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through both theoretical and practical means.

To begin, manufacturing techniques for a silicon-based pneumatic actuator were

validated through experimentation. When inflated, the actuators exhibited an unan-

ticipated elongation. In an attempt to confirm theoretical displacement predictions,

a more accurate dynamic model was created which included curvature-coupled exten-

sion. The resulting model was simulated with varying degrees of extension and cor-

responding optimized gaits. Results suggest that the pneumatic actuators efficiency

does improve, although serpenoid systems used as a baseline comparison decreased

in efficiency when extension was added.

For the second stage of this work, it was assumed that a systems theoretical

model would be either completely unknown or unreasonable to calculate, thus another

motion prediction method would be required. This method, referred to as Data-



Driven or Empirical Local Connection Derivation, requires the system to execute a

gait which adequately spans the desired shape space while its position and velocity

are tracked through motion capture. This process is demonstrated using two different

locomotors.

Finally, these methods are integrated into a continually updated MATLAB®

graphical user interface (GUI) titled Geometric System Plotter. The aim of this soft-
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Chapter 1: Introduction

Efficiently driving robot locomotion has been a topic of high interest as long as there

have been robots. Recently, research efforts in the geometric mechanics community

have centered on visualization tools and finding efficient methods to intuitively predict

the dynamic behavior of robotic systems. Many of these systems take inspiration from

nature in an attempt to emulate the kinematics of a biological system, such as snakes

or other swimming animals. Designs and control methods for such articulated systems

have varied greatly, from the Purcell Swimmer first introduced over forty years ago [3]

to modular continuum snake robots in more recent years [4,5]. Further complications

arise when more versatile materials are introduced to the design, such as silicone [6–9]

and other compliant materials with nonlinear behavior.

In order to broaden our understanding surrounding these swimmers, this work de-

fines and demonstrates the capabilities of a modified geometric swimmer, describes a

novel procedure for physical displacement prediction, and integrates each new method

into a graphical user interface (GUI). Each of these contributions attempts to improve

knowledge behind design and behavior prediction of geometric swimmers in the hope

of facilitating future research.
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1.1 Outline

To provide context and motivation behind much of this work, previous advances in

geometric mechanics will be described briefly in the following chapter.

In the second chapter, the groundwork for geometric mechanics theory is summa-

rized to provide a foundation for work described in later chapters.

The third chapter outlines the first contribution of this work. It examines the

effects of extensibility on piecewise soft snake and serpenoid backbones. This study

stemmed from investigating manufacturing techniques for a modular soft snake robot.

During testing, the pneumatic silicon actuators experienced a lengthwise extension

as a consequence of the actuator structure. A modified dynamic model is proposed

which includes this extension. The chapter concludes with results from simulating

the new model and corresponding optimal gaits.

The fourth chapter presents a method for computing the local connection empir-

ically using motion capture data and describes the mathematics required. It then

gives examples of this data-driven method in action, both on theoretical and physical

systems.

The last chapter describing a contribution details how work in the previous sec-

tions was integrated with a custom Matlab GUI called Geometric Systems Plotter.

Finally, there will be a discussion considering the common themes linking all

contributions and potential research areas they may lead to.



3

1.2 Relevant Work

Interest in swimmer locomotion rose in the mid-twentieth century with investigations

into propulsion mechanisms of biological organisms, particularly those which reside

in homogeneous fluids such as air or water. At the time, analysis of bodies moving

through fluids considered both the propulsive force of the driving mechanism and the

momentum offered by the fluid as the body moves through it. In 1951, Taylor [10]

demonstrated that propulsion of swimming organisms such as fish or spermatozoa

through low Reynolds number fluid relies largely on viscous forces, as opposed to

inertia.

Two and a half decades later, Edward Purcell gave a talk, later reprinted in the

American Journal of Physics, titled Life at Low Reynolds Number describing the alien

fluid world many organisms inhabit [3]. Organisms that swim in these environments

are typically microscopic and must rely on articulating flagella or something similar

to move through a fluid which is relatively viscous to them. At viscosities such as

these, inertial forces dominate and motion is theoretically impossible without more

than one articulating joint. Purcell proposed a swimmer composed of three links and

two articulating joints as the simplest geometric system capable of movement in a low

Reynolds number fluid. This model became a standard benchmark for locomotion

prediction in highly viscous fluids.

Following these observations, several works began investigating motion prediction

of kinematic systems. One of the first was written by Shapere and Wilczek [11], and

described a mathematical framework for predicting net translation and rotation under
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cyclic joint articulations, or gaits. This framework resulted in the gauge potential field

A, later referred to as the local connection. This acts as a Jacobian, converting directly

between body and gait velocity.

Murray [12] and Kelley [13] expanded on the framework concerning effects from

the evaluation of the Lie bracket of the gait to generate optimal joint articulations,

or shape changes, for wheeled planar robots.

The local connection was mentioned again in a work by Ostrowski [14], which

dealt with motion planning for systems that locomote through shape undulations.

A special class of such systems are principally kinematic systems, where all group

symmetries are annihilated by the kinematic constraints, resulting in the principal

kinematic connection equation.

With improved motion prediction methods, Purcell’s Swimmer was revisited by

Becker et. al. [15]. They determined that both the amplitude of the joint angle

changes and relative link sizes affect net translation. It was also demonstrated that low

Reynolds number fluids exert anisotropic drag forces on inextensible swimmers. Tam

and Hosoi continued this analysis, determining an optimal gait based on expended

energy [16].

Methods for gait generation continued to be modified and applied to other systems.

The reconstruction equation first proposed by [14] was evaluated for a geometric

pivoting robot and a 3-link kinematic snake by Shammas et. al, with the addition

of height functions, a tool meant to assist in designing efficient gaits [16]. These

functions are surface representations of the integral of a position velocity, whose

geometric features such as peaks and valleys can be used to design gaits. Avron and
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Raz [17] also discuss height functions under the name curvatures, and investigate a

turning gait for the Purcell Swimmer.

Following this, Hatton and Choset produced several works which add to the reper-

toire of gait evaluation tools [18]. The first, similar to height functions, is a vector

representation of the local connection A over the shape space. This allowed for in-

formed gait generation without integrating equations of motion. Next, they proposed

the body velocity integral (BVI) as a more correct interpretation of the height-function

integrals. The coordinate choice affects the accuracy of the BVI as a proxy for the net

displacement [19], and a comparison between the traditional and proposed ‘intuitive’

coordinate frame is presented.

The issue of selecting ideal coordinate systems for accurate prediction was ad-

dressed in [1]. The presented method applies Hodge-Helmholtz decomposition to the

constraints on a system to find the optimal coordinate choice for that system. The

result is a coordinate set which experiences ‘minimum perturbation’ of the position

variables in response to shape variables.

Hatton and Choset then demonstrated the usefulness of this optimal coordinate

set by revisiting the Purcell Swimmer in low Reynolds number fluids [20]. This work

and its successor [21] demonstrated a clear reduction in prediction error between

the previous arbitrary coordinate frame selection and the new optimized coordinate

approximation.

Another useful tool for gait generation considers the energy cost of a system

moving through certain shapes [22]. Using cartographic principles, it is shown that

although an efficient gait can be drawn using the information from connection vector



6

fields or curvature height functions, it may not be a true projection of the cost that

gait will incur. The distortion generated by the energy required to move through

the shape space is encoded in a Riemannian metric. This can be used to distort the

shape space itself for a more accurate representation based on cost.

The most recent advancement which is useful to this work was completed by

Ramasamy, and utilizes the concepts from [22] to define optimal gaits for kinematic

systems. The optimization process can be compared to the equilibrium experienced

by a soap-bubble. Gaits which produce maximum displacement encircle areas of high

magnitude on the curvature surfaces [16,17]. Thus, maximizing displacement pushes

the gait towards a zero-level isocline, while the length of the gait tends to shrink to

minimize the shape change cost. Optimization was demonstrated on systems with

two inputs in [23], extended to three inputs in [24], and to n inputs in [25] (in review).
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Chapter 2: Background

In this chapter, a broad background concerning geometric mechanics topics covered

in this paper will be given. Additional detail will be shown in the following chapters

as necessary.

2.1 Geometric Mechanics

Robotic systems which are capable of locomotion do so through exploiting their physi-

cal relationship with their surrounding media. Defining this relationship first requires

knowledge of the robot’s morphology and kinematics: how the robot can move and

what shapes it makes given certain input commands. Secondly, movement prediction

requires defining how the robot’s shape interacts with the world around it, e.g., the

directional force it experiences from fluid friction.

