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Estimating Absence 

1. INTRODUCTION 

1.1 The Problem to be Addressed 

Suppose one is interested in absence of a class of objects in a finite set of objects. 

We will refer to the finite set of objects as a universe. A finite population is then a 

function on the universe that assigns a value to each object in the universe. These 

population values provide the basis for identifying the class of objects that is the focus 

of this investigation. As an example of a class of objects, consider a specific species of 

fish among the fish of a single pool. For this example the universe is the set of fish in 

the pool; the population is categorical, assigning fish to specific species; and the class 

of interest is a particular species. As a second example, consider a quantitative attribute 

such as pH that was measured at a specific time in the center of each lake in a finite set 

of lakes. For this example the universe is the finite set of lakes; the population is 

continuous, assigning a pH value to each lake; and let the class of interest he defined by 

values of pH that are in a specific range, say, less than 5. 

These two examples of this problem will be considered in subsequent chapters: 

(a) absence of a species and (b) absence in relation to a threshold. Absence of a species 

will be addressed in Chapter 2, and absence in relation to a threshold will be addressed 

in Chapters 3 and 4. 



1.2 Absence of a Species 

In order to assess absence in the universe of the class of objects, a probability 

sample of objects will be selected from the universe. It will be given that the class of 

objects is absent in the sample. Our goal may be described as follows: given absence of 

the class in the probability sample, we want to infer presence or absence of the class of 

objects in the universe. As will be demonstrated, inferring absence of a class of objects 

in a universe from a sample of objects poses certain difficulties. 

We will express inferred absence as a probability. If the class of objects is not 

observed in the sample, then we propose to assess absence as a probability that the class 

of objects is absent given absence in the sample. This probability will be assessed as a 

property of the sampling design; the greater the effort that was expended in searching 

for the class, the greater the probability of absence given that none was found. 

Furthermore, the probability is clearly to be interpreted as a degree of belief. 

Interpretation of probability as a measure that summarizes the strength of conviction of 

an observer regarding occurrence of an event is supported by extensive probability theory 

(see de Finetti, 1937; Savage, 1954); further discussion regarding degree of belief is 

provided in Section 1.4. 

Note that this problem does not have a parameter in the usual sense of that term. 

Since the problem does not have an identifiable parameter, the inferred probability should 

not be interpreted as an estimator in the usual sense. Rather, the probability is an 

assessment (assessed value) of our degree of belief that the class of objects is absent in 
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the universe given that the class is absent in the sample and the sampling effort. Thus, 

as will be developed, the degree of belief that the class is absent in the universe given 

absence in the sample is a property of the sampling design and the observation protocol. 

Consider, for example, a simple random sample of the objects in the universe. Given 

absence of the class in the sample, we will find that the appropriate degree of belief that 

the class is absent in the universe is given by the sampling fraction. The foundation of 

this rule will be a major development of this thesis. 

Absence of a fish species in a single pool in a stream reach follows the general 

formulation outlined above. Although a finite sampling approach could be used for this 

problem, from a practical viewpoint it is extremely difficult to obtain a probability sample 

of fish in the pool. Therefore, a modeled approach using an explicit sampling protocol 

will be used. Given that no individuals of the species are observed during sampling, the 

inference goal is to assess the probability that the species is absent in the pool. 

Absence of a species also will be considered in terms of absence of a specific 

species of fish in a stream reach, where the reach is composed of a finite set of pools, 

each of which could contain the species. In order to assess absence in the reach, the 

probability of absence will be developed at two levels: (a) the probability of absence of 

the species in the set of pools in the reach given absence in a sample of pools, and (b) 

the probability of absence of the species in an individual sampled pool given that no 

individuals of the species were observed in the pool. The probability of absence 
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developed for those two levels will be used to assess the probability of absence in the 

reach given that none were observed. 

1.3 Absence in Relation to a Threshold 

Absence in relation to a threshold will consider absence of objects in a universe 

that belong to a class of objects defined by values of a quantitative attribute in a specific 

range, say, less than a low threshold. Specifically, this example will consider a universe 

composed of a finite set of lakes, where the class of objects will be identified via values 

of a chemical attribute. For this example a finite sampling approach will again be used. 

If the threshold value is less than the initial ordered value in the finite population, this 

example involves a class that is absent, and one can take an approach identical to the 

approach taken in Chapter 2 for absence of a species. The general case, however, poses 

other issues that are not identifiable as inferring absence of a species. Specifically, these 

issues are associated with inference with respect to the extreme lower tail of the 

distribution function of the population. 

Two approaches will be considered for inference with respect to the lower tail of 

the population distribution function: (a) inference in terms of the initial ordered value in 

the finite population, and (b) inference relative to the distribution function evaluated at 

the threshold value. The first approach will be addressed in Chapter 3, and the second 

approach will be addressed in Chapter 4. 
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1.4 Degree of Belief 

As previously mentioned, the assessed probability that the target class is absent 

in the universe will be interpreted as a degree of belief in its absence. That is, degree of 

belief will serve as the interpretational basis of the probability measure. This section will 

provide some discussion pertaining to the concept of degree of belief. It will be given 

that the probability measures being used in this development obey the group of axioms 

codified by Kolmogorov (1933). 

Two viewpoints may be employed as a means of providing a basis for 

interpretation of probability. These viewpoints are usually referenced as the objective and 

subjective viewpoints. 

First, consider the objective viewpoint for interpretation of probability. Although 

this viewpoint is often developed by means of a relative frequency argument, a stochastic 

process is the appropriate orientation for the problem under consideration. That is, one 

would proceed as if presence or absence of the class of objects in the universe is the 

result of an underlying dynamic stochastic process. The difficulty with this approach is 

that, rather than being interested in the probability of an "absent" outcome by the 

stochastic process, we are interested in an assessment of the probability that class of 

objects is absent in the realized population that exists at the time of sampling. 

The subjective viewpoint for interpretation of probability received major 

contributions by de Finetti (1937) and Savage (1954), among others. For this case 
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probability is interpreted from the viewpoint of summarizing the degree of belief (strength 

of conviction) of a rational observer in regard to the likelihood of occurrence of a 

particular event. Degree of belief will be taken to be synonymous with the term 

subjective probability. For the problem being considered, the subjective viewpoint 

implies that the assessed probability value summarizes our degree of belief that the class 

is absent in the universe given absence in the sample. 

We will derive the probability of absence from a fiducial probability distribution, 

as introduced by Fisher (1930). It is clear that Fisher believed greater evidence was 

provided by the likelihood function than simply reported by the maximum likelihood 

estimate. Also, note that the dictionary definition of fiducial includes "founded on faith 

or trust". Thus, we will assess the probability of absence of the class of objects in the 

universe given absence in the sample as a fiducial probability that will be interpreted as 

a degree of belief. 
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2. ABSENCE OF A SPECIES
 

2.1 Introduction 

If the class is observed in the sample, then presence of the class in the universe 

is established unambiguously. Conversely, failing to observe the class does not establish 

absence of the class in the universe unless the sample included every object in the 

universe. For the example of fish in a pool, if every fish in the pool was observed and 

the species was not present, then absence of the species is unambiguously established in 

the pool. If every fish in the pool was not observed, then failing to observe an individual 

belonging to the species does not establish absence of the species in the pool. 

This chapter will address absence of a species in terms of absence of a specific 

species of fish in a stream reach, with assessment via a sample from a universe composed 

of the set of pools contained in the reach. Thus, it will be necessary to determine the 

probability of absence at two levels. First, the probability of absence in the universe of 

pools in the reach given absence in a sample of pools will be developed. Second, the 

probability of absence in an individual sampled pool given that no individuals of the 

species were observed in the pool will be developed. The estimated probability of 

absence in the reach given that none were observed will then be developed using the 

probability of absence in the universe of pools given absence in a sample of pools and 

the probability of absence for each sampled pool given that no individuals of the species 

were observed in that pool. 
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Absence of a species brings to mind the related concept of species extinction. 

Any discussion of species extinction in the context of this thesis implies that the universe 

constitutes the entire domain for the species and that the species was known to have been 

present in the domain at some time in the past. If the universe of objects does not 

constitute the entire domain of the species, then local extirpation of a species rather than 

species extinction is the relevant issue. In the latter case, the appropriate frame of 

reference is local, i.e., absence of the species is only applicable to the particular universe 

of objects from which the sample was taken. For example absence of a fish species in 

a lake would constitute local extirpation rather than species extinction, if the species 

previously had existed in that lake, except in the case where the lake encompasses the 

entire domain for the species. Neither extinction nor extirpation is a subject of this thesis, 

however, and attention will be focused simply on presence or absence of the class of 

objects in a specific universe at a specific time. 

2.2 Absence of a Species in the Universe of Pools in a Reach 

Investigation of absence of a species of fish in the universe of pools in a reach 

may be modelled as follows. Recall that a finite sampling approach will be applied to 

this problem, where the sample of pools will be a simple random sample of the pools in 

the reach. Let N equal the number of pools in the reach, n equal the number of pools in 

the sample, K equal the number of pools in the reach with the species present, and X 

equal the number of pools in the sample with the species present. Note that N and n are 

fixed known quantities and K is an unknown parameter. Then, for a given value of K, 
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X may be identified as a hypergeometric random variable. The probability of a particular 

value of X given K is furnished by: 

P(X =x I K) 

Thus, the likelihood of a particular value of K given the observed value of X is provided 

by: 

L(K=k I x) = P(X=x I k) 

Note that the value of interest for X is zero, i.e., the species was absent from the sample 

of pools. If X was greater than zero, then the species was present in the sample. 

Conventional inference tools can be applied to estimation of K, the number of 

pools in the reach with the species present. As an initial step, one could calculate a point 

estimate for K. The maximum likelihood estimator (MLE) for K is the integer value of 

K that maximizes the likelihood for the observed value of X, i.e., the integer, say d, that 

maximizes P(X=x K=d). Since P(X =0 j K = 0) is equal to one and 

P(X = 0 I K = k)is less than one for k greater than zero, the MLE for K is zero when X 

is equal to zero, i.e., for observed absence in the sample of pools, the MLE supports the 

inference that the species is absent in the universe of pools. 
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As a second step, one could calculate an upper confidence bound for K, U(x). 

Given X=x, a 100(1-a) % upper confidence bound for K is given by: 

U (x) = the largest integer value of K such that P(X-x11()> a 

When X=0, the upper confidence bound is given by: 

U (0) = the largest integer value of K such that P(X=011()> a 

Consider the case where N equals 100 and n equals 20. A 95% upper confidence bound 

for K is 12, which is a value that does not well support the inference that the species is 

absent in the universe of pools. Although the confidence bound can be made closer to 

zero by choosing a larger value of a or using a larger sample size, the bound will remain 

greater than zero for typical values of a and a realistic sample size. The conclusion to 

be reached here is that conventional estimation does not yield useful inference with 

respect to absence. 

In light of these considerations, it would be useful to develop other tools to apply 

to this inference problem. One approach is to determine the odds that the species is 

absent in the universe of pools. Given observed absence of the species in the sample, the 

odds may be obtained by dividing the likelihood that K equals zero by' the likelihood that 

K is greater than zero. Recall that L(K=OIX=0) is equal to one. Thus, the odds that 

the species is absent from the universe of pools in the reach given absence in the sample 

is provided by the following expression: 
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L(K= 01X= 0) 1 

N-n
E L(K=k1X= 0) E L(K=k1 X= 0)
k>0 

k=1 

The odds can be converted to a probability by dividing the odds by one plus the odds. 

Let 1J equal the probability that the species is absent from the universe of pools given 

absence in the sample of pools. Then 14 is assessed as follows: 

1 

N -n 

E L(K=k1X=0) 
k =0 

Some discussion regarding this probability is warranted. Note that is a normed111 

likelihood, i.e., the likelihood in the numerator for K equal to zero is divided by the sum 

of the likelihoods for the complete set of allowable values of K.. We think of 111 as a 

fiducial probability that will be interpreted as a degree of belief. Given that the only 

information available regarding K is observed absence of the species in the sample, 11J 

summarizes our degree of belief that the species is absent in the universe of pools. The 

same result could be obtained by using a uniform prior probability distribution for K in 

Bayes Theorem. We prefer, however, the fiducial probability viewpoint. 

Two cases were investigated to explore the behavior of this assessment of the 

probability that the species is absent in the universe of pools given absence in the sample. 

For the first case n was set equal to 10, and 11J was calculated for the following range of 

values of N: 120, 30, 40, 50, 60, 70, SO, 90, 1001. For the second case N was set equal 
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to 100, and iJr was calculated for the following range of values of n: {5, 10, 15, 20, 25, 

30, 35, 40, 45, 50 }. Results are presented in Table 1, where the first case is given on the 

left half of the table and the second case is given on the right half of the table. Several 

patterns can be seen in Table 1. First, for a fixed value of n, the magnitude of 4i 

decreases as N increases. Second, for a fixed value of N, the magnitude of 111 increases 

as n increases. Lastly, and most importantly, the magnitude of tir is always approximately 

ll
equal to the sampling fraction, , regardless of the values of n and N. In order to 

visualize that fact, the value of the sampling fraction is provided in Table 1 for each of 

the cases considered. An exposition of the logic that establishes that is always 

approximately equal to the sampling fraction is provided in the Appendix; the exact 

n + 1 
value of iJ is given by: . Thus, whenever the value of n is appreciably greater

N + 1 

than one, the value of will be approximately equal to the sampling fraction. 

Evidence that 4i is approximately equal to the sampling fraction comes also from 

an additional source. Wright (1990) investigated upper confidence bounds on the number 

of defective units in a simple random sample from a finite universe of units and 

established upper bounds on the confidence coefficients associated with fixed-sized upper 

confidence bounds. For the specific case where the sample contained zero defective units, 

Wright showed that the maximum value for the confidence coefficient associated with an 

upper confidence bound of zero is equal to the sampling fraction. Further discussion of 

Wright's result is provided in the next section. 
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Table 1. Values of ti.r, the probability of absence of a fish species in the universe of 
pools given absence in the sample of pools, where N is the number of pools in the reach, 
n is the sample size, and n/N is the sampling fraction. 

N = 100 

n_ ll n/N 

20 0.524 0.500 5 0.059 0.050 

30 0.355 0.333 10 0.109 0.100 

40 0.268 0.250 15 0.158 0.150 

50 0.216 0.200 20 0.208 0.200 

60 0.180 0.167 25 0.257 0.250 

70 0.155 0.143 30 0.307 0.300 

80 0.136 0.125 35 0.356 0.350 

90 0.121 0.111 40 0.406 0.400 

100 0.109 0.100 45 0.455 0.450 

110 0.099 0.091 50 0.505 0.500 

It is essential to comprehend that the result derived for the probability that the 

species is absent from the universe of pools given absence in the sample, IV, and Wright's 

result are equivalent. That is, the two cases supply independent evidence in support of 

using the sampling fraction to represent the degree of belief that the species is absent 

from the universe of pools. Therefore, for simple random sampling, we conclude that the 

sampling fraction summarizes the degree of belief that the species is absent in the 

universe given absence in the sample. Although it is tempting to conclude that absence 

of the species in the universe is established given absence in the sample, that conclusion 

is not well supported by this result unless the sampling fraction is appreciably large. 
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Moreover, as we will later discuss, a certain conclusion that a class of objects is absent 

from a finite set of objects requires exhaustive sampling. 

2.3 General Result 

A general result now can be stated regarding the probability of absence in the 

universe of objects given absence in a sample from the universe. First, we will revisit 

the result of Wright (1990). Let K be the number of defective units in universe and X 

equal the number of defective units in a simple random sample. For the general case 

Wright established that the maximum value of the confidence coefficient, 1-a, for an 

upper confidence bound equivalent to the observed value of X is given by: 

max(1-n) = 1 K=x+1) 

where x is the observed value of X. When X=0, the maximum value of the confidence 

coefficient for an upper bound equal to zero is given by: 

max(1. = 1 P(X-x I K=x+1) 

=1 P(X=0 I K=1) 

P(X=1 I K =1) 

Couched in terms of absence of a class of objects, P(X=1 I K=1) is the probability of 

observing presence in the sample given that the universe contains a single object 

belonging to the class of objects. For probability sampling the inclusion probability is 

the probability that a specific object in the universe occurs in a sample. For simple 
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random sampling the inclusion probability for an object is the sampling fraction, and thus 

P(X =1 I K =1) is equal to the sampling fraction for simple random sampling. Thus, 

tit is approximately equal to P(X--- 1 K = 1) for the simple random sampling model. 

