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Sequential machines uniquely determine directed

graphs. A path in a sequential machine may be specified

by a starting state and an input sequence. A uniform

Hamiltonian touring sequence (UHTS) is an input sequence

that specifies a Hamiltonian path regardless of the start-

ing state. We present a polynomial time algorithm that

determines the existence of a UHTS for a linear sequential

machine (LSM) defined over the prime field Z .

The problem of whether or not a general graph con-

tains a Hamiltonian path is known to be NP-complete. If

we restrict ourselves to directed graphs defined by LSM's

then there is a Hamiltonian path if and only if the di-

graph is strongly connected. This condition is polynomi-

al time testable by determining the rank of the controll-

ability matrix. We show that strong connectedness is not

sufficient to guarantee the existence of a UHTS.
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UNIFORM HAMILTONIAN TOURING SEQUENCES

I. INTRODUCTION AND DEFINITIONS

Many problems about graphs are hard. No known algo-

rithm for solving any of these problems has polynomial

running time. For example, does a given digraph have a

path visiting each vertex exactly once. The existence of

such a path, called a Hamiltonian path, is a hard problem

[see Garey and Johnson p. 199]. Often when a general

problem is restricted to special cases, there are polyno-

mial time algorithms. We shall restrict the Hamiltonian

path problem by considering a special class of graphs

and imposing a "uniform" condition on the paths. We will

display a polynomial time algorithm which solves this re-

stricted problem.

In a natural way, a sequential machine defines a

digraph. A sequential machine, with a state set X and an

input set Y, is defined by a next state function F: XxY +X

according to the formula xi+1= F(xi,yi). That is F maps

the present state and input to the next state. The ver-

tex set for the corresponding digraph is X and there is an

edge fromxtox if and only if there is a y c Y such

that x
1

= F(x,y). A tour through a digraph is a path that

visits all vertices at least once. If a digraph defined

by the sequential machine F has a tour, it may be speci-

fied by a starting state x0 and an input sequence. Such
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a sequence is called a touring sequence for x0. Suppose

we start the machine in a state other than x
0

and apply

a touring sequence for x0. In general we no longer have

a tour. If an input sequence is a touring sequence for

all states in X, we call it a uniform touring sequence

(UTS). A UTS must have at least N-1 elements where N is

the number of states in X. A UTS with exactly N-1

elements will cause the machine to visit each state ex-

actly once regardless of the starting state. For this

reason we call a UTS of length N-1 a uniform Hamiltonian

touring sequence (UHTS).

We extend our notion of the next state function in

order to describe the action of a machine on an input

sequence. Let Y denote the set of all finite sequences
*

of elements from the input set Y. The function n: XxY *X

is defined recursively by n(x,{}) = x and

-1
n(x,(y}i=0) = F(n(x,{y}im=0,ym)).

A linear sequential machine (LSM) defines its next state

function by

(x,{y}m
=0

) = Am+lx + AmBy
0

+ Am-lBy
1

+ + By
i

= A
m+1

x + (0,{y}=0) where

A and B are n dimensional matrices defined over the field

Z . We denote a LSM by the pair [A,B]. The state set X

and the input set Y are both the n dimensional vector

space whose scalar field is Z . Note that there are N=p
n
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different states. We shall address the problem of deter-

mining the existence of UHTS for a LSM and show this prob-

lem is polynomial time solvable. That is, the problem

may be solved by an algorithm whose running time is bounded

by a polynomial in n, the dimension of the state space.

We will use algebraic techniques to determine neces-

sary and sufficient condtions for a LSM to have a UHTS.

If a machine has a UHTS we can define an operation *,

so that the state set X under * forms a group. In this

case, X has a normal subgroup S
0
which allows us to de-

fine a "standard form" for the matrix A. This form is

used to reduce the number of relevant cases to four.

Strong connectedness is a significant condition to

consider when determinig the existence of a UHTS. A

set S a X is strongly connected by F if and only if for

each pair x, x e S, there exists an input sequence

{y}
=0

such that x= n(x,{y}m
=

) and each intermediatei0
state is in S. In the case where S = X we say F is strong-

ly connected.

Related to strong connectednes is the notion of

controllability. If every pair of states in X has a con-

necting input sequence of the same length, K, F is called

K-controllable. A machine is controllable if it is K-

controllable for some K. When F = [A,B] we define the

controllability matrix to be the n by n
2
matrix

[BIAB,...1A
n-1

B].
1
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II. 'PRELIMINARY RESULTS

Our first two theorems provide several alternate char-

acterizations of strong connectedness. They are central

to many of the arguments proving the correctness of our

algorithm. In particular Theorem 2 provides the key to

actually constructing a UHTS provided one exists. We con-

clude this section with two simple results concerning ma-

chines that have UHTS's.

Theorem 1: Let [A,B] be a finite state linear sequen-

tial machine. Then the following are equivalent.

i) [A,B] is strongly connected.

ii) [A,B] has a UTS.

iii) [A,B] is controllable.

and iv) rank [BIAB
112B...An-1B]

[The equivalence of i, iii, and iv were taken from Cohn].

Proof: i) <=> ii) Clearly if [A,B] has a UTS then

[A,B] is strongly connected.

Assume [A,B] is strongly connected. Then for each

state x E X; there is an input sequence T(x) such that when

[A,B] is started in x and fed T(x), each state is visited

at least once. Pick some arbitrary state, say xl. We will

construct the UTS by starting with T(x1). Pick any other

state say x2. Either T(xl) causes a complete tour or not.

If it does, go on to another state. If it doesn't add

T(n(x2,T(x1)) to our UTS. Continue in this manner
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until all possible starting states are taken care of.

i) <=> iii) if [A,B] is controllable then clearly

[A,B] is strongly connected.

Assume [A,B] is strongly connected. Let Z(i,j) de-

note the length of the shortest input sequence that takes

state i to state j. Since [A,B] is strongly connected,Z

is defined for every pair of states. Set L'= max t(i3O)
e X

and L = jMtxx 40,j). We claim [A,B] is L-controllable

where L = L + L . This follows since a transition from

any state i to any other state j can be made via the 0 state.

At this point L - - 40,j) zero inputs can be intro-

duced to pad out the sequence.

iii) <=> iv) Assume rank [B:AB::An-lB] = n. Then
,

for any pair x, x
1

c X there is a vector u such that

x - Anx =
; ;An 1Bin.. -

Let /yn ' =.u. Now x'- Anx = [BiABI-HAn-lB ] /yn A

Yn-1

yi /

Yn -1

yi /

so xl- Anx = A
n-1

BY
1
+ HY2 "'

= n (0,{y}1.1)

Byn

and x
5

= n(x,{y}i.1). Hence [A,B] is n-controllable.

Assume [A,B] is K-controllable for some integer K.

Reversing the previous construction we see that rank

K-1 n-1
B] = n. Note that [BiABi :A B] < n then

for some i<n, rank [B1ABi ;Ai-1B] = rank [BiABI...iAlB].

The columns of A1B can be expressed as linear combinations
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of columns in [BIABi-.. lAi -1B]. Thus Ai4.1B adds no new

linearly independent columns to [BABIAlB]. Continuing

in this manner shows

rank [BiAB!...!Ai-1B] = rank [BIABI...iA"IB] < n for

all j > i. Hence rank [B1AB!.HAK-1B] = n implies rank

[BIABlAn-1B] = n.

The fact that every UHTS is also a UTS gives us the

following result.

Corollary 1.1: If a LSM has a UHTS then it is strong-

ly connected.

Theorem 2 [Cull 1980]: A LSM [A,B] is strongly con-

nected if and only if it has a directed Hamiltonain cir-

cuit.

Proof: If [A,B] has a directed Hamiltonian circuit

then obviously [A,B] is strongly connected. Assume [A,B]

is strongly connected. We will demonstrate a permutation

on the state set X. From the associated cycles a Hamilton-

ian circuit can be constructed.

For every x c X, define the successor set S(x) =

{Ax + Byly E X}. That is S(x) is the set of all states

reachable from x in one step. Clearly S(0) = R(B), the

range of B,and S(x) = Ax + R(B). Since [A,B] is strongly

connected every element is in some successor set. Hence

X is partitioned by equal sized successor sets, i.e. the

cosecs of R(B). Note that distinct successor sets do not

overlap. That is if S(x1)f)S(x2) is nonempty then



7

S(x
1
) = S(x

2
).

Define to be the equivalence relation where xl =x2

if and only if S(x1) = S(x2). Let E(x) denote the equiva-

lence class containing x. We want to show that for all

x eX, lE(x)1 = IE(0)1 where Ildenotes the number of ele-

ments in a set.

