A COMPUTER ESTIMATE OF COSTS AND ENGINEERING DATA

 FOR A PROPOSED TRANSPORTATION NETWORK IN NEW ENGLANDby
Richard James Artley

A PAPER
submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of

MASTER OF FORESTRY
Apri1, 1980

APPROVED:

Date Paper is Presented

Typed by Lou Hecht for \qquad

AN ABSTRACT OF THE PAPER OF

Richard James Artley for the degree of \qquad Master of Forestry
in Forest Engineering presented on

Title: A Computer Estimate of Costs and Engineering Data For A

Proposed Transportation Network In New England

Abstract approved:

This paper describes a computer program developed for the Hewlett Packard 9830, which analyzes and computes costs and engineering data for paper plan timber harvest road networks. The program will accept up to 110 road segments. Each segment is analyzed individually based on digitized data from a contour map and user defined road construction parameters. Three types of construction are analyzed for each segment: fullbench and sidecast, fullbench and endhaul and balanced construction.

Program results and operation are exemplified in an analysis of a proposed transportation plan in a cable logging study area in New England. The study area is on the Green Mountain National Forest in Central Vermont. The transportation plan contains 99 miles of proposed new road within the 25,000 acre study area. Cost and
engineering data sensitivity to changes in road construction parameters is analyzed. Variations in the subgrade width and surfacing depth seem to affect cost the most.

Fuel consumption of alternative logging systems is also compared in this paper. The results indicate that cable logging initially consumes more fuel due to increased road construction. However, once the roads are established, cable logging systems consume less fuel than tractor logging. This study indicates that it takes approximately 40 to 60 years for cable logging systems to catch and surpass tractor systems in terms of total accumulated fuel consumption.

TABLE OF CONTENTS

PAGE

INTRODUCTION 1
OBJECTIVES 6
ROAD COST ANALYSIS 7
ROAD COST PROGRAM (R.C.P.) 24
Program Description and Flow 24
Variable Definitions 31
Mathematical Formulation 47
GREEN MOUNTAIIN NATIONAL FOREST STUDY AREA 56
Study Area Description 56
Road Network Description. 65
Road Parameter Cost Sensitivity 70
Road Standards for Cable Logging 71
FUEL CONSUMPTION OF ALTERNATIVE SYSTEMS. 77
CONCLUSIONS 94
SUGGESTIONS FOR FURTHER RESEARCH 95
APPENDICES:
Appendix 1: G.M.N.F. Commercial Forest Land Description 98
Appendix 2: Study Area Soil Descriptions 102
Appendix 3: Study Area Stand Descriptions 110
Appendix 4: (R.C.P.) Listing 131
Appendix 5: Segment Descriptions for Proposed Plan. 144
Appendix 6: Itemized Segment Costs for a 12 and 14 Foot Running Surface 153
Appendix 7: Road Cost Sensitivity Graphs 158
Appendix 8: (R.C.P.) - User's Guide. 170
FIGURE PAGE
1 Green Mountain National Forest Vicinity Map 4
2 Cable Logging Study Area Vicinity Map 5
3 Clear \& Grub Definitions 12
4 Typical Stump Dump 13
5 Surfacing Detail 17
6 Outlet Pipe Spacing Chart 19
7 Flow Diagram for Road Cost Program (R.C.P.) -- part a.. 25
8 Flow Diagram for Road Cost Program (R.C.P.) -- part b.. 26
9 Green Mountain National Forest Road Construction Unit Costs 30
10 End Area Diagram for Balanced Section With Rock. 42
11 End Area Diagram for Balanced Section Without Rock. 43
12 End Area Diagram for Fullbench Construction With Rock... 44
13 End Area Diagram for Fullbench Construction Without Rock. 45
14 End Area Diagram for Fill Covering Pipe on Major Creeks. 46
15 A Section of Tunnel Brook Road 57
16 Taylor Brook Road. Typical New Construction. 58
17 Shelterwood Cut 59
18 Typical Arch Road 60
19 Small Tractor Bunching Logs at Arch Road 61
20 Typical Skidder Swinging on Arch Road 62
21 Bucked Logs at the Landing 63
64
Proposed Study Area Road Network 66
Ownership and Steep Sideslopes Map. 67
Major Creek and Drainage Area Map 68
C \& G Difficulty and Bedrock Depth Map. 69
27 Safe and Unsafe Downhill Landings. 73
Oregon State Safety Rules Concerning Landings 74-74a
29 Unfinished Subgrade on Boyden Brook Road. 76
30 Example Section and Treatment Areas 77
31 Road Densities 79
32 Accumulated Fuel Consumption-Tractor 90
33 Accumulated Fuel Consumption-Uphil1/Downhil1 91
34 Accumulated Fuel Consumption-Uphill Cable. 92
35 Accumulated Fuel Consumption-Downhill Cable. 93

INTRODUCTION

Timber harvest and transportation planning is one of the most important factors in the evolution of a cost effective and environmentally sound timber sale program. In the past, the lack of, or inaccurate harvest/transportation planning, has resulted in many timber sale offerings which were substandard in terms of both cost and resource protection. Much of the inaccuracy evident in harvest/ transportation plans of the past was due to the oversimplification of available information. The harvest planner was unable to assimilate and analyze the vast amount of potential data available. In depth, accurate analysis of several alternative transportation networks was very difficult using hand computation techniques.

The development of small, high speed desk top computers now makes this type of indepth analysis a reality. This paper will present a method to quickly and accurately analyze alternative transportation network paper plans using the desktop computer. The accuracy of the estimate obtained using the Road Cost Program (R.C.P.) is dependent on the following factors:

1. Contour map accuracy.
2. Amount of route verification in the field.
3. Accuracy of soils and stand data used.

Road Cost Program can analyze up to 110 segments at one time. For networks having more than 110 segments, the user must break up the
network accordingly and combine the results. The program is divided into two parts, a and b. Part (a) accumulates specific data for each segment. This specific data is based partly on digitized data taken from the contour map and direct input by the user. Once all the segments in the network have been digitized, this data is stored on tape. Part (b) of (R.C.P.) analyzes the network data stored on tape in terms of user defined construction parameters. These parameters include the following:

1. Running surface width.
2. Ditch? - Yes or No.
3. Surfacing depth.
4. Distance to waste area and rock pit.
5. Cutslope angle.

A very useful feature of (R.C.P.) is the ability to ascertain cost sensitivity to changes in the construction parameters listed above.

Approximately 30 days were spent working on a cable logging study area on the Green Mountain National Forest in Central Vermont (Figures 1 and 2). The study was broken into two parts: cable equipment selection study by Stirler (1980), and cable logging transportation network and road standard alternatives. This paper presents a proposed transportation/harvest proposal which accesses the 25,000 acre study area. (R.C.P.) is applied to the 97 segments in the network. Many computer runs were made using different combinations of construction parameters. The resulting cost sensitivity is displayed in graphical form.

Also included in this report is a comparative analysis of the total accumulated fuel consumption of several logging systems.