2.3.1 Another Model for Sampling 

Suppose that X is distributed such that P(X = 0 K = k) = &k, where is the 

complement of the inclusion probability, and k = 0, 1, , co. It will be given that the 

inclusion probability for each object in the universe is constant. For this sampling model 

let ( equal the probability of absence of the class of objects in the universe given absence 

of the class in the sample. Using the likelihood approach discussed in Section 2.2, C is 

assessed by: 

r 

k =C 

=1 

The result follows from the fact that the sum of the likelihood values in the denominator 

takes the form of an infinite geometric series. For the distribution being discussed, 

P(X = 1 K = 1) is equal to 1 Thus, ( is exactly equal to P(X= 1 j K = 1) for this 

distribution. Therefore, the probability that the class of objects is absent in the universe 

given absence of the class in the sample is exactly equal to P(X= 1 K = 1) for the 
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distribution presented in this section and is approximately equal to P(X = 1 K = 1) for 

the hypergeometric distribution. 

2.3.2 Statement of the General Result 

The results presented in the preceding sections allow the conclusion that the 

assessed probability of absence of the class of objects in the universe given absence of 

the class in the sample is either exactly or approximately equal to the probability of 

observing a single object from the class of objects given the protocol for observation, 

where probability is interpreted as a degree of belief. As discussed previously in this 

chapter, when the sampling design is simple random sampling, this probability is 

approximately equal to the sampling fraction. 

2.4 Absence of a Species in an individual Pool in a Reach 

Pools will be surveyed using an explicit pool sampling protocol. For example the 

survey procedure could involve an individual wearing snorkeling equipment making one 

or more sampling passes through the pool and recording the number of fish belonging to 

the class observed during each sampling pass. The pool will be surveyed in such a 

manner that each fish in the pool has equal probability of being observed during a 

sampling pass and the several sampling passes are assumed independent. Let m equal the 

number of sampling passes and p equal the probability of observing any individual fish 

in a single sampling pass. Then 1- p is the probability of not observing any individual 
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fish in a single sampling pass, (1 p) m is probability of not observing any 

individual fish in m passes, and 1 ( 1 p) m is the probability of observing any 

individual fish in m passes. That is, 1 (1 p) is the inclusion probability for an 

individual fish. Let 0 equal the probability of absence (no fish in the pool) given that 

none were observed in the pool by die survey protocol. Using the general result that was 

stated in Section 2.3.2, 0 is assessed by 1 (1 p) m. We note that this sampling model 

does not require knowledge of the number of objects in the universe, as does the model 

based on a simple random sample. Although the model does require knowledge of the 

probability of observing any individual fish in a sampling pass, an estimate of that 

probability often can be obtained from the sampling procedure via maximum likelihood 

estimation. In other cases it may be necessary to use hypothetical values of the 

observation probability. 

The probability that the species is absent from the pool also can be assessed using 

the likelihood approach employed for the simple random sampling model discussed 

previously. Let D equal the hypothetical, maximum number of individuals of the species 

in the pool and X equal the observed number of individuals in the sample. Regarding D, 

note that a finite pool cannot contain an infinite number of fish of finite size. Then the 

probability of absence in the pool given that none were observed during sampling is: 
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1P(X=0 I K=0) 1 ((1 -p)m)D+1
0 

1 1 p)mP(X=0 I 1(=k) ((1 -p)111)k 
k=0 k=0 

=(1 (1 -p)m ) + R 1 (1 -p)m 

Given the model employed, it is clear in this derivation that 0 is approximately equal to 

the inclusion probability for an individual fish. 

Values of 0 are provided in Table 2 for a range of values of m and p. It is seen 

that 0, the probability of absence in an individual pool given that none were observed by 

the survey protocol, typically is much greater than ill, the probability of absence in the 

universe of pools given absence in the sample of pools (see Table 1). For the range of 

observation probabilities, p, given in Table 2, 9 can be made sufficiently large, e.g., 

greater than 0.97, by appropriate choice of m, the number of sampling passes in the pool. 

Whereas 0- is bounded by the proportion of pools in the universe that are included in the 

sample, the same restriction does not apply to 0. 

2.5 Absence of a Species in a Reach 

The operational survey of a reach involves two stages of "error" in concluding 

absence of a species. Specifically, one may miss the pools containing the species in 

selection of the sample of pools, or one may miss the species in surveying a selected 
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Table 2. Values of 8, the probability of absence of a fish species in a pool given that 
none were observed, where m equals the number of sampling passes and p equals the 
probability of observing any individual fish during a sampling pass. 

m 

0.5 0.6 0.7 0.8 0.9 

1 0.500 0.600 0.700 0.800 0.900 

2 0.750 0.840 0.910 0.960 0.990 

3 0.875 0.936 0.973 0.992 0.9990 

4 0.938 0.974 0.992 0.998 0.9999 

5 0.969 0.990 0.998 0.9997 0.99999 

6 0.984 0.996 0.999 0.9999 0.999999 

pool. Suppose that a simple random sample of n pools from the universe of N pools in 

the reach was selected in order to infer presence or absence of the species in the reach. 

Let S represent the set of sampled pools, and for u ES let 0 be the assessed value of 

the probability of absence given that none were observed for pool u, where I indicates the 

first tier of sampling, within a pool. Assuming that the same sampling protocol was used 

in each sampled pool, then 10 will equal 10 for each pool in the sample. Since sampling 

was conducted independently for each sampled pool, the value of the probability that the 

species is absent from the sample of pools given that none were observed is furnished by: 

10 Ion
'o 

u ES u u ES 
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Then, let () equal the probability that the species is absent in the reach given that none 

were observed and 110 equal the probability of absence of the species in the universe of 

pools in the reach given absence in the sample of pools, where II indicates the second tier 

of sampling. Then 0 is assessed by the product of the probability of absence of the 

uspecies in the sample of pools given that none were observed and O. Thus, 0 is given 

by: 

(u ES
 

Ion 110
 
Assuming that 10 is constant across pools 

n 
(1 (1-p)m)n Assuming that p is constant across pools and fish 

Even though the value of 10 can be made close to one, 0 will still be limited by the 

value of 110, e.g., the sampling fraction, for simple random sampling. In order for 

the degree of belief that the species is absent in the reach to be high, an exhaustive 

ionsampling effort (n Nj is required. Note, however, that will decrease as n 

approaches N unless 0 is also very close to one, i.e., unless the sampling effort within 

the selected pools is also exhaustive. Thus, there is a tradeoff between m and n in 

relation to 0. 

To explore this tradeoff, Table 3 provides values of 0 for several choices of m 

and n, where the product of m and n is approximately equal to 100 and N is fixed at 100. 

As would be expected, for the largest values of m, 0 is controlled solely by the value of 

110. 
In Table 3 for each value of p, the maximum value of 0 is underlined, from which 
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Table 3. Values of (), the probability of absence of a fish species in a stream reach given 
that none were observed, where n equals the number of pools in the sample, m equals the 
number of sampling passes per selected pool, p equals the probability of observing any 
individual fish during a sampling pass, and N, the number of pools in the reach, equals 
100. For each value of p, the largest value of 0 is underlined. 

0.5 0.6 0.7 0.8 0.9 

5 20 5.00e-02 5.00e-02 5.00e-02 5.00e-02 5.00e-02 

6 17 6.00e-02 6.00e-02 6.00e-02 6.00e-02 6.00e-02 

7 14 7.00e-02 7.00e-02 7.00e-02 7.00e-02 7.00e-02 

8 12 7.98e-02 8.00e-02 8.00e-02 8.00e-02 8.00e-02 

9 11 8.96e-02 9.00e-02 9.00e-02 9.00e-02 9.00e-02 

10 10 9.90e-02 9.99e-02 1.00e-01 1.00e-01 1.00e-01 

11 9 1.08e-01 1.10e-01 1.10e-01 1.10e-01 1.10e-01 

12 8 1.14e-01 1.19e--01 1.20e-01 1.20e-01 1.20e-01 

14 7 1.25e-01 1.37e-01 1.40e-01 1.40e-01 1.40e-01 

17 6 1.30e-01 .59e-01 1.68e-01 1.70e-01 1.70e-01 

20 5 1.06e-01 1.63e-01 1.91 e -01 1.99e-01 2.00e-01 

25 4 4.98e-02 1.31e-01 2.04e-01 2.40e-01 2.49e-01 

33 3 4.03e-03 3.72e-02 1.34e-01 2.53e-01 3.19e-01 

50 2 2.83e-07 8.18e-05 4.48e-03 6.49e-02 3.03e-01 

100 1 7.89e-31 6.53e -23 3.23e-16 2.04e-10 2.66e-05 

a clear pattern can be seen. As p increases, the maximum value of 0 occurs for a larger 

value of n and a smaller value of in, i.e., for a fixed level of effort, as p increases, the 

degree of belief that the species is absent in the reach is maximized by surveying more 

pools and spending less time surveying each selected pool. 



2.6 Generalization 

This section will address means by which the results that have been presented in 

this chapter could be generalized. To begin, suppose that one does not know, or have an 

estimate of, the number of objects in the universe. As an example, consider inference 

regarding presence or absence of a species from a non-mobile resource such as trees in 

a forest. One could divide the forest into N quadrats of equal size and select a simple 

random sample of n quadrats. Then, as established by previous results, the probability 

that the species is absent from the forest given absence in the sample is assessed by the 

sampling fraction of quadrats. Application to a mobile resource will require certain 

assumptions regarding the interaction of the observer and the resource. 

Suppose that one is interested in absence of a species from a mobile resource and 

cannot divide the domain into physical sampling units. For example, in sampling a 

population of fish in a lake, quadrats are not feasible as units for counting fish. However, 

a measure analogous to the sampling fraction of quadrats could be employed to assess the 

probability of absence. As an example, one could define effective effort as the effort 

expended in obtaining the sample relative to the effort that would be expended in 

conducting a complete census of the fish in the lake. The value of effective effort then 

would be employed in assessing the probability of absence of the species. 
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3. ABSENCE IN RELATION TO A THRESHOLD I
 

3.1 Introduction 

This chapter and the next chapter will address absence of objects in a universe that 

belong to a class of objects defined by values of a quantitative attribute in a specific 

range, say, less than a low threshold. As an example of this type of problem, consider 

a universe composed of a finite set of lakes. Suppose that a sample of lakes was selected 

from the universe, and a chemical attribute was measured for each lake in the sample. 

Given that none of the sample values of the chemical attribute are less than a threshold 

value, the inference goal is to assess whether any of the lakes in the universe have values 

of the chemical attribute that are less than the threshold value. Finally, note that 

methodology developed for inference regarding a low threshold can be applied to 

inference regarding a high threshold, so that it suffices to study only the low threshold. 

Two inferential approaches can be employed for this problem. The first approach 

will be addressed in this chapter, and the second approach will be addressed in Chapter 

4. For the first approach we will investigate the initial ordered value in the population, 

e.g., the smallest value of the chemical attribute for the lakes in the universe. In Chapter 

4 the estimated distribution function will be evaluated at the threshold value. 

Let a reference the initial ordered value in the population. Then, estimates of a, 

both point estimates and interval estimates, can be compared to the threshold value in 

order to provide information regarding whether any lakes in the universe possess values 
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of the attribute that are less than the threshold value. Inference regarding a will employ 

two types of estimation methodology: (1) the jackknife, the bootstrap, and sample 

spacings and (2) extreme value theory, 

Prior to examining inference about a, some comments regarding the ordered 

population values will be provided. For a finite universe, such as a set of lakes, the 

ordered population values represent a function defined on the population. That is, the 

ordered population values are a fixed set of quantities that characterize the finite 

population. Note the analogy between the ordered population values and the sample order 

statistics, i.e., the ordered values in a sample. As the name implies, however, the sample 

order statistics are indeed statistics, i.e., functions that are defined on a sample. Although 

the ordered population values are analogous to sample order statistics, it is imperative to 

remember that the ordered population values are not statistics. 

3.2 Inference Using the Jackknife, Bootstrap. and Sample Spacings 

In this section methodology based on application of the first order jackknife, the 

bootstrap, and sample spacings will be investigated for estimation of a. Regarding the 

jackknife and bootstrap, estimators developed in this section represent standard application 

of that methodology. Further information about the jackknife and bootstrap is available 

in Efron (1982). For sample spacings, existing theory is utilized to develop a new 

estimator of a. Further information about sample spacings is available in Pyke (1965). 
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Ensuing development will assume that a simple random sample of lakes has been 

obtained from the universe of lakes. Again, let N equal the total number of lakes in the 

universe, and n equal the sample size. Consideration will be given to procedures relating 

to the maximum likelihood estimator (MLE) of a, i.e., the first order statistic in the 

sample. Analysis will utilize various configurations of the Uniform and Normal 

distributions. 

3.2.1 Uniform Distribution 

In this section estimators of the initial ordered value in a finite population, i.e., 

a, will be developed using theory applicable to the infinite Uniform(a, p) distribution, 

where a is the lower bound and p is the upper bound of the distribution. Alpha is being 

used as the lower bound for the Uniform distribution in order to emphasize the connection 

with the initial ordered value in a finite population. Theory for the estimators will be 

illustrated using the specific example of a sample of size 16 selected from a Uniform(80, 

120) distribution. Results from simulations examining performance of the estimators will 

then be presented. The simulations will utilize a fixed finite population of size 1,000 

selected from the Uniform distribution. 

Assume that y1, , v 2, Yn are independent and identically distributed (lid) 

Uniforrn(a, (3) random variables. Let yo), y(2), , y(n) be the associated sample order 

statistics. Then the MLE of a, timLE , and the expected value of awl are given by: 

a = y(1)
MLE 

(n -a)
E[ 6c = a + 

MLE (n + 1) 
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Thus, the bias of a is given by:
MLE 

(n-a)Efei -a]
MLE (n +1) 

For the specific example the expected value of iiimLE is 82.35, and the bias of awl is 

2.35. 

The jackknife estimator of the bias of eimLE and its expected value are given by: 

( n-1)
Jackknife Estimator of Bias = Y(2) Y(1))n 

(n-1)(13 -a)
E[Jackknife Estimator of Bias] 

n(n+1) 

Then, the jackknife estimator of ct, which will be referenced as Jackknife, aj, and the 

expected value of a are given by: 

(n-1)
= a -Y(1))J MLE n (Y(2) 

(13-a)E[iij] = a + 
n(n +1) 

Thus, the bias of aj is given by: 

(-a)E[et -a] i3 

J n(n+1) 
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It is seen that bias of a is smaller than the bias of &MLE by a factor of n-1. For the 

specific example the expected value of the jackknife estimator of the bias of iiiMLE is 

2.21, the expected value of a is 80.15, and the bias of a is 0.15. It is clear that the 

jackknife estimator performs very well in terms of bias for the case of a Uniform 

distribution. The jackknife procedure also provides an estimator of the standard error of 

a which is given by:
MLE 

(n-1)
Jackknife Standard Error Estimator 

Note that this estimator is the same as the jackknife estimator of the bias of aMLE. 

The bootstrap procedure may be described as follows. Given a set of sample 

values of size n, a large number of bootstrap samples are created. Each bootstrap sample 

consists of a random sample with replacement from the n original sample values. 

Typically, the bootstrap sample is also of size n. For each bootstrap sample an estimate 

of the statistic calculated from the original sample is determined. The bootstrap estimator 

consists of the mean of the estimates from the set of bootstrap samples. For estimating 

a the estimate determined for each bootstrap sample is the smallest value in the bootstrap 

sample. The expected value of the bootstrap estimator of a, 6:B' for any distribution is 

given by: 

n 
n nn-i 

1=1 n n 
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where the terms in the summation are the product of the expected value of an order 

statistic from the original sample and the probability that the order statistic will be the 

smallest value in a bootstrap sample. For the specific case of a Uniform(a, 13) 

distribution, the expected value of the bootstrap estimator of a is given by: 

n a + 1(13-(x) n-i+1 n -1
E[Bootstrap Estimator of a] .E 

(n+1)1=1 

Note that the bootstrap procedure also provides an estimator of the standard error of 

which consists of the standard deviation of the estimates from the set of bootstrap
aMLE' 

samples. 

An estimator of the bias of a can be obtained from the bootstrap procedure
MLE 

and consists of the bootstrap estimator of oc, a , minus the maximum likelihood 

estimator (see Efron, 1982). The bootstrap estimator of bias can then be subtracted from 
MLE 

to produce a bias-adjusted estimator, which will be referenced as Bootstrap I, a . Note 

that the value of aBlis given by: 2 amLE a8. For the specific example the expected 

value of el is 8158, the expected value of the bootstrap estimator of the bias of a 
MLE 

is 1.23, the expected value of eiB is 81.12, and the bias of & is 1.12, which is close 

to an order of magnitude greater than the bias of aj. 
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Sample spacings are the differences between successive sample order statistics. 

A sample of size n thus defines a set of size n-1 sample spacings. For a Uniform(a, 13) 

distribution the expected value of the sample spacings, and therefore the expected value 

( P cc)of the average of the sample spacings, is given by: (see Pyke, 1965). Note
(n + 1) 

that this quantity was earlier shown to be the bias of amLE. Let s be the average of the 

sample spacings. A fourth estimator of a, which will be referenced as Average Spacing, 

as' can be defined by: as S. By construction as is unbiased for a.
aMLE 

A fifth estimator of a, which will be referenced as Bootstrap II, a was
B2' 

obtained by applying the bootstrap procedure to et This bootstrap estimator wass 

included in order to estimate the standard error of as. Note that is also unbiasedaB2 

for a. 