We take a robot’s shape r as an element of its shape space r ∈M and its resulting

body velocity
�
g in the position space g ∈ G. The body velocity

�
g is the velocity with

respect to a defined body frame attached to some segment of the robot, while world

velocity ġ is defined in global coordinates. Body velocity and shape can be related

through the kinematic reconstruction equation,

◦
g = −A(r)ṙ + Γ(r)p. (2.1)
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where A(r) is the local connection, Γ(r) is the momentum distribution equation, and

p is the generalized nonholonomic momentum [26–28].

In this work, we only consider systems which experience local anisotropic friction,

primarily swimming in high viscosity fluids with very low Reynolds numbers. This

results in the ‘coasting’ effects from the momentum terms dropping out [26], and

equation (2.1) is simplified as

◦
g = A(r)ṙ. (2.2)

The local connection A(r) acts as a Jacobian directly relating the changes in geometric

shape, or shape velocity, to the resulting body velocity of a system [11,22]. Here, we

assume a system which operates in a two-dimensional plane with body coordinates

g = (x, y, θ) and two shape inputs r = (α1, α2). Body coordinates are defined in

meters and radians, and shape inputs are unitless unless otherwise specified.

The following sections detail the process of defining the local connection for a

given geometry.

2.1.1 Backbone Locus

As discussed previously, there are two relationships required to constrain a system

geometry and predict its movement.

First, the geometry of the system and its response to shape inputs must be defined.

Because this work focuses primarily on locomotion inspired by snakes, the methods

described here will concern systems with a single backbone whose shape is driven
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by an input gait r(t) = [α1(t), α2(t)], where the shape inputs are functions of time.

The backbone is assumed to be unit length, with a uniform and unchanging mass

distribution.

For a general backbone, the global position and orientation of a frame tangent to

the backbone of a particle on the backbone h(s) ∈ SE(2) relative to the body frame

is defined as

h(s) =


x

y

θ

 =

ˆ s

0

R(θ(s)) 0

0 1




1

0

κ(α, s)

 dσ, (2.3)

where s is the curve length along the backbone measured from the body frame, α

is the input, and κ(α, s) is the curvature experienced by a discrete segment of the

backbone.

For a system with two inputs, the total curvature is the sum of curvatures con-

tributed by each input α,

κ(α, s) =

[
κ1(s) κ2(s)

]α1

α2

 = κ1α1 + κ2α2. (2.4)

Functions for κ1 and κ2 determine the physical shape of the backbone and its response

to shape changes. As examples, this work will hereafter refer to two distinct systems;

the three-link swimmer which relies on discrete bending, and the serpenoid swimmer,

which has a more continuous shape.

The first system is the three-link or Purcell swimmer. It was first proposed as
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Figure 2.1: Shape bases and basic geometries for the Purcell (a) and Serpenoid (b)
swimmers.

the simplest mechanism which achieves movement through low Reynolds number

fluids [3,21], and remains a useful model for locomotion comparison. Its geometry is

shown in figure 2.1a. This backbone’s curvature is given by a set of delta functions

that define the articulating corners between three equal-length links [22]. Each link

has a length of 1
3
, thus the curvature function utilizes half of this length to map

distinct curvatures to each joint,

κ(α, s) = δ(s+
1

6
)α1 + δ(s− 1

6
)α2. (2.5)

The second system is a serpenoid backbone with sinusoidal curvature, shown in figure

2.1b. Serpenoid curvature uses both inputs as modal amplitudes to determine wave

shape [29],

κ(α, s) = α1 cos(2πs) + α2 sin(2πs). (2.6)
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With the backbone shape defined, the body velocity of an individual point on the

backbone
�
g(s) can be found by calculating both the gradient of its position with

respect to the input and the time derivative of the input shape. Multiplying these

together gives the time derivative of global position.

To obtain the gradient of position with respect to shape, we differentiate equation

(2.3) with respect to α and convert to body coordinates.

The gradient of (2.3) can be evaluated by taking advantage of the Leibniz rule to

move the gradient term inside the integral, then evaluating through chain rule. The

following equations evaluate each component of this gradient expression, beginning

with the gradient itself,

∇αh(s) =

ˆ s

0

∇α

R(θ(σ)) 0

0 1





1

0

κ(α, σ)

 +

R(θ(σ)) 0

0 1


∇α


1

0

κ(α, σ)


 dσ.

(2.7)

The gradient of the rotation matrix gives

∇α(R(θ)) = ∇α

cos θ(s) − sin θ(s)

sin θ(s) cos θ(s)

 = ∇αθ ·

− sin θ(s) − cos θ(s)

cos θ(s) − sin θ(s)

 . (2.8)

The gradient of θ(s) can be found using the definition of κ(α, s) in (2.4), with θ(s)

defined as
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θ(s) =

ˆ s

0

κ(α, σ)dσ (2.9)

giving

∇αθ(s) =

ˆ s

0

∇ακ(α, σ)dσ. (2.10)

To differentiate curvature κ, recall that each κn term is associated with an αn, as in

equation (2.4),

∇ακ(α, s) =

[
∂κ

∂α1

∂κ

∂α2

]
|α=(α1,α2) =

[
κ1 κ2

]
. (2.11)

With the gradient of the position with respect to shape fully defined, we can calcu-

late the gradient of local position with respect to time ḣ(s) by multiplying with the

derivative of shape with respect to time α̇ = dα
dt

,

ḣ(s) = ∇αh(s) · α̇. (2.12)

Local body velocity
◦
h(s) is then converted from world velocity ḣ using a left tangent

transformation,

◦
h(s) = Th(s)Lh−1(s)ḣ(s), (2.13)

where the left tangent transformation Tg0Lg∆
is the lifted action for converting be-

tween body and world velocities and has a structure similar to a rotation matrix.
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Tg0Lg∆
=
∂(g∆g0)

∂g0

=


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 . (2.14)

Finally, the general body velocity of the backbone
�
g(s) can be found by summing the

transformed base velocity and the body velocity of that point on the locus, relative

to the system’s body frame.

�
g(s) = Ad−1

h(s)

�
g(0) + h̊(s). (2.15)

2.1.2 Swimming Forces

The other relationship required for displacement prediction utilizes the shape-to-body

velocity definition to determine the resultant forces experienced by an articulating

system while in a low Reynolds number media.

One assumption this work makes is that the backbone is swimming in a fluid which

gives locally anisotropic viscous friction. This implies that the forces on the backbone

are linearly related to the body velocity
�
g. Secondly, the backbone is in quasi-static

equilibrium, which allows the model to be constrained to motions in which the sum

of the forces equal zero.

Beginning with the viscous friction constraints, we can relate the local force F (s)

to the body velocity
�
g as,
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F (s) = C
�
g(s) =


1

2

0



�
g x

�
g y

�
g θ

 (s), (2.16)

where C is a drag coefficient matrix containing coefficients for converting between

body velocity of points on the backbone to local friction. We assume 2 : 1 friction,

with the lateral drag force having twice the magnitude of the tangent component,

and no effect from rotational forces. [21].

Given the position of each body segment relative to the static body frame, local

forces can be converted to body forces acting on the system using an inverse adjoint

transformation,

Fb(s) = Ad−1
h(s)F (s), (2.17)

where the inverse adjoint operation performs transformations using a combination of

cross products and rotations between linked frames. For a frame at h(s) = (x, y, θ),

this transformation is

Ad−1
h(s) =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1




1 0 −y

0 1 x

0 0 1

 . (2.18)

Finally, the net force is equal to the integral of the forces contributed by different

points along the body with the integral limits set so the backbone is of unit length

with the body frame at the center,
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Fb,total =

ˆ 0.5

−0.5

Fbds. (2.19)

2.1.3 The Local Connection, Gait Generation, and Other Estimation

Tools

The result of evaluating (2.19) consists of several coordinate transformations on the

body and shape velocity. These velocities can be separated and factored out, leaving

a 3× 5 matrix of coefficients ω(α) and a 5× 1 matrix of velocities,

Fb,total = ω(α)

�g
α̇

 . (2.20)

Recall that the system is assumed to be in quasi-static equilibrium, and the external

force in (2.19) can be set to zero. Concurrently, the coefficient matrix ω(α) can be

split into two blocks which relate to either the body or shape velocity:

Fb,total =


0

0

0

 =

[
ω3x3
g ω3x2

α

]�g
α̇

 (2.21)

Multiplying through gives ωg
�
g = −ωαα̇, thus

�
g is

�
g = −ω−1

g ωαα̇. (2.22)
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Once the constraint equations have been solved to match the previous format, the

local connection A(r) is defined as

A(α) = −ω−1
g ωα (2.23)

giving the same definition for simplified kinematic reconstruction equation as in 2.2.

