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As the design of computers advances, two important trends have surfaced: The

exploitation of parallelism and the design against memory latency. Into these two new

trends has come the Multithreaded Virtual Processor (MVP). Based on a standard

superscalar core, the MVP is able to exploit both Instruction Level Parallelism (ILP) and,

utilizing the concepts of multithreading, is able to further exploit Thread Level Parallelism

(TLP) in program code. By combining both hardware and software multithreading

techniques into a new hybrid model, the MVP is able to use fast hardware context

switching techniques along with both hardware and software scheduling. The new hybrid

creates a processor capable of exploiting long memory latency operations to increase

parallelism, while introducing both minimal software overhead and hardware design

changes.

This thesis will explore the MVP model and simulator and provide results that

illustrate MVP's effectiveness and demonstrate its recommendation to be included in future

processor designs. Additionally, the thesis will show that MVP's effectiveness is

governed by four main considerations: (1) The data set size relative to the cache size, (2)
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the number of hardware contexts/threads supported, (3) the amount of locality within the

data sets, and (4) the amount of exploitable parallelism within the algorithms.
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A STUDY OF HARDWARE/SOFTWARE MULTITHREADING

1. INTRODUCTION

In the quest for faster processing of large complex computer algorithms, many

schemes have been developed over the past decade. In recent years, two important trends

have been observed in computer design and manufacturing. The first trend is for computer

designers to focus their attention on building processors that can exploit parallelism

available both inside software programs and between totally different programs. By

exploiting this parallelism, processors can now execute several instructions at once and

designers have turned to two main areas of concentration: Single processors and

Multiprocessors.

In the area of single processors, the concept of a superscalar processor has

dominated the market. The superscalar design relies on a large content addressable

memories (usually known as the issue window) to allow multiple instructions to be issued

to the functional units at the same time. In this manner, as long as the issue window is

large enough that parallel instructions can be found, multiple instructions can be executed at

the same time and performance is greatly enhanced. The second area of focus for designers

is the area of multiprocessors. Multiprocessors begin where the single processors left off,

in that they get around the issue window limitation by utilizing a whole set of processors to

execute instructions in parallel. The current dominating force in the multiprocessor area is

the concept of shared memory multiprocessing (SMP). The SMP computers consist of

multiple processors that all access the same globally shared memory. The ease of

programming in the shared memory environment is what helped the SMP achieve its high

market dominance. Another factor in the SMP's rise to dominance has been its ease of

construction. SMPs can be made out of groups generic superscalar processors that are

either clustered in the same machine using the same memory bus(Clustered SMPs) or



2

groups of single processor computers linked by a standardized network (such as Networks

of Workstations (NOWs)).

However, though both single and multiprocessor systems can execute several

instructions in parallel, their performance has been limited by long memory latencies: the

second trend of computer designers. Memory latencies result when an either instruction or

data is requested from the memory hierarchy. Since, memory is slow in comparison to

processors speeds, the processor must wait until the requested information is retrieved.

Typically, the processor can execute few or no instructions at this point and performance

suffers. To make matters worse, studies have shown that memory latencies are a problem

that is getting worse not better. In fact, that while the speed of commercial

microprocessors has increased by a factor of twelve over the past ten years, the speeds of

memory have only doubled [1]. Unless a radical breakthrough in memory technology is

made, the future indicates that the ratio of memory speed to processor speed will only

increase even further. Multiprocessors will continue to bear the brunt of this problem as

not only do they have the same latencies as the commercial processors that they utilize, but

additional memory latency is gained from the interconnections of the processors. Single

computer SMPs force the multiple processors to share a single memory bus that leads from

the lowest cache to shared memory. Thus, a processor will have to wait until another

processor finishes accessing the main memory. For SMPs constructed with computer

networks, such as NOWs, the effects are potentially even worse. If a value does not exist

within the computers local memory, the computer must send a request for the data across a

comparatively slow network What all these memory latencies mean for processors is that,

instead of doing useful computations, the processor must wait for the information it

requires. Indeed, memory latencies are the current, most limiting factor on processor

performance.

Another problem faced by both single and some multiprocessors is the amount of

parallelism within a single program. This instruction level parallelism (ILP), is finite and
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without creating multiple "loci" of control, or threads, there is only so much performance

improvement to be gained from a single program. For example, a typical superscalar

processor using an issue window of 16 instructions will receive a 100% performance

improvement by increasing the window to 32, 33% improvement with a window of 64,

7% with 128, and <1% with 256.

One of the most promising techniques for tolerating the memory latencies and

moving around the problem of finite ILP, is the idea of multithreading. The idea of

multithreading is based around the fact that algorithms maintain various portions that are

either completely data independent or mostly data independent and can therefore be

executed in parallel. These parallel portions of program code can therefore be treated like

they are different programs, and become the systems threads. There are many ways that a

processor can switch between threads, but there exist two methods that remain the most

common. First, when the current thread encounters a long latency operation, the processor

can switch control to a new thread. Thus, processor execution can continue while waiting

for the long latency operation. The long latency operation can be anything from a long

memory latency to a long I/O latency. The second method is to constantly interleave

instructions from the threads (known as Simultaneous Multithreading or SMT). Thus,

when the instructions from one thread are stalled, instructions from others can continue to

move through the processor.

The Multithreaded Virtual Processor (MVP) was developed to test a new strategy

for multithreading. The goal of the MVP is to introduce a processor capable of

multithreading, but does not require extensive, and thus costly and time consuming,

modifications to a current superscalar processor design. To keep this goal, the MVP

exploits a hybrid model that combines both software and hardware techniques. The hybrid

is, essentially, that software libraries were used to create and manage threads. However,

since software by itself cannot detect long memory latencies, the software is supported by

minimal hardware modifications.
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This thesis shows that by supporting increasing more powerful software tools with

minimal hardware modifications, full advantage of multithreading can be realized.

Additionally, as more die area becomes available to future processors, this thesis also

shows that space should be devoted to supporting multithreading.

In this thesis the MVP model will be explained as well as the tools and

modifications thereof that were used to create it. Also, the results of various simulations on

benchmark programs will be displayed and explained in detail. The thesis will show that

the performance of the MVP is influenced by four main considerations: (1) the data set size

relative to the cache size, (2) the number of hardware contexts/threads supported, (3) the

amount of locality within the data sets, and (4) the amount of exploitable parallelism within

the algorithms. Further, a detailed look of the new bottlenecks imposed by multithreading

and potential modifications to modern processors to relieve them is also presented. Finally,

the study will show that overall, multithreading is worth the investment of providing

additional hardware support.
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2. PREVIOUS RESEARCH

The consistently increasing gap between processor speeds and memory speeds has

prompted much research into this field for the last ten years. Most research can be

classified into two main categories: research for architecture designs to reduce memory

latency and research for architecture designs that can tolerate memory latency.

In order to reduce memory latency, several fetch unit and cache modifications have

been proposed. Recently, the concept of prefetching has headed the research interest. The

new prefetching techniques include simple next-line prefetching to the newer and more

complex wrong-path prefetching [2] methods. To take advantage on the fact that most

algorithms perform many loop iterations, Trace Caches [3] were created to store an

instruction trace of the loop and prevent the re-fetch of the instructions from main memory.

To help with the prefetching of data values, Stream Buffers [4] were developed. The

stream buffer could prefetch not only next-line data values, but could be expanded to

prefetch constant stride data accesses. To help increase the associativity of low level

caches, Victim and Second-chance caches were explored. By providing additional storage

in the L1 cache, these caches caused less requests to main memory to be made and latency

was reduced. Unfortunately, though latency reduction helps, it does not eliminate the

memory latency problem. Clearly, latency reduction must be combined with some form of

tolerating the remaining latency.

Latency tolerance has led to the development of most of the newest processor

designs currently used by industry. Indeed, modern superscalar processors with their

multiple out-of-order issue strategies, were designed specifically to tolerate the growing

memory latencies. However, with size limitations on the number of instructions issued,

superscalar by itself can not cope with the latency, nor can it get by the finite instruction

level parallelism (ILP) problem. In order to take more advantage of the long memory

latencies and parallelism within threads, research has turned to multithreading.
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The concept of multithreading for hiding long latency operations is not a new one.

