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The Amazon rainforest is a critical hotspot for bio-diversity, and plays an essential role in global carbon, water
and energy fluxes and the earth's climate. Our ability to project the role of vegetation carbon feedbacks on future
climate critically depends upon our understanding of this tropical ecosystem, its tolerance to climate extremes
and tipping points of ecosystem collapse. Satellite remote sensing is the only practical approach to obtain obser-
vational evidence of trends and changes across large regions of the Amazon forest; however, inferring these
trends in the presence of high cloud cover fraction and aerosol concentrations has led to widely varying conclu-
sions. Our study provides a simple and direct statistical analysis of a measurable change in daily and composite
surface reflectance obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) based on the
noise level of data and the number of available observations. Depending on time frame and data product chosen
for analysis, changes in leaf area need to exceed up to 2 units leaf area per unit ground area (expressed as
m2 m−2) across much of the basin before these changes can be detected at a 95% confidence level with conven-
tional approaches, roughly corresponding to a change inNDVI and EVI of about 25%. A potential way forwardmay
be provided by advanced multi-angular techniques, such as the Multi-Angle Implementation of Atmospheric
Correction Algorithm (MAIAC), which allowed detection of changes of about 0.6–0.8 units in leaf area (2–6%
change in NDVI) at the same confidence level. In our analysis, the use of the Enhanced Vegetation Index (EVI)
did not improve accuracy of detectable change in leaf area but added a complicating sensitivity to the bi-
directional reflectance, or view geometry effects.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The importance of tropical vegetation for the earth system is undis-
puted (Atkinson, Dash, & Jeganathan, 2011; Malhi et al., 2008; Phillips
et al., 2009), however, responses of tropical forests to changes in climate
are only poorly understood (Samanta et al., 2010). Spaceborne remote
sensing is often the only practical way to observe such changes at useful
spatial and temporal scales (Shukla, Nobre, & Sellers, 1990), but
the scientific community has been struggling to interpret existing satel-
lite data in the presence of large cloud cover fraction and aerosol
concentrations, which led to conflicting evidence over sensitivity for
instance to prolonged drought events and thresholds of forest dieback.
As a prominent example, the severe Amazon drought in 2005 provided
an opportunity to investigate vegetation response to extreme events,
but inferences based on remote sensing observations were inconsistent
with those based on field studies. Using observations from55 long-term
lker).
monitoring plots, Phillips et al. (2009) concluded that the Amazon basin
lost an estimated 1.2–1.6 Pg of carbon as a result of this drought.
In contrast, Saleska, Didan, Huete, and da Rocha (2007) reported green-
ing of the Amazon forest, suggesting increased photosynthetic activity
based on the Enhanced Vegetation Index (EVI) from the 16-days
MODIS surface reflectance (SR) MOD13 product.

In addition to inter-annual changes, seasonal variability of tropi-
cal vegetation has also been actively debated. A substantial body of
literature (Asner, Nepstad, Cardinot, & Ray, 2004; Brando et al.,
2010; Graham, Mulkey, Kitajima, Phillips, & Wright, 2003; Huete
et al., 2006; Hutyra et al., 2007; Myneni et al., 2007; Nemani et al.,
2003; Restrepo-Coupe et al., 2013; Samanta et al., 2012b) supports
the view that photosynthetic activity initially increases during the
dry season in response to an increase in incident PAR while water
supply is maintained through deep root systems (Nepstad et al.,
1994). In contrast, Morton et al. (2014) argued that MOD09-
derived observations of seasonal greening of tropical vegetation are an
artifact of the sun-sensor geometry, concluding that tropical forests
maintain consistent greenness and structure throughout dry and wet
seasons.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.05.020&domain=pdf
http://dx.doi.org/10.1016/j.rse.2015.05.020
mailto:thomas.hilker@oregonstate.edu
http://dx.doi.org/10.1016/j.rse.2015.05.020
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


Table 1
Quality/cloud flags of the MYD09GA product used in this study. Flags that are not
mentioned were not used (Hilker et al., 2012).

