
AN ABSTRACT OF THE DISSERTATION OF

Berk Sunar for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on November 6, 1998.

Title: Fast Galois Field Arithmetic forElliptic Curve Cryptography

and Error Control Codes

Abstract approved.

Q. K. Koc

Today's computer and network communication systems rely on authenticated and

secure transmission of information, which requires computationally efficient and

low bandwidth cryptographic algorithms. Among these cryptographic algorithms

are the elliptic curve cryptosystems which use the arithmetic of finite fields. Fur-

thermore, the fields of characteristic two are preferred since they provide carry-free

arithmetic and at the same time a simple way to represent field elements on current

processor architectures.

Arithmetic in finite field is analogous to the arithmetic of integers. When

performing the multiplication operation, the finite field arithmetic uses reduction

modulo the generating polynomial. The generating polynomial is an irreducible

polynomial over GF(2), and the degree of this polynomial determines the size of

the field, thus the bit-lengths of the operands.

The fundamental arithmetic operations in finite fields are addition, multipli-

cation, and inversion operations. The sum of two field elements is computed very

easily. However, multiplication operation requires considerably more effort com-

pared to addition. On the other hand, the inversion of a field element requires much

Redacted for Privacy

more computational effort in terms of time and space. Therefore, we are mainly

interested in obtaining implementations of field multiplication and inversion.

In this dissertation, we present several new bit-parallel hardware architectures

with low space and time complexity. Furthermore, an analysis and refinement of

the complexity of an existing hardware algorithm and a software method highly

efficient and suitable for implementation on many 32-bit processor architectures are

also described.

©Copyright by Berk Sunar

November 6, 1998

All rights reserved

Fast Galois Field Arithmetic for Elliptic Curve Cryptography and Error Control
Codes

by

Berk Sunar

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed November 6, 1998

Commencement June 1999

Doctor of Philosophy dissertation of Berk Sunar presented on November 6, 1998

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Chair of the artment of Electrical & Computer Engineering

Dean of the Gra te School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Berk Sunar, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENT

I would like express my gratitude to my advisor cetin K. Koc for his continued

guidance and support throughout this work.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. LOW-COMPLEXITY BIT-PARALLEL CANONICAL AND NORMAL

BASIS MULTIPLIERS FOR A CLASS OF FINITE FIELDS 4

2.1. Introduction 4

2.2. Canonical Basis Multiplier 5

2.3. Normal Basis Multiplier 11

2.4. Conclusions 13

3. FAST FINITE FIELD ARITHMETIC AND ELLIPTIC CURVE CRYP­
TOGRAPHY OVER COMPOSITE FIELDS 16

3.1. Introduction 16

3.2. Representation of Field Elements in Composite Fields 17

3.3. Representation and Arithmetic in GF(2n) 19

3.4. Representation and Arithmetic in GF(2') 21

3.4.1. Squaring 22

3.4.2. Multiplication 23

3.4.3. Inversion 25

3.5. Elliptic Curve Operations 28

3.6. Implementation Results and Conclusions 30

4. MASTROVITO MULTIPLIER FOR ALL TRINOMIALS 33

4.1 Introduction 33

4.2. The Reduction Process 34

4.3. The Multiplier Architecture 40

4.4. Space and Time Complexity 43

4.5. An Example 45

4.6. The Special Case of n = ni/2 51

4.7. Acknowledgements 54

5. A NEW MULTIPLIER FOR OPTIMAL NORMAL BASIS OF TYPE II 55

TABLE OF CONTENTS (Continued)

Page

5.1. Introduction 55

5.2. Representation of Field Elements 56

5.3. New Multiplication Algorithm 58

5.4. Details of Multiplication and Complexity Analysis 61

5.5. An Example 63

5.6. Conclusions 66

BIBLIOGRAPHY 68

LIST OF FIGURES

Figure Page

2.1 The proposed canonical basis multiplier 6

2.2 The connection diagram for computing D 9

2.3 The rewiring modules used in the connection diagram 10

2.4 The proposed normal basis multiplier 12

LIST OF TABLES

Table Page

2.1 Comparing canonical basis multipliers with generating AOPs 14

2.2 Comparing normal basis multipliers with generating AOPs. 14

3.1 Possible values of n, m, and the field size rim. 21

3.2 The timing results for the field and elliptic curve operations 31

4.1 The reduction array 36

5.1 The construction of C1. 59

5.2 The construction of D1 60

5.3 The construction of D2 61

5.4 The construction of C1, D 1 , D2, and C in GF(25) 67

I would like to dedicate this dissertation to my parents,

Sabiha and Fevzi and finally to my love.

FAST GALOIS FIELD ARITHMETIC

FOR ELLIPTIC CURVE CRYPTOGRAPHY

AND ERROR CONTROL CODES

1. INTRODUCTION

Recent advances in networking and wireless communication technologies stim­

ulated research in areas such as error control codes and cryptography. The most

practical and common codes, for example, the Reed-Solomon, BCH, and cyclic codes

are based on finite field arithmetic. Furthermore, the proliferation of cryptanalysis

rendered RSA -the de facto algorithm of public-key cryptography- impractical due

to increasing bit-lengths which is the primary concern in applications where band­

width is limited. A short time ago elliptic curve cryptography was introduced as

an alternative, providing the same amount of security at much lower bit-lengths.

Elliptic curve cryptgraphy employs finite field arithmetic.

The main emphasis of this dissertation is on efficient software and hardware

implementations of finite field arithmetic operations, which are crucial in certain

applications, e.g., elliptic curve cryptosystems and error control codes. In the dis­

sertation we only consider the operations in fields of characteristic 2. These type

of fields are preferred due to their carry-free binary nature, which is the basis for

efficiency in microprocessor implementations.

In our study, we mainly concentrate on the implementation of the multipli­

cation and inversion operations. There are several designs and algorithms invented

to perform these computations for short hit lengths. However, due to recent ad­

vances in cryptanalysis, longer bit lengths are required for security. In addition. the

7

increase in the wonisize of microprocessors results in an increase in the length of

the codes used in error correction. Consequently, arithmetic operations with longer

operands have become a necessity. Therefore, we believe that all current algorithms

should be reevaluated and improved if possible.

In the second chapter, we present a new low-complexity hit parallel canonical

basis multiplier for the field GF(2m) generated by an all-one-polynomial. The pro­

posed canonical basis multiplier requires m,2 1 XOR gates and m2 AND gates. We

also extend this canonical basis multiplier to obtain a new bit-parallel normal basis

multiplier. This kind of designs are used in applications requiring fast parallel field

multiplication such as error control mechanisms in memory units and cryptographic

smard cards.

In the third chapter, we present a methodology for efficient software imple­

mentation of the arithmetic operations in GF(2k) where k = n in is a composite

number. The elements of the composite field GF(2") are represented using an

optimal normal basis in GF(2m) with the ground field as GF(2n). The field opera­

tions in GF(2n) are performed using the logarithmic table lookup method. We give

detailed description of algorithms for the multiplication, squaring, and inversion

operations in GF(2"). The presented methodology can be used to obtain efficient

software implementations of the elliptic curve cryptographic operations over com­

posite fields. The specific case of GF(216"11) is treated in detail, and implementation

results for the finite field arid elliptic curve operations are presented. The timing

results show that our implementation is slightly faster than that of [1], in which a

polynomial basis in GF(2'") with the ground field as GF(2") is used to represent

the elements of GF(2".'").

In the fourth chapter, \ Ve describe yet another new design. An efficient algo­

rithm for the multiplication ill GF(2'") was introduced by Mastrovito. The space

3

complexity of the Mastrovito multiplier for the irreducible trinomial x'n + x + 1

was given as m2 1 XOR and m2 AND gates. In this study, we describe an ar­

chitecture based on a new formulation of the multiplication matrix, and show that

the Mastrovito multiplier for the generating trinomial en + xn + 1, where m 2n,

also requires m2 1 XOR and m2 AND gates. However, m2 m/2 XOR gates are

sufficient when the generating trinomial is of the form en + xm/2 +1 for an even 7n.

We also calculate the time complexity of the proposed Mastrovito multiplier, and

give design examples for the trinomials x8 + x5 + 1 and x6 + x3 + 1.

In the fifth chapter we present a new multiplier for the field GF(2m) whose

elements are represented using the optimal normal basis of type II. The proposed

multiplier requires 1.5 (m2 m) XOR gates, as compared to 2(m2 7n) XOR gates

required by the Massey-Omura multiplier which is the only other multiplier work­

ing in this basis. The time complexities of the proposed and the Massey-Omura

multipliers are similar.

4

2. LOW-COMPLEXITY BIT-PARALLEL CANONICAL AND
NORMAL BASIS MULTIPLIERS FOR A CLASS OF FINITE

FIELDS

2.1. Introduction

The arithmetic operations in the Ga lois field GF(2m) have several applications

in coding theory, computer algebra. and cryptography [13, 12]. In these applications,

time and area efficient algorithms and hardware structures are desired for addition,

multiplication, squaring, and exponentiation operations. The performance of these

operations is closely related to the representation of the field elements. An important

advance in this area has been the introduction of the Massey-Omura algorithm

[18], which is based on the normal basis representation of the field elements. One

advantage of the normal basis is that the squaring of an element is computed by a

cyclic shift of the binary representation. Efficient algorithms for the multiplication

operation in the canonical basis have also been proposed [27, 3]. The space and

time complexities of these bit-parallel canonical basis multipliers are much less than

those of the Massey-Omura multiplier.

In this paper, we present an alternative design for multiplication in the canon­

ical basis for the field GF(2m) generated by an all-one-polynomial (AOP). The time

complexity of our design is significantly less than similar bit-parallel multiplier de­

signs for the canonical basis [27, 3. 2]. Furthermore, we use the proposed canonical

basis multiplier to design a normal basis multiplier, whose space and time com­

plexities are nearly the same as those of the modified Massey-Omura multiplier [26]

given for the field GF(2m) with an AOP. Nevertheless. the proposed normal basis

multiplier is based on a different construction from the ones already known.

5

2.2. Canonical Basis Multiplier

It is customary to view the field GF(2m) as an rn-dimensional vector space

defined over the ground field GF(2). We need a set of m linearly independent

elements from GF(2711) in order to represent the elements of GF(2m). This set

serves as the basis of the vector space. A basis of the form S = {1, a, a2, , am-1},

where a E GF(2m) is a root of the generating polynomial of degree m, is called

a canonical basis. In order to reduce the complexity of the field multiplication,

special classes of irreducible polynomials have been suggested [3, 27]. In particular,

the AOP p(x) = 1 + x + x2 + . . + xm has been shown to be very useful. This

polynomial is irreducible, and thus, generates the field GF(2m), if and only if in + 1

is prime and 2 is primitive modulo m + 1 [13]. For m < 100, the AOP is irreducible

for the following values of rn: 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, and 100.