Let q eE(0). Since 0 eS(0) = S(q), there is a y

such that Aq + By = 0. Hence Ax = A(x + q) + By ES(X) n

S(x + q) so S(x) = S(x + q). That isxEx+qfor all

q eE(0). This shows that IE(x)I > IE(0)1 .

Similarly assume q e E(x). Then there is a y with
1 1

Aq + By = Ax. Now A(x - q ) + By = 0 is in both S(0)
1 1

and S(x =q). So 0Ex-q for allqeE(x) implies

E(0)1 E(x)I .

We have shown that X is partitioned into equal sized

equivalence classes, say E(x1),E(x2),...,E(xr). Note that

S(E(x.)) = x
S(x) = S(x.). We claim S(x

1
),S(x

2
),...

'

S(x r) also partition X. This is clear since every state

is reachable from some equivalence class. Consequently

E(xi)I = IS(0)1 = I R(B)I .

Let (0.:E(xi )+R(B) be any bijection. We define a

permutation Tr: X + X by w(x) = Axi + yx) where xeE(xj).

Note that x eE(xi) if and only if 1r(x) e S(xi) since the

range of Oi is R(B).

Each x is contained in one and only one equivalence

class so Tr is well defined.
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To show Tr is one to one assume 7(x) = 7(x ). We have
1

notedx=xsoforsomei,Ax.+4).(x)=Axi+4).(x ).
1

Since (0i is a bijection, x = x.

Now it is a one to one mapping over a finite set so

it is a permutation on X. Furthermore it decomposes into a

set of disjoint cycles. If there is one cycle it is a Ham-

iltonian circuit. Otherwise cycles may be joined to-

gether in the following manner to form the desired circuit.

Since [A,B] is strongly connected, there is a path

from one cycle to another. Suppose q1 a S(x1) as shown.

14x1.-+qc.1

. +

cl2.)

Since q
1

is also in S(q
2
) then S(x

1
) = S(q

2
). Hence

x2 e S(x1) implies x2 is a successor of q2.

We may now form the larger cycle shown here.

.jc2 c126)

Clearly we may continue joining cycles until a Hamilton-

ian circuit is constructed.

Our primary applications of Theorem 2 are the follow-

ing two corollaries. Under certain conditions a strongly
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connected subspace will have a Hamiltonian circuit.

Corollary 2.1: Suppose the subspace S is strongly

connected by the machine [A,B]. If S is invariant, i.e.

if Ar c S for all r e S, then S has a Hamiltonian circuit.

Proof: Since S is strongly connected there is a tour

of S starting at 0. That is an input sequence {t}
i=0

exists giving

S = {0,Bt0,ABt
0
+Bt

1'
AiBt

o
+ + Bt.}

where repetitions may occur. Since S is an invariant sub-

space Bti e S for i = 0,1,...,j.

Assume the dimension of S is m and that rl,r2,...,rm

is a basis for S. Let Y denote the set of all m tuples

over Z . Define the isomorphism 4): S+-Y by gairi + a2r2 +

+ amrm
) = (a

1° 2
a. ...,a ).

'

LetibethematrixwhoseithcolumnisgAr.). Let

B be any m by m matrix whose range is the vector space

4((R)(B) r) S)). Now [A,B] is a strongly connected LSM.

By Theorem 2 it has a Hamiltonian circuit. Applying 4)
-1

to each state gives a corresponding circuit for S.

Corollary 2.2: Suppose [A,B] is a LSM with an invari-

ant strongly connected subspace S. Assume z eS with

Az = z 0 0. Let wi,w2,...,wt,z be a basis for S and de-

fine W to be the span of wi,w2,...,wt. Then W has a Ham-

iltonian circuit mod z. That is there exists an input

sequence causing the machine to generate 0 = ul,u2,...,

ut, L. = u- a S, the projection of ful,u2,...,u1,_11 onto
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W is W, and uL projects to 0. Specifically UT., is a multi-

ple of z.

Proof: Let P: X+W be the projection map. We claim

that for i = 1,2,...,P(A1u) = P(A1P(u)) when u c S. To

see this assume u = a
1
w
1

+ + a w + 6z. Now

P(A1u) = P(a
1
A 1w

1
+ + atAlw + 13z)

= P(a
1
A
iw

1
+ + a Aiw )

= P(A'P(u)).

As in the proof of Corollary 2.1, let Y denote the

set of all L tuples over Zp. Define the isomorphism

4): W+Y by gaiwi + + atwt) = (al,...,at)T. Define

A to be the matrix whose ith column is (00(AWi)). Let E

be any £ by £ matrix whose range is 0(P(R(B) (1 S)).

We claim (0(P(A1u)) = A1f(P(u)). Again suppose

u = alwi + + atwz + az. Now

4(P(Au)) = (1)(P(alAwl) + + P(azAW,e)).

If el, ..., ee denotes the standard normal basis then

4(P(Au)) = aliel + + aziez

= igP(u)).

Note that (1)(P(A1u)) = cP(P(A(Ai-lu)))= cl)(1)(A1-lu)). Con-

tinuing this process gives (P(P(Aiu)) = i1(1)(13(1)).

Since S is strongly connected it has a tour that

starts and ends at 0. So there are inputs yi such that

S = {0,By0,ABy0 + Byl, ...,A1By0 + + Byj = 0}. Now
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Y = 0(W) = (1)(1)(S))

= {0,0(P(By0)), 0(P(ABy00)) + 0(P(By1)),...,

(P AiBy0)) + + 0(P(Byj)) = 01.

Using our first claim,

Y = {0,0(P(By0)),4(P(AP(By0))) + 0(13(By1)),...,

(P(AiP(By0))) + + 0(P(Byj)) = 01.

Since R(g) = 0(P(11(3)(-1S)) there are inputs yi such that

Byi = 0(P(Byi)). This together with our second claim gives

Y = + + + Byj = 01. Now Y

has a tour that starts and ends with 0 so [A,B] is strong-

ly connected.

By Theorem 2, [A,B] has a Hamiltonian circuit. Let

1
{t}

L-0
where L = p

t
be the associated input sequence. That

i

is Y = {0,go,igo + + + BtL-1 = 0 }.

As before let t be such that 0(P(Bt
i
)) = Bt

i
with Bt eS.

Following the same steps that proved the strong connected-

ness of [LE] we can show

0 -1(Y)Or) = W = P{O,Bt
0'

ABt
0

. "'+ Bt A
L-1

Bt
o

+ + B
t

L-1 }-

and that the last state projects to 0 in W. Since Bti e S

and S is invariant, all states within the brackets are in S.

Hence we have constructed a Hamiltonian circuit mod z.

The following lemma provides an important restriction

on the type of machine that can have a UHTS.

Lemma 3: Let [A,B] be a LSM with a UHTS. Then A

is invertable and there is an integer K > 0 such that

A
K

= I.
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Proof: Let {y} mN=0
2
be the UHTS and assume A is not in-

vertable. Now there are distinct vectors x and x' with

Ax = Axe. Since the UHTS causes [A,B] to pass through each

state regardless of the starting state,

X = {x,Ax + By0,A
2
x + ABy0 + By1,...,A

N-1
x +

-2
By

0
+

+ ByN _2}

and
1

X = {x -,Axe + ABy0 + By1,...,A
N-1

x
' + AN-2By() +

. ByN_2}.

The intersection gives

X = {Ax + By0,A2x + ABy0 + Byl,...,AN-i + AN-gyo + +

ByN_2}

which contradicts the assumption that X has N elements so

A is invertable.

Since there are only a finite number of possible n by

n matrices over Z , there are a finite number of values

for Ai, i = 1,2,... . Hence there must be two different

powers say i and j such that Ai = A3 with i > j. Now

Ai -3 = I where i-j > 0.

Lemma 4: The existence of a UHTS is preserved under

a similarity transform.

Proof: Suppose [A,B] has a UHTS {y}
N-2 and that C is
m=0

N-2
any nonsingular matrix. We claim {Cy}m=0 is a UHTS for the

machine [CAC
-1

,CBC
-1

]. Starting this machine with an arbi-

trary state x generates
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(x,CAC
-1
x + CBC 1Cy

0'
(CAC

-1)2
x + (CAC

-1
)(CBC

-1
)Cy

o
+

CBC
-1

Cy1" ..,(CAC
-1

)
N
R
1
+ (CAC

-1
)
N-2

(CBC
-1

)Cy
0

+ +

CBC
-1

CyN-2 1

= C {C
-1

x,AC
-1
x + By

0'
A
2
C
-1
x + ABy

0
+ By1" ..