Figure 1. Freen Mountain National Forest Vicinity Map

Figure 2. Cable Logging Study Area Vicinity Map

OBJECTIVES

The purpose of this study is twofold. First, to develop a method of quickly and accurately analyzing alternative transportation networks. Second, to analyze and make recommendations concerning transportation networks for cable yarder access and operation in the mixed hardwood forests of New England. The specific objectives are as follows:

1. Develop a computer program written in basic language, which outputs costs and engineering data, based on a paper plan transportation network.
2. Develop a timber harvest/transportation paper plan for the study area.
3. Using soils and stand data supplied by the Green Mountain National Forest, recommend road standards which meet the following objectives:
a. least cost
b. minimum resource impact
c. insure cable equipment access and operability.
4. Display road cost sensitivity to changes in construction parameters.
5. Compare the fuel consumption differences between tractor logging and cable logging.

The Road Cost Program (R.C.P.) incorporates most of the important road construction cost factors which are identifiable during the planning stage. The cost factors not included in (R.C.P.) are minor, and are included in actual road appraisals on a case by case basis. The (R.C.P.) should provide an accurate estimate of construction cost in spite of these minor cost factor exclusions, since their percentage of total cost in actual appraisals is minor. The following road cost factors are included in the program.

- Clear and Grub
- Seeding and Mulching
- Common and Rock Excavation
- Riprap
- Fences and Gates
- Buy, Haul, Load and Apply Surfacing
- Outlet Pipe
- Pipe Used on Major Creek Crossings
- Load and Haul Endhaul Material
- Mobilization

The following costs are not included in (R.C.P.), due to the difficulty in quantifying data during the planning stage.

- Develop Water Supply
- Watering
- Bituminous Dust Palliative Treatment
- Under drains and Filter Cloth
- Development of Pits and Quarries
- Gabions and Binwalls

Since construction staking is an activity performed by either the purchaser or the Forest Service, it is not included in this analysis.

The following general assumptions are applicable to the program as a whole. These assumptions deviate from actual ground conditions, because the input is based on map data. This oversimplification will introduce some error, when compared with a completed road cost appraisal. However, since the intent of (R.C.P.) is to provide an estimate for comparative purposes, this introduced error should not be critical.

Assumption \#1 - Sideslopes are constant for a given segment. This assumption should not affect cost significantly, if the user selects the correct segment breaks. In areas with highly variable sideslopes, segment lengths should be short. Longer segments will tend to average all the sideslopes together, and will introduce erroneous construction costs.

Assumption \#2 - Road segment lengths are based on their horizontal distance.: Due to the small scale maps; usually no differentiation will be made between "p" and "L" lines.

The lengths shown in (R.C.P.) will be slightly shorter than the actual road segment as it is built. This will tend
to lower the total estimated construction costs.

Assumption \#3 - Bedrock depth, clear and grub difficulty and road grade are consistent over a given segment.

As with Assumption \#1, correct choice of segment location and length should minimize this potential error. The user must be aware that bedrock depths, clear and grub difficulty and even the contour maps are estimates in themselves. Shortening segments to account for all changes in the above parameters would probably be counterproductive, due to the great increase in digitizing time.

Assumption \#4 - Excavation is assumed over the entire segment length.
(R.C.P.) does not account for thru fill sections. This is primarily due to the problem of identifying fill volumes from small scale mapping. For segments with major creek crossings requiring thru fill construction, an error will be introduced. This error will be the difference between the excavation and embankment cost for the short (50^{\prime} to 200') section crossing the creek. This cost will vary, due to the length of tractor haul in common material for the embankment, and the bedrock depth for excavation. In most cases, this error will tend to increase the road construction estimates over the actual construction cost.

Assumption \#5 - Additional excavation is not calculated for turnouts.
(R.C.P.) assumes outside turnouts placed in areas where additiona 1 excavation is minimized.

Assumption \#6 - If the sideslope $\geq 60 \%$, a balanced section is not computed. Full bench and endhaul costs and excavation data are substituted and included in the balanced section network summary.

Assumption \#7 - Turnouts are placed at 1000 foot intervals. If the road segment is less than 600 feet long, no turnout is figured. If the segment is between 600 feet and 1000 feet, the computer assigns one turnout to this segment. Turnouts are 50 feet long and 8 feet wide with 50 feet of runout on each end.

Assumption \#8 - All calculations are based on topog map data, since the program is not intended to do road design.

The following section treats each included cost factor individually, giving descriptions, assumptions and Green Mountain National Forest unit costs.

Cost: Clearing and Grubbing

(R.C.P.) bases clearing and grubbing on existing stand conditions, sideslope and exposed boulders. Total basal area and average D.B.H. are parameters used to classify existing stands for clearing and
grubbing. Three levels of clearing and grubbing difficulty are recognized by (R.C.P.): low, medium and high. These levels are based on the R-9 Road and Bridge Cost Estimating Guide (19) (Figure 3).

These definitions are converted to total basal area and average D.B.H. in the following manner.
-LOW-
All stands with an average D.B.H. ≤ 5 inches and/or a total basal area ≤ 30 square feet.
-MEDIUM-
All stands with an average D.B.H. ≥ 6 and ≤ 16 inches and/or a total basal area ≥ 31 and ≤ 119 square feet.

-HIGH-

All stands with an average D.B.H. ≥ 17 inches and/or a total basal area ≥ 120 square feet.

If a stand contains an average D.B.H. of one difficulty and a total basal area of another, then the basal area dominates. Appendix 3 lists the stand data and clear and grub difficulty for the compartments contained in the study area. Clearing and grubbing difficulties are also displayed in map form (Figure 26). Showing segment parameters also displays the clearing and grubbing difficulty by segment, for the road network analyzed in the study area.

Exposed boulders and steep areas ($\geq 60 \%$) will increase the clear and grub difficulty to the next highest level. The slash cleanup method for road construction used on the Green Mountain National Forest is a combination of scattering and burying (stump dump).

CLEARING AND GRUBBING

I. GENERAL
A. Clearing and Grubbing costs vary depending on the following items:
a. Topography
b. Type of cover, size, and density
c. Method of clearing
d. Method of disposal
e. Difficulty of grubbing, boulders, etc.
f. Area to be cleared and grubbed
g. Season
B. Cost analysis is based on relative efficiency of typical crews, which will vary with the type of job and cover.
C. When reconstructing an existing road the acreage to be estimated is the number of acres outside the existing road prism.
II. DEFINITIONS OF TYPES AND DENSITY OF COVER
A. Brush: Dense growth of vegetation 2-3" in diameter and less. Foot access is difficult. Timber 10"-15" DBH exists with an average of 1-9 trees per acre.
B. Light Clearing \& Grubbing: Area includes a mixture of light pole ($4^{\prime \prime}-10^{\prime \prime}$ DBH) reproduction, brush and medium timber (10"15" DBH) with an average density of 10-20 trees per acre. In stands which are predominately pulpwood, light clearing and grubbing consists of 0-200 trees (4 "-10" DBH) per acre.
C. Medium Clearing \& Grubbing: Area includes a mixture of light pole reproduction, very little brush, mostly medium to large trees $10 "-20^{\prime \prime}$ DBH with an average density of 20-80 trees per acre. No open areas in the cover exist. In stands which are predominately pulpwood, medium clearing and grubbing consists of 200-500 trees ($4^{\prime \prime}-10^{\prime \prime}$ DBH) per acre.
D. Heavy Clearing \& Grubbing: Area includes mostly large timber 15"-20" DBH with an average of more than 80 trees per acre. No open areas in the cover exist. In stands which are predominately pulpwood, heavy clearing and grubbing would consist of more than 500 trees ($4^{\prime \prime}-10^{\prime \prime}$ DBH) per acre.

