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UPSCALING NON-DARCY FLOW USING MIXED FINITE

ELEMENT METHOD

1. INTRODUCTION

”A porous medium is a heterogeneous material consisting of a solid matrix and a

pore space contained therein”[15]. Porous media occur in many areas of applied science

and engineering: mechanics (acoustics, geomechanics, soil mechanics, rock mechanics),

engineering (petroleum engineering, construction engineering), geosciences (hydrogeology,

petroleum geology, geophysics), biology and biophysics, material science, etc. Fluid flow

through porous media is a subject of most common interest and has emerged a separate

field of study.

In this paper we focus on applications in the geosciences, more specifically in mod-

eling and simulation of fluid flows in petroleum reservoirs. The goals of this paper are to

present a unified technique for solving the pressure equation that arises from the Darcy’s

1 (linear) and non-Darcy’s (non linear) law for single phase flow, and to use it in upscal-

ing. Darcy’s equations applies to a fluid flowing at low velocity, which linearly correlates

pressure drop and velocity. Non-Darcy’s flow is governed by the Forchheimer2 equations

1Henry Philibert Gaspard Darcy (1803 to 1858) was a French engineer. He invented the modern style
Pitot tube, was the first researcher to suspect the existence of the boundary layer in fluid flow, contributed
in the development of the Darcy-Weisbach equation for pipe flow resistance, made major contributions to
open channel flow research and of course developed Darcy’s Law for flow in porous media. His Law is a
foundation stone for several fields of study including ground-water hydrology, soil physics, and petroleum
engineering. http://biosystems.okstate.edu/darcy/

2Philipp Forchheimer (1852 to 1933): Austrian hydraulic engineer who made significant stud-
ies of groundwater hydrology. Early in his academic career, he worked on problems of soil me-
chanics. Later, he turned to hydraulic problems, establishing the scientific basis of the discipline
by applying standard techniques of mathematical physics - in particular Laplace’s equation - to
problems of groundwater movement. Laplace’s equation had already been well developed for heat
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for which the gradient of pressure and its velocity are nonlinearly related.

This paper is composed of seven chapters as follows. In the second chapter of this

paper we present the physical model for both Darcy’s and non-Darcy’s flows and give

results on well-posedness of the models. We also present the mixed variational form of

Darcy’s flow that will be used later to show the equivalence between cell-centered finite

difference and mixed finite element formulations on rectangular grid.

In Chapter 3 we apply the cell-center finite difference method to solve the pressure

equation that arrives from Darcy’s formulation. We also describe the mixed finite element

formulation and its equivalence to the cell-centered finite difference method when we use

certain quadrature rules on a rectangular grid. The boundary conditions are treated

separately for three different types: no-flow(Newman), Dirichlet and periodic. We also

discuss the implementation of production and injection wells. The chapter ends with a

brief explanation on the solution of the linear system.

Chapter 4 is used to extend the cell-center finite difference method to the non-

Darcy’s model and to present the nonlinear solver chosen to deal with the nonlinear

difference equation generated for the Forchheimer equation. We make use of the fixed

point method to deal with the non-linearities of the discrete non-Darcy model. The fixed

point theory is briefly described and sufficient conditions for the convergence of the fixed

point method are derived.

In Chapter 5, we describe a method of calculating effective grid block permeability.

This application arrives from the fact that we need to adapt highly detailed geological

models to computational grids. Due the difference between these two scales we need to

scale up some of the microscale rock properties (permeability in our case) to be used in a

coarse grid simulation. This process is called upscaling. The theory for upscaling has been

flow and fluid flow. Forchheimer extended the preexisting mathematical theory to calculations of
groundwater flow. He was also the first to both mathematically and experimentally examine the
features of dambreak waves in a rectangular channel (with his PhD student Armin Schoklitsch).
http://www.todayinsci.com/cgi-bin/indexpage.pl?http://www.todayinsci.com/8/8 07.html
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developed in [8] for Darcy flow. Here we extend these ideas to the non-Darcy flow and

discuss the consequences of the nonlinear behavior of the equation to the calculation of

the effective permeability. We end the chapter by showing how to calculate the effective

Forchheimer parameter β.

Chapter 6 is dedicated to numerical experiments. We simulate first a 2-injection/2-

production well model in order to compare the solutions for Darcy’s and non-Darcy’s

problems. Next, we calculate the effective permeability on a square domain for two distinct

scenarios. Then the upscaled values for permeabilities are used to simulate a 1-injection/1-

production well model for the two distinct scenarios. A method of comparison of the

upscaled solution on coarse grid to the one on fine grid is developed.

Chapter 7 contains conclusions from this work and lists future work. The code used

in the thesis is attached in the Appendix.
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2. PHYSICAL MODEL AND ANALYSIS

Porous media appear in nature and manufactured materials. Soils and aquifers

are examples in geosciences; porous catalysts, concrete, ceramics, moisture absorbab-

sorbentsants are important in chemical engineering. Even the human skin and the pla-

centa can be considered porous media. We are interested in modeling and simulation

of fluid flows in both petroleum and groundwater reservoirs. In this chapter we present

the basic equations that describe the flow of a fluid in porous media using terminology

referring to natural soil as porous medium. We start with a linear model created by H.

Darcy in 1856 [6] and extend it to a nonlinear model, known as generalized Forchheimer

model [11]. We also present the variational form of Darcy’s flow.

2.1. Darcy Flow

Consider the system of partial differential equations representing the two physical

principles

u = −K(x)(∇p − ρg), x ∈ Ω (Darcy′s law), (2.1)

φ
∂ρ

∂t
+ div(ρu) = q, x ∈ Ω (Conservation of mass), (2.2)

where Ω is a open bounded domain in two- or three-space, p is the pressure, ρ is the fluid

density, g is the gravitational vector, u is the volumetric flow rate (or velocity) of the

fluid, φ is the porosity of the medium, and q is an external mass flow rate, and K is the

permeability tensor. In two dimensions, in the x − y coordinate system, K is represented

as

K =




Kxx Kxy

Kyx Kyy


 . (2.3)



5

K(x) is possibly discontinuous but bounded below and above by positive constants and

is symmetric and uniformly positive definite.

In this paper we assume that the fluid is incompressible, i.e., ρ is constant, and so

equation (2.2) becomes

div(u) = q, x ∈ Ω (2.4)

where from now on we use q = q/ρ Combining equations (2.1) and (2.4) we get

−∇ · (K(x)(∇p − ρg)) ≡ ▽ · u = q x ∈ Ω, (2.5)

We usually assume no-flow boundary conditions in reservoir modeling

(K(x)∇p) · ν ≡ u · ν = 0 x ∈ ∂Ω. (2.6)

But, in order to deal with some upscaling problems in this work, we also consider Dirichlet

boundary conditions of the form

p = g(x) x ∈ ∂Ω,

or periodic boundary conditions. If the no-flow, or Neumann boundary conditions, are

prescribed, the pressure p is only determined up to an additive constant. One can fix it

by requiring ∫

Ω
p dx = 0, (2.7)

or by prescribing the pressure at some point in the domain. Also the compatibility con-

dition ∫

Ω
q dx =

∫

Ω
∇ · u dx =

∫

∂Ω
u · ν ds = 0

must be satisfied for no-flow and periodic boundary conditions. The above condition

simply says that the total fluid input to an incompressible system with no-flow boundary

must be zero.



6

2.1.1 Well-posedness of the Model

For simplicity we consider equation (2.5) without the gravity term, i.e.,

−∇ · (K(x)(∇p)) = q x ∈ Ω, (2.8)

subject to Neuman boundary conditions

(K(x)∇p) · ν ≡ u · ν = 0 x ∈ ∂Ω. (2.9)

Here ν is the outward pointing normal defined almost everywhere on Ω.

In order to establish the well-posedness of the above problem we need to define the

following linear spaces of functions over Ω:

• L2(Ω): space of square-integrable (equivalence classes of) functions over Ω;

• Hm(Ω): Sobolev space of L2(Ω) functions with square-integrable weak derivatives

up to order m;

• Ck(Ω): set of functions with continuous derivatives up to order k.

We also, are going to make use of the following definitions extracted from [4]:

Definition 1 Let H be a Hilbert space. A bilinear form a : H ×H → R is called contin-

uous provided there exists C > 0 such that

|a(u, v)| ≤ C‖u‖‖v‖ for all v ∈ H.

A symmetric continuous bilinear form a is called H-ellipic, or for short elliptic or co-

ercive, provided for some α > 0,

a(v, v) ≥ α‖v‖2 for all v ∈ H.

We clearly can see that every H-elliptic bilinear form a induces a norm via

‖v‖a =
√

a(v, v). (2.10)
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This norm is called energy norm and it is equivalent to the norm of the Hilbert space

H.

Definition 2 A function f : R
n ⊃ D → R

m is called Lipschitz continuous provided

that for some number c, ‖f(x)−f(y)‖ ≤ c‖x−y‖, for all x, y ∈ D. A domain Ω is called

a Lipschitz domain provided that for every x ∈ ∂Ω, there is a neighborhood of ∂Ω which

can be represent as a graph of a Lipschitz continuous function.

Clearly the pressure equation (2.8) with Neumann boundary conditions (2.9) deter-

mine a function up to a additive constant. This suggests that in formulating the weak

version of this problem we restrict ourselves to the subspace

V = {v ∈ H1(Ω) :

∫

Ω
v dx = 0}.

Then, let v be a smooth function on Ω, more precisely v ∈ V . Multiply both sides of (2.8)

by v and integrate over Ω and use the Stokes theorem to get

−

∫

Ω
∇ · (K(x)∇p)vdx =

∫

Ω
K(x)∇p · ∇vdx −

∫

∂Ω
(K(x)∇p) · νv =

∫

Ω
qvdx (2.11)

for p ∈ H2Ω. Then by (2.9) we get

∫

Ω
K(x)∇p · ∇vdx =

∫

Ω
qvdx (2.12)

for all v ∈ V .

The bilinear form

a(p, v) =

∫

Ω
K(x)∇p · ∇vdx (2.13)

is not H1(Ω)-elliptic, but thanks to the following result it is V -elliptic:

A variant of Friedrichs’ inequality [4]: Let Ω be a Lipschitz domain, and suppose
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that it satisfies the cone condition3. Then there is a constant c = c(Ω) such that

‖v‖L2 ≤ c(|v| + |v|1) for all v ∈ H1(Ω)

with v =
1

µ(Ω)

∫

Ω
v(x)dx,

(2.14)

where is the ‖ · ‖1 represents the Sobolev semi-norm of order 1, and µ(Ω) =
∫
Ω 1dx.

Now, introducing w = K(x)∇p equations (2.8) and (2.9) become

−divw = q in Ω, ν ·w = 0 on ∂Ω.