The original dataflow models of computation already implied the general ideas of fine -grain

multithreading [5]. Multithreading began strictly as a programming paradigm dedicated to

increasing throughput on SMPs [6]. Powerful software packages, some backed even by

Operating System (OS) kernel support, have been created to help programmers take

advantage of algorithm parallelism. However, these exclusively software packages, such

as Pthreads [7], Solaris Threads [8], and Linux Threads, are unable to take advantage of

actual hardware conditions. Thus, in no way can software controlled multithreading detect

and act upon a cache miss and thus, effect memory latency in this manner. Instead, the

software packages are forced to rely on time quantums to switch between threads or to

interleave thread execution. The problem with time quantums is that they are not precise

enough. For example, a processor could interrupt a non-stalled thread or let a stalled thread

remain in the hardware for a time. Interleaving threads causes its own problem of jamming

a processor when one thread stalls and the look-ahead of the processor's issue unit is not

enough to move other thread instructions past the blockage. This problem is especially true

if more than one thread becomes stalled at the same time. Additionally, when software

packages switch between threads, the operation creates high software overhead. Thus,

purely software controlled multithreading is not a good solution.

In an attempt to solve the limitations imposed by the software packages,

multithreading researches began studying hardware modifications. To improve the time

required to switch between threads, the concept of multiple hardware contexts was

employed. These hardware contexts were implemented as both logical and physical

register files and Program Status Windows (PSWs) and can be found on such systems as

HEP [8] and TERA [6]. However, these systems require extensive modifications to the

processor architecture and enforce the use of very specialized processors. Thus, both

architectures move against the trend to use generic components and are neither cost

effective nor feasible.
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There are also two attempts to add hardware support to existing processor

architectures. The first, is the MIT Alewife processor that utilizes a SPARC based

architecture called Sparc le [10]. However, Sparc le is based on an old superpipeline design

and does not indicate how multithreading would perform on a modern superscalar design.

The second attempt was made by Nader Bagherzadeh [13]. Bagherzadeh's processor is

based on a modern superscalar design, however, it enforces some limitations. The first

one is that the threads are limited by size and by number. The fine grain limitation means

that potentially less benefit can be gained, since the processor can run out of instructions to

execute and really long latencies can not be fully exploited. The number limitation dictates

that only a certain number of threads can exist at the same time within a processor. Thus,

even if more parallelism exists to be exploited, the programmer must follow strict

guidelines. The second limitation is that thread execution is interleaved and runs into the

same problem as the software packages that utilize this SMT strategy, the processor must

have a very high look-ahead.

The MVP surpasses the previous attempts in a number of ways. Mainly,

multithreading is added to a modern architecture with both software and hardware support.

The hardware support allows the use of multiple hardware contexts and to detect cache

misses to hide memory latency. The software support allows an almost limitless number of

threads to be maintained and drastically limits the amount of hardware modifications.

Additionally, the MVP does not utilize interleaved thread execution, but instead switches

between threads. This addition enables the MVP to be constructed without the necessity of

giant reorder buffers or reservation stations. However, it is important to note that though

some software overhead for context switching is introduced, it is less than that of a purely

software controlled multithreading package. In essence, the MVP is a new blending of

both hardware and software multithreading.
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3. THE MULTITHREADED VIRTUAL PROCESSOR MODEL

As stated previously, the purpose of the MVP is to enable a programmer to use a

standard software controlled multithreading package. At the same time, the package is

transparently extended to take advantage of hardware support for tolerating long memory

latencies. This chapter will describe the MVP and the thread execution model that MVP

uses to govern the execution of running threads. Also, the chapter will describe the simple

prefetching schemes implemented in the MVP to show what effect prefetching can have on

the performance bottlenecks of the processor.

3.1 MVP Organization

The organization of the MVP is shown in Figure 1. The processor consists of a

standard superscalar processor core based on Sohi's register update unit (RUU) [12]. The

RUU acts as a combination reservation station (RS)/re-order buffer (ROB). In addition to

the standard superscalar design, multiple register files/contexts and a hardware scheduler

have been added. The hardware scheduler has the responsibility to manage all threads that

have been scheduled into the hardware for execution by the software thread package.

Each register file, including some additional control bits, represent a thread context.

An example of a thread context is shown in Figure 2. Each context consists of a full

register file, a valid bit, and a ready bit. The valid bit is used to indicate whether a context

contains an executable thread (i.e. a valid PC and register data). If the valid bit is not set

the hardware scheduler will not switch execution to that context. The ready bit is used to

dictate whether a context has had its memory latency resolved yet. As the hardware

switches to a new context in response to a cache miss generated by the current context, the

current context's ready bit is cleared. The ready bit remains cleared until the cache miss is
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resolved and is set when the data becomes available to the thread. The hardware scheduler

will not return execution to the non-ready context until the ready bit is set.

In addition to the thread contexts, two global bits are also added to the hardware:

Thread_Mode and More_Threads. Thread_Mode is used to designate when the MVP is to

be allowed to start executing across multiple hardware contexts. The bit, controlled

primarily by the software package, will prevent the hardware scheduler from utilizing more

than one context until it is set. This bit is used to prevent a context switch from occurring

before any threads have been created by the software. The bit additionally provides a

simplistic locking mechanism for preventing the hardware scheduler from generating a
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context switch during potentially hazardous times. An example would be when the

software scheduling algorithm is being executed in one of the hardware contexts. If a

context switch occurs during execution of the software scheduler, a potential race condition

could develop when another context also executes the software scheduler algorithm.

The other global bit, More_Threads, is also controlled by the software thread

library. This bit indicates whether the software scheduler has more threads to execute on

the hardware. If the bit is set, the hardware scheduler is informed that more threads are

available for execution and knows it has to call the software scheduler to execute more

threads.

3.2 Multithreading Model

The MVP consists of two main components for dealing with multithreading:

software and hardware. The software is responsible for creating, managing, and

scheduling threads on the hardware. In this case, the POSIX compliant Pthreads package

was used. After threads have been scheduled onto the MVP contexts, the hardware
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scheduler takes over. The hardware scheduler then switches execution to a different

context whenever the current context encounters a long memory latency. In the case of this

study, the context is switched upon a detection of a second level cache miss by the

memory-management unit (MMU). It is important to note that, though in MVP the second

level caches are unified (shown by Figure 1), a context switch is generated only by a

second level data cache miss.

The hardware scheduler maintains control over the threads until a thread finishes

execution and returns. As a thread returns, control is relinquished to the Pthreads

scheduler. The MVP execution model that governs the interactions between the user

program, Pthreads library calls, Pthreads scheduler, and the hardware scheduler is shown

in Figure 3. The functionality of each of the states is described below:

main() While in main(), the MVP is executing the main user program in non-

thread mode. When a Pthreads routine is invoked, the model transitions to the

Pthreads Library Calls state. For all programs this is the first and last state

encountered by the MVP as execution begins in this state and returns once all

threads have been executed.

Pthreads Library Calls In this state, the MVP is executing a Pthreads routine.

When the routine returns, execution will either return to main() or attempt to

schedule a thread for execution (Schedule New Thread state).

Schedule New Thread This state's action depends upon which transition and/or

which Pthreads routine called the Pthreads Scheduler. Regardless, the state will

perform either one of the following actions: It either

* Selects the next thread from the list of threads ready to be scheduled (known

as the priority queue), and compares the thread priority with the priority of

the currently executing thread. If the currently executing thread's priority is

higher, the scheduler returns, if not, the current thread is removed from the
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hardware and the new thread scheduled. The priority queue (PQ) is

maintained by the Pthreads scheduler exclusively.

* Chooses the next thread from the PQ and schedules the thread into the

current hardware context. Since all threads are by default equal in priority,

this is the most commonly observed action of the state.
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Thread Running This state signifies that a thread is executing in the current

hardware context. Execution leaves this state and proceeds to the Context

Switch state when a cache miss or context switch instruction is encountered.

Context Switch The Context Switch state performs one of the following actions

depending on the current machine state: It either

Changes the current hardware context to another valid and ready context

(Thread Running transition).