Simulation results for the estimators based on the Uniform distribution are 

provided in Table 4. A finite population was created by selecting 1,000 values from the 

Uniform(80, 120) distribution, and samples were selected from this fixed finite population. 

The value of a for the selected finite population was 80.05. The simulations consisted 

of 1,000 replications, where a simple random sample of size 16 was selected for each 

replication and 500 bootstrap samples per replication were used for the two bootstrap 

estimators. The means, standard deviations, and root mean square errors are presented 

in the Table 4 for the estimates and the estimated standard errors. Note that the standard 

deviation of the estimates for a and as assess the standard errors for those 
MLE 
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Table 4. Means, standard deviations (SD) and root mean square errors (RMSE) for 
estimates and estimated standard errors of the initial ordered value in a finite population 
of size 1,000 that was selected from the Uniform distribution, where 1,000 replications 
were used in the simulations and the initial ordered value in the population was 80.05. 

Procedure Estimate Est. Standard Error 

Mean SD RMSE Mean SD RMSE 

MLE 82.36 2.11 3.13 

Jackknife 80.15 3.06 3.06 2.20 2.06 2.06 

Bootstrap I 81.14 2.34 2.58 2.07 1.04 1.04 

Avg. Spacing 80.01 2.25 2.25 

Bootstrap II 80.18 2.24 2.24 2.09 1.04 1.05 

estimators. Regarding the estimates, as has the smallest bias, although as and 
B2 

also performed well in term of bias. In terms of root mean square error of the estimates, as 

and a performed better than the other estimators. Regarding bias of the estimated
B2 

standard errors, a and a all had minimal bias. The root mean square error
B1 B2' 

of the estimated standard error was much larger for a in comparison to a or a
B1 B2. 

Overall as performed best among the estimators for the Uniform distribution. 

3.2.2 Normal Distribution 

In this section the estimators that were developed for the Uniform distribution will 

be applied to data from the Normal distribution. Performance of the estimators will be 

examined using simulations that utilized a fixed finite population of size 1,000 selected 
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from the Normal distribution with a mean of 00 and a standard deviation of 10. The 

value of a for the selected finite population was 65.64. Note that a parameter analogous 

to a does not exist for the infinite Normal distribution. 

Simulation results are provided in Table 5. The simulations consisted of 1,000 

replicate samples of size 16 using 500 bootstrap samples per replication. Although 

performance of the estimators was similar to that observed for the Uniform distribution, 

bias was a more severe problem for the Normal distribution. Although &j had the least 

bias of the estimates, the amount of bias was still substantial. The jackknife estimator 

also had the smallest root mean square error of the estimators of a. Root mean square 

error of the estimated standard errors was smallest for et followed by and 
B 1 B 2 &J 

The considerable bias of the estimates of a, however, indicates that these estimators 

based on the infinite Uniform distribution would not be very valuable for estimating the 

initial ordered value in a finite population selected from the Normal distribution. 

3.3 Extreme Value Theory 

In this section use of extreme value theory- to estimate a will be investigated. For 

the following discussion it will be assumed that several (say r) independent simple 

random samples are available. Assuming the existence of an asymptotic distribution for 

the minimum value in a sample of size n from a common distribution F, Fisher and 

Tippett (1928) proved that the asymptotic distribution can take only three forms. These 
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Table 5. Means, standard deviations (SD) and root mean square errors (RMSE) for 
estimates and estimated standard errors of the initial ordered value in a finite population 
of size 1,000 that was selected from the Normal distribution, where 1,000 replications 
were used in the simulations and the initial ordered value in the population was 65.64. 

Procedure Estimate Est. Standard Error 

Mean SD RMSE Mean SD RMSE 

MLE 81.83 5.75 17.18 

Jackknife 77.17 9.10 14.69 4.66 4.23 4.37 

Bootstrap I 79.61 7.02 15.63 3.39 2.09 3.15 

Avg. Spacing 79.43 6.12 15.09 

Bootstrap II 79.73 6.04 15.33 3.41 2.09 3.42 

three forms in turn can be combined into a single generalized extreme-value (GEV) 

distribution given by the following: 

L(x) {1 exP( (1 + P(x-Y)/13)11P) for p*0 
1 exp(-exp((x-y)/13)) for p =0 

where y is a location parameter, p is a scale parameter, and p is a shape parameter. The 

value of the shape parameter p divides the GEV distribution into the three forms 

identified by Fisher and Tippett: (l) p >0, for which the value of x is bounded below; 

(2) p=0, which is the Gumbel distribution and for which x is unlimited; and (3) p<0, 

for which the value of x is bounded above. The case p=0 is interpreted as the limit of 

L(x) as p approaches zero. For a given set of data, the parameters of the GEV and the 

Gumbel distributions can be estimated by the method of probability-weighted moments 
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(see Hosking, Wallis, and Wood (1985)). Note that the Gumbel distribution is the 

applicable distribution for the minimum value in a sample selected from the infinite 

Normal distribution. 

Recall that our interest in this chapter concerns estimation of the initial ordered 

value in a finite population using a sample from the population. Extreme value theory, 

conversely, is applicable to samples selected from an infinite population defined by a 

particular distribution function. Applied to a finite population selected from, say, the 

Normal distribution, the GEV and Gumbel distributions are approximations to the 

distribution of the minimum value in a sample selected from the given finite population. 

Application of extreme value theory to our problem will be illustrated with a 

particular case. A finite population of size 1,000 was selected from a Normal 

distribution with a mean of 100 and a standard deviation of 10. A set of r independent 

simple random samples of size 16 was selected from the fixed finite population, where 

r was a member of the set: { 5, 10, 15, 20, 25, 50} . For each of the r simple random 

samples, the minimum value was determined to create the set of values m = frni, i = 1, 

2, --, r }. The set m was utilized to fit the parameters of the GEV and Gumbel 

distributions. 

Samples were selected from the fixed finite population for the range of values of 

r indicated previously, and parameters of the GEV and Gumbel distribution were 

estimated. Plots of the fitted Gumbel distributions are provided in Figure 1 for each value 
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Figure 1. Exact and predicted (Gumbel) distributions of the minimum value in a sample 
of size 16 from a finite population of size 1,000 that was selected from a Normal 
distribution with mean 100 and standard deviation 10, where each plot represents a 
different value of the number of samples, the exact distribution is the solid line, and the 
predicted distribution is the dashed line. 
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of r. The exact distribution of the minimum value in a sample of size 16 selected from 

the finite population is also included in the plots. Note that for any of the ordered values 

in a finite population of size N, say yo, the probability of that specific value being the 

first order statistic in a sample of size n is provided by the following: 

( N -i 
n -1 

Probability 

(N 

These probabilities can be used to construct the exact distribution for the minimum value 

in a sample selected from the finite population. Although the amount of agreement 

between the fitted Gumbel distribution and the exact distribution improves as r increases, 

agreement is quite good even for the case r=10. 

The GEV distribution, and thus the Gambol distribution, has a simple form for the 

inverse distribution (quantal) function, Q(n), which is given by: 

Q(1.) Pf(-10E4(1 -n))P 1)/p for p 0 
y + log( log(1 )) for p =0 

Since a, the parameter of interest in this chapter, is the initial ordered value in the finite 

population, there is a known probability associated with a being the first order statistic 

in a simple random sample from the population. 'That probability is equal to , which 

for the case under consideration equals 0.016. Therefore, a reasonable estimator for a 

n 
is given by the quartile associated with a probability of 0.016, i.e., Q 
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Simulation results are presented in Table 6. For each choice of r, estimates of a 

were calculated for both the GEV and Gumbel distributions. The simulations used 1,000 

replications for each value of r. Means, standard deviations, and root mean square errors 

of the estimates for both distributions are provided in Table 6. In addition the bootstrap 

procedure was applied to the estimates from both distributions. In Table 6 Bootstrap I 

and Bootstrap II reference the bootstrap procedure applied to the GEV and Gumbel 

distributions, respectively. The bootstrap procedures used 500 bootstrap samples per 

replication. Means, standard deviations, and root mean square errors of the bootstrap 

estimates of a and the bootstrap estimated standard errors are provided in Table 6. 

Regarding estimation of a, the Gumbei-based estimates performed better than the GEV-­

based estimates. For all cases except r=5, the Gumbel-based estimate had smaller bias, 

and the root mean square error of the estimate was smaller for the Gurnbel distribution 

for all cases. For both distributions and for all values of r, the mean of the bootstrap 

estimate of standard error was biased downward. Since the bootstrap procedure would 

be employed to calculate confidence intervals for a, the latter fact is an impediment to 

use of the estimators. Root mean square error for the bootstrap estimate of standard error 

consistently was smaller for the Gurnbel distribution in comparison to the GEV 

distribution. As mentioned previously, the Gurnbel distribution is the appropriate 

asymptotic distribution for the minimum value in a sample from an infinite Normal 

distribution, so the superior performance of the Gumbel-based estimator for a finite 

population selected from a Normal distribution was not surprising. 
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Table 6. Means, standard deviations (SD) and root mean square errors (RMSE) for 
estimates and estimated standard errors of the in4ial ordered value in a finite population 
of size 1,000 that was selected from the Normal distribution, where 1,000 replications 
were used in the simulations and the initial ordered value in the population was 65.64. 

Number of samples per replication = 5 

Procedure Estimate Est. Standard Error 

Mean SD RMSE Mean SD RMSE 

GEV 66.48 10.29 10.32 

Bootstrap I 67.73 7.75 8.03 6.82 3.61 5.01 

Gumbel 65.00 7.47 7.50 

Bootstrap II 66.27 5.94 5.97 4.83 2.07 3.35 

Number of samples per replication = 10 

Procedure Estimate Est. Standard Error 

Mean SD RMSE Mean SD RMSE 

GEV 66.99 6.47 6.61 

Bootstrap I 68.31 5.27 5.91 4.32 1.91 2.88 

Gumbel 64.99 4.99 5.03 

Bootstrap II 66.26 4.09 4.14 3.30 1.08 2.01 

Number of samples per replication = 15 

Procedure Estimate Est. Standard Error 

Mean SD RMSE Mean SD RMSE 

GEV 67.28 4.98 5.24 

Bootstrap 1 68.61 4.08 5.05 3.43 1.31 2.03 

Gumbel 65.09 3.83 3.87 

Bootstrap II 66.32 3.18 3.25 2.65 0.76 1.40 
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Table 6. (Continued) 

Number of samples per replication = 20 

Procedure Estimate Est. Standard Error 

Mean SD RMSE Mean SD RMSE 

GEV 67.51 4.32 -1.71 

Bootstrap I 68.81 3.62 4.81 2.91 0.98 1.72 

Gumbel 65.14 3.46 3.50 

Bootstrap II 66.33 2.84 2.92 2.28 0.61 1.33 

Number of samples per replication = 25 

Procedure Estimate Est. Standard Error 

Mean SD RMSE Mean SD RMSE 

GEV 67.54 3.91 4.35 

Bootstrap I 68.82 3.25 4.55 2.57 0.81 1.57 

Gumbel 65.11 3.03 3.08 

Bootstrap II 66.32 2.46 2.55 2.04 0.51 1.11 

Number of samples per replication = 50 

Procedure Estimate Est. Standard Error 

Mean SD RMSE Mean SD RMSE 

GEV 67.66 2.61 3.30 

Bootstrap I 68.94 2.24 3.99 1.82 0.44 0.90 

Gumbel 65.12 2.10 2.16 

Bootstrap II 66.32 1.72 1.85 1.46 0.30 0.71 
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4. ABSENCE IN RELATION TO A THRESHOLD II
 

4.1 Introduction 

In this chapter the estimated distribution function (cdf) of a quantitative attribute 

for the objects in a finite universe of objects will be utilized for inference relative to a 

threshold. Specifically, the estimated cdf will be evaluated at a threshold value in the 

extreme lower tail of the population distribution function. The estimated cdf, evaluated 

at any threshold value, is an estimator of the proportion of objects in the universe that 

have values of the attribute less than or equal to that threshold value. Thus, an upper 

confidence bound for the cdf will provide an upper bound on the proportion of objects 

in the universe that have values of the attribute less than or equal to that threshold value. 

Model-based methodology for estimation of the cdf will be investigated in this 

chapter. Since interest lies only in the extreme lower tail of the cdf, the model is required 

only to provide an adequate fit to that portion of the cdf. The model should have 

sufficient flexibility to be able to accommodate a variety of shapes of the lower tail of 

the cdf. In addition the model should possess sufficient robustness to avoid excessive 

sensitivity to violations of model assumptions. Thus, some form of model will be utilized 

in order to provide a point estimator and an upper confidence bound for the finite 

population cdf evaluated at the threshold value. In addition the measured values for 

objects in the sample will be treated as fixed, i.e., observed without error, from which it 

follows that the number of sampled values less than the threshold value will be a known 

quantity. The sampled values will be used to estimate the parameters of the model. 



40 

Then, conditional on the sample and on the model, a point estimator and estimators of the 

upper confidence bound for the finite population cdf will be developed. Estimation of the 

cdf at the threshold value and its associated upper confidence bound will include the case 

when a predictor variable is available and the case when a predictor variable is not 

available. 

The upper tail of the cdf is also a potential site for inference involving the same 

issues and considerations as we deal with in the lower tail. Since these can be addressed 

by inverting the cdf, only the lower tail case will be investigated. 

Regarding the upper confidence bound for the cdf evaluated at the threshold value, 

a typical bound is the binomial upper confidence bound. The conventional estimator of 

the cdf, i.e., the proportion of sample values less than or equal to each sample order 

statistic, and the associated binomial upper confidence bound are provided in Figure 2 for 

a sample of size 16 from a finite population. Note that, for all values of the threshold 

less than the first sample order statistic, the binomial upper confidence bound remains 

fixed at a value greater than zero, which we consider unreasonable performance for the 

upper confidence bound. We will seek an approach for the upper confidence bound that 

allows the bound to decrease as the threshold value continues to decrease in magnitude 

relative to the observed values. 

A growing literature exists regarding estimation of the finite population cdf. An 

early paper was contributed by Sedransk and Sedransk (1979), who considered use of 
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Upper Confidence Bound 

Estimated CDF 

Figure 2. The conventional estimator of the finite population distribution function (cdf) 
and its associated binomial upper confidence bound for a sample of size 16 from a finite 
population. 
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design-based estimators of the cdf in the context of stratified sampling. Design-based 

estimators of the cdf have been used extensively by the U.S. Environmental Protection 

Agency in the Eastern Lakes Survey (Linthurst et al, 1986) and the National Stream 

Survey (Messer et al, 1988) as well as in the Environmental Monitoring and Assessment 

Program (Overton, Stevens, and White, 1990). In a seminal paper Chambers and Dunstan 

(1986) provided a model-based approach for estimation of the finite population cdf when 

a predictor variable is available. Rao, Kovar, and Mantel (1990) extended this approach 

to provide design-based estimators of the cdf when a predictor variable is available. 

Doi man (1993) contrasted the rival estimators of the finite population cdf and concluded 

that, when standard regression methodology was employed for model selection, the 

model-based estimator was better than Rao, Kovar, and Mantel extension. Robust 

estimation of the cdf has been addressed by Kuo (1988), Chambers, Dorfman, and Wehrly 

(1993), Dorfman and Hall (1993), and Kuk (1993). Other recent papers include Kuk 

(1988) and Bolfarine and Sandcval (1993; 1994). 

4.2 Estimation with a Predictor Variable 

In this section it will be assumed that values of a predictor variable are known for 

every object in the finite population. The approach utilized is based on the method of 

Chambers and Dunstan (1986), utilizing a predictor variable in estimation of the cdf of 

the finite population. Chambers and Dunstan employed linear regression through the 

origin to model the relationship between the variable of interest and the predictor variable. 

They assumed that the variance of each value of the variable was a simple function of the 
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associated value of the predictor variable. Specifically, the following model was assumed 

by Chambers and Dunstan: 

+ e for u = 1, 2, N 

e = g(x ) E
u u 

where g(xu) is a known positive function of xu and the Eu are iid random variables from 

a distribution function GO with mean zero. 

Assume that S is a simple random sample of size n selected from the N objects 

in the universe, U. Based on the sample values of the variable and the predictor variable, 

linear regression through the origin is employed to calculate an estimator, 11 , of the slope 

parameter of the regression model. Chambers and Dunstan (1986) proposed the following 

estimator of the finite population cdf: 

(1 
ev))(-EE t(_-,t,( Yu) n vEs (°°, (t-xu0)/g(x)]UES UEEU-S

FCD(t) = 

where t is the threshold value, I,,(x) is the indicator function for inclusion of x in the set 

A, and ev are the sample residuals defined by: 

yv 

e= for v e S 
v g(xv) 

Two modifications to the Chambers and Dunstan estimator were incorporated in 

our investigation. The first modification involved inclusion of an intercept term in the 
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regression model. The second modification concerned the form of the distribution 

employed for the residuals. Since the error distribution employed in the Chambers and 

Dunstan estimate was not specified, their procedure may be considered nonparametric. 