By Gauss integral theorem, ∫

Ω
divw dx =

∫

∂Ω
w · ν,

and thus ∫

Ω
qdx = 0. (2.15)

By Lax-Milgram Theorem (see Theorem 2.5, pg. 38 in [4] ), there exists a unique

solution p ∈ V to

a(p, v) = (q, v)L2(Ω) for all v ∈ V, (2.16)

where (·, ·)L2(Ω) represents the standard scalar product in L2(Ω). Because of (2.15), (2.16)

also holds for v = const, and thus for all v ∈ H1(Ω). The next theorem allows us to deduce

that every classical solution of the variational problem satisfies (2.8)-(2.9).

Theorem 1 Let Ω be bounded, and suppose Ω has piecewise smooth boundary. In addition

Ω satisfies the cone condition. Then the variational problem

Find p ∈ H1(Ω) such that

a(p, v) = (q, v)L2(Ω) ∀v ∈ V

(2.17)

3A domain Ω satisfies a cone condition if there is a fixed cone Ksuch that at any point y ∈ ∂Ω one can
place the vertex at y with K − y lying within Ω.
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has exactly one solution p ∈ H1(Ω). The solution of the variational problem lies in

C2(Ω)∩C1(Ω) if and only if there exists a classical solution of the boundary-value problem

Lp = q in Ω,

∑

i,k

νiaik∂kp = 0 on ∂Ω,
(2.18)

in which case the two solutions are identical.

Here L is a second order elliptic partial differential operator with divergence structure

Lp = −
n∑

i,k=1

∂i(ai,k∂kp) + a0p,

where a0(x) ≥ 0 for x ∈ Ω.

More general boundary value problems are treated in [20, 21].

2.2. Non-Darcy Flow

Darcy’s law can be extended to a model of momentum conservation which is more

accurate than Darcy’s model (2.1) in order to better describe the flow for larger Reynolds

number (Re), for example, when the velocities are large. Typically, Darcy’s model is valid

when Re ≤ 1 and non-Darcy’s model is valid for 1 ≤ Re ≤ 102. We consider the system

of equations that describes a flow of a single-phase fluid in a porous medium subject

to non-Darcy flow, also called generalized Forchheimer’s law, for which the gradient of

pressure and its velocity are nonlinearly related. In particular, assume that the flow of an

incompressible fluid is described, as in [7, 16], by the system of equations

G(u) + ∇p = 0, x ∈ Ω, t ≥ 0, (2.19)

div(u) = q, x ∈ Ω, t ≥ 0, (2.20)

where Ω is a bounded domain in two- or three-space, p is the pressure, u is the volumetric

flow rate (or velocity) of the fluid, φ is the porosity of the medium, and q is an external
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mass flow rate. The function G can be assumed to be smooth function of its arguments and

to generate a monotone operator with respect to its velocity argument [7]. The classical

form of Forchheimer’s law is given by

G(u) = K−1u + β|u|u (2.21)

where β is a parameter with units of [length−1], which is called Forchheimer’s coefficient [9]

and is a porous medium property that needs to be measured experimentally. Combining

equations (2.19), (2.20) we have

−∇ (A(K, β;u)∇p) = q, (2.22)

where we define

A(K, β;u) =
(
µK−1 + β|u|

)−1
. (2.23)

Here the velocity u is given by

u =
(
K−1 + β|u|

)−1
(−∇p). (2.24)

Thus rewriting the velocity in terms of A(K, β;u), we have

u = −A(K, β;u)∇p. (2.25)

2.2.1 Well-posedness of the model

We have assumed G(ρ,u) is a smooth function and generate a monotone operator

with respect to its velocity. The equation (2.22) is a quasilinear elliptic equation. Suppose

that (2.22) is also V-coercive, and that Ω is bounded domain in R
n. Then the existence and

uniqueness of (2.22) subject to Neuman or Dirichlet boundary conditions is guaranteed

by the Browder-Vishik Theorem [21].
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2.3. Mixed Variational Form of Darcy’s Flow

Let H(div; Ω), with Ω being a bounded, open subset of R
2, be the set of vector

functions v ∈ (L2(Ω))2 such that ∇ · v ∈ L2(Ω), where ∇· is taken in the sense of weak

derivatives. Let

V = {v ∈ H(div; Ω) : v · ν = 0 on ∂Ω}. (2.26)

Let W = L2(Ω). To obtain a variational form of (2.1),(2.4) and (2.6), we multiply (2.1)

by K−1, and by v ∈ V , integrate over Ω, integrate by parts, and apply the divergence

theorem to see that

(K−1u,v) − (p,∇ · v) = 0, v ∈ V. (2.27)

Next multiply (2.4) by w ∈ W and integrate to obtain

(∇ · u, w) = (q, w), w ∈ W. (2.28)

The system (2.27)-(2.28) is the mixed variational form of (2.5), (2.6). If u and p satisfy

(2.1) and (2.4) , they also satisfy (2.27)-(2.28). The converse also holds if p is sufficiently

smooth (eg., if p ∈ H2(Ω)) [5]). We will use this form (2.27), (2.28) in Chapter 3.
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3. DISCRETIZATION FOR DARCY FLOW

In this chapter we apply the cell-centered finite difference method to discretize

Darcy flow problems. For simplicity we consider a rectangular domain Ω. We also present

the relation between this method and the mixed finite element formulation on rectangular

grids using Raviart-Thomas elements using certain quadrature rules [19]. We approximate

the velocity u by U , the pressure p by P . Here we assume K is a diagonal tensor and we

write

K ≡ K =




Kxx 0

0 Kyy


 .

Consider the system (2.1),(2.4) and (2.6) which we rewrite here for convenience

−∇ · (K(x)∇p) ≡ ▽ · u = q x ∈ Ω (3.1)

(K(x)∇p) · ν ≡ u · ν = 0 x ∈ ∂Ω

where Ω is a rectangular bounded domain in R
2, i.e., Ω = (a, b) × (c, d) with a, b, c, d

∈ R; a < b, c < d. We assume K is smooth enough to theory of Chapter 2. applies and

the problem (3.1) is well-posed

FIGURE 3.1: Cell-centered finite difference coordinates

Partition [a, b] into m subintervals of length △x and [c, d] into l subintervals of

length △y and set (see Figure 3.1)
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xk+ 1

2

= a + k△x,

yj+ 1

2

= c + j△y,

xk =

(
xk− 1

2

+ xk+ 1

2

)

2
,

yj =

(
yj− 1

2

+ yj+ 1

2

)

2
,

△xk = xk+ 1

2

− xk− 1

2

,

△yj = yj+ 1

2

+ yj− 1

2

,

△xk+ 1

2

= xk+1 − xk,

△yj+ 1

2

= yj+1 − yj.

(3.2)

3.1. Cell-Centered Finite Difference Method

We discretize (3.1) by replacing derivatives with difference quotients and approx-

imations Pk,j ≈ p(xk, yj), Kk,j ≈ K(xk, yj), and Qk,j ≈ q(xk, yj). So, we approximate

(3.1) at (xk, yj) by

−
1

xk+ 1

2

− xk− 1

2

[
(Kxx)k+ 1

2
,j

Pk+1,j − Pk,j

xk+1 − xk
− (Kxx)k− 1

2
,j

Pk,j − Pk−1,j

xk − xk−1

]

−
1

yj+ 1

2

− yj− 1

2

[
(Kyy)k,j+ 1

2

Pk,j+1 − Pk,j

yj+1 − yj
− (Kyy)k,j− 1

2

Pk,j − Pk,j−1

yj − yj−1

]
= Qk,j,

0 ≤ k ≤ m, 0 ≤ j ≤ l.

(3.3)

Multiplying (3.3) by △xk△yj (the area of a cell) and assuming an uniform grid we get

△yj

[
−(Tx)k+ 1

2
,j (Pk+1,j − Pk,j) + (Tx)k− 1

2
,j (Pk,j − Pk−1,j)

]
+

△xk

[
−(Ty)k,j+ 1

2

(Pk,j+1 − Pk,j) + (Ty)k,j− 1

2

(Pk,j − Pk,j−1)
]

= △xk△yjQk,j,

0 ≤ k ≤ m, 0 ≤ j ≤ l.

(3.4)
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Here the transmissibilities Tx and Ty defined in [17] are given by

(Tx)k+ 1

2
,j =

(Kxx)k+ 1

2
,j

△xk+ 1

2

; (Ty)k,j+ 1

2

=
(Kyy)k,j+ 1

2

△yj+ 1

2

. (3.5)

See Figure 3.2 for illustration.

Since the values for K are known at the center of each cell, the value of K on the

boundary between cells is given by the harmonic average of the value for K between the

two adjacent cells (cf. Figure 3.2). Thus the transmissibilities become

(Tx)k+ 1

2
,j =

2 ((Kxx)k,j (Kxx)k+1,j)

((Kxx)k,j + (Kxx)k+1,j)△xk+ 1

2

, (Ty)k,j+ 1

2

=
2 ((Kyy)k,j (Kyy)k,j+1)

((Kyy)k,j + (Kyy)k,j+1)△yj+ 1

2

.

(3.6)

No-flow boundary conditions are easily incorporated by setting

(K∗∗) 1

2
,j = (K∗∗)m+ 1

2
,j = (K∗∗)k, 1

2

= (K∗∗)k,l+ 1

2

= 0,

where ∗∗ = xx or yy.

This method is first order convergent which follows by equivalence to a certain mixed

finite element method sown in the next section.

FIGURE 3.2: Permeabilities on the boundary between cells.



15

3.2. Mixed Finite Element Method

The idea of mixed methods for the pressure equation is to approximate the pressure

and velocity simultaneously in a variational method. In this section, following the argu-

ments in [19], we use the mixed finite element method to approximate system (2.27)-(2.28)

for finite-dimensional subspaces Vh ⊂ V and Wh ⊂ W , where V and W are the spaces

described in section 2.3. To do that we define the piecewise-polynomial space M on a

rectangular mesh △ such that the horizontal and vertical edges of rectangles are parallel

to the x- and y-coordinate axes, respectively, and adjacent elements completely share their

common edge by

Mr
q(△) = {v ∈ Cq([a, b]) : v is a polynomial of degree ≤ r on each subinterval of △}.

On a rectangular mesh over the rectangle a ≤ x ≤ b, c ≤ y ≤ d, described by △x and △y

as before, let the spaces of index r, r = 0, 1, 2, . . . be

W r
h = Mr

−1(△x) ⊗Mr
−1(△y),

Ṽ r
h = [Mr+1

0 (△x) ⊗Mr
−1(△y)] × [Mr

−1(△x) ⊗Mr+1
0 (△y)],

V r
h = {v = (vx, vy) ∈ Ṽ r

h : vx(a, y) = vx(b, y) = 0, vy(y, a) = vy(x, b) = 0},

= {v ∈ Ṽ r
h : v · ν = 0 on ∂Ω},

(3.7)

where h measures the largest linear dimension in the mesh, and ⊗ represents tensor-

product.

The approximation of system (2.27)-(2.28) is {U,P} ∈ Vh × Wh satisfying

(K−1U,v) − (P,∇ · v) = 0, v ∈ Vh,

(∇ · U,w) = (q, w), w ∈ Wh.