The resulting local connection matrix has one row for each body position variable,

and one column for each input α value.


ẋ

ẏ

θ̇

 =


Aα1,x Aα2,x

Aα1,y Aα2,y

Aα1,θ Aα2,θ


α̇1

α̇2

 (2.24)

Each row of A can be interpreted as the element-wise effects the shape has on position.

This can be visualized by evaluating both coefficients over a grid of α values and

displaying the results as a vector plot. For reference, connection vector plots for the

Purcell swimmer are shown in figure 2.2.

Utilizing a generalization of Stokes’ theorem [26], it can be shown that the net

displacement resulting from a closed loop gait can be approximated with the area

integral of the surface region of the curl of A(α) and Lie bracket [A1, A2] enclosed by

the gait.

∆g =

˛
φ

−A(α)dα =

¨
φ

−curlA+ [A1, A2]dα (2.25)

A useful tool for visualization is the constraint curvature function (CCF). This func-
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Figure 2.2: Connection vector plots for the 3-link Purcell Swimmer. Left shows
the x coordinate, middle is y, and right is θ, while the top row shows the original
coordinate system and the bottom shows optimized coordinates, which are detailed
later this chapter [1].

tion is the augmented curl of A and includes Lie bracket effects [A1, A2] as in (2.25).

CCF plots for the Purcell Swimmer are shown in figure 2.3.

When evaluating (2.25), selecting an arbitrary orientation and position for the

body frame can result in significant position estimate error for motions beyond pla-

nar rotation and infinitesimal translations. However, applying a body frame whose

orientation in world coordinates experiences minimum perturbation, i.e. optimal co-

ordinates, results in a much more accurate estimation [1, 26]. The bottom rows of

figures 2.2 and 2.3 show the respective plots in optimal coordinates, while the top

rows are in the original body frame.

In order to achieve maximum displacement per cycle, the gait should enclose the

maximum amount of sign-definite area on the CCF surface, thereby maximizing the
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Figure 2.3: Constraint Curvature Function contour plots for the 3-link Purcell Swim-
mer. Left shows the x coordinate, middle is y, and right is θ, while the top row
shows the original coordinate system and the bottom shows optimized coordinates,
discussed later. Red contour lines represent positive regions, and black represents
negative.
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Figure 2.4: x Curvature Constraint Function plot for the Purcell Swimmer. The
maximum displacement gait, which matches that given in [2], lies on the zero level of
the height function DA. The maximum efficiency gait is similar, but gives up areas
of high cost and low gain.

value of the integral in equation (2.25). The simplest illustration of this is a gait

following the zero-contour line of the contour representation [21].

However, this is not necessarily the highest efficiency gait. If the cost of executing

a specific shape change is considered a metric for optimization, it follows that a path

with the least cost, and therefor the shortest length, while maximizing enclosed surface

integral can be generated from a starting seed gait [23]. The seed gait is usually a path

along the zero contour, although a simple circle or other ‘best-guess’ seed can also

be used. As compared to the maximum-displacement gait, the maximum efficiency

gait gives up areas of high cost and low displacement. An interesting example of

this difference is the Purcell Swimmer, whose maximum displacement and maximum

efficiency gaits are shown in figure 2.4. Maximizing efficiency causes the gait to

compress inwards, trimming the extreme ends of the enclosed area.
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Optimizing according to path length requires use of the Riemannian Metric’s

local metric tensor M, a measure of the relative movement cost in each dimension,

to relate path length to actual costs felt by the system. The full derivation is described

in detail in [22]. The resulting metric for cost of movement through a system’s shape

space is

ds2 = dαTMdα (2.26)

For systems swimming in low Reynolds Number fluids, this can be rewritten as

ds2
p = pdt2 =

[
dα1 dα2

]
Mp

dα1

dα2

 (2.27)

where Mp relates the torque experienced by each body joint and the input body

velocities by T =Mpα̇.

The previously mentioned prediction tools (connection vector fields, CCF plots,

and metric stretch) are all intended to provide intuition for how a system will act

when driven with a certain gait, as well as effective shapes for that gait. They will

be revisited in later chapters as analysis methods.
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Chapter 3: Curvature-Driven Backbone Extensibility

As mentioned in Chapter 1, the original project which inspired much of this work

involved researching materials and methods from recent advances in soft robotics to

fabricate a mobile snake robot system. Ideally, this swimmer would be articulated

similarly to the Purcell Swimmer with only two input variables α1 and α2, yet consist

of a continuous geometry, closer in form to a traditional serpenoid swimmer.

Consider a spectrum which is characterized by continuity in the backbone in one

direction and simplicity in actuation in the other. At one end the Purcell Swimmer

represents systems which are geometrically simple. That is, the system consists of a

relatively low number of segments with spatially-localized modes. On the opposite

end, a theoretical serpenoid system has a fully continuous backbone with overlapping

modes. A physical version of this system would also require many more degrees of

control. Both systems can be seen in figure 3.1a,c.

Located between the extremes of this spectrum is the concept for a pneumati-

cally controlled piecewise swimmer, shown in figure 3.1b. This swimmer consists of

two bi-directional actuators linked serially, giving the system two control variables,

similar to the Purcell Swimmer. Driving each input with pneumatics means each

half of the snake experiences a continuous bending force and will have a continuous

curvature. Additionally, the nature of such an actuator requires it to be fabricated

from a compliant durable material which is ideal for a variety of scenarios, such as
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Figure 3.1: A spectrum concerning each swimmer’s backbone shape and controllabil-
ity. (a) shows the Purcell Swimmer, a common benchmark for locomotion analysis.
The concept for the piecewise swimmer is shown in (b), while a traditional serpenoid
swimmer model is in (c).

safe personal use or as a robust exploration snake for search and rescue operations.

3.1 Piecewise Swimmer Manufacturing and Testing

The manufacturing process leading to the final design for a physical soft snake robot

and the subsequent testing are outlined in detail in [6], but will be repeated here for

continuity.

3.1.1 Manufacturing

The base requirements for the proposed soft actuators were as follows:

1. The actuators should be pneumatically-driven and contain no hard materials.
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Figure 3.2: A single pneumatically-driven silicone actuator.

2. Each actuator should bend only in the plane of operation; i.e., no twisting or

out-of-plane motion.

3. Each actuator must be able to achieve bidirectional bending to at least 90◦.

4. The design should be modular, so a series of links can consist of as many

actuators as needed.

The first three points are readily achieved using pre-existing actuators [7, 9, 30].

These all use some form of reinforcement or wrapping to achieve bend in a particular

direction. However, the actuators in these works either did not exhibit planar bi-

directional bending or were impractical for our use.

To achieve all requirements inspiration was taken from [7–9] to create a molded

dual-chambered wrapped silicon actuator. The final design is shown in figure 3.2.

Each actuator was molded from EcoFlex®00-30 in three pieces; two caps, each

with an inset neodymium magnet, and a central cylinder, which housed the two air

chambers. The three individual sections were then glued together with SilPoxy®.

A completed actuator was roughly 110mm in length, had an elliptical cross-section

whose semi-major and semi-minor axes were 30mm and 20mm respectively, and a
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Figure 3.3: The complete soft snake. One actuator has its air chambers outlined to
show their relative locations.

wall thickness of 3mm.

The actuators required wrapping to restrict inflation and encourage planar bend-

ing as opposed to ballooning behavior. An ideal solution was to wrap along the length

counterclockwise and clockwise in a helical pattern with a strong sewing thread. The

entire actuator was sealed with another thin layer of EcoFlex®00-30.

Because each actuator corresponds to a single input, a swimmer consisting of

two actuators could now be controlled similarly to the Purcell Swimmer. Driving

the pressure appropriately generated a continuous curvature along each half of the

backbone. Due to the discrete nature of the swimmer’s actuation, it was termed and

is here referred to as a Piecewise Continuous Swimmer. The final full snake is shown

in figure 3.3, which uses two actuators connected in series via magnets.
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3.1.2 Geometric Model and Experiment Setup

To determine the piecewise swimmer’s viability, gait tests were performed by placing

the full swimmer in a bed of millet and observing it with an Optitrack Prime 13

motion capture system. The millet had a low density ratio of 0.78 to 1, and a lateral-

to-longitudinal drag ratio of 1.8 to 1. Three 4mm reflective markers were placed on

each actuator for tracking. This allowed a circle to be fit to the locations reported by

the motion capture system, from which a curvature could be defined for comparison.