Rather than assume that the Eu are iid random variables from an unspecified distribution 

GO, we assume the eu to be ilk/ random variables from a Normal(0, 02) distribution. 

Thus, the modified model used in our investigation is given by: 

for u = 1, 2, N
Yu i30 + xu P + e
 
eu = g(x ) e


u 

where g(xu) is a known positive function of xu, and the eu are iid Normal(0, 02) random 

variables. Let Flo be the estimator of po and 11 be the estimator of p obtained using 

simple linear regression. Then, the modified estimator of the finite population distribution 

function is given by: 

t 9. 
( Yu )(- E 

LIES ueU-s 
FN (t) 

N 

9, 0 + xu 

where Sru is the predicted value of y,, and & is the estimator of o calculated from the 

sample residuals given by: 

Y, clv 
e for v e S 

g(xv) 
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For any value t at which the cdf was evaluated, the predicted value for the cdf is given 

by: 

1(_,,,,( Yu) E 1(_.m( 9u)
u e S ueU-S 

(t ) 
Pred N 

Thus, the predicted value is the estimate of the cdf obtained without adding error to the 

values Sr.. 

The modified Chambers and Dunstan estimator, FN (t), can be decomposed into 

two parts. The first part is composed of the summation across the sample objects of the 

indicator function that indicates whether an observed value of y is less than or equal to 

the threshold value t. The second part is composed of the summation across the non-

sample objects of estimates of the probability, Nyu s t), that y is less than or equal to 

t. Let p equal P(yu s t); an estimate of the modeled probability p is given by: 

t 9a 
P(yu t) (Di 

cr-g(x.) 

Note that p may be interpreted as the success probability for a Bernoulli random 

variable. Thus, the second teim in the modified Chambers and Dunstan estimator is a 
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sum of estimated probabilities for independent and not identically distributed Bernoulli 

random variables. Although an exact confidence bound is theoretically available for the 

Chambers and Dunstan estimator, it is computationally more tractable to employ a 

simulation approach to obtain the desired bound. 

An upper confidence bound can be developed as follows. For each of a sequence 

of B simulations, conduct N-n Bernoulli trials with associated success probabilities 

p , u E U-S. Let kb equal the sum of the values from the Bernoulli trails for a 

particular simulation b, where 1 < b < B and b is an integer. Order the B values of kb, 

and let f be the value of B multiplied by (1-a). Then define r as follows: r equals Y 

when Y. is an integer, and r equals one plus the integer portion of Y when I' is not an 

integer. Conditional on the sample and on the model, a conservative 100(1-a)% upper 

confidence bound is provided by (k k)//',1, where Is is the number of sample values 

less than or equal to the threshold value and k, is the rth value among the values in the 

ordered set: (kb: b = 1,...,B). Due to the discrete nature of the procedure, the 

conservative upper bound will have a nominal coefficient no smaller than 100(1 a)% 

given that the sample is observed without error and the assumed model is correct. 

Two additional upper confidence bounds for the cdf can be developed. Let kg 

equal either kr-1 or 0, whichever value is larger. Consider the two proportions: 

Pr(k s k ) and Pr(k s k), where the proportions are calculated from the values in 

{k }. The first proportion is anti-conservative in nature whereas the second proportion 
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is conservative. The observed values of the proportions Pr(k s k) and Pr(k s k) in 

conjunction with the desired confidence coefficient, (1 a), can be used to produce a 

randomized upper confidence bound having the desired proportion. That is, a random 

trial is conducted to select either kg or kr, where the values of Pr(k s k ), Pr(k s k ), 

and (1 a) are used to specify the parameters for the random trial. In repeated 

application of the randomization procedure, the mean of the percentage of values in the 

set {kb} that are less than or equal to the value selected by the randomization procedure 

will be exactly equal to 100(1 a) %. 

The values of Pr(k s k ), Pr(k s k ), and (1 a) can also be used to create
r9 

weights for (k + k )/N and (k + k )/N that can be employed to produce a weighted
s s rq 

average upper confidence bound. The weight for (k + k )/N is given by:
s q 

Pr(k <_k) (1 a)
 

Pr(k s k) Pr(k s k )
 

The weight for (k + k )/N is given by one minus the weight for (k + k )/N. The 

weighted average bound represents the average value of the randomized bound that would 

be achieved during repeated application of the randomization procedure. Due to greater 

precision, the weighted average bound is preferred over the randomized bound in practice. 

Coverage of the weighted average bound, however, will be equal to the coverage achieved 

by the smaller of the two values used in calculating the bound. Therefore, coverage of 
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the weighted average bound should be estimated from coverage of the randomized bound 

and not from coverage of the weighted average hound. 

In addition to simple linear regression, two other procedures were employed to 

calculate estimators of the parameters of the regression model for predicting y,,: robust 

locally weighted least squares (1 owess: Cleveland, 1979) and piecewise simple linear 

regression. A description of the piecewise simple linear regression procedure follows. 

First, the objects in the sample were ordered based on values of the predictor variable. 

The ordered objects were then divided into three groups of equal size (or as close to equal 

size as allowed by the size of the sample) such that the first group contained the smallest 

values of the predictor variable, the second group contained the middle-sized values of 

the predictor variable, and the third group contained the largest values of the predictor 

variable. In addition the objects were allocated to the groups such that the first and 

second group had a single object in common, and the second and third group had a single 

object in common. The latter condition was imposed to eliminate ambiguity of the 

prediction procedure for yu. Simple linear regression was applied independently to each 

of the three groups to produce three sets of estimates of the regression model parameters. 

Recall that estimates of the regression model parameters are used to calculate 

predicted values for y. When piecewise simple linear regression was employed to 

produce the parameter estimates, the Chambers and Dunstan procedure was modified to 

allow usage of the three sets of parameter estimates for predicting y. If a non-sampled 

value of the predictor variable was less than or equal to the value of the predictor variable 
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of the ordered sample object held in common by groups one and two, then the first set 

of regression model parameter estimates was employed in calculating the predicted value 

for that non-sampled object. If a non-sampled value of the predictor variable was greater 

than or equal to the value of the predictor variable of the ordered sample object held in 

common by groups two and three, then the third set of parameters estimates was 

employed to calculate the predicted value. Otherwise, the second set of parameter 

estimates was used for prediction. 

4.3 Estimation without a Predictor Variable 

In this section it will be assumed that a predictor variable is not available. For 

this case a model for the finite population variable will be assumed. Based on sample 

values of the variable, the parameters of the assumed model will he estimated. Then, 

conditional on the sample and on the model, the overall proportion, say p, less than the 

threshold value will be estimated. An analytical solution employing the Binomial 

distribution with success probability 13 can then be employed to produce the desired point 

estimator and upper confidence bound for the population cdf evaluated at the threshold 

value. Let k be the number of values in the sample less than or equal to the threshold 

value. Then, under the Binomial model, the expected number of non-sampled values less 

than or equal to the threshold is given by: (N n) * p. Thus, a point estimator of the 

cdf evaluated at the threshold value, t, is given by: 

ks + (N-n)*13 
P (t) 

N 
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Conditional on the model, let k be the smallest integer that satisfies the following 

inequality: 

k 
kl 1 N -n' k k (N n) (k k )P P (t) s ks)1( 11-1 p (1 -p) z (1 a)
= k 15. kks) 

Then the conservative 100(1-a)% upper confidence bound is given by ku/N. Given that 

the assumed model is correct, the conservative upper bound will have a confidence 

coefficient no smaller than (1-a)%. As discussed in the previous section, the observed 

values of the probabilities: 

k k -1 
(P P(t) s ulkj and P NO s u 1 k

41 s N s 
i 

in conjunction with the desired confidence coefficient, (l-a), can be used to produce 

randomized and weighted average upper confidence bounds. As mentioned previously, 

due to greater precision, the weighted average bound is preferred over the randomized 

bound in practice. 

Three specific models were investigated: (1) a Normal model, (2) a Normal model 

censored at the median, i.e., a half Nominal model (see Johnson and Kotz, 1970), and (3) 

a Gamma model. For the half Normal model, the sample was ordered and values less 

than the median of the sample were employed to estimate model parameters using the 

standard procedures for a censored Normal distribution. For the Gamma model a three-

parameter Gamma distribution, i.e. a distribution with location, scale, and shape 
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parameters, was employed. The approach suggested by Bowman and Shenton (1988) was 

utilized to estimate the parameters of the Gamma model. 

4.4 Preliminary Simulation Results and Discussion 

The estimation procedures were applied to a group of standardized populations: 

PADDY, STREAM, DATAA, DATAB, DATAC, DATAG, DATAGNB, and 

DATALINB. Each population was composed of one hundred objects for each of which 

there was a response variable value and an associated value of a predictor variable. The 

population correlation, p, between the variable and the predictor variable varied among 

the populations as follows: PADDY (p = 0.79), STREAM (p = 0.86), DATAA (p = 

0.77), DATAB (p = 0.97), DATAC (p = 0.75), DATAG (p = 0.80), DATAGNB (p = 

0.79), and DATAUNB (p = 0.84). In each of the populations and for both the response 

variable and the predictor variable, the mean was two and the standard deviation was one. 

Descriptions of PADDY and STREAM are provided in Stehman and Overton (1994). 

The other populations are described in Overton and Stehman (1993). 

For the purpose of preliminary analysis, one hundred samples of size sixteen (i.e., 

n = 16) were selected from each of the eight populations, and the three predictor variable 

procedures and three procedures without a predictor variable were applied to the samples. 

For each of the predictor variable procedures, three values of the function g(x) were 

considered: g(x) = 1, g(x) = x, and g(x) = x2. For populations in which values of both 

the response variable and the predictor variable were strictly positive, a fourth case was 

considered that consisted of taking the natural logarithm of the response variable and 
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predictor variable values and applying the procedures using g(x) = 1, which will be 

referenced as the Log case. For all three of the predictor variable procedures, one 

hundred simulations were employed for determination of the weighted average confidence 

bounds. For the procedures without a predictor variable, a second case was considered 

for the Normal and half Normal models, which consisted of taking the natural logarithm 

of the response variable values and applying the procedures. The initial ordered value of 

the response variable in each of the populations was utilized to evaluate performance of 

the procedures. Since each population was composed of one hundred values, the true 

value of the cdf evaluated at the initial ordered value in the population was equal to 0.01. 

For calculating the upper confidence bound, a was equal to 0.10, producing 90% upper 

bounds. For each configuration of the procedures, sample means of the cdf estimates and 

the upper confidence bound estimates were determined. In addition the confidence bound 

coverage, i.e., the proportion of the confidence bounds that included the known true value 

0.01, was calculated for each configuration of the procedures. 

Each of the eight populations will be discussed separately. For each population 

a table displaying the means of the cdf estimates, standard deviations of the cdf estimates, 

means of the weighted average 90% upper confidence bounds, and coverage of the upper 

confidence bounds is provided. For purposes of discussion, acceptable bias will be taken 

to mean that bias was no greater than 0.02. Adequate confidence bound coverage will 

be taken to mean that coverage was between 80% and 95%, inclusive. In order to 

provide gaphical illustration of results, plots of the actual cdf, means of the cdf estimates, 

means of the weighted average 90% upper confidence bounds, and means of the predicted 
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values are provided for the piecewise simple linear regression procedure using g(x) = 1. 

In producing the plots, the cdf was evaluated at a set of values ranging from a number 

much less than the smallest ordered value in the population through the sixth ordered 

value for the population. Finally, for reasons that will be developed in the following 

discussion, special attention will be given to the g(x) = 1 version of the piecewise simple 

linear regression procedure. 

For PADDY the conditional distribution of the response variable given the 

predictor variable exhibits a large increase in variability as the value of the predictor 

variable increases for the natural scale and a minor increase in variability as the value of 

the predictor variable increases for the log scale (Figure 3). The first six ordered values 

in PADDY are: 0.812, 0.856, 0.885, 0.928, 0.957, and 0.994. Results for PADDY are 

provided in Table 7. Acceptable bias of the estimates was achieved by the Log case of 

all three predictor variable procedures in addition to the half Normal model using the log 

scale and the Gamma model. Acceptable coverage was achieved by the Log case of the 

robust regression procedure, the g(x) = x and g(x) = x` cases of the piecewise regression 

procedure, and the half Normal model using both the natural and log scales. Note that 

coverage for the g(x) = 1 version of the piecewise linear regression procedure was 96%, 

which is marginally greater than the acceptable range. Plots of the actual cdf, means of 

the estimated cdf, means of the weighted average confidence bounds, and means of the 

predicted values are provided in Figure 4 for the g(x) = 1 version of the piecewise linear 

regression procedure. For this procedure the estimated cdf exhibits significant positive 

bias for all values in the lower tail of the cdf for PADDY. 
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Figure 3. Scatter plots of Y versus X using the natural and log scales for population 
PADDY. 
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Table 7. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and. coverage of the weighted 90% upper 
confidence bounds for the initial ordered value in population PADDY, where 100 
replications were used in the simulations and the actual value of the cdf was 0.01. 

Model 

Linear Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Robust Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Piecewise Linear: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Normal: 

Natural 

Log 

Half Normal: 

Natural 

Log 

Gamma: 

Natural 

Estimate 

0.0710 

0.0292 

0.0472 

0.0211 

0.0791 

0.0318 

0.0349 

0.0239 

0.0407 

0.0333 

0.0371 

0.0219 

0.0893 

0.0321 

0.0222 

0.0142 

0.0085 

Std. Dev. 

0.0356 

0.0210 

0.0318 

0.0144 

0.0423 

0.0222 

0.0242 

0.0173 

0.0325 

0.0325 

0.0352 

0.0272 

0.0397 

0.0223 

0.0172 

0.0142 

0.0146 

Bound Coverage 

0.0964 100% 

0.0448 97% 

0.0678 99% 

0.0336 96% 

0.1050 100% 

0.0482 98% 

0.0521 96% 

0.0370 94% 

0.0568 96% 

0.0472 95% 

0.0521 95% 

0.0309 77% 

0.1201 100% 

0.0489 97% 

0.0352 91% 

0.0231 80% 

0.0132 42% 
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Figure 4. Plots of the actual lower tail of the cdf, means of the estimates of the lower 
tail of the cdf, means of the predicted values, and means of the weighted 90% upper 
confidence bounds for the piecewise linear regression procedure using g(x) = 1 for 
population PADDY, where l00 replications were used in the simulations. 
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For STREAM the conditional distribution of the response variable given the 

predictor variable exhibits a large increase in variability as the value of the predictor 

variable increases for the natural scale and a minor increase in variability as the value of 

the predictor variable increases for the log scale (Figure 5). The first six ordered values 

in STREAM are: 0.805, 0.831, 0.866, 1.010, 1.013, and 1.045. Results for STREAM are 

provided in Table 8. Acceptable bias of the estimates was achieved by all procedures 

except the g(x) = 1 case of the linear and robust regression procedures and the Normal 

model using the natural scale. Acceptable coverage was achieved by the g(x) = x2 case 

for all three predictor variable procedures, the g(x) = 1 case of the piecewise regression 

procedure, and the Normal model using the log scale. Plots of the actual cdf, means of 

the estimated cdf, means of the weighted average confidence bounds, and means of the 

predicted values are provided in Figure 6 for the g(x) = 1 version of the piecewise 

regression procedure. Although the estimated cdf is moderately biased for the initial 

ordered value in STREAM, the estimated cdf performs very well for the other values in 

the lower tail of STREAM. 

For DATAA the conditional distribution of the response variable given the 

predictor variable exhibits a moderate increase in variability as the value of the predictor 

variable increases for the natural scale and no increase in variability as the value of the 

predictor variable increases for the log scale (Figure 7). The first six ordered values in 

DATAA are 0.643. 0.656, 0.721, 0.777, 0.826, and 0.888. Results are provided in Table 

9. Acceptable bias was achieved by the Log case of all three predictor variable 

procedures and all cases of the procedures without a predictor variable except the Normal 
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Figure 5. Plots of the actual lower tail of the cdf, means of the estimates of the lower 
tail of the cdf, means of the predicted values, and means of the weighted 90% upper 
confidence bounds for the piecewise linear regression procedure using g(x) = for 
population STREAM, where 100 replications were used in the simulations.. 

1 



59 

Table 8. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the initial ordered value in population STREAM, where 100 
replications were used in the simulations and the actual value of the cdf was 0.01. 