We now briefly describe the Mastrovito multiplier [27] for computing the prod­

ucts of two elements A and B in GF(2m) expressed in the canonical basis, which

are respectively represented as

1

A = aixt = [aoa an,_ 1]T

2=o
n-2-1

B = 6,,x2 = [bob' bm_i]T .

i=0

The Mastrovito multiplier uses two matrices in the design process. The (m 1) x m

basis reduction matrix Q = [qij] satisfies the equality

1

1:rrt-f-1

= Q
X

'11L -')

6

FIGURE 2.1: The proposed canonical basis multiplier.

aoa,

computation of D computation of E

computation
of C=D+E

1

co CI Cm m1

The m x m product matrix Z = f Q) = [zij] is defined as

,a0

1for j = 0 i = 0, 1, ... m ,

Zii (2.1)
u(i j)ai_ qj-i-t,za -1-t ,

t =0

for j = 1, 2, , 1; 0, 1, . . . , m 1,

where the step function u(t) is defined as

for t > 0 ,

u(t)
else.

The product C = .4B is found by multiplying the matrix Z by the vector B in

the ground field GF(2). The Mastrovito algorithm directly computes this product

C = ZB.

We introduce a new canonical basis multiplication algorithm for the field

GF(2m) generated using an AOP by decomposing the matrix Z into the matri­

ces Z1 and Z2 as Z = Zl + Z2. The idea of decomposing a matrix has proved to be

useful in many similar designs [26]. In order to construct these matrices, we first

write the matrix equality (2.2.) for the matrix Q in the field GF(2m) with an AOP

using the identity xm+1 = 1 as

Xm 1 1 1 1 1 1 1

Xm+1 1 0 0 0 0 0

(2.2)Xm+2 0 1 0 0 0 0 X2

2m-2 m-1
X 0 0 0 1 0 0 x

Using the definition (2.2) of Q and the definition (2.1) of Z, we construct the product

matrix Z for the field GF(2m) with an AOP as the sum of two matrices Z1 and Z2

which are given as follows:

a0 0 am -1 am_2 a2

al a() 0 am_i a3

Zl =

am-2 am-3 am-4 am-5 0

am-1 am-2 am-3 am-4 a0

8

0 ani_i am -2 am_3 a1

0 am -2 am_3 a/

=

0 am_ am-2 am-3 ai

0 am_ am-2 am-3 ai

In order to compute C = ZB = (Z1 + Z2)B, we first compute D = Z1k3 and

E = Z2B in parallel, and then compute the result C = D + E. The product of the

last row of Z1 and B is computed using the rightmost U circuit with two additional

gates which take care of the nonzero element of the last row of Z1. The architecture

of the canonical basis multiplier is shown in Figure 2.1. The module which computes

the vector D = ZiB consists of m identical U circuits, an AND, and an XOR gate.

The circuit U computes the innerproduct of two vectors of length m 1. Since one

element in each row of Z1 is zero, except in the last row, the innerproduct operation

needs to be of length m 1. The vector A is shifted according to the place of the

zero element in each row of Z1, while

the vector B is fed to the ith U module by skipping the ith bit. The connection

diagram of the part of the multiplier computing D is shown in Figure 2.2. The basic

rewiring modules used in the connection diagram are defined in Figure 2.3.

The structure of the module U is very simple. The innerproduct of two vectors

is computed by first generating the products in parallel using AND gates, and then

by adding the partial products using a binary XOR tree. In order to generate the

products m 1 AND gates are needed, whereas rn 2 XOR gates are used to

accumulate the products. The depth of the binary XOR tree is given as [log2(in

1)1. The total delay of the circuit U is equal to TA + rlog2(in 1)1Tx, where TA

and T are the delays of AND and XOR gates, respectively. The computation of

9

FIGURE 2.2: The connection diagram for computing D.

-(

-.<

S

Cm -3

S S

ao
al
a2

am -3
am_2
am_ I

by

b1
b2

bm_3

bm_2
bm_i

U U U

dm -3 dm_2 dm -1

dm_i requires an additional XOR gate delay.

10

FIGURE 2.3: The rewiring modules used in the connection diagram.

Thus, the computation of D requires a total of TA + (1 + 110g2(771 1)1)Tx

delays.

In order to compute E = Z2B, we need a single U module with inputs accord­

ing to the definition of Z2 given above. Since Z2 has identical rows, the computation

of Z2B is accomplished by computing the innerproduct of a row of Z2 and the vector

B, and then replicating this resulting bit m times, i.e., E = [eee el, where e is

repeated m times. After E = Z2B is computed, the result C = Z1kl+Z2B = D+ E

is obtained using m XOR gates, as shown in the bottom part of Figure 2.1.

11

The proposed canonical basis multiplier architecture requires a total of (m

2)(m + 1) + 1 + m = m2 1 XOR gates and (m 1)(m + 1) + 1 = m2 AND gates.

The total delay of the circuit is found as TA+ (2+ rlog2(m-1)1)Tx. These time and

space complexity values are computed assuming only 2-input gates are available.

2.3. Normal Basis Multiplier

A basis of the form

N = 10, 02, 022, , 02'11 ,

is called a normal basis, where 0 E GF(2m) and m is the degree of the generating

polynomial. The root of an irreducible AOP has the following property that 3m +1 =

1. Furthermore, if the generating polynomial is an AOP and also if 2 is primitive in

Zm +i, then we have

(2.3)

For further information, the reader is referred to [13, page 99]. Since the set

(2.3) is also a basis, it can be used to represent the elements of GF(2m). This basis

is a shifted version of the canonical basis. An element of GF(2m) in the normal basis

representation can easily be converted to the shifted canonical representation. This

is accomplished using a permutation of the binary representation. With the help of

the identity Or"' = 1, we perform the conversion

m-1 m

A=
i=0 i=1

using the permutation P given as

= ai for m 1 .a2'2' (m+1)

12

FIGURE 2.4: The proposed normal basis multiplier.

computation of D computation of Epermutation

bob,...b_,

U U U U

do

inverse
permutation

P

Cl cm,

In order to perform a normal basis multiplication, we take the inputs A and B

represented in the normal basis, convert them to the shifted canonical basis using

the permutation P, and then perform a canonical basis multiplication. At the end

of this computation, we obtain F = AB / ,32 represented in the canonical basis as

F = fo + + f2,32 + +

Note that the values ft are the outputs of the canonical basis multiplier shown in

Figure 2.1, and therefore, we have L = di + e for i = 0, 1, , m 1. We then

multiply F by 02, and obtain G = Fir as

G = (do + 03' (d1 + 003 + + + e)3"'+'

13

We now need to represent this number in the shifted canonical basis. Since

Om -H- + ,32 + +

the coefficient (dm_i + e) is added to the coefficients of all the other terms. We can

write the final expression as

G = + + (do + e + + 00' +

(di+e+d,2_1+433+

--+(d7,_2+e+dni-i+Or

= (dm_i + + (do + dni.-002 +

(d1 + 4,1)03 + + (4,2 + dm -1)13m

which gives go = + e and gi = + dm_' for i = 1,2, , m 1. Thus, we

have obtained the representation of the number G in the shifted canonical basis. We

now apply the inverse of the permutation P to G and obtain the bits of the number

C in the normal basis. The architecture of the normal basis multiplier is given in

Figure 2.4. It is very similar to that of the canonical basis multiplier.

The implementation of the permutation and inverse permutation operations

are accomplished by wiring. Therefore, the normal basis multiplier requires exactly

the same number AND and XOR gates as that of the canonical basis multiplier in

Figure 2.1. Furthermore, the time complexity of the normal basis multiplier is equal

to that of the canonical basis multiplier.

2.4. Conclusions

The time complexity of the proposed canonical basis multiplier is significantly

less than previously proposed similar multipliers for the field GF(27") generated by

14

TABLE 2.1: Comparing canonical basis multipliers with generating AOPs.

XOR Gates AND Gates Delay

m2 + 2m m2 + 2m + 1 TA + Flog2 m + 10g2 (in + 2)l TxItoh-Tsujii [3]

Hasan-Wang-Bhargava [2] m2 + rn 2 m2 TA + (m + ilog2(m 1)1)Tx

Proposed design (Figure 2.1.) m2 1 m2 TA + (2 + Flog2(m 1)1)Tx

TABLE 2.2: Comparing normal basis multipliers with generating AOPs.

XOR Gates AND Gates Delay

Massey-Omura [4] 2m2 2m m2 TA + (1 + [10g2(M 1)1)Tx

Hasan-Wang-Bhargava [26] m2 1 m2 TA + (1 + ilog2 (m 1)1)Tx

Proposed design (Figure 2.4.) m2 1
m2 TA + (2 + ilog2 (m 1)1)Tx

an AOP. The structure of the canonical basis multiplier is very regular: it consists

of m + 1 identical modules, and some additional XOR and AND gates. It is more

regular than the Mastrovito multiplier, and requires significantly less gate delays.

The proposed canonical basis multiplier requires m2 AND gates and m2 1 XOR

gates. The Mastrovito multiplier requires in2 1 XOR gates and m2 AND gates, and

has a delay less than 7 + 2[log2 ml Tx if the generating polynomial is a primitive

trinomial of the form xi" + x + 1 [27, 23]. The X013, and AND complexities of the

Mastrovito multiplier for a general trinomial or an AOP are not known. However.

15

the number of XOR gates for a general trinomial is conjectured to be > m2 1 in

[23].

The normal basis multiplier proposed here and the modified Massey-Omura

multiplier [26] require the same number of XOR and AND gates, which is about

half of the number of gates required by the Massey-Omura multiplier for the field

GF(2m) with an AOP. The design proposed in this paper requires only 1 more XOR

delay than the modified Massey-Omura multiplier. Nevertheless, it is an alternative

design, and is based on an entirely different construction. Another advantage is

that it is highly modular. Since the proposed normal basis multiplier is based

on a canonical basis multiplier, any advances made in canonical basis multiplication

using AOPs can be utilized in this design to further reduce the complexity or timing

requirements.

16

3. FAST FINITE FIELD ARITHMETIC AND ELLIPTIC CURVE

CRYPTOGRAPHY OVER COMPOSITE FIELDS

3.1. Introduction

An important category of cryptographic algorithms are the elliptic curve cryp­

tosystems [15, 8, 14, 10] defined over the finite field GF(2k). Elliptic curve cryp­

tographic applications require fast hardware and software implementations of the

arithmetic operations in GF(2k) for large values of k. Recently, there has been a

growing interest to develop software methods for implementing GF(2k) arithmetic

operations and elliptic curve cryptographic operations [19, 1]. In this paper, we

are also interested in obtaining efficient software implementations of the arithmetic

operations in GF(2k) and the elliptic curve operations over the field GF(2k). We

are particularly interested in the case where k is a composite number k = n m.

An implementation method for this case was presented in [1], where the au­

thors propose to use the logarithmic table lookup method for the ground field

GF(2a) operations. The field GF(2') is then constructed using the polynomial

basis, where the elements of G F (2') are polynomials of degree m 1 whose coef­

ficients are from the ground field GF(2n). The field multiplication is performed by

first multiplying the input polynomials, and reducing the resulting polynomial by a

degree-m irreducible trinomial.

In this paper, we propose a similar methodology for implementing the arith­

metic operations in GF(2'i.m). Our main difference is that we use an optimal normal

basis in GF(21") to represent the elements of GF(2"'`) by taking the ground field

as GF(2"). The resulting field operations, multiplication and squaring are quite

efficient, and they do not involve modular reductions. Our implementation results

17

indicate that the arithmetic operations in the proposed method are slightly faster

than those of [1].