To aid in determining the swimmer’s displacement, a geometric model was created

using the principles described in chapter 2 and simulated using a Matlab interface

built around these principles [31,32]. This software, named Geometric System Plotter

and further described in Chapter 5, allows the user to input the desired geometric

configuration, apply a theoretical gait, and simulate the resulting displacement in

addition to other helpful tools based in geometric mechanics.

The model used here assumed a low Reynolds number fluid with a local tangential-

to-normal drag ratio of 1.8:1. It also uses an ideal representation of the piecewise

snake, assuming the backbone is split exactly in half and each section creates a perfect

circular arc with the driven curvature.

Recall that the general equation for the position of a point along a snake backbone

with a particular curvature definition is

h(s) =


x

y

θ

 (s) =

ˆ s

0

R(θ(σ)) 0

0 1




1

0

κ(α, σ)

 dσ. (2.3 revisited)
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For a piecewise continuous curvature actuator, κ is defined by the input α and the

position as a function of the associated actuator,

κ(α, s) = α1H(−s) + α2H(s). (3.1)

The use of the Heaviside function H(s) here allows a single expression instead of a

case-dependent set of equations. When the curvature of a particular point along the

backbone is being evaluated, this classic step function will negate the alpha input on

the opposite half.

The resulting constraint curvature function for the piecewise swimmer is shown in

figure 3.4. It has similar characteristics to the Purcell swimmer’s CCF plot (in 2.4).

Both have a negatively-oriented well around the center and are symmetric about

α1 = α2 and α1 = −α2

3.1.3 Testing and Motion Capture Results

To gain a wider understanding of the resultant displacement, the snake was run

through five different gaits. Four were ellipses in the shape space, whose major axes

were oriented towards either π/4 or 3π/4 and whose major-to-minor axis ratio was

either 2 or 4. The last gait was a circle with radius 2π. These gaits are shown in

figure 3.5.

As shown in figure 3.6, all gaits run on the extensible snake in granular media per-

formed better than the inextensible theoretical model predicted. Additionally, when

curvature-based gaits were extracted from the motion capture data, the measured
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Figure 3.4: Constraint Curvature Function contour plot for the piecewise swimmer
dynamic model. Sign definite regions are labeled as positive or negative, with red
showing above-zero values, black showing below-zero values, and gray representing
the zero contour.

Figure 3.5: Piecewise Swimmer driven gaits.
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displacement was again higher than predicted when normalizing for body length and

cycle time. Based on these results, we concluded the inextensible-viscous theoretical

model was not sufficient to provide accurate predictions for the physical-granular soft

snake. Although similar trends are visible between paths, such as the period of the

apparent motion, the displacement prediction was not consistent or accurate.

3.2 Dynamic Model Modification

Discrepancies between the piecewise swimmer’s expected motion and the motion seen

in experiments prompted an additional investigation. In particular, while the swim-

mer did achieve a net displacement, it did so while stretching tangentially by a non-

negligible amount. This highlighted an inaccuracy in the predictive model, though it

was still adequate for rough estimates. An example of the observed stretch is shown

in figure 3.7, where the original actuator is compared to an actuator manufactured

later with a rigid backbone embedded during the molding process.

The length change experienced by any segment of the backbone appeared to be

directly coupled to the input pressure, and therefor curvature. The predictive model

assumed a static length, thus was not accurate to the behavior of the actuators. To

accommodate this, we first consider the portion of the original backbone definition

given in (2.3) which considers local rotations,
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Figure 3.6: Gaits and displacement predictions for each test. Displacements have
been normalized for body length, and are displayed corresponding to the proportion
of a full gait cycle performed.
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Figure 3.7: Extension in the original actuator (top), and an actuator manufactured
later whose extension is restricted with an embedded rigid backbone. Both actuators
are inflated with the same pressure.

R(θ(s)) 0

0 1




1

0

κ(α, s)

 . (3.2)

The right-hand matrix is modified by the left according to some rotation matrix

R(θ), assuming a fixed unit integration speed and orientation κ(α, s). This unit ds is

valid in systems with unchanging lengths. However, this is no longer the case for the

extensible piecewise swimmer.

Instead of this backbone model assuming unit integration, we define a proportional

elongation term, λ(α, s) to replace it,
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λ(α, s) = f(α, s). (3.3)

Elongation here is a proportional term relating the change in length of each segment

to the original unit length using the curvature at that segment. The relationship

is defined through a selected function which depends on the nature of the materials

chosen.

This gives a new backbone equation,

h(s) =


x

y

θ

 (s) =

ˆ s

0

R(θ(σ)) 0

0 1



λ(α, σ)

0

κ(α, σ)

 dσ. (3.4)

Additionally, the forces experienced by the simulated backbone in a low Reynolds

number fluid, previously given in (2.19), must also be modified by the proportional

length term,

Fb,total =


0

0

0

 =

ˆ 0.5

−0.5

Fbλ(s)ds. (3.5)

With these modifications to the basic dynamic model, the constraint equations defin-

ing this system’s local connection can be re-evaluated for simulation.
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3.3 Simulation

To validate the new model, several systems were created and simulated with variations

to the functions defining curvature κ, elongation λ, and the magnitude of the function

within λ, here defined as the elongation constant b.

Recall the general equation for the curvature which defines a system’s backbone

shape, as in (2.4),

κ(α, s) = κ1α1 + κ2α2. (3.6)

As stated in (3.1), the values for κ1 and κ2 are each a Heaviside function H(s),

allowing each input variable α1 and α2 to be mapped to one half of the backbone.

For comparison, a general serpenoid system was also simulated with included

extensibility. The curvature values κ1 and κ2 for this system are cos(2πs) and sin(2πs)

respectively, giving

κ(α, s) = α1 cos(2πs) + α2 sin(2πs). (3.7)

Both of these curvature functions are scale-normalized with κ = dθ
ds

, which allows the

backbone’s length to extend at the same time as the curvature increases. This results

in the backbone length increasing proportionally at the same time as the curvature,

so the scale of the shape increases rather than the backbone curling tighter on itself.

Extracting length over time for the piecewise snake motion capture tests consisted

of multiplying the radius of a circle fit to the three evenly spaced markers on each
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Figure 3.8: Snapshot of piecewise soft snake while executing a gait. The black squares
show the locations of the reflective markers tracked by the motion capture system.
Length of each actuator is calculated by extracting the radii of circles fit to three
markers and multiplying by the angle α between the outermost markers.

actuator with the angle between the outermost markers. The curvature for each

actuator was calculated as the inverse of the radius, 1/r. An example configuration

with fitted circles can be seen in figure 3.9. Comparing total arc length with curvature

suggested a quadratic relationship between actuator length and driven curvature,

shown in figure 3.9 [6]. Based on this behavior, the elongation function in (3.3)

should always be positive, continuous, and have a y-intercept of 1. Overlaid on the

length response is a manually selected quadratic curve which appears to be the best-fit

for both systems. This was chosen as the first function for testing,

λ(α, s) = b(α(s)2) + 1. (3.8)

However, it is important to note that this relationship depends heavily on the ma-

terial used and the input variable considered during comparison. Theoretically, the
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Figure 3.9: Length versus input curvature for the two actuators which comprise a full
soft snake executing a circle gait. Each appears to have slightly different elongation
responses. This is expected, as the actuators were manufactured by hand and likely
had variations in wall thickness. Overlaid in dashed black is a manually selected
best-fit line with the equation λ = 0.005(α) + 1.

elongation function could have any form, provided the actuator still meets the re-

quirements set previously. In the interest of examining multiple functions, a second

elongation was selected which follows an absolute value relationship,

λ(α, s) = b|α(s)|+ 1. (3.9)

Both selections for elongation have an undefined elongation constant b. This was

meant to provide a simple means to increase the magnitude of the elongation effect,

equivalent to comparing stiff and soft silicone. The value of b was varied over a range

such that at its minimum value of zero the system would revert to inextensible, and

at its maximum, the elongation function would return a value of 2. For the quadratic

relationship, this set of values is between 0 and 0.101, and for the absolute value

relationship, the values are between 0 and 0.318. Twenty iterations of elongation
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constant were tested for each, resulting in 80 individual systems.

Each system was simulated with an associated optimal gait. A summary of this

optimization process is described briefly in §2 and in its entirety in [23].

All systems were simulated in batches with one set of elongation and curvature

definitions and the elongation constant ranging from minimum to maximum. Within

one batch of varying extensibility constants, only the first system’s optimization used

a defined seed gait, while each subsequent system used the previous system’s optimal

gait as a seed. This was an effort to save computation time, as each system’s optimal

gait should be similar to a system whose extensibility only varied slightly.