'

A
N-1

C
-1
x +

A
N-2

By + + ByN-2 }

Since C lx e X and {371 m=0
N-2

is a UHTS for [A,B] then we have

generated all X states within the brackets. Now C is non-

singular so CX = X and our result is proved.



14

III THE GROUP STRUCTURE

When a machine has a UHTS we associate with each state

a specific sequence. The next state function restricted to

these sequences define the binary operation *. The state

set together with * form a group. We formalize this idea

in Theorem 5. It is interesting to note the existence of

this group is both a necessary and sufficient condition for

a sequential machine to have a UHTS.

Theorem 5 has several corollaries pertaining to prop-

erties of *, the matrix A, and the structure of the state

set. In particular the UHTS defines a normal subgroup S0

and a vector v in a natural way. The existence of S0 and

v are two conditions our algorithm tests for.
N-2

Theorem 5: The LSM [A,B] has a UHTS, {y}m=0, if and

onlyifXcanbeorderedbyx.=n(0,{y} i-1
m=0

) and (X,*) is

a groupwith*definedbyx.*x, = A3x1 + x,.

Note the correspondence between xi and the sequence

i-1
{57}m=0.

-2
Proof: Assume {y} mN=0 is a UHTS and set

i-1
x. = n(0,(57}m=0 ) = A

i-1
By + A

i-2By
1

+ + By
i-1*

Now all states are ordered and

x. * x.
j

= Ajx. + x.

= n(xi,{y}g13),

To show * is associative consider
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(x.
1

* x.j )*x
k

= n(x. * xj .,{37}m=0
k-1

)

= n(n(x1. {57}j-1 ),{y}k-1 )
' m=0 m=0

= n(XV{Y0,ai...1,3701".07k_.1})

= *.xi
j l'-0"."57k-1/)

= xi * n(n(0,{y}i-1 lk-lN
m=0N "'r Y'm=0/

= x1 . * n(xj.,{57}k-1 )m=0

= xi . * (x. * x
k

)

The state x0 = 0 is the identity. Clearly

*
1 1

= A° xi + x = x and x * x. = Aixo + x. = xi.xi

To show that each state has an inverse let xi be an

arbitrary element of X. Since {y}N-2 is a UHTS, all states
m=0

mustbevisitedwhenthemachineisstartedatx..1n
1

particular 0 must be visited. Now there is an r < N - 1

such that n(xi,{y}m=0r-1 ) = 0. So xi * xr = 0 making xr the

right inverse of xi.

The existance of a left inverse of xi arises from the

claim that xj * xi = xk * xi if and only if xj = xk. This

is clear since A has full rank. Now xi # xj implies

Aixj 0 A
i
xk so Aixj + xi = xj * xi # xk * xi = A

i
xk + xi.

Becausex*x.1 takes on a different value for each x E X,

there exists an xt e X such that x1 * xi = 0 making xt the

left inverse of xi.

We can easily see that xr = xt by considering

(xL x
r

= xL * (x.
1

* x
r

) . Now 0 * x
r

= x * 0 so

xr = xL. Hence (X,*) is a group.
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To prove sufficiency assume X can be ordered by

x. = 71(0,{y}m=0
i-1

) and (X,*) is a group with * defined as

above. Let x be an arbitrary element of X. To demonstrate

-2
{y}

Nm=0
is a UHTS it suffices to show

= n(x,{57}:16) if and only if i = j.

Thatisx*x.=x * x if and only if i = j. This is

clear by multiplying on the left with the inverse of x.

For each corollary of Theorem 5 we hypothesize that

the LSM [A,B] has the UHTS {y}11111:(2) and that the state set

is ordered as before. Recall from Lemma 3 that some power

of A is the identity matrix. We denote the smallest posi-

tive power by K. That is AK = I and Ai 0 I for 0 <i <K.

Corollary 5.1: If xi * xj = xe theZEi+jmod K.

Proof: Let x be any state in X. Now

x * (x.
1

* x.) = x * x

= A x + x

= Aix + (x. * x.j ).

Since * is associative this also equals

(x * xi) * x = A3(x * x.) + x.

= Aj(liX + X.1 ) + X

= Ai+ix + Aix. + x
j

= Ai+
1

Hence Atx = Ai+jx for all x e X so At = giving

E i+j mod K.
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Definition 5.2: We construct the sets S0, S ...,S
K-1

so that each set contains every K
th element of X. That is

S
o

= ix x K"'xsK'xsK+K/

S1S =
.,xsK +1'xsK +K +1}

S
r {xr'xK+r'...'xsK+r'xN-1}

S
r+1

= {x
r+1'

xK+r+1" xsK+r
1 }

=

We shall see in the next corollary that in fact each

set contains the same number of states. However at this

point we can only say Sil < I So I for 0 <i <K.

Corollary 5.3: So is a normal subgroup of (X,*) and

Si is a coset for i = 1,2,..., K - 1.

Proof: Let xiK and xiK be elements of S0. Suppose

xt = xiK * xiK then £ = (iK + jK) mod K = O. Now £ is a

multiple of K so xt e S0. Hence So is closed under *.

-1
Let x. = xiK. Now x. * xiK = 0 = x0 so (j + ik) mod

K = O. This implies j is a multiple of K so xi e So.

Therefore S
0

is a subgroup of (X,*).

Letx.*beanelementoftheleftcosetx.*S
1

xiK 1 0

where 0 4 i <K. Suppose xt = xi * xiK then £ = (i + jK)

mod K = i. Hence there is a positive integer m such that

=i4-1111Csoxt
1

eS..blovix.1 *S
0

Si.. We will show

equality by an order argument. Clearly I xi * So I= IS0 I

and we have just shown I xi * So I < I Si I .
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Now IS0 I= Ixi * So I < (Si 1 < (S0 1 implies Ixi * S0 I=

I Si I so x.
1

* S
0 1

= S..

Similarly if we let xjK * xi be an element of the

right coset So * xi where 0 i <K, we find that So * xi c.

Si. As before I S0 I= ISexil < ISil< IS0 I so So*xi = Si.

Since X.
1

* S
0

= S
0 1

* X. = Si, then S
0

is a normal sub-

group of (X,*) and Si is a coset for i = 0,...,K-1.

Corollary 5.4: There is an integer k such that

K = p
k

.

Proof: Since X is partitioned by equal sized cosets

we have

N = pn =IXI= KIS01.

Now K divides pn and p is prime so K is a power of p. For

the remainder of this paper, k will denote this power.

Our next corollary provides some of the methodology re-

quired to put A into the "standard form" used in Theorem 6.

Corollary 5.5: S0 is an n - k dimensional invariant

subspace of X and Si = xi + So for i = 0,1,...,K - 1.

Proof: Note that if xj.K e S0 then for all x E X,

X * = A3Kx + = x + . So Si = x. * S = x. + SxjK xjK xjK
1 1 0 1

S0

for i = 0,1,...,K - 1. This also says that * restricted

to S
0

is simply vector addition. Hence S
0

is a subspace

1

of X. By Corollary 5.4, p
n
= p

k
'So Iso I So I =

n-k

the dimension of S0 is n - k.

To show AS0 = So, let xjK be any element of So. By
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Corollary 5.3, So * xi = Si so xjk * xi = AxiK + xle Si.

We have just shown that Si = x1 + So so AxjK e S0. Hence

AS0C: S. Since A is invertable I AS0 I= I S0 I so

AS
0

= S0.

Throughout we denote xi by v. We define v
0

= 0 and

for i > 0, vi = v * v * * v i times.

Corollary 5.6: For i = 0,1,...,N - 2,vi 6 Si mod K'

Proof: Since (S0,*) is a normal subgroup, iS0,S1,...,

SK-1 1 is the quotient group under the operation

Si * S = (x. * x ) * S
j j 0

= (x. * x ) + SO
0

= x
t
+ S

0
where tEi+j mod K.

Consider S
i
= (v * S

o
)
i

= v
i
* SO

= (x
1

* * x
1
) + S0

= x + S
0
where £ E mod K.

Now v + S = Si so v
i

e
0 mod K mod K

.

We have defined So,Si,...,SK_i, so that the UHTS

causes the machine to visit cosets consecutively. That is

it moves from Si to Si+1
and from SK-1 to S0. This property

together with the invariance of S0 allows us to prove an

interesting result concerning the elements of the UHTS.

Corollary 5.7: Byi e Si for i = 0,1,...,N - 2. That

is Byi E v mod So.

Proof: Since x. 6 S = Vi u1 where
i mod K' 1
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u e S0. Also there is a u2 e S0 such that xi+1 =

Ax. + By. = v
i+1 + u2. Now Av1 + Aul + Byi = v

i+1
+ U

2
=

Avi + v + u
2.