Model 

Linear Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Robust Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Piecewise Linear: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Normal: 

Natural 

Log 

Half Normal: 

Natural 

Log 

Gamma: 

Natural 

Estimate 

0.0456 

0.0153 

0.0218 

0.0075 

0.0452 

0.0117 

0.0160 

0.0066 

0.0171 

0.0137 

0.0165 

0.0085 

0.0856 

0.0228 

0.0136 

0.0080 

0.0044 

Std. Dev. 

0.0400 

0.0246 

0.0268 

0.0104 

0.0407 

0.0137 

0.0146 

0.0084 

0.0150 

0.0137 

0.0158 

0.0108 

0.0432 

0.0181 

0.0126 

0.0099 

0.0095 

Bound Coverage 

0.0642 98% 

0.0237 69% 

0.0337 90% 

0.0127 64% 

0.0643 99% 

0.0193 73% 

0.0269 90% 

0.0112 57% 

0.0263 85% 

0.0210 74% 

0.0251 81% 

0.0123 53% 

0.1156 100% 

0.0362 92% 

0.0227 79% 

0.0133 61% 

0.0070 30% 
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Figure 6. Scatter plots of Y versus X using the natural and log scales for population 
STREAM. 
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Figure 7. Scatter plots of Y versus X using the natural and log scales for population 
DATAA. 
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Table 9. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the initial ordered value in population DATAA, where 100 
replications were used in the simulations and the actual value of the cdf was 0.01. 

Model Estimate Std. Dev. Bound Coverage 

Linear Regression: 

g(x) = 1 0.0613 0.0277 0.0851 100% 

g(x) = x 0.0430 0.0293 0.0622 97% 

g(x) = x2 0.1037 0.0604 0.1335 99% 

Log 0.0153 0.0125 0.0250 88% 

Robust Regression: 

g(x) = 1 0.0736 0.0328 0.0993 100% 

g(x) = x 0.0559 0.0426 0.0778 96% 

g(x) = x2 0.1071 0.0733 0.1368 97% 

Log 0.0199 0.0141 0.0315 91% 

Piecewise Linear: 

g(x) = 1 0.0413 0.0272 0.0583 96% 

g(x) = x 0.0396 0.0281 0.0557 93% 

g(x) = x2 0.0473 0.0327 0.0649 96% 

Log 0.0186 0.0182 0.0277 80% 

Normal: 

Natural 0.0719 0.0319 0.0997 100% 

Log 0.0174 0.0152 0.0284 92% 

Half Normal: 

Natural 0.0198 0.0147 0.0321 92% 

Log 0.0098 0.0107 0.0164 68% 

Gamma: 

Natural 0.0060 0.0114 0.0096 34% 
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model using the natural scale. Adequate coverage was achieved by the Log case of all 

three predictor variable procedures, the g(x) = x case of the piecewise regression 

procedure, the Normal model using the log scale, and the half Normal model using the 

natural scale. Note that coverage for the g(x) = 1 version of the piecewise regression 

procedure was 96%. Figure 8 provides plots for the g(x) = 1 version of the piecewise 

regression procedure. For this procedure the estimated cdf exhibits significant positive 

bias for all values in the lower tail of the cdf for DATAA. 

For DATAB the conditional distribution of the response variable given the 

predictor variable exhibits no increase in variability as the value of the predictor variable 

increases for both the natural and log scales (Figure 9). In addition there is a very strong 

linear relationship between the response variable and the predictor variable for both the 

natural and log scales. Note, however, that values of the response variable are more 

evenly spaced on the log scale in comparison to the natural scale. The first six ordered 

values in DATAB are 0.677, 0.681, 0.692, 0.709, 0.764, and 0.765. Results are provided 

in Table 10. Acceptable bias was achieved by the g(x) = x, g(x) = x2, and Log cases of 

all three predictor variable procedures, the g(x) = 1 case of the piecewise regression 

procedure, and all cases of the procedures without a predictor variable except the Normal 

model using the natural scale. Adequate coverage was achieved by the g(x) = x and g(x) 

= x2 cases of the robust and piecewise regression procedures, the Log case of the 

piecewise regression procedure, the Normal model using the log scale, and the half 

Normal model using both the natural and iog scale. Coverage for the g(x) = 1 version 

of the piecewise regression procedure was 97%. Plots are provided in Figure 10 for the 
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Figure 8. Plots of the actual lower tail of the cdf, means of the estimates of the lower 
tail of the cdf, means of the predicted values, and means of the weighted 90% upper 
confidence bounds for the piecewise linear regression procedure using g(x) = for 
population DATAA, where 100 replications were used in the simulations. 
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Figure 9. Scatter plots of Y versus X using the natural and log scales for population 
DATAB. 
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Table 10. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the initial ordered value in population DATAB, where 100 
replications were used in the simulations and the actual value of the cdf was 0.01. 

Model 

Linear Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Robust Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Piecewise Linear: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Normal: 

Natural 

Log 

Half Normal: 

Natural 

Log 

Gamma: 

Natural 

Estimate 

0.0327 

0.0213 

0.0217 

0.0220 

0.0349 

0.0212 

0.0178 

0.0207 

0.0280 

0.0237 

0.0218 

0.0205 

0.0767 

0.0245 

0.0300 

0.0197 

G.0083 

Std. Dev. 

0.0146 

0.0166 

0.0172 

0.0121 

0.0135 

0.0087 

0.0094 

0.0070 

0.0209 

0.0207 

0.0215 

0.0150 

0.0323 

0.0201 

0.0217 

0.0191 

G.0148 

Bound Coverage 

0.0467 100% 

0.0295 89% 

0.0281 90% 

0.0310 99% 

0.0500 100% 

0.0314 99% 

0.0254 96% 

0.0302 99% 

0.0390 97% 

0.0315 87% 

0.0272 83% 

0.0282 91% 

0.1055 100% 

0.0387 93% 

0.0462 95% 

0.0314 85% 

0.0133 44% 
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Figure 10. Plots of the actual lower tail of the cdf, means of the estimates of the lower 
tail of the cdf, means of the predicted values, and means of the weighted 90% upper 
confidence bounds for the piecewise linear regression procedure using g(x) = for 
population DATAB, where 100 replications were used in the simulations. 

1 



68 

g(x) = 1 version of the piecewise regression procedure. Given the small spread among 

the values in the lower tail of the cdf for DATAB, the estimated cdf performs very well 

for this procedure. 

For Population DATAC the conditional distribution of the response variable given 

the predictor variable exhibits a moderate decrease in variability as the value of the 

predictor variable increases for the natural scale (Figure 11). Due to the occurrence of 

negative values, DATAC was not analyzed using the log scale or the Gamma model. The 

first six ordered values in DATAA are -0.317, -0.163, -0.116, 0.296, 0.304, 0.354. 

Results are provided in Table 11. Acceptable bias was achieved by the g(x) = 1 and g(x) 

= x cases of all three predictor variable procedures, the g(x) = x2 case of the piecewise 

regression procedure, and the Normal and half Normal models. None of the procedures 

provided adequate coverage. Coverage for the piecewise regression procedure using g(x) 

= 1 was 57%. Plots of the actual cdf, means of the estimated cdf, means of the weighted 

average confidence bounds, and means of the predicted values are provided in Figure 12 

for the g(x) = 1 version of the piecewise linear regression procedure. For this procedure 

the cdf was virtually unbiased for the smallest value in the lower tai] of the cdf and 

exhibited small negative bias for the other values in the lower tail of the cdf for DATAC. 

For DATAG the conditional distribution of the response variable given the 

predictor variable exhibits a small increase in variability as the value of the predictor 

variable increases for the natural scale and no increase in variability as the value of the 

predictor variable increases for the log scale (Figure 13). The first six ordered values in 
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Figure 11. Scatter plot of Y versus X using the natural scale for population DATAC. 
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Table 11. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the initial ordered value in population DATAC, where 100 
replications were used in the simulations and the actual value of the cdf was 0.01. 

Model Estimate Std. Dev. Bound Coverage 

Linear Regression: 

g(x) = 1 0.0048 0.0068 0.0079 43% 

g(x) = x 0.0119 0.0136 0.0202 73% 

g(x) = x2 0.0834 0.0458 0.1104 99% 

Robust Regression: 

g(x) = 1 0.0036 0.0057 0.0057 32% 

g(x) = x 0.0111 0.0133 0.0189 67% 

g(x) = x2 0.0779 0.0484 0.1033 99% 

Piecewise Linear: 

g(x) = 1 0.0099 0.0214 0.0156 57% 

g(x) = x 0,0119 0.0224 0.0186 61% 

g(x) = x2 0.0212 0.0282 0.0316 78% 

Normal: 

Natural 0.0104 0.0118 0.0176 76% 

Half Normal: 

Natural 0.0085 0.0101 0.0143 60% 
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Figure 12. Plots of the actual lower tail of the cdf, means of the estimates of the lower 
tail of the cdf, means of the predicted values, and means of the weighted 90% upper 
confidence bounds for the piecewise linear regression procedure using g(x) = for 
population DATAC, where 100 replications were used in the simulations. 
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Figure 13. Scatter plots of Y versus X using the natural and log scales for population 
DATAG. 
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DATAG are 0.833, 0.844, 0.859, 0.891, 0.902, and 0.912. Results are provided in Table 

12. Only the half Normal model using the log scale and the Gamma model achieved 

acceptable bias. Acceptable coverage was achieved by the half Normal model using the 

log scale. Although none of the predictor variable procedures achieved acceptable 

coverage, the Log case of the piecewise regression procedure was just outside the 

acceptable range (96%). Plot for the g(x) = version of the piecewise regression1 

procedure are provided in Figure 14. The estimated cdf produced extensive positive bias 

for this procedure. 

For DATAGNB the conditional distribution of the response variable given the 

predictor variable exhibits a large increase in variability as the value of the predictor 

variable increases for the natural scale and a moderate increase in variability as the value 

of the predictor variable increases for the log scale (Figures 15). The first six ordered 

values in DATAGNB are 1.014, 1.089, 1.097, 1.100, 1.121, and 1.127. Results are 

provided in Table 13, Acceptable bias was achieved by the Half Normal model using the 

natural and log scales and the Gamma model. Although none of the predictor variable 

procedures achieved acceptable bias, the Log case of the piecewise regression procedure 

was marginally greater than the acceptable range for bias (0.0208). Only the half Normal 

using the natural and log scale achieved adequate coverage. Although none of the 

predictor variable procedures achieved acceptable coverage, the Log case of the piecewise 

regression procedure was marginally greater than the acceptable range for coverage 

(96%). Coverage for the piecewise regression procedure using g(x) = 1 was 100%. Plots 

are provided in Figure 16 for the g(x) = 1 case of the piecewise regression procedure. 
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Table 12. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the initial ordered value in population DATAG, where 100 
replications were used in the simulations and the actual value of the cdf was 0.01. 

Model 

Linear Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Robust Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Piecewise Linear: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Normal: 

Natural 

Log 

Half Normal: 

Natural 

Log 

Gamma: 

Natural 

Estimate 

0.0705 

0.0621 

0.1110 

0.0344 

0.0802 

0.0757 

0.1213 

0.0396 

0.0564 

0.0569 

0.0645 

0.0380 

0.0934 

0.0380 

0.0312 

0.0224 

0.0102 

Std. Dev. 

0.0316 

0.0417 

0.0769 

0.0206 

0.0404 

0.0587 

0.0918 

0.0280 

0.0348 

0.0359 

0.0382 

0.0301 

0.0365 

0.0222 

0.0174 

0.0158 

0.0157 

Bound Coverage 

0.0956 100% 

0.0856 99% 

0.1410 100% 

0.0510 100% 

0.1062 100% 

0.1010 100% 

0.1523 100% 

0.0564 99% 

0.0773 100% 

0.0772 100% 

0.0863 100% 

0.0531 96% 

0.1252 100% 

0.0571 98% 

0.0482 97% 

0.0359 95% 

0.0160 47% 
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Figure 14. Plots of the actual lower tail of the cdf, means of the estimates of the lower 
tail of the cdf, means of the predicted values, and means of the weighted 90% upper 
confidence bounds for the piecewise, linear regression procedure using g(x) = for 
population DATAG, where 100 replications were used in the simulations. 
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Figure 15. Scatter plots of Y versus X using the natural and log scales for population 
DATAGNB. 
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Table 13. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the initial ordered value in population DATAGNB, where 100 
replications were used in the simulations and the actual value of the cdf was 0.01. 

Model 

Linear Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Robust Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Piecewise Linear: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Normal: 

Natural 

Log 

Half Normal: 

Natural 

Log 

Gamma: 

Natural 

Estimate 

0.0978 

0.0810 

0.1272 

0.0527 

0.0774 

0.0424 

0.0548 

0.0426 

0.0457 

0.0403 

0.0439 

0.0308 

0.1068 

0.0486 

0.0248 

0.0133 

0.0079 

Std. Dev. 

0.0646 

0.0726 

0.1005 

0.0772 

0.0439 

0.0276 

0.0373 

0.0223 

0.0328 

0.0314 

0.0336 

0.0273 

0.0552 

0.0266 

0.0193 

0.0168 

0.0147 

Bound Coverage 

0.1242 100% 

0.1017 98% 

0.1559 100% 

0.0696 100% 

0.1022 100% 

0.0588 99% 

0.0739 100% 

0.0586 100% 

0.0635 100% 

0.0558 99% 

0.0600 100% 

0.0429 96% 

0.1399 100% 

0.0703 99% 

0.0385 92% 

0.0289 84% 

0.0118 33% 
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Figure 16. Plots of the actual lower tail of the cdf, means of the estimates of the lower 
tail of the cdf, means of the predicted values, and means of the weighted 90% upper 
confidence bounds for the piecewise linear regression procedure using g(x) = for 
population DATAGNB, where 100 replications were used in the simulations. 
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The estimated cdf exhibited moderate to large positive bias for values in the lower tail 

of the cdf for this procedure. 

For DATAUNB he conditional distribution of the response variable given the 

predictor variable exhibits a moderate increase in variability as the value of the predictor 

variable increases for the natural scale and a small increase in variability as the value of 

the predictor variable increases for the log scale (Figure 17). The first six ordered values 

in DATAUNB are 0.508, 0.521, 0.542, 0.589, 0.640, and 0.689. Results are provided in 

Table 14. Acceptable bias was achieved by the g(x) = x and Log cases of the robust and 

piecewise regression procedures, the g(x) = 1 case of the piecewise regression procedure, 

and all cases of the procedures without a predictor variable except the Normal model 

using the natural scale. Adequate coverage was achieved by the g(x) = x case of the 

simple linear regression and piecewise regression procedures and the g(x) = x2 version of 

the piecewise regression procedure. Coverage for the g(x) = 1 version of the piecewise 

regression procedure was 99%. Plots of results for the g(x) = 1 version of the piecewise 

regression procedure are provided in Figure 18. Although the estimated cdf produced 

moderately large positive bias for the smallest values in the lower tail of the cdf, overall 

the estimated cdf achieved very good performance in the lower tail. 

Some discussion of the preliminary simulation results will be offered in the 

following paragraphs. No single procedure dominated the results for all eight populations. 

In addition procedures that performed well in terms of bias did not necessarily provide 

acceptable performance in teints of coverage. For that reason bias and coverage will be 
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Figure 17. Scatter plots of Y versus X using the natural and log scales for population 
DATAUNB. 
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Table 14. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence hounds, and coverage of the weighted 90% upper 
confidence bounds for the initial ordered value in population DATAUNB, where 100 
replications were used in the simulations and the actual value of the cdf was 0.01. 

Model 

Linear Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Robust Regression: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Piecewise Linear: 

g(x) = 1 

g(x) = x 

g(x) = x2 

Log 

Normal: 

Natural 

Log 

Half Normal: 

Natural 

Log 

Gamma: 

Natural 

Estimate 

0.0540 

0.0343 

0.1231 

0.0338 

0.0518 

0.0196 

0.0828 

0.0274 

0.0287 

0.0225 

0.0375 

0.0251 

0.0533 

0.0098 

0.0219 

0.0097 

0.0049 

Std. Dev. 

0.0284 

0.0393 

0.1177 

0.0131 

0.0244 

0.0193 

0.0762 

0.0150 

0.0195 

0.0232 

0.0360 

0.0173 

0.0277 

0.0107 

0.0147 

0.0110 

0.0089 

Bound Coverage 

0.0731 100% 

0.0437 81% 

0.1486 99% 

0.0410 100% 

0.0712 100% 

0.0259 77% 

0.1040 96% 

0.0352 99% 

0.0407 99% 

0.0295 85% 

0.0485 91% 

0.0322 98% 

0.0767 99% 

0.0167 74% 

0.0354 96% 

0.0165 68% 

0.0080 36% 
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Figure 18. Plots of the actual lower tail of the cdf, means of the estimates of the lower 
tail of the cdf, means of the predicted values, and means of the weighted 90% upper 
confidence bounds for the piecewise linear regression procedure using g(x) = 1 for 
population DATAUNB, where 100 replications were used in the simulations. 