Product SDS name Flag Accepted values

MYD09GA QC 500 m MODLAND QA bits 00 (ideal quality —
all bands)

Band 1 data quality 0000 (highest quality)
Band 2 data quality 0000 (highest quality)
Atm. corr. performed 1 (yes)

State 1 km Cloud state 00 (clear)
Cloud shadow 0 (no)
Aerosol quantity 00/01 (climatology/low)
Cirrus detected 00 (none)
Internal cloud flag 0 (no cloud)
Fire flag 0 (no fire)
Pixel adjacent to cloud 0 (no)

MYD13A2 VI quality MODLAND QA Bits 00 (VI produced with
good quality)

VI usefulness 0000 (Highest quality)
0001/0010/0100/1000
(Lower quality)

Aerosol quantity 00/01 (climatology/low)
Adjacent cloud 0 (no)
Mixed cloud 0 (no)
Possible shadow 0 (no)

Pixel reliability Rank key 0 (good data — use with
confidence)
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Since its launch in 2000, MODIS has been the workhorse of Amazon
remote sensing due to its superior data quality when compared to
AVHRR (Huete et al., 2002). Surface reflectance is routinely derived
from top of atmosphere measurements, using pixel-based atmospheric
correction and cloud screening (Vermote & Kotchenova, 2008). Howev-
er, errors in the estimation of atmospheric aerosol loadings (Grogan &
Fensholt, 2013; Samanta, Ganguly, Vermote, Nemani, & Myneni,
2012a; Samanta et al., 2010) and deficiencies in cloud screening
(Hilker et al., 2012) can introduce variability in estimated surface pa-
rameters unrelated to actual changes in vegetation (Zelazowski, Sayer,
Thomas, & Grainger, 2011) which may lead to incorrect inferences of
vegetation trends (Samanta et al., 2012a). Alternative processing tech-
niques, such as the recently developed Multi-Angle Implementation of
Atmospheric Correction Algorithm (MAIAC) (Lyapustin et al., 2011)
hold promise to overcome some of these limitations by providing
more accuracy in cloud screening, atmospheric correction and account-
ing for BRDF effects (Hilker et al., 2012). However, statistical analysis of
quantifiable change is currently missing. Such analysis will be needed
if we are to reconcile remote sensing observations with field studies
and in order to determine potentials and limitations for using satellite
derived evidence for change over tropical forests.

Detectable change in surface reflectance depends on noise and
sampling frequency. Independent estimates of measurement noise are
difficult across vast areas such as the Amazon basin, however, a first
approximation may be obtained from high frequency changes in
observed surface reflectance, when assuming little change in vegetation
over short periods of time. While this simple approach has limitations,
high frequency changes in surface reflectance mostly characterize
processing errors from clouds and aerosols as a pixel, unless disturbed
by logging or fire, would not be expected to change from one day to
the next (Hilker et al., 2012). Common approaches to mitigate noise
include compositing of best available pixels, these techniques however,
significantly reduce the number of observations.

The objective of this paper is to evaluate detectable changes in veg-
etation greenness given statistical properties of noise driven by cloud
cover, aerosol loading and other effects including bi-directionality of
surface reflectance. The tradeoffs of using daily vs. composited surface
reflectance are being discussed and detectable changes are quantified.
We also evaluated the usefulness of Aqua vs. Terra observations, a
question related to the diurnal cycle of early afternoon cloud develop-
ment. Our hope is to provide a sounder statistical basis for the recent
discussion on seasonal and inter-annual changes in Amazon vegetation.
2. Methods

2.1. MODIS MOD09/MYD09 observations

Our study encompasses 12MODIS tiles (h10v08 and h13v10), a land
area of 12.25million km2, spanning10°N to 20°S in latitude and 80°Wto
42°W in longitude. We used MODIS data from the Terra and Aqua
satellite platforms acquired between 2000/02/24 and 2012/12/31
(Terra) and between 2002/07/04 and 2012/12/31 (Aqua). Collection 5
data of theMOD09GA/MYD09GA 1 kmdaily surface reflectance product
were obtained from the reverb data gateway of NASA's Goddard Space
Flight Center (reverb.echo.nasa.gov) as well as 1 km vegetation index
(VI) composites from MOD/MYD13A2. Clouds were masked by means
of the ‘state_1km’ scientific dataset (SDS) included in the MYD09GA
product, which is based on two cloud detection algorithms, the MOD/
MYD35 cloud mask (Frey et al., 2008) and an additional, internal
cloud screening (Vermote & Kotchenova, 2008). In addition to cloud
masking, all conventional MODIS data were quality filtered using the
MODIS quality (QA) and pixel reliability flags and only cloud free pixels
with the highest data quality were passed and used for all subsequent
analyses. An overview of the quality and cloud flags set is provided in
Table 1.
2.2. MAIAC observations

