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Summary

Many growth and yield simulators require a stand table or tree-list to set the initial condition for
projections in time. Most similar neighbour (MSN) approaches can be used for estimating stand
tables from information commonly available on forest cover maps (e.g. height, volume, per cent
canopy cover and species composition). Simulations were used to compare MSN (using an entire
database) with two stratified MSN approaches. The first stratified MSN approach used species
composition to partition the population into two inventory type strata, while the second stratified
MSN approach used average stand age to partition the data into two stand development stages
(strata). The MSN approach was used within the whole population and within each stratum to
select a reference stand and to impute the ground variables of the reference stand to each target
stand. Observed s estimated stand tables were then compared for the stratified and non-stratified
simulations. The imputation within a stratum did not result in better estimates than using the MSN
approach within the whole population. Possible reasons for poor performance of stratified MSN are

provided.

Introduction

Increasingly, resource management plans must
consider stand-, landscape- and forest-level attri-
butes to mimic the complex interactions at dif-
ferent levels of ecosystem management, and thus,
there is a need to link and integrate these attri-
butes across scales. To realize this linkage, ana-
lysts require detailed data about every stand (land
parcel) within a management area (Temesgen
etal.,2007).
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Often auxiliary information (e.g. derived from
air photo interpretation) is available for every
stand, supplemented by detailed ground infor-
mation for selected sample stands. Auxiliary at-
tributes commonly include the following: species
composition (per cent by crown closure), crown
closure (per cent), height class, age class, site class/
site index and elevation from forest cover and
elevation maps. For sampled stands, additional
information is available, including either a tree-by-
tree record (tree-list) specifying the species, breast
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height diameter (diameter outside bark measured
at 1.3 m above ground; d.b.h.} and possibly tree
height of each tree, or a stand table (trees per hect-
are (TPH) by species and d.b.h. class), based on the
compiled ground sample data. Tree-lists or stand
tables are often needed to initiate growth models,
which may be used to update inventories, to de-
velop landscape and forest management plans and
to assess the dynamic development of structure
and diversity at the stand level for use in habitat
analyses. Since tree-lists are commonly available
only for a portion of the land area, approaches
that generate tree-lists and other detailed informa-
tion from auxiliary attributes are beneficial.

Most research on stand table generation uses
stand-level information measured on the ground
and is done on simple stands with few species and
unimodal diameter distributions. The approaches
used can be broadly categorized into diameter
distribution (frequency by species and diameter)
modelling and imputation methods (Temesgen,
2003). '

The diameter distribution modelling approach
involves fitting a diameter distribution for each
stand and then predicting the parameters of the
distribution using stand variables. Depending
upon how the parameters are predicted, the di-
ameter distribution modelling approaches in the
literature have been classified as parameter pre-
diction (e.g. Biging et al., 1994), parameter recov-
ery (e.g. Hyink and Moser, 1983) and percentile
prediction (e.g. Maltamo et al., 2000). These ap-
proaches are based on unimodal distributions and
do not accurately describe the diameter distribu-
tions of complex stands that have multimodal
and irregular diameter distributions.

Imputation methods have been used to generate
stand tables from stand-level variables (e.g. Moeur
and Stage, 1995, Maltamo and Kangas, 1998,
Temesgen et al., 2003, LeMay and Temesgen,
2005). Imputing stand tables involves locat-
ing the ‘neighbouring’ reference stands with the
most similar stand-level variables and using their
known stand tables to impute the stand table for
the target stand which lacks this detailed informa-
tion. Most similar neighbour (MSN) approaches
offer several potential advantages over classical
estimation procedures, such as predictions using
regression analysis, since many variables are pre-
dicted at once (multivariate) and the variability
across stands is maintained. Also, estimates will be
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within the bounds of biological reality. The accu-
racy of these methods is dependent on (1) the size
and representativeness of the sample, (2) the de-
gree of similarity between the target and reference
stands and (3) how well the attributes for which
information is available serve as a predictor for
the attributes for which information is missing.

Obtaining good estimates of stand tables is par-
ticularly difficult in complex stands with many
species and high variability in tree sizes. Temesgen
et al. (2003) found that for complex stands the
MSN approach (by Moeur and Stage, 1995) was
marginally better in estimating tree-lists than the
other approaches that they examined in their
study. However, the authors found the distribu-
tions by species not as accurately estimated as
might be desired.