Switches control to the Pthreads scheduler if a non-valid hardware context

exists and more threads are available for execution. (Schedule New Thread

transition).

Halts execution and waits if no more threads are available and no contexts are

ready (Wait transition).

Wait Wait ceases all execution of the MVP and waits for a context to become

ready (i.e., a thread to receive its data from a long memory latency operation).

When a context is again ready, Wait makes the transition back to Thread

Running.

In order to implement the MVP execution model, two main design choices were

encountered. First, instead of gang scheduling threads into all of the hardware contexts at

once, the decision was made to schedule threads one at a time. The reason for this decision

was that scheduling one thread at a time was closest to the current Pthreads operation and

so required less modification to the Pthreads scheduling code. Also, gang scheduling the

threads would not necessary result in improved performance at the cost of increased

hardware complexity. Basically, the choice was a tradeoff between one long scheduling

operation and multiple shorter scheduling operations.

Second, it was decided that when a thread finishes its execution it would be better

to schedule immediately a new thread to the context (if available), rather than switching

execution to a thread already located in another hardware context. This decision was based
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on results obtained from preliminary studies [13] that indicated it is always better to keep as

many hardware contexts occupied as possible.

3.3 Prefetching Model

It was decided to add prefetching to the MVP primarily for two reasons. First,

since most modern microprocessors are now implementing some form of instruction cache

prefetching, it is important to study the possible benefits/hindrances that these algorithms

pose to the MVP. Second, preliminary research suggested that the MVP suffered from an

increased bottleneck in the fetch unit and prefetching was to be explored as a possible

solution. In this study, two very simple algorithms were implemented on the MVP. The

first was a simple next-line prefetching scheme. In this scheme, when a line is fetched

from the I-cache, the next line in the I-cache is also fetched. The next-line prefetching

always occurs regardless of the instructions located in the previous line.

if the previous line contains a predicted taken branch instruction the next I-cache line would

still have been prefetched. As this prefetching scheme can be implemented with standard

microprocessors, it was used as a base line to compare with MVP running a similar

scheme. However, in MVP, the prefetching occurs for only the currently executing

hardware context. In addition to the simple next-line prefetching, another prefetching

scheme was created exclusively for MVP. The second scheme expanded the next-line

algorithm to include prefetches for the next-thread as well. Now, instead of prefetching I-

cache lines for the current context, once a cache miss is detected, the next line for the next

current context is prefetched. Thus, when a context switch occurs the new context's

instructions are either available or already in the process of being fetched into the I-cache

and latency is reduced.

An important note about prefetching is that while it may be a benefit to a single

processor, multiprocessor systems may be disadvantaged by prefetching. The reason is
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that prefetching is a memory latency/bandwidth tradeoff. While single processors may

have memory bandwidth to spare, the same is not true of multiprocessor systems. Most

notably, clustered SMP machines. In these machines several processors share the same

memory bus and usually all memory bandwidth is used with little or none left over for use

by prefetching schemes.
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4. TOOLS

This chapter will focus on the two main tools used in the creation of the MVP. In

order to create and manage threads the Pthreads package was used. On the hardware side,

Todd Austin's Simple Scalar simulation tool set [14] was adapted to simulate the MVP and

all associated memory hierarchy and hardware scheduler. First, the chapter will focus on

the software side governed by Pthreads.

4.1 MIT Pthreads

In order to create and manage threads for the MVP, the Pthreads package was

selected. Though several different implementations of Pthreads exist, Chris Provenzano's

Pthreads was chosen. The advantage of Provenzano's Pthreads was primarily that it was

freely available and that it was implemented as a collection of libraries.

The Pthreads scheduler maintains three distinct algorithms: first-in-first-out ()' -1P0),

round-robin, and user-controlled priority. The main difference between 1-11-0 and round-

robin is that round-robin scheduling associates a time quantum for each thread. On

expiration of the quantum, the scheduler will schedule a new thread into the hardware. The

round-robin algorithm was chosen as it exhibited the closest behavior to the MVP and

required little modifications to fit the MVP's needs.

To use Pthreads, a programmer creates and manages the threads by making a series

of function calls. All threads to be executed must be explicitly defined and coded by the

user. To begin, the user makes a call to create the threads to be executed. Then, to run the

threads, the user makes another function call from the main program. Each thread is

executed on the hardware for one time quantum. Once the quantum expires, an interrupt is

generated calling the Pthreads scheduler and another thread is moved to the hardware. The

time quantum is set small enough to help performance by avoiding long I/O operations.
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When the last thread finishes its execution, the Pthreads library returns control back to the

user program.

Though Pthreads library maintains many functions for thread management, for

simplicity, only four functions of the library were used for the simulations:

pthread_create This functions creates a new thread. If the newly created thread

has a higher priority than the user program (default = lower priority), then

pthread_create can call the Pthreads scheduler and begin execution on the new

thread.

pthread_exit When called, pthread_exit will clean-up the completed thread and

call the Pthreads scheduler to either begin execution on a new thread or return

execution back to the main user program if no additional threads remain to be

executed.

pthread_join This complicated function acts as a barrier synchronization between

threads and the main user program. It is typically called from the main user

program and given a thread as an argument. The function will check to see if the

given thread has finished execution, if not, the function will call the scheduler to

execute the thread. The main user program will not pass this function call until

the requested thread has finished execution. Thus, if pthread _join is used in a

loop and given all created threads as arguments, execution will not proceed past

the function call until all threads have finished execution.

barrier_wait The barrier_wait function enforces a simple barrier synchronization

between threads. Just like a standard barrier synchronization, thread execution is

paused at this point until a certain number of threads call the barrier_wait

function.

An important notice is how Pthreads manages and stores its threads and their data.

Pthreads keeps track of the threads by assigning each thread a unique thread ID. The list of

thread IDs is kept in the PQ. When a thread is executed on the hardware, it is removed
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from the PQ and placed in a variable called pthread_run. Thus, Pthreads can keep track of

all available threads and which thread is currently executing. To store the data associated

with each thread, a collection of various data registers and pointers, Pthreads uses the OS

stack. When threads are created, space is allocated on the stack for each thread and used to

store all data associated with the thread in the advent of a interrupt or a swap of a currently

running thread for another thread in the PQ. This fact is important to realize as it

necessitates the existence of an OS stack in order for the proper function of Pthreads.

4.2 Simple Scalar

The Simple Scalar tool set was created by Todd Austin. The Simple Scalar

architecture is derived from a combination of the MIPS-IV ISA and DLX. Essentially, the

DLX adds additional addressing modes and a square-root instruction to the ISA. Also, the

ISA was expanded to a 64-bit instruction encoding to provide users

the ISA to suit their own needs. The actual tool set contains various simulators ranging

from a simple functional simulator to an advanced out-of-order microarchitectural

simulator.

The simulator base used to simulate the MVP was sim-outorder, which simulates as

n-way issue, five stage superscalar processor based upon Sohi's RUU shown in Figure 4.

In order to fully understand the limitations of sim-outorder it is important to first

understand how sim-outorder is both built and operates.

Sim-outorder is based upon a very simple functional simulator developed first,

known as sim-safe. The functional simulator simply executes instructions in order with no

instruction passing allowed. No architecture is simulated either, causing an instruction to

be fetched from memory (no caches), decoded, and then executed before another

instruction is fetched. The decode/execute step actually occurs at the same time, so as an

instruction is decoded, results are calculated, registers and memory updated, and branches
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calculated and taken. When sim-outorder was built on this core, the core was never

modified. Thus, all results and memory modifications still take place in the decode step.

The problem is that with sim-outorder, once an instruction is 'decoded', a copy is

sent into a microarchitectural simulator. The microarchitectural part of sim-outorder then

moves the already executed instruction through the RUU based pipeline. In essence, the

instruction is issued, dispatched, executed, written back, and retired. Also, sim-outorder

adds multi-level caches to help compute accurate timing. However, since the instruction

has already been executed by the functional simulator, no data is moved/calculated by the

microarchitectural simulator, only timing information is collected. Another way to view the

interaction between the functional and microarchitectural simulators in sim-outorder would
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be to think of the functional simulator as an on-the-fly trace generator that passes each

instruction to a trace driven simulator.