For comparison, the total backbone length over time was extracted for each system

and an average length was obtained by taking the root-mean-square (RMS) of this

array. The average length was assigned to an inextensible system with the same

combination of curvature and elongation functions. Each new system then underwent

the same optimization procedure to extract an optimal gait.

Once all systems’ simulations were completed, the resulting displacement and cost

for a single gait cycle were extracted and plotted against the extensibility constant.

3.4 Results

Completing all simulations yielded data for eight distinct system types; one for each

combination of serpenoid vs. piecewise curvature, absolute λ versus quadratic λ

elongation, and unit- versus RMS-length.

Illustrating the CCF plots as the extensibility constant slowly increases reveals a
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Figure 3.10: Constraint Curvature Function plots with the corresponding optimal gait
overlaid. Five samples are displayed for each combination of curvature and elongation
functions.
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pattern which suggests a higher displacement is possible with optimal gaits and only

a small increase in extensibility.

Beginning with small b values, the maximum and minimum values of the CCF

plots increase in magnitude, and the CCF plot contours tend to grow more circular,

increasing the amount of sign-definite area encompassed by the gait. The optimal

gait calculated for each system follows these peaks as they shift within the shape

space. These effects can be seen in figure 3.10.

Figure 3.11 shows the extracted displacement and path length cost for each sys-

tem and its maximum-efficiency gait for all b values. The relative efficiency of each

individual system can be found by calculating the slope between the origin and the

corresponding data point. Collectively, these slopes allow comparison across all sys-

tems of the magnitude of displacement and input energy, shown in figure 3.12.

One interesting property shown in these plots is the immediate decrease in effi-

ciency for the serpenoid systems, regardless of which function is used for extensibility.

Conversely, although the piecewise backbone initially had almost half the efficiency

of the serpenoid, allowing for extensibility caused the efficiency to rise continuously

for the absolute value λ function and rapidly for the quadratic.

The piecewise systems peaked efficiency at b = 0.03 and b = 0.318 for the quadratic

and absolute value curvatures respectively, while the equivalent RMS length systems

dropped similarly in efficiency and did not rise beyond the inextensible system.

The serpenoid systems experienced the opposite effect. While increasing the over-

all length of the system to the RMS length equivalent did have a positive effect on

efficiency, the extensible systems performed poorly in comparison.
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Figure 3.11: Displacement per Cycle versus Cost per Cycle for each system as the
elongation constant b increases.

Figure 3.12: Efficiency of each system at associated elongation constant b.
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Chapter 4: Data-Driven Local Connection

When generating a geometric or dynamic model for a complex system, many assump-

tions must be made about the system or its interactions with the world. While some

error associated with model inaccuracies can be accepted or even somewhat accounted

for, there are often discrepancies whose causes can only be guessed at.

Some evidence to this is the prior chapter concerning motion prediction of a soft

snake robot. It is often difficult to accurately predict motion for rigidly assembled

robots; the piecewise swimmer, manufactured entirely from compliant materials, poses

an even greater challenge. Even with the best estimates concerning the effects input

pressure has on output motion to generate a theoretically ideal model, the resulting

displacement still varied from what was expected.

These difficulties stem from the amount of detail that can be accounted for when

creating geometric models. Simple systems, such as the Purcell swimmer, have rel-

atively simple physics models with minimum assumptions. Unfortunately, most in-

teresting models are not simple. For example, although the dynamics for a 3-link

kinematic snake, which is constrained by a set of passive wheels at the center of

each link, forbid its wheels from experiencing any local y displacement, a physical

incarnation of this snake would likely skid or rotate in some unpredictable manner.

Complex dynamics such as surface friction or soft compliant materials can introduce

substantial error between predicted and measured data.
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In this chapter, we outline an empirical method for generating the local connection

of a 2-degree-of-freedom system which bypasses the need for an exact dynamic model.

4.1 Empirical Derivation

Generating the local connection for any given system begins with the equation first

shown in (2.2),

�
g = A(α)α̇. (4.1)

In this work, we are concerned with systems whose shape variables operate in a flat

plane and have output positions reported using Cartesian coordinates x, y, and θ.

Expanding to show these dimensions, equation 4.1 becomes


ẋb

ẏb

θ̇b

 =


Ax,α1 Ax,α2

Ay,α1 Ay,α2

Aθ,α1 Aθ,α2


α̇1

α̇2

 . (4.2)

where the coefficients in A(α) each correspond to the effect of one input shape velocity

on one output body velocity component.

Traditionally, the coefficients for the local connection are derived from a set of con-

straint equations which require knowledge of an appropriately linear physics model,

as in (2.19).

An alternative route for obtaining the local connection begins with assuming the

robot’s body velocity
�
g and shape inputs α and α̇ are known for a set of test motions,
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allowing for the connection matrix to be directly solved from the relationship between

these values.

Consider a system with an unknown local connection which executes a path

through the shape space. We can define a discretized grid of query points over the

space, where every point [α1, α2] will have associated local connection coefficients A1

and A2.

At each coordinate [α1, α2], the executed gait is searched for nearest neighbors

p1 : pn which have an associated body velocity ẋb(t) and shape velocity α̇(t). Ideally,

each point’s velocities follow the relationship in the rows of 4.2. For the x-coordinate,

ẋb =

[
Ax,α1 Ax,α2

]α̇1

α̇2

 . (4.3)

Ideally, every gait point near the current query point follows this relationship with

the same A1, A2 coefficients. Rearranging slightly, for the nearest points the above

becomes



ẋb1

ẋb2
...

ẋbn


=



α̇1,1 α̇1,2

α̇2,1 α̇2,2

...

α̇n,1 α̇n,2


A1

A2

 . (4.4)

With a sufficient number of points, a pseudo-inverse operation can be performed to

find the best fit regression of a plane passing through coordinates (α̇n,1, α̇n,2, ẋ
b
n). The

resulting local connection coefficients for that query point can be stored, and the
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Figure 4.1: Visual representation of neighborhood point search. (a) Search boundary
around current grid point. (b) The dashed line shows an example system gait. Ideally,
the entire gait spans shape space with adequate density. Sample points (red and blue
crosses) are taken to downsample or discretize data. (c) Grid of query coordinates
in shape space. (d) Points within boundary (red crosses) have an associated body
velocity, shape velocity, and distance [δ1, δ2] that are stored for calculation.

same process performed on the next grid location.

Our proposed method expands (4.4) to include higher order terms which define

the partial derivative of A1, A2 with respect to the change in shape position relative

to the grid point of interest, [δ1, δ2].

For this modified method, the relative positions [δpn1, δpn2] of the nearest sample

points are extracted in addition to the corresponding body and shape velocity. An

illustration of this is shown in figure 4.1. All components including partial differential

effects are shown in the following equation, which is an expansion of (4.4).
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

ẋb1

ẋb2
...

ẋbn


=



α̇1,1 α̇1,2 α1,1δ1,1 α1,1δ1,2 α1,2δ1,1 α1,2δ1,2

α̇2,1 α̇2,2 α2,1δ2,1 α2,1δ2,2 α2,2δ2,1 α2,2δ2,2

...

α̇n,1 α̇n,2 αn,1δn,1 αn,1δn,2 αn,2δn,1 αn,2δn,2





A1

A2

∂A1

∂α1

∂A1

∂α2

∂A2

∂α1

∂A2

∂α2


(4.5)

Taking the pseudo-inverse of the n × 6 matrix and multiplying with the x body

velocity matrix on the left side leaves a local connection component matrix on the

right which is a best fit regression of the selected body and shape velocity data. The

first two elements A1 and A2 are extracted and saved for the current grid point, to

be referenced when performing gait calculations.

We also implement a k-nearest neighbor search which considers the reciprocal

condition number, a measure from 0 to 1 of how sensitive the solution to a set of

equations is to small perturbations in input arguments, when populating (4.5). The

number of points considered is defined such that the the reciprocal condition number

of the α matrix, rcond(α · αT ), is greater than some threshold, while the maximum

distance to the neighboring points is bound below the grid size. The threshold here

is set to 0.7, and the number of points k must be at minimum 6, to ensure (4.5) is

full rank. Once both conditions are met, the point set is finalized and calculations

can continue. A more detailed explanation of this process from a coding perspective

is given in §5.2.2.

To obtain an ideal distribution of sample points in the shape-space, samples should
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Figure 4.2: Two examples of gaits which adequately span the shape space. (a) An
ellipse is rotated while augmenting the major and minor axes to fill the center and
corners. (b) Boustrophedon or Lawnmower path.

come from a trajectory which adequately spans the shape-space and its tangent

spaces.