Figure 3. Clear \& Grub Definitions.

Stump dumps are cleared areas below the road at approximately 500 to 700 foot intervals where stumps and other large debris are buried. The average size of a stump dump is about 0.05 acres (Figure 4).

Figure 4. Typical Stump Dump.

Experienced costs for clearing and grubbing on the Green Mountain National Forest are as follows.

Low - \$2000.00/acre
Medium - \$2300.00/acre
High - \$2600.00/acre
(R.C.P.) calculates clearing and grubbing area, based on the horizontal distance from the top of cut to the bottom of the fill, plus four feet.

Cost: Seed, Mulch and Fertilize
(R.C.P.) bases the seed, mulch and fertilize cost on the horizontal projection of the common material in the cut. All common material in the cut is assumed to be seeded. Experienced costs on the Green Mountain National Forest are as follows:

Seed, mulch and fertilize - \$700.00/acre

Cost: Common Excavation
All excavation costs in common material are based on the bank cubic yard. If the road prism includes a ditch and has no rock excavation, an additional 2 feet of end area are added. Common excavation costs are based on a combination of the following parameters:

Subgrade Width
Depth to Bedrock
Ditch? (Yes/No)
Cutslope Angle
Sideslope
Segment Length

The experienced costs used on the G.M.N.F. are:
Excavation (common) - \$2.30/B.C.Y.

Cost: Rock (ledge) Excavation

As with the common excavation, the rock excavation is based on the bank cubic yard. The cutslope for rock sections is held constant at 1/4:1. Most rock encountered in the study area is very hard. (R.C.P.) assumes all rock excavation will be "shot." Ripable rock is not common to the study area. If a ditch is needed in a rock section, 2 square feet of end area are added. Rock excavation costs are based on a combination of the following parameters:

Subgrade Width
Depth to Bedrock
Ditch? (Yes/No)
Sides lope
Segment Length

Bedrock depths are based on the Soil Resource Inventory for the Green Mountain National Forest. Soil types with similar bedrock depths were combined. The result is displayed on map (see Figure 4). The soil type combinations are shown below:

Soil Type(s)	Bedrock Depths (ft.)
$202 b-202 d$	1
$203 b-205 b-014 b-013 b-014 d$	2
$203 d$	7
$205 d-203 g$	12
$210 d$	22

See Appendix 2 for soil type descriptions.

The experienced costs used on the G.M.N.F. are as follows: Excavation (rock) - \$11.00/B.C.Y.

Cost: Riprap

Riprap is included with all pipes crossing major creeks. It is assumed that each large pipe will need 1.5 loose cubic yards of riprap. Installed riprap costs include a combination of both hand and machine placement. Experienced costs on the G.M.N.F. are as follows:

Riprap (installed) - \$40.00/L.C.Y.

Cost: Fences and Gates

Normally, fences and gates are appraised on a lump sum basis. Since during the planning stage it is very difficult to estimate exactly how many fences and gates are needed, this cost is put on a per-mile basis. Based on past road construction projects on the Green Mountain National Forest, the following cost/mile is used.

Fences and Gates - $\$ 500.00 / \mathrm{mile}$

Cost: Buy, Haul, Load and Apply Surfacing

Surfacing quantities are first computed as compacted rock on the road. This quantity is then swelled in volume to the loose state. All surfacing costs are based on loose, cubic yards. Turnouts included in the road segment are completely surfaced. On road segments which have a ditch, the taper of the surfacing is $3: 1$
on both sides of the running surface. If the segment doesn't have a ditch, the surfacing quantities include a 3:1 taper on the outside and a 1:1 cutbank on the inside (Figure 5). The haul distance is input by the user. For the study area, the average haul from the rock pits near Rochester, Vermont is 16 miles. It is probable that new pits will be developed within the study area at a later date.

Figure 5. Surfacing Detail.

The following are experienced costs for surfacing on the G.M.N.F.

Buy Surfacing - \$1.10/L.C.Y.
Haul Surfacing - \$0.28/L.C.Y./mile
Load and Apply Surfacing - \$2.80/L.C.Y.

Cost: Outlet Pipe

All outlet pipe is assumed to be 18 inch diameter, 16 gage corrugated steel or aluminum round pipe. Connecting bands are included in the installed price. Outlet pipe spacing is based on the U.S.F.S. Transportation Engineering Handbook (Figure 6). Most soils within the study area have an erosion index of 20 . Using this column in the culvert spacing table, the following relationship exists between the road grade in \% and the culvert spacing in feet.

Spacing $=2437.5 \times(\text { road grade } i n \%)^{-1.00}$

All outlet pipe is assumed to have a 30° skew with a drainage angle of 3°. Four feet of length are added to each pipe to account for protrusion. If the road segment has no ditch, no outlet pipe is computed. Installed outlet pipe cost on the Green Mountain National Forest is as follows:

Outlet Pipe - \$19.64/Lineal Foot
Maximum Spacing in Feet of Lateral Drainage Culverts
UO| 영 중응
으잉

Figure 6. Outlet Pipe Spacing Chart.

Cost: Pipe Used on Major Creek Crossings
Pipe sizing for major creek crossings is based on Talbot's Formula using a "C" factor of 0.2. Talbot's Formula calculates the end area of a pipe needed, based on the drainage area in acres of the creek.

Talbot's Formula:
End Area in ft. ${ }^{2}=C \times$ area drained (ac.) 0.75
The minimum pipe size used in (R.C.P.) is the same size as the outlet pipe. The maximum pipe is a structural plate pipe-arch with a span of $14^{\prime} 10^{\prime \prime}$ and a rise of $9^{\prime} 1^{\prime \prime}$. The area of this arch is 105 square feet. For drainages that need an end area greater than 105 square feet, (R.C.P.) calculates a bridge crossing. All creeks that drain an area of 4,240 acres will need a bridge crossing. (R.C.P.) uses the following pipes for the end area ranges shown.

Round Corrugated Steel Pipe
Diameter (ft.)
End Area Range (ft. ${ }^{2}$)
1.5
≤ 1.77
>1.77 and ≤ 3.14
>3.14 and ≤ 4.91
>4.91 and ≤ 7.07
>7.07 and ≤ 9.62
>9.62 and ≤ 12.57
>12.57 and ≤ 15.90
5.0
>15.90 and ≤ 19.63
5.5
>19.63 and ≤ 23.76

Structural Plate Steel Pipe - Arches

Span (Ft.-In.)	Rise (Ft.-In.)	End Area Range (ft. ${ }^{2}$)
$7{ }^{\prime \prime}$	5'1"	>23.76 and ≤ 28.40
8' 2 "	5'9"	>28.40 and ≤ 38.00
9' 6"	6' 5"	>38.00 and ≤ 48.70
10'11	711	>48.70 and ≤ 60.70
12' '' $^{\prime \prime}$	7 7 '	>60.70 and ≤ 74.10
13' ${ }^{\prime \prime}$	$8^{\prime \prime}{ }^{\prime \prime}$	>74.10 and ≤ 88.70
$14^{\prime \prime} 10^{\prime \prime}$	911	>88.70 and ≤ 104.8

The pipe length is determined by the grade of the creek as it crosses the road, the subgrade width and the pipe diameter.