To maintain an accurate simulation of wrong path execution (i.e., branch miss-

speculation), sim-outorder introduces the concept of spec_mode. When a conditional

branch instruction is decoded, sim-outorder compares the actual branch (computed by the

functional simulator) to the predicted branch (computed by the microarchitectural

simulator). If a match is not made, then the branch is miss-predicted and sim-outorder

enters speculation mode (spec_mode). In order that the register file and main memory are

not polluted by the functional simulator with 'speculative' instructions, spec_mode forces

the functional simulator to access a different 'speculative' memory and register file

structures. It is important to note that the speculative memory and register file data

structure values are not in any way related to the correct memory and data structure values.

This difference results in a big limitation of sim-outorder in that, if execution remains in

spec_mode long enough, the bogus data values will result in a fault and halt execution of

sim-outorder.

Another limitation of sim-outorder's construction is with precise interrupts. Since

the functional simulator executes each instruction the instant it is decoded, the machine state

is at the point of decoding an instruction and not at the point of committing an instruction as

in all actual superscalar processors. Thus, any interrupt that is generated in the

microarchitectural simulator can not result in a precise interrupt.

As a direct consequence of a lack of precise interrupts, sim-outorder enforces

another limitation in the form of no OS support. In order to model syscalls used by most

benchmark programs, sim-outorder uses the scheme shown in Figure 5. With this model,

when a syscall is decoded from the simulated program, sim-outorder makes the same

syscall to the native OS on the machine executing the simulator. Though this model works

with most syscalls, it will not work for signals and timers. In example, consider that a user

program wants to set a timer for one second. A problem occurs when simulating this code,
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as sim-outorder sends the timer value outside the simulator to the native OS. The native OS

will wait one second and then interrupt sim-outorder which in turn sends the equivalent

interrupt to the simulated user program. However, though the native OS waited one

second, the simulated time will actually be much less. This problem occurs since now the

processor is executing instructions from both the benchmark and the simulator instead of

instructions solely from the benchmark program. So instead of the user program waiting

the one second it wanted, it could have only waited a simulated time of only .1 seconds.

The five stage pipeline used by sim-outorder consists of the following stages: fetch,

decode, issue, writeback, and commit. These stages are implemented by six functions

called by the main driver function of sim-outorder: sim_main(). In order to easily move

instructions through the pipeline without complex software, the stages/functions are called

in reverse order once per clock cycle. The stage functions include:

ruu_fetch The fetch stage is responsible for fetching instruction out of main

memory and placing them it the fetch queue. The fetch continues until either the

fetch queue is full, a branch instruction is reached, or an I-cache miss occurs.
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This function also updates whatever I-caches and branch prediction tables exist.

In example, the MVP uses a branch target buffer (BTB) along with two branch

prediction bits.

ruu_dispatch The ruu_dispatch stage removes instructions from the fetch

queue, decodes them, and places the new instructions into the RUU. This stage

is where sim-outorder makes the translation from the functional to the

microarchitectural simulator. As long as instructions exist in the fetch queue, the

decode bandwidth is not exceeded, and space is available in the RUU, the actual

sequence of events is:

* Instructions are removed from the fetch queue and decoded.

* The instructions are executed and their results are stored in the register file

and/or main memory.

* If the instruction is a miss-predicted branch, spec_mode is enabled.

* The instruction is returned and inserted into the RUU. It is at this point that

the instruction enters the microarchitectural simulator.

* If more instructions exist in the fetch queue, the decode bandwidth has not

been exceeded, and space is still available in the RUU, decode another

instruction.

* As can be deduced from the sequence of events the functional simulator is strictly

an in-order simulator.

ruu_issue At this stage ready instructions are issued from the RUU into the

functional units. All ready instructions can be issued out-of-order as long as the

issue bandwidth is not exceeded and functional units remain open. Loads are

also executed in this stage and cache addresses and dirty/valid bits are updated.

Note, sim-outorder assumes a simple MMU that only allows loads before any

non-resolved store to be executed.
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ruu_writeback - This stage is where interactions are 'completed' in so far as the

microarchitectural simulator. In this stage, instructions that are finished with

their execution units, have their results written back to the RUU to update the

data dependencies. Also, miss-predicted branches are executed and, if

necessary, execution is reset to before spec_mode was initialized.

ruu_release_fu - This small function does not correspond directly to a pipeline

stage, but does release the functional units once instructions have finished

executing.

ruu_commit The commit function removes completed instructions from the

RUU and executes any store instructions located at the head of the RUU. Note,

instructions have already modified the register and memory in the decode stage,

so no values are actually stored in the register files or main memory. A store

instruction will, however, result in changes to the cache hierarchy.
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5. BUILDING THE MULTITHREADED VIRTUAL PROCESSOR
SIMULATOR

In order to study the MVP a simulator was developed (MVPsim) that successfully

integrated the Simple Scalar tool set with the Pthreads thread package. This chapter focuses

on the changes to both Pthreads and Simple Scalar that were necessary in order for the

integration into MVPsim to take place.

5.1 Modifications to Pthreads

As designed, the modifications to the Pthreads library were not lengthy to

implement. The modifications were made in three main areas of the Pthreads library: (1)

thread scheduling, (2) thread synchronization, and (3) atomic locking.

First, Pthreads was not originally designed to manage multiple threads running at

the same time. Previously, Pthreads would keep track of which thread is executing by

placing a pointer to the specific thread into the pthread_run variable and removing the

pointer from the PQ. When a context switch occurs during use of multiple hardware

contexts, Pthreads has no way of knowing which thread is in the current context.

Therefore, Pthreads was changed such that whenever the hardware scheduler calls the

Pthreads scheduler, the thread pointer is copied from the hardware context into the

pthread_run variable. Using this strategy the Pthreads scheduler always has a pointer to

the currently executing thread. Additionally, the scheduler had to be modified to support

the new More_Threads bit included in the MVP. As explained in section 3.2, the

More_Threads bit must reflect whether or not there remain threads in the PQ. The Pthreads

scheduler was modified to set the More_Threads bit to zero whenever the status of the PQ

changes from filled to empty. Vice versa, the Pthreads scheduler also sets the

More_Threads bit to one when the PQ's status changes from empty to filled.
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The second and main modification came from Pthreads thread synchronization

requirements. Originally, when a thread encounters a barrier synchronization primitive,

because that thread can not execute until the barrier is satisfied, Pthreads removed that

thread from the hardware and placed it into a wait queue. Next, Pthreads removes another

thread out of the PQ and places the new thread into the hardware. Once the wait queue

contains all the necessary threads to satisfy the barrier, Pthreads moves all the threads back

to the PQ and execution of the threads continues. In the MVP model, a different scheme

must be used. When one thread reaches a barrier synchronization point, the other threads

in the hardware context will normally also have that same synchronization point. Thus,

instead of scheduling a new thread, the MVP needs to switch contexts. In order to easily

facilitate the change in Pthreads, the following novel scheme was developed.

A specific group of threads, known as context-switch threads, were designed to

first cause a context switch and next, to yield execution to any other threads in the PQ. In

other words, a barrier synchronization now proceeds through the following steps:

A thread reaches a barrier synchronization point and calls the appropriate

Pthreads routine. Pthreads removes the thread from the hardware context and

places it in the wait queue. Next, Pthreads places a context-switch thread into

current hardware context and executes it.

The context-switch thread initiates a context switch so that the other threads in the

hardware contexts have a chance to reach the barrier synchronization point.

When execution again returns to the context-switch thread, it will immediately

yield execution to any thread in the PQ. This yield is performed to either satisfy

the barrier synchronization or to continue execution if the barrier has already

been satisfied.