(3.8)

We wish to show that the block-centered finite difference method (3.3) is equivalent to

the lowest-order mixed method (3.8 with Vh = V 0
h ,Wh = W 0

h ) with special numerical
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quadrature rules. In the case r = 0, with partitions △x and △y, let the bases for the

subspaces be

M1
0(△x) : {vx

k : 1 ≤ k ≤ m − 1}, vx
k(xn) = δkn,

M0
−1(△x) : {wx

k : 1 ≤ k ≤ m} wx
k = 1 if xk−1 < x < xk,

M0
1(△y) : {vy

j : 1 ≤ j ≤ l − 1}, vy
j (xn) = δjn,

M0
−1(△y) : {wy

j : 1 ≤ j ≤ l} wy
j = 1 if yj−1 < y < yj .

(3.9)

Then bases for (Vh)x, (Vh)y and Wh are, respectively, {vx
kwy

j }, {wx
kvy

j }, and {wx
kwy

j }. The

dimension of Vh is four. The degrees of freedom for Vh are the values of normal components

of functions at the midpoint on each edge in △h (cf. Fig. 3.3)

FIGURE 3.3: The rectangular element in RT[0]

We start by writing (3.4) in terms of the Darcy-velocity

△yj

(
(Ux)k+ 1

2
,j − (Ux)k− 1

2
,j

)
+ △xk

(
(Uy)k,j+ 1

2

− (Uy)k,j− 1

2

)
= △xk△yjqk,j (3.10)

where Ux and Uy are velocity components defined by

(Ux)k+ 1

2
,j = −(Tx)k+ 1

2
,j (Pk+1,j − Pk,j) (3.11)

(Uy)k,j+ 1

2

= −(Ty)k,j+ 1

2

(Pk,j+1 − Pk,j) . (3.12)

Let U the unique function in V 0
h satisfying (3.11) and (3.12), and let P be the piecewise-
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constant function with cell values Pk,j. Note that

(Ux)k+ 1

2
,j − (Ux)k− 1

2
,j = △xk

∂

∂x
(Ux), (Uy)k,j+ 1

2

− (Uy)k,j− 1

2

= △yj
∂

∂y
(Uy) (3.13)

and so, the right hand side of (3.10) is equal to

△yj△xk
∂

∂x
(Ux) + △xk△yj

∂

∂y
(Uy) =

∫ xk+1/2

xk−1/2

∫ yj+1/2

yj−1/2

∇ · U. (3.14)

The right hand side of (3.10) is the midpoint-rule (reference) for integral of q over the

cell. Thus U satisfies

(∇ · U,w) = (q, w)MxMy , w ∈ W 0
h . (3.15)

where MxMy denotes midpoint-rule quadrature in both directions. Note that △xk+1/2 =

1
2(△xk + △xk+1). Now we multiply both sides of (3.11) by △yj and rearrange the terms

to get

1

2
(△xk + △xk+1)△yj

1

Kk+1/2,j
(Ux)k+1/2,j −△yj(Pk,j − Pk+1,j) = 0. (3.16)

Now we use the trapezoidal-rule quadrature in the x-direction (Tx) and midpoint-rule

quadrature (My) in the y-direction to write the above expression as

(
K−1Ux, vx

k+1/2w
y
j

)
TxMy

−

(
P,

∂

∂x
(vx

k+1/2w
y
j )

)
= 0 (3.17)

where vx
k+1/2 and wy

j correspond to vx
k (linear basis function) and wk

j (constant basis func-

tion) on (3.9). Similarly, for (3.12), we have

(
K−1Uy, w

x
kvy

j+1/2

)
MxTy

−

(
P,

∂

∂y
(wx

kvy
j+1/2)

)
= 0 (3.18)

Combining (3.17) and (3.18), we obtain

(K−1Ux, vx)TxMy + (K−1Uy, vy)MxTy − (P,∇ · v) = 0 v ∈ V 0
h . (3.19)

Equations (3.15) and (3.19) satisfy the mixed-method formulation (3.8), since we as-

sumed no-flow boundary conditions and we have set (K∗∗) 1

2
,j = (K∗∗)m+ 1

2
,j = (K∗∗)k, 1

2

=
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(K∗∗)k,l+ 1

2

= 0, where ∗∗ = xx or yy. In the block-centered finite difference, (3.11)

and (3.12) yield U · ν = 0, which is the condition imposed by the space V 0
h in the mixed

method. Thus the block-center finite difference method is equivalent to the mixed method

provided that the quadrature rules are used as indicated and no-flow boundary conditions

are assumed.

3.3. Boundary Conditions

Different types of boundary conditions are treated in distinct ways in the discrete

problem. Here we introduce difference equations to approximate three different types of

boundary conditions of relevant importance on the applications we are interested in.

3.3.1 Neumann Boundary Conditions

No-flow boundary conditions are incorporated in the discrete model (cell-centered

finite difference) as previously mentioned i.e.

(K∗∗) 1

2
,j = (K∗∗)m+ 1

2
,j = (K∗∗)k, 1

2

= (K∗∗)k,l+ 1

2

= 0,

where ∗∗ = xx or yy. These conditions applied to (3.3) will result in a singular system.

The uniqueness of the system is achieved with the use of (2.7), which results in a extra

equation.

Thus the linear system we have to solve here has (ml+1) equations (ml) unknowns.

3.3.2 Dirichlet Boundary Condition

Here we denote the value of the pressure on the boundary faces by the super-

script ∗(see Figure 3.4).

Following the mixed formulation we rewrite equation (3.16) for the cells on the left
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boundary

1

2
△xk△yj

1

(Kxx)k+1/2,j
(Ux)k+1/2,j = △yj(Pk,j − P ∗

k+1,j). (3.20)

The above form, as explained in [18], suggests using a transmissibility on the left boundary

as

(Tx) 1

2
,j = △yj

2(Kxx) 1

2
,j

△x 1

2

.

Similar idea is applied on the right boundary.

Assuming rectangular domain Ω with rectangular grid we have set for all blocks on

the left boundary

(Tx) 1

2
,j(P1,j − P ∗

0,j) = U 1

2
,j, 1 ≤ j ≤ l. (3.21)

The linear system to be solved for Pk,j in this case has ml equations and ml unknowns.

FIGURE 3.4: Computational domain with interior and boundary cells

3.3.3 Periodic Boundary Conditions

Here, again, we are going to denote the value of pressure on the boundary faces

by the superscript ∗. In this case the values of pressure on the boundary are considered

unknowns for the resulting linear system. This is going to increase the dimension of the

linear system to be solved.
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To impose periodic boundary conditions we need equations representing periodicity

conditions of the system, i.e. correspondences between flux and pressure on the opposite

boundaries. The correspondence between pressure is given by the equation

P ∗
m+1,j = P ∗

0,j + G, 1 ≤ j ≤ l, (3.22)

where G is the pressure gradient (in this case in the x-direction) (see Figure 3.5). The above

equation relates the pressures on the two boundaries to the imposed pressure gradient G,

as explained in [8].

FIGURE 3.5: Computational domain with interior and boundary cells representing peri-
odic boundary conditions

Also, we have to consider the relations between flux on the left and right boundaries

of our domain. As given in [8] these relationships have the form

(Tx) 1

2
,j(P1,j − P ∗

0,j) − (Tx)m+1,j(P
∗
m+ 1

2
,j
− Pm,j) = 0, 1 ≤ j ≤ l. (3.23)

The above relationships specify that the flux into Ω at the left boundary is equal and oppo-

site to the flux through the right boundary. Here the transmissibilities on the boundaries

are given as in the Dirichlet case.

As before, to ensure uniqueness, we impose equation (2.7), i.e., the pressures must
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add up to zero, which give us one more equation to represent this

m∑

k=1

l∑

j=1

Pk,j = 0. (3.24)

The linear system (3.4)-(3.22) to be solved here has ml + 2l unknowns and ml + l

equations.

3.4. Implementation of Wells

Numerical simulation of fluid flow in a petroleum reservoir has to account for the

presence of wells. In order to simulate the existence of wells in our domain we have to

incorporate them in the right hand side of the pressure equation (3.1), i.e., we treat them

as source terms. Since the compatibility condition must be satisfied, we have to assume

that the net injection and production is zero. In order to introduce these effects in our

discretized model we we have to assign to q the values αi for the cells where the injection

wells are located and βj for the cells where the production wells are located such that

iw∑

i=1

αi +

pw∑

j=1

βj = 0, (3.25)

where αi ∈ R+, βj ∈ R−, iw is the number of injection wells, and pw is the number of

production wells. We assume that the wells are located at the center of the corresponding

grid cell.

In the discrete form, for a injection well located in the cell m,n we have that

Qm,n = αi.
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3.5. Obtaining the Numerical Solution

After choosing an ordering of the Pk,j for k = 0 . . . ,m, j = 0 . . . , l the difference

equation (3.3) generates a linear system of the form:

Mk,jPk,j = Qk,j, (3.26)

with M ∈ R
M1×M1 and P, Q ∈ R

M1, where M1 = ml. Here the matrix M incorporates

the coefficients (Tx) and (Ty).

We are interested in finding the values for pressure and velocity. Since the perme-

abilities Kk,j are given for each grid cell we can summarize the process as folow:

• Compute the transmissibilities (T∗)k,j, where ∗ = x or y;

• Construct the matrix M ;

• Solve the linear system to get Pk,j;

• Post-process to get (U∗)k,j, i.e., use equations (3.11) and (3.12) to compute (U∗)k,j.
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4. DISCRETIZATION AND SOLVER FOR NON-DARCY FLOW

In this chapter we use cell-centered finite difference method to discretize equation

(2.22) and apply appropriated boundary conditions. We follow the same ideas used in

Chapter 3 to discretize equation (3.1). The equivalence of difference equations to a certain

mixed method for quasilinear elliptic problems will be considered elsewhere.

The discretization of 2.22 yields a nonlinear discrete equation. In order to solve the

nonlinear equation we use the fixed point iteration. We present a brief description of the

fixed point method and sufficient conditions for the convergence of the method are derived

for our problem.

4.1. Cell-Centered Finite Difference Method for Non-Darcy Flow

Here, due to nonlinearity of the coefficient A(K, β;u) in (2.22), the transmissibilities,

unlike in Chapter 3 and equation (3.5), depend on U , i.e., Tx = Tx(Ux) and Ty = Ty(Uy).

We denote this by T u
x and T u

y , respectively.