Imputation techniques for assigning tree-lists
to unsampled forest polygons can be seen as a
specialized application for handling incomplete
multivariate data. When a design-based forest
inventory is used to randomly sample tree-lists
(i.e. measure field plots), those polygons without
tree-lists can be viewed as the result of a miss-
ing data mechanism that is Missing Completely
at Random (MCAR) (Little and Rubin, 2002). If
auxiliary information is used for double or strati-
fied sampling, the probability of missingness is
dependent on observed data, and the missing data
mechanism is Missing at Random (MAR} (Little
and Rubin, 2002). In either case, imputation has
the potential to improve estimation through the
use of all available information.

When a forest inventory is MAR or MCAR
and imputation is appropriate, stratification prior
to imputation can potentially improve prediction.
This will happen when the best model for the rela-
tionship between ground variables and auxiliary
variables differs among groups of observations.
However, a thorough comparison to examine
the performance of MSN within a non-stratified
population s its performance within a stratified
population is lacking.

In this article, simulations were performed
to investigate stratification into inventory type
groups (ITGs) and age groups prior to applying
the MSN approach. We examined whether the
use of stratification improved the estimates of
species within stand tables compared with the al-
ternative of using the MSN approach within the
whole population.
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Methods

Data

Ground and auxiliary data collected in 134 com-
plex stands (land parcels or polygons) in south-
eastern British Columbia (BC) were used for this
study. The stands were located in the Interior
Cedar-Hemlock, Englemann Spruce/Subalpine-
Fir, Interior Douglas-fir, Montane Spruce and
pockets of Alpine Tundra biogeoclimatic eco-
logical classification (BEC) zones (Braumandl
and Curran, 1992) and included several tree spe-
cies: Douglas-fir (Pseudotsuga menziesii (Beissn.)
Franco), lodgepole pine (Pinus contorta var.
contorta Dougl.), western white pine (Pinus
monticola Dougl.), pondeosa pine (Pinus pon-
derosa Laws.), western larch (Larix occidentalis
Nutt., L.), trembling aspen (Populus tremuloides
Michx.), subalpine-fir (Abies lasiocarpa (Hook.)
Nutt.), spruce (Picea glauca (Moench) Voss and
Picea engelmannii Parry and hybrids), black cot-
tonwood (Populus trichocarpa Torr. & Gray),
western hemlock (Tsuga heterophylla (Raf.)
Sarg.), white birch (Betula paperifera Marsh.)
and western red cedar (Thuja plicata Donn.).

For each sampled polygon, a point was ran-
domly selected from a grid and a cluster of nine
plots (four full measure and five count plots) was
located at the selected grid point. For the ground
data, four variable-radius plots were randomly
located in each stand, and the species, d.b.h. and
status (i.e. live or dead) for all trees with a d.b.h.
of >12.5 cm were recorded, along with other
tree variables (BC Ministry of Forests, 1995a,
b, 1998). The live trees for all ground data were
compiled, and for each stand the stand table was
calculated. In addition, average volume per hect-
are, TPH and basal area per hectare were calcu-
lated and compiled within the Variable Density
Yield Projection model (VDYP) (BC Ministry
of Forests, 1995a) for all species combined, and
by species. The remaining plots were measured
for basal area per hectare only and were not
included in this study (BC Ministry of Forests,
1998). For each of the four plots, stand attributes
were calculated including the TPH by species and
10-cm d.b.h. class, the species proportions by
basal area and TPH. These variables were then
averaged over the four plots to obtain the poly-
gon estimates.
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For each sampled polygon, auxiliary attributes
were extracted from forest inventory records
including crown closure (CC) class; tree species
composition and proportions (per cent by CC
class); site index in m height class and age class.
In addition, the ITG, representing species compo-
sition groups, and the BEC zone (Meidinger and
Pojar, 1991) were available for all polygons.

Using the auxiliary information (i.e. height,
crown closure, site index and species composi-
tion), the stand-level growth and yield model
VDYP was used to obtain estimates of volume
per hectare, average height and quadratic mean
diameter for each stand. Crown closure (CC)
classes were assigned class midpoints of 20, 30,
40, 50, 60, 70 or 80 per cent to represent CC
class. Table 1 provides the number of stands in
each CC class.