In addition to conventionally processed daily MODIS data, we also
obtained MODIS observations processed with the MAIAC algorithm.
MAIAC is a new generation cloud screening and atmospheric correction
technique that uses an adaptive time series analysis and processing of
groups of pixels to derive atmospheric aerosol concentration and
surface reflectance without typical empirical assumptions. In previous
work (Hilker et al., 2012), we have demonstrated a 3–10 fold reduction
in noise of MAIAC SR, while the algorithm at the same time yields 2–5
timesmore observations as a result of amore accurate, less conservative
cloud mask. Both these properties should make it more suitable to
detect changes in the Amazon basin. MAIAC data were obtained for
the identical 12 MODIS tiles and time period from NASA's Level 1
and Atmosphere Archive and Distribution System (LAADS Web) ftp://
ladsweb.nascom.nasa.gov/MAIAC. Recently, also a composited VI
product has been provided. Detailed descriptions of MAIAC and quality
testing are provided elsewhere (Lyapustin,Wang, Laszlo, &Hilker, 2011,
2012; Lyapustin et al., 2011).
2.3. Approach

Our ability to observe trends and changes in tropical vegetation
depends on the number of available clear sky observations and mea-
surement noise. In tropical latitudes, this noise results largely from
undetected clouds and cloud shadows (particularly during the wet
season) and high aerosol levels during the biomass burning (dry) sea-
son (Aragão et al., 2008; Hilker et al., 2012). Typical techniques to
overcome high noise levels include best pixel compositing, which
effectively increases the data quality at the cost of a reduced number
of observations. Analysis of seasonal changes from composited data
products is therefore often pursued by combining observations over
multiple years (such as averaging multi-year observations acquired
during June and comparing them to multi-year observations acquired
during October), assuming a regular onset of dry and wet seasons.

We pursued two different approaches for change analysis, one based
on daily satellite observations and another based on multi-year aver-
ages of VI composites. Composited data are most commonly used for
determining change in tropical vegetation, however daily observations
would be desirable to better understand changes for instance during

ftp://ladsweb.nascom.nasa.gov/MAIAC
ftp://ladsweb.nascom.nasa.gov/MAIAC
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extreme events or dieback that happens up to several years after the
extreme event occurred (Doughty et al., 2015). Also, the quality of com-
posite data still depends on the quality of the original daily observations.

Different techniques may be utilized to infer the status of terrestrial
vegetation; here we used the Normalized Difference Vegetation Index
(NDVI) and the Enhanced Vegetation Index (EVI), as the two most
commonly applied remote sensing metrics. We computed both NDVI
and EVI from daily MOD/MYD09 and MAIAC reflectance, for the
composited data, the indices were already provided. NDVI is defined
as (Tucker et al., 1979)

NDVI ¼ ρnir−ρred

ρnir þ ρred
ð1Þ

where ρnir and ρred is the atmospherically corrected surface reflectance
in the near infrared and red bands, respectively, and EVI is defined as

EVI ¼ G� ρnir−ρred

ρnir þ C1 � ρred−C2 � ρblue þ L
ð2Þ

where L is the canopy background adjustment (1.0); C1 (6.0) and C2
(7.5) are the coefficients of the aerosol resistance term; and G (2.5) is
a scaling factor (Huete, Justice, & Liu, 1994).

Statistical significance of seasonal changes in vegetation was
assessed using a two sided t-test with unequal numbers of observation
and variances (Satterthwaite, 1946; Welch, 1947), as both data quality
(i.e., variance) and number of observations varies between the dry
and wet seasons due to variations in cloud cover and aerosol loading:

t ¼ X1− X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
N1

þ s22
N2

s ð3Þ

whereXi, si andNi are the ith samplemean, sample variance and sample
size, respectively.