Unfortunately, though this scheme resulted in the smallest and easiest change to

Pthreads, it did cause the greatest Pthreads overhead during the simulation of the

benchmarks (from context switching the extra tthreads).
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The third modification to Pthreads was to provide support for an atomic locking

mechanism. Pthreads was never meant to run on a multiprocessor system let alone the

MVP. The result is that, were MVP to context switch out of a context currently executing

Pthreads library instructions, a possible race condition could develop if the next context

begins executing the same Pthreads code. The flimsy locking mechanism provided in

Pthreads was not even atomic and could not support use by the MVP. To fix the problem

of atomic support, the Thread_Mode bit (explained in section 3.1) was added to the

hardware and support was added to the Pthreads library. In short, whenever the MVP can

switch hardware contexts, the Thread_Mode bit is set to one. Pthreads was modified to set

the Thread_Mode bit to zero when interrupting (calling the Pthreads scheduler) and upon a

thread reaching a barrier synchronization. In response, Pthreads was modified to set the

thread-mode bit to one when: starting to execute threads, returning from an interrupt

(beginning execution on a newly scheduled thread), and returning from a call to the barrier

synchronization primitives.

As explained, the modifications to Pthreads, while not simple, were kept to a

minimum as much as possible. This philosophy was maintained in order to provide an

easy transition to a new hardware with little modification to existing software. The

philosophy also had the result of requiring the greatest modification to the Simple Scalar

simulation tool set.

5.2 Modifications to Simple Scalar

In order to support both the MVP and Pthreads, the Simple Scalar tool set required

extensive modifications. First, in order to support Pthreads, Simple Scalar has to provide

an OS stack and precise interrupts to save thread information whenever a thread is not in

the hardware. To provide the MVP functionality, Simple Scalar had to be further modified

to support multiple hardware contexts along with added registers, instructions, and to
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generate interrupts upon observing a cache miss. The final modification to Simple Scalar

was to provide both next-line and next-thread prefetching techniques to SimpleScalar's

fetch unit.

To add an OS stack into Simple Scalar, a simple approach was used to decrease the

time and extent of modification required. Since Pthreads requires only the presence of an

OS stack for processing interrupts, the OS stack was implemented as an interrupt handling

routine. First, a function (interrupt_fetch) was created to handle all interrupts that were

needed to support. For use with the MVP, only interrupts generated by the cache miss

were implemented while the serial versions used a timer (SIGVTALARM). Then,

whenever the appropriate interrupt was generated, Simple Scalar would call the

interrupt_fetch routine. The routine (found in signal.c), serves to map the requested

interrupt in Simple Scalar to a selected spot in simulated memory. Essentially, memory

mapping the interrupt to the predefined interrupt handling routine. The interrupt handling

routine (sigisr.S) is included by Pthreads and serves, when accessed, to create the OS

stack. The OS stack is implemented by storing all important registers of the current MVP

context to memory and increments a pointer to the next free location. If a thread needs to

be removed from the OS stack, the pointer is decremented and the information loaded back

into the current hardware context. In order to keep from modifying Pthreads, the interrupt

that is used for the MVP simulator was SIGVTALARM. Since Pthreads already used this

interrupt for its own original time quantum interrupt, no modification had to be made to

Pthreads' own interrupt handling routines.

To provide functionality for handling precise interrupts, an extension of

Simple Scalar's speculative execution mode was made. As explained in section 4.2, when

Simple Scalar enters spec mode, all accesses to main memory or the register file become

routed to false locations. To use this system for precise interrupts, an extra field was added

to Simple Scalar instructions to alert the simulator that this was the instruction that generated

an interrupt. In the case of the MVP, it would alert the simulator that this instruction
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caused a cache miss (a faulting load instruction). To get a precise state in the Simple Scalar

simulator between the functional and microarchitectural components, the instant an

instruction interrupts, the simulator enters a new memory spec mode. The new memory

spec mode is the same as spec mode, but it will not allow the processor to leave spec mode

until the faulting instruction has been dealt with. Thus, the functional simulator can no

longer modify the register file or main memory. Once the instruction reaches the head of

the RUU, the two parts of the simulator are equal in state, the simulator can leave spec

mode, and execution restarted to the interrupt handling routines. All modifications to the

main functions of Simple Scalar are listed below:

ruu_commit Changed to detect a faulting load instruction and, if so, to leave

spec mode and call the interrupt handler. This function is the only place in the

simulator when the simulator can leave memory spec mode.

ruu_writeback - This function received minor changes to prevent a faulting load

from being mistaken for a miss-predicted branch instruction. Thus, preventing

statistics from becoming polluted. Also, disallow a miss-predicted branch from

leaving spec mode when a faulting load has occurred (i.e. the simulator can't

leave memory spec mode until ruu_commit).

ruu_issue Since normally Simple Scalar assigns the whole time a faulting load is

stalled (until the load has its data), this function had to be modified. To reflect

how the MVP will work, only the time its takes to discover that the L2 cache will

miss needs to be assigned to the faulting load.

ruu_decode This function had to be changed to, if cache miss interrupts are

enabled, check all loads (using the cache_probe function) to see if the loads will

miss in the L2 cache. If yes, then the function forces the simulator into memory

spec mode.

To help create the support for the MVP, the SimpleScalar ISA also had to be

modified. As explained in section 5.1, the context-switch thread requires a context switch
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instruction. Also, another register had to be added (reg 33) to take care of the

More_Threads and Thread_Mode bits. Additionally, another bit was required to be set in

response to a request for a context switch. To this extent, the Simple Scalar compiler was

modified to allow the use of register 33. Also, the decode file (ss.def) had to be modified

to detect the new instruction. For the sake of simplicity, the new instruction was entered in

asm code to eliminate the need for further modifying the compiler.

In order to provide multiple hardware contexts, a simple solution of an array was

created. Instead of Simple Scalar interfacing with a single register file (regs_R),

Simple Scalar now utilizes an array of register files, each one representing a MVP hardware

context (HWCT). The index into the array determines which context is the currently

executing context. To provide a method to switch between the contexts and to interface

Pthreads to Simple Scalar, a new function was added to Simple Scalar called hw_cswitch.

The function's primary duty is to perform as the hardware scheduler. When called,

hw_cswitch returns the PC for the location that the simulated processor is to proceed next.

The function is called by Simple Scalar in two different locations. First, the function is

called by ruu_decode when the decode unit detects that a context switch instruction has

been processed. The next time hw_cswitch must be called is by the commit stage

(ruu_commit). The commit stage must call hw_cswitch when an instruction that caused a

cache miss is ready to retire, again at that point the state can be saved and the interrupt

processed. Each time hw_cswitch is called, the current PC is sent as an argument and the

next PC is returned. The functionality that hw_cswitch supports is in full accordance with

how the hardware scheduler is defined to operate by the MVP model described in Chapter

3.

1. The hw_cswitch function checks to see if the context switch was requested by

instruction or an actual cache miss and thread mode is on. If it was from an

instruction, then the bit is reset (MVP_CSW_REQ) so as not to cause another
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context switch, and the context switch proceeds. If thread mode is not enabled,

then the current PC is returned.

2. Since a context switch is going to occur, hw_cswitch copies the current context

into the appropriate place in the context array. Unfortunately, the copying

method was chosen as Simple Scalar had too many direct references to the

register file (regs_R), especially in syscall.c, to allow a direct replacement with

the array (HWCTO). The drawback to this approach is that, while easier to

implement, it slowed down the simulation speed of Simple Scalar considerably.

3. The hw_cswitch function checks to see if there exist more threads in Pthreads

(MVP_M_THREADS bit). If yes, then the next context is selected. If the new

context is valid, the context's register file is copied into the active register file and

the new PC is returned. If the new context is not valid, in accordance with the

model, the PC of the interrupt handler is returned so that a new thread can be

scheduled by Pthreads. If there are no more threads to run, hw_cswitch

searches for the next executable context. When found, the new context is copied

and the new PC is returned. However, if the context found is the one that

caused the context switch in the first place, then thread mode is disabled

(TD_MODE) and execution returns to the context. Thread mode is disabled at

this point since there are no more threads to run in either Pthreads or the other

hardware contexts.

Once the new PC is returned from hw_cswitch, the MVP simulator can easily

resume execution on the new PC. Either running a new or same context, or executing

Pthreads library instructions for scheduling a new thread.

Though the changes to Simple Scalar were the most difficult and lengthy part of the

creation of the MVP simulator, once completed simulations were ready to be performed on

the new architecture.
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6. SIMULATION RESULTS

In order to study the performance and effects seen by multithreading and

prefetching on the MVP, several areas of processor performance were studied: These areas

include speedup, cache effects, pipeline bottlenecks (in the form of IPC), and prefetching

(in the form of speedup). However, this chapter first focuses on the chosen simulated

processor and on the simulated benchmarks.

