

c
Fuel and clad thermal conductivity, respectively

m Channel flow rate

N Number of rods in fuel region or temperature nodes

P Pressure

Pw Wetted perimeter

Pr Prandtl number

Heat addition per unit length

q" Heat flux

Volumetric heat source density

Re Reynolds number

[S] Matrix defining adjacent subchannels

Turbulent momentum factor

t Time

t
c

Cladding thickness

T Temperature

T
b

Bulk liquid temperature

T satBulk saturation temperature

Tw Clad wall temperature

u Effective momentum velocity, my -/A

u* Effective velocity carried by diversion crossflow

Effective velocity for energy transport

v Liquid specific volume

Effective specific volume for momentum,

(1 - X)2/pf(1 - a) + X2/pga

w Diversion crossflow between adjacent subchannels

Turbulent crossflow between adjacent subchannels
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x Distance

X Quality, m
g
/(m

g+m f
)

a Void fraction, A
g
/(A

g
+A

f
)

fa, Turbulent mixing factor, w"/(G,D)

Weighting function in equations (14) and (15)

Orientation of channel with respect to vertical

1-1
Nominal or mean parameter value

p Density of two-phase mixture, pg+ pf(1 -

pf,pc Fuel and clad density, respectively

a Standard deviation

(I)
Two-phase friction multiplier

Subscripts

f,g Saturation conditions for liquid and vapor,
respectively

i,j Flow channel or fuel region identification number

ij,ji...Subchannel connection from i to j and j to i,
respectively

f,c Fuel and clad properties, respectively
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APPENDIX B

EQUATIONS FOR FUEL HEAT TRANSFER

To determine temperatures within the fuel, COBRA

IIIC/MIT makes use of a heat transfer model developed

by Rowe
3
which considers radial heat conduction. In

this model, the fuel is divided into equally spaced

concentric rings as illustrated in Figure 5. For N

temperature nodes within the fuel, N+ 1 temperatures are

specified where the temperature at i = N+ 1 is at the

outer surface of the cladding.

The equations for the model are derived by approxi-

mating the heat conduction equation,

(r.,c 3T (32T 4.1 DT
f at f are Drj

(B-1)

with a Taylor's series at each temperature node shown in

Figure 5.

For the i = 1 node (r = 0) , the boundary condition

21 = 0 can be applied. By using L'Hospital's rule,
3r

equation (B-1) becomes

3T
(pcp)f = 2Kf

are
(B-2)

A Taylor's series can be used to express the nodal temper-

atures with respect to spatial and temporal change:
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Figure 5

Fuel Heat Transfer Model



T1 = Ti + At ill +

T2 = T1 + A Ar2 a2T
+

2!
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(B-3)

(B-4)

0

where the overscore bar () denotes the temperature at a

previous time step.

Neglecting higher order series terms and substi-

tuting these expansions into equation (B-2) produces a

finite difference equation in the form of

(T1 T1 T2 -
+ q(pc

p
)

f At = 4K f( Are
1

(B-5)

where q-- represents the volumetric heat source in the

= 1 nodal volume.

For the interior fuel temperature nodes, 1<i<N, a

similar procedure can be followed to obtain a set of N - 2

finite difference equations. A Taylor's series can be

used to expand the local nodal temperatures

3T Are 92T
1

T.
+1

= TiT. + Ar
3r

+
2! are

+

DT Are 32T
T. = Ti - Ar

3r
+

2! 3r2
+

(B-6)

(B-7)

By adding equations (B-6) and (B-7), an expression can be

found for the second derivative with respect to space
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T. - 2T. + T.
1-1 1 1-1

Art
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(B-8)

By subtracting the two equations, the first derivative

can be written as

T. - .

3T 1+1 Tii-
ar

2ir
(B-9)

By defining r = (i - 1) Ar and substituting equations

(B-8) and (B-9) into the heat conduction equation, a

finite difference equation can be found which describes

the interior fuel nodal temperatures.