3. Results

Fig. 1 shows an overview of the number of cloud free daily ob-
servations available per month across Amazonia. The percentage of
cloud free data was lowest during November and April and peaked dur-
ing June and August, the dry season across the southern basin.
Fig. 1. Percentage of high quality observations available from differentMODIS products for
the example of the year 2007. Observations processed with MAIAC are shown as black
(Terra) and gray (Aqua) bars, the corresponding observations processedwith the conven-
tional product are shown as horizontal and diagonal hatches (for MOD/MYD09 pixels
quality was defined by the quality flags shown in Table 1).
The conventional product yielded between 2 and 45% of cloud free,
high quality observations fromMODIS on Terra (MOD09); the percent-
age of pixels observed from MODIS on Aqua (MYD09) ranged between
1 and 21%. MAIAC yielded between 10% and 60% clear sky observations
from MODIS on Terra and between 8% and 42% of cloud free data from
MODIS on Aqua. Relative improvement was largest during wet season
suggesting that MAIAC was particularly successful in detecting small
cloud-free areas in regions with extensive cloud cover. The spatial
distribution of available observations varied notably between rain
season (Fig. 2 shows the example of March 2007) and dry season
(Fig. 3 shows the example of August 2007). The less conservative
cloud mask implemented in MAIAC resulted in a more complete cover-
age of the Amazon basin particularly during the wet season, owing to
observations from both the Terra and Aqua platform (here shown for
the example of 2007, Fig. 2). In contrast, MOD09/MYD09 covered only
about half of the study area (Fig. 3C); contributions from MODIS on
Aqua were relatively minor. During the dry season, the numbers of
observations were more similar; with MAIAC acquiring about 20%
more observations. When using the best pixel composites (Fig. 4) both
MAIAC and MOD/MYD13 were able to provide data across most of the
basin during beginning and end of the dry season, differences in the
number of available cloud free pixels were, however, still pronounced
particularly during the end of the dry season.

Figs. 5 and 6 show the coefficient of variation in daily observations
over the period of one month, for wet and dry seasons. The results in
both Figs. 5 and 6 are based on daily surface reflectance that has not
been normalized for the BRDF effects. The variation of Terra and Aqua
NDVI (Fig. 5) was assessed as coefficient of variation rather than simple
σ to allow a better comparison to EVI (Fig. 6). For NDVI, the coefficients
of variation ranged between 0.15 and 0.20 across most of the basin for
MOD09/MYD09, whereas MAIAC estimates were in the order of about
0.05 throughout the study area. Compared to NDVI, EVI showed a nota-
bly higher variability during both the dry and wet seasons and for
both data products. The coefficient of variation for EVI ranged between
0.1 and 0.2 for most of the study area for both MAIAC and MOD09/
MYD09. It can be seen from the results presented in Fig. 7 that this
increased variability in EVI compared to NDVI may largely be attributed
to BRDF effects, or in other words, to changes in the view geometry. The
figure shows daily observations fromMAIAC, but normalized to a com-
mon sun-observer geometry (BRFn) (θs = 45° solar zenith angle and
nadir view). The objective was to assess the contribution of angular
effects to noise in vegetation indices, in comparison to the non-
normalized MAIAC product. Only MAIAC results are shown here, as no
BRDF-normalized daily product is available from MOD/MYD09. In
Fig. 7, improvements in NDVI (compare to Fig. 5) were relatively small-
er, indicating a weaker dependence of NDVI on view and illumination
angles. Improvements for EVI on the other hand were notable, suggest-
ing a much stronger dependence of EVI on view and sun-angle varia-
tions (compare Figs. 6 and 7c, d). After BRDF-normalization, variations
in EVI were more comparable to those obtained from MAIAC NDVI
product, though still somewhat larger in some regions. Over vegetation,
the BRDF effect results in increase of reflectance in the backscattering
direction (less shadowing) compared to the forward scattering direc-
tion (more shadowing). By virtue of its mathematical form, this differ-
ence is somewhat mitigated in NDVI, but it has a larger effect on EVI
due to constant factors in the denominator providing different weights
to the reflective bands in the nominator and denominator. A simple ex-
ercise shows that a 5% difference in the directional scattering of the red
and NIR bands leads to about 2% change in NDVI vs about 8% change in
EVI. For this reason, a high variability between monthly averaged EVI is
expected. This variability was present in both the MOD09/MYD09 and
MAIAC data as the changes in EVI due to sun-sensor geometry exceeded
the noise resulting from the aerosol and cloud effects.

Figs. 8 and 9 show the corresponding coefficients of variation for
MOD/MYD13 and MAIAC composites, again separately for NDVI and
EVI. The composited results yielded notably less variability for NDVI



Fig. 2.Number of cloud free observations available during themonth ofMarch 2007 from the conventional product (top row) andMAIAC (bottom row). The left and center columns show
number of observations acquired from Terra and Aqua, respectively, the right column shows the combined data.
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for both the MOD/MYD13 and MAIAC products, with conventional
composite estimates ranging between 0.04 and 0.08 during June and
October, whereas MAIAC composites yielded coefficients of varia-
tions largely between 0.02 and 0.05. Compared to NDVI, composited
results for EVI were notably higher, particularly for the conventional
MOD/MYD13 product with values ranging between 0.08 and 0.18,
Fig. 3.Number of cloud free observations available during themonth of August 2007 from the co
number of observations acquired from Terra and Aqua, respectively, the right column shows t
whereas MAIAC results ranged between 0.05 and 0.1 (with a few ex-
ceptions in the north eastern part of the basin). Note that MAIAC
composites are by default normalized to a fixed sun sensor geometry.