One sufficient gait is here referred to as an ellipse sweep, shown in figure 4.2a. It

involves taking a single ellipse and rotating it through 2π, while increasing the major

axis and decreasing the minor axis when the major is oriented along α1 = α2 and

α1 = −α2. Another gait, also in figure 4.2b, is a “lawnmower” path which spans

the shape space with alternating vertical and horizontal segments. Both these paths

are ideal as the resulting grid should provide a well distributed set of sample points

whose shape velocities are in orthogonal directions.
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4.2 Theoretical Validation

Before applying empirical local connection derivation to a physical system, the method-

ology was first tested on one of the simulated extensible piecewise systems from the

previous chapter.

A lawnmower, or boustrophedon, trajectory was executed for a piecewise quadratic

system with extensibility constant b = 0.05. Gaussian noise was added to the calcu-

lated body velocity and shape velocity to simulate raw motion capture data, and the

existing local connection was treated as unknown. The above derivation process was

run over the gait and velocities, and the resulting local connection compared to the

original as seen in figure 4.3.

This result supported the validity of the process, as well as highlighted some

aspects which would be important when evaluating a physical system. One was that

the most significant error occurred on the edges. To remedy this, the query grid

should be compressed such that the neighborhood search does not extend into areas

of the shape space that are devoid of sample points.

4.3 Experimental Setup and Derived Local Connection Results

After theoretical validation using close to perfect data, the expanded methodology for

data-driven local connection generation was applied to two distinct physical geometric

systems. Both can be compared to existing theoretical models, though variations

between these and the experimental results are expected as the theoretical models

are idealized and make many assumptions about the system.
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Figure 4.3: Method validation using a previously simulated piecewise system with
quadratic elongation and b = 0.05. The left hand images are the original theoretical
system, and the right shows the result of running empirical local connection derivation
on data with added Gaussian noise. All plots are the optimized x solution.
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Figure 4.4: (a) Accuracy of the pneumatic solenoids prevented executing a full ellipse
sweep, so the driven gait is a combination of four ellipses and one cross. (b) Gait
executed by the soft snake in millet.

4.3.1 Piecewise Constant Curvature Swimmer

The soft snake robot built and tested in Chapter 3 was driven under a motion capture

setup in the same millet as the original tests with a series of weighted ellipse gaits,

shown in figure 4.4a. Gait coordinate values were extracted by fitting planar circles

to position data from three markers evenly distributed on each actuator [33].

Running a full ellipse sweep gait proved to be challenging due to the nature of

the pneumatic solenoids which drive the actuator inflation. When an actuator is

instructed to hold a certain position, the corresponding solenoid remains open, con-

tinuously inflating the actuator rather than holding it still. An alternative to the

single sweep gait was to repeat the ellipse runs in the original experiments and link

them together. The soft snake shape response is shown in 4.4b.

Figure 4.5 shows a snapshot of the fitting process performed on the piecewise

snake. Important to note here are the gaps between the gait data. Although the gait

does span the shape space, it is not evenly distributed, and the shape velocities do not
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Figure 4.5: Neighborhood search performed on two gait sample points. (a) Points
which fall within the k-nearest neighbor search are shown in red. (b) Calculating the
local connection coefficients is equivalent to fitting a plane to the body and shape
velocity data for these points plotted in 3D.
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vary sufficiently over the grid. Sample iterations of the best-fit method can be seen

in figure 4.5b, where for two time steps, points within the nearest neighbor search

have their shape and body velocities plotted, and a plane is fit to that data whose

equation has coefficients A1 and A2. The resulting local connection vector fields and

CCF plots for x, y, θ in unoptimized and optimized coordinates can be seen in figures

4.6 and 4.7.

It is important to note here that although the scales given for the plots vary due to

the units of the variable being considered, there are definite similarities in the basic

features of paired plots. These are most evident when viewing the vector plots in

unoptimized coordinates. As an example, there are curled portions of the first and

third quadrants of the x coordinate unoptimized vector plots. Additionally, the y and

θ plot arrows trend towards similar directions.

When evaluated, the body velocity from the original motion capture data and the

body velocity predicted by simulation (figure 4.8) do line up nicely. However, as the

ellipse evaluated was also used for the connection calculation, the accuracy for this

particular path is expected.

4.3.2 Serpenoid Snake Robot

The second system tested using this method is a modular snake robot first created

at the Carnegie Mellon University (CMU) Biorobotics Laboratory [4]. This robot

consists of several individually actuated servos in series and is capable of a wide array

of motions, including climbing, crawling, and sidewinding [5].
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Figure 4.6: Resulting connection vector plots for analysis on the piecewise soft snake
compared with its closest theoretical equivalent, a simulated piecewise system with
a quadratic extension function and b = 0.005. The leftmost plots show data for the
x coordinate, the middle is y, and right is θ. The top two rows are displayed in
unoptimized coordinates, and the bottom are instead in optimized coordinates. This
layout is repeated for later figures and is only listed here.
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Figure 4.7: Resulting constraint curvature function plots for analysis on the piecewise
soft snake compared with its closest theoretical equivalent, the simulated piecewise
system with a quadratic extension definition and b = 0.005.
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Figure 4.8: Ellipse gait (left) and associated body velocity comparison for the piece-
wise soft snake. Velocities here match closely because the ellipse was used for the
connection calculation.

Figure 4.9: CMU modular snake on the testing bed. Each link is tracked via markers
attached to small stilts to keep them visible during movement.

For this application, the robot was restricted to planar motion and driven with

serpenoid curvature on a bed of uniform spheres roughly 6 mm in diameter. Actuation

response was accurate enough to allow for the use of the boustrophedon gait. The

driven and extracted gaits are shown in figure 4.10.

The boustrophedon gait was run five separate times. Data from each were ap-

pended to the last, so information from all runs could be taken into account and
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Figure 4.10: (a) Idealized boustrophedon gait and (b) the modular snake’s resulting
shape path.

increase the number of query points available to the nearest-neighbor search. A snap-

shot of the search can be seen in figure 4.11, with the resulting local connection

displayed as vector plots and CCFs in figures 4.12 and 4.13. The distribution of

qualifying points is more widespread for this gait, allowing for a better regression

and coefficient calculation. Similarly to the piecewise results, there are equivalent

features in the unoptimized x, y, and θ body coordinate plots. The most obvious of

these include a rotational trend in the x plot, and a top-to-bottom trend in the θ

plot.

To evaluate the accuracy of the empirically derived local connection for the modu-

lar snake, single circle and ellipse gaits were also run. Ideally, because the same snake

was used for all trials without modifications, the body-to-shape velocity relationship

for these gaits is the same as the boustrophedon gait. For one ellipse and circle, the

compared velocities are shown in figure 4.14.
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Figure 4.11: (a) Sample neighborhood search over the test gait. (b) Best-fit plane
for data within neighborhood search. These points are well distributed in the shape
velocity space, so the best-fit process is more accurate.
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Figure 4.12: Resulting connection vector plots for analysis on the CMU modular snake
compared with its closest theoretical equivalent, the serpenoid viscous swimmer.
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Figure 4.13: Resulting constraint curvature function plots for analysis on the CMU
modular snake compared with its closest theoretical equivalent, the serpenoid viscous
swimmer.
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Figure 4.14: Ellipse and circle gait executed by the CMU snake. The paths, shown in
blue in the left images, are overlaid on a connection vector plot (top) and a constraint
curvature contour plot (bottom) in unoptimized coordinates. In the rightmost plots,
the red line shows the predicted body velocity based on the empirically derived local
connection, while the blue line shows the original motion capture body velocity.
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Chapter 5: Geometric System Plotter

Much of this work depended on a MATLAB® graphical user interface (GUI) called

Geometric System Plotter. This GUI, colloquially referred to as Sysplotter, is a col-

lection of functions which perform many of the calculations described in §1.2. The

goal of Sysplotter is to present common geometric mechanics tools in such a way

that little background knowledge is required for efficient use, though more compli-

cated analysis is available for those who are familiar with the relevant theory. It was

originally conceived by Ross L. Hatton, and has been continually added to as new

capabilities are explored [32].

Here we will describe the basic structure behind the current interface and how the

contributions outlined in this thesis were integrated for use.

5.1 Software Package

Geometric System Plotter is a collection of functions accessible through an interface

which perform calculations required for many system and gait evaluation tools made

possible through geometric mechanics. These tools simulate geometric systems with

or without shape changes and store the data for future use. Figure 5.1 shows the

interface at startup, before any options are selected.
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Figure 5.1: Geometric System Plotter as it appears in Windows 10 when first opened.
It was created in the Graphical User Interface Development Environment (GUIDE),
a MATLAB® drag-and-drop interface builder.