A variation of ‘leave-one-out’ data-splitting
analysis (Mosteller and Tukey, 1968} was used
to split the data into target and reference stands
(as in Moeur and Stage, 1995). The 134 sampled
polygons in the complete dataset were randomly
assigned, without replacement, to 33 groups of
four stands each. Then, each group of four stands
was omitted one group at a time constituting
the target polygons. The remaining 130 stands
were used as reference polygons. This is referred
to as ‘leave-four-out’ data splitting, as was done
in Moeur and Stage (1995). The target polygons
were assumed to be non-sampled polygons, lack-
ing ground inventory data. The reference poly-
gons constituted the pool of potential polygons
with ground and auxiliary data, which could be
selected to impute the stand table for target poly-
gons. The target polygons were used to validate
the accuracy of the imputation methods by com-
paring the known (observed) stand table with the
imputed (expected) stand table selected from the
reference polygons.

MSN method

All reference polygons formed the pool of po-
tential similar neighbours that could be selected
to impute the stand tables on to target polygons
without stratification. For MSN, the distance
metric used is based on the distance between
the variables measured on both the reference
and target polygons (X variables), weighted by
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Table 1: Distribution of the 134 sampled stands by
crown closure and species mixture class.

CC class (%) Species
mixture class
20 30 40 50 60 70 80 1 2
No.of 6 23 23 30 26 23 3 52 82
stands

the correlations between the X variables and the
variables available only for the reference data (Y
variables) (Moeur and Stage, 1995). First, canon-
ical correlation analysis between ground (Y vari-
ables) and auxiliary data (X variables) using the
reference data was used-to determine the weights.
Second, the ‘most similar’ reference polygon was
selected based on similarity of the auxiliary data,
weighted by the correlations to the ground data.
The distance measure used was

D =(X, -XIAT'(X,-X,), (1]

where I is the matrix of standardized canonical
coefficients for the auxiliary variables; A2 is the
diagonal matrix of squared canonical correla-
tions between auxiliary attributes and ground
variables; TAZI” is the matrix of the weights; X,
is a vector of standardized values of the auxiliary
variables for the uth target stand and Xj is a vec-
tor of standardized values of auxiliary variables
for the jth reference stand. The ground data for
the reference polygon with the smallest distance
(MSN based on the auxiliary data) was then im-
puted to the target polygon.

When the diagonal matrix of squared canoni-
cal correlations was non-singular, the Moore—
Penrose inverse was used to find a unique defi-
nition of the inverse matrix (Draper and Smith,
1998; SAS Institute Inc., 2004).

Stratified nearest neighbour

For the stratified nearest neighbour method, the
ITG variable was used to separate the 134 sam-
ple polygons into the following two strata based
on the leading (by photo-estimated volume per
hectare) tree species: (1) Douglas-fir, subalpine-
fir or western hemlock leading (64 stands) and
(2) spruce, pine or larch leading (70 stands). To
account for differences in species composition

FORESTRY

within each stratum, two species mixture classes
were established and each stand was assigned
to one of the following species mixture classes
(see Table 1): Class 1, where the composition of
the leading species is >70 per cent (pure-species
stands), and Class 2, where the composition of
the leading species is <70 per cent (mixed-species
stands). The stand age was used to separate the
134 sample polygons into two age strata: (1)
stands with age <90 (73 stands) and (2) stands
with age >90 (61 stands). The MSN approach,
as described above, was used to impute ground
variables for a group of four target stands at a
time using only reference stands from the same
stratum. Target stands for each stratum were
determined by using the ‘leave-four-out’ data-
splitting method as described above. Table 2
provides the variables used in the MSN analysis.

Comparison of approaches

The separation of the data into target vs refer-
ence stands using the leave-four-out data-splitting
method was repeated 1000 times for all 134 sample
polygons and for each of the inventory type and age
strata, respectively. To evaluate the results for each
simulation, bias (equation 2) and root mean square
difference (RMSD, after Stage and Crookston,
2007; equation 3) were calculated for each variable
in the Y set for each replicate as follows:

zn: (observed, —imputed;)

Bias = 7 - ; B

Mx

(observed, — imputed,)’ [3]
RMSD = {2 ;

n

where » is the number of target stands.

The mean, minimum and maximum of each
of these two statistics were summarized over the
1000 sampling replications of each simulation.
The mean of the distance measure was calculated
for each simulation and then averaged over the
1000 sampling replications.

Results and discussion

The dataset covered a wide range of age (36-300
years), average height (12.8-37.9 m), TPH by
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Table 2: Ground and auxiliary variables used in the imputations. Ground variables were selected as a proxy for

the tree-list.