This paper shows that the optimal normal bases with the ground field as

GF(2") for n > 1 can be efficiently implemented in software. Another contribution

of this paper is the squaring algorithm for GF(2'), where operations in GF(2 ") are

performed using the table lookup method, and an optimal normal basis in GF(2m)

is used to represent the elements of GF(2"). We also give detailed algorithms for

performing field multiplication and inversion operations. The timing results for the

finite field and elliptic curve operations in the special case of k = 176, n = 16, and

m = 11 are presented.

3.2. Representation of Field Elements in Composite Fields

It is customary to view the finite field GF(2k) as a k-dimensional vector space

defined over the field GF(2). The field over which the vector space defined is

generally called the ground field. If we take the ground field as GF(2), then the

elements of the k-dimensional vector space are bit strings of length k, i.e., A =

(a0, al, , ak_2, ak_i), where A E GF(2k) and the entries ai E GF(2). However,

if n > 1 divides k, then it is also possible to select the ground field as GF(2 ").

If we take nm = k, then, effectively we are constructing an m-dimensional vector

space over G F (2'). The elements of the ground field are represented as bit-strings

of length n; the elements of GF(2") are represented as

A = (A0, Ai, 4m--2, A -1)

where the entries Ai E GF(2n). These two representations of GF(2 '"1), the nm­

dimensional vector space over GF(2) and the rn- dimensional vector space Over

18

GF(2n), are equivalent. However, the latter representation is based on n -hit words,

and it is more advantageous for implementation on microprocessors, particularly

when n is selected properly. For example, n = 8 and n = 16 have been suggested in

[5, 1].

An efficient methodology for representing field elements and performing arith­

metic in GF(2") has been proposed in [1]. This methodology uses the values of

n as 8 or 16. A basis for GF(28) or GF(216) can be chosen; however, this is not

important since the field arithmetic is performed using the logarithmic table lookup

method. An element of GF(2") is represented using a degree-(m 1) polynomial

whose coefficients are from the field GF(2 "). The multiplication in GF(2") is

performed by first multiplying the operands to obtain the twice-sized polynomial,

and then reducing the resulting polynomial by a degree-m irreducible polynomial.

In general, this degree-m irreducible polynomial needs to have its coefficients from

the field GF(2 "), however, it is well-known [12] that an irreducible polynomial over

GF(2) of degree m remains irreducible over GF(2 ") if and only if gcd(n, m) = 1.

Therefore, one can select an irreducible polynomial of degree m with coefficients

from GF(2) rather than GF(2 ") if gcd(n, m) = 1. Furthermore, the use of a special

irreducible polynomial is suggested in [1]. This special polynomial is a trinomial of

the form xm + + 1, where t < l_rnI2j. Such special trinomials are easy to find;

the paper [1] lists them for a few values of In.

In this paper, we propose another methodology which is similar to the one pro­

posed in [1] in terms of representing the elements of and performing the arithmetic

in G F (2'771) . We also propose to select n as 8 or 16. However. in our methodol­

ogy. we represent the elements of GF(2"'") using an (optimal) normal basis for the

field G F(2'"). In this representation. the elements of CT' F(2"'"1) are to-dimensional

vectors Nthose entries are in GF(2 "). A degree-to irreducible polynomial is selected

19

such that the root of this polynomial generates an optimal normal basis [17, 13].

Furthermore, if gcd(n, m) = 1, then the selected degree-rn irreducible polynomial

will have its coefficients from GF(2) rather than GF(2n). This selection provides a

much simpler multiplication method. Since gcd(n, m) = 1 and n = 8 or 16, we need

to have an odd m. This requires that we use an optimal normal basis of type II in

the field GF(2'). For optimal normal bases of type I, m is would be even because

in + 1 is a prime number [13].

The normal bases are thought to be inefficient for composite fields in this set­

ting [1]. The advantages of (optimal) normal bases seem to disappear for n > 1,

particularly for squaring operation. However, we show that if the ground field oper­

ations are computed fast (e.g., using the table lookup method), then the composite

field operations can be performed very efficiently in the normal basis. In the follow­

ing, we present the mathematical and algorithmic details of our methodology.

3.3. Representation and Arithmetic in GF(2n)

The logarithmic table lookup method for performing arithmetic in GF(2n) for

small values of n has been proposed before [5, 1]. A primitive element g E GF(2n)

is selected to serve as the generator of the field G F (2n), so that an element A in this

field can be written in the form A = gi, where 0 < i < 2' 1. Then, the powers of

the primitive element, g's, are computed for i = 0, 1, 9" 1, and 2' pairs of the

form (A, i) are obtained.

We construct two tables sorting these pairs in two different ways: the log

table sorted with respect to .1 and the clog table sorted with respect to index a.

For example. ifi = 5 and .1 = g3, then we have log[.-1] = 5 and alog[5] =

These tables are then used for performing held multiplications ancl inversions: they

20

are particularly very useful in software implementations. In order to perform the

multiplication C = A B, we perform the following operations:

j log[B]

k := i + j (mod 2' 1)

C alog[k]

gi +J mod 2"--1This is due to the fact that C = A B = gi g The squaring of an

element A is slightly easier; only two table reads are required for computing C = A2,

as illustrated below:

i log[A]

k := 2i (mod 2' 1)

C alog[k]

Similarly, the inversion of an element also requires two table reads:

i := log[A]

k := 2' i
1

C := alog[k]

92"-1-ibecause of the relationship C = A' = (gi)­

When n = 8, each one of these tables is of size 28 = 256 bytes. This is very rea­

sonable and fits \ell into the cache memory of most microprocessors. When n= 16.

then the table becomes of size 216 words, or 128 kilobytes, which is still reasonable.

Higher values of n soon become excessive in terms of memory requirements. In our

methodology, we propose to use n = 8 or 71 = 16.

21

3.4. Representation and Arithmetic in GF(2"m)

As was mentioned, our approach uses n = 8 or n = 16, and requires that

gcd(n, m) = 1. Furthermore, an optimal normal basis of type II needs to exist for

the selected m, which is another restriction. The list of m for which an optimal

basis of type II exists is found in [13, page 100]. The first 20 values of m are

2,3,5,6,9, 11,14,18,23,26,29,30,33,35,39,41,50,51,53,65 .

After we eliminate those m not relatively prime to 8 or 16 (i.e., we keep only the

odd m), we obtain

3, 5, 9, 11, 23, 29, 33, 35, 39, 41, 51, 53, 65 .

This gives the following field sizes for up to 232. As an example, we have imple-

TABLE 3.1: Possible values of n, 'm, and the field size nm.

nm 24 40 48 72 80 88 144 176 184 232

n 8 8 16 8 16 8 16 16 8 8

in 3 5 3 9 5 11 9 11 23 29

mented n = 16 and m = 11, and thus, nm = 176. In the following sections, we

will describe this specific case to further illustrate the properties of the proposed

approach.

Once the values of n and in are determined. we need to construct an irreducible

polynomial of degree tn. generating an optimal normal basis of type II for the field

22

G'F(2'). A recursive method of construction is given in [13, page 99} as follows:

fo (x)	 = 1

fi(x) = 1 +

L(x) = xfi_1(x) + fi_2(x) for i = 2, 3, 4, . . .

We iterate the above formulae to obtain the irreducible polynomial for m = 11 as

fi (x) = x" + xth + x8 + x4 + x3 + x2 + 1 . (3.1)

The above polynomial is defined over the field GF(2). Since the degree of the

ground field n = 16 is relatively prime to m = 11, it is also irreducible over GF(216).

Let 3 be a root of this polynomial then N {3,32 02, , /31 is the basis of21°, 2

representation. We use this basis to represent the elements of CF(21611). Each

A E GF(2176) is represented as an 11-dimensional vector such that

A = (A0, A1, A2, ... Ag, As, A10)

= A00 + A1)(32 + A2322 + + A81328 + A0329 + Aio021°

and Ai E GF(216) for i = 0, 1, 2, , 10. Therefore, we store each field element as

an 11-word long array, where the size of each array element is 16 bits.

We now give the details for performing the arithmetic operations addition,

squaring, multiplication, and inversion in the composite field GF(2nm).

3.4.1.	 Squaring

Let A E G F(2") be represented using an m-dimensional vector as

A (A0. A1, 4rn 2, Am-1)

where E GM") for i = 0. 1 m 1. The squaring of A is computed using

rrt -1 rrt-1
42 (>_:, .4i),)

23

A2 412 (3.2)AO- m -3 'Tit)

since = Therefore, the squaring is performed using only a cyclic shift after

each word is squared in the ground field G'F(2n). Since the ground field operations

are performed using the logarithmic tables, each word squaring requires a table read

followed by an addition modulo 2n 1, and another table read. We then perform

a cyclic shift of these m words to obtain A2 in GF(2n.m). The proposed squaring

operation is significantly more efficient than that of [1] because it uses table lookup

operations and it does not require modular reduction.

3.4.2. Multiplication

The multiplication algorithm is the software analogue of the the Massey-

Omura multiplier [18]. In order to obtain the product C = AB in GF(2m), we

need to obtain the multiplication matrix, i.e., the coefficients Aii in

m-1 m-1

Cr -= ijai +rbj +r
i=0 j-=0

where ai, bi, E GF(2) These A2i coefficients are obtained by expanding the

cross products Q2' +23 in the normal basis, i.e., the linear sum of the basis elements

{37 02, 2 }. The number of nonzero Az] s gives the complexity of the

multiplication; when the complexity is exactly 2in 1, then the normal basis is

said to be optimal [17].

The coefficients belong to the ground field. In our case, the ground field is

G F (2n), however, the coefficients are in GF(2) since the irreducible polynomial

of degree in is also irreducible over GF(2") when gcd(n, in) = 1. This gives a

simpler optimal normal basis multiplication algorithm involving Ai, B, E GF(2")

for z = 0. 1, 2 nr, 1, where the coefficients Aij are either 1 or 0. Following

the usual method of construction [13]. we obtain the coefficient matrix Ai for the

24

degree-11 irreducible polynomial given by (3.1). The multiplication matrix yields a

formulae for the computation of Co as follows:

Co = AoBi AI (Bo + Bs) + A2(B6 + B8) + A3(B4 + B5) +

A4 (B3 + B9) + A5 (B3 + B7) + A6(B2 + B9) + A7(B5 + +

A8(131 + B2) + A9(B4 + B6) + A10(B7 + B10) (3.3)

We now write the computation of C0 as a function F() as

Co = F(A0, A1, A2, . , Aio; Bo, B1, B2, Bio) (3.4)

It is well-known that if the ground field is GF(2), then Cr can be computed using

the same function for computing C0 with the r-bit shifted input set:

Cr = F(Ar7 Ar+1, / AlCh -40y A1, , Ar-1; Br Br+17 B10, B0, B1, Br-1)7

(3.5)

We now prove that this argument is also valid when the ground field is CF(211), i.e.,

Cr can be computed using the function for C0 with the r-word shifted input set.