Based on the number of observations (n) and σ, we calculated the
ability to predict a hypothetical 10% change in vegetation greenness be-
tween June and October (10% roughly represents the expected inter-
nventional product (top row) andMAIAC (bottom row). The left and center columns show
he combined data.



Fig. 4. Number of cloud free observations available from NDVI/EVI composites using one
month of observation during a dry season month (August) and a rain season month
(March) based on all years, except the extreme drought years of 2005 and 2010. The top
row shows the number of observations available from MOD/MYD13, the bottom row
shows N from MAIAC, Terra and Aqua combined.

Fig. 6. Coefficient of variation of daily EVI observations combined from Terra and Aqua
datasets averaged during March (top row) and August (bottom row). Estimates from
the combined conventional product are shown in Figures (a) and (c), right column
shows MAIAC data (datasets not normalized to sun/sensor geometry).
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annual variability in vegetation, Myneni et al., 2007). Results are shown
in Fig. 10;we are only presenting the results of the daily averaged obser-
vations for reasons of brevity. For each pixel, we obtained n and σ from
averaged daily observations during June and October, respectively, and
defined themean NDVI (EVI) value for October as themean NDVI (EVI)
acquired in June plus 10%. We then performed a Welch test to deter-
mine the statistical significance level with which each time series was
able to detect this change given the inherent noise levelswhich includes
directional effects (Fig. 10). The t-test performed on the conventional
product resulted in high significance levels only in the southern part
of the Amazon region. For most of the northern part of the basin, p-
Fig. 5. Coefficient of variation of daily NDVI observations combined from Terra and Aqua
datasets averaged during March (top row) and August (bottom row). Estimates from
the combined conventional product are shown in Figures (a) and (c), right column
shows MAIAC data (datasets not normalized to sun/sensor geometry).
values were well below the 95% significance level threshold, suggesting
that the ability of the conventional product to detect moderate changes
in vegetation greennesswas limited. It can be shown that themain driv-
er for low p-values was σ, not n, as artificially doubling n yielded only
marginal improvements in the observed significance levels (results
not shown). MAIAC was able to detect the 10% change in greenness
with high statistical significance (p N 0.95) throughout the basin. Com-
pared to NDVI, EVI yielded high significance levels only for the MAIAC
BRFn product (Fig. 9). This is consistent with results presented in Fig. 7.

Figs. 11 and 12 show the results for the reversed problem— namely,
given the inherent noise level, what change inNDVI (EVI) can be detect-
ed at 95% significance level? The graph illustrates that for MOD09/
MYD09, changes in EVI and NDVI would have to exceed 20–25% across
most of the northern part of the Amazon basin. Smaller changes in
Fig. 7. Coefficient of variation of daily NDVI (top row) and daily EVI (bottom row) obser-
vations from directionally normalized (BRFn) Terra and Aqua MAIAC data, averaged dur-
ing March and August. For the daily conventional product, no BRDF correction was
available.



Fig. 8. Coefficient of variation of monthly composite NDVI observations from Terra and
Aqua combinedduring June (top row) andOctober (bottom row). Estimates from the con-
ventional product (MOD/MYD13) are shown in Figures (a) and (c), the right column
shows θ

x for MAIAC VI.

Fig. 9. Coefficient of variation ofmonthly composite EVI observations fromTerra and Aqua
combined during June (top row) and October (bottom row). Estimates from the conven-
tional product (MOD/MYD13) are shown in Figures (a) and (c), the right column shows θ

x

for MAIAC VI.
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vegetation cover were measurable only in the southern part of Amazo-
nia where observations were less limited by cloud cover. In contrast to
MOD09/MYD09, MAIAC was able to detect a 2–6% change in NDVI
throughout study area. For monthly composited estimates (Fig. 12),
values improved for both NDVI and EVI (note the different scale), how-
ever, EVI values still showed greater variability compared to NDVI, par-
ticularly for the conventional MOD/MYD13 product. For both daily and
monthly composites, EVI derived estimateswere useful to detect chang-
es only when using BRDF normalized observations, as otherwise direc-
tional reflectance effects prevented most changes to be measurable
with both the conventional as well as the MAIAC product, at least in
the northern part of the basin.