With the definitions (3.2), the finite difference approximation of equation (2.22) is

given by

△yj

[
−(T u

x )k+ 1

2
,j(Pk+1,j − Pk,j) − (T u

x )k− 1

2
,j(Pk,j − Pk−1,j)

]

△xj

[
−(T u

y )k,j+ 1

2

(Pk,j+1 − Pk,j) − (T u
y )k,j− 1

2

(Pk,j − Pk,j−1)
]

= △xk△yjQk,j,

0 ≤ k ≤ m, 0 ≤ j ≤ l,

(4.1)

where the transmissibility (T u
x ) is given by

(T u
x )k+ 1

2
,j =

((
2((Kxx)k,j ·(Kxx)k+1,j)

((Kxx)k,j+(Kxx)k+1,j)△x
k+1

2

)−1

+ β(Ux)k+ 1

2
,j

)−1

△xk+ 1

2

. (4.2)
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Similarly, in y-direction, (T u
y ) is given by

(T u
y )k,j+ 1

2

=

((
2((Kyy)k,j ·(Kyy)k,j+1)

((Kyy)k,j+(Kyy)k,j+1)△y
k,j+1

2

)−1

+ β(Uy)k,j+ 1

2

)−1

△yj+ 1

2

. (4.3)

We approximate the equation (2.24) at (xk, yj) in the x- and y-direction, respectively,

by

(Ux)k+ 1

2
,j = −(T u

x )k+ 1

2
,j(Pk+1,j − Pk, j),

(Uy)k,j+ 1

2

= −(T u
y )k,j+ 1

2

(Pk,j+1 − Pk, j).

This definitions (4.1), (4.2) and (4.3) are similar to the Darcy case (3.4), (3.11), (3.12).

However we pointed out that the system (4.1), unlike in Darcy’s case, is nonlinear. The

solution method is described in the next section.

4.2. Fixed Point Formulation

Equation (2.22) and its discrete approximation (4.1) with definitions (4.2), (4.2) are

nonlinear equations. We are interested in solving equation (4.1) using the fixed point for-

mulation for which the basic theory is presented next. Here we are going to use definitions

and theorems from [15, 2].

In general, the problem may be formulated as follows:

Let S ⊂ R
n be open and f : S → R

n be a mapping.

Find x ∈ S with f(x) = x.

Then x is called a fixed point.

(4.4)

In most cases, a fixed point cannot be calculated (with exact arithmetic) in a finite number

of operations, but only by an iterative method, i.e., by a mapping

Φ : S → S,
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so that for the sequence

x(k+1) := Φ(x(k)) (4.5)

with a given initial guess x(0) we get

x(k) → x for k → ∞. (4.6)

Here x is the solution of (4.4). The iterative method (4.5) is also called nonlinear Richard-

son iteration, Picard iteration, or the method of successive substitutions.

In the case of a continuous map Φ it follows from (4.5) and (4.6) that the limit x

satisfies

x = Φ(x). (4.7)

This means that equation (4.7) should imply that x is a solution of equation (4.4).

For the fixed point formulation (4.4) we choose Φ := f , in other words, the fixed

point iteration reads

x(k+1) := f(x(k)). (4.8)

To ensure that

∥∥∥Φ
(
x(k+1)

)
− Φ

(
x(k)

)∥∥∥ = ‖x(k+2) − x(k+1)‖ < ‖x(k+1) − x(k)‖

it is sufficient that the iteration function (here Φ = f) be a contraction. Here ‖ · ‖ can be

any norm in R
n. The following definition explain the notion of contractivity

Definition 3 Let S ⊂ R
n. A function Φ : S → R

n satisfies the Lipschitz condition on

S (with respect to the norm ‖ · ‖) if there exists a constant L > 0 such that, for any two

points x, y ∈ S,

‖Φ(x) − Φ(y)‖ ≤ L‖x − y‖.

The greatest lower bound for for such constants is the Lipschitz constant for Φ on S.

If Φ has Lipschitz constant L < 1 on S, then Φ is a contraction on S.
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Sufficient conditions for a contraction are given by the following lemma:

Lemma 1 Let S ∈ R
n be open and convex, and g : S → R

n continuously differentiable.

If

sup
x∈S

‖Dg(x)‖ = L < 1

holds, where ‖ · ‖ in R
n,n is compatible with ‖ · ‖ in R

n, then g is contracting in S.

Therefore, if S ⊂ R
n is open, f : S ⊂ R

n → R
n is continuously differentiable, and if

there exists some x̃ ∈ S with ‖Df(x̃)‖ < 1, then there exists a closed convex neighborhood

S̃ of x̃ with

‖Df(x)‖ ≤ L < 1 for x ∈ S̃

and, for example, L = ‖Df(x̃)‖ + 1
2(1 − ‖Df(x̃)‖, guaranteeing the contractivity of f in

S.

The unique existence of a fixed point and the convergence of (4.8) is guaranteed

if the set S where f is a contraction is mapped into itself, what is explicit in the next

theorem, for which the proof can be found in [15]:

Theorem 2 (Banach’s fixed-point theorem) Let S ⊂ R
n, S 6= ∅, and S be closed.

Let f : S → R
n be a contraction with Lipschitz constant L < 1 and f [S] ⊂ S. Then we

have:

(1) There exists one and only one fixed point x ∈ S of f .

(2) For arbitrary x(0) ∈ S the fixed point iteration 4.8 converges to x, and we have

∥∥∥x(k) − x
∥∥∥ ≤

L

1 − L

∥∥∥x(k) − x(k−1)
∥∥∥

≤
Lk

1 − L

∥∥∥x(1) − x(0)
∥∥∥ .

Remark 1 The theorem can be generalized from R
n to any Banach space X, with S ∈ X.
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This enable us to define iterative schemes directly in the function space for nonlinear

boundary value problems, which means that the resulting (linear) problems in the iteration

step are to be discretized. We can often construct a closed S such that f is a contraction

on S and satisfies the hypothesis of lemma 1. To verify that f [S] ⊂ S, the following lemma

is helpful:

Lemma 2 Let S ⊂ R
n, f : S → R

n. If there exists a y ∈ S and a r > 0 with

Br(y) ⊂ S,

with f contraction on Br(y) with Lipschitz constant L < 1, so that

‖y − f(y)‖ ≤ r(1 − L),

then f has one and only one fixed point in Br(y), and 4.8 converges.

In the setting of Theorem 2 the fixed-point iteration is thus globally convergent in

S. In the setting of Lemma 2 it is locally convergent in S (globally in Br(y)). We see that

in the situation of Theorem 2 the sequence (x(k)), because of

∥∥∥x(k+1) − x
∥∥∥ =

∥∥∥f(x(k)) − f(x)
∥∥∥ ≤ L

∥∥∥x(k) − x
∥∥∥ ,

converges linearly to x [13] (and in general not faster than linear).

4.3. Fixed-Point Approximation to Non-Darcy Flow

Now we want to apply the fixed point iteration to solve the system (4.1). A good ini-

tial guess is provided by the solution to the Darcy flow that is, using u(0) = −A(K,0;0)∇p.

With this initial guess we iterate the whole system (4.1) until convergence, that is we ex-

ecute the fixed point step

U (k+1) = Φ(U (k)). (4.9)

Φ(Uk) is computed by the following algorithm
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• Given Uk compute the transmissibilities T u
x , T u

y with (4.2) and (4.3);

• Construct the matrix M as in (3.26);

• Solve the linear system (3.26) to get Pk,j;

• Post-process to get the velocities Uk+1, i.e., use equations (3.11) and (3.12) with

definitions (4.2) and (4.3).

Now we want to derive sufficient conditions for the iteration (4.9) to converge. It is

easier to consider the scalar case of (2.25) first. Thus we rewrite (2.25) as

u = −A(K,β;u)(p′), (4.10)

where p′ represents the derivative of pressure with respect to the spatial variable, and K

is a positive real number.

Setting it up as a fixed point iteration we have

u(k+1) = −A(K,β;u(k))p′. (4.11)

As required in Theorem 2 , to guarantee the convergence of the fixed point iteration

we need to assure that the term A(K,β, u)p′ in equation (4.11) is a contraction. By

Lemma 1 we need a condition to guarantee that

|D(A(K,β, u)p′)| < 1, (4.12)

where the operator D represents the derivative with respect to u. Here we consider that

p′ is data for this problem.

We estimate

|D(−
(
K−1 + β|u|

)−1
p′)| =

∣∣∣∣
βp′

(K−1 + β|u|)2

∣∣∣∣ <
∣∣∣∣

βp′

(K−1)2

∣∣∣∣ .

Therefore, to ensure (4.12) it is sufficient to require

β <
1

K2|p′|
. (4.13)

The latter is not the best estimate, but is a good sufficient condition.
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Example 1 Assuming the values K = 1, p′ = −20 and β = 1
K210p′

, initial guess = 0, we

find the fixed point u = 18.3216 of the scalar equation (4.10) in 8 iterations.

When solving the whole nonlinear system (4.1) with a fixed point iteration (4.9) we

have convergence only for small enough β as suggested by equation (4.13). The precise

form of a condition on β applicable to the system (4.1) will not be derived here.

Remark 2 If we consider that β is correlated to K [12, 10, 1] by the relation β ≈

C1K
−C2 , where C2 is 0.5, or 1, or 1.5. For C2 = 0.5 the estimate (4.13) becomes

β <
1

K
3

2 |∇p|
. (4.14)

4.3.1 Boundary Conditions for Non-Darcy Flow

The difference equations used to approximate the three different types of boundary

conditions referred in Sec. 3.3. are the same to those in the Darcy flow with the necessary

modifications in the transmissibilities, which depend on U .
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5. UPSCALING

Upscaling is an important part of computational modeling of heterogeneous porous

media. It is commonly used to handle fine scale heterogeneities in subsurface formations

where rock properties such as porosity and permeability vary. Due to computational

limitations on simulation of flows on a fine scale for real problems, we want to incorporate

these fine scale data into a coarse scale flow simulation.

Upscaling has been developed to bridge the gap between these two scales, which

may differ by a factor of 100.

To do this, an upscaling algorithm is designated to obtain suitable values for the

porosity, permeability and other property data for use in a coarse grid simulation. In this

work we follow the algorithm developed by Louis J. Durlofsky [8]. We focus on scale up,

by averaging techniques, the fine scale permeabilities to the larger scale permeabilities and

other parameters. The ”averaged” permeability is referred to as an effective or equivalent

permeability [8, 14].

5.1. Use of Upscaling for Calculating Effective Grid Block Permeability

for the Darcy Flow

Following [8] we calculate numerically the effective permeability of heterogeneous

porous medium. We consider first a single-phase, incompressible flow described by Darcy’s

law and continuity in the form of equations (2.1) and (2.4), respectively. Our intent here

is to extend these results to the non-Darcy case.

Now we temporarily change the notation of the coordinate system in the flow region

Ω. We want to account for a coarse scale x = (x1, x2) and a fine scale y = (y1, y2). To
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accommodate this change the coefficient K is now given by

K =




K11 K12

K21 K22


 . (5.1)

It is assumed that the permeability K varies on two distinct scales, a fine scale y

with fast variation and a coarse scale x with slow variation.

Now, combining equations (2.1) and (2.4) we get the one-phase pressure equation

−∇ · (K(x,y)∇p) = q (5.2)

The notation K(x,y) is used to emphasize that K varies on both scales.

We want to find an effective permeability K∗ that varies only on the coarse scale x

and solve the new pressure equation

−∇x · (K∗(x)∇xp) = q, (5.3)

where the subscript x indicates that the gradient operator operates on the x scale. This

simplification is possible as shown in [3] in the context of porous media.