6.1 Simulated Processor

The simulated processor for the MVP is a combination of Simple Scalar defaults and

realistic cache effects. The regular superscalar aspect of the MVP is assumed to have the

following characteristics:

Functional units and their corresponding latencies are displayed by Table 1.

The cache and main memory organizations and latencies are displayed by Table 2.

The caching hierarchy is assumed to be only two levels (L1 and L2) and utilizes

a blocking scheme. It is important to note that the MVP can operate with more

cache levels, but two were chosen in order keep simulation time low. Also,

though the main memory latency is rather conservative in its outlook compared to

Table 1: Simulated Functional Units for MVP.

FUNCTIONAL UNIT LATENCY PIPELINED
Integer ALU/Branch 1 Yes
Integer Multiply 3 Yes
Integer Division 12 No
Load/Store 2 Yes
FP Addition 2 Yes
FP Multiplication 4 Yes
FP Division 12 No
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Table 2: Cache and Main memory Latencies.

Ll I-CACHE Ll D-CACHE L2 CACHE
Size 16K Bytes 16K Bytes 256/512 K Bytes
Associatively Direct-mapped 4-way Set 4-way Set
Line Size 32 Bytes 32 Bytes 32/64 Bytes
Latency (hit) 1 CPU Cycle 1 CPU Cycle 6 CPU Cycles
Latency (miss) 6 CPU Cycles 6 CPU Cycles 100 CPU Cycles

modem technology (i.e. Ultra Sparc IIi maintains a 72 cycle main memory

latency [15]), it is expected that memory latency will grow in the future.

Moreover, multiprocessor systems will add even more latency derived from their

shared-bus protocols.

The fetch, decode, and issue width of the pipeline is 4 (which gives the MVP the

ideal Instructions executed Per clock Cycle (IPC) of 4.0). The number of RUU

entries, and therefore both the number of ROB and reservation station entries,

used by the MVP is 16.

Branch prediction in the MVP is assumed to use a 2K-entry BTB with 2-bit

branch prediction bits.

The new hardware added to the processor to support fast multithreading (multiple

register files and hardware scheduler) is assumed to have the following characteristics:

Assuming that the process for context switching is supported entirely by

dedicated hardware, the process is very similar to recovering from a miss-

predicted branch and requires a penalty of 3 cycles. The process for switching

execution from one hardware context to another involves:

* Powering down one register file and powering up the register file

corresponding to the new thread.

* Flushing the ROB of all instructions issued after the faulting load instruction.
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* Setting the fetch unit to begin fetching instructions from the new thread's

PC.

Context switching to a new thread in the MVP is initiated when an L2 cache miss

is detected. Since the L1 caches have such a minimal latency of only 6 CPU

cycles, it was not worth context switching to a new thread. However, the MVP

is not constricted to using only the L2 cache, but can utilize any miss in the

memory hierarchy that results in a sufficient delay of CPU cycles.

The number of threads created for each simulation trial was kept equal to the

number of hardware contexts. It was empirically derived that varying the

number of threads in regards to a constant number of hardware contexts had only

a minimal increase on the MVP's performance. This minimal increase was the

result of a small incremental increase seen in performance as the number of

threads was increased. However, this increase in performance was offset by an

incremental increase in Pthreads software overhead. The best performance was

obtained by keeping the software overhead as minimal as possible by only

creating enough threads for the hardware contexts.

6.2 Benchmarks

In order to both validate and obtain processor performance information for the

MVP, a set of five benchmark programs were selected. Both Matrix Multiplication (MMT)

and Gaussian Elimination (GE) were hand-coded. The three other benchmarks, Radix

Sort (RS), MP3D, and Fast-Fourier Transform (1-1-.1) were selected from the SPLASH-2

benchmark suite [16]. Developed to benchmark performance of shared-memory

multicomputers, the SPLASH-2 suite uses ANL macros to create and manage the programs

threads. To port the SPLASH-2 benchmark suite to the MVP simulator, the ANL macros

were directly replaced with their Pthreads equivalent statements. It is important to note that
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no optimization was attempted in the port to help prevent the data obtained from

representing only the best-case scenarios. To get an understanding of what each

benchmark strives to test, a brief description of each follows:

PH implements a complex 1-D version of the sqrt(n) six step 1-1.1 algorithm.

The algorithm has been pre-optimized for minimizing inter-thread

communication. The data set consists of n complex data points and another n

complex data points called the roots of unity. Therefore, each thread is

responsible for transposing a contiguous submatrix sqrt(n)/p * sqrt(n)/p with

every other thread as well as transposing a single submatrix by itself. The data

set between threads is very localized and even though optimized against it, still

supports much data sharing between the threads.

GE partisans an n-by-n matrix into threads by using the row-rise, block-cyclic

method. Next, one thread calculates its pivot and performs the division step

followed by all other threads performing their elimination steps. The threads

created by GE tend to exhibit very separate and distinct data sets from each other

with only minimal data sharing caused by the shared pivot values. GE is very

similar to LU decomposition in SPLASH-2, except for the fact that GE generates

only the upper triangular matrix.

MMT is the simplest benchmark used on the MVP simulator. MMT parses the

matrix into blocks and assigns those blocks directly into threads. The data set

for the threads is very disjoint, but the row by column effect does produce

considerable data overlap between the threads. Due to MMT's simplicity, there

is no intercommunication or synchronization between threads.

MP3D is a simple simulator for rarefied gas flow over an object in a wind tunnel.

To prevent a long initial file read operation, the geometry of the object is created

as a data structure in main memory at start-up. The algorithm assigns given

particles into threads and the threads spend most of their execution time in a loop
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moving their particles through a single time step. Each thread continuously

detects every possible collision of its particles with any other particle within a

pre-defined cell space. Whenever a collision is detected, knowledge of that

collision must by forwarded to all participating particles. In essence, the MP3D

algorithm contains a data set that is very localized and must share much of that

data set among the other threads.

RS performs the classic linear sort algorithm in parallel. The algorithm passes

over the assigned key values to each thread and, based on those key values, each

thread generates its own local histogram. Next, all the threads combine the local

histograms into a large globally shared histogram. Finally, each thread iterates

over its assigned array and by utilizing the global histogram, permutes its keys

into a new sorted array. The RS algorithm results in almost two distinct data

sets. First, whenever the global histogram is accessed, the data set is very

localized and shared. However, when not accessing the global histogram, the

data set becomes very disjoint between threads. The RS algorithm also has most

complex synchronization of the MVP's benchmark suite.

6.3 Results

Four sets of simulation runs were performed on each benchmark for comparison

purposes. The first set, serving as the control, was obtained by running a sequential

version of the benchmarks on Simple Scalar. These sequential results, known as the Serial

versions, served to illustrate the base performance that MVP should beat in order to show

improvement. The other three simulation runs obtained data for MVP with 2, 4, and 8

hardware contexts in operation. The results were obtained by simulating approximately

160 million instructions (MP3D) to 1.1 billion instructions (GE and RS) and were grouped

into four categories: speedup, cache effects, bottlenecks, and prefetching.
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Figure 6 displays the relative performance of the MVP for the five benchmark

programs. The results have been normalized relative to the performance of the serial

versions. The data shows that though Pthreads does introduce some overhead, as the data

set size grows, the MVP overcomes the overhead and performs better than the serial



37

versions. A good example of this effect is delineated by MP3D. F I also shows a good

improvement in performance as the data set size increases and the algorithm begins to take

advantage the latency tolerance of the MVP. Another effect displayed by Figure 6 is that

the use of more hardware contexts does not necessarily result in improved performance, as

seen by both RS and MP3D. This result is obtained from the a combination of the

benchmarks' high synchronization requirements, relatively small parallel portions, and

increased overhead from more hardware contexts. Although the performance degrades as

more hardware contexts are added, the performance margin between the cases narrows as

the problem size increases. In essence, the cases with 4 and 8 hardware contexts will

overcome the corresponding overhead increase and eventually outperform the 2 hardware

context case. Other effects seen by Figure 6, include improved, but varied, performance

seen by both GE and MMT. The results garnered from GE for the 300 case appears to be

based on a radically lower L2 miss rate (compared to the serial version) caused by the

addition of threads. The threads' data sets seem to have resulted in a very good mapping of

the 300 by 300 matrix into the L2 cache. MMT performance seems to also be seriously

effected by the L2 cache. With MMT, multithreading caused a much lower L2 miss rate

(again compared to the serial versions), while the 240 case resulted in a much higher L2

miss rate. Clearly, though multithreading results in improved performance for large data

sets, the L2 cache effects have a high impact on how great that performance improvement

will be.