Both EVI and NDVI are non-linearly related to LAI, and, as a result, a
product's ability to predict changes in leaf area is dependent on the sat-
uration effect observed in the VI–LAI relationship. For instance, in dense
vegetation canopies, a moderate change in leaf area cannot be as easily
detected as in sparse canopies, because vegetation indices saturate with
vegetation density. As a result, the actual physiological change on the
ground will need to be larger in densely vegetated areas to result in a
statistically significant change in vegetation indices than in sparser can-
opies. In order to estimate how small a change in leaf area can be detect-
ed (at a 95% significance level) from both conventional products and
MAIAC, we approximated the LAI NDVI relationship for both algorithms
using the empirical function described in the Algorithm Theoretical
Basis Document (ATDB) of MODIS LAI product for the tropical biome
(Tables 2–3, Knyazikhin et al., 1999). For EVI, we used the functional
relationship described in Huete et al. (2002) as no official standard is
currently available. Our results show that in most areas changes in leaf
area have to exceed 2 units leaf area per unit ground surface (expressed
in m2 m−2) to be detectable from the conventional MOD09/MYD09
algorithm (Fig. 13). When using daily observations, EVI did not result
in improved estimates compared to NDVI, except in some areas in the
north and north-east. Most likely, the more linear character of the rela-
tionship between this index and vegetation leaf areawas countered by a
higher variability of the index and greater sensitivity to directional
effects. NDVI estimates from MAIAC were able to detect changes in
leaf area in the range of about 0.6–0.8 units with NDVI estimates still
being superior to EVI at least across the southern part of the basin. For
the composited data, NDVI estimates from MOD/MYD13 were able to
detect changes of on average about 0.5 units of leaf area, whereas the
statistical significance level for EVI was notably lower and changes
had to be between 0.8 and 1.2 units of leaf area before they could be de-
tected at a 95% significance level. Compared to the conventional prod-
uct, MAIAC composites allowed changes between 0.3 and 0.4 units of
leaf area to be detected at 95% significance level (Fig. 14). Note that in
case of the MAIAC composite, the more linear character of the relation-
ship between EVI and vegetation leaf area benefited the ability to detect
vegetation change at least in the southern and central part of the
Amazon basin. Regionally, however, performance of NDVI-based re-
trieval was more homogeneous than that based on EVI.

4. Discussion

Remote sensing is an essential tool for scaling field measurements
across tropical regions and integrating observations in carbon and ener-
gy cycle models to better understand the role of tropical vegetation in
global climate. Resolving the current controversy from studies that use
MODIS land cover products to investigate the response of tropical vege-
tation to weather and climate is therefore critical for reducing uncer-
tainties in carbon balance models (Davidson et al., 2012; DeFries et al.,
2002; Pan et al., 2011) and establishing possible thresholds for forest
dieback (Brando et al., 2010). The sensitivity analysis provided in this
paper offers new insights into potentials and limitations of daily and
composite satellite products and demonstrates new opportunities pro-
vided by improved algorithms, such as MAIAC.

The ability to quantify the statistical significance in vegetation indi-
ces depends on knowledge of the random error and bias of satellite
observations, as well as the effects of environmental influences not
related to the surface properties, primarily cloud cover, atmospheric ef-
fects, and differences in illumination and viewing geometry. We have
estimated random noise using the assumption of no rapid changes in
plant canopies from one day to the next. While different methods
exist for error and uncertainty analysis (for instance Morton et al.,
2014 modeled noise based on best case theoretical assessments rather
than evaluated it from the MODIS product), this simple approach pro-
vided an effective measure of day to day variability in observed
surface reflectance. Even though a certain level of change may be ex-
pected during onemonth, high frequency changes in surface reflectance
aremost likely an artifact of either residual cloud contamination, aerosol
effects or the sun-sensor geometry. Additional uncertainties may be
attributable to recently described issues with the MODIS quality flags
(Grogan & Fensholt, 2013).