T1 -
1

T. - T.Ti+1- 2T
1.

+ Ti. -1 1+1 1-1
p

(pc )

f At
K
f Ar2 2 (i - 1) Are

(B-10)

At the i=N node, a fuel-clad interface condition

3Tv
'f r

1
l .

= h (T - T )

gap N N+1
=N

(B-11)

can be applied. Here, an effective gap conductive

coefficient is used which combines the conductance of

the gap and cladding.

t
1 1

hl h KC
(B-12)

gap
cond.
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If equations (B-11) and the i=N expansion in equa-

tion (B-7) are used, equation (B-1) gives the finite

difference equation

(pc )

TN- TN'
=

T
N-1

- T
N

2 Kf

P f At Are

2 1

+ LAT (N - 1) Ar,
+ hgap (TN-1 - TN) + q (B-13)

For determining the cladding temperature at i = N + 1, a

transient heat balance for the cladding can be developed.

(pc )p c

T
N+1

-
N+1

At

h
gap

r
N

t
c

r
N+1

(TN-T N+1 )

t"
- (T

N+1
- T

b
) + q'

N+1
(B-14)

where h' is the surface heat transfer coefficient which

is calculated by the heat transfer correlation.

In order to calculate the fuel temperature distribu-

tion, an implicit finite difference scheme is followed.

Equations (B -5) , (B-10) , (B-13), and (B-14) which des-

cribe the nodal fuel temperatures can be rewritten.

For the i= 1 node,

(Pc )

T2 = q +
(pc

P f
) T

P f
4k

f
1

4k
f (B-15)

At2 Ar A 2 At

For i =2 to N - 1,



k
f

k
f

T.
1-1

+
are 2(i-1)Ar2

(pc )

P f
2k

f
+

At Are

k
f

k
f

(pc
p

)

f Ti

+2
Ti+1 q

Ar2 (i-1)Ar2, At

For the i=N node,

2k
f

Are
TN-1 +

T.

(pc )

P f
2k f 2hgap hgap

At Ar2 Ar (i-1)Ar

2h
gap

h
gap

(i-1) Ar

For the i =N +1 node,

h
gap

r
N

t
c

r
N+1

T
N

+

(pc
p

)

f
T
N

T
N+1

q
N

+
At

(pc )p c
h
gap

r
N h"

At
t
c

rN+1 t
c

q
(pc )

p c
T
N+1 h'=

N+1 At t b

T
N

TN+1
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(B-16)

(B-17)

(B-18)

These equations represent a set of N+ 1 simultaneous

equations for which the temperature coefficients represent

a tridiagonal matrix. The solution of the temperature

vector is accomplished by using a Gaussian elimination

routine.
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APPENDIX C

FRACTION OF POWER TO ADJACENT SUBCHANNELS

In general, the fraction of power to adjacent sub-

channels can be computed by knowing the geometry of the

fuel rod and channel, the fraction of heat generated by

the fuel, and the engineering hot channel factors. The

geometry of the fuel rod or region and the flow channel

determines the geometric fraction of the heat which enters

the flow channel, f. . The fraction of heat generated
i-j

in the fuel, f
h'

is included to maintain an accurate

heat balance for the reactor. The engineering hot

channel factors, F
Ah

and F , are included as uncertainty

factors for the power distribution which affects the hot

rod and the hot channel. They account for the influence

of variations in the fuel pellet diameter, density,

enrichment, pitch and bowing, the inlet flow distribution,

and the flow mixing.

The equation for the overall fraction of heat from

rod i to subchannel j, Fi_j, is dependent upon the type

of fuel rod or region and channel. For energy transfer

from the hot rod to the hot channel, this fraction is

given by

E
1

/
(f= f.Fl_i

-j
F
Ah h

F
q

f
p

) (C-1)
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The flux spike peaking factor, f , which is due to fuel

densification is not usually included for DNBR studies

but is shown for completeness. If this factor is included

in the calculation, it is necessary to modify the code

input by multiplying the hot rod relative power by this

factor.