All pipes are assumed to have 48 inches of cover directly below the inside edge of the subgrade. This is the controlling height, when figuring pipe length. Two feet of fill widening are then added to the subgrade. Fill slopes of 1-1/2:1 are then projected down from the subgrade, until they catch the groundslope of the creek. This slope distance between the two fill catch points is the pipe length (Figure 14). (R.C.P.) uses the following installed costs for large pipe based on the Green Mountain National Forest.
Diameter or *Span (ft.) Installed Cost - \$/L.F.
1.5
2.0
2.5
3.0
3.5
4.0

Installed Cost - \$/L.F.
19.64
25.00
33.42
39.60
56.25
65.49

4.5	92.42
5.0	103.89
5.5	110.00
$* 5.09$	239.21
$* 5.78$	250.08
$* 6.44$	260.95
$* 7.09$	271.83
$* 7.75$	282.70
$* 8.44$	293.58
$* 9.10$	304.45

Bridge construction is esimated at $\$ 700.00 /$ L.F.

* Pipe Arch

Cost: Load and Haul Endhaul Material

All endhaul material is based on the loose cubic yard. Common (B.C.Y.) excavation quantities are swelled by 15%. It is assumed that rock excavation swells by 30% to a loose state. It is also assumed that approximately 30% of the rock will be lost during blasting. Thus, no swell is included with rock endhaul. Endhaul haul distances are estimated by the user. For the study area, the average distance to a waste area is about 0.4 miles. (R.C.P.) uses endhaul costs based on dump trucks and front-end loaders. If scrapers are used, the costs must be adjusted. The following are costs for endhaul generated on the Green Mountain National Forest:

Load Endhaul Material - \$0.75/L.C.Y.

Haul Endhaul Material - \$0.28/L.C.Y./mile

Cost: Mobilization

As with fences and gates, mobilization is normally paid for on a lump sum basis. Again, based on past sales on the Green Mountain National Forest, one complete move in and move out of construction equipment cost approximately $\$ 1,600.00$. Assuming that 2 miles of road are built per season, the cost per mile is $\$ 800.00$.

ROAD COST PROGRAM (R.C.P.)

PROGRAM DESCRIPTION AND FLOW

The road cost program (R.C.P.) is a single program divided into two parts, with each part stored in a different file. Part (a) and (b) are connected by an internal link statement, which automatically loads part (b) (Figures 7 and 8). All variables which are defined in part (a) are retained in part (b) by using this link statement. To run the program, the following is needed:

1. 9830A - Computer
2. 9865A - Cassette Memory
3. 9864A - Digitizer
4. 9866A or Centronics 101 Printer
5. 9162-0050 Digital Cassette Data Tape marked with files of 2000 words
6. 9162-0050 Digital Cassette Program Tape with part (a) (2200 words) and part (b) (5000 words) of (R.C.P.) loaded on two files.

The primary functions of part (a) of (R.C.P.) are: 1) to gather and store road segment data from the contour map, 2) define the constant unit cost variables, and 3) printout common data stored on tape and unit cost listing. If the segment data from the contour map has already been stored, part (a) will simply load the information from the peripheral data tape, do primary functions 2

Figure 7. Flow diagram for Road Cost Program(R.C.P.)--part a

Figure 8. Flow diagram for Road Cost Program(R.C.P.)--part b
and 3, and proceed to link with part (b). This feature of the program saves time, since the segment data needs to be digitized only once. The following data is collected in (R.C.P.) part (a).
--Direct User Input--

1. Network Number
2. Number of Segments in Network
3. Clear and Grub Difficulty for each Segment
4. Bedrock Depth for each Segment
5. Number of Major Creek Crossings for each Segment
6. Map Scale and Contour Interval
--Digitizer Input--
7. Segment Lengths in Feet
8. Segment Grades in Percent
9. Average Sideslope Adjacent to Segment
10. Creek Channel Grades in Degrees
11. Creek Drainage Areas in Degrees
--Internally Defined Constants--
12. Road Construction Unit Costs

Up to 110 road segments may be digitized and stored on the data tape under the same network number. If the network has more than 110 road segments, the network must be broken up and run as two separate networks. The results may later be combined.

The accuracy of (R.C.P.) is dependent on the accuracy of the data base and the user's choice of segment lengths and break points. Of course, inaccurate contour maps, soil data and stand data will
result in erroneous answers. The (R.C.P.) should not be used on contour maps that are known to be inaccurate or on maps with contour intervals greater than 80 feet.

Assuming the map is accurate and the contour intervals are acceptable, inaccuracy can also result in a poor choice of segment lengths and break points. To assure maximum accuracy, segments should be terminated when major changes in the following data are encountered. The parameters which are most sensitive are listed first.

1. Major changes in sideslope
2. Major changes in bedrock depth
3. Major changes in grade
4. Major changes in existing stand conditions which is reflected in the clear and grub difficulty

The user must weigh accuracy against digitizing time. The most accurate method is to change the segment number when any of the above parameters change. This will result in considerable digitizing time due to the increase in the number of segments. Acceptable accuracy should be obtained in most areas by keeping the segment lengths less than one mile in length.

Part (b) of (R.C.P.) analyzes the data obtained in part (a)
(Figure 8). The following four output modes are available.

1. Summary Output - This analyzes all the segments in the network and accumulates the following data for each of the 3 construction types.
a) grand total cost
b) grand total excavation in B.C.Y.
C) cost per mile
d) total network length in miles
e) road geometry data
2. Short Output - This output includes the summary output, plus the total cost for each segment in the network by construction type.
3. Medium Output - This includes all data in the short output, plus total excavation and percent rock for each segment in the network by construction type.
4. Long Output - This includes all data in the medium output, plus the following for each segment by construction type.
a) itemized engineering data
b) itemized costs for each of the cost centers discussed in the cost analysis section
c) miscellaneous fullbench and balanced section variables. These variables are defined and referenced in the variable definitions and associated figures.

In addition to the output mode, the user has the opportunity to input the following road geometry parameters.

1. Running surface width in feet
2. Cutslope factor (horizontal to vertical)
3. Is there a ditch? (Yes or No)
4. Compacted surfacing depth in feet
5. Number of miles to rock pit
6. Number of miles to the waste area (endhaul)

The (R.C.P.) will allow these parameters to change with each segment conditions, or will analyze the entire network using the same parameters. If the user chooses to use the summary output, the option of changing parameters with each segment is no longer available. If the user chooses to change parameters with each segment, the output will include the road geometry parameters for each segment. Running (R.C.P.) with the road geometry parameters fixed for the entire network will result in a single listing of the parameters used at the beginning of the output printout.
(R.C.P.) internally defines the unit costs used in the analysis. They are input using a read data command. These costs may be easily changed to fit the individual area. Figure 9 shows the unit costs that are applicable on the Green Mountain National Forest.

Figure 9. Green Mountain National Forest Road Construction Unit Costs.

(R.C.P.) VARIABLE DEFINITIONS

The variables used in the (R.C.P.) are defined for both parts of the program in alphabetical order. Common and dimension variables will be defined first; followed by the simple variables. All ($0 / 1$) variables use $0=$ no and $1=$ Yes

Part a

Common Variables

AI(i) - An array of segment lengths in feet for each segment i; where $\mathrm{i}=1$ to 110 (maximum).