Hence By. = v + u
2

- Atli. Since S
0

is an

invariant subspace, u2 - Aul e S0 so Byi e Si.

S
0
has several properties as we have already shown.

Unfortunately strong connectedness is not one of them as

Example 1 demonstrates. For now we can prove a slighity

weaker result. It will be used to prove Corollary 6.1

which states that S
0

is necessarily strongly connected ex-

cept for one case.

Corollary 5.8: S
o

is strongly connected by B and v
K

that is, is u1,u2 e S0 then there exists an input sequence

{t.}m=0
and a scalar a such that u2 - av

K
=

n(u {t }i=0 ) and

n(u {ti i=0
e S

0
for j = 0, 1,...,m.

Proof: Since {y1}11.: is a UHTS there exists an

m 4 N - 2 such that u2 = n(u
l' 1

{y.}.
=0

). Recall that the

UHTS causes the machine to move from coset to successive

coset. Since u2 e S0, m + 1 must be a multiple of K. Now

2
= Am+lui + AmBy0 + + ABym-1

+ Bym . Since Byi v

mod S0 therearei"utstisuciathatgy + Bt
i
with

Btte S0. Substituting u2 = A
m+1u1 + A

m(v + t0) + ...+ v+tm

= AM+1u1 + Amt
0

+ + tm + (A
m

+ + I)v

It remains to show that (Am + + I)v is a multiple of

v
K

. Since there is an a such that aK = m + 1,
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(A
m

+ + I)v = A
(a-1)K

(A
K-1

+ + I) +

A
(a-2)K K-1

(A + + I)+ + (A
K-1

+ + I)

= [A
(a-1)K

(A
K-1

+ + I) + A
(a-2)K

(A
K-1

+ +

I)+ + (A
K-1

+ + I)]v

= avK since AvK = vK. m

Before concluding this section we introduce the sub-

space V. It allows us to express X as the direct sum of

S
0

and V which in turn leads to the "standard form" of A.

This property is crucial to the proof of Theorem 6 which

defines the cases our algorithm needs to consider. V is

the set of all linear combinations of v,v
2
,...,v

k
. We

will show that V may serve as a set of coset leaders for

the decomposition of X with respect to S0.

We use <u u
2'

...,u
r
> to denote the span of the vec-

tors ul,u2,...,ur. The symbol 9 stands for direct sum.

In our situation, X = So eV means every state x has a

unique representation u + w whereu a S0 and w c V.

Corollary 5.9: Let V = <v,v
2
,...,v

k
>. Then dimension

V = k and X = S0SV.

Proof: Let I be the largest integer such that

v,v
2 are linearly independent modulo S0. To say

a set is 1.i. mod S
o
means if a linear combination is in

S0, then the coefficients are all 0. We claim that for
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i = o,1,...,K-1 there are vectors ui e S0 and scalars

ali,a2,i,...,ati such that vi = al ivy + a2iv 2 + +

at
o .
.v
t

+ u.1 .

This is obvious for i < and by our definition of £ it

is true for £ + 1 as well. Proceeding inductively assume

vm = alv + a2v2 + +avt+u where m > £ + 1. Now

v
m+1

= v
m

* v = Av
m

+ v

= A(a
1
v + a

2
v
2

+ + a v ) + Au + v

= v + a
1
Av + a

2
Av

2
+ + a Avt + Au

= (1 - a1 - a2 - - at)v + (a1Av + alv)

+ (a
2
Av2 + a

2
v) + + (a Av + a v) + Au

= (1 - a1 a2 - adV + a1V2 + a2v3 + +

t
atv

+1 + Au.

Since the claim is true for £ + 1 and Au e S
0

then the

claim is true for m + 1.

Since 0,v,v
2
,...,v

K-1 are all distinct mod S
0
then

Q > k and dim V = k. Recall the dimension of S
0

is n - k

and we have shown S0 V = {0} so X = S
o
$V.

k-1
Note that <v,v

2 k> = <v,Av,...,A v>.
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IV STANDARD FORM

We have shown that the existence of a UHTS implies

the existence of two subspaces, S0 and V. S0 is invari-

ant and almost strongly connected. We can think of A as

a linear transformation on the state set with respect to

the standard normal basis. The invariance of S
0

and

the structure of V allows us to define the block matrix

A which represents the same transformation with respect

to a different basis. A is in what we call "standard

form" and contains a companion matrix in one of its blocks.

Using standard results about characteristic and minimal

polynomials we show that k can only take on the values

0, 1, or 2. As a corrolary we show that in all but one

case S
0
must be strongly connected.

Theorem 6: Assume the LSM [A,B] has a UHTS. Then

k = 0, 1, or 2 and in the case k = 2,p = 2.

Proof: Assume k # O. The matrix A uniquely deter-

mines a linear mapping T:X-*X defined byT(ei) = Aei where

{el,e2,...,en} is the standard normal basis for X. Let

{r1,r2,...,rn_k,v,Av,...,A
k-1vibe a basis for X. We de-

finei={aii} to be the unique matrix that represents T

with respect to this basis. Since S0 is invariant,

Art = a 2' 2 + +
lr '1

+ a r n-k
,r
n-k

Arn-k = aln-kr1
+ a2n-kr2 an-kn-krn-k.

Also
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Av

A(Av)

k-2A(A v) =

A(A
k-1

v)

Hence W =

alnrl

all ...

a21

an-kl" .

0 ...

0 ...

0 ...

12nr2

a1n-k

a
2n -k

an-kb-k

0

0

0

0

0

0

0

0

0

0

1

0

+ Av

+ 0

+

...

...

...

+ A
2
v

+ 0 +

+

0 a
ln

0 a
2
n

0

0

0 .

1 a
nn

k-1
A v

annAk-1v.

(

We say that the block matrix A =SiW is in standard form.

0: U

Note that U is a companion matrix.

Since A and A represent the same linear transformation

T, A = CAC-1 where

I I

C
-1

= [riir2i...!rn_kiviAvi
I :Ak-lv]. Note that Cv =

en -k +1'

By Corollary 5.6 0,v,v
2
,...,v

K-1
are all distinct mod

S0. That is, not only are the elements distinct but the

difference of any two is not in S
0.

Hence CO,Cv,Cv
2
,...,

Cv
K-1

= 0,Cv,C(A + I)C
- 1Cv,...,C(A K-2 + ... + I)C

-1
Cv

K-2
I)en_ are= 0,en_10.1,(i + k+1'"' ,(A + ... + I)en_

all distinct mod CS0. Since CS° = <el,...,en_k>, 0,e1,

(U + I)el,...,(UK-2 + ... + I)ei are all distinct. In
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particular, U + I, U
2

U + U
K-2

+ + I, are

all nonzero matrices.

-
Since A = I, UK = I. Applying the binomial theorem,

U
K

- I = (U - I)
K

= 0 since K = p
k

. Note that U is a

companion matrix so its minimal polynomial equals its

characteristic polynomial [See Harrison p. 14]. Now the

minimal polynomial divides (U - I)
K and has degree k so

(U - I)
k

= 0.

Let L = pt be such that p > k and pt -1 < k. Now

(U - L)
L

= UL - I = (U - I)(U
L-1

+ + I) so

(U - I)
L-1

= U
L-1

+ + I. Since L - 1 > k, U
L-1

+ +

I = 0. This implies L - 1 >K - 2 so L >K - 1. Also

-
pt

1 < k implies L < pk. Combining these inequalities

gives pk - 1 <pk or equivalently pk-l< k. Recall this was

derived assuming k 0 0. Clearly k = 1 satisfies this in-

equality for all primes. However if k = 2 then p must

be 2. If k >2 then p
k-1

> k.

Corollary 6.1: S0 is necessarily strongly connected

unless k = 1 and p = 2.

Proof: The case where k = 0 is trivial since S0 = X.

Assume k = 1 and p # 2. By the proof of Theorem 6,
1

(

I w
A is similar to a matrix in standard form

S1

0...01
1

1

S is n-1 by n-1, w is a column vector and v corresponds

to e
n

. Since the existence bf a UHTS is preserved under

a similarity transform, we will assume A is of this form
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and v = e
n

. We may also assume B is of the form
0

\ 0...0 :1

Since S
o

isstrongly connected by B and vP, the

rank of [Bi (SBli...ISP-1BliV] = n - 1 where vP = 0).