For power from a hot rod to a channel other than the

hot channel, the overall fraction of heat transferred is

written as

F.
-3 1

. = f.
-3
./ (f

h
Fq fp)

The power from another rod to the hot channel can be

represented by

Fi = f F /f
-j i-j Ah h

(C-2)

(C-3)

For power from another rod to any channel other than the

hot channel, the fraction of overall heat is

F. = fi_j/fh (C-4)

For a lumped fuel region and channel, it is given by

Fi_i = Ni fh (C-5)

The fractions of power to adjacent channels shown in

Table 7 were determined by the above equations. The
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geometric fractions were obtained from Figure 2, and

the fraction of heat generated in the fuel was assumed

to be 0.974. The values for the engineering hot channel

factors, F
Ah

and F , were taken to be 1.07 and 1.03,

respectively.
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APPENDIX D

MONTE CARLO SAMPLING CODE

PROGRAM MONTE(INPUT OUTPUT,TAPE1)
C

C ****************************************************

C * VERSION 5 JULY 7, 1979 BY J. OYLEAR
C * MONTE CARLO CODE FOR SAMPLING A DNBR RESPONSE
C * SURFACE
C ****************************************************

C

C

C

C

DIMENSION XMEAN(4),SIGMA(4),X(4)0(40)
DATA XMEAN/2250.,552.5,2.48E+06,1.898E+05/
DATA SIGMA/22.5,2.7625,7.44E+04,1.898E+03/
DATA N /17 *O/

PI=3.141592654

INPUT

PRINT*,"ENTER NUMBER OF HISTORIES"
READ*OHIST
PRINT*,"ENTER RANDOM NUMBER GENERATOR SEED"
READ*,SEED

CALL RANSET(SEED)
C

C START SAMPLING DNBR RESPONSE SURFACE
C

DO 20 J=1NHIST
C

DO 10 1=1,4

C

C GENERATE UNIFORMLY DISTRIBUTED RANDOM NUMBERS.
C RETURNS VALUE OVER RANGE (M) WITH ENDPOINTS
C EXCLUDED. DUMMY ARGUMENT IS IGNORED.
C

RN1=RANF(DUMMY)

RN2=RANF(DUMMY)
C

C DETERMINE RANDOM VALUES OF INPUT VARIABLES FROM
C NORMAL DISTRIBUTION
C

B=2.*PI*RN2

A=SIGMA(I)*(-2.*ALOG(RN1))*4.5
RNKEY=RANF(DUMMY)

IF(RNKEY.GT..5)GO TO 5
X(I)=A*COS(B)+XMEAN(I)
GO TO 10

5 X(I)=A*SIN(B)+XMEAN(I)

10 CONTINUE



C

C

C

75

TRANSFORM INPUT VARIABLES

DO 15 K=1,4

X(K)=(X(K)-XMEAN(K))1(2.*SIGMA(K))
15 CONTINUE

C

C CALCULATE DNBR FROM RESPONSE SURFACE POLYNOMIAL
C

C

C

C

DNBR=2.7043+5.6191E-02*X(1)-1.2256E-014.(2)+1.4939E-01*X(3)
$-8.8544E-02*X(4)-1.4075E-02*X(2)*X(2)

PARTITIONING OF DNBR RESULTS

IF(DNBR.GT.2.1875) GO TO 16
WRITE(1,100) DNBR
GO TO 20

16 IF(DNBR.LT.3.2125) GO TO 17
WRITE(1,100) DNBR

GO TO 20

17 DO 19 1=1,40

C=2.1875+I*.025

IF(DNBR.GT.C) GO TO 19
N(I)=N(I)+1

GO TO 20
19 CONTINUE

20 CONTINUE

C

C OUTPUT

C

DO 25 1=1,40

WRITE(1,200) I,N(I)
25 CONTINUE

C

C FORMAT STATEMENTS
C

100 FORMAT(F6.4)
200 FORMAT(5X,"N(R,I2,") = ",I7)

C

STOP

END-