BI(i) - An array of clearing and grubbing difficulties (low=1, medium=2, high=3) for each segment i; where $i=1$ to 110 (maximum).

CI(i) - An array of depths to bedrock in feet for each segment i; where $\mathrm{i}=1$ to 110 (maximum).

DI(i) - An array of road grades in percent for each segment i; where $\mathrm{i}=1$ to 110 (maximum).

GI(i) - An array of average segment sideslopes in degrees for each segment $i ;$ where $i=1$ to 110 (maximum).

HI(i) - An array of the number of major creek crossings for each segment i; where $i=1$ to 110 (maximum).

II (i, j) - An array of creek j grades in degrees for each segment $i ;$ where $\mathrm{i}=1$ to 110 (maximum) and $\mathrm{j}=1$ to 5 (maximum).
$\mathrm{JI}(\mathrm{i}, \mathrm{j})$ - An array of area drained in acres for creek j for each segment \mathbf{i}; where $\mathbf{i}=1$ to 110 (maximum) and $\mathbf{j}=1$ to 5 (maximum).
V - Number of segments in network.

M7 - Network designation (any number).

Dimension Variables

EI(i) - An array of clear and grub costs per acre for segment \mathbf{i}; where $\mathrm{i}=1$ to 110 (maximum).

Simple Variables
A - Total drainage area from map in square inches for segment i; creek j.

A2 - Area in inches of each triangular slice with corners (X, Y), $(X 1, Y 1)$ and ($\mathrm{X} 2, \mathrm{Y} 2$) for drainage area of creek j ; segment i.

B1 - Clearing and grubbing cost per acre.
B2 - Seeding and mulching cost per acre.
B3 - Common excavation cost per bank cubic yard.
B4 - Rock (ledge) excavation cost per bank cubic yard.
B5 - Mobilization cost/mile.
B6 - Riprap (installed) cost per loose cubic yard.
B7 - Cost to purchase surfacing material per loose cubic yard.
B8 - Cost to load and apply surfacing material per loose cubic yard.
B9 - Cost to haul surfacing material per loose cubic yard/mile.
$B \emptyset$ - Cost to load endhaul material per loose cubic yard.
Cl - Cost to haul endhaul material per loose cubic yard/mile.
C2 - Cost to install fences and gates per mile.
C3 - Cost of outlet pipe (installed) per lineal foot.
C8 - Indicator (0/1) variable which controls termination of drain area subroutine.

D - For/Next variable (loop prints stored data).
F - For/Next variable (loop gathers common array data).
I - Segment number.
19-Average segment sideslopes in percent.
J - Creek number.
L - Segment length in feet (used in length subroutine).
M2 - Number of contour lines crossed by segment.
M3 - Vertical elevation in feet between beginning and end of segment.

M9 - Accumulated distance in feet of all segments in network.
0 - File number for stored data on peripheral cassette tape.
P - For/Next variable (loop gathers creek data).
P1 - Designated sign of road grade for haul (favorable=1, adverse=2, level=3) .

R8 - Digitizer control variable. Denotes horizontal distance between the points (X, Y) and ($X 2, Y 2$) in creek drain area subroutine.

S - Map scale in feet per inch.
S1 - Contour interval in feet.
S3 - Drained area in acres (used in area subroutine).
S4 - (0/1) variables. Want list of stored data?
T8 - Horizontal distance between 5 contour lines. (Used to find grade of creek at the point it crosses the road.)

T9 - Grade of creek \mathbf{j} in segment i in degrees.
TD - (0/1) variable. Want unit cost listing?
U6 - Average sideslope in percent.
U7 - Average creek grade in percent.
$\mathrm{X}, \mathrm{X} 1, \mathrm{X} 2$ - Digitizer variables denoting X coordinates.
Y,Y1, Y2 - Digitizer variables denoting Y coordinates.
Y7 - For/Next variable (loop gathers average sideslope).
Y8 - Horizontal distance in feet between the points ($\mathrm{XI}, \mathrm{Y} 1$) and (X, Y) in sideslope determination.

Y9 - Accumulated horizontal distances of 5 sideslope samples for each segment.

Z - (0/1) variable. Segment data already stored?

Part b

Common Variables
Since the two programs are connected by a link statement, the all variables defined in part (a) will be transferred intact to part (b). All common variables defined in part (a) will have the same definition in part (b).

Dimension Variables

The dimension variables are actually defined in part (a) to increase the storage in part (b). They are listed here, since the variables are defined and used in part (b) only.

EI(i) - See part (a).
MS(j) - Total cost of pipe or bridge on major creek j; where $j=1$ to 5 (maximum).
$X S(j)$ - Length in feet of pipe on major creek j; where $j=1$ to 5 (maximum).

YS(j) - Cost per lineal foot (installed) of pipe on major creek j; where $j=1$ to 5 (maximum).

ZS(j) - Diameter or rise of pipe on major creek j; where $j=1$ to 5 (maximum). If a bridge is needed, this variable denotes bridge length.

Simple Variables

A - The "a" term in the quadratic equation $T=-b+\sqrt{b^{2}-4 a c} / 2 a$. This is used in the balanced section subroutine to find T.

A9 - Total endhaul cost in balanced section for segment i.
B - The "b" term in the quadratic equation. This is used in the balanced section subroutine to find T.
$B 2, B 3, B 4, B 5, B 6, B 7, B 8, B 9, B \emptyset$ - See part (a).
C1,C2,C3 - See part (a).
D6 - Total riprap cost for segment i with all construction types.
D7 - Total mobilization cost for segment i with all construction types.

D8 - Total endhaul cost for segment i in the fullbench with endhaul construction.

D9 - Total surfacing cost for segment i with all construction types.
E1 - A collection of terms in the balanced section area equation (see mathematical formulation).

E2 - A collection of terms in the balanced section area equation (see mathematical formulation).

E3,E4,E5,E6,E7 - End area sections in square feet of the balanced section (see Figure 10).

E8, E9 - A collection of terms in the balanced section area equation (see mathematical formulation).

EO - Slope distance between upper and lower catch point of rock section in balanced subroutine (See Figure 10).

F1 - An angle between the common cutslope and a line normal to the sideslope in balanced subroutine (see Figure 10).

F2 - Same as F1, except used in full bench subroutine (see Figure 12).
F6 - Total common excavation costs for balanced construction on segment i.

F7 - Total rock excavation costs for balanced section construction on segment i.

F8 - Total seeding costs for balanced section construction on segment i .

F9 - Total clearing and grubbing costs for balanced section construction on segment i.

G4 - Total rock excavation in bank cubic yards for balanced section construction on segment i.

G5 - Total common excavation in bank cubic yards for balanced section construction on segment i.
G6 - Total clear and grub acres for balanced section construction on segment i.

G7 - Total seeding acres for balanced section construction on segment i.

H - For/Next variable (loop contains main costing program).
$\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4$ - End area sections in square feet of the full bench section (see Figure 12).

H5 - Total end area section in square feet of full bench section where all excavation is common (see Figure 13).

H6 - Angle between subgrade and cutback in degrees on full bench section with all common excavation (see Figure 13).