We will prove S0 is strongly connected by showing v is in

.

the column space of [BlSBli...iS
p-1

Bi]. The crux of the

argument is the fact that AvP = vP and (S - I)
p-2

= SP
-2

+

2SP -3 + + (p-2)S + (p-1) I. To see the second equal-

ity, the binomial theorem gives

(S -I)P-2 =PE2 (PI )SP-2-i(-1)i. Now
i=0

(13-21 )= (p - 2)(p - 3)...(p - i)(P - i - 1)/i!

(-2)(-3)...(-1)(-i-1) (-1)1(i + 1)
(2) (3) ...(i)

So (S - I)
p-2 P

= E
2

(i + 1)SP-2-i.
i=0

We claim vP = ((S - I)P-2w) .

0

note

To prove this claim

A
2 = S21 (S + I) w )

1

0 1 1

A
3

=
s3 1 .-2

'-
0 I

I

kb + + 1)

1

A
p-1 =

(SP-ICSP-2 + ... + I) w
1

0
1

1 1

So VP = (AP-1 + + I)e
n

(w1 ((S + I)m)
+ +

n t1J
(SP-2 + + 1)w

1
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= (P - 1)w + (p 2)Sw + (p - 3)S2w + ...+ SP-2w)

(

- i)13-21

0

Now (
o
) ES

o
so by Corollary 5.8 there are inputs ti

such that

w = Sp-1B1t0 + S
p-2

B
1
t
1

+ + SB
1
t
p-2

+ B
1
t
p-1

+

av

where (v0 ) = vP. Since AvP = vP, S; = v so Sw = B
1
t
0

+

S
p-1

B
1
t
1

+ + S
2B

1
t
p-2

+ SB
1
t
p-1 + ay.

Hence

(S - I)w = B1(t0 - tp_1) + SB1(tp_1 - tp_2) + +

- t0). Recall p )3 so clearly v = (S - I)P-3

(S - I)w is in the column space of

[B1ISB11...ISP-1B1].

Suppose k = 2 and p = 2. As before we may assume

/ \
w

S 1A= and v= en-1
where U is a 2 by 2 nonsingu-

w
A

0
77751----

k0...01 u ,
(0

lar companion matrix. That is either U =0. 0) or U = (

1

0 1

1).

Since A
4

= I, U
4

= I. Now
(0 1

0 1 1
: w

S 0
A

o...oll 0/

)4
# I so we may assume
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S w
Clearly Av = en, A2v = (1) and A

3
v = 0 so v

4
=

0 1

(A
3
+ A

2
+ A + I)v = +

0
0

Proceeding as before, Corollary 5.8 guarantees the

existence of inputs ti such that

w
= A3Bt

0
+ A2Bt

1
+ ABt

2
+ Bt

3
+ av

4

0

where Bt
i

E SO for i = 0, 1, 2, 3. Since Av
4
= v

4

A(9 = (01 = Bt0 + A3Bt
1

+ A2Bt
2
+ ABt

3
+ av

0 0

4

Since S
o

is invariant each term is in S
o

. Now

v =
4

0
+ = A

3
B(t

1
+ t

0
) + A

2
B(t

2
+ t

1
) +

0

AB(t3 + t2) + B(t0 + t)).

So is a subspace so again each term is in So.

By Corollary 5.8, if u1 and u2 are any elements of

So, there is in input sequence it 1i=0 taking u1 to

u1 to u2 - av
4 without leaving So. If a= 1 then the

1 1 1

sequence {(t0 + t1 + to), (t1 + t2 + t1), (t2 + t3 + t2),

1

(t3 to t3)} takes u1 to u2 without leaving So. This

is trivial for a= 0 so S0 is strongly connected.

In the case p = 2 and A
2

= I, S
0
may or may not be

strongly connected as shown in Example 1.
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V KEY THEOREM

We have developed a battery of properties all LSM's

with a UHTS must have. Theorem 7 singles out those prop-

erties that are both necessary and sufficient. It pro-

vides the key to proving the correctness of our algorithm.

The proof of Theorem 7 is constructive and depends on

Corollaries 2.1 and 2.2.

Theorem 7: The LSM [A,B] has a UHTS if and only if

[A,B] is strongly connected and one of the following hold;

1) A = I

2) A = I, there is a strongly connected invariant

subspace So of dimension n 1, and there is a

v e R(B) such that X = S
0

<v>

3) A2 = I and p = 2

4) A
4 = I, p = 2, there is a strongly connected in-

variant subspace So of dimension n - 2, and there

is a v E R(B) such that X = S
0
(0<v

'

Av>.

Proof: The necessity of these conditions follows from

Theorem 6 and Corollaries 1.1, 5.5, 5.9, and 6.1

To prove sufficiency assume [A,B] is strongly connect-

ed.

Case 1 (A = I): Since A = I, the operation * as de-

fined in Theorem 5 is simply vector addition, a group oper-

ation. By Theorem 1 (iv) B must have full rank so any

ordering on the state space has an associated input sequence

which is a UHTS by Theorem 5.
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Case 2 (1:$3,AP=I): We want to show <v> E {0,v,(A+I)v,

...,(AP-2+ + I)v} mod S0. Since X = %eV there is a

scalar a and a u e So such that (A + I)v = u + (a + 1)v.

Subtracting gives (A - aI)v = u e S0. Our result becomes

more evident by showing (A - a) divides the minimal poly-

nomial of A [See Gantmacher p. 184]. Since AP - I =

(A - I)P = 0, the minimal polynomial of A is of the form

(A- 1)m for some m < p. We may write ( X- 1)m = f(X)

(X - a) + r where r is a constant. Substitution in A gives

(A - I)m = f(A)(A - aI) + rI. Now (A - I)mv = 0 = f(A)u +

rv. Since S0 is an invariant subspace f(A)u e S0 so

ry e S0. This can only happen if r = o so A - a divides

(A -1)m making a = 1. Since we assumed (A + I)v = u +

(a+ 1)v, (A + I)v E 2v mod S0.

We claim (Ai + + I)v E (i + 1)v mod S0 and prove

it by induction. Consider

(Ai + + I)v = A(Ai-1+ + I)v + v

A(iv) + iv - (i - 1)v mod S0

i(A + I)v - (i - 1)v

2iv - (i - 1)v

(i + 1)v.

Hence {0,v,(A + I)v,...,(A
p-2

+ + I)v} can serve as co-

set leaders for the decomposition of X with respect to S0.

We denote these states by {0,v,v2,...,v13-1}.

There are two subcases to consider. In both assume

y is such that v = By.
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Assume vP = 0. Since S
0

is strongly connected, by

Corollary 2.1 So has a Hamiltonian circuit say {0 = u0,u1

= 0} where L = pn-1. For each i = 0,1,...,

L - 1 there exists a ti such that ui+1= Aui + Bti. The

UHTS is illustrated in diagram 1 where the quantities

above the arrows represent the inputs used to get to the

next state.

To show we have a Hamiltonian tour note that X is

partitioned by {So,S1,...,Sp_1} where Si = S0 + vi . Note

also that once state u
1

is reached, the diagram has L - 1

distinct columns. The elements in the i
th

column are of

the form v3 + ui. It suffices to show that the v3 com-

ponents within each column are distinct. This is clear

since 0,L - 1,2(L - 1),...(p - 1)(L - 1) are distinct

modulo p. Hence we have a Hamiltonian tour starting with

the 0 state. Note that we started in S0, moved from
0'

Si-1

to Si for 1 < i < p and from S to S0.
0°

To show this is a uniform tour suppose we start in an

arbitrary state x. It suffices to show that x + S0, Ax +

S AP-1 +X -I- wp-1 partition X since AP = I. Assume x c

S
r

. Then there is a u c S0 such that x = u + vr.

i r i
Aix Si

i
S = A u +Av +v +S

0
. Since AS

0
= S0,

Also A
i
v
r

+ vi = (A
i+r-1 )v + (Ai-1+...+I)v

Now

Aiu c S0.

i+r
= v .

Now Aix + Si = i+r
+ S

0
S
(i+r)mod p

for i = 0,...,p - 1.=

Hence our diagram exhibits a UHTS.

Assume vP # 0. Note that AvP = A(AP-1+...+I)v =

(I + AP-1+ +A)v = vP. We have already shown that



y+tL-2 y+t
L-1

+t
0y+t9 2y+t

1 1 v + u ... v
L-2

+
u v + u

2
3

u/.1
1

y+t 1+(L-1) y+t2 v+t y+t
L-1

+t
0L-1 1 2+(L-1) L-2

v + + u2 ----* + u3 ... vL-2+(L-1) + u
L-1

v1+2(L-1) v2+2(L-1) vL-2+2(L-1)+ u
y+t y+t2 v+t y+t

L-1
+t

01, + u
2

----->
L-2+ u3 ...v2(L-1) + U1 L-1

v(p-1)(L-1)
y+ 1+(p-1)(L-1) ++ u

1

t1,
v

2
u

y+t 2_
v u32+(p-1)(L-1)

+
y+tL-2

v
L-2+(p-1)(L-1)+

uL-1

Diagram 1. UHTS for k=1, p>2, and
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vP = pv = 0 mod S
o

so vP e S
0.