Now we follow ideas from [8]. The average flow over the y scale, denoted by 〈u〉, is

related to the x scale pressure gradient G by

〈u〉 = −K∗ ·G. (5.4)

So, to determine K∗ we have to solve the pressure equation on the y scale, i.e.

−∇y · (K
∗(y)∇yp) = 0 (5.5)

subject to the conditions that both the pressure field and the local velocity field must

themselves be periodic since the system is periodic. If we decompose the pressure gradient

G into its two components in the y coordinate system; G = G1i1 + G2i2, where i1 and i2

are the unit coordinate directions, then we have to solve two problems in order to compute

the full effective permeability tensor K∗.
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5.1.1 Upscaling with periodic boundary conditions

First, assume G2 = 0 and specify the boundary conditions as follows (see Figure 5.1):

p(y1, y2 = 0) = p(y1, y2 = 1) (5.6)

on ∂D1 and ∂D2,

u(y1, y2 = 0) · n1 = −u(y1, y2 = 1) · n2 (5.7)

on ∂D1 and ∂D2,

p(y1 = 0, y2) = p(y1 = 1, y2) − G1 (5.8)

on ∂D3 and ∂D4,

u(y1 = 0, y2) · n3 = −u(y1 = 0, y2) · n4 (5.9)

on ∂D3 and ∂D4,

where ni (i = 1, 2, 3, 4) is the outward pointing normal at either of the boundaries. There-

fore, solving (5.5) subject to (5.6)-(5.9), we are able to determine the average velocity

through the y scale as follows:

〈u1〉 = −

∫

∂D3

u · n3 dy2, (5.10)

〈u2〉 = −

∫

∂D1

u · n1 dy1. (5.11)

Thus, by (5.4) we have explicit expression for K∗ in terms of 〈u1〉, 〈u2〉, as follows:

〈u1〉 = −(K∗
11G1 + K∗

12G2), (5.12)

〈u2〉 = −(K∗
21G1 + K∗

22G2). (5.13)

Since we have assumed that G2 = 0 and G1, and 〈u〉 are known, then K∗
11 and K∗

21 are

easily determined.

By solving a second problem with G1 = 0 and G2 6= 0 and similar boundary condi-

tions we can determine K∗
22 and K∗

21.
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FIGURE 5.1: Boundary specification for effective permeability calculation.

5.1.2 Upscaling with Dirichlet Boundary Conditions

Sometimes it is difficult to use periodic boundary conditions. In addition, the off-

diagonal terms K∗
12 and K∗

21 cannot be used in simple numerical approximation schemes

such as cell centered finite difference.

In such cases instead of periodic boundary conditions (5.6)-(5.9) one may use, to

determine K∗
11, the following boundary conditions.

On ∂D1 and ∂D2 we use no-flow boundary conditions.

On ∂D3 and ∂D4 we impose Dirichlet boundary conditions.

p(y1 = 0, y2) = 0 (5.14)

p(y1 = 1, y2) = G1. (5.15)

Once pressure and velocity are computed, we can then compute the average velocities 〈u1〉
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and 〈u1〉 from (5.10) and (5.11). Then to get K∗
11 we apply a modification of (5.12)

〈u1〉 = −(K∗
11G1) (5.16)

Note that off-diagonal terms are note computed and are considered equal to zero.

Analogously we can compute K∗
22.

5.2. Extension to the Non-Darcy Flow

Now we extend the algorithm presented above for the Darcy case to the non-Darcy

case. The main difference is that instead of solving the linear pressure equation (2.1)

representing the Darcy flow we solve the non-linear pressure equation (2.22) that describe

the non-Darcy flow. This causes some consequences.

We have in (5.4) that 〈u〉 = −K∗ G, that is 〈u〉 depends linearly on G. However

in non-Darcy case u depends nonlinearly on pressure gradients. Therefore 〈u〉 depends

nonlinearly on G.

For the non-Darcy flow we postulate

〈u〉 = −K∗(u)G (5.17)

This is not a linear relation and so if G varies then K∗ varies nonlinearly with respect to

G. While K∗ remains constant when we vary G in the Darcy flow, in the non-Darcy flow

K∗ varies when we change G.

We can see this difference in Figure 5.2. The parameters used for this example are

K(x,y) ≡




1 0

0 1


 , (5.18)

and β = 4× 10−4. The region Ω = [0, 1]× [0, 1] is discretized with a uniform grid 30× 30.

We use Dirichlet boundary conditions (p = G1 on the left boundary and p = 0 on the
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right boundary) and no-flow boundary conditions on the top and bottom of the domain

Ω. We want to find an effective K∗ and β∗ but we only show the results for K∗
11 and β∗

1 .

Clearly for Darcy case the effective K∗ should be equal to the original, constant K.

This is confirmed in Figure 5.2.

However for non-Darcy case K∗
11 will depend on G as shown in Figure 5.2.

In this whole example we use Dirichlet boundary conditions as described in Sec-

tion 5.1.2.
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FIGURE 5.2: Variation of the effective permeability K∗
11 for different values of the pressure

gradient G1.

5.2.1 The Effective β∗

Now we want to find an effective β∗. Solving (5.17) for K∗
11(u1) we get

K∗
11(〈u1〉) = −〈u1〉G−1

1 , (5.19)
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substituting the Forchheimer’s law for the velocity into (5.19) we have

((K∗
11)D + β|〈u1〉|)

−1 = −
〈u1〉

G1
(5.20)

where the subscript D represents the Darcy case.

Now, we solve for β to get

β∗ = |〈u1〉|
−1
(
K∗

11(〈u1〉)
−1 − ((K∗

11)D)−1
)
. (5.21)

We refer to the above parameter as the effective Forchheimer parameter that will be denote

as β∗(〈u1〉). Now we use the same data as before to find effective β∗ by using expression

(5.21) and we plot β∗(〈u1〉) against the velocity 〈u1〉 in Figure 5.3. We observe that the

variation in β∗ is small if compared with the variation in 〈u1〉.
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FIGURE 5.3: Variation of the effective Forchheimer parameter β∗(u) for different values
of velocity.
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6. NUMERICAL EXPERIMENTS

In this chapter we present numerical experiments which show applications of cell-

center finite difference method to non-Darcy flow and upscaling .

We start with a simple example of a well problem in order to compare the solutions

for the Darcy and non-Darcy flows. After that we use the ideas of Chapter 5 to compute

the effective permeability of an idealized heterogeneous porous medium. We solve for

both Darcy’s and non-Darcy’s flow. An algorithm used to compare the computed effective

permeability with original permeability of the system is described. The code used in these

experiments is written in Matlab. The linear solver is the ”backslash” operator of Matlab,

which utilizes Gaussian elimination to solve the linear system.

6.1. Problem 1 - Well Problem for Darcy and Non-Darcy flow

Here we solve numerically equations (3.4) for Darcy and (4.1) for non-Darcy for

pressure. In each case we have two production and two injection wells. We use no-flow

boundary conditions for the unit square domain. The permeability K is chosen to be

homogeneous and isotropic flow, i.e., K = I, and x ∈ Ω. The Forchheimer’s coefficient β

in the non-Darcy equation is a chosen to be a constant value equal to 0.04. The cartesian

coordinates of the injection wells are (0.3, 0.3) and (0.6, 0.2); and the coordinates of the

production wells are (0.7, 0.7) and (0.3, 0.6). The grid is (20× 20). The results are shown

in Figure 6.1 and Figure 6.2.
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FIGURE 6.1: Pressure distribution and velocity field for two-production/ two-injection
well problem simulation

6.2. Problem 2 - Darcy’s Flow Upscaling

Here we assume that Ω is the unit square which is divided in a 30 × 30 grid and K

represents a heterogeneous field with values ranging from 1 to 610 (see Figure 6.8 (a)).

We assume K11(x) = K22(x).

Case 1

We coarsen the original grid in to a 3 × 3 grid in order to find the effective perme-

ability for these nine new grid blocks. Therefore we solve the pressure equation 9 times
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in a grid 10× 10. The effective permeability is then calculated as in (5.16). The following

table presents the results for K∗
11. It has to be viewed as the new grid over the unit square

with the values of the effective permeabilities found for each subregion.

K∗
11 =

23.231 25.291 25.954

24.127 22.887 20.785

21.938 23.684 22.651

(6.1)

Now, we find the K∗
22 analogously, values are given in the next table

K∗
22 =

23.404 26.087 24.131

25.651 22.143 20.995

25.103 21.607 24.387

(6.2)
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Case 2

Now we divide the original 30 × 30 grid in a 6 × 6 grid. Using the same boundary

conditions a the same data we find the the following values for effective permeabilities:

K∗
11 =

23.429 22.355 36.936 20.226 25.251 25.895

18.119 33.64 32.128 24.093 21.251 34.061

32.969 28.948 25.576 26.681 23.885 20.437

16.187 29.297 24.242 17.301 14.831 26.299

34.124 20.749 21.081 28.734 20.838 15.999

12.41 30.877 23.234 22.361 33.798 26.456

(6.3)

K∗
22 =

20.131 22.462 36.138 23.183 24.718 23.215

20.371 30.576 24.969 25.922 22.475 29.548

25.564 28.312 21.462 28.861 25.192 20.621

18.134 33.931 25.439 16.571 16.271 28.266

43.692 21.885 19.843 20.963 26.805 17.308

14.997 28.622 27.557 21.268 28.204 27.981

(6.4)

Application for a Darcy well model

With these results in hands we now solve the pressure equation for Darcy’s flow

over the unit square with a production well in the position (0.3, 0.3) and a injection well

in the position (0.7, 0.7). We assume no-flow boundary conditions.

We first solve the problem using the original grid and plot the pressure in Figure 6.3.

The velocity field is shown in Figure 6.4 and the values of the pressure in the diagonal

grid-cells is shown in Figure 6.5.

We use the effective permeability found before to solve the same well problem. Here

we present the results for the case where we divided the original grid in a (6 × 6) grid.
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Comparison between Figure 6.4 and Figure 6.6 show that the behavior of the solution

on the fine grid is qualitative similar to the one in coarse grid when we use the effective

permeability.

6.2.1 Comparison of Pressures on Fine and Coarse Scale

Now we ask the question ”How do we know if the effective permeability is a good

approximation?”. We want to compare the results but they are in different scales. The

strategy we used is the following

• Take the effective permeability calculated for certain subregion of our domain;

• Use it in each cell of the original scale in such region, that is, we replace the hetero-

geneous permeability in that region for a effective permeability K∗, we are making
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FIGURE 6.5: Diagonal values of pressure using the original permeability tensor on fine
grid.

that region to have an ”homogenized” permeability;

• Repeat for each subregion of the original domain to get a block-homogenized domain;
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• Solve the pressure equation to get homogenized pressure P ⋆
H ;

• Compare Ph and P ∗
H .

This process is summarized, for a 4 × 4 grid, in Figure 6.7.