It follows from the squaring formulae (3.2) in §3.4.1. that the (2r)th power of C is

given as

C2r (Cr, C2r
1, Cm2r_2, Cr,.. , Cr2r 2, Cr2r 1)

(AB)2r B2r ,for 1 < r < in 1. Let C = AB, then C2r A2r, which implies

from which we write the formulae for the leftmost term C,.2' as

J R2' p2'.F(,4 r, Ar,1 I B2r m 4 -1-"r "--"r+-1 B;,, -1 0 1)

(3.6)

25

Since the coefficients in F(i0 im, - 1 ; yo 1 Ym-1) are all in GF(2), we have
1

,..2 ,,,2 2 \
F2(xo, , xm-1; yo :timi) F(,Lrn_i., yo, , Yrn-1) ,

or more generally

F2r(10,... xm_i; yo, , Ymi) = F(x0', xm2r-1; yO2r yin2- 1) (3.7)

Therefore, it follows from (3.7) and (3.6) that Cr can be computed using the function

for Co with the r-word shifted input set as

Cr = F(Ar7 Ar+17 Am-17 A07-,41, 4r-1; Br, Br+17 Brn-17 B0, B17 Br-1)7 7
7

(3.8)

The multiplication algorithm is implemented in software by writing a routine for

the function F() as implied by (3.3) and (3.4) and calling it 11 times to compute Cr

for r = 0, 1, 10. The resulting function is very simple: It requires 20 additions

in GF(216) (i.e., XOR operations with 16-bit operands) and 11 multiplications in

GF(216) using the logarithmic tables as described in §3.3.. The word level shift

operations are often avoided by writing the computed word in its required location.

An advantage of this multiplication algorithm over the one in [1] is that it does not

perform modular reduction.

3.4.3. Inversion

The inversion of a field element is critical for high-speed implementation of

elliptic curve point operations. Here we use the Itoh and Tsujii method [6, 23] for

computing the inverse of an element of the composite field. The inversion algorithm

is based on the identity

= (4r)-1 r-1 (3.9)

26

where A is an element of G'F(2'). It is established [11] that if

2'1111 1
r = (3.10)

1

then AT belongs to the ground field G F (2n). Hence the inverse can be computed

very efficiently in the ground field using the table lookup method. The inversion

algorithm uses the identity

1 = (2nm 23n + 2(m -2)n 2(Tn-1)11r 1)/(211 1) 1 = 2" + 22n

In the particular case of 'am = 176 = 16 11, this is given as

1 (211n 23n 29n 210n1)/(2n 1) 1 = 2' +22n

where n = 16. This identity implies a method for computing A' using the ta­

ble lookup method for multiplication and squaring operations. The step by step

computation of A' is illustrated below:

B

C = B2" = A22"

D = A B A 2 ±22'

442311+2471E = D22"
A2"-i-2211 -{-23"+24"F = D

2511 +26n +2711 +2811
G F24" = 4

+2211+2371+2471+ 25I1 +2671 +27" +2871H = G F
,429"+21°"

.1 = D28'

Ar-I H A2"+22n +23" 24" +25".+2" +27"+28"+29"+21(1"

Therefore, the computation of .--11-1 requires -1 multiplications and 5 exponentiations.

These exponentiations are ;42", /32". D22", F2m, and D2' ". As was explained in

and 3.4.2.. the (2`)th power of an element of CE(2".'") is computed by taking

27

each vector element (which belongs to GF(2")) to the power 2i using the table

lookup method, and then by cyclically shifting the 11-word vector i times. If X E

GF(2n) is a vector element, then

V28'

and therefore, we do not need to compute the powers of the individual vector

elements. Thus, an exponentiation of the form .42- is computed by performing

(in mod 11) cyclic word-level shifts on the 11-dimensional vector A. The number of

shifts for each the operands above are as follows:

: (1 16 mod 11) = 5

: (1 16 mod 11) = 5

D22n : (2. 16 mod 11) = 10

F24
: (4 16 mod 11) = 9

H28' : (8. 16 mod 11) = 7

In practice, these word-level shifts are not performed. The elements are computed

and placed in their required location after a multiplication operation. Therefore,

the computation of AT-' essentially requires 4 multiplications in GF(2').

The next step is to compute AT = A Ar-1. Since AT E GF(2n), it is sufficient

to compute the first word of A Ar-1. The remaining words of AT will be identical.

Therefore, this step is not as complicated as a full multiplication in GF(2'). We

then compute the inverse of AT using the table lookup method since (Ar)-1 is also

in GF(2").
(.7v)--1 r 1The final step is the computation of A- 1 Since (AT)-1 E

GF(2") and Ar-I E GF(2"'"). we write them as

() = (-40, Ao , Ao)

4r-1 = (Bo. Bi, B.) B10)

28

We then obtain a simplified version of the multiplication formula (3.3) using these

(Ar)-1 Ar-1operands. Since all Ao terms are equal, the product A-1 can he

calculated using

A-1 = (A0 Bo, Ao Ao B2, , Ao Bic)) ,

where each one of these products Ao B, for i = 0, 1, ... 10 are computed in GF(2n)

using the table lookup method. Therefore, the final step requires 11 multiplications

in GF(2n). In summary, the computation of A-1 in GF(2176) requires 4 multiplica­

tions in GF(2176) and a few more multiplications in GF(216), which are performed

using the logarithmic table lookup method.

3.5. Elliptic Curve Operations

The proposed methodology for performing fast arithmetic over the composite

fields find its best use in elliptic curve cryptography. Let y2 + xy = x3 + axe + b be

the elliptic curve equation defined over the field GF(2k), where a and b are elements

of the field with b 0. The solutions of this equations in the field GF(2k) together

with a special point 0 (point at infinity) form an additive group E. Let P = (x1, yi)

and Q = (12, y2) be two distinct points (i.e., xi x2) on the curve, neither of which

is 0. The elliptic curve point addition operation takes these two points P and Q

in E, and obtains a third point R in E such that R = P + Q. The coordinates of

R = (x3, y3) are calculated using

A = (y' + y2)(x1 + x2)1

13 = A2 + A + x1 + + (3.11)

.1/3 = A(x1 + 173) ± y

29

This computation requires 1 inversion, 1 squaring, 2 multiplication, and 9 addition

operations in GF(2k). Similarly, the elliptic curve point doubling is defined as the

computation of R = P + P = 2P. The coordinates of R = (13, y3) are computed

using

13 A2+A+a (3.12)

y3 = 3'4 + (A + 1)/3

The computation of 2P is accomplished using 1 inversion, 2 squaring, 2 multipli­

cation, and 5 addition operations in GF(2k). In our implementation, we did not

use the projective coordinate system [14] since the inversion can be performed using

about 4 multiplications in GF(2176). The projective coordinate system would yield

a slower implementation because it performs 15 field multiplications instead of a

field inversion in order to compute P + Q.

Using the operations of elliptic curve point addition and doubling, one can de­

fine eP as the elliptic curve 'point multiplication' operation. This can be performed

using the well-known binary method of computing exponentiations. This compu­

tation can be further accelerated using more advanced exponentiation algorithms:

addition chains or addition-subtraction chains [7. 16. 9]. In our implementation,

we used the canonical recoding binary exponentiation algorithm, which computes

eP by taking P and P as input. If P = (x, y), then the inverse of P is easily

computed using P = (x, x + y). The canonical recoding binary exponentiation

algorithm obtains a signed-digit number f over the digit set {0, 1, I}, which is

equal to e but contains fewer nonzero digits in the average. It is established that

the average number of nonzero digits in f is about L /3. where L is the number of

bits 111 1 .

30

Therefore, the canonical recoiling point multiplication algorithm computes eP using

L elliptic curve doublings and about L/3 elliptic curve additions.

3.6. Implementation Results and Conclusions

We have implemented the addition, multiplication, and inversion operations

in GF(2176), and also the elliptic curve point doubling, addition, and multiplication

operations over GF(9176). The programs were written in C++ using Microsoft

Visual C++ Version 5.0, and executed on a PC with the 300-MHz Pentium II

processor, running the operating system Windows NT 4.0. Our timing results are

given in the first column of Table 3.2. These timing results are for

Field Multiplication: a, b, c E GF(2176) such that c := a b

Field Squaring: a, c E GF (2'76) such that c := a a

Field Inversion: a, c E GF(2176) such that c := a'

EC Addition: P,Q,R E E such that R := P + Q

EC Doubling: P, R E E such that R := P + P

EC Multiplication: P, R E E and 176-bit integer e such that R eP

The elliptic curve operations are performed using the affine coordinate system in

which a point is represented using two field elements P = (x, y). We use the

elliptic curve addition and doubling operations defined by the equations (3.11) and

(3.12). The field parameters a. b E GF (2') are selected randomly. The point

multiplication algorithm uses the canonical recoding binary method in which the

signed-digit recoding of the 176-bit randomly chosen integer c is used. The Hamming

31

weight of e is 176/2 = 88 and the Hamming weight of its signed-digit representation

is 176/3 59.

TABLE 3.2: The timing results for the field and elliptic curve operations.

Our Method Reproduced Method [1] Original Timings [1]

Operation (300-MHz Pentium II) (300-MHz Pentium II) (133-MHz Pentium)

Field Multiplication 12 psec 15 psec (62.7+1.8) psec

Field Squaring 1.5 psec 2.5 psec (5.9+1.8) psec

Field Inversion 60 psec 63 psec 160 psec

EC Addition 80 psec 83 psec 306 psec

EC Doubling 80 //sec 85 psec 309 psec

EC Multiplication 25 msec 30 msec 72 msec

We also include the timing results of [1] for comparison. The original timing

results of [1] were obtained on a 133-MHz Pentium. We have re-developed the

programs of [1] by investing reasonable efforts to optimize the code. The timing

results given in the second column are our reproduction of their method. Since the

300-MHz Pentium II processor is about 2.25 times faster than the 133-MHz Pentium,

it seems that our reproduction software of the methods of [1] is about 50 % faster

than their implementation. In the third column, we also give their original timings

on the 133-MHz Pentium processor. We have obtained all our timings by actual

implementation. The results in Table 3.2. shows that the proposed methodology is

slightly faster than our reproduction of their method [1], and about 50 % faster than

their reported timings, taking into account the speed difference of the processors.

32

We conclude that the proposed method of using the optimal normal basis in

GF(2m) with the ground field as G F (2') provides efficient software implementations

of the arithmetic operations in G F(2') and elliptic curve cryptographic algorithms

over GF(2'), particularly when the ground field GF(2n) is selected properly. The

values of n = 8 or 16 seem suitable since the tables are reasonably sized.

A significant result of this research is that the optimal normal bases would

provide efficient software implementations of the arithmetic operations in composite

fields, contrary to the (seemingly) commonly held belief that the advantages of the

optimal normal bases disappear for n > 1.

33

4. MASTROVITO MULTIPLIER FOR ALL TRINOMIALS

4.1. Introduction

The standard basis multiplication operation in GF(2m) can be accomplished in

two steps: polynomial multiplication and modular reduction. Let a(x), b(x), c(x) E

GF(2m) and p(x) be the irreducible polynomial generating G F (2'). In order to

compute c(x) = a(x)b(x) mod p(x), we first obtain the product polynomial d(x)

which is of degree (at most) 2m 2 as

rn- 1 irn- 1

d(x) = a(x)b(x) = aix) bixi) (4.1)

i=o i=o

The next step is then the reduction operation c(x) = d(x) mod p(x) to obtain the

m-1 degree polynomial c(x). In practice, the multiplication and the reduction steps

are often combined for efficiency reasons. An architecture for performing the field

multiplication was proposed by Mastrovito [27, 221. In this method, we represent

the computation of d(x) as a matrix-vector product d = Mb, where (2m 1) x

m dimensional matrix M consists of the coefficients of the polynomial a(x). We

then obtain an m x m dimensional matrix Z by reducing the matrix M using the

generating polynomial p(x). The product c(x) is computed using the matrix-vector

product c = Z b.