If S
o

= <VP> then we claim

p
2-2

{y}i=0 is a UHTS. Starting this sequence at 0 gives
,2

{0,v,v2,...,vP,vP+1,...,v2P,...,vY

= {0,v,v
2 ,...,vP + 0,vP + v,...,2v +

(p - 1)v
p

+ v
p-1

}

This clearly provides an ordering of the state space which

is a group under the operation vi * vj = Ajvi + v3. This

group is in fact cyclic with generator v. By Theorem 5

we have a UHTS.

Assume S
o

0 vP . Then the dimension of S
o

is great-

er than 1 so n > 3. Since AvP = vP e S
o
we may apply

Corollary 2.2. Now we have a subspace W of dimension n - 2

with a Hamiltonian circuit mod vP. Let {t}i, L = Pon-2,

be the associated input sequence giving {0 = u0,u1,...

uL-1'
u
L
} where UL projected onto W is 0. That is uL must

be a multiple of vP so AuL = uL. The UHTS is illustrated

in diagram 2.

Note that vr+cl = (Ar+q-1 + + I)v

= Aq(Ar-1 + + I)v + (Aq-1-+ + I)v

q r q= A v + v .

Let m be such that III, = mvP. Now

i(L-1) . i(L-1)
+ lu = v + imvP

L
= v

i(L-1) + v
imp

= AimPvi(L-1) + vim')

vi(L-1) + imp

= v1(L-1
+ mp)



y+t
1

u1
v +u2

2

y+tL-2
y

v(L-2) uL...

+tL-1 +t01---)1

y+t y+t
v
L-1(L-1)

+ U +U
y+t +t

v(L-1)+ v
1+(L -1)

+ u +u
-2 0

L 2
_

L L-1

v2(L-1)
+ 2111

L+U1

v(p2-1)(L-1).1. (p2_1,_
- 1 +u1

y +tl
v
1+2(L -1)

+
y+tL-2

2u +uL 2
v
L-2+2(L-1) Y+

+ 2u
L+uL-1

y+t
1 1+(p

2
-1)(L-1) , p -1,u +u

2
L-2

v
2

y+t
---3 v + t

L-2+(p2-1)(L-1)+(p2-1)u +uL L-1

Diagram 2. UHTS for k=1, vP# 0.
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As in the case when vP = 0, after state u
1

is reached

we have L - 1 distinct columns. We have a Hamiltonian tour

if the elements in each column are distinct. For the rth

column assume two elements are the same. That is suppose

r+1(L-1) + -1) .

+ iuL = v + juL.

Then

A
r
v
i(L-1) + vr + iu = Arvj(L-1) + v

r + juL

A
r
v
i(L-1) r j(L-1) .

+ = A v + ju
L

v
i(L-1) + iuL = v

j(L-1)
+ juL

v
i(L-1 + mp)

= v
j(L-1 + mp)

i(L - 1 + mp) E j(L - 1 + mp) mod p2

j)(pn-2_ 2
1 + mp) E 0 mod p .

We can choose m so that 0 <m <p. Recall that n )3 so p does

not divide (p
n-2 - 1 + mp). Hence p

2 must divide i - j.

Since each column has only p
2 states, i = j. Thus we have

a Hamiltonian tour when we start in the 0 state.

NotethatifwedefineS.as before our tour moves from

Si_i to Si for 0 <i <p and from Sp_l to S0. We have already

shown in the previous case that for all x s X, x + S0,

Ax + Si,...,SP lx + Sp-1
partition X so our tour is

uniform.

Case 3 (p = 2, A
2

= I). By Theorem 1, the rank of

[B,AB] is n since [A,B] is strongly connected. Let b1,...,

bm be such that bi,...,bm,Abl,...,Abm span X. Furthermore

we impose the restriction that if any pair bi,Abi are re-

moved we no longer have a spanning set. Now if Abi = bi
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for i = 1,...,m then m = n and A = I. Since A 0 I we may

assume Av # v where v = b1. Set S = <b
2' ... ' b m'Ab29.6.,

Abm>.
Clearly S is an invariant, strongly connected sub-

space and v 0 S. If (A + I)v 'g S then X = S$<v,Av> and we

have reduced the problem to case 4.

Assume (A + I)v = v
2 e S and y is such that By = v.

If n = 2 then clearly {y,y,y} is a UHTS since X = {0,v,

(A + I)v,Av} = {0,v,v
2
,v

3
}. Suppose n >2 and that {0 =

uo,u1,...,u1,_1,u1,} be the Hamiltonian circuit mod v2

L-1
guarenteed by Corollary 2.2 where L =

2n-2

is the associated input sequence. Diagram 2 with p = 2

illustrates a UHTS.

Let W0 = W1 = v + Wo,W2 = v2 + W0,

and W3 = v
3 + W0. We know that Wo,W1,W2, and W3 partition

X. Now the fact that we have a tour starting at 0 is evi-

dent if we can show {0,v
L-1 + uL,v2(L-1) ,v

3(L-1) + u 1 =

{0,v,v
2
,v

3
}. Recall from Corollary 2.2 that either uL = 0

or uL = v
2

. Since L = pn-2 and n > 2, L - 1 is odd. Hence

{0,L - 1,2(L - 1),3(L - 1)} E {0,1,2,3} mod 4.

Since v
4 = 0, if uL = 0 we have a tour. If uL = v

2
, note

that vi + v2 = A2vi + (A + I)v = v
i+2

. Now {0,(L - 1) +

2,2(L - 1),3(L - 1) + 2} is also equivalent to {0,1,2,3}

mod 4 so again we have a tour. Our tour moves from S to

v + S and from v + S to S. This tour is uniform if x + S

and Ax + (v + S) partition X for all x e X. This is clear

if x e S since S is an invariant subspace. If x = v + u,
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u c S then x+S = v+S and Ax + v+S = (A+I)v + S = S. Hence

we have demonstrated a UHTS.

Case 4 (p = 2,A
4
=I): We want to shown that {0,v,

(A + I)v,(A
2

+ A + I)v} E <v,Av> mod So. This is clear if

(A
2 + A + I)v Av mod S0. We prove our claim by process

of elimination. Suppose (A
2
+ A + I)v c S0. Since So is

an invariant subspace then A(A + I)(A
2

+ A + I)v =

A(A
3
+ I)v = (A + I)v c ThisThis contradicts the hy-

pothesis X = Sae <v,Av>. Suppose (A
2 + A + I)v = v + u

where u e S
0.

Then (A2 + A)v c S
0
which implies A

3 (A2 +

A)v = (A + I)v e S0. If (A
2 + A + I)v = (A + I)v + u,

u e So then A2v e S0. This implies v e S
o*

The only other

possibility is that (A2 + A + I)v E Av mod Sc Now 0,v,

(A + I)v, (A
2 + A + I)v can serve as coset leaders for the

decomposition of X with respect to S0. As before we denote

these states by 0,v,v
2

, and v3.

We proceed as in case 2. Assume v
4
= (A

3
+ A

2
+ A +

I)v = O. Note that this is the situation of A
2

= I. If

n = 2 then clearly {y,y,y} is a UHTS where v = By. Other-

wise by Corollary 2.1, So has a Hamiltonian circuit say

L-1
{0 = u0,u1,...,uL = 0) where L = 2

n-1
. Let {t)i=0 be the

associated input sequence. The UHTS is shown in diagram 3.

Note that L 1 = 2
n-2

- 1 is odd since n > 3. Now

0,L - 1, 2(L - 1), 3(L - 1) are distinct mod 4 so we have a

Hamiltonian tour starting at O. To show it is uniform we



u
y+ti
----*

1

0 Y
g y+t0

> v Y > v2 Y > v- -). ul

y+t2 y+tL-2 L-2
y+t

L-1
+t

0
v + u

2
---> v

2
+ u3 ... -------> v + u

L-1
.-

y+t
1,

y+t
2

v
(L-1) 1+(L-1)

+
y+t L-1+t0+ u --7 v v

2+(L-1) + u
3

...
1

u2
y+tL-2>

vL-2+(L-1)+ uL-1 >

v
2(L -1) + u

1

y+t
1,---- v-,

1+2(L -1)+ u
2

y+t
2 v

2+2(L -1) + u ...
nthma

> vL -2+2(L -1) + uL-1

y+tL-1
+t

0
>____ 3

y +t1 y+t2 y+t
L-2 L-2+3(L-1)

v2(L-1)+ u ---- v
1+3(L -1) + u

2
---> v2+3(L -1)+ U 3 "' ------> v L-1

Diagram 3. UHTS for p=2 and v4= 0.
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need to show x + S0,As + S1,A
2
x + S2,A

3
X S3 partition X

for all states x. The argument is identical to case 2.