Using the effective permeabilities from case 1 and case 2 and the algorithm above

we compute the pressures Ph, P ∗,1
H , P ∗,2

H , where the superscripts 1 and 2 refer to the

cases 1 and 2, respectively. The 2-norm and ∞-norm of the pressures calculated using the

Matlab code provided in the Appendix are shown in the Table 6.1.

Original permeabilities Upscaling to 3 × 3 Upscaling to 6 × 6

‖P‖∞ 0.0011507511 0.001149681 0.0011440731

‖P‖2 0.033335256835 0.03333522 0.033335210

TABLE 6.1: Norm of the solutions for original problem, case 1, case 2.
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FIGURE 6.7: Process of comparison between fine and coarse scales.

We also compare the the absolute error between the original pressure and the homog-

enized pressure for both cases. These results are present in Table 6.2 and the comparison

between the values of the pressure in the diagonal grid blocks are shown in Figure 6.9.

The original and upscaled permeabilities are shown in Figure 6.8.

6.3. Problem 3 - Non-Darcy’s Flow Upscaling

Consider the equation

−∇ (A(K, β;u)∇p) = q, x ∈ Ω (6.5)

where A(K, β;u) =
(
µK−1 + β|u|

)−1
, Ω is the unit square subject to the constant pressure

and no-flow boundary conditions as in problem 1. We use a 30 × 30 grid discretization,
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Upscaling to 3 × 3 Upscaling to 6 × 6

‖Ph − P ∗
H‖∞ 7.25774 × 10−6 6.79880 × 10−6

‖Ph − P ∗
H‖2 2.49395 × 10−5 2.75298 × 10−5

‖Ph−P ∗

H‖∞
‖Ph‖∞

0.00630 0.00590

‖Ph−P ∗

H‖2

‖Ph‖2
8.33365 × 10−4 8.2584 × 10−4

TABLE 6.2: Absolute and relative errors between pressures of cases 1 and 2 and the
original problem.
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FIGURE 6.8: Log of original permeability K11 and permeabilities K∗
11 for case 1 and

case 2 for the Darcy flow.

K is given as in problem 1, and we use a variable Forchheimer parameter β given by the

relation

β = C1(K∗∗)
−C2

k,j ,

where C1 = 4 × 10−5 and C2 = 0.5, ∗∗ = xx or yy. As we showed in section 5.2 the

effective K∗ depends nonlinearly on G. In examples bellow we only compute K∗ using

unit value of G. The effective K∗ is different from the one obtained in problem 2.
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Case 1

Here again we coarsen the original grid to a 3×3 grid. Using the algorithm described

in Section 5.2. with G1 = 1 we find K∗
11:

K∗
11 =

16.988 17.995 18.226

17.478 16.735 15.547

16.223 17.091 16.865

(6.6)

and similarly with G2 = 1 we find K∗
22:

K∗
22 =

16.936 18.104 17.630

18.035 16.516 15.773

17.440 16.176 17.600

(6.7)

Case 2

The original grid is subdivided in eighteen sub-regions, i.e. we obtain a 6 × 6 grid.

The effective permeabilities are calculated and are given by
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K∗
11 =

20.964 20.096 28.613 18.703 22.652 22.835

16.714 28.147 26.221 21.346 19.080 28.095

26.390 25.381 22.506 23.370 21.534 18.631

15.136 25.576 21.652 16.167 13.853 22.901

27.768 18.968 19.082 24.755 19.216 14.865

11.939 25.567 21.136 19.835 28.485 23.582

(6.8)

K∗
22 =

18.620 20.341 28.794 20.840 22.183 20.870

18.035 26.555 21.801 22.545 20.062 25.680

22.696 24.941 19.767 24.869 22.500 18.624

16.725 27.517 22.468 15.488 14.996 24.060

33.578 19.794 18.129 19.122 23.385 15.892

14.108 24.975 23.975 19.219 24.753 24.934

(6.9)

Non-Darcy Well Problem Using Upscaling

Consider equation (6.5) subject to no-flow boundary conditions on the unit square

with injection and production wells located at (0.3, 0.3) and (0.7, 0.7) respectively. We

solve for pressure to get the approximated pressure which is shown in Figure 6.10.

Now we solve the problem using the effective permeabilities from case 1 and case 2

and use numerical ”homogenization” algorithm described before to compare the results.

Again we get satisfactory results that are shown in Table 6.3. In Figure 6.11 we show

the three distributions for the original, upscaled to 3x3 grid and upscaled to a 6x6 grid

permeabilities, respectively.

Figure 6.12 shows the plot of the diagonal values for pressure for the three different

permeabilities used.
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tensor

Original permeabilities Upscaling to 3 × 3 Upscaling to 6 × 6

‖P‖∞ 0.001150755374 0.001164049926 0.001148355739

‖P‖2 0.033335258601 0.033336802473 0.033335560748

TABLE 6.3: Norm of the solutions for original problem, case 1, case 2

Upscaling to 3 × 3 Upscaling to 6 × 6

‖Ph − P ∗
H‖∞ 1.324992 × 10−5 4.6291 × 10−6

‖Ph − P ∗
H‖2 2.263433 × 10−5 3.950248 × 10−5

‖Ph−P ∗

H‖∞
‖Ph‖∞

0.0115 0.0040

‖Ph−P ∗

H‖2

‖Ph‖2
0.0038 0.0012

TABLE 6.4: Absolute and relative errors between pressures of cases 1 and 2 and the
original well problem for the non-Darcy flow.



49

5 10 15 20 25 30

5

10

15

20

25

30

x

y
Original Permeability K

11

 

 

5 10 15 20 25 30

5

10

15

20

25

30

x
y

Upscaled permeability K*
11

 to 3x3

 

 

5 10 15 20 25 30

5

10

15

20

25

30

x

y

Upscaled permeability K
11
*  to 6x6

 

 

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

2.75

2.8

2.85

2.9

0

1

2

3

4

5

6

(a) (b) (c)

FIGURE 6.11: Original permeabilities and permeabilities for case 1 and case 2 for non-
Darcy flow

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18
x 10

−3

P
, P

H*,
1 , P

H*,
2

 

 
Homogenized pressure P

H
*,1

Homogenized pressure P
H
*,2

Original pressure P

FIGURE 6.12: Pressures in the diagonal grid blocks



50

7. CONCLUSIONS

In this work we have understood and outlined the theoretical difficulties of the

proposed problem. We have implemented a stable numerical solver for a well problem

for non-Darcy flow using finite differences and the fixed point iteration, for which we

have derived a sufficient condition on the Forchheimer parameter β that guarantee the

convergence of the method.

The upscaling problem was theoretically presented and a numerical solver was im-

plemented for the non-Darcy flow. We have shown how to calculate an effective perme-

ability and how to calculate an effective Forchheimer parameter β∗.We also developed an

algorithm to compare the solution for the different ways to coarsen the original fine grid.

For continued research, we would like to implement a nonlinear solver different

from fixed point iteration, for example Newton’s method. This is necessary because of

restrictive conditions on β required for convergence of fixed point method.

Next we would like to perform more experiments for a large variability in the

permeability K and parameter β, to understand better the nonlinear relations between

K, β, and u. We also want to understand and derive the effective Forchheimer parameter

β∗. Finally better ways to measure the quality of upscaling for Darcy and non-Darcy cases

are necessary.
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APPENDIX



52

A Matlab Code

% Code for solving the Forchhimer Equation on a rectangular domain.

% Using Block(cell-center) finite difference with "fixed point iteration".

clear

clc

format long

%Initialization of variables

n_x=30; n_y=30; BoundCond=1;

LeftRight=0; BottonTop=1; G1=1; G2=1;

nxnew=3;nynew=3;ng=1;

xx=1;yy=1;scalex=n_x/nxnew;scaley=n_y/nynew; factorx=scalex; factory=scaley;

n_x=factorx; n_y=factory;

if BoundCond == 1

M=zeros((n_x*n_y),(n_x*n_y));

q=zeros(n_x*n_y,1);

elseif BoundCond == 2

M=zeros((n_x*n_y)+1,(n_x*n_y));

M((n_x*n_y)+1,:)=1;
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q=zeros(n_x*n_y+1,1);

elseif (BoundCond == 3 && LeftRight == 1)

M=zeros((n_x*n_y)+n_y+1,(n_x*n_y)+2*n_y);

M((n_x*n_y)+n_y+1,:)=1;

q=zeros(n_x*n_y+n_y+1,1);

elseif (BoundCond == 3 && BottonTop == 1)

M=zeros((n_x*n_y)+n_x+1,(n_x*n_y)+2*n_x);

M((n_x*n_y)+n_x+1,:)=1;

q=zeros(n_x*n_y+n_x+1,1);

end

Th=zeros((n_x+1),(n_y));

Tv=zeros((n_x),(n_y+1));

beta1=zeros((n_x+1),(n_y));

beta2=zeros((n_x),(n_y+1));

Vx=zeros(n_x+1,n_y);

VxNew=Vx;

Vy=zeros(n_x,n_y+1);

VyNew=Vy;

beta=.00004;

a=0; b=1; c=0; d=1;

bc=zeros(n_x*n_y,1);

%Position of wells in the domain

x1=0.3; y1=0.3;

x2=0.9; y2=0.9;

%Grid definition.
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hx=(b-a)/n_x; hy=(d-c)/n_y;

%%% Wells

k1=1; j1=1; k2=1; j2=1;

while x1 > k1*hx

k1=k1+1;

end

while y1 > j1*hy

j1=j1+1;

end

while x2 > k2*hx

k2=k2+1;

end

while y2 > j2*hy

j2=j2+1;

end

%%%Data for test%

load permeability.dat;

load bcl.dat

load bcr.dat

%Defining the index function

for k=1:n_x+2
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for j=1:n_y

ind(k,j)=(k-1)*n_y +j;

end

end

for k=1:n_x

for j=1:n_y+2

ind2(k,j)=(j-1)*n_x +k;

end

end

for countx=1:nxnew

for county=1:nynew

K1=permeability;

K2=permeability;

K1=K1(xx:scalex,yy:scaley);

K2=K2(xx:scalex,yy:scaley);

beta1=beta*(K1.^(-.5));

beta2=beta*(K2.^(-.5));

yy=scaley+1;

scaley=scaley+factory;

%Transmissibilities (Internal blocks)

for k = 1:n_x-1

for j = 1:n_y



56

Th(k+1,j)=(2*(K1(k,j)*K1(k+1,j))/((K1(k+1,j)+K1(k,j))))/hx;

betax(k+1,j)=(0.5*(beta1(k,j)+beta1(k+1,j)))/hx;

end

end

for k=1:n_x

for j=1:n_y-1

Tv(k,j+1)=(2*(K2(k,j)*K2(k,j+1))/((K2(k,j+1)+K2(k,j))))/hy;

betay(k,j+1)=(0.5*(beta2(k,j)+beta2(k,j+1)))/hy;

end

end

% Transmissibilities on the boundary

if (BoundCond == 1 || BoundCond == 3)

if (LeftRight == 1 && BottonTop==1)

for j=1:n_y

% On the left side

Th(1,j)=2*K1(1,j)/hx;

betax(1,j)=beta1(1,j)/2;