To gain a closer understanding of the effect that the caches have on multithreading,

two sets of graphs were obtained. The first set monitored the L2 miss rate to determine the

effects that are seen by the L2 cache to main memory bus. The second set of graphs

displays the number of accesses received by the L2 cache. This data set is further broken

down to show which accesses were issued from the L1 I-cache or the Ll D-cache. In

essence, by using the second set of graphs, the performance of the L1 caches for the

benchmarks can also be observed.
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The data graphs of the first set are shown by Figure 7, and give some rather

interesting results. It is apparent that, for the majority of the benchmarks, the L2 miss rates

for the MVP are lower than the serial versions. In fact, the only benchmark not displaying
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this result is GE. The lower miss rates observed are the result of the fact that the data sets

used by the benchmarks have very high localities. This data locality creates a unique

situation where one thread can help out another in the caches. In essence, one thread can

cause a cache miss that will bring in data that another thread will need to access later on.

To illustrate this point, consider the RS benchmark algorithm. When one of RS's threads

accesses the global histogram for a data value, other data values that the thread will not

need but other threads might, will also be brought into the cache. Thus, another thread

could potentially find the global histogram d1ta that it needs already residing in the cache,

and will not generate a miss. Sequential programs cannot perform this sequence and result

in worse performance by generating a cache miss, using a small portion of the data, and

then replacing the line before the rest of the data can be used. Though MMT does not

utilize a very localized data set, the nature of its algorithm results in a very similar effect.

This result is obtained by having MMT multiply a row of one matrix to a column of

another. By distributing the rows of both matrices in a row-wise block manner among the

threads, when one thread cache misses on a column value, the thread will inadvertently

load other column values to be used by other threads. These extra data values are obtained

by the fact that a cache line is part of a row of a matrix. When a thread creates a cache miss

while attempting to find a column value, other values belonging to the same row are also

loaded into the cache. Therefore, when another thread goes looking for its column values,

the values could already be in the cache. Here again, the serial programs tend to replace the

data before it can be reused, and thus generate more cache misses.

In other words, there are two effects that the MVP exploits to lower the L2 miss

rates: Data sharing and data locality. Data sharing, occurs when one thread brings in a data

value that it and another thread will use. Data locality occurs when one thread brings in

data values that other threads will use that happen to exist on the same cache line that has

the data value that the first thread will use. In both cases lower miss rates than the serial
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versions result as MVP threads help prefetch data that can be used multiple times before

being replaced.

Another effect seen by the L2 cache is an increase in the L2 miss rate as shown by

RS. This increase is caused by the sorting portion of the algorithm. When the threads sort

their individual keys of the array, the data set becomes very disjoint and results in an

increased L2 miss rate from conflict misses. As seen by the graph, the sorting portion

begins to have a more profound effect on performance as the number of hardware contexts

increases. Similarly, GE also uses very distinct and low locality data sets among its

threads. Thus, a thread, upon generating a cache miss, simply brings in more rows

belonging only to the same thread. The net result is that now threads are competing for

space in the L2 and the higher number of conflict misses results in a higher overall L2 miss

rate than the serial versions.

There also remains two unique L2 effects displayed a both GE (at 300) and MMT

(at 240). At these data set sizes, the graph illustrates a reversal of the general trend between

miss rates seen by all the rest of the data set sizes. It is hypothesized that these results are

obtained from the simple fact that some data set sizes tend to map themselves into the L2

cache much better or much worse than others.

The last interesting effect on the L2 cache shown by Figure 7 is displayed by RS

and 1-F1. Both RS and FFT exhibit a minimum cache miss rate for cases 16 and 12,

respectively. At these data points an interesting transition occurs as the caches are nearly

full (so compulsory misses are offset and conflict/capacity misses are at a minimum).

Increasing the number of L2 accesses (i.e. increasing the data set size) causes an increase in

both conflict and capacity misses, while decreasing L2 accesses (i.e. decreasing the data set

size) emphasizes the effects of the compulsory misses.
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Figure 8 displays the effect on the Ll caches. For ft 1, MP3D, and RS, the results

suggest that while multithreading works well in the L2 cache, the exploitation of locality is

hindered in the Ll D-cache. The cause is the L1 D-cache's smaller line size, no longer can
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threads as effectively help one another as in the L2 cache. This evidence is especially

strong for the RS algorithm, which can take advantage of almost all data from the global

histogram that is loaded into caches. It also appears that the data separation experienced by

GE and MMT helps to result in an improved Ll D-cache performance. With these two

benchmarks the non-local data serves to map the threads better into the L1 D-caches than

the serial versions and results in less L2 cache accesses. However, it is important to note

that once again matrix size plays a very important role as both GE (at 300) and MMT (at

360) show completely opposite results compared to the rest of the data gathered for those

two benchmarks.

Another aspect illustrated by Figure 8 is the Ll I-cache effects. The results

obtained are almost exactly what is expected when using multithreading. As the number of

hardware contexts, and therefore threads, increases, the threads begin to fight over space in

the Ll I-cache and conflict misses increase.

Figure 9 delineates the average IPC. These results were collected in order to

explore any new bottlenecks that multithreading might cause to a superscalar pipeline. The

IPCs were obtained by dividing the total number of instructions executed by the total

number of cycles it took to complete each benchmark. Assuming a fetch, decode, and

issue width of 4, leads to an ideal IPC of 4. To find bottlenecks, the portions of IPC lost

(i.e. IPC that lowered the ideal IPC from the actual [Pc) were obtained from each of the

Fetch stage, Dispatch stage, and Issue stage. Next the graphs were broken down to show

what percentage of the lost IPC was incurred from a bottleneck at each stage. The pipeline

stage bottlenecks that are graphed include: IPC lost due to exceeding fetch bandwidth

(Fetch_lost), RUU full (RS/ROB _lost), busy execution units (FU _lost), and issue

bandwidth limitations (Issue_lost). Results from bottlenecks at the Decode and Commit

stages were also obtained, but were dropped from the graph when it became apparent that

the bandwidths were never exceeded in any of the simulations executed.
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From the graphs for IPC, it is clear that multithreading creates additional stress on

the fetch bandwidth. This additional stress is due to the fact that program locality is
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reduced by context switching between threads. By switching contexts the PC lowers the

average number of instructions before a branch instruction is reached. Therefore additional

stress is placed on the fetch unit to fetch across more branches resulting in increasing levels

of speculation. In short, fetch bandwidths have to be improved [17]. Another effect that

can be observed is a decrease in IPC lost at the issue stage. By switching threads on a

cache miss, long latency data dependencies are avoided and consequently, more

instructions can be issued.

Also exhibited by the graphs is almost no change in IPC by RS and only small

amounts of difference noticeable by 1.1-1 and MP3D. The reason is the level of

synchronization and therefore parallelism available in the algorithms. RS has much

synchronization, while PP 1 and MP3D have some and MMT has none at all. Though GE

(with large amount of synchronization) exhibits large changes similar to MMT, the result is

caused by the fact that GE has an extremely large parallel portion in comparison to its small

sequential portions.

The final effect seen in Figure 9 is that for some of the smaller data set sizes the

serial version has a higher IPC than the MVP versions. The reason is that Pthreads code

has a relatively lower IPC then the threads. Mainly Pthreads cannot context switch so all

memory latencies must be waited for and as a result IPC suffers. As the data set size

increases, IPC begins to be increase as the added parallelism offsets the sequential Pthreads

instructions.