The space complexity of the multiplier for the special generating trinomial

xm + x + 1 is shown to be rn2 1 XOR and 770 AND gates [27, 22, 23, 24]. Paar

[25] conjectured that the space complexity of the Mastrovito multiplier would be

the same for all trinomials i"1 + x" + 1, where in 1 < ri < 1. In this paper, we

describe an architecture for the Mastrovito type multiplier using a general trinomial

of the form 3-1" + r" + 1. and show that the proposed architecture requires rit2

34

XOR and nit AND gates when n 0 m/2. However, when m is even and n = m/2

there is further reduction: The proposed architecture requires only rn2 m/2 XOR

gates.

In the following sections, we give a formulation of the Mastrovito matrix Z,

and describe an architecture to compute Z. We show that it is sufficient to compute

Z, (the nth row of Z). The remaining elements can be obtained by rewiring, i.e.,

without using any gates. We then give an analysis of the multiplier architecture and

calculate its space and time complexities.

4.2. The Reduction Process

The entries of the Mastrovito matrix Z are functions of the coefficients of the

generating polynomial p(x) and the elements of the original multiplication matrix

M, which consists of the coefficients of a(x). The matrix M gives the relationship

between the coefficients of b(x) and d(x) in terms of the coefficients of a(x), as

35

follows:

ao 0 0 0 0 0
do

al ao 0 0 0 0

d1
a2 al ao 0 0 0

d2
bo

dm -2

dm_i

am -3 am_4 am_5 am -6

am_2 am_3 am_4 am_5

am_i am_2 am-3 am-4

0

a()

al

0

0

a0

bl

b2
(4.2)

drn

dm+i
am_i am_2 am -3

0 n am_2

a2

a3

al

a2

brn 2

d2m_ 3

d2m 2

0

0

0

0

0

0

0

0

am_ am-2

0 am_i

The product polynomial d(x) contains terms with degrees larger than m 1. These

terms need to be reduced using the modulus polynomial p(x) in order to obtain the

polynomial representation of the field element in GF(2m). Since we are considering

the generating polynomial p(x) = xm + xn + 1, we use the identity xm = xn + 1 to

reduce the higher order terms in d(x). A particular term x' for i > in may need to

be reduced several times. For example, let 'm = 8 and p(x) = x8 + x6 +1. The terms

x8 and x9 need to be reduce only once: x8 = x6 + 1 and x9 = x7 + x. However, the

term xl° will need two reductions x19 = x8 + x2 = x6 + 1 + x2. For a specific basis

element, the number of reductions depends solely on the degree of the element and

on the order of the middle term of the generating trinomial. The maximum number

of reductions are performed on the highest order basis element 2'"'. Let k be the

number of reductions required to bring this element to its proper range [0. ni. 1].

This inte,er k Irts the property '?m 2 k(in n) < in, which implies k >

36

Therefore, we have
2k= +1.	 (4.3)

m n

Our objective is to obtain the m x in matrix Z by systematically reducing the

last m 1 rows of the (2m 1) x m matrix M using the generating trinomial

1rn + xn + 1. In order to accomplish this task, we define the reduction array which

is the array of (m 1) rows produced by the reduction of the higher order basis

9.-2elements xm, en+1, ,x- , as shown in Table 4.1.

TABLE 4.1: The reduction array.

xm = 1	 +xn

+xn+1
xm+1 x

2m-n-1 xm-n-1
X +xm-1

X +1 +xn
2m- n x'
x2m-2n-1

3m-2n

X3m-2n- 1	 +Xrn-n-1 +11n­

X = 12m-2n	 +Xm-n +1 +xn

,1rn-3n-1	 +x2m-2n-1 ±xm-n-1 +xm-1
X = 13m-3n-1

xkm-(k 1)n x(k-1)m-(k -1)n +x(k-2)m-(k-2)n +X°	 +xn

in -9 int -2	 x(k -1)n-(k-2)m---2 +xkn -(k -2)rn -2

37

The rows defined by the reduction array are added to the rows of M in order

to eliminate the last in 1 rows of M. The exponent on the left-hand side provides

the index to the source row, which will be added to the rows determined by the

exponents on the right-hand side. Initially, we take the first in rows of M as the

Z matrix, and use the rows above to add certain rows of M to certain other rows

of Z in order to obtain the final Z matrix. Let Zi and Mj denote the ith and jth

rows of the matrices Z and 1V1, respectively. The first reduction is determined by

the first row of the reduction array as adding M, to Z0 and Zn, since xm = 1 +

The reduction array is given in Table 4.1.

The rows of the reduction array can be divided into groups consisting of rows

with equal number of reductions. Since the number of reductions is k, there are k

partitions in the array. Since the degree of a term decreases by m n after each

reduction, the first m n rows, which have degrees ranging from m to 2m n 1,

are reduced only once. Thus, the first m n rows form the first partition. The next

partition is the next set of In n rows. This continues in the same fashion until the

kth partition which will have m n or fewer rows. We enumerate the partitions in

increasing order beginning from the topmost as the 0th partition. In general, the

ith partition consists of the rows starting with the term xml-4"1-n) and ending with

the term xm+(i+1)(m-n".

Also, the columns of the reduction array possesses certain properties. The first

column on the right-hand side is special: it is the sequence of increasing powers of

x as 1, x, X2, Xn1-2. The second columns contains two sequences: the sequence

xn, .0+1 -7"-1 followed by the sequence 1, xm-"-I, 1m-n x"--2. The third

column is obtained by shifting down the second column m n positions. The fourth

column is obtained by shifting down the third column in rt positions, and so on.

38

Following the construction method proposed in [21], we decompose the Mas­

trovito matrix Z as the sum of two In x in matrices X and Y, i.e., Z = X + Y, where

X is the upper m rows of the matrix M. The matrix X is an m x m Toeplitz matrix,

i.e., a matrix whose entries are constant along each diagonal [20]. Furthermore, X

is lower triangular. On the other hand, the m x in matrix Y represents the terms

obtained through reduction, and is constructed using the reduction array. We will

show that the matrix Y is made of two Toeplitz matrices.

Theorem 1 The ni x Tn dimensional matrix Y is partitioned into two Toeplitz

matrices. The upper rt rows form an n x m Toeplitz matrix while the lower m, n

rows form an (m n) x m Toeplitz matrix.

Proof The first column of the reduction array is the sequence 1, x, . , xm-2 cor­

responding to the left-hand side xm, xm+1, , x2'2. This implies that we add the

rows Mm, M2n7-2 to the rows Zo, Zi, , Zn,_2, respectively. We represent

this computation using the m x in matrix T given as

0 am_i am_2 aTn_3 a2 al

0 0 6,2_1 am_2 a3 a2

T=
0 0 0 0 am _i am_2

(4.4)

0 0 0 0 0 am_i

0 0 0 0 0 0

obtained from the matrix M in Equation (4.2). The matrix T which is an m x rn

Toeplitz matrix is the initial value of the matrix Y as Y := T. After this computa­

tion, we need to accumulate the contributions of the remaining columns of the re­

duction array. We first consider the contribution of the sequence x"

which is the starting, sequence in the second column of the reduction array" and also

39

all columns thereafter). This sequence implies that we add the rows An, Mrn +i,

to the rows Z, , Zm_i, respectively. This contribution to the matrix Y is

represented using the m x m matrix U as Y := Y + U. The matrix U is obtained

from the matrix T by shifting down n rows as follows:

0 0 0 0 0 0 0

0 0 0 0 0 0 n 1

U= 0 am_i am_2 an a2 a1 (4.5)

0 0 am_i an+1 a3 a2 n + 1

0 0 0 am_i arn_n+i am_n m 1

Note that the matrix U is composed of two matrices. Its upper n rows constitute

an n x m zero matrix and its lower m n rows constitute an (m n) x m Toeplitz

matrix.

Let T[r i] represent the matrix T shifted up i rows by feeding i rows of zeros

from bottom. Let also (1[-4 i] represent the matrix U shifted right i columns by

feeding i columns of zeros from left. The contribution of the first column of the

reduction array (i.e., the sequence 1, x, x2, . , xm-2) to the Y matrix is given as

T[t 0] = T. The contribution of the second column of the reduction array has two

components: the starter sequence xn, xn+1 x"1-1 contributes the U matrix and

x11 -nthe remainder sequence 1, xn-2 contributes the matrix T shifted

up in n rows, i.e., the matrix T[r (rn n)]. Similarly, the starter sequence in

the third column contributes the matrix U[----+ (rn n)], while the remainder the

sequence contributes T[T 2(m /1)]. Adding these contributions for i = 0 to k 1.

40

we obtain
k -1 k -1

Y = T[1' i(rn n)] + ET[--> i(m, T)] (4.6)

Note that T and thus T[I' i] for all i > 0 are Toeplitz matrices. Their sum is also a

Toeplitz matrix. The first 71 rows of the matrix U are zero, so are the first n rows

of U[> i] for i > 0. Therefore, we conclude that the upper n rows of the matrix

Y form an n x in Toeplitz matrix. Furthermore, the last m n rows the matrix U

form an (in n) x m Toeplitz matrix. Similarly, the last m n rows of all i]

are (m n) x m Toeplitz matrices. Therefore, the last in n rows of the matrix Y

form an (in n) x m Toeplitz matrix.

4.3. The Multiplier Architecture

Since X is an in x m Toeplitz matrix and Y can be partitioned into two Toeplitz

matrices, and Z = X + Y, we conclude that Z matrix can also be partitioned into

two Toeplitz matrices. In other words, the upper n rows and the lower in n rows

form two Toeplitz matrices of dimension n x m and (in n) x m, respectively. We

will use this fact in the design of our multiplier.

First we make three important observations about the construction of Zi for

0 < i < m 1 and k 71 using the row Zri without using any gates:

1. The rows Zi for 1 < i < n 1 can be obtained from Z0 by rewiring.

2. The rows Zi for n + 1 < i < na 1 can be obtained from Z, by rewiring.

3. The row Z0 can be obtained from (an intermediate step of) Z by rewiring.

The proof of Property 1 is straightforward. Since the first n rows of Z form

an n x m Toeplitz matrix, each position in the upper triangular region contains

41

diagonally the same value. We first implement the first row, and then obtain the

other values in the upper triangular region of the n x m matrix by rewiring the

values from the first row. On the other hand, the lower triangular part of Y is filled

with zeros, and thus, the only contribution to the lower triangular part of Z comes

from X, which consists of single terms. Therefore, the input bits will simply be

wired to obtain the lower triangular part of Z.

In order to prove Property 2, we note that the last mn rows of Z form an (m

n) x m dimensional Toeplitz matrix. The elements in the upper triangular region of

this submatrix are diagonally the same, and therefore, they can be obtained from

Zn by rewiring. All the remaining entries (in the lower triangular region) contains

single terms coming from X, which are obtained from the inputs by rewiring.

Property 3 is proved as follows: On the right-hand side of the reduction array

whenever there is the term 1 in a particular row, there is also the term xn, which

shows that the set of contributions from the reduction array to Zn covers the set of

contributions to Z0. The remaining terms come from X. However, X0 contains all

zero entries except the single term a0 in the leftmost position. Since this position in

Y contains a zero, this term is from the input. The other entries of Z0 are obtained

from Zn.