5.1.1 System and Shape Definitions

System and Shape files are what drive most processes in Sysplotter. Both have several

input cases which can be called by other files and reference many of the existing

functions.

System files contain fields for the backbone locus and force constraint equations

(see §2.1.1 and §2.1.2), as well as various simulation parameters such as calculation

density and dependent variables.

All system files have the same general components:

• Display Name: Text which will be displayed in the system drop-down menu.

This is different from the file name.
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• Dependencies : Files which are monitored for modifications. If any in this list

have a ’date modified’ time stamp after the stored reference date, the reference

is updated and the associated file is re-initialized.

• Initialize: Define and calculate all system parameters. These include:

– Local Connection: Functional representation which defines the Local Con-

nection as a function of the shape variables for the given system. Forces

and dynamic constraints are also encoded here.

– Metric: Functional representation of cost of movement for the given sys-

tem. This may also encode force and dynamic constraints if needed.

– Processing Details : Parameters for display and data calculation, such as

the grid range, calculation density, and plot axis options.

Shape change files are constructed in a similar manner. However, Instead of

encoding the dynamic constraints of the system, they define the gait which the system

will execute as a function of time and the same input variables encoded in the system’s

local connection.

The parameters defined in these files are as follows:

• Display Name: Text which will be displayed in the system drop-down menu.

This is different from the file name.

• Dependencies : Files which are monitored for modifications.

• Path Parameters : Variables concerning the shape variables as a function of

time:
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– Path Function: Time-dependent function which outputs the shape values

for t.

– Run Time: Total time to run gait.

– Display Options : These include directional arrow locations, number of

arrows to plot, and gait path resolution.

Data for the system and shape change are stored under a combined name for later

reference. If the same system-shape change combination is selected in the interface

and none of the dependencies referenced by the files are activated, Sysplotter recog-

nizes that the data already exists and forgoes further calculations to save time and

resources.

5.1.2 Display Tools

There are several display tools available in Sysplotter for calculated data. The back-

ground for each can be found in §1.2, but will be briefly restated here. All of the

following example figures reference the Purcell Swimmer and its maximum efficiency

gaits in optimal coordinates.

The first tool is a vector field representation of the local connection. This con-

siders a grid of shape values whose parameters are defined in the system file and

calculates the local connection matrix at each coordinate. For a system with two

input variables operating in SE(2), the local connection is a 3× 2 matrix, with each

column corresponding to a shape variable and each row corresponding to a position
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variable. Depending on the position variable selected, the vector plot displayed will

reflect the effect each shape variable has on that position coordinate.

Sysplotter can also display the Constraint Curvature Function (CCF). This cal-

culates the height function DA over the shape space grid as the summation of the

curl of the local connection dA and the lie bracket effect [A1, A2] The definition for

this is shown in equation (2.25). Each element is available for plotting as an isocline

contour or surface representation. Examples for this and the connection vector plots

were shown in chapter 2, figures 2.2 and 2.3.

When a gait is selected, the displacement in x, y, and/or θ can also be plotted as

a function of time. The gait is also overlaid on any selected vector or CCF plots. The

trajectory of the body coordinate system, net displacement, body velocity integral

estimate, and corrected body velocity integral estimate can also be displayed in world

coordinates.

It has been shown that the use of world coordinates in displacement estimation

can involve significant error [26]. Sysplotter offers alternative display coordinates,

referred to as the optimal coordinate frame. This reorients the body frame such

that it experiences minimum perturbation from changes in the system shape. Vector

plots, CCFs, displacement estimates, and trajectories can all be displayed in optimal

coordinates.

Finally, Sysplotter includes a power metric calculation for each system. This

metric, fully explained in [28], modifies the shape space to display the selected data

such that movement in any direction requires the same cost.
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5.2 Contributed Files

This section will outline additional files created solely for work done in this thesis, as

well as modifications to existing features which improved Sysplotter’s functionality.

5.2.1 Extensibility

To aid simulation of extensible systems in chapter 3, several files were created and

integrated into Sysplotter’s default package.

Although Sysplotter already included a force model for geometric swimmers sub-

merged in a low Reynolds fluid, it assumed the system only articulates at defined

joints and is fully inextensible. In order to perform accurate calculations, the existing

code outlining (2.19) was modified to instead follow equation (3.5).

Next, system files were created which included extensibility as a curvature-dependent

variable. This way, whenever the force model calls the position of a particular location

along the backbone, it defines both the local curvature and extension. The systems

considered in this section were a traditional serpenoid model (3.1) and a piecewise

constant curvature model (3.7).

5.2.2 Data Driven Local Connection

As opposed to including extensibility terms in existing files, calculating a local con-

nection based on motion capture data required creation of several tools from scratch.

First, any data from a motion capture setup must be converted to an appropriate
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form for remaining calculations. This must be started on the user’s end, as every

data collection setup varies slightly. The resulting data must be arranged in m × n

matrices, one for each dimensions measured, where m is the number of time steps

and n is the number of markers tracked by the camera system. At this point, the

order of the axes and markers does not matter.

After the data is appropriately arranged, it can be run through a data cleaner.

This file first plots all marker points at a sample time stamp, and asks the user

if the axes are aligned properly. If not, the correct order is entered and the data is

rearranged. Next, the same sample marker points are plotted with the current marker

order as labels, and the user is asked again if the order is as expected. This is an

important step, as many later calculations require calling particular markers; i.e., our

piecewise swimmer model assumes a minimum of three markers on each half of the

snake, and will call the first half of indices during calculations.

For the work discussed here, the only motion of interest occurs in the x− y plane,

while motion capture cameras record all three dimensions. The data cleaner described

above is written with versatility in mind and should accommodate future applications

which require three-dimensional analysis.

Next, the shape variables for the driven motion must be extracted. While it would

be ideal to have the system perfectly perform its driven gait, the reality is this is rarely

the case. Therefor, the clean motion capture data is analyzed under the assumption

of a given backbone and the shape variables stored for later use. At the same time,

the body coordinates g(t) = [x, y, θ](t) are stored. These coordinates are rotated with

respect to the original orientation in the motion capture frame.
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Body velocity
�
g for each coordinate in g and shape velocity α̇ are obtained by

taking a time-independent gradient of the respective data.

For each body coordinate, the shape values at each time frame are linked to

their respective shape velocity and body velocity. A grid point in the shape space is

selected and a k-nearest neighbor search is performed over the space. The number of

points required for an accurate calculation must be greater than the number of output

variables in the regression solution matrix. In this case, because we are calculating

the local connection coefficients as well as gradient terms for each with respect to

both inputs, that number is six. The nearest neighbor search selects the k nearest

neighbors, while monitoring distance to the furthest point. If this range falls beneath

the width of the grid window, k is increased by 1 and the search performed again.

Otherwise, the process ends.

All points which lie within the search range are then used to populate equation

(4.5) and perform regression calculations. This process is repeated for each body

coordinate over the entire queried grid.

The system files in Geometric System Plotter are structured to allow multiple

input styles for the local connection. While a typical model defines its local connection

via force and dynamics functions, it is also feasible to obtain the local connection

directly from a stored data file, forgoing resource-intense calculations. This is where

the data-driven local connection is called for simulation calculations.
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5.2.3 Other tools

Some processes not directly related to geometric swimmer locomotion but useful

nonetheless were also included in Sysplotter.

In order to efficiently perform simulations across dozens of slightly varying sys-

tems, it was necessary to create systems and shape changes from a template and run

them programatically instead of manually through the Sysplotter GUI. Interfaces

created through GUIDE in Matlab can also be manipulated through the command

window. A ‘GUI manipulator’ was created which creates all necessary files, adds

them to the Sysplotter repository, runs the optimizer described in [23] to obtain an

optimal gait, and simulates the system-shape-change combination.

To confirm each new system performed as expected, a quick animation file was

created which takes a system and shape change and displays the backbone behavior

through time. The backbone can be displayed in various color schemes, including

a curvature-dependent heat map to differentiate between highly positive and highly

negative curvatures.

The power metric described in §2 can be illustrated similarly to the local con-

nection over a grid in the shape space. Each grid point is assigned a uniform circle

which is then stretched to an ellipse according to the metric at the same coordinate,

shown in figure 5.2a. This adds a useful tool for viewing relative cost of movement

throughout the shape space. If the metric stretch option is selected at the same time

as the metric ellipses, the ellipses almost return to unit circles (figure 5.2b).