The final study of the MVP examines how two simple instruction prefetching

techniques can help mitigate the fetch bottleneck. Unfortunately, the prefetching strategies

did not have a high impact on improving the performance. However, an interesting result

developed when it was found that while the simple next-line strategy resulted in a

performance improvement, next-thread prefetching resulted in a performance increase of

only .1%. Also, whenever next-line prefetching did not result in a performance
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improvement, if observed, next-thread prefetching was directly responsible for all

performance degradation.

Next-line prefetching resulted in an only modest performance improvement of 3%

at the most. Since, in essence, prefetching is designed to help remove stalls due to cache

misses, the relatively small proportion of Ll I-cache misses for most of the benchmarks

dictates that next-line prefetching will result in this modest performance improvement.

However, it is also clear that because of multithreading's higher L1 I-cache miss rate

shown by Figure 8, next-line prefetching provides more help than for serial versions. In

fact, due to the incredibly low miss rate of the serial versions Ll I-cache, no serial version

had a measurable improvement from next-line prefetching. This observation can be seen

best by 1-.1.1 and MP3D. In FFT and MP3D, serial performance was degraded by .33%

and 0% ave., while the MVP performance was improved by .70% and 1.2% ave.

respectively. Both 1-1-1 and MP3D have the highest L1 I-cache miss rates and therefore,

exhibit the best performance improvement for the multithreading. Thus, though the

performance improvement is modest, it can be shown that multithreading has the best

chance of exploiting the benefits of next-line prefetching.

A disappointment was the performance of next-thread prefetching. Due to the

proportionally small L 1 I-cache misses that occurred from context switching, next-thread

prefetching results in only very small improvements in performance. Additionally, next-

thread prefetching managed to degrade performance of the benchmarks by generating

conflict misses and replacing Pthreads instructions. Typically, this performance

degradation was small or modest in the case of MMT (8 hardware contexts 1% ave.) and

GE (4 hardware contexts 1.8%), except for two cases of 1-1-.1 and MP3D. In these cases,

the combination of the number of threads, data set size, and pre-fetching served to generate

an unusually high number of conflict misses in the L1 I-cache (11% and 13% respectively).

Again, it must be remembered that simple next-line prefetching resulted in almost

double the memory bandwidth of a single processor. With a gain of only less than 1% on
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average, prefetching is seen as not worth the design time for any type of SMP machine but

may be worth further investigation of advanced methods for single processor use.
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7. SUMMARIES AND CONCLUSIONS

In summary, this thesis explored the simulation study of the MVP. The results

showed that the MVP derives its increase in performance from exploiting both parallelism

and data locality. Also, it was observed that the cache sizes relative to the data set sizes

created profound shifts the performance of the MVP. Though it was discovered that simple

next-line prefetching helped to relieve slightly the fetch-unit bottleneck created by

multithreading, it was shown that MVP has the potential to benefit more from prefetching's

existence. It is the conclusion of this thesis that, for future microprocessors,

multithreading provides good performance for additional die space..

However, there is still much more research to be conducted to help the MVP

achieve the greatest possible benefit of multithreading. Future research areas include more

study into prefetching. Unfortunately limited by the use of Simple Scalar as a simulator

base, more modern approaches to prefetching beyond next-line could not be studied. In

particular, the MVP has the potential to erase the fetch bottleneck by combining branch

prediction with instruction alignment to increase the number of fetched instructions. Also,

the use of wrong path prefetching could stand lower the number of I-cache misses even

further. Again, however, bandwidth limitations must be considered when dealing with

prefetching techniques.

Another performance effect that was unable to be tested was the use of the MVP in

a multiprocessing environment. With the addition of multiple shared memory MVPs, the

existence of a cache coherence protocol is mandatory. Cache coherence has the potential to

increase both the cache miss rate, by invalidating cache lines, and the memory latency, by

placing more contention on the shared memory bus. It is easy to surmise that both of these

effects would have an impact on the performance of the MVP.

Finally, the MVP has the potential to be modified to utilize Simultaneous

Multithreading (SMT). As described previously, SMT is the process of interleaving thread
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instructions so that multiple threads are executed at the same time. Again, though this

approach necessitates a large ROB and reservation stations, the large grain of the threads

used by the MVP works to a greater advantage. The large grain threads are better able to

exploit both ILP and TLP (thread level parallelism) [11,18]. Thus, with more instructions

available to the execution units, processor utilization will increase. Combing a SMT MVP

(SMVP)with a multiple RUU system will help decrease the dependency on large scale

ROBs. Another benefit of SMT is the ability to execute non-related threads; that is, a

single SMVP could execute threads from different programs and act very much like a

small-scale, shared-memory multiprocessor.

Indeed, though prefetching needs more research to offer any substantial rewards, it

is clear that the MVP offers a clear benefit for future processors and provides various

stepping stones to more advanced designs of SMT processors. Perhaps as people begin

turning more and more towards the concept of multithreading, the future will dictate that

MVPs will be a dominant force in computing.



49

BIBLIOGRAPHY

1. Culler, D. And Singh, J. P., Parallel Computer Architecture: A Hardware/Software
Approach, Draft, Morgan Kaufmann, 1997.

2. Pierce, J., Mudge, T., "Wrong-Path Instruction Prefetching." Proceedings of the
International Symposium on Microarchitecture, pages 165-175, December 1996.

3. Rotenberg, E., Bennett, S., Smith, J. E., "Trace Cache: A Low Latency Approach to
High Bandwidth Instruction Fetching." Proceedings of the International Symposium on
Microarchitecture, pages 24-34, December 1996.

4. Farkas, K. I., Jouppi, N. P., Chow, P., "How Useful are non-blocking Loads,
Stream Buffers and Speculative Execution in Multiple Issue Processors? (DEC WRL
Technical Report version)." Proceedings of the International Symposium on High
Performance Computer Architecture, pages 78-89, January 1995.

5. Lee, B. And Hurson, A. R., "Dataflow Architectures and Multithreading." IEEE
Computer, Vol. 27, No. 8, 1994, pp. 27-39.

6. Catanzaro, B., Multiprocessor System Architectures, Prentice Hall, 1994.

7. Butenhof, D. R., Programming with Posix Threads, Addison Wesley, 1997.

8. Smith, B., "The Architecture of HEP." in Parallel MIMD Computation: HEP
Supercomputer and Applications, edited by J.S. Kowalik, MIT Press 1985.

9. Alverson, R. et al., "The Tera Computer System." Proc. Int'l. Conference on
Supercomputing, June 1990.

10. Agarwal, A. et al., "Sparcle: An Evolutionary Design for Large-Scale
Multiprocessors." Proc. Of Workshop on Scaleable Shared Memory Multiprocessor,
Kluwer Academic Publishers, 1991.

11. Loikkanen, M. And Bagherzadeh, N., "A Fine-Grain Multithreading Superscalar
Architecture." Parallel Architectures and Compilation Techniques '96, October 1996.

12. Sohi, G. S., and Vajapeyam, S., "Instruction Issue Logic for High-Performance
Interruptible Pipelined Processors. " Proceedings of the 14th Annual Symposium on
Computer Architecture, June 1987, pp. 27-34.

13. Oeriz, D., Lee, B., Yoon, S. H., and Lim, K. W., "A Preliminary Study of
Architectural Support for Multithreading." 30th Hawaii International Conference in
System Science, Software Track, January 7-10, 1997.

14. Burger, D. C., Austin, T. M., and Bennett, T., "Evaluating Future Microprocessors-
The SimpleScalar Tool Set." UW Computer Sciences Technical Report #1308, July,
1996.

15. Normoyle, K., "U1traSPARC IliTm A Highly Integrated 300 MHz 64-bit SPARC V9
CPU." HOT Chips IX, August 1997.



50

16. Woo, S. C. et al., "The SPLASH-2 programs: Characterization and Methodological
Consideration." Proc. 22nd Annual Symposium on Computer Architecture, June 1995,
pp. 24-36.

17. Conte, T. et al., "Optimization of Instruction Fetch Mechanisms for High Issues
Rates." Proc. Of the 22nd International Symposium on Computer Architecture, June
1995.

18. Lo, J. L. et al., "Converting Thread-Level Parallelism to Instruction-Level Parallelism
via Simultaneous Multithreading." ACM Transactions on Computer Systems, August
1997, pp. 322-354.