% On the right side

Th(n_x+1,j)=2*K1(n_x,j)/hx;

betax(n_x+1,j)=beta1(n_x,j)/2;

end

for k=1:n_x

% On the botton
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Tv(k,1)=2*K2(k,1)/hy;

betay(k,1)=beta2(k,1)/2;

% On the top

Tv(k,n_y+1)=2*K2(k,n_y)/hy;

betay(k,n_y+1)=beta2(k,n_y);

end

elseif (LeftRight == 1 && BottonTop ~= 1)

for j=1:n_y

% On the left side

Th(1,j)=2*K1(1,j)/hx;

betax(1,j)=beta1(1,j)/2;

% On the right side

Th(n_x+1,j)=2*K1(n_x,j)/hx;

betax(n_x+1,j)=beta1(n_x,j)/2;

end

elseif (LeftRight ~= 1 && BottonTop == 1)

for k=1:n_x

% On the botton

Tv(k,1)=2*K2(k,1)/hy;

betay(k,1)=beta2(k,1)/2;

% On the top

Tv(k,n_y+1)=2*K2(k,n_y)/hy;

betay(k,n_y+1)=beta2(k,n_y);

end

end

end
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%Defining the right hand side q

%%%%%%%%%%%%%%%%%%%%% Dirichlet BC

if BoundCond == 1

if (LeftRight == 1 && BottonTop==1)

for j=1:n_y

q(ind(1,j))=hy*Th(1,j)*bcl(j);

q(ind(n_x,j))=hy*Th(n_x,j)*bcr(j);

end

for k=1:n_x

q(ind(k,1))=hx*Tv(k,1)*bcb(k);

q(ind(k,n_y))=hx*Tv(k,n_y)*bct(k);

end

elseif (LeftRight == 1 && BottonTop ~= 1)

for j=1:n_y

q(ind(1,j))=hy*Th(1,j)*bcl(j);

q(ind(n_x,j))=hy*Th(n_x,j)*bcr(j);

end

elseif (LeftRight ~= 1 && BottonTop == 1)

for k=1:n_x

q(ind(k,1))=hx*Tv(k,1)*bcb(k);

q(ind(k,n_y))=hx*Tv(k,n_y)*bct(k);

end

end

%%%%%%%%%%%%%%%%%%%%% Neuman BC

elseif BoundCond == 2
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q(ind(k1,j1))=hx*hy*1;

q(ind(k2,j2))=hx*hy*(-1);

q(n_x*n_y + 1)=hx*hy*(n_x*n_y);

%%%%%%%%%%%%%%%%%%%%% Periodic BC

elseif (BoundCond == 3 && LeftRight == 1)

for j=1:n_y

q((n_x*n_y+j))=1;

end

q((n_x*n_y+n_y+1))=n_x*n_y+n_y+1;

elseif (BoundCond == 3 && BottonTop == 1)

for j=1:n_x

q((n_x*n_y+j))=1;

end

q((n_x*n_y+n_x+1))=n_x*n_y+n_x+1;

end

%%%%%%%%%%%%%%%%%%%%%%%% Stiffness Matrix %%%%%%%%%%%%%%%%

for k=1:n_x

for j=1:n_y

M(ind(k,j),ind(k,j))=(hx*Tv(k,j)+hy*Th(k+1,j)+hy*Th(k,j)+hx*Tv(k,j+1));

end

end

for k=1:n_x-1

for j=1:n_y
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M(ind(k,j),ind(k+1,j)) = -hy*Th(k+1,j);

M(ind(k+1,j),ind(k,j)) = M(ind(k,j),ind(k+1,j));

end

end

for k=1:n_x-1

for j=1:n_y

M(ind(k+1,j),ind(k,j)) = M(ind(k,j),ind(k+1,j));

end

end

for k=1:n_x

for j=1:n_y-1

M(ind(k,j),ind(k,j+1)) = -hx*Tv(k,j+1);

M(ind(k,j+1),ind(k,j)) = M(ind(k,j),ind(k,j+1));

end

end

if BoundCond == 3

if (LeftRight==1 && BottonTop==1)

for j=1:n_y

M(ind(1,j),ind(n_x+1,j)) = -hy*Th(1,j);

M(ind(n_x,j),ind(n_x+2,j))= -hy*Th(n_x+1,j);

M(ind(n_x+1,j),ind(n_x+1,j))=1;

M(ind(n_x+1,j),ind(n_x+2,j))=-1;

end

for j=1:n_y

M(ind(1,j),ind(n_x+1,j)) = -hx*Tv(1,j);
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M(ind(n_x,j),ind(n_x+2,j))= -hx*Tv(n_x+1,j);

M(ind(n_x+1,j),ind(n_x+1,j))=1;

M(ind(n_x+1,j),ind(n_x+2,j))=-1;

end

elseif (LeftRight==1 && BottonTop ~= 1)

for j=1:n_y

M(ind(1,j),ind(n_x+1,j)) = -hy*Th(1,j);

M(ind(n_x,j),ind(n_x+2,j))= -hy*Th(n_x+1,j);

M(ind(n_x+1,j),ind(n_x+1,j))=1;

M(ind(n_x+1,j),ind(n_x+2,j))=-1;

end

elseif (LeftRight ~= 1 && BottonTop == 1)

for j=1:n_x

M(ind2(j,1),ind2(j,n_y+1)) = -hx*Tv(j,1);

M(ind2(j,n_y),ind2(j,n_y+2))= -hx*Tv(j,n_y+1);

M(ind2(j,n_y+1),ind2(j,n_y+1))=1;

M(ind2(j,n_y+1),ind2(j,n_y+2))=-1;

end

end

end

%%%%%%%%%%%%%%%Solve the linear system for Darcy flow %%%%%%%

p=M\q;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%Rewrite p as a matrix

for k = 1:n_x

for j=1:n_y

P(k,j)=p(ind(k,j));

end

end

%Figure

x=a:hx:b-hx;

y=c:hy:d-hy;

[X,Y]=meshgrid(y,x);

figure(1)

subplot(2,2,1)

surfc(X,Y,P)

title({’Darcy’;’beta = 0’})

az = 35;

el = 26;

view(az, el);

subplot(2,2,2)

contourf(X,Y,P)

if (n_x == n_y)

for i=1:n_y

PdiagonalD(i)=P(i,i);

end

end

Pdarcy=P;

%%%%%%%%%%%%%%%%%%%% Initial Guess %%%%%%%%%%%%%%%%%%%%

if BoundCond == 1
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if (LeftRight == 1 && BottonTop==1)

for j=1:n_y

Vx(1,j)=-Th(1,j)*(P(1,j)-bcl(ind(1,j)));

Vx(n_x+1,j)=-Th(n_x+1,j)*(-P(n_x,j)+bcr(ind(n_x,j)));

end

for k=1:n_x

Vy(k,1)=-Tv(k,1)*(P(k,1)-bcb(ind(k,1)));

Vy(k,n_y+1)=-Tv(k,n_y+1)*(-P(k,n_y)+bct(ind(k,n_y)));

end

elseif (LeftRight == 1 && BottonTop ~= 1)

for j=1:n_y

Vx(1,j)=-Th(1,j)*(P(1,j)-bcl(ind(1,j)));

Vx(n_x+1,j)=-Th(n_x+1,j)*(-P(n_x,j)+bcr(ind(n_x,j)));

end

elseif (LeftRight ~= 1 && BottonTop == 1)

for k=1:n_x

Vy(k,1)=-Tv(k,1)*(P(k,1)-bcb(ind(k,1)));

Vy(k,n_y+1)=-Tv(k,n_y+1)*(-P(k,n_y)+bct(ind(k,n_y)));

end

end

end

if BoundCond == 3

if (LeftRight == 1 && BottonTop ~= 1)

for j=1:n_y

Vx(1,j)=-Th(1,j)*(-p(n_x*n_y+j)+p(j));

Vx(n_x+1,j)=-Th(n_x+1,j)*(-p(n_x*n_y-n_y+j)+p(n_x*n_y+j+n_y));

end
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elseif (LeftRight ~= 1 && BottonTop == 1)

for j=1:n_x

Vy(1,j)=-Tv(j,1)*(-p(n_x*n_y+j)+p(j));

Vy(j,n_y+1)=-Tv(j,n_y+1)*(-p(n_x*n_y-n_x+j)+p(n_x*n_y+j+n_x));

end

end

end

%Internal nodes

for k=1:n_x-1

for j=1:n_y

Vx(k+1,j)=-Th(k+1,j)*(P(k+1,j)-P(k,j))/hx;

end

end

for k=1:n_x

for j=1:n_y-1

Vy(k,j+1)=-Tv(k,j+1)*(P(k,j+1)-P(k,j))/hy;

end

end

%Figure

for k=1:n_x

for j=1:n_y

VxAvrg(k,j)=(Vx(k+1,j)+Vx(k,j))/2;

VyAvrg(k,j)=(Vy(k,j+1)+Vy(k,j))/2;

end
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end

figure(2)

quiver(X,Y,VxAvrg,VyAvrg)

title({’Darcy Velocities’;’beta = 0’})

%initialization of velocities for fixed point

Vx0=Vx;

Vy0=Vy;

%%%%%%% ******** Start fixed point iterations ********** %%%%%%%%%%%%%%%%%

iter=1; Err_x=1; Err_y=1;

while (iter < 30 && (Err_y > 10^(-6) || Err_x > 10^(-6)))

%%%%%%%%%%%%%%%%%%% Transmissibilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Transmissibilities (internal nodes)

for k = 1:n_x-1

for j = 1:n_y

Th(k+1,j)=((K1(k,j)+K1(k+1,j))/(2*(K1(k+1,j)*K1(k,j)))+betax(k+1,j)...

*Vx(k+1,j))^(-1)/hx;

end

end

%Th

for k=1:n_x
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for j=1:n_y-1

Tv(k,j+1)=((K2(k,j)+K2(k,j+1))/(2*(K2(k,j+1)*K2(k,j)))+betay(k,j+1)...