83 

discussed separately. In terms of bias, the procedures without a predictor variable often 

performed better than the predictor variable procedures. The predictor variable procedures 

exhibited moderate to large positive bias for most of the populations. Among the 

procedures without a predictor variable, the half Normal and Gamma models were notable 

for having small bias for many of the populations. 

In terms of coverage, the procedures using a predictor variable were usually 

superior to the procedures without a predictor variable. Among the procedures without 

a predictor variable, the half Normal model performed best regarding coverage. Among 

the predictor variable procedures, the piecewise simple linear regression procedure 

performed best overall. For the four cases that were investigated for the piecewise linear 

regression procedure, the g(x) = and g(x) = x cases produced the most notable1 

performance in terms of coverage. The only population for which the piecewise simple 

linear regression procedure produced inadequate coverage was DATAC, a population for 

which all of the procedures produced inadequate coverage results. 

4.5 Further Simulation Results and Discussion 

Based on the preliminary simulation results presented in Section 4.4, additional 

simulations were performed. The simulations employed all four versions of the piecewise 

linear regression procedure for each of the eight populations. One thousand samples of 

size sixteen were selected from each population, and the four versions of the piecewise 

regression procedure were applied to the sample values. Results of the simulations are 

provided in Tables 15 to 22 for the eight populations, respectively. In the tables the 
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Table 15. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the first six ordered values in population PADDY using the 
piecewise simple linear regression procedure, where 1,000 replications were used in the 
simulations and the actual value of the cdf was 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 for 
the six ordered values, respectively. 

Model Ordered Population Value 

First Second Third Fourth Fifth Sixth 

Estimate: 

g(x) = 1 0.0341 0.0426 0.0498 0.0614 0.0708 0.0836 

g(x) = x 0.0289 0.0374 0.0446 0.0563 0.0660 0.0794 

g(x) = x2 0.0330 0.0416 0.0490 0.0611 0.0710 0.0849 

Log 0.0182 0.0264 0.0335 0.0454 0.0552 0.0689 

Std. Dev.: 

g(x) = 1 0.0314 0.0343 0.0367 0.0399 0.0415 0.0442 

g(x) = x 0.0313 0.0348 0.0375 0.0413 0.0433 0.0463 

g(x) = x2 0.0329 0.0367 0.0398 0.0441 0.0464 0.0498 

Log 0.0256 0.0301 0.0335 0.0382 0.0406 0.0443 

Bound: 

g(x) = 1 0.0489 0.0592 0.0676 0.0815 0.0917 0.1065 

g(x) = x 0.0417 0.0522 0.0605 0.0745 0.0854 0.1009 

g(x) = x2 0.0472 0.0577 0.0662 0.0803 0.0915 0.1076 

Log 0.0262 0.0368 0.0456 0.0603 0.0714 0.0875 

Coverage: 

g(x) = 1 96.0% 88.9% 87.7% 85.8% 83.6% 86.8% 

g(x) = x 92.3% 82.2% 81.6% 80.2% 76.9% 81.8% 

g(x) = x2 94.5% 86.3% 84.3% 81.1% 78.7% 82.1% 

Log 72.3% 63.9% 65.6% 65.7% 65.6% 72.7% 
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Table 16. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the first six ordered values in population STREAM using the 
piecewise simple linear regression procedure, where 1,000 replications were used in the 
simulations and the actual value of the cdf was 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 for 
the six ordered values, respectively. 

Model Ordered Population Value 

First Second Third Fourth Fifth Sixth 

Estimate: 

g(x) = 1 0.0181 0.0220 0.0278 0.0565 0.0590 0.0696 

g(x) = x 0.0148 0.0185 0.0241 0.0525 0.0549 0.0657 

g(x) = x2 0.0177 0.0214 0.0270 0.0558 0.0583 0.0693 

Log 0.0082 0.0117 0.0169 0.0456 0.0481 0.0594 

Std. Dev.: 

g(x) = 1 0.0168 0.0197 0.0230 0.0347 0.0350 0.0379 

g(x) = x 0.0157 0.0188 0.0222 0.0348 0.0351 0.0384 

g(x) = x2 0.0179 0.0210 0.0245 0.0373 0.0376 0.0409 

Log 0.0110 0.0148 0.0187 0.0338 0.0342 0.0380 

Bound: 

g(x) = 1 0.0280 0.0327 0.0398 0.0750 0.0772 0.0895 

g(x) = x 0.0229 0.0275 0.0345 0.0696 0.0720 0.0844 

g(x) = x2 0.0271 0.0316 0.0385 0.0737 0.0762 0.0888 

Log 0.0125 0.0171 0.0240 0.0603 0.0627 0.0760 

Coverage: 

g(x) = 1 86.8% 70.9% 67.5% 84.4% 76.0% 80.5% 

g(x) = x 79.7% 60.3% 59.6% 79.4% 70.9% 76.8% 

g(x) = x2 85.4% 64.6% 62.8% 80.2% 72.9% 78.3% 

Log 57.8% 41.6% 44.1% 70.7% 62.1% 69.5% 
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Table 17. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the first six ordered values in population DATAA using the 
piecewise simple linear regression procedure, where 1,000 replications were used in the 
simulations and the actual value of the cdf was 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 for 
the six ordered values, respectively. 

Model Ordered Population Value 

First Second Third Fourth Fifth Sixth 

Estimate: 

g(x) = 1 0.0379 0.0409 0.0514 0.0623 0.0740 0.0900 

g(x) = x 0.0365 0.0395 0.0503 0.0617 0.0739 0.0907 

g(x) = x2 0.0446 0.0476 0.0588 0.0706 0.0832 0.1007 

Log 0.0183 0.0213 0.0323 0.0442 0.0571 0.0751 

Std. Dev.: 

g(x) = 1 0.0302 0.0310 0.0337 0.0367 0.0388 0.0412 

g(x) = x 0.0312 0.0321 0.0352 0.0383 0.0406 0.0433 

g(x) = x2 0.0357 0.0366 0.0395 0.0423 0.0446 0.0471 

Log 0.0225 0.0241 0.0294 0.0345 0.0383 0.0425 

Bound: 

g(x) = 1 0.0539 0.0573 0.0697 0.0827 0.0958 0.1140 

g(x) = x 0.0517 0.0553 0.0680 0.0815 0.0951 0.1142 

g(x) = x2 0.0617 0.0650 0.0783 0.0918 0.1061 0.1256 

Log 0.0270 0.0306 0.0442 0.0588 0.0738 0.0948 

Coverage: 

g(x) = 1 95.2% 87.8% 89.2% 87.7% 86.8% 91.6% 

g(x) = x 92.7% 84.4% 82.6% 85.8% 84.5% 90.3% 

g(x) = x2 95.4% 87.3% 89.1% 88.0% 87.8% 92.6% 

Log 77.9% 59.7% 67.8% 69.3% 71.4% 81.1% 
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Table 18. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the first six ordered values in population DATAB using the 
piecewise simple linear regression procedure, where 1,000 replications were used in the 
simulations and the actual value of the cdf was 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 for 
the six ordered values, respectively. 

Model Ordered Population Value 

First Second Third Fourth Fifth Sixth 

Estimate: 

g(x) = 1 0.0267 0.0293 0.0338 0.0406 0.0566 0.0582 

g(x) = x 0.0229 0.0256 0.0306 0.0380 0.0552 0.0569 

g(x) = x2 0.0216 0.0244 0.0296 0.0374 0.0552 0.0569 

Log 0.0200 0.0228 0.0279 0.0355 0.0528 0.0544 

Std. Dev.: 

g(x) = 1 0.0199 0.0192 0.0187 0.0178 0.0166 0.0166 

g(x) = x 0.0200 0.0194 0.0191 0.0185 0.0178 0.0178 

g(x) = x2 0.0209 0.0203 0.0202 0.0198 0.0192 0.0193 

Log 0.0142 0.0133 0.0132 0.0128 0.0125 0.0126 

Bound: 

g(x) = 1 0.0368 0.0395 0.0444 0.0509 0.0677 0.0693 

g(x) = x 0.0303 0.0333 0.0387 0.0461 0.0641 0.0657 

g(x) = x2 0.0272 0.0305 0.0361 0.0438 0.0625 0.0643 

Log 0.0272 0.0303 0.0361 0.0433 0.0613 0.0629 

Coverage: 

g(x) = 1 96.0% 87.9% 90.0% 78.6% 92.0% 82.1% 

g(x) = x 91.0% 80.0% 80.6% 71.9% 89.6% 76.4% 

g(x) = x2 85.9% 75.0% 74.1% 67.3% 87.1% 71.8% 

Log 93.0% 83.3% 84.1% 74.5% 90.3% 75.8% 
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Table 19. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the first six ordered values in population DATAC using the 
piecewise simple linear regression procedure, where 1,000 replications were used in the 
simulations and the actual value of the cdf was 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 for 
the six ordered values, respectively. 

Model Ordered Population Value 

First Second Third Fourth Fifth Sixth 

Estimate:
 

g(x) = 1 0.0106 0.0156 0.0186 0.0386 0.0407 0.0456
 

g(x) = x 0.0116 0.0170 0.0200 0.0408 0.0430 0.0480
 

g(x) = x2 0.0193 0.0254 0.0288 0.0516 0.0538 0.0591
 

Std. Dev.:
 

g(x) = 1 0.0181 0.0222 0.0244 0.0368 0.0375 0.0399
 

g(x) = x 0.0184 0.0228 0.0250 0.0386 0.0394 0.0419
 

g(x) = x2 0.0222 0.0268 0.0289 0.0424 0.0434 0.0459
 

Bound:
 

g(x) = 1 0.0164 0.0232 0.0268 0.0534 0.0555 0.0612
 

g(x) = x 0.0183 0.0253 0.0288 0.0563 0.0584 0.0643
 

g(x) = x2 0.0296 0.0375 0.0413 0.0700 0.0723 0.0783
 

Coverage:
 

g(x) = 1 56.8% 47.3% 44.8% 58.4% 50.4% 50.5%
 

g(x) = x 61.5% 49.9% 46.6% 60.1% 52.0% 53.0%
 

g(x) = x2 80.8% 66.2% 62.1% 71.4% 63.5% 63.1%
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Table 20. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the first six ordered values in population DATAG using the 
piecewise simple linear regression procedure, where 1,000 replications were used in the 
simulations and the actual value of the cdf was 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 for 
the six ordered values, respectively. 

Model Ordered Population Value 

First Second Third Fourth Fifth Sixth 

Estimate: 

g(x) = 1 0.0567 0.0605 0.0652 0.0739 0.0779 0.0817 

g(x) = x 0.0577 0.0617 0.0665 0.0755 0.0796 0.0836 

g(x) = x2 0.0669 0.0710 0.0759 0.0852 0.0894 0.0934 

Log 0.0376 0.0418 0.0469 0.0568 0.0612 0.0655 

Std. Dev.: 

g(x) = 1 0.0344 0.0355 0.0368 0.0392 0.0406 0.0419 

g(x) = x 0.0357 0.0369 0.0382 0.0407 0.0421 0.0432 

g(x) = x2 0.0386 0.0397 0.0409 0.0431 0.0443 0.0454 

Log 0.0291 0.0308 0.0327 0.0363 0.0381 0.0397 

Bound: 

g(x) = 1 0.0771 0.0815 0.0865 0.0964 0.1006 0.1048 

g(x) = x 0.0780 0.0824 0.0874 0.0979 0.1023 0.1066 

g(x) = x2 0.0890 0.0935 0.0986 0.1093 0.1138 0.1181 

Log 0.0528 0.0574 0.0632 0.0749 0.0798 0.0846 

Coverage: 

g(x) = 1 98.8% 97.2% 96.0% 94.0% 88.9% 87.7% 

g(x) = x 98.7% 96.2% 94.8% 93.2% 88.1% 87.1% 

g(x) = x2 99.4% 97.3% 96.2% 94.2% 90.4% 90.0% 

Log 95.9% 89.9% 86.1% 82.7% 75.4% 74.8% 
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Table 21. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the first six ordered values in population DATAGNB using the 
piecewise simple linear regression procedure, where 1,000 replications were used in the 
simulations and the actual value of the cdf was 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 for 
the six ordered values, respectively. 

Model Ordered Population Value 

First Second Third Fourth Fifth Sixth 

Estimate: 

g(x) = 1 0.0405 0.0592 0.0631 0.0654 0.0736 0.0771 

g(x) = x 0.0339 0.0532 0.0573 0.0597 0.0685 0.0721 

g(x) = x2 0.0376 0.0576 0.0618 0.0643 0.0736 0.0774 

Log 0.0262 0.0446 0.0486 0.0509 0.0593 0.0628 

Std. Dev.: 

g(x) = 1 0.0323 0.0375 0.0379 0.0379 0.0400 0.0401 

g(x) = x 0.0315 0,0373 0.0378 0.0378 0.0401 0.0403 

g(x) = x2 0.0334 0.0399 0.0406 0.0406 0.0431 0.0433 

Log 0.0267 0.0332 0.0336 0.0336 0.0362 0.0365 

Bound: 

g(x) = 1 0.0570 0.0792 0.0835 0.0859 0.0955 0.0990 

g(x) = x 0.0480 0.0712 0.0759 0.0783 0.0886 0.0924 

g(x) = x2 0.0527 0.0765 0.0813 0.0837 0.0945 0.0987 

Log 0.0372 0.0601 0.0645 0.0669 0.0768 0.0805 

Coverage: 

g(x) = 1 98.2% 96.8% 95.7% 91.5% 87.7% 85.3% 

g(x) = x 94.7% 93.0% 92.2% 85.5% 83.1% 80.2% 

g(x) = x2 95.6% 94.4% 92.9% 86.4% 83.0% 81.7% 

Log 91.8% 91.5% 89.2% 79.2% 75.6% 73.0% 
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Table 22. Means of the cdf estimates, standard deviations of the estimates, means of the 
weighted 90% upper confidence bounds, and coverage of the weighted 90% upper 
confidence bounds for the first six ordered values in population DATAUNB using the 
piecewise simple linear regression procedure, where 1,000 replications were used in the 
simulations and the actual value of the cdf was 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 for 
the six ordered values, respectively. 

Model Ordered Population Value 

First Second Third Fourth Fifth Sixth 

Estimate: 

g(x) = 1 0.0285 0.0315 0.0356 0.0431 0.0521 0.0616 

g(x) = x 0.0236 0.0270 0.0317 0.0405 0.0508 0.0612 

g(x) = x2 0.0404 0.0440 0.0492 0.0589 0.0704 0.0814 

Log 0.0239 0.0270 0.0312 0.0384 0.0463 0.0545 

Std. Dev.: 

g(x) = 1 0.0201 0.0201 0.0202 0.0208 0.0216 0.0235 

g(x) = x 0.0232 0.0234 0.0236 0.0244 0.0252 0.0273 

g(x) = x2 0.0382 0.0389 0.0395 0.0405 0.0419 0.0439 

Log 0.0173 0.0167 0.0164 0.0167 0.0174 0.0197 

Bound: 

g(x) = 1 0.0401 0.0433 0.0478 0.0561 0.0660 0.0765 

g(x) = x 0.0304 0.0340 0.0391 0.0492 0.0608 0.0727 

g(x) = x2 0.0516 0.0559 0.0612. 0.0721 0.0848 0.0971 

Log 0.0303 0.0334 0.0374 0.0447 0.0536 0.0629 

Coverage: 

g(x) = 1 97.5% 91.6% 88.8% 85.5% 83.4% 85.9% 

g(x) = x 84.4% 73.5% 74.7% 75.5% 78.1% 79.8% 

g(x) = x2 89.1% 80.4% 80.1% 80.9% 82.7% 83.3% 

Log 95.5% 88.5% 88.6% 77.4% 70.1% 63.7% 
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means of the cdf estimates, standard deviations of the estimates, means of the weighted 

90% upper confidence bounds, and coverage of the weighted 90% upper confidence 

bounds are provided for the first six ordered values in each population. 

Regarding the means of the cdf estimates, the Log version of the piecewise 

regression procedure was superior to the versions using the original scale. Exclusive of 

populations DATAG and DATAGNB, the Log case performed very well with no 

consistent pattern in terms of bias. Even for populations DATAG and DATAGNB, the 

Log case did well for the fifth and sixth ordered values in the populations (Tables 20 and 

21). Among the versions using the original scale, the g(x) = x version usually performed 

marginally better than the g(x) = 1 arid g(x) = x2 versions. With a few exceptions, the 

versions using the original scale showed positive bias for all of the first six ordered values 

in each population. In addition, for most of the populations, bias of the estimates for the 

versions using the original scale was relatively constant for the first six ordered values 

in each population. 