H7 - Angle between cutbank and groundslope line in degrees on full bench section with all common excavation (see Figure 13).

I,J - Same as part (a).
J2 - (0/1) variable. Want segment data output?
K - The " c " term in the quadratic equation $T=-b+\sqrt{b^{2}-4 a c} / 2 a$.
This is used in the balanced section subroutine to find T.
K1 - Total lineal feet of outlet pipe needed in segment i.
K2 - Length of each individual outlet pipe needed in segment i.
K3 - Compacted surfacing depth in feet.
K4 - (I/O) variable. Is there a ditch?
K5 - Cutslope angle in degrees.
K6 - Cutslope factor in common material (horizontal to vertical), i.e., 1-1/2 to 1.

K7 - Running surface width in feet.
K9 - Outlet pipe spacing in feet on segment i.
$K \emptyset$ - Number of outlet pipe installations needed in segment i.
L6 - Total common excavation in bank cubic yards on full bench section on segment \mathbf{i}.

L7 - Total rock excavation in bank cubic yards on full bench section on segment i.

L8 - Total seeding acres on full bench section on segment \mathbf{i}.
L9 - Total clearing and grubbing acres on full bench section on segment i.

LD - Total outlet pipe (installed) cost for segment i.
M4 - Horizontal width of common cutbank section in balanced construction (see Figures 10 and 11).
M5 - Horizontal width of fill in balanced construction (see Figures 10 and 11).

M6 - Slope width of M5.
M7 - Same as part (a).
M8 - Percent rock in fullbench construction for segment i.
M9 - Same as part (a).
N6 - Total network length in miles.
N7 - Total segment length in miles.
$01,02,03,04,05,06,07,08,09,00$ - Length and angle variables for fill over pipes crossing major creeks (see Figure 14).

P - For/Next variable (loop sizes pipes and/or bridges crossing major creeks).

P1 - A collection of terms in the balanced section area equation (see mathematical formulation).

P3 - Slope of creek in degrees.
P4 - Subgrade width of fill over pipe on major creek crossing \mathbf{j} on segment i .

P5 - Total length of pipe on major creek crossing j on segment i.
PD - Total cost for fences and gates on segment i.
Q - The angle between the groundslope and the fillslope on balanced section (see Figures 10 and 11).

Q7 - Accumulated major pipe cost for segment i.

Q8 - Total excavation (rock plus common) in bank cubic yards for full bench construction on segment i.

Q9 - Total excavation (rock plus common) in bank cubic yards for balanced construction on segment i.

QD - Percent rock in balanced construction for segment i.
R - The angle between the groundline and rock cutback on balanced section (see Figures 10 and 11).

R1 - Total rock excavation in bank cubic yards on fullbench section for segment i.

R2 - Total common excavation in bank cubic yards on fullbench section for segment i.

R3 - Total clear and grub acres on fullbench section for segment i.
R4 - Total seeding acres on fullbench section for segment i.
R5 - Total surfacing needed in loose cubic yards for segment i.
R6 - Total number of turnouts in segment i.
R7 - Number of miles to surfacing pit.
R9 - Number of miles to waste area.
S8 - Total cost to construct fullbench and endhaul section on segment i.
S9 - Total cost to construct fullbench and sidecast section on segment i.

S§ - Total cost to construct balanced section on segment \mathbf{i}.
T - Distance in feet from the daylight point to inside edge of subgrade on balanced section on segment i (see Figures 10 and 11).

T1 - Distance in feet from the daylight point to catch of the rock section on the subgrade on balanced section on segment \mathbf{i} (see Figure 10).

T2 - Distance in feet from catch point of rock section to the inside edge of subgrade on balanced section on segment \mathbf{i} (see Figure 10).

T4 - The projection of T1 to slope distance (see Figure 10).
T7 - (0/1) variable. Road geometry same for all segments?
V - Same as part (a).
V1 - End area in square feet of the pipe crossing major creeks. It is based on Talbot's Formula.

V3 - Amount of riprap needed in loose cubic yards for segment i.
W - Subgrade width in feet on both balanced and fullbench construction.
W1,W2,W3,W4,W5,W6,W7 - Lengths in feet of various parts of the end area used in fullbench construction (see Figure 12).

W8 - Grand total network cost using fullbench and endhaul construction.
W9 - Grand total network cost using fullbench and sidecast construction.

WØ - Grand total network cost using balanced construction.
X8 - Grand total excavation (rock plus common) in bank cubic yards for fullbench construction.
$X \emptyset$ - Grand total excavation (rock plus common) in bank cubic yards for balanced construction.

Z1 - Output indicator variable (short=1, medium=2, long=3).

Z8 - A collection of terms in the balanced section area equation (see mathematical formulation).

Z9 - End area in square feet of excavation in balanced section when all excavation is common material (see Figure 11).

Figure 10. End area diagram for balanced section with rock

Figure 11. End area diagram for balanced section without rock

Figure 12. End area diagram for fullbench construction with rock.

Figure 13. End area diagram for fullbench construction without rock.

Figure 14. End area diagram for fill covering pipe on major cks.

MATHEMATICAL FORMULATION

The mathematics used in (R.C.P.) is not difficult or involved. Variations of the following mathematics principles were used.

1. Right Triangle Equations
2. Oblique Triangle Equations
3. Quadratic Formula $-a x^{2}+b x+c=0$

The formulations presented here will start with part (a) progressing in the same order as the program actually executes. Beginning and ending program line numbers in addition to verbal description will be used to identify the separate math routines.

Part a

-Digitize Segment Length-
Program Lines - (340 to 390)
Subroutine Lines - (840 to 1000)
Description: X and Y coordinates are set at the end of the segment. The segment is then digitized in the continuous mode. With this mode ($\mathrm{X} 1, \mathrm{Y} 1$) and ($\mathrm{X} 2, \mathrm{Y} 2$) coordinates are set along the segment. After each ($\mathrm{X} 2, \mathrm{Y} 2$) coordinate is set, the program tests if ($\mathrm{X} 2, \mathrm{Y} 2$) is 0.05 inches from (X, Y). If it is, the routine stops. If it is not, ($\mathrm{X} 2, \mathrm{Y} 2$) becomes ($\mathrm{X} 1, \mathrm{Y} 1$) and a new ($\mathrm{X} 2, \mathrm{Y} 2$) is set. After each iteration, the distance between ($\mathrm{X} 1, \mathrm{Y} 1$) and ($\mathrm{X} 2, \mathrm{Y} 2$) is found and accumulated. This distance is found using the following equation.