The complexity of the multiplier solely depends on Zn, which is explicitly given

as

k-1

Zn (an an_i al a0 0 0)+(0 0 arri_i an+i)+ [> i (n,)1 .

t=0

The first term (vector) in Equation (4.7) is the nth row of X. The second term

(vector) conies from the X" terni in the first column on the right-hand side of the

reduction array. The other terms (the terms inside the summation) come from the

3:". terms on the top of each column. Let the sum of the first two vectors be denoted

42

as

W (an an_i al ao a,n_i an+i)

then, we can write Z as
k -1

Zn = W + i(771 n)] (4.7)
i = 0

The summation (4.7) has important properties which we will use to construct the

proposed architecture. In the addition of W + 0], the element a, in W and

the element a,+ in 0] are aligned for i = n 1,n 2, ... , 1 as

an an-1 an-2 al ao 1 an + 1

0 am -2 am -n +1 arn, a,n_n_i al

Furthermore, in the addition of /11,,[-+ 0] + (m-n)], the element a, in Alm[-­

0] and the element a2±,,, in itif,[- (m n)] are aligned for i = n 1, n 2, ... ,1

as

0 ani_i an an -1 an-2 al

00 0 am-i am-2 am -n+i

Therefore, the addition of the subvector (an_lan_2 al) of W to the corresponding

part in 111,7,H 0] is contained in the sum 0] + (m n)]. Hence this

part of W need not to be separately added. It can be obtained from the summation

term in (4.7) by rewiring.

We stack the m-dimensional row vectors /11,[-4 i(m-n)] on top of one another

to obtain the k x in matrix C as

:11,[-+ 0]

(m a)]

C = A/,[-> 2(m n)] (4.8)

(k 1)(rii 11)]

43

The computation of the sum in (4.7) is equivalent to the summation of the columns

of the matrix C. Let C, = (CO3i C1,1 Ck-1,)T be the ith column of C indexed from

left to right as i = 0, 1, ... m 1. Since the matrix C is obtained by first writing

Mm to the first row, and then shifting this row (m n) times to the right to obtain

the remaining rows, the sum E3k101 CL, is fully contained in the sum Ejk:01 Cj,z+(m-n)

Therefore, it suffices to obtain the individual sums of the last m n rows of the

matrix C. The remaining column sums are obtained as byproducts. Also, the first

element an of LV need not be added either since the first column Co is zero column;

we simply rewire this element from the input.

Furthermore, among the last m n columns some C, columns are of length k

while some other are of length k 1. This is because when Mn is shifted (k-1)(mn)

times to the right, The leftmost side of (k 1) (m n)] is filled with zeros;

only the last a = (m 1) (k 1)(rn n) entries will be the individual a, terms.

Therefore, the last a columns are of length k, and the remaining (mn) a columns

are of length k 1.

4.4. Space and Time Complexity

It follows from the analysis in the preceding section that we need to compute

the individual sum of the last a columns Ci for i = rn 1 a +1, nr . , m -1,

which are of length k. A single column sum requires k 1 XOR gates. All a columns

require a (k 1) XOR gates. The remaining (in a columns are of length k 1,

which requires k 2 XOR gates to obtain each column sum. Therefore, we need

((ratn)a)(k-2) XOR gates to obtain these column sums. Hence, the computation

44

of the individual sums of the last in n columns of C requires a total of

a(k 1) + ((m n) a)(k 2) =-- n 1

XOR gates. The rest of the column sums are obtained from these m n col­

umn sums as byproducts. We then need to add the vector W except its subvector

(an_1an_2 ai). Also, the first element an of W need not be added; it can be

rewired form the input. Since W is of length m, we need m (n 1) 1 XOR gates

to add the row vector W to the final sum. This gives total number of XOR gates

to compute Z, as

n 1 + m (n 1) 1 = m 1 .

Therefore, the generation of the matrix Z requires a total of m 1 XOR gates. The

matrix multiplication c = Zb, where b is of dimension m x 1 and Z is of dimension

m x m, requires m2 two-input AND gates and m(m 1) XOR gates. This gives

the total number of AND and XOR gates to obtain the product c(x) = a(x)b(x)

(mod xm + + 1) as

AND = m2

XOR (m 1) + m(m 1) = m2 1

It is interesting to notice that the space complexity is not a function of n. On the

other hand, the time complexity depends on n, as we will show now. The longest

signal path in the architecture is defined as the time complexity of the multiplier. We

will denote the delay of a 2-input AND and XOR gates by TA and Tx, respectively.

The longest delay occurs in the calculation of the last element Z, which requires the

sum of the last element of 1,1-, and all k elements of the column vector Cm_1. Since

some of the suffix (or prefix) elements of the summation is needed. we use a length

k linear XOR. chain to compute this sum. using a total of kT delays to compute

46

110 = X2 + X7

The second group of 3 rows contains 2 reductions for each expression:

xii x3 + X8 = X3 + 1 + X5

x12 x4 x9 = X4 + X + X6

X13 = X5 + X10 = X5 + X2 + X7

The last group contains only 1 row with 3 reductions:

X14 =X6 +XII = X6 +X3 +X8 = X6 +-X 3 + 1 +X5

The reduction array in its final form is as follows:

X8 = 1 + X5

X9 = x + x6

X
1 0 = x2 + X7

x11 = X3 + 1 + x5

X12 = X4 + +x6

X13 = X5 + x2 + X7

X14 = X6 + X3 + 1 +x5

In order to obtain the 8 x 8 matrix Y, we write the expression

2 2

Y = T[t i(8 5)] + YjUH i(8 5)]

i=o i=o

= 7[1 0) + 7[r 3] + 7[1' 6] + UH 0] + 3] + 6] .

scanner
Sticky Note
Page is misnumbered. Should be pg. 45.

47

We first obtain the 8 x 8 matrices Trr 3i1 for i = 0,1,2 as

00706 a5 a4 a302 al

0 0 a7a6a5a4a302

0 0 0 a7a6a5a4 a3

0 0 0 0 0706 a504
T=

0 0 0 0 0 a7a6a5

0 0 0 0 0 0 a7 a6

0 0 0 0 0 0 0 a7

0 0 0 0 0 0 0 0

TIT 6]

0000 07060504

0000 0 07 a605

0000 0 0 a7 a6

0000 0 0 0 a7
, T[1-3]

0000 0 0 0 0

0000 0 0 0 0

0000 0 0 0 0

0000 0 0 0 0

0000000 a7

0000000 0

0000000 0

0000000 0

0000000 0

0000000 0

0000000 0

0000000'O­

48

Similarly, we obtain the 8 x 8 matrices U[* 3i] for i = 0,1,2 as

0 0 0 0 0 0 0 0 0000 0 0 0 0

0 0 0 0 0 0 0 0 0000 0 0 0 0

0 0 0 0 0 0 0 0 0000 0 0 0 0

0 0 0 0 0 0 0 0 0000 0 0 0 0
U= , U[--+ 31=

0 0 0 0 0 0 0 0 0000 0 0 0 0

0 a7 a6 a5a4 a3 a2 al 0000 a7 a6 a5 a4

0 0 a7 a6 a5 a4 a3 a2 0000 0 a7 a6 a5

0 0 0 a7a6a5a4a3 0000 0 0 a7a6_

0000000 0

0000000 0

0000000 0

0000000 0
U[+ =

0000000 0

0000000 a7

0000000 0

0000000 0

49

Finally, we obtain the 8 x 8 matrices X and Y as

a0 0 0 0 0 0 0 0

al a0 0 0 0 0 0 0

a2 al a() 0 0 0 0 0

a3 a2 al a0 0 0 0 0
=

a4 a3 a2 al ao 0 0 0

a5 a4 a3 a2 al ao 0 0

a6 a; a4 a3 a2 a1 a0 0

a, a6 a5 a4 a3 a2 a1 a0

0 a, a6 a5 a4 + a, a3 + a6 a2 + a5 al + a4 + a,

0 0 a, a6 a; a4 + a, a3 + a6 a2 + a;

0 0 0 a7 a6 a5 a4 + a7 a3 + a6

0 0 0 0 a7 a6 a; a4 + a,
Y=

0 0 0 0 0 a7 a6 a5

0 a, a6 a5 a4 + a, a3 + a6 a7 + a2 + a; as + al + a4 + a,

0 0 a7 a6 a5 a4 + a, a3 + a6 a, + a2 + a5

0 0 0 a7 a6 a5 a4 + a7 a3 + a6

We proved that Z, for i = 1, 2, 3, 4 can be obtained from Z0 and from the input by

rewiring, since the computed terms in Zo cover all other computed terms as easily

seen below:

Z0: a0 a7 a6 a5 a4 + a7 a3 + a6 a2 a5 a1 + a4 + a7

Z1: a1 a0 a7 a6 a5 a7 a3 a6 a2 a5

Z9: a9 at a0 07 a6 a5 0,1 a7 a3 a6

Z3: 03 a9 a1 at) a7 a5 a7

Z.1: (11 (1:3 (19 a (10 (17 (16 (15

50

We also proved that Zi for i = 6, 7 can he obtained from Z5 and from the input by

rewiring, which is seen as

Z5: a5 a4 + a7 a3 + a6 a2 + a5 al + a4 + a7 a() + a3 + a6 a7 + a2 + a5 a6 + al + a4 + a7

Z6: a6 a5 a4 + a7 a3 + a6 a2 + a5 al + a4 + a7 ao + a3 + a6 a7 + a2 + a5

Z7: a7 as a5 a4 + a7 a3 + a6 a2 + a5 at + a4 + a7 a() + a3 + a6

Furthermore, we proved that Z0 can be obtained from an intermediate step of Z5

by rewiring:

Z0: ao a7 a6 a5 a4 + a7 a3 + a6 a2 + a5 at + a4 + a7

Z5: a5 a4 + a7 a3 + a6 a2 + a5 al + a4 + a7 ao + a3 + a6 a7 + a2 + a5 a6 + al + a4 + a7

In order to illustrate the computation of Zn = Z5, we write the sum (4.7) by

expanding into individual terms:

W: a5 a4 a3 a2 a1 a0 a7 a6

/11,[0]: 0 a7 a6 a5 a4 a3 a2 al

3]: 0 0 0 0 a7 a6 a5 a4

6]: 0 0 0 0 0 0 0 a7

Co C1 C2 C3 C4 C5 C6 C7

As underlined above, the addition of the subvector (a4 a3 a2 al) of W to the corre­

sponding part in 1117[0] is also present in the sum 111,,,[--> 0] + 3]. Hence

this part of W does not to he separately computed. Furthermore, we do not need

to add a5 to the final sum vector since the first column Co is zero column, and the

element a5 can be rewired from the input.

We need to compute the individual sums of the last in n = 3 columns

Cs, C6, C7. Among these 3 columns a = (m (k 1)(1n n) = 2(3) = 1 of

them (the column C7) is of length k = 3. while the remaining in n a = 3-1 = 2

of them (the columns C5 and C6) are of length k 1 = 2. as easily seen above.

51

Therefore, the computation of C7 requires 2 XOR gates while C5 and C6 require 1

XOR gate each. The remaining individual column sums are obtained as byproducts.