Lastly, a GUI property editor was integrated into Sysplotter which considers the



67

Figure 5.2: Metric ellipses (a) and stretched metric ellipses (b) for the Purcell Swim-
mer.

operating system on which Matlab is installed and modifies the visual properties

automatically upon startup. This is meant to increase ease of use, as many people

use different operating systems on their personal computers. Prior to this, several

visual characteristics varied drastically between operating systems, including default

text font and size, object box sizes and positions, and default window size. While

not strictly necessary for performance, slight modifications improved the interface

aesthetics. The process for modifying visual properties is also laid out such that a

user could manipulate the interface to their liking and save a custom property file

as the default. Screen captures of the interface in different operating systems can be

seen in figure 5.3.
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Figure 5.3: Examples of the Sysplotter interface in different operating systems. (a) is
Linux, (b) MacOS, (c) Windows 7, and (d) Windows 10. Each has slightly different
default texts and button styles which required hand tuning to create a similar expe-
rience across platforms. (d) also shows the optimal coordinate x CCF plot for the
Purcell swimmer.
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Chapter 6: Conclusion

The projects outlined in this work all aimed to improve intuition behind geometric

swimmer analysis. Research in this area began with characterizing movement for

simple systems, and has gradually expanded to focus on novel methods for gait gen-

eration. This resulted in both an increase in the number of tools available for analysis

and the types of kinematic models which can be analyzed. We believe this work has

contributed knowledge to this area in both respects. First, we described the theory

behind a novel piecewise geometric swimmer while employing recent advancements

in optimal gait generation. We then investigated an alternative route for model gen-

eration in a much broader sense, and proved its versatility with two distinct physical

systems. Each provided its own insights and highlighted areas for future work to

continue.

To the best of our knowledge, previous work has not considered swimming back-

bones with extensible geometry. While the inspiration behind the addition of exten-

sibility stemmed from a physical robot, the methodology can be applied to backbones

with various curvature models.

Our results suggest that some systems, like the piecewise swimmer, do benefit

from the addition of extension. Provided the simulation parameters closely match

physical application, this could provide a meaningful starting point for the design of

pneumatically actuated soft robots. Conversely, including extensibility in a serpenoid
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model seemed to cause efficiency to drop rapidly. This implies that for curvature-

driven extension, the most efficient model depends on the function driving curvature.

The most efficient extensibility for both systems was either zero or close to zero.

This could imply curvature-driven extension adds significant cost to movement. If

extension was considered its own independent variable and the model considered mass

distribution, this method could be adapted for peristaltic or similar motion.

Comparison between actual and predicted displacements suggested discrepancies

between the assumed model and the physical snake. The most likely culprit lies in

the force distribution. While the simulation assumes a long, slender backbone, the

physical system has substantial width and area on its head which interact with the

surrounding media. Additionally, although the millet used for experiments has a

similar drag ratio to a low Reynolds number fluid, they are fundamentally different

media. The soft snake has a relatively low density compared to the millet, and swam

only half rather than fully submerged.

Soft robots are becoming more common in applications which require compliance;

in particular, where a gentle touch is needed. Although many soft robots are manufac-

tured with flexible yet inextensible components, this makes the process more complex

and restricts some of the built-in capabilities of the soft materials. Rectifying discrep-

ancies between the extensible model and manufactured actuator could allow for the

model to be used in more practical applications. For example, the displacement of

a soft gripper’s fingertips could be accurately predicted and compared to the actual

displacement for closed loop control applications.

Local connection generation has significant potential as a motion prediction tool.
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The method described here is theoretically applicable to any planar system with two

inputs. Future work could include expanding this beyond two dimensions and even

to several shape inputs.

To realize this, however, improvements on this methodology are required. Most

importantly, the system must be capable of executing a gait which adequately fills

its shape space. Even the term ’adequately’ here is loosely defined. The reciprocal

condition number integrated into the k-nearest neighbor search was an initial attempt

to ensure enough points were gathered to provide meaningful information. Though

this does seem to improve the results, modifying the threshold required for the neigh-

borhood search highlights how varying any of these parameters can drastically change

the outcome. The body velocity comparison proved to be useful in this regard, as

it provided a true measure of the similarity between models. For a true measure

of accuracy, the parameters set for the regression, such as query grid limits, desired

point density, and response to outliers, should be investigated on a reliable system.

If these improvements can be realized, this method could ideally be applied to

any planar system with two control inputs. Additionally, the procedure for the de-

velopment of this method may be expanded to include systems which operate in

higher dimensions and require more inputs. This could allow for theoretically accu-

rate prediction and control of any robotic system, provided the system can perform a

sufficient test gait. This is particularly useful for systems whose basic dynamics are

hard to characterize, such as soft robots.

The final portion of this work follows its overall goal; to improve on and provide

useful tools for geometric system evaluation. Geometric System Plotter is structured
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in such a way that it is relatively straightforward to customize models and integrate

brand new concepts for a variety of needs. It is our hope that the geometric mechanics

research community finds practical use for the tools and methods presented here.
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Y. Git Mengüç, “Soft Snake Robots: Mechanical Design and Geometric Gait
Implementation,”

[7] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” 2015.

[8] C. D. Onal and D. Rus, “A modular approach to soft robots,” in Proceedings of
the IEEE RAS and EMBS International Conference on Biomedical Robotics and
Biomechatronics, 2012.

[9] M. Luo, W. Tao, F. Chen, T. K. Khuu, S. Ozel, and C. D. Onal, “Design
improvements and dynamic characterization on fluidic elastomer actuators for
a soft robotic snake,” in IEEE Conference on Technologies for Practical Robot
Applications, TePRA, 2014.

[10] G. Taylor, “Analysis of the Swimming of Microscopic Organisms,” Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1951.



74

[11] A. Shapere and F. Wilczek, “Geometry of self-propulsion at low reynolds num-
ber,” Journal of Fluid Mechanics, 1989.

[12] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning. Steering using
sinusoids,” IEEE Transactions on Automatic Control, 1993.

[13] S. D. Kelly and R. M. Murray, “Geometric phases and robotic locomotion,”
Journal of Robotic Systems, 1995.

[14] J. Ostrowski and J. Burdick, “The geometric mechanics of undulatory robotic
locomotion,” International Journal of Robotics Research, 1998.

[15] L. E. Becker, S. A. Koehler, and H. A. Stone, “On self-propulsion of micro-
machines at low Reynolds number: Purcell’s three-link swimmer,” Journal of
Fluid Mechanics, 2003.

[16] E. a. Shammas, H. Choset, and a. a. Rizzi, “Geometric Motion Planning Anal-
ysis for Two Classes of Underactuated Mechanical Systems,” The International
Journal of Robotics Research, 2007.

[17] J. E. Avron and O. Raz, “A geometric theory of swimming: Purcell’s swimmer
and its symmetrized cousin,” New Journal of Physics, 2008.

[18] R. L. Hatton and H. Choset, “Connection vector fields for underactuated sys-
tems,” in Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Con-
ference on Biomedical Robotics and Biomechatronics, BioRob 2008, 2008.

[19] R. Hatton and H. Choset, “Approximating displacement with the body velocity
integral,” Proceedings of Robotics: Science and Systems, Seattle, USA, 2009.

[20] R. L. Hatton and H. Choset, “Connection Vector Fields and Optimized Coor-
dinates for Swimming Systems at Low and High Reynolds Numbers,” in ASME
2010 Dynamic Systems and Control Conference, Volume 1, 2010.

[21] R. L. Hatton and H. Choset, “Geometric swimming at low and high Reynolds
numbers,” IEEE Transactions on Robotics, 2013.

[22] R. L. Hatton, T. Dear, and H. Choset, “Kinematic cartography and the efficiency
of viscous swimming,” IEEE Transactions on Robotics, 2017.

[23] S. Ramasamy and R. L. Hatton, “Soap-bubble optimization of gaits,” in 2016
IEEE 55th Conference on Decision and Control, CDC 2016, 2016.



75

[24] S. Ramasamy and R. L. Hatton, “Geometric gait optimization beyond two di-
mensions,” in Proceedings of the American Control Conference, 2017.

[25] S. Ramasamy and R. L. Hatton, “The geometry of optimal giats for drag-
dominated kinematic systems,” IEEE Transactions on Robotics, conditionally
accepted, 2018.

[26] R. L. Hatton and H. Choset, “Geometric motion planning: The local connection,
Stokes’ theorem, and the importance of coordinate choice,” International Journal
of Robotics Research, 2011.

[27] T. Lipták, M. Kelemen, A. Gmiterko, I. Virgala, and . Miková, “Base Space
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