*Vy(k,j+1))^(-1)/hy;

end

end

%Transmissibilities on the boundary

if (BoundCond == 1 || BoundCond == 3)

%Dirichlet Boundary Conditions

if (LeftRight == 1 && BottonTop==1)

for j=1:n_y

% On the left side

Th(1,j)=2*((K1(1,j))^(-1)+ betax(1,j)*Vx(1,j))^(-1)/hx;

% On the right side

Th(n_x+1,j)=2*((K1(n_x,j))^(-1)+ betax(n_x,j)*Vx(n_x,j))^(-1)/hx;

end

for k=1:n_x

% On the botton

Tv(k,1)=2*((K2(k,1))^(-1)+ betay(k,1)*Vy(k,1))^(-1)/hy;

% On the top

Tv(k,n_y+1)=2*((K2(k,n_y))^(-1)+ betay(k,n_y)*Vy(k,n_y))^(-1)/hy;

end

elseif (LeftRight == 1 && BottonTop ~= 1)

for j=1:n_y

% On the left side

Th(1,j)=2*((K1(1,j))^(-1)+ betax(1,j)*Vx(1,j))^(-1)/hx;
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% On the right side

Th(n_x+1,j)=2*((K1(n_x,j))^(-1)+ betax(n_x,j)*Vx(n_x,j))^(-1)/hx;

end

elseif (LeftRight ~= 1 && BottonTop == 1)

for k=1:n_x

% On the botton

Tv(k,1)=2*((K2(k,1))^(-1)+ betay(k,1)*Vy(k,1))^(-1)/hy;

% On the top

Tv(k,n_y+1)=2*((K2(k,n_y))^(-1)+ betay(k,n_y)*Vy(k,n_y))^(-1)/hy;

end

end

end

% Defining the right hand side q

%%%%%%%%%%%%%%%%%%%%% Dirichlet BC

if BoundCond == 1

if (LeftRight == 1 && BottonTop==1)

for j=1:n_y

q(ind(1,j))=hy*Th(1,j)*bcl(j);

q(ind(n_x,j))=hy*Th(n_x,j)*bcr(j);

end

for k=1:n_x

q(ind(k,1))=hx*Tv(k,1)*bcb(k);

q(ind(k,n_y))=hx*Tv(k,n_y)*bct(k);

end
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elseif (LeftRight == 1 && BottonTop ~= 1)

for j=1:n_y

q(ind(1,j))=hy*Th(1,j)*bcl(j);

q(ind(n_x,j))=hy*Th(n_x,j)*bcr(j);

end

elseif (LeftRight ~= 1 && BottonTop == 1)

for k=1:n_x

q(ind(k,1))=hx*Tv(k,1)*bcb(k);

q(ind(k,n_y))=hx*Tv(k,n_y)*bct(k);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%% Neuman BC

elseif BoundCond == 2

q(ind(k1,j1))=hx*hy*1;

q(ind(k2,j2))=hx*hy*(-1);

q(n_x*n_y + 1)=hx*hy*(n_x*n_y);

%%%%%%%%%%%%%%%%%%%%%%%%%% Periodic BC

elseif (BoundCond == 3 && LeftRight == 1)

for j=1:n_y

q((n_x*n_y+j))=1;

%q((n_x*n_y+2))=bcl(j);

end

q((n_x*n_y+n_y+1))=n_x*n_y+n_y+1;

elseif (BoundCond == 3 && BottonTop == 1)

for j=1:n_x
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q((n_x*n_y+j))=1;

%q((n_x*n_y+2))=bcl(j);

end

q((n_x*n_y+n_x+1))=n_x*n_y+n_x+1;

end

%%%%%%%%%%%%%%%%%%%%%%%% Stiffness Matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for k=1:n_x

for j=1:n_y

M(ind(k,j),ind(k,j))=(hx*Tv(k,j)+hy*Th(k+1,j)+hy*Th(k,j)+hx*Tv(k,j+1));

end

end

for k=1:n_x-1

for j=1:n_y

M(ind(k,j),ind(k+1,j)) = -hy*Th(k+1,j);

M(ind(k+1,j),ind(k,j)) = M(ind(k,j),ind(k+1,j));

end

end

for k=1:n_x

for j=1:n_y-1

M(ind(k,j),ind(k,j+1)) = -hx*Tv(k,j+1);

M(ind(k,j+1),ind(k,j)) = M(ind(k,j),ind(k,j+1));

end

end
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if BoundCond == 3

if (LeftRight==1 && BottonTop==1)

for j=1:n_y

M(ind(1,j),ind(n_x+1,j)) = -hy*Th(1,j);

M(ind(n_x,j),ind(n_x+2,j))= -hy*Th(n_x+1,j);

M(ind(n_x+1,j),ind(n_x+1,j))=1;

M(ind(n_x+1,j),ind(n_x+2,j))=-1;

end

for j=1:n_y

M(ind(1,j),ind(n_x+1,j)) = -hy*Th(1,j);

M(ind(n_x,j),ind(n_x+2,j))= -hy*Th(n_x+1,j);

M(ind(n_x+1,j),ind(n_x+1,j))=1;

M(ind(n_x+1,j),ind(n_x+2,j))=-1;

end

elseif (LeftRight==1 && BottonTop ~= 1)

for j=1:n_y

M(ind(1,j),ind(n_x+1,j)) = -hy*Th(1,j);

M(ind(n_x,j),ind(n_x+2,j))= -hy*Th(n_x+1,j);

M(ind(n_x+1,j),ind(n_x+1,j))=1;

M(ind(n_x+1,j),ind(n_x+2,j))=-1;

end

elseif (LeftRight~=1 && BottonTop == 1)

for j=1:n_x

M(ind2(j,1),ind2(j,n_y+1)) = -hx*Tv(j,1);

M(ind2(j,n_y),ind2(j,n_y+2))= -hx*Tv(j,n_y+1);

M(ind2(j,n_y+1),ind2(j,n_y+1))=1;
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M(ind2(j,n_y+1),ind2(j,n_y+2))=-1;

end

end

end

%%%%%%%%%%%%%%%%%%%%Solve the linear system%%%%%%%%%%%%%%%%%%

p=M\(q);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% Write the pressure in matrix form %%%%%%%%%%%%%%%%

for k = 1:n_x

for j=1:n_y

P(k,j)=p(ind(k,j));

end

end

%%%%%%%%%%%%%%%%%%%%%%%%-New Velocity-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if BoundCond == 1

if (LeftRight == 1 && BottonTop==1)

for j=1:n_y

VxNew(1,j)=-Th(1,j)*(P(1,j)-bcl(ind(1,j)));

VxNew(n_x+1,j)=-Th(n_x+1,j)*(-P(n_x,j)+bcr(ind(n_x,j)));

end

for k=1:n_x
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VyNew(k,1)=-Tv(k,1)*(P(k,1)-bcb(ind(k,1)));

VyNew(k,n_y+1)=-Tv(k,n_y+1)*(-P(k,n_y)+bct(ind(k,n_y)));

end

elseif (LeftRight == 1 && BottonTop ~= 1)

for j=1:n_y

VxNew(1,j)=-Th(1,j)*(P(1,j)-bcl(ind(1,j)));

VxNew(n_x+1,j)=-Th(n_x+1,j)*(-P(n_x,j)+bcr(ind(n_x,j)));

end

elseif (LeftRight ~= 1 && BottonTop == 1)

for k=1:n_x

VyNew(k,1)=-Tv(k,1)*(P(k,1)-bcb(ind(k,1)));

VyNew(k,n_y+1)=-Tv(k,n_y+1)*(-P(k,n_y)+bct(ind(k,n_y)));

end

end

end

if BoundCond == 3

if (LeftRight == 1 && BottonTop ~= 1)

for j=1:n_y

VxNew(1,j)=-Th(1,j)*(-p(n_x*n_y+j)+p(j));

VxNew(n_x+1,j)=-Th(n_x+1,j)*(-p(n_x*n_y-n_y+j)+p(n_x*n_y+j+n_y));

end
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elseif (LeftRight ~= 1 && BottonTop == 1)

for j=1:n_x

VyNew(1,j)=-Tv(j,1)*(-p(n_x*n_y+j)+p(j));

VyNew(j,n_y+1)=-Tv(j,n_y+1)*(-p(n_x*n_y-n_x+j)+p(n_x*n_y+j+n_x));

end

end

end

%Internal nodes

for k=1:n_x-1

for j=1:n_y

VxNew(k+1,j)=-Th(k+1,j)*(P(k+1,j)-P(k,j))/hx;

end

end

for k=1:n_x

for j=1:n_y-1

VyNew(k,j+1)=-Tv(k,j+1)*(P(k,j+1)-P(k,j))/hy;

end

end

%Error calculation

Err_x = norm((Vx-VxNew), inf)

Err_y = norm((Vy-VyNew), inf)
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Err2_x(iter) = norm((Vx0-VxNew), inf)/norm(Vx0,inf);

Err2_y (iter)= norm((Vy0-VyNew), inf)/norm(Vy0,inf);

% *** Update the velocities ***

Vx=VxNew;

Vy=VyNew;

% Counting iterations

iter=iter+1;

end

%%%%%%%%%%%%%%%%%%% Post-Process %%%%%%%%%%%%

Vxuptotal=mean(Vx’,1);

Vyuptotal=mean(Vy,1);

Vxup=1/2*(Vxuptotal(1)+Vxuptotal(n_x+1));

Vyup=1/2*(Vyuptotal(1)+Vyuptotal(n_y+1));

if BoundCond==1

for j=1:n_y

bcr2(j)=bcr(j);

bcl2(j)=bcl(j);

end
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Kupsc1=Vxup/(G1);

for j=1:n_x

bct2(j)=bct(j);

bcb2(j)=bcb(j);

end

Kupsc2=Vyup/(G2);

elseif(BoundCond == 3 && LeftRight==1)

pl=p(n_x*n_y+1:n_x*n_y+n_y);

pr=p(n_x*n_y+n_y+1:n_x*n_y+2*n_y);

Kupsc1=Vxup/(-mean(pl)+mean(pr));

Kupsc2=Vyup/(-mean(pl)+mean(pr));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

KUp1(ng)=Kupsc1;

KUp2(ng)=Kupsc2;

ng=ng+1;

for k=1:n_x

for j=1:n_y

VxAvrg(k,j)=(Vx(k+1,j)+Vx(k,j))/2;

VyAvrg(k,j)=(Vy(k,j+1)+Vy(k,j))/2;

end

end
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%Figure

x=a:hx:b-hx;

y=c:hy:d-hy;

figure(1)

subplot(2,2,3)

[X,Y]=meshgrid(y,x);

surfc(X,Y,P)

title({’NonDarcy’;[’beta = ’, num2str(beta)]})

az = 35;

el = 26;

view(az, el);

subplot(2,2,4)

contourf(X,Y,P)

figure(4)

%subplot(2,1,2)

quiver(X,Y,VxAvrg,VyAvrg)

title({’NonDarcy Velocities’;[’beta = ’, num2str(beta)]})

if (n_x == n_y)

for i=1:n_y

PdiagonalF(i)=P(i,i);

end

figure(3)

plot(y,PdiagonalF,’b*’,y,PdiagonalD,’r-’)

end

end
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yy=1;

scaley=factory;

xx=scalex+1;

scalex=scalex+ factorx;

end

% New index function

ind4=inline(’(x-1)*z +y’,’x’,’y’,’z’);

for k=1:nxnew

for j=1:nynew

Kupscalling11(k,j)=KUp1(ind4(k,j,nxnew));

Kupscalling22(k,j)=KUp2(ind4(k,j,nynew));

end

end

% Write to a data file

if BottonTop == 1

dlmwrite(’Kupscaling22.dat’,Kupscalling22,’precision’,’%.15f’)

else

dlmwrite(’Kupscaling11.dat’,Kupscalling11,’precision’,’%.15f’)

end
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