Regarding standard deviation of the estimates, the Log version consistently had 

smaller values than the three versions using the original scale. Among the three version 

using the original scale, standard deviations for the g(x) = x version were somewhat 

smaller in most populations than values for the other two versions. Exclusive of 

population DATAB for which there was a decrease, standard deviations increased across 

the first six ordered population values. Note that the amount of increase was very small 

for population DATAUNB (Table 22). 
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Results for means of the upper confidence bounds were very similar to results for 

means of the cdf estimates. Analogous to the estimates, the amount by which the upper 

bound exceeded the actual cdf tended to remain close to constant for the versions using 

the original scale for most of the populations. 

Regarding coverage of the upper confidence bounds, the three versions using the 

original scale produced superior performance in comparison to the Log version. Among 

the versions using the original scale, coverage was usually better for the second through 

the six ordered population values in comparison to the first ordered value. For example 

for the g(x) = version and population DATAA, coverage was 95.2% for the first1 

ordered value but ranged from 87.7% to 91.1% for the other ordered values (Table 17). 

Overall, the g(x) = 1 version performed best among the three versions using the original 

scale. The g(x) = 1 case performed well for all populations except DATAC and, to a 

lesser extent, STREAM. Population DATAC was the only population for which coverage 

was consistently inadequate for all four versions and all of the six ordered population 

values (Table 19). For population STREAM the g(x) = case produced adequate1 

coverage for three of the six ordered population values, while the g(x) = x2 case produced 

adequate coverage for two ordered population values and the other two cases failed to 

produce adequate coverage for any of the ordered population values (Table 16). 
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5. CONCLUSIONS
 

5.1 Summary 

This thesis has addressed absence of a specific class of objects in a finite set of 

objects, where the term universe was used to reference the finite set. A species of fish 

is an example of a class of objects, and the finite set of fish in a pool within a stream 

reach is an example of a universe. The problem that was addressed may be described as 

follows. A universe has been defined, and a probability sample has been selected from 

that universe. For each object in the sample, membership in a class of objects has been 

determined. Given absence of the class in the sample, the objective is to infer presence 

or absence of the class of objects in the universe. Two examples of this group of 

problems were considered: (a) absence of a species and (b) absence in relation to a 

threshold. Absence of a species was addressed in Chapter 2. Absence in relation to a 

threshold was addressed in Chapters 3 and 4. 

Absence of a species was considered in terms of absence of a specific species of 

fish in a stream reach, with assessment via a sample of pools from the universe composed 

of the set of pools contained in the reach. For this example inference was in terms of the 

assessed probability that the species is absent in the universe given absence of the species 

in the sample, where the assessed probability is interpreted as a degree of belief. The 

probability of absence was developed at two levels: (a) the probability of absence of the 

species in the universe of pools in the reach given absence in a sample of pools, and (b) 

the probability of absence of the species in an individual sampled pool given that no 
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individuals of the species were observed in the pool. The probability of absence 

developed for those two levels was used to assess the probability of absence in the reach 

given that none were observed in the sample, 

Absence in relation to a threshold considered absence of objects in a universe that 

belong to a class of objects defined by values of a quantitative attribute in a specific 

range, say, less than a low threshold. Specifically, this example considered a universe 

composed of a finite set of lakes, where the class of objects was lakes with values of a 

chemical attribute less than a low threshold value. Two inferential approaches were 

considered: (a) inference in terms of the initial ordered value in the finite population, e.g., 

the smallest value of the chemical attribute for the lakes in the universe: and (b) 

inference in terms of the threshold value, where inference utilized the estimated 

distribution function evaluated at the threshold value. The first inferential approach was 

addressed in Chapters 3. and the second inferential approach was addressed in Chapter 

4. 

Regarding absence of a species, our results demonstrate that, for the case of simple 

random sampling, the assessed probability of absence of the class of objects in the 

universe given absence of the class in the sample is either exactly or approximately equal 

to the probability of observing a specific. single object from the class of objects given the 

protocol for observation. Using a modelled approach for the universe of fish in an 

individual pool, the assessed probability of absence given that none were observed can 

be made arbitrarily close to one for the range of observation probabilities considered. 
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Using the finite sampling approach for the universe of pools in a stream reach, the 

assessed probability of absence in the universe given absence in the sample of pools is 

no greater than the proportion of the pools in the reach that are sampled. Combining the 

two approaches to produce an assessment of the probability of absence in a reach given 

that none were observed, we demonstrated that the assessed probability is bounded by the 

sampling fraction, . We conclude that the degree of belief the species is absent in the 

reach given that none were observed is no stronger that the amount of effort expended 

in sampling, and certainty of belief that the species is absent requires exhaustive 

sampling. 

To further explore the primary result from Chapter 2, consider adding a third tier 

to the sampling design by obtaining a simple random sample of size m reaches from the 

M reaches in a stream. Using the finite sampling approach, the assessed probability that 

the species is absent from the universe of reaches in the stream given that the species was 

absent from the sample of reaches is approximately equal to . The probability that the 

species is absent from the stream given that none were observed, therefore, is bounded 

n m 
by . Thus, the degree of belief that the species is absent from the stream givenN M
that none were observed is bounded by the product of the sampling fractions for the 

second and third tiers of sampling. Adding a fourth tier of sampling to assess absence 

of the species in the universe of stream in a stream basin will have an analogous effect 

on the assessed probability of absence given that none were observed. The general 

conclusion to be reached is that a conclusive (high probability) statement regarding 

absence of a species requires an exhaustive sampling effort at all levels below the lowest 
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level, say, a pool. Furthermore, weakness in the assessed probability increases as the size 

of the reporting unit increases from, say, a reach to a stream to a basin, etc. Thus, due 

to the monumental amount of sampling that is required, concluding that a species is 

absent from a domain of appreciable geographic extent is unlikely to be a realistic goal 

for a monitoring program. Applied to assessing absence of an endangered species based 

on a sampling protocol, one should maintain a healthy dose of skepticism regarding a 

conclusion that the species is absent from a geographic region. 

The inferential approaches considered in Chapters 3 and 4 are alternative means 

for assessing absence of objects with values of a quantitative attribute less than a 

threshold value in the lower tail of the population distribution function. In Chapter 3 the 

estimators presented support point estimation and interval estimation regarding the initial 

ordered value in the finite population. Although such estimation is of interest, it does not 

provide assessment of the probability that the class of objects is absent from the universe. 

Conversely, the cdf estimators discussed in Chanter 4 provide estimates of the proportion 

of objects in the universe that have values of the quantitative attribute less than the 

threshold value. The upper confidence bounds for the estimated cdf that were discussed 

in Chapter 4 provide a mechanism for assessing the probability that the class of objects 

is absent in the universe. 

In the context of inference regarding the initial ordered value in the finite 

population, the estimators in Chapter 3 that were based on the MLE produced mixed 

results. When the finite population can be approximated as a sample from the Uniform 
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distribution, the estimators performed very well. When the finite population can be 

approximated as a sample from the Normal distribution, however, the positive bias of the 

estimators made them effectively useless. 

Within the confines of the samplin2 design that was presented, the estimators in 

Chapter 3 based on extreme value theory performed very well. Recall, however, that 

those estimators were predicated on the existence of several samples. In order to apply 

the methodology we have developed to an actual sampling situation, one must allocate 

available resources to create a set of r independent simple random samples. Conversely, 

one could create a composite simple random sample by combining the r simple random 

samples and eliminating repeat units. Using these two sampling designs, performance of 

the estimators developed using extreme value theory is very unlikely to equal performance 

of the estimators based on the MLE or the cdf estimators discussed in Chapter 4. For that 

reason the extreme value theory estimators would not be used in practice. 

Regarding the cdf estimators discussed in Chapter 4, if the design goal was to 

produce unbiased estimates, then the best choice was to employ estimation without the 

predictor variable using the half Normal model or the Gamma model. For most of the 

populations, the procedures with a predictor variable produced consistent bias in the 

estimates. 

Recall, however, that our goal was production of upper confidence bounds with 

acceptable performance in terms of coverage. Given that goal, the best overall choice 



99 

was to employ estimation with the predictor variable using the piecewise simple linear 

regression procedure. If the sample size was sufficiently large, some gain in performance 

would be expected by employing standard model fitting techniques to determine the best 

choice for the function g(x) and the value of utilizing transformations of scale. For 

sample sizes similar to those employed in the simulations, however, it is unlikely that one 

can distinguish among models, i.e., among versions of the procedures. in light of that 

fact, the consistent performance of the g(x) = 1 version of the piecewise linear regression 

procedure means that, in spite of an inability to distinguish among models, use of the that 

version of the piecewise linear regression procedure would not result in a significant 

decrease in performance. 

5.2 Extensions 

Three extensions to the problem that was addressed in this thesis will be discussed 

in this section. The first extension concerns the course of action to follow when samples 

are missing from a sampling design for detecting presence/absence of a species. The 

second extension concerns presence of a specific species of fish in a stream reach. Given 

a simple random sample of pools from the universe of pools in a reach, suppose that 

presence of the species was established for at least one sampled pool. Under these 

conditions we will consider assessment of the proportion of pools in the reach that contain 

the species. The third extension concerns assessment of the probability that a class of 

objects will become absent from a universe. This topic will be examined by considering 

a species of fish in a lake. Conditional on the number of individuals belonging to the 

species that was observed in the sample of fish from the lake, where the number of 
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individuals is not necessarily zero, the inference goal is to assess the probability that the 

species will become absent in the lake. An explicit length of time within which the 

species will become absent is not included in this definition. 

5.2.1 Missing Samples 

Consider the sampling design presented in Section 2.5 for assessing 

presence/absence of a species of fish in a stream reach. An issue that needs to be 

addressed is the correct manner in which to proceed when samples are missing, e.g., it 

was not possible to sample a selected pool. Two approaches for dealing with this 

situation will be considered. For the first approach the universe of pools is redefined by 

eliminating the non-sampled pools. In some situations the subset of non-sampled pools 

will constitute a distinguishable subset, in which case the probability would carry a 

proviso that the assessed value does not apply to that subset. 

For the second approach, it will be taken as given that the missing samples are to 

be treated as missing at random. In most cases evidence in. support of the missing at 

random designation will be required. For this approach inference would apply to the 

entire universe; this assumption results in the reduced sample still being a probability 

sample. Thus, estimation would proceed as discussed previously in Chapter 2, using the 

iealized sample. 
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5.2.2 Proportion of Pools in a Reach That Contain a Species 

Employing the sampling design presented in Section 2.5 for assessing presence or 

absence of a species of fish in a stream reach, suppose that presence was established for 

at least one sampled pool. Recall that observing the species in a pool established 

presence of the species in that pool. Conversely, some of the pools for which presence 

was not established may contain the species. Thus, the observed proportion of sampled 

pools with the species present is biased for the true proportion of pools in the universe 

with the species present. In Chapter 2 we interpreted the probability measure 0 for a 

sampled pool as the degree of belief that the species was absent in the pool given that 

none were observed. 

An alternative approach to assessment under a specified survey protocol is to 

define the species as being absent in the habitat unit when no individuals of the species 

are observed during sampling. This definition of absence will be referenced as statutory 

absence. Strict application of the prescribed survey protocol provides statutory validity 

for a determination that the species is absent in the habitat unit given that none were 

observed. The concept of statutory absence is commonly employed, e.g., Azuma et al 

(1990) used statutory absence to "establish" absence of spotted owls in a habitat unit. 

For each sampled pool tt e S, let y. E { 0, 11 represent the observation, where 

0 indicates statutory absence and 1 indicates observed presence. Our development 

provides a method of determining a probability measure to associate with such a statutory 
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definition of absence. Specifically, we relate statutory absence to the assessed probability 

of absence in a pool given that none were observed by letting 0 represent 1 8. Then, 

since presence and absence are complementary; 8 is interpreted as the assessed1 

probability that the species is present in a pool given that none were observed. Also, 

recall that we have assumed that 0 is constant across sampled pools. 

The conventional estimator of the proportion of pools with the species present is 
t 

given by P = , where t = 
%-k 

y Since t represents the number of pools in the 
n Y S u 

sample for which statutory presence was established rather than the number of sampled 
t 

pools in which the species truly was present, P = is biased for the true proportion of 

pools in the reach that contain the species. Define a modified observation as 

y E { 1 0, 1 where the 0 is replaced by 1 0. A bias-corrected estimator of the 

proportionproportion of pools with the species present is given by Fr = where t = 5- y . 

Yn S u 

Let n equal the number of pools in the sample for which presence was established and no 
1 

equal the number of sampled pools for which presence was not established, where 

n = n1+ nO. Then t = n and t '=n +n (1-0) = n- no e . Bias correction is 
1 1 0 \

provided by the term no` 0) , which is an estimator of the number of sampled pools 

in which the species was assessed as statutorily absent but in which the species actually 

was present. 
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5.2.3 Probability of a Species Becoming Absent 

One means by which ihe species of fish could become absent in the lake is due 

to a stochastic process that governs the number of individuals of the species in the lake. 

Initially, the finite sampling approach considered in Chapter 2 will be utilized. Let K 

equal the number of fish of the species in the lake, X equal the number of fish of the 

species in the sample, and L(K = k I X = x) equal the likelihood function. In addition 

let V equal the safe population size for the species, i.e., if the lake contains at least V 

individuals of the species, then the species will not become absent due to the stochastic 

process governing the number of individuals of the species in the lake. Let p(x) equal 

the assessed probability that the species will become absent in the lake given that X=x 

individuals of the species were observed in the sample. We can write p(x) as: 

N-n+x 

p(x) = E P(K=k I X= x) * (I) (k) 
rs=X 

where P(K= k X- x), the fiducial probability that the population contains K=k 

individuals of the species given that X=x individuals were observed in the sample, is 

given by: 

L(K = k I X =x)P(K=k I X=x) 
N-n+x 

E L(K = X=X) 

and 4(k) is the extinction model, i.e.., the probability that a population containing K=k 

individuals of the species will become absent due to the modelled stochastic process. 
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Recall that P(K= k I X= x) is interpreted as a degree of belief. Conversely, (1)(k) is 

interpreted as a physical probability resulting from the assumed stochastic process. As 

discussed in Savage (1954), the product of a subjective probability (degree of belief) and 

an objective probability (physical probability) is a subjective probability. Thus, p(x) is 

interpreted as summarizing the degree of belief that the species will become absent in the 

lake given that X=x individuals of the species were observed in the sample. 

Any of a large number of functions could he employed as the extinction model. 

As a specific example, consider the following formula for (1)(k), which was derived from 

one presented by Goel and Richter-Dyn (1974): 

(1 -UK) 
1 for K < V

(K) = { tv) 

0 for K V 

where 7 is a parameter for the probability function, a constant contained in the range (0, 

1) that is specific for the species of interest. For sake of reference, note that the formula 

for ck(K) is related to the model of MacArthur and Wilson (1967) for extirpation of a 

colonizing species. The MacArthur and Wilson model is a stochastic birth and death 

process for which per capita birth and death rates depend linearly on the size of the 

population. Richter-Dyn and Goel (1972) demonstrated that the probability of extirpation 

of a colonizing species for this model is given by 1)(k), where 7 is the ratio of per capita 

death rate to per capita birth rate in the underlying model. We propose the ad hoc use 

of this model, which does not imply belief in its applicability. 
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Using the model that has been developed, the value of p(x) was determined for 

the following values of N, n, 7, and V: N = {500, 1,000, 2,500, 10,000}, n = {50, 100, 

150, 200, 250, 300, 350, 400, 450, 500), r = 10.10, 0.20, 0.50, 0.60, 0.75, 0.90, 0.95, 

0.99), and V = { 10, 25, 50). Results are presented in Tables 23 26 for the four 

valuesof N, respectively. The value of p(x) increased for both of the following cases: (a) 

increasing value of n and fixed values of N, -c and V; and (b) increasing value of 7 and 

fixed values of N, n and V. For increasing value of V and fixed values of N and n, p(x) 

was constant for fixed '7 within the set {0.10, 0.20}, was nondecreasing for fixed '7 within 

the set {0.50, 0.60, 0.75), and was increasing for fixed i within the set {0.90, 0.95, 

0.99 }. The value of p(x) decreased for increasing value of N and fixed values of n, '7 and 

V. 