Fig. 10.Percent change detectable at a 95% significance level fromEVI (top row) andNDVI (bottom row) between JuneandOctober using the combined conventional product (left column)
and the non-normalized (center column) and BRF normalized (right column) MAIAC product.
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Our analysis assumes the use of all available data for estimation of
changes in NDVI (EVI). As most studies examining change in vegetation
from remotely sensed indices (Huete et al., 2006; Morton et al., 2014;
Fig. 11. Ability of MOD/MYD09 (a), non-normalized MAIAC (b) and geometry-normalized MA
during June (beginning of dry season) and October (end of dry season). The mean EVI value fo
icance level of the t-statistics. Figures c, d and e show the corresponding results for NDVI.
Myneni et al., 2007; Saleska et al., 2007; Xu et al., 2011), the statistical
methods used in our analysis assume a normal distribution of surface
reflectance, which does not account for the fact that extraneous effects
IAC (c) to predict a 10% increase in EVI, using a 2-sided t-test based on n and σ observed
r October was defined as mean EVI acquired in June plus 10%. The figure shows the signif-



Fig. 12. Percent change detectable at a 95% significance level from EVI and NDVI compos-
ites between June andOctober.MOD/MYD13 is shown in the left column, the right column
shows MAIAC VI product.
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typically increase reflectance in the visible part of the spectrum, thereby
introducing a bias towards the lower end of vegetation indices. This
simplification is a limitation to our and other studies examining season-
al and inter-annual changes in vegetation. The true distribution of
surface reflectance (and therefore vegetation indices) is currently un-
known, and will need to be investigated. Potential means for such a
study may be the upcoming GOES-R ABI dataset or already existing
SEVERI data collected over tropical forests in Africa.
Fig. 13. Detectable change in leaf area at a 95% significance level from EVI (top row) and NDV
normalized and BRF normalized MAIAC product (center and right column, respectively). The es
of NDVI were converted to units of leaf area based on the relationship described in the Algorit
It should also be stated that we are basing our analysis of both
conventional and MAIAC observations solely on quality flags — only
accepting best quality observations. Further constraints, for instance
with respect to view angle are possible and have been implemented
inmany studies. These techniques are expected to result in higher mea-
surement accuracy — at the cost of a reduced number of observations.
Other improvements could be obtained when attempting to correct for di-
rectionality or using directionally normalized conventional observations,
such as the MODIS NBAR MCD43 (Schaaf et al., 2002). This study should
therefore be understood as an illustration for the need to utilize these con-
straints, at least when working with conventional non-MAIAC data.

Cloud cover is amajor obstacle for remote sensing of tropical regions
(Asner, 2001), and as a result, the improved ability of MAIAC to obtain
cloud free observations both spatially and temporally (Fig. 1–4) is an
important finding of this study (see also Hilker et al., 2012). More
frequent observations increase the degrees of freedom and can there-
fore help to enhance satellite based assessment of vegetation change,
forest loss and landscape disturbance over tropical regions (Hansen
et al., 2008). This is particularly important during wet season months
(Fig. 1) and in regions with large cloud cover fraction (Figs. 2–4),
where considerable gaps prevent useful observations from convention-
al products throughout most of the year. The comparison of contribu-
tions from MODIS on Aqua illustrates how the time series approach to
cloud screening implemented in MAIAC can help identify more cloud
free pixels while maintaining higher levels of accuracy (Hilker et al.,
2012). The MAIAC related results presented in Figs. 2–3 show that con-
tributions from PM overpasses can be significant even in wet season
months as Aqua observations helped to provide crucial information
particularly in the northern and north-eastern part of the study area
(Figs. 2e and 3e). These findings make a strong argument that a PM
overpass, although not ideal in terms of cloud interference, can be
successfully employed in terrestrial applications. Previous results have
linked 80% of the improvement found in MAIAC vs. MOD09/MYD09 to
an enhanced cloud mask, whereas 20% of the reduced variability can
be attributed to a more accurate aerosol retrievals and explicit
I (bottom row) showing the combined conventional product (left column) and the non-
timates of EVI were converted to units of leaf area based on Huete et al. (2002), estimates
hm Theoretical Basis Document (ATDB) of MODIS LAI product (Knyazikhin et al., 1999).



Fig. 14. Detectable change in leaf area at a 95% significance level from EVI composites. Es-
timates of EVI and NDVI were converted to units of leaf area corresponding to the results
presented in Fig. 12.
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accounting for the surface anisotropy (BRDF) (Hilker et al., 2012). Re-
sults presented in Figs. 5–8 confirm these findings and demonstrate a
higher consistency of MAIAC data in space and time.