$$
\operatorname{SQR}\left[(X 1-X 2)^{2}+(Y 1-Y 2)^{2}\right]
$$

-Digitize Road Grade-
Program Lines - (400 to 520)
Subroutine Lines - (1010 to 1040)
Description: The user inputs whether the haul is favorable, adverse or level. If the haul is level, the grade equals 0\%. If the haul is not level, the user inputs the number of contours crossed by the segment. The contours are then multiplied by the contour interval and then divided by the segment length. Adverse haul changes the sign of the grade to negative.
-Digitize Average Sideslope of Road-
Program Lines - (530 to 660)
Description: Each segment is sampled five times at random along its length. Each sample places (X, Y) coordinates above the road at a contour line and ($\mathrm{X} 1, \mathrm{Y} 1$) coordinates below the road on a contour line five contours below (X, Y). This procedure accumulates the total horizontal distances of the 5 trials and divides them into 25 times the contour interval. The arc-tangent is then used to get this figure in degrees.
-Digitize Creek Grade-
Program Lines - (750 and 760)
Subroutine Lines - (1680 to 1750)
Description: This is similar to the previous routine, except only one sample is taken at each creek where it crosses the road.
-Digitize Area Drained on Each Creek-
Program Lines - (770 and 780)
Subroutine Lines - (1760 to 2000)
Description: X and Y coordinates are set at point on the perimeter of the area drained. The perimeter is then digitized in the continuous mode. With this mode, $(X 1, Y 1)$ and $(X 2, Y 2)$ coordinates are set along the perimeter. The program tests to see if (X, Y) is 0.05 inches from (X2,Y2). If it is, the area is closed and the routine stops. If it is not, (X2,Y2) becomes the new (X1, Y1), and a new ($\mathrm{X} 2, \mathrm{Y} 2$) is set. Each iteration results in a very small triangle defined by the three points $(X, Y),(X 1, Y 1)$ and $(X 2, Y 2)$. These small triangle areas are accumulated using the double-meridian distance method, using the following equation.

$$
\text { Area }=(X 1-X)(Y 2-Y) / 2-(Y 1-Y)(X 2-X) / 2
$$

These small areas are then accumulated to get the total area drained of the creek.

Part b

-Fullbench Volumes and Costs-
Program Line - (250)
Subroutine Lines - (670 to 1330)
Description: The program first checks to see if the road prism intersects the rock section. If it doesn't, it sets the rock excavation equal to zero, and calculates the common excavation directly (Figure 13). If there is rock excavation, end areas are
broken into four sections and calculated (Figure 12). The following equations are used throughout this subroutine.
-Right Triangle-
$a=c(\sin A)=B(\tan A)=c(\cos B)$
$b=c(\cos A)=c(\sin B)=a(\tan B)$
$c=\frac{a}{\cos B}=\frac{b}{\sin B}=\frac{a}{\sin A}=\frac{b}{\cos A}$
Area $=(a b) / 2$
-0blique Triangle-
$b=\frac{a}{\sin A}(\sin B)$
$c=\frac{a}{\sin A}[\sin (A+B)]$
Area $=\frac{a^{2}(\sin B)(\sin C)}{2(\sin A)}$
-Large Pipe End Area Sizing-
Program Line - (1110)
Subroutine Lines - (1340 to 2140)
Description: This subroutine sizes the major pipe according to Talbot's Formula.

Pipe end area $=C \times[$ Area Drained (acres)]. 75
The C factor used here is very critical. For the study area in question, C was set at 0.2 , based on local information. After the pipe end area is calculated, the subroutine enters a series of discreet pipe sizes ranging from 1.77 to 104.8 square feet end area. A pipe is then found which corresponds to the end area for the creek.

If the end area needed is greater than 104.8 square feet, a bridge is used.
-Large Pipe Length Sizing-
Program Line - (2100)
Subroutine Lines - (2270 to 2400)
Description: This subroutine simulates a fill over the creek. The pipe diameter (or rise if arch) is covered by 4 feet of topping at the inside edge of the subgrade (Figure 14). The subgrade includes two feet of fill widening. A 1-1/2 to 1 fill slope is then run from each corner of the subgrade until it catches with the creek grade. This total distance under the fill equals the pipe length.
-Outlet Pipe Length-
Program Line - (1120)
Subroutine Lines - (2150 to 2260)
Description: The outlet pipe spacing is based on the Transportation Engineering Handbook, U.S.F.S., 1966 (Figure 6). A power regression was run on spacing in feet vs. road grade in percent. Erosion class II (unified classification SM and ML) was used for the study area.

Spacing (ft.) $=(2437.5) \times(\text { rd. grade } \%)^{-1.00}$
-Balanced Section Volumes and Costs-
Program Line - (260)
Subroutine Lines - (2410 to 3290)

Description: As with the fullbench subroutine, the balanced section subroutine tests to see if the road prism intersects solid rock. The balanced section subroutine moves the subgrade in and out horizontally until the volume of cut exactly equals the volume of fill (Figure 10). The road prism end area is divided into 5 smaller areas.
-Rock Area-
$E 6=(T-T l)^{2} \times\left(\frac{\sin 116.57^{\circ} \times \sin G(I)}{2 \times \sin R}\right)$
Simplifying, we get:
Let $\mathrm{E} 2=\left(\frac{\sin 116.57^{\circ} \times \operatorname{sinG}(\mathrm{I})}{2 \times \sin R}\right)$
$\therefore E 6=(T-T 1)^{2} \times E 2$
-Fill Area-
$E 7=(W-T)^{2} \times\left(\frac{\sin 146.31^{\circ} \times \sin G(I)}{2 \times \sin Q}\right)$
Simplifying, we get:
Let $\mathrm{El}=\left(\frac{\sin 146.31^{\circ} \times \operatorname{sinG}(\mathrm{I})}{2 \times \sin \mathrm{Q}}\right)$
$\therefore E 7=(W-T)^{2} \times E 1$
-Common Areas-
$E 3=((T 4 \times C(I) / 2) \times 0.8$
$E 4=(((C(I) \times \tan F 1) \times C(I)) / 2) \times 0.8$
$E 5=(T-T 1) \times\left(\frac{\sin 116.57}{\sin R}\right) \times C(I) \times 0.8$
Simplifying, we get:
Let $\mathrm{P} 1=\left(\frac{\sin 116.57}{\operatorname{sinR}}\right) \times C(I) \times 0.8$
$\therefore E 5=(T-T 1) \times P 1$

The objective of this subroutine is to make the common cut areas plus the rock cut area equal to the fill area.

$$
E 3+E 4+E 5+E 6-E 7=0
$$

or
$\mathrm{E} 3+\mathrm{E} 4+((\mathrm{T}-\mathrm{T} 1) \times \mathrm{Pl})+\left((\mathrm{T}-\mathrm{T} 1)^{2} \times \mathrm{E} 2\right)-\left((\mathrm{W}-\mathrm{T})^{2} \times \mathrm{E} 1\right)=0$
By expanding terms we get:

$$
E 3+E 4+(T)(P 1)-(T 1)(P 1)+\left(T^{2}\right)(E 2)-(2)(T)(T 1)(E 2)+\left(T 1^{2}\right)(E 2)
$$

$$
-\left(W^{2}\right)(E 1)+(2)(T)(W)(E 1)-\left(T^{2}\right)(E 1)=0
$$

By collecting like terms we get:
$\left(T^{2}\right)(E 2-E 1)+(T)((P 1)+((2)(W)(E 1))-((2)(T 1)(E 2))+K=0$
where $K=\left(T 1^{2}\right)(E 2)+E 3+E 4-((P 1)(T 1))-\left(\left(W^{2}\right)(E 1)\right)$
Recall: $a x^{2}+b x+c=0$
Putting the variables into this form, we get:
$a=(E 2-E 1)$
$b=(P 1)+((2)(W)(E 1))-((2)(T 1)(E 2))$
$c=K$ (shown above)
Simplifying further, we get:

$$
\begin{aligned}
& E 8=(2)(T 1)(E 2) \\
& E 9=(2)(W)(E 1) \quad 0 R \\
& \left(T^{2}\right)(E 2-E 1)+T((P 1)+(E 9)-(E 8)+K=0
\end{aligned}
$$