Ground variables (Y set)

Auxiliary variables (X set)

TPH for seven species or species groups: Douglas-fir,
western red cedar, lodgepole pine, spruce, western
larch, subalpine-fir and hardwoods*

Basal area per hectare for all species in m? ha~1

Species mixture class: (1) pure-species stands and (2)
mixed-species stands

Age (years) (not used in age strata)

Site index (m)

CC class (%)

Average height (m), model estimated

Quadratic mean diameter (cm), model estimated
Volume in m3 ha~1, model estimated

* Hardwoods included aspen, cottonwood and birch.

species (0-1415) and total basal area (15-87.5
m? ha~1). ITG 2 (spruce, pine or larch leading)
includes the oldest stands (300 years). However,
ITG 1 (Douglas-fir, subalpine-fir or western hem-
lock leading) also includes old stands (280 years),
and the stands with largest total basal area and
volume are found in this stratum. The largest
TPH occurs for lodgepole pine (1415) followed
by Douglas-fir (1058) (Tables 3 and 4).

Moeur and Stage (1995) suggested the use of
the distance metric to assess the adequacy of re-
sults. The variability of the mean distance (mean
of the average distances over all 1000 replicates)
differs among the five simulations (Figure 1).
Table 5 displays minimum, maximum and mean
of the mean distance for each simulation. The
range and variability of the mean distance is
larger for all of the individual strata compared
with the whole population.

Moeur and Stage (1995) indicated that MSN re-
sulted in poor estimates of species composition. It
was expected that the stratification into inventory
types representing species composition groups
would result in closer matches of species compo-
sition. The evaluation of the simulation in terms
of bias and RMSD (Tables 6 and 7) shows, how-
ever, that the stratification into inventory types
did not improve the imputation results. Only in
five cases is the range of bias or RMSD smaller
for inventory type strata than for the simulation
using all stands. For ITG 1, the range of the mean
bias is smaller than that for the whole population
for TPH of western larch and lodgepole pine, and
the range of the mean RMSD is smaller than that
for the whole population for TPH of lodgepole

pine. For ITG 2, both mean bias and mean RMSD
are smaller for TPH of western hemlock. It is sur-
prising that ITG 1, which includes Douglas-fir,
subalpine-fir and western hemlock leading stands,
gives better results for TPH of larch and pine than
ITG 2, which comprises stands in which larch,
pine and spruce are the leading tree species. On
the other hand, ITG 2 gives better results for TPH
of western hemlock which is one of the leading
species in ITG 1. For both age strata the range of
the mean RMSD is larger for all Y variables com-
pared with the simulation using all stands. For
age stratum 1, the mean bias for all Y variables is
also larger compared with the simulation using all
stands. Age stratum 2 has a smaller range of mean
bias for TPH of western hemlock, lodgepole pine
and hardwoods compared with the simulation
using all stands.

The stratification into ITGs and age groups
prior to using MSN did not improve the estimates
of species within stand tables compared with the
alternative of using the MSN approach within
the whole population. This can be ascribed to the
following.

1 The number of stands used in the analysis. The
data used only included 134 stands of south-
ern BC. Additional stand data would increase
the number of stands in each stratum. A larger
number of stands within each stratum might
improve the results substantially. It can be sus-
pected that creating strata decreased the range
of the reference data and/or created gaps along
the space spanned by the X variables. The in-
crease of the mean distance of the stratified MSN
approach compared with the non-stratified
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Table 3: Minimum, maximum and mean values for the Y variables for all polygons and by inventory type and
age class
Inventory type Age class
All ITG1, ITG2, Agel, Age 2,
Variable N=134 N =64 N=70 N=73 N=61
Basal area (m? ha™1) Min 15.00 18.00 15.00 15.00 18.00
Max 87.50 87.50 72.50 72.50 87.50
Mean 38.68 40.48 37.03 35.59 42.37
Number of western red cedars per hectare ~ Min. 0 0 0 0 0
Max 703 703 703 703 703
. Mean 70 82 60 89 48
Number of Douglas-firs per hectare Min 0 0 0 0 0
Max 1058 1058 888 888 1058
Mean 282 372 201 194 388
Number of western hemlocks per hectare Min 0 0 0 0 0
Max 803 803 392 803 545
Mean 56 81 34 58 55
Number of western larches per hectare Min 0 0 0 -0 0
Max 437 240 437 437 262
Mean 46 . 19 70 68 20
Number of hardwoods per hectare Min 0 0 0 0 0
Max 482 482 323 482 283
Mean 25 26 24 37 11
Number of lodgepole pines per hectare Min 0 0 0 0 0
Max 1415 538 1415 1415 1150
Mean 249 67 415 372 99
Number of spruces per hectare Min 0 0 0 0 0
: Max 753 "398 753 753 539
Mean 68 71 65 46 95