We then add the row W to the final sum vector, except the first element a5, and the

subvector (a4 a3 a2 al), which means, we add the last 772 -1- (71 1) -= 8 1 4 = 3

elements using 3 XOR gates. Therefore, the construction of Z5 requires a total of 7

XOR gates.

The remaining vectors Zi for i 5 are obtained from Z5, as we have shown.

What remains is the computation of the matrix-vector product c = Zb, which

requires m2 = 82 = 64 AND gates and m(m 1) = 8(8 1) = 56 XOR gates. We

therefore, conclude that the computation of c(x) = a(x)b(x) (mod + x5 + 1)

requires 64 AND gates and 63 XOR gates.

4.6. The Special Case of n = m/2

In this section, we show that when in is even and rt is equal to m/2, the

Mastrovito multiplier architecture described in this paper further simplifies. It is

known [13] that a trinomial of the form xm + xml2 +1 is irreducible over GF(2) if

in is of the form m = 2 3' for some r > 0. When n = m/2, we find the number of

reductions k as

k m 2 + 1 = 2- 4 + 1 = 2 (4.10)
7n12i

1

mLnt

Since k = 2, we write the vector Z, = Z,/, from (4.7) as

,Z,11" + M[> 0] + 11[rn12]

52

which is explicitly given as

Zn = Zm /2 = (am/2 am/2-1 al ao am_i am/2+1)

(0 am_i am/2+1 am/2 am/2-1 al) +

(0 0 0 0 am _ 1 am/2+1)

We notice that last m/2 1 elements starting from am--1 and ending with am/2+1

of the vectors W and m/2] are exactly the same, and therefore, their sum is

equal to zero. We remove these elements from the sum, and obtain

Zn = Zrn/2 = (am/2 am/2-1 al ao 0 0) +

(0 am -1 am /2 +1 am/2 am/2_1 al)

(0 0 0 0 0 0) .

In other words, Mm[-- m/2] makes no contribution, and can be removed from the

sum to obtain Zn. Therefore, the computation of Zm /2 requires only the addition of

the subvectors

7(am /2_1 al ao) + (am -1 am/2+1 am/2)

which requires only m/2 gates. Thus, we conclude that the construction of the

vector Zn in the case n = m/2 requires only m/2 XOR gates instead of m

XOR gates. This brings the total number of XOR gates required to perform the

multiplication to m(rn 1) + m/2 = 'm2 m/2. The number of AND gates is the

same as before.

Furthermore, the time complexity also simplifies since the construction of the

vector Z now requires a single Tx delay instead of k T delay. In the special case

of the trinomial xm +..rm/2 + 1. the time complexity of the proposed architecture is

found as

+ TA + rlog2(rn 1)1 Tx = T1 + + [log2 (1)1) Tx . (4.11)

1

53

We exemplify this case using the irreducible trinomial x6 + x3 + 1 generating the

field CF(26) in the following. Since rn = 6 and ra = 3, we find the vector Zr, = Z3 =

M[--4 ± 1LI[-4 3] as

Z3 = (a3 a2 ai ao a5 a4) +

(0 a5 a4 a3 a2 al) +

(0 0 0 0 a5 a4)

We remove the subvector (arn_i am/2+1) = (a5 a4) from the vectors W and M[>

3], and obtain

Z3 = (a3 a2 al ao 0 0) +

(0 a5 a4 a3 a2 al) +

(0 0 0 0 0 0)

Hence we can obtain Z3 using only m/2 = 3 XOR gates as

Z3 = (a3 , a2 + a5 , a1 + a4 , a0 + a3 , a2 , al)

Following the previous analysis, we conclude that the remaining Zi vectors for i 0 3

can be constructed from Z3 without using any additional gates. The final reduction

array and the required row operations in the 11 x 6 dimensional matrix M are

illustrated below:

X6 = 1 + x3 M0 M0 + M6 and M3 := M3 + M6

X7 = X + X4 := + M7 and M4 := M4 + *17

X8 = X2 ± X5 -÷ M2 : M2 + M8 and M5 := M5 + M8

x0 =1 ---+ := A +

= M1 := ± MI

54

From these row operations, we obtain the final 6 x 6 dimensional Z matrix as follows:

ao a5 (24 a3 a2 + a5 al + a4

al ao a5 a4 a3 a2 + a5

a2 ai ao a5 a4 a3
Z=

a3 a2 + a5 al + a4 ao + a3 a2 al

a4 a3 a2 + a5 al + a4 ao + a3 a2

a5 a4 a3 a2 + a5 al + a4 ao + a3

As seen in the matrix Z above, it is necessary and sufficient to to compute the terms

a2 + a5 , al + a4 , ao + a3

in order to construct the entire 6 x 6 matrix Z. These operations require only 3

XOR gates. In order to perform the multiplication c(x) = a(x)b(x) mod x6 + x3 + 1,

we need to perform the matrix vector product c = Zb, for which an additional

m(m 1) = 6(6 1) = 30 XOR gates and m2 = 36 AND gates are required.

Therefore, the total number of XOR gates is 3 + 30 = 33.

4.7. Acknowledgements

The authors would like to thank Professor Christof Paar of Worcester Poly­

technic Institute for helpful discussion in relation to this work.

55

5.	 A NEW MULTIPLIER FOR OPTIMAL NORMAL BASIS OF
TYPE II

5.1. Introduction

The arithmetic operations in the Galois field GF(2m) have several applications

in coding theory, computer algebra, and cryptography [13, 12]. In these applications,

time- and area-efficient algorithms and hardware structures are desired for addition,

multiplication, squaring, and exponentiation operations. The performance of these

operations is closely related to the representation of the field elements. An important

advance in this area is the introduction of the Massey-Omura algorithm [18], which

is based on the normal basis representation of the field elements. One advantage of

the normal basis is that the squaring of an element is computed by a cyclic shift

of the binary representation. Efficient algorithms for the multiplication operation

in the canonical basis have also been proposed [27, 3, 21]. The space and time

complexities of these canonical basis multipliers are much less than those of the

Massey-Omura multiplier.

In recent years, efficient normal basis multipliers for special classes of finite

fields have been proposed [26, 21]. These multipliers work only for the optimal

normal basis of type I. To the best of our knowledge, the Massey-Omura algorithm

is the only algorithm which works for the optimal normal basis of type II. However,

its parallel space complexity is about twice of these special multipliers. The parallel

Massey-Omura algorithm requires 2(m2 m) XOR gates while both of the special

multipliers in [26, 21] require nit 1 XOR gates. As enumerated in Table 5.1. of

[13], in the range in E [2, 2000], there are 118 and 218 in values for which an optimal

normal basis of type I and type II exist, respectively. In other words, the optimal

56

normal basis of type II is more likely to occur, and thus, efficient algorithms for this

representation are highly desired.

This paper presents a new multiplication algorithm for the field GF(2m) whose

elements are represented using the optimal normal basis of type II. The bit-parallel

multiplier proposed in this paper requires 25 % fewer XOR gates than the Massey-

Omura multiplier.

5.2. Representation of Field Elements

It is customary to view the field GF(2m) as an rn-dimensional vector space

defined over GF(2). In this case, a set of rn linearly independent vectors (elements

of GF(2m)) are chosen to serve as the basis of representation. If the set of elements

N {/3, 02 04, 02m-1} forms a basis for some # E G F (2') , then the basis N is

called normal basis and the element # is called normal element. The introduction

of the Massey-Omura multiplier [18] was followed by the definition of a special

type of normal basis called optimal normal basis. This type of basis minimizes

the complexity of the Massey-Omura multiplier. There exists two types of optimal

normal basis, as classified in [13]. An optimal normal basis of type II for the field

GF(2m) is constructed by selecting a primitive (2m + 1)th root of unity, i.e., an

element 7 of GF(2m) such that 72m+1 = 1 and furthermore no other power of -y less

than 2m + 1 is equal to 1. Then. # = -y + 7-1 serves as the normal element of the

basis.

We now show that there exists another basis N' which is obtained by a simple

permutation of the basis elements in N. and construct a new parallel multiplication

algorithm in this new basis. If 2 is primitive modulo 2m + 1, then the set of powers

57

of 2 modulo 2m + 1

S = {2, 22,23,...,22m-122m} (5.1)

is equivalent to

{1, 2,3, 4,...2m} . (5.2)

Therefore, a basis element of the form 72' + 7-2' can be written as 73 + 7-3 for

j E [1, 2m]. Furthermore, if j > m + 1, then it is possible to write y3 + 7- =

(2m+1) -j 7-(2m-o+) since 72m+1 = 1. This brings all powers of y to the range

[1, m], which means all basis elements of the form 'y + 7-1, where i E [1,2m], can

be written as -y1 + 'I-3 with j E [1, m]. Therefore, the bases N and N' given as

-2 22 -22 9(m-1)
+y-2(m-1)1

, ,
N = {7 + 7-17 72 +y +7 (5.3)
,

= {-y+7-1,72 + 7-27 73 + 7-37 7772 + 7-m} (5.4)

are equivalent. The basis N' is obtained from the basis N using a simple permuta­

tion. Let A be expressed in the basis N as

,
A = a1/3 + a2132 + a31322 + + an,02-' (5.5)

where ,3 = -y + The representation of A in the basis N' given as

A = + d2a2 + d3ce3 + + dmam (5.6)

where at = + y -'. There is a permutation between the coefficients di = ai, which

is expressed as

k if k E [1,
(5.7)=

(21n + 1) k if k E [m, +1,2nd

where k = 91- 1 (mod 27/2, + 1). The basis N' is no longer a normal basis, however.

it proves to be useful. We construct a new low-complexity, bit-parallel multiplier in

the following section using this new basis.

58

5.3. New Multiplication Algorithm

We propose a new algorithm for multiplying the elements of GF(2"`) in the

basis N as follows:

1. Convert the elements represented in the basis N to the the basis N' using the

permutation.

2. Multiply the elements in the basis N'.

3. Convert the result back to the basis N using the inverse permutation.

The first and third steps are implemented without any gates since the permutation

operation requires a simple rewiring. The second step is a multiplication operation

in the basis N', which we present below. Let A, B E GF(2m) be represented in the

basis N' as

A = ai(71 + 7-i) and B = bi(72 + 7-2) . (5.8)

The product of these two numbers C=--A-B is written as

C A B = + 7 1) (5.9)
i=1 j=1

This product can be transformed to the following form:

In m TR

C bi ki(-y '+' (H-1)) = c + c2 5 .10)

1=1 j=1

For future reference, the two double summations are denoted as C1 and C2 as shown

above. The term C1 has the property that the exponent j) of 7 is already within

the proper range, i.e.. in < (i < in for all i, j E [1, Furthermore, if i = j,

59

7o +then + = 0. Thus, we can write C1 as
m m

+ (5.11)C1 ibj (-rt- =

i=1 j=1

1 < i,j < m

ij

If k = then the product (Lib., contributes to the basis element ak = 'Yk

For example, the coefficients of al are the sum of all GO) for which ji =-- 1.

Table 5.1. shows the elements contributed by the summation C1 arranged in terms

of the order of the basis elements.