Suppose x e Sr. Then there is a u c So such that

x =u+ur.NowAix+S.=Aiu
+ Aivr + vi + So

= A
i
(A
r-1+...+ I)v + (A

i-1+...+

I)v + Aiu + S0

i+r
= v + S0 since Aiu c S0.

0'

Hence all states are visited regardless of the starting

state.

Suppose v
4

# 0. In this case A
2

I and it can be

easily shown that n > 2. Recall (A
2

+ A + I)v = Av mod

S0 so (A
2 + I)v e S

0.
The invariance of S0 implies

(A
3
+ A)v e S0. Now (A

2 + I)v + (A
3
+ A)v = v

4
e S0.

0.

Clearly Av
4

= v4. If n = 3 and [A,B] is started at 0 then

a sequence of seven y's generate {0,v,v2,...,v7} = {0,v,v
2

,

3 4 4
v ,v ,v + v 0v

2
+ v

4
,v

3
+ v4} = X. This is a UHTS by

Theorem 5 since * defined by vi * vj = A3v1 + vj = vi+j

form a cyclic group generated by v.

Assume n > 3. By Corollary 2.2 we have a n-3 di-

mensional subspace W with a Hamiltonian circuit mod v
4

.

Let {0 = u
0'

u
1

u
L
} be the circuit with the associated"

L-1
input sequence {t} i=0

where L = 2
n-3

. Note that L 1 is

odd since n > 3. Also uL is a multiple of v
4

so either

uL = v
4

or 0. We claim diagram 4 demonstrates a UHTS.

As in the previous cases after state ul is reached we



7
y+t0

0 v v2 ... v

2, y+tL-1
+t

0y+t
1

y+t
v + u v

2
+ u3 ..

Y +tL_2

1
VL -2 + UL-1

y+t
2

y+tL2 y+t
L-1

+t0y+t
1

vL-1+ uL
+u

1
v14(L-1)+ v

2+(L-1) + uL
+u

3
... ------> v

L-2+(L-1)+ u +u
ueu2 L L-1

y+t L-2
v + u22(L -1)

y+t 1 v +2(L -1)4_ v
2+2(L -1)

y+t

2
+ u2 ------> v

L -2+2(L -1) + u
y+tL-1

+t
0

L-1

y+tL-1
+t 0

v2(L-1)
y+t

1 1+3(L-1)
y+t2 2+3(L-1)

y+tL-2 L -2+3(L -1)
+ v + vuL+ul uL+u2 + uL+u2 v + u

L
+uL-1

y+t
1 1+7(L -1)

y+t
2 2+7(L -1) ." V

L-2+7(L-1) + uL+uL-1v (L -1) + uL+u 1
v + vuL+u2 uL+u2

12a,gEgl_n 4. UHTS for k=2, p=2, and v40 0.
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have L - 1 distinct columns. It can be easily verified

that since L - 1 is odd, {0,L - 1,2(L - 1),...,7(L - 1)}

{0,1,...,7} mod 8. So if uL = 0 then we have a Hamilton-

ian tour. This is clear since every element has a distinct

representation vi + uj where i e{0,1,...,7} and

j {0,1,...,L - 1 }.

4
If u = v then v

r+i(L-1) + uL = A
4
v
r+1(L-1)

+ v
4

=

v
4+r+i(L-1)

. Now every element has a representation

v' + u.. It remains to show that this representation is

unique. That is any two states in a column are distinct.

For the r
th column assume

v
r+i(L-1) vr+j(L-1) iv4.

Then v
r+i(L-1)

+ v =
i4

v + vr+j(L-1) j4

v
r+i(L-1)+i4 v

r+j(L-1)+j4
=

so r + i(L - 1 + 4) E r + j(L - 1 + 4) mod 8.

Now i(L - 1 + 4) E j(L - 1 + 4) mod 8.

Since L - 1 + 4 is odd it has a multiplicative inverse in

Z
8

so i E j mod 8. Since there are only eight states in a

column, i = j. Now we have shown our diagram illustrates

a Hamiltonian tour. The fact that it, is uniform follows

from the same argument used when v
4

= 0.

We conclude this section with the observation that A

can be put in Jordan normal form. A general matrix defined

over Z may not have its eigenvalues in Z since this

field is not algebraically closed. We show that 1 is the

only eigenvalue for A.
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Lemma 8: If A
K

= I where K is a power of p then A

can be put in Jordan normal form.

Proof: Since A
K

= I and K is a power of p, then the

binomial theorem gives A
K

- I = (A - I)
K

= 0. Hence the

minimal polynomial of A divides (X - 1)
K

. Now all the

eigenvalues of A are 1. In particular all the eigenvalues

are in Z . Hence A can be put into Jordan normal form

[See Jacobson p. 193].
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VI THE ALGORITHM

Our algorithm tests for the conditions of Theorem 7.

Two of these conditions require a strongly connected invari-

ant subspace. The existence of such a subspace is easily

verified when A is in Jordan normal form. Theorem 10 shows

the correctness of our algorithm and that it has polynomial

running time.

We input A, B, n and the prime p into Algorithm 9.

For output we receive a "yes" or "no" depending on whether

or not [A,B] has a UHTS. The controllability matrix

[B AB ... An-1B] is denoted by C.
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ALGORITHM 9:

If the rank of C * n then no.

Else break up into cases.

CASE 1: (A = I) then yes.

r
CASE 2: k.A

2 = I, p = 2) then yes.

CASE 3: CAP = I, p > 2) then result of

SUBROUTINE CASE 3.

CASE 4: (A4 = I, p = 2) then result of

SUBROUTINE CASE 4.

CASE 5: (none of the above) then no.

SUBROUTINE CASE 3: CAP = I, p > 2)

Compute A = DAD
-1 where A is in Jordan normal form.

If there is a block of size 1 then return yes.

Else set r equal to the number of Jordan blocks.

Compute B = DB.

Compute PB where P is the projection matrix that zeros

out all rows except for the ones correspond-

ing to the bottom two positions of every

Jordan block of A.

If rank of PB > r then return yes.

Else return no.
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r
SUBROUTINE CASE 4: k_A

4
= I,p = 2)

Compute A = DAD
-1

where A is in Jordan normal form.

If there is a block of size 2 then return yes.

Else set r equal to the number of Jordan blocks.

If the rank of B = r then return no.

Else let J.
1
denote the position of the botton row

of block i.

Compute B = DB.

Determine a basis bi,...,bm of R B where

1'
i = r, is the only basis

vectorwitha1inthePiposition.
1

Set E equal to the n by m-r matrix whose ith

column is

For i = 1 to r do

If block i has dimension 3 or 4

then if (13.1 E)x = eJ -2
has a solution where

1

Pi
is the projection matrix mapping

to <e e >
1 J1

-2

then return yes.

End For.

Return no.
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Theorem 10: Algorithm 9 is a polynomial time algorithm

that correctly determines whether or not the LSM [A,B] has

a UHTS.

Proof: The correctness of Algorithm 9 is about im-

mediate from Theorem 7. We need only verify the techniques

used in subroutines CASE 3 and CASE 4 for determining the

existence of v and S0.

Both subroutines require that A be put in Jordan

normal form. Lemma 8 allows us to do this but also shows

that 1 is the only eigenvalue of A. Hence A has l's

along its main diagonal. Now

Ae.
1

= e.
1

if i is at the top of a block

e. + e otherwise.
1 i-1

Because of this property we say A cycles upward.

We let r denote the number of Jordan blocks in A and

J.
1

is the position of the bottom row of block i. Now

[A,B] is strongly connected so the rank of [B AB An-1B]

equals n. Since A cycles upward there must be linearly in-

dependent vectors bi,...,br in the range of B such that bi

hasa1intheJ.1 position but a 0 corresponding to the

bottom of all other blocks. This is our situation upon en-

tering either subroutine..

We first consider SUBROUTINE CASE 3. Suppose A has

a block, say the rth one, of size 1. Set S0 = <bi,Abi,...,

AP-lb1"*"br-1". .,AP-lbr-1>.
Clearly S

0
is
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a strongly connected, invariant subspace and X = S0 e <br>.