approach might indicate that the stratification
created gaps in the space spanned by the X vari-
ables. Imputation does not extrapolate nor in-
terpolate (Crookston et al., 2002) which results
in imputation error whenever the target data
are not within the span of the reference data
or whenever the density of the X variables is
low (Stage and Crookston, 2007). Small strata
that are prone to exhibit large gaps in the space
spanned by the X variables can therefore be
expected to show large imputation error and
with that worse results than non-stratified MSN
imputation. The complete non-stratified data-
set tends to have a similar range for target and
reference datasets and smaller gaps in the space
spanned by the X variables which will result in
less imputation error.

2 In stratified sampling, samples are allocated to
strata in a balanced manner. If data are col-
lected for the purpose of stratified MSN and

the data used for imputation within each stra-
tum cover the range of values without any
large gaps in the X variable space, good im-
putation results can be expected. In the given
example, however, data splitting for MSN was
performed. Due to this the data reserved for
target stands may have caused the Y and X
variables to distribute themselves in a far from
balanced manner over the strata (e.g. reference
stands have a smaller range than target stands
or gaps along the X variable space are created).
Thus, the gains of stratification can be lost in
estimating attributes for the target polygons.

The choice of classification variables might
also have contributed to poor performance of
stratified MSN. We examined the impacts of
stratification in imputing stand tables using
age and inventory type only. Stratification
prior to imputation may improve prediction
if the relationship between Y and X variables
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Table 4: Minimum, maximum and mean values for the X variables for all polygons and by inventory type and

age class
Inventory type Age class
Variable ALN=134 ITG1,N=64 ITG2,N=70 Agel,N=73 Age2,N=61
Species mixture class No. in 1 52 24 28 33 19
No.in2 82 40 42 40 42
Age (years) Min 36 50 36 36 95
Max 300 280 300 90 300
Mean 109 128 92 69 158
Site index (m) Min 6.6 8.8 6.6 11.9 6.6
Max 338 338 320 338 323
Mean 17.8 18.6 171 19.7 15.5
Crown closure (%)  Min 20 20 20 20 20
Max 80 80 80 80 80
Mean 50 48 51 52 46
Average height (m)  Min 12.8 14.8 12.8 12.8 17.8
Max 37.9 36.0 37.9 342 37.9
Mean 23.0 24.6 21.5 20.5 259
Quadratic mean Min 16.3 19.9 16.3 16.3 221
diameter (cm) Max 531 53.1 44.6 314 531
Mean 26.3 293 23.6 22.6 30.8
Volume (m3 ha—1) Min 84.3 99.8 84.3 84.3 119.1
Max 938.0 938.0 629.5 938.0 856.1
Mean 346.0 404.9 2922 303.1 397.4

For the species mixture class the number of stands in each mixture class is given.
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Figure 1. Box-and-whisker plots of the mean dis-
tance over 1000 sampling replications for all poly-
gons and by inventory type and age class.

differs among the groups of observations. This
is only the case if the groups are disparate
enough which is not true for the X variables of
the given inventory and age strata (see Table
4). Therefore, the results might have been bet-
ter if more disparate strata had been chosen. It
can be expected that more disparate stratifica-

tion {e.g. stratification on land type: forest land
vs grass land) improves imputation results be-
cause then the nature of the relationship be-
tween the Y and X variables differs between
strata.

The assignment of inventory type and age
groups. The cut-off point at age 90 for
the age strata was chosen for creating two

strata with approximately the same number

of observations. This, however, might not
have created strata with the lowest within-
stratum variability and the highest variability
among strata. Because of the small number
of available stands, the two inventory type
strata combined stands with three leading
species each, so that each stratum was still
very heterogeneous with few observations.
The heterogeneity and the small number of
observations of the strata probably created
inadequate ranges of the target and reference
datasets and gaps in the space spanned by
the X variables which will result in the prob-
lems already discussed above. With a larger
dataset, other possible stratifications, which
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Table 5: Minimum, maximum and mean of the mean distance over 1000 sampling replications for all polygons
and by inventory type and age class

Inventory type Age class
All,N=134 ITG1,N =64 ITG2,N=70 Agel,N=73 Age2, N =61
Min 0.2103 0.3766 0.3145 0.2439 0.3604
Max 0.3292 0.7130 0.6009 0.6025 0.6765
Mean 0.2559 0.5095 0.4214 0.3892