It is unlikely that an estimate of N, the number of fish in the lake, will be 

available. Even if an estimate of N was available, it is not likely that an investigator will 

have an extinction model for 4)(K) to employ in assessing p(x). For that reason, it was 

decided to choose a set of standard parameter values and to interpret values of p(x) as an 

index related to the probability that the species will become absent in the lake given that 

x individuals were observed in the sample. The standardized values chosen were as 

follows: N=1,000, 7=0.5, and V=25. Results for the standardized set of parameter values 

and the range of values n = {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and x = 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9) are presented in Table 27. Two trends can be discerned from 

Table 27. For fixed value of n, the index p(x) decreased for increasing value of x. For 

fixed value of x, the index p(x) increased for increasing value of n. 
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Table 23. Values of the probability that the species will become absent in the lake, 
where n equals the sample size, 7 equals the intrinsic extinction factor, and V equals the 
safe population size for the species. Note that N, the number of fish in the lake, equals 
500, and X, the number of individuals of the species in the sample, equals 0. 

n 7 = 0. i0 7 = 0.20 

V=10 V-2:5 V-50 V=10 V=25 V=50 

50 0.112 0.112 0.112 0.124 0.124 0.124 

100 0.219 0.219 0.219 0.240 0.240 0.240 

150 0.324 0.324 0.324 0.350 0.350 0.350 

200 0.427 0.427 0.427 0.456 0.456 0.456 

250 0.527 0.527 0.527 0.557 0.557 0.557 

300 0.626 0.626 0.626 0.653 0.653 0.653 

350 0.722 0.722 0.722 0.745 0.745 0.745 

400 0.817 0.817 0.817 0.834 0.834 0.834 

450 0.909 0.909 0.909 0.919 0.919 0.919 

n	 i =0.50 '7 =0.60 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.185 0.185 0.185 0.218 0.221 0.221 

100 0.335 0.336 0.336 0.384 0.387 0.387 

150 0.463 0.464 0.464 0.517 0.519 0.519 

200 0.573 0.573 0.573 0.624 0.627 0.627 

250 0.668 0.663 0.668 0.714 0.715 0.715 

300 0.751 0.751 0.751 0.789 0.790 0.790 

350 0.824 0.824 0.824 0.853 0.854 0.854 

400 0.889 0.889 0.889 0.909 0.909 0.909 

450 0.947 0.948 0.948 0.957 0.958 0.958 
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Table 23. (Continued) 

7 =0.75 7: =0.90 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.286 0.312 0.313 0.367 0.500 0.531 

100 0.477 0.503 0.503 0.582 0.696 0.716 

150 0.613 0.634 0.634 0.715 0.798 0.812 

200 0.713 0.729 0.729 -0.802 0.860 0.870 

250 0.789 0.801 0.801 0.861 0.903 0.909 

300 0.849 0.858 0.858 0.904 0.933 0.937 

350 0.898 0.903 0.904 0.937 0.956 0.959 

400 0.938 0.941 0.941 0.963 0.974 0.976 

450 0.971 0.973 0.973 0.983 0.988 0.989 

t = 0.95 7 = 0.99 

V=10 V=75 V=50 V=10 V=25 V=50 

50 0.395 0.587 0.671 0.416 0.658 0.798 

100 0.615 0.773 0.822 0.641 0.830 0.904 

150 0.746 0.857 0.888 0.770 0.899 0.943 

200 0.828 0.904 0.925 0.848 0.934 0.963 

250 0.882 0.934 0.949 0.897 0.956 0.975 

300 0.920 0.956 0.965 0.931 0.970 0.983 

350 0.948 0.971 0.977 0.956 0.981 0.989 

400 0.969 0.983 0.987 0.974 0.989 0.994 

450 0.986 0.992 0.994 0.988 0.995 0.997 
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Table 24. Values of the probability that the species will become absent in the lake, 
where n equals the sample size, 7 equals the intrinsic extinction factor, and V equals the 
safe population size for the species. Note that N, the number of fish in the lake, equals 
1,000, and X, the number of individuals of the species in the sample, equals 0. 

11 7 =0.10 '7 =0.20 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.056 0.056 0.056 0.063 0.063 0.063 

100 0.111 0.111 0.111 0.123 0.123 0.123 

150 0.165 0.165 0.165 0.182 0.182 0.182 

200 0.218 0.218 0.218 0.239 0.239 0.239 

250 0.271 0.271 0.271 0.295 0.295 0.295 

300 0.323 0.323 0.323 0.350 0.350 0.350 

350 0.375 0.375 0.375 0.403 0.403 0.403 

400 0.426 0.426 0.426 0.455 0.455 0.455 

450 0.477 0.477 0.477 0.506 0.506 0.506 

500 0.527 0.527 0.527 0.556 0.556 0.556 

n '7 = 0.50 t = 0.60 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.097 0.097 0.097 0.116 0.118 0.118 

100 0.183 0.183 0.183 0.216 0.219 0.219 

150 0.262 0.262 0.262 0.304 0.308 0.308 

200 0.334 0.335 0.335 0.383 0.386 0.386 

250 0.401 0.401 0.401 0.453 0.456 0.456 

300 0.462 0.463 0.463 0.515 0.518 0.518 

350 0.519 0.519 0.519 0.5'72 0.575 0.575 

400 0.572 0.572 0.572 0.623 0.626 0.626 

450 0.621 0.621 0.621 0.670 0.672 0.672 

500 0.667 0.667 0.667 0.713 0.715 0.715 



109 

Table 24. (Continued) 

7 =0.75 C =0.90 

V=10 V=25 V=50 V=10 V=25 V-50 

50 0.157 0.177 0.177 0.208 0.314 0.348 

100 0.283 0.310 0.310 0.364 0.496 0.528 

150 0.388 0.415 0.416 0.485 0.613 0.639 

200 0.475 0.501 0.502 0.580 0.694 0.714 

250 0.549 0.572 0.573 0.654 0.753 0.769 

300 0.611 0.632 0.633 0.713 0.797 0.811 

350 0.665 0.683 0.684 0.761 0.832 0.843 

400 0.712 0.728 0.728 0.801 0.860 0.869 

450 0.753 0.766 0.766 0.833 0.883 0.891 

500 0.788 0.800 0.800 0.861 0.902 0.909 

7 =0.95 t =0.99 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.225 0.384 0.483 0.239 0.444 0.623 

100 0.391 0.583 0.668 0.412 0.653 0.795 

150 0.517 0.698 0.763 0.542 0.764 0.866 

200 0.613 0.771 0.821 0.639 0.829 0.903 

250 0.637 0.821 0.859 0.712 0.870 0.927 

300 0.745 0.856 0.887 0.769 0.898 0.942 

350 0.791 0.883 0.908 0.812 0.918 0.954 

400 0.827 0.904 0.925 0.847 0.934 0.963 

450 0.857 0.920 0.938 0.874 0.946 0.969 

500 0.882 0.934 0.948 0.897 0.955 0.975 
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Table 25. Values of the probability that the species will become absent in the lake, 
where n equals the sample size, T equals the intrinsic extinction factor, and V equals the 
safe population size for the species. Note that N, the number of fish in the lake, equals 
2,500, and X, the number of individuals of the species in the sample, equals 0. 

n -c. =0.10 t =0.20 

V=10 V=25 V-50 V=10 -v=25 V=50 

50 0.023 0.023 0.023 0.025 0.025 0.025 

100 0.045 0.045 0.045 0.050 0.050 0.050 

150 0.067 0.067 0.067 0.074 0.074 0.074 

200 0.089 0.089 0.089 0.098 0.098 0.098 

250 0.110 0.110 0.110 0.122 0.122 0.122 

300 0.132 0.139 0.132 0.146 0.146 0.146 

350 0.154 0.154 0.154 0.169 0.169 0.169 

400 0.175 0.175 0.175 0.193 0.193 0.193 

450 0.196 0.196 0.196 0.216 0.216 0.216 

500 0.218 0.218 0.218 0.238 0.238 0.238 

n t =0.50 7 =0.60 

V=10 V=25 V =50 V=10 V=95 V=50 

50 0.040 0.040 0.040 0.048 0.049 0.049 

100 0.077 0.078 0.078 0.093 0.095 0.095 

150 0.114 0.114 0.114 0.136 0.138 0.138 

200 0.148 0.149 0.149 0.177 0.179 0.179 

250 0.182 0.182 0.182 0.215 0.218 0.218 

300 0.214 0.215 0.215 0.252 0.255 0.255 

350 0.246 0.246 0.246 0.286 0.290 0.290 

400 0.276 0.276 0.276 0.320 0.323 0.323 

450 0.305 0.306 0.306 0.351 0.355 0.355 

500 0.333 0.334 0.334 0.382 0.385 0.385_J 
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Table 25. (Continued) 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.067 0.077 0.077 0.090 0.147 0.170 

100 0.127 0.144 0.144 0.169 0.262 0.294 

150 0.183 0.204 0.205 0.240 0.354 0.389 

200 0.234 0.259 0.259 0.304 0.431 0.464 

250 0.282 0.308 0.309 0.362 0.494 0.525 

300 0.326 0.353 0.354 0.415 0.547 0.576 

350 0.367 0.395 0.395 0.462 0.592 0.618 

400 0.405 0.433 0.433 0.504 0.630 0.655 

450 0.441 0.468 0.468 0.543 0.664 0.686 

500 0.474 0.500 0.500 0.578 0.693 0.713 

7 =0.95 7 =0.99 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.098 0.185 0.257 0.104 0.219 0.357 

100 0.183 0.324 0 418 0.195 0.376 0.553 

150 0.260 0.430 0.528 0.275 0.494 0.669 

200 0.328 0.514 0.607 0.347 0.583 0.743 

250 0.389 0.581 0.665 0.410 0.651 0.793 

300 0.444 0.634 0.710 0.467 0.704 0.828 

350 0.493 0.678 0.746 0.517 0.745 0.854 

400 0.537 0.714 0.775 0.562 0.778 0.874 

450 0.576 0.744 0.799 0.602 0.805 0.890 

500 0.612 0.770 0.820 0.637 0.828 0.903 
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Table 26. Values of the probability that the species will become absent in the lake, 
where n equals the sample size, T equals the intrinsic extinction factor, and V equals the 
safe population size for the species Note that N, the number of fish in the lake, equals 
10,000, and X, the number of individuals of the species in the sample, equals 0. 

T - 0 10 "7 =0.20 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.006 0.006 0.006 0.006 0.006 0.006 

100 0.011 0.011 0.011 0.013 0.013 0.013 

150 0.017 0.017 0.017 0.019 0.019 0.019 

200 0.022 0.022 0.022 0.025 0.025 0.025 

250 0.028 0.028 0.028 0.031 0.031 0.031 

300 0.033 0.033 0.033 0.037 0.037 0.037 

350 0.039 0.039 0.039 0.043 0.043 0.043 

400 0.044 0.044 0.044 0.050 0.050 0.050 

450 0.050 0.050 0.050 0.056 0.056 0.056 

500 0.055 0.055 0.055 0.062 0.062 0.062 

n -r =0.50 t =0.60 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.010 0.010 0.010 0.012 0.013 0.013 

100 0.020 0.020 0.020 0.024 0.025 0.025 

150 0.030 0.030 0.030 0.036 0.037 0.037 

200 0.039 0.039 0.039 0.048 0.049 0.049 

250 0.049 0.049 0.049 0.059 0.060 0.060 

300 0.058 0.058 0.058 0.070 0.072 0.072 

350 0.068 0.068 0.068 0.082 0.083 0.083 

400 0.077 0.077 0.077 0.093 0.095 0.095 

450 0.086 0.086 0.086 0.104 0.106 0.106 

500 0.095 0.095 0.095 0,114 0.116 0.116 
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Table 26. (Continued) 

11 = 0.75 7 = 0.90 

V=10 V=25 V =50 V=10 V=25 V=50 

50 0.017 0.020 0.020 0.023 0.040 0.048 

100 0.034 0.039 0.039 0.046 0.077 0.091 

150 0.050 0.058 0.058 0.067 0.112 0.131 

200 0.066 0.076 0.076 0.089 0.145 0.168 

250 0.081 0.093 0.093 0.109 0.176 0.202 

300 0.096 0.110 0.110 0.129 0.205 0.234 

350 0.111 0.127 0.127 0.149 0.233 0.264 

400 0.126 0.143 0.143 0.168 0.260 0.291 

450 0.140 0.158 0.159 0.186 0.285 0.318 

500 0.154 0.174 0.174 0.204 0.309 0.342 

n t =0.95 t =0.99 

V=10 V=25 V=50 V=10 V=25 V=50 

50 0.026 0.051 0.076 0.027 0.061 0.111 

100 0.050 0.098 0.142 0.053 0.117 0.203 

150 0.073 0.142 0.201 0.078 0.168 0.283 

200 0.096 0.183 0.253 0.103 0.216 0.352 

250 0.119 0.221 0.300 0.126 0.260 0.412 

300 0.141 0.256 0.343 0.149 0.301 0.464 

350 0.162 0.290 0.381 0.172 0.339 0.510 

400 0.182 0.321 0.416 0.193 0.374 0.549 

450 0.202 0.351 0.447 0.214 0.407 0.584 

500 0.221 0.378 0.476 0.235 0.437 0.615 
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Table 27. Values of the probability that the species will become absent in the lake, 
where n equals the sample size, and X equals the number of individuals of the species 
in the sample. Note that N, the number of fish in the lake, equals 1,000; T, the intrinsic 
extinction factor, equals 0.5; and V, the safe p opulation size for the species, equals 25. 

n 

0 1 3 4 

50 0.0970 0.0046 0.0002 0.0000 0.0000 

100 0.1834 0.0167 0.0015 0.0001 0.0000 

150 0.2623 0.0343 0.0045 0.0006 0.0001 

200 0.3346 0.0558 0.0093 0.0015 0.0003 

250 0.4012 0.0803 0.0160 0.0032 0.0006 

300 0.4626 0.1068 0.0246 0.0057 0.0013 

350 0.5194 0.1348 0.0349 0.0090 0.0023 

400 0.5722 0.1636 0.0467 0.0133 0.0038 

450 0.6214 0.1929 0.0599 0.0186 0.0058 

500 0.6673 0.2225 0.0742 0.0247 0.0082 

n X 

5 6 7 8 9 

50 0.0000 0.0000 0.0000 0.0000 0.0000 

100 0.0000 0.0000 0.0000 0.0000 0.0000 

150 0.0000 0.0000 0.0000 0.0000 0.0000 

200 0.0000 0.0000 0.0000 0.0000 0.0000 

250 0.0001 0.0000 0.0000 0.0000 0.0000 

300 0.0003 0.0001 0.0000 0.0000 0.0000 

350 0.0006 0.0002 0.0000 0.0000 0.0000 

400 0.0011 0.0003 0.0001 0.0000 0.0000 

450 0.0018 0.0006 0.0002 0.0001 0.0000 

I 500 0.0027 0.0009 0.0003 0.0001 0.0000 
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For the case x=0, i.e., absence of the species in the sample, let 6) equal the value 

of p(0) that was calculated using the standardized set of parameters values. lt is of 

interest to compare 6) to the assessed probability that the species is absent in the 

lakegiven absence in the sample. Tabie 28 provides value of co and tJr for N=1,000 and 

a range of values of n. The results in Table 28 show that the value of Ili consistently is 

smaller than the associated value of co. Given absence of the species in the sample, it 

makes intuitive sense that the degree of belief that the species is absent in the lake is less 

than the degree of belief that the species will become absent in the lake. Recall that, in 

our definition of p(x), no limit is placed on the length of time within which the species 

will become absent in the lake. 

Table 28. Values of 6), the probability that the species will become absent in the lake 
given that no individuals were observed in the sample, and the probability that the 
species is absent in the lake given absence in the sample, where N, the number of fish 
in the lake, equals 1,000. 

n 

50 100 150 200 250 300 350 400 450 500 

(A) 0.097 0.183 0.262 0.335 0.401 0.463 0.519 0.572 0.621 0.667 

0.051 0.101 0.151 0.201 0.251 0.301 0.351 0.401 0.451 0.500 

5.3 Future Research 

Three topics for future research will be discussed. First, suppose that unequal 

probability sampling was employed in a sampling design for assessing presence/absence 

of a species. A reasonable approach for this situation is to assume simple random 
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sampling in order to assess the probability of absence given that none were observed. 

One could then investigate the impact of this assumption on the probability assessment. 

Second, the estimators of the minimum value in a finite population that were based on 

the MLE performed adequately for a finite population selected from the Uniform 

distribution but not for a finite population selected from the Normal distribution. It would 

be worthwhile to investigate methodology for improving performance of those estimators 

for finite populations other than ones that can be approximated as a sample from the 

Uniform distribution. Third, for most of the finite populations investigated for the 

estimated cdf, the procedures that included a predictor variable overestimated the true 

distribution function in the lower tail, which resulted in confidence intervals that exceeded 

the nominal coverage. At the same time the estimated cdf for the predicted values 

usually was close to the true distribution function, which indicates that excessive error 

was being added to the predicted values. Therefore, one could investigate procedures that 

reduced the observed bias in the estimated cdf by decreasing the amount of error added 

to the predicted values via the Chambers and Dunstan protocol. 
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A proof that the probability of absence of a species in a universe given absence of the 
species in a simple random sample is approximately equal to the sampling fraction 
follows. Let ill equal the probability of absence. Then: 

N-n 
E L(K=k1 X=0) 
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As an approximation, replace the product in the summation with an approximate power 
function in N and n. Then: 
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As a second approximation, replace the power term in the numerator with zero. Then: 
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