By Theorem 7 we have a UHTS. Suppose all the blocks are

of dimension two or more. We need to determine if there

isavectorWwithaOinthe.th position and a 1 in the

J..-1 spot. Assuming there is such a vector for say i = r

then we may define So so that X = S0 e <br>. If not there

is no possibility to have a n-1 dimensional, strongly con-

nected subspace. The projection matrix P zeros out all but

the bottom two positions of every block. We know Pb1"."
Pb

r
are linearly independent so the rank of Pg is at least

r. The existence of w, and a UHTS, depends on whether or

not PB has another linearly independent vector in its

range.

For SUBROUTINE CASE 4, suppose A has a block, say the

r
th one, of size 2. Set S

o
equal to the strongly connect-

ed invariant subspace <131,Abl,A
2
bi,A bi,...,br_1,/br_i,

2 -3,
A br-1'A or-1

>. We will show X = S
0
e<13

r
,Ab

r
> by exploiting

the property that bi is the only vector in {bi,...,br} with

acmponentintheatibposition. It is already clear that

br and "Abr are not in S0. It remains to show the same

for (A + I)br.

Since A cycles upward, (A + I)br has no component in

position Ji for i = 1,...,r. Now lav(A + I)b1,(i2 + I)b1,

(A
3-

."+ I)b . (A
3
+ I)br-1

also spans S0 and b1" 'br-1

are the only spanning vectors that have components
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corresponding to the botton of a Jordan block. Assuming

A + I br is in S
0
then it can be written as a linear com-

bination of all the other spanning vectors. Note that

(A2 + I)(A + I) and (A3 + I) = (A + I)(A2 + A + I). Now

there exists a u e S0 such that (A + I)b
r

= (A + I)u. Let

P =
0 1 0

be the projection matrix mapping onto
0

0 :0 1

<en_ven>, the positions corresponding to the rth Jordan

block. Now P( + I)b
r

= e
n-1.

Note that PA = AP since

the r
th

block is two dimensional. Hence (A + I)Pu = e
n-1.

This is only possible if u e S
0

has a component in the e
n

direction which contradicts our construction of S
0.

Hence

(A + I)br
is not in S

0.
We may not write X = S

0
(9<b

r
,Ab

r
>

and apply Theorem 7 to get a UHTS.

Suppose A has no Jordan blocks of size 2. If the rank

of 15 is r then bi,...,br span R B and there is no strongly

connected invariant subspace of dimension n-2. Hence there

is no UHTS. It remains to discuss the case when the rank

of B is greater than r. .Let br+1,...,bm be additional ba-

sis vectors needed to span R(B) . The existence of a n-2

dimensional subspace S0 depends on whether or not R(B) has

a vector w with a component in the third from the bottom

position of some Jordan block. It is also necessary that

w has zeros corresponding to the bottom two positions. If

such a w exists it must be in b r+1"."bm>.

ForeachblockiwedefineP.to be the projection
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matrix zeroing out all but the second and third from the

bottom positions of block i. That is Pi projects to

<ej. e j._2>. We set E = [b
r+1

b
m
]. Now w exists if

and only if PiEx = ej_2 has a solution for x. If there is

a solution then w = Ex and X = S
0
9 b

i
,X11.> where S

0
is

the span of w,b1,...,bi_1'bi+71.,...br and the products of

LA2, and 113 times these vectors.

We define the size of our problem by n, the dimension

of the vector space X and the matrices A and B. The oper-

ations performed by Algorithm 9 are determining the rank

of a matrix, computing the product of two matrices, solv-

ing a system of linear equations, and putting a matrix in-

to Jordan normal form. The standard methods for doing these

operations have polynomial running time in n [See Aho,

Hoperoft, and Ullman pp. 226-242 for a discussion of the

computational complexity of matrix multiplication and

solving systems of linear equations].

When Algorithm 9 is to compute the Jordan normal form

of A it is already known that 1 is the only eigenvalue of

A. The standard methods of reducing A involves finding

a maximal linearly independent set of eiginvectors [See

Finkbeiner pp. 228-234]. The entire process is a matter

of solving order n systems of linear equations. Hence

Algorithm 9 has polynomial running time.
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VII EXAMPLES

The following examples illustrate the conepts we have

discussed. Example 1 demonstrates a LSM with a UHTS where

S
0

is not strongly connected.

Example 1: (n = 2,p = 2,k = 1)

i1 1\
B (131.k° 11 '

The controllability matrix

0 0 0
C = [B AB] = [

1 0 0]
has rank 2 so

0 1
[A,B] is strongly connected. However S

0
= ,0

is not.
0

The sequence f1
0 01 is a UHTS.

, 1,1

Example 2: (n = 3, p - 3, k = 1)

A

41 1 0 0 0
0 1 1) , B= (0 1 0
0 0 1 0 0 1

1 0 0

This pair has a UHTS where So = <0 , 1> and v = 0 .

0 0 1

Now v
3

= (A
2
+ A + I)v

1 2 1 1 1 0 1 0 0 0 1

= 0 1 2 + 0 1 1 +
[() ()]

0 1 0 0 = 0 .

001 001 0 0 1 1 0

Since v
3

S
o

and Av
3
= v

3
, Corollary 2.2 guarantees

0 0 O
W = 0,1,2 has a Hamiltonian circuit mod v3. The sequence

0 0 0
0 0 1 0

{e
2
,e

2'
e
2'

e
2
} generates 0,1,2,0 .

0 0 0 0

Using diagram 3 the sequence consisting of eight e3's fol-

lowed by e3 + e2, eight repetitions of the pair e3 + e2,
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e
3
+ 2e2, and finishing with e

3
+ e

2
is a UHTS.

Example 3: (n = 5,p = 2,k = 2)

(10011
01000

A= 01000 B= 10000
01111 00000
O 1011 01000
O 0001 11000

Following the steps of Algorithm 9 we find this pair is

strongly connected and falls into CASE 4: (A
4

= I,p = 2).

To put A into Jordan normal form we need to solve

(A - I)x = 0 0 0 1 1 x 0.
0 0 0 0 0

1
x2 = 0

0

(

1 0 1 1 x3 0
0 1 0 0 1 x4 0
0 0 0 0 0 x5 0

Now e
1
and e

1
+ e

3
are linearly independent solutions.

Next we wish to find solutions to (A - I)x = el and

(A - I)y = el + e3. The vectors x = e2 + e5 and y = e4

suffice. The system (A - I)x = e2 + e5 is inconsistent and

e
4
+ e

5
is a solution to (A - I)x = e4.

We set D
-1 = [el + e3 e4 e4 + e5 el e2 + e5] and

11000
compute D = g T. Now DAD-1 = A= 0 1 1 0 0 .

0 0 1 0 0
0 0 0 1 1
00001

Since A has a block of size 2 and the rank of B is the same

as the number of blocks, this system has a UHTS. Now

= DB = 0 0 0 .

O 0 0 0 0
0 1 0 0 0
O 1 0 0 0
O 0 0 0 0

0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
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In this case X = S 0
9 <e5,e4 + e

5
> where

0 0 1
S = < 0,1,0 >.
0 1 1 1

1 1 1
0 0 0

Example 4: (n = 3,p = 2,k = 2)

A (10. 1 (13) ' Bl (g 10- 1::())\ ' B2 1 (())\

tO 0 1] 1 0 0] 1 0 0/

The machines [A,B1] and [A,B2] are both strongly connected

however [A,B2] does not have a n - 2 strongly connected

invariant subspace. The LSM [A,B1] does however and so it

has a UHTS.
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VIII CONCLUSION

We have shown that the problem of determining the ex-

istence of a UHTS for a LSM is polynomial time solvable.

We do not know if there is a polynomial time algorithm to

determine if a general sequential machine has a UHTS. One

advantage the general case has over the linear case is

that the size of the input is defined to be the number of

elements in the state space as opposed to its dimension.

Even so there may be no polynomial time algorithm in the

general case.

In Theorem 1 we have shown that a LSM has a UTS if

and only if it is strongly connected. Our proof demon-

strates a UTS of length N
2-N and it is clear that any UTS

must contain at least N-1 elements. Our work has classi-

fied all LSM's that attain this lower bound. However, no

LSM has been shown to require N
2
-N elements for a UTS.

The problem of finding an attainable upper bound for the

length of a UTS remains an open question. In fact it is

not known if order N
2 inputs are necessary.

Further investigation of the group structure of tour-

ing sequences may lead to the solution of these and other

problems concerning the theory of sequential machines.
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