0.4779

Table 6: Minimum, maximum and mean bias for the Y variables over 1000 sampling replications for all
polygons and by inventory type and age class

Inventory type Age class
Variable AlLN=134 ITG1,N=64 ITG2,N=70 Agel,N=73 Age2, N=61
Basal area (m? ha~1) Min -4.72 -6.81 -5.65 -5.45 -4.34
Max 1.86 3.43 2.74 4.15 5.19
Mean -1.06 -0.89 -1.10 -0.76 -0.38
Number of western red Min -33 —43 —46 —47 -45
cedars per hectare Max 30 44 35 50 35
Mean 3 S 4 4 s
Number of Douglas-firs Min =72 -103 65 =77 -150
per hectare Max 34 43 61 54 42
Mean -18 -26 3 1 -56
Number of western Min -58 =72 -55 -83 -27
hemlocks per hectare Max 27 59 22 37 46
Mean -8 -6 -11 -16 11
Number of western larches Min -26 -22 -31 =50 -29
per hectare Max 15 11 30 23 12
Mean -5 -3 -0 -11 -5
Number of hardwoods Min -24 =30 -26 =25 -13
per hectare Max 13 19 18 25 11
Mean 0 -4 -1 1 2
Number of lodgepole Min ~74 -37 -144 -135 -38
pines per hectare Max 71 38 - 123 113 75
Mean -5 0 6 5 27
Number of spruces Min =35 -35 =70 —44 -70
per hectare Max 31 34 40 40 23
Mean -2 0 -3 5 -19

Bold values indicate cases where the range of values for a stratum is smaller or equal compared with the results
using all observations.

minimize within-stratum variability and
maximize among-strata variability, should
be examined.

5 Availability and choice of Y and X variables.
The X variables in the given example are
mainly class variables (species class, CC class,
average height class and age class). Due to this,
the relationship between Y and X variables

might not have been captured well, which
leads to pure error, another source of imputa-
tion error. Pure error depends on the choice
of Y and X variables. MSN imputation relies
on an existing relationship between Y and X
variables (Stage and Crookston, 2007). If the
choice of Y and X variables was not optimal,
the impact of this expressed in large pure error
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Table 7: Minimum, maximum and mean RMSD for the Y variables over 1000 sampling replications for all
polygons and by inventory type and age class
Inventory type Age class
All ITG1, ITG2, Agel, Age 2,
Variable N=134 N =64 N=70 N=73 N-=61
Basal area (m? ha~1) Min 1.26 1.74 1.56 1.50 1.61
Max 1.79 2.94 2.57 2.30 2.68
Mean 1.50 2.30 2.07 . 1.88 2.14
Number of western red cedars per hectare ~ Min 1 17 13 16 14
Max 20 30 25 29 30
Mean 15 24 19 23 20 -
Number of Douglas-firs per hectare Min 21 31 22 21 34
' Max 30 48 38 36 55
Mean 25 39 28 27 45
Number of western hemlocks per hectare Min 12 21 12 16 14
Max 24 40 23 33 27
Mean 17 31 17 25 21
Number of western larches per hectare Min 7 5 10 11 7
Max 12 11 21 20 15
Mean 10 8 16 16 10
Number of hardwoods per hectare Min 5 7 6 8 3
Max 11 18 15 19 11
Mean 8 13 10 13 7
Number of lodgepole pines per hectare Min 28 13 47 41 22
Max 43 25 79 71 47
Mean 36 19 64 56 32
Number of spruces per hectare Min 11 12 15 11 15
Max 19 22 36 29 25
Mean 14 17 24 19 19

Bold values indicate cases where the range of values for a stratum is smaller compared with the results using all

observations.

might be greater in the smaller datasets of the
stratified imputation than in the non-stratified
imputation.

Summary

Knowledge of stand tables for each stand would
provide an improved basis for forest manage-
ment planning, via detailed stand-level analysis.
MSN approaches offer several potential advan-
tages over classical estimation procedures, as
they result in a multivariate prediction, and the
variability across stands is maintained. Also,
estimates will be within the bounds of biologi-
cal reality. The use of stratification prior to
applying a nearest neighbour approach does
not necessarily improve the predictive abilities

of MSN for the limited dataset tested in this
study. In this paper, it is shown that stratify-
ing a database by inventory types representing
species composition groups and age classes did
not provide better estimates of TPH by species
and total basal area than the MSN approach
using the non-stratified dataset. This might be
due to the choice of stratification variables, the
number of stands used in the analysis or the
limited range and density of the X variables in
each stratum.
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