TABLE 5.1: The construction of

al a2 " am -2 am -1 am

a1b2 + a2b1 (211)3 + a3b1 aibm - + am_i bm + am bi

a2b3 + a3b2 a2b4 + a4b2 a 2 brn ± amb2

am_2bm_i + arn_ibm_2 a b, + amb_2

am_ib + ambm_i

Furthermore, the term C2 is transformed into the following:
m rn

C2 = > `a bjl7t
+j + 7-(i+j))

i=1 j=1

m 771771 m -i

+,Y--(i+i))

i=1 J=1 i =1 j=m-i+1

+ D2 . (5.12)

60

The double summations are denoted by D1 and D2, respectively. The exponents

of the basis elements 7i±i + 7-(1+1) in DI are guaranteed to be in the proper range

1 < (i+j) < m for i = 1, 2, ..., m and j = 1, 2, m- i. If k = i+ j, then product

aibj contributes to the basis element ak as i and j take these values. Table 5.2.

shows the construction of the summation D1.

TABLE 5.2: The construction of D1.

al a2 a3 am-2 am -1 am

a1b1 a1b2 (0,3 aibm-2 aibm-i

a2b1 a2bm_4 a2brn_3 a2b,_2

am_3b1 am -3b2 am -3b3

arn_2b1 am -2b2

am -1 b1

On the other hand, the basis elements of D2 are all out of range. We use the

identity '/27n+1 = 1 to bring them to the proper range:

m m m m
ai(,.y2m+1-(i+j) -(2m+1-(i+j)))

D2 = E aibie-yi+j -(i+j)) = bi

i =i j=m-z+i i=1 j=m-i+1
(5.13)

Therefore, if k = i + j > m, we replace ak by a2,±1 _k. For example, the term ambrn

contributes to the basis element al since 27n + 1 (m + m) = 1. Table 5.3. shows

the explicit construction of D2.

61

TABLE 5.3: The construction of D2.

ai a2 a3 am-2 am-1 am

ambm am_ibm am_ 2 bm a3bm a2bm aibm

ambm_i am_ibm -1 a4 bm_i a3bm_1 a2bm_1

ambm-2 a5bm_2 a4bm_2 a3bm-2

am_ b4 am _ 2 b4 am -3b4

am b3 am_ b3 am_ 2 b3

amb2 am_1b2

ambl

The multiplication algorithm in the basis N' constructs C1, D1, and D2, and

sums the appropriate terms in order to obtain the product C = C1 + D1 + D2. The

details of the multiplication operation and its complexity analysis is given in the

following section.

5.4. Details of Multiplication and Complexity Analysis

If these three arrays C1, D1, and D2 are inspected closely, the following obser­

vations can be made:

62

1. All three arrays are composed of the elements of the form aiki for i, j E [1, m}.

2. The height of the ith column in the array C1 is 2(m	 i) for i = 1, 2, ... , m.

This is the number of terms of the form a,,bi to be summed in the ith column.

3. The height of the ith column in the array D1 is equal to i 1.

4. The height of the ith column in the array D2 is equal to i.

5. Therefore, the height of the ith column in the entire array representing the

total sum C = C1 + D1 + D2 is found as

2(m i) + i 1 + i = 2rn, 1 ,	 (5.14)

which follows from Observations 2, 3, and 4.

6. If there is an element atbi is present in a column, then the element ajbi is also

present in the same column. This is true for all of the three arrays C1, D1,

and D2.

7. An element of the form aib, is present only once in a column of either D1 or

D2.

8. Because of the observations 5, 6, and 7, a column of the entire array repre­

senting the total sum C contains a single element of the form a,b, and 2m

elements of the form aib , where a3b, is also present.

The proposed multiplication algorithm first computes the terms aibj for i, j E

[1, rri] using exactly In2 two-input AND gates. This requires a single AND gate delay

T4 because of the parallelism.

2

63

Let tij = aibj + ajbi for i = 1, 2, . . . , m and j = i + 1, i + 2, . . m. We first

compute the terms tip using

(m 1) + (m 2) + + 2 + 1 = 1772(m 1) (5.15)

two-input XOR gates and a single XOR gate delay Tx. The ith column of the

entire array contains exactly a (2m 2) = m 1 terms of the form tij and also a

single element of the form (lib,. These m numbers are summed using a binary XOR

tree, which requires m 1 XOR gates and a total delay of [loge ml T. Due to

parallelism, all m columns require m(m 1) XOR gates and the same amount of

the delay. Therefore, the construction of the product C requires:

AND = m2
1# XOR = m(m 1) + m(m 1) = -3 m(m 1) ,

Delay = TA + TX + [log2 ml TX = TA + (1 + [log2 7121)T X 7

On the other hand, the parallel Massey-Omura algorithm uses m2 AND gates and

2m(m-1) XOR gates, and computes the product in T A+ (1+ [loge (m 1)1)Tx gate

delays. The new algorithm requires 25 % fewer XOR gates than the Massey-Omura

algorithm.

5.5. An Example

In this section, we illustrate the construction of the basis IV' and the new

multiplication algorithm for the field GF(25). Since 2m + 1 = 2 5 + 1 = 11 and

2 is primitive in Z11, there exists an optimal basis of type II for the field GF(25),

which is of the form N = {0,02 04,08,016,, where /3 = -y + -y-1. Using the identity

-y = 1. we convert this basis to a basis similar to the polynomial basis. The first 11

64

three exponents 1, 2, and 4 are in the proper range. We have 8 = 8 (mod 11) and

16 = 5 (mod 11), which brings the exponent 5 to the proper range. In order to

78-11bring 8 to the range [1, m], we use 78 = -3 Thus, we can write

= /+ 7-1 = + 7-1 = ai/3

/32 7-2 72 4_ 7-2

/34 74 + 7-4 74 ,y-4

38 =78+7-8 =73+73=
3is 716 7-is= 75 + 7-5

which is of the form N' = a3, a4, a5}. The conver-

Dases are accomplished using a permutation. Assuming, A

15

a304 aos aoisa4, a5) = al/3 + a2)32

A in N' as A = ala1 + a2a2 + a4a3 + a3a4 + a5a5. This

Ls (di., a2, a3, a4, a'5) = (al, a2, a4, a3, a5)

istruction of the multiplication circuit. For simplicity, we

and B in the field GF(25) are already given in the basis

A = a2, a3, a4, a5)

B= (b1,b2,b3,b4,b5)

We are assuming these elements are already converted to the basis N' using the

permutation rule above if they were initially given in basis N. The computation of

the product C = (ci, c2, c3, c4, c5) is accomplished as follows:

First generate the product terms aibi for i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4, 5

m2 52using = 25 AND gates. This computation requires a single AND gate

delay TA.

65

Then generate the terms tij = aibj + ajb for i = 1, 2, 3, 4, 5 and j = i + 1, i +

2, ... , 5. Thus, we compute

t12 = a1b2 + a2b1

t13 = al b3 + a3b1 t23 = a2b3 + a3b2

a1b4 + a4b1 t24 = a2b4 + a4b2 t34 b h
_3_4 + nt14 =

t15 = al b5 + a5b1 t25 a2b5 + a5b2 t35 = a b 5 + a b 3 t45 a4b5 + a5b4

This computation requires .'-ra(m 1) = 10 XOR gates and a single XOR gate

delay T.

Finally the elements of the product are obtained as follows:

C1 = t12 t23 t34 t45 a5b5

C2 = t13 t24 t35 t45 aibi

C3 = t14 t25 t12 t35 a4 b4

C4 = t15 t13 t25 t34 a2b2

c5 = t 14 t23 t15 t24 a3b3

This step requires an additional m2 m = 20 XOR gates. This computation

is accomplished using additional delay of [loge 51Tx = 3Tx.

The result is expressed in the basis N' which can be converted to the basis N using

the inverse permutation. The multiplication circuit requires a total of m2 = 25 AND

gates and 1.5(m2 m) = 30 XOR gates. The total computation is performed using

TA + 4Tx gate delays. In Table 5.4., we illustrate the construction of the arrays C1,

D1, D2, and the final array C.

66

5.6. Conclusions

We have presented a new multiplier for the field GF(2m) whose elements are

represented using the optimal normal basis of type II. The proposed bit-parallel mul­

tiplier requires 1.5(m2 m) XOR gates while the Massey-Omura multiplier requires

2(m2 m) XOR gates, which is the only other multiplier working in this basis. The

time complexities of these two multipliers are similar: the parallel Massey-Omura

multiplier requires TA + (1+ [log2 (m 1)1)Tx delays while the delay of the proposed

multiplier is TA + (1 + [log2 ml)Tx.

67

TABLE 5.4: The construction of C1, DI, D2, and C in GF(25).

al a2 a3 a4 a5

a1b2 + a2b1 alb3 + a3b1 a1b4 + a4b1 a1b5 + a5b1

a2b3 + a3b2 a2b4 + a4b2 a2b5 + a5b2

a3b4 + a4b3 a3b5 + a5b3

a4b5 + a5b4

a1b1 a1b2 a1b3 a1b4

a2b1 a2b2 a2b3

a3b1 a3b2

a4b1

a5b5 a4b5 a3b5 a2b5 a1b5

a5b4 a4b4 a3b4 a2b4

a5b3 a4b3 a3b3

a5b2 a4b2

a5 b1

ti5t12 t13 t14 t14

t23 t24 t25 t13 t23

t15t34 t35 t12	 t25

t34t45 t45 t35 t24

a2b2 a3b3a5b5 alb! a4b4

68

BIBLIOGRAPHY

1.	 E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Vandewalle. A
fast software implementation for arithmetic operations in GF(2n). In K. Kim and
T. Matsumoto, editors, Advances in Cryptology ASIA CRYPT 96, Lecture
Notes in Computer Science, No. 1163, pages 65-76. New York, NY: Springer-
Verlag, 1996.

2.	 M. A. Hasan, M. Z. Wang, and V. K. Bhargava. "Modular construction of
low complexity parallel multipliers for a class of finite fields GF(2m)," IEEE
Transactions on Computers, vol. 41, no. 8, pp. 962-971, August 1992.

3.	 T. Itoh and S. Tsujii. "Structure of parallel multipliers for a class of finite fields
GF(2m)," Information and Computation, vol. 83, pp. 21-40, 1989.

4.	 C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and
I. S. Reed. "VLSI architecture for computing multiplications and inverses in
GF(2m)," IEEE Transactions on Computers, vol. 34, no. 8, pp. 709-717, August
1985

5.	 G. Harper, A. Menezes, and S. Vanstone. Public-key cryptosystems with very
small key lengths. In R. A. Rueppel, editor, Advances in Cryptology EURO­
CRYPT 92, Lecture Notes in Computer Science, No. 658, pages 163-173. New
York, NY: Springer-Verlag, 1992.

6.	 T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses
M GF(2m) using normal bases. Information and Computation, 78(3):171-177,
September 1988.

7.	 D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms,
volume 2. Reading, MA: Addison-Wesley, Second edition, 1981.

8.	 N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203-209, January 1987.

9.	 N. Koblitz. CM-curves with good cryptographic properties. In J. Feigenbaum,
editor, Advances in Cryptology CRYPTO 91, Proceedings, Lecture Notes in
Computer Science, No. 576, pages 279-287. New York, NY: Springer-Verlag,
1991

10.	 N. Koblitz. A Course in Number Theory and Cryptography. New York, NY:
Springer-Verlag, Second edition, 1994.

11.	 R. Lidl and H. Niederreiter. Finite Fields. Encyclopedia of Mathematics and
its Applications, Volume 20. Reading, MA: Addison-Wesley, 1983.