The results presented in Figs. 10, 11, and 13 demonstrate that mod-
erate changes in vegetation are not easily detectable from conventional
approaches across tropical latitudes and in many cases changes would
have to exceed 20–25% to be statistically significant at a 95% confidence
level. The magnitude of this change is about what has previously been
reported (Huete et al., 2006; Myneni et al., 2007), but smaller and
important changes arising from dry vs. wet season conditions, or
inter-annual variability that is below the 25% threshold can be easily
missed when usingMOD09/MYD09. Our results show that compositing
helps reducing the amount of noise in the data, particularly in case of
the conventionally corrected NDVI (Fig. 8), it should, however, be
noted that this method effectively reduces the number of observations
(and therefore the degrees of freedom). As a result, higher accuracy in
remaining observations is then required to detect changes at the same
significance level, particularly when trying to detect seasonal
responses of vegetation from one month to the next. It can be shown
from Eq. (3) that in this extreme case, 16-day composites will require
an improvement in accuracy by a factor of up to 5 to detect a 10% change
in surface reflectance compared to using daily products. With few
exceptions, our results cannot confirm an improved ability of EVI
(Huete, Didan, Shimabokuro, Ferreira, & Rodriguez, 2000; Huete et al.,
2000, 2002) to detect changes in leaf area compared to the conventional
NDVI. EVI was originally designed to account for effects of soil back-
ground reflectance using empirical correction factors adjusted for
individual soil types (Liu & Huete, 1985). The index has since been
implemented with a constant set of parameters across large areas
(Huete, Justice, & v. Leeuwen, 1999). The EVI formulation provides
different weights for reflective bands, thereby changing the shape of
the relationship between leaf area and vegetation index. Nonetheless,
sensitivity with respect to changes in vegetation still depends on the
ability of individual bands to detect these changes. The increased sensi-
tivity of EVI to bidirectional reflectance effects originates from the
constant (empirical) weight factors present in the index (Moura,
Galvão, dos Santos, Roberts, & Breunig, 2012): In case of a normalized
difference index, such as NDVI, changes in forward and backscattering
are less pronounced, particularly in dense vegetation (Hu et al., 2007),
because changes in one band are expressed relative to changes in the
other (Kaufmann et al., 2000). However, the directional effects in EVI
are dominated by the absolute changes in the NIR band (because of
the higher weight in the denominator compared to the nominator).
The canopy and leaf level scattering in NIR is much larger than scatter-
ing in the visible part of the spectrum, because the reflectivity is higher
in this part of the spectrum. As a result, the use of EVI for detecting sea-
sonal changes seems questionable, unless normalized to common sun-
view geometry (Fig. 10 b and c). No BRDF correction is available from
daily MOD/MYD09 surface reflectance, a normalized MOD/MYD09
product was therefore not presented in this study. Improvement in
EVI would be expected for both products; the objective of including at
least one BRDF corrected EVI in this study was to show that removal
of directional effects is needed when using EVI measurements for
change detection.

While not explicitly investigated in this study, a two band EVI (Jiang,
Huete, Didan, & Miura, 2008) should be subject to the same limitations
because of its mathematical formulation that does not normalize the
bands with respect to each other. While this study has provided statis-
tical insights, reconciliation of existing discrepancies between remotely
sensing observations, ground and tower-based studies of ecosystem
fluxes has been addressed separately (Hilker et al., 2014) and will
need to be addressed further in future research. The objective here
was solely to provide a statistical basis for potentials and limitations to
detect vegetation change in the Amazon from MODIS.

5. Conclusion

The presented study provides a straightforward statistical basis for
the recent discussion on changes in tropical vegetation observed from
remote sensing indices. Our results show that using a the conventional
MOD09/MYD09 product, changes in leaf area would have to exceed
2 m−2 m−2 across most of the Amazon basin, which corresponds to
variability of NDVI (EVI) of about 25%, before these changes can be reli-
ably detected. For composited observations, this result improved to
about 10% change for NDVI, but when using EVI, directional effects
prevented observation of small changes in surface properties. MAIAC
atmospheric correction and cloud screening can increase the perfor-
mance of daily MODIS observations, reducing the amount of observable
change to about 0.6–0.8 LAI units and to about 0.4 LAI units for
composited analysis of seasonality. This improvement may help over-
come some of the limitations currently faced by the scientific communi-
ty and help reconcile existing discrepancies between remotely sensing
observations and ground and tower-based studies of ecosystem fluxes.
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