The equation is now in the quadratic form where $x=T$. T is solved for by the following equation.
$T=\frac{-b+\sqrt{b^{2}-(4)(a)(K)}}{(2)(a)}$

If T is greater than Tl , then we know that rock is present in the end area section. The subroutine then proceeds to calculate the appropriate end areas using the calculated T. If T is less than Tl , the subroutine sets the rock area (E6) equal to zero and calculates a new T base on all common excavation (Figure 11). With this case, the following equations are used.
-Fill Area-
$E 7=(W-T)^{2} \times E 1$ (same as before)
-Common Area-
$Z 9=\left(T^{2}\right) \times\left(\frac{\sin (180-K 5) \times \sin G(I)}{2 \times \sin (K 5-G(I))}\right) \times 0.8$
Simplifying, we get:
Let $Z 8=\left(\frac{\sin (180-K 5) \times \operatorname{sing}(I)}{2 \times \sin (K 5-G(I))}\right) \times 0.8$
$\therefore Z 9=\left(T^{2}\right)(Z 8)$

Our equation now becomes:

$$
\begin{aligned}
& Z 9-E 7=0 \quad O R \\
& \left(T^{2}\right)(Z 8)=\left(W^{2}-(2)(W)(T)+T^{2}\right)(E 1) \quad O R \\
& \left(T^{2}\right)(Z 8)=\left(W^{2}\right)(E 1)-(2)(W)(T)(E 1)+\left(T^{2}\right)(E 1)
\end{aligned}
$$

Bringing all terms to 1 side we get:
$\left(T^{2}\right)(Z 8)-\left(T^{2}\right)(E 1)-\left(\left(W^{2}\right)(E 1)\right)+(2)(W)(T)(E 1)=0$

Collecting terms we get:
$\left(T^{2}\right)(Z 8-E 1)+(T)(2)(W)(E 1)-\left(\left(W^{2}\right)(E 1)\right)=0$
Recall: $a x^{2}+b x+c=0$
Putting the variables into this form, we get:

$$
\begin{aligned}
& a=(Z 8-E 1) \\
& b=(2)(W)(E 1) \\
& c=K=-\left(\left(W^{2}\right)(E 1)\right)
\end{aligned}
$$

This equation is then put into the quadratic formula, and solves for T. The right and oblique triangle equations are then used to find appropriate areas, lengths and costs.

STUDY AREA DESCRIPTION

-Location-
The study area is located on the Rochester Ranger District on the Green Mountain National Forest. The area is bounded to the West by the Long Trail; the East by State Highway 100; the North by State Highway 125; and the South by State Highway 73. The study area encompasses 25,859 acres wholly within Windsor and Addison Counties. Of this total acreage, approximately 27% or 7,085 acres are in private ownership. Much of the private land is owned by timber producing companies.
-Existing Transportation System-
Most roads in the study area follow major brooks. These roads are built on old locations dating back to pioneer days. These old locations seem to follow the brook until the grade becomes too steep. At this point, the road usually ends. Only recently have extensions to these roads been made in an attempt to gain elevation. Figure 25 shows the existing roads. Many of the older roads in the study area are in very poor condition. They are very narrow; have poor drainage and approach grades of 30%. Some of these roads are being considered for reconstruction to provide future timber access (Figure 15).

Figure 15. A Section of Tunnel Brook Road.

In sharp contrast to these older, very low standard "jeep trails," are the portions of new construction. Most recently constructed roads are single lane, surfaced roads including a ditch. They are built with a design speed of 15 M.P.H. (Figure 16). -Stand Conditions-

The stands in the study area are extremely variable in terms of both age and size. The average commercial stand contains about 85 square feet of basal area and is about 10 inches average D.B.H.

Figure 16. Taylor Brook Road. Typical new construction.
(Appendix 1, 3). The predominant species are Beech, Birch and Maple.
-Silviculture-
Most cutting on the Green Mountain National Forest is geared towards even aged management. The predominant treatment is
shelterwood and seed tree cutting. There is evidence that acceptable regeneration results after clearcutting. Many times, shelterwood and seed tree prescriptions are used to satisfy the visual management constraints. Figure 17 shows a typical area that has been shelterwood cut.

Figure 17. Shelterwood Cut.
-Current Logging Methods-
At the present time, all logging is done with tractors and rubber tired skidders. Sales are planned using a minimum of truck roads. Swing trails or "arch roads" radiate from the landing to distances as far as 1-1/2 miles (Figure 18). Average skids of $3 / 4$ mile or more are not uncommon. The timber is usually handled

Figure 18. Typical Arch Road.
twice during the yarding operation. The timber is skidded tree length and bunched at an arch road using a small tractor (Figure 19). Large, rubber tired skidders equipped with as many as 10 chokers are then used to swing the logs down the arch road to the landing (Figure 20). The trees are bucked at the landing in lengths ranging from 8 to 16 feet, depending on the mill to which they are hauled (Figure 21). Self loading trucks then load the logs and haul them

Figure 19. Small Tractor Bunching Logs at Arch Road.

Figure 20. Typical Skidder Swinging on Arch Road.

Figure 21. Bucked Logs at the Landing.
to the mill. Most logging trucks in New England are short loggers and don't use a trailer (Figure 22). It is not uncommon to see log trucks with an auxiliary axle in the rear which rides off the ground when unloaded.

Figure 22. Typical Logging Truck.

ROAD NETWORK DESCRIPTION
Figure 23 shows the proposed transportation/harvest plan for the study area. Approximately 99 miles of new construction are proposed under this plan. Although exact locations will depend on actual ground conditions, this road density closely approximates that which is needed to cable log slopes greater than 35%. The road network accesses all of the U.S.F.S. ownership in the study area except the marginal areas shown in red. These difficult areas could be accessed, but based on their steepness, low site and timber volumes, and recreation value, it was deemed a better resource and capitol allocation to not \log them in the near future.

The proposed cable logging areas are clearly marked, and coincide very closely with the steep sideslopes above 35% (Figure 24). The areas not shown as cable or marginal are considered downhill tractor. These tractor areas will have arch road densities of at least double the cable logging truck road density. To improve map clarity, they are not shown in Figure 23. Figures 25 and 26 show the maps used with (R.C.P.). They show major brooks and their drainage areas, clearing and grubbing difficulty and depth to bedrock.

Figure 23. Proposed Study Area Road Network.

Figure 24. Ownership and Steep Sideslope Map.

Figure 25. Major Creek and Drainage Area Map.

Figure 26. C \& G Difficulty and Bedrock Depth Map.

ROAD PARAMETER COST SENSITIVITY

The road network displayed in Figure 23 was run through the Road Cost Program. Figures 25 and 26 show the creek, bedrock depth and clear and grub data which was used. Appendix 6 shows (R.C.P.) output for the 97 segments in the proposed network. A summary of this data is as follows:

12' Running Surface with Ditch

	Seg. \#	Fullbench \& Endhaul	Fullbench \& Sidecast	Balanced
High	18	\$243,680/mi.	\$222,536/mi.	\$102,901/mi.
Low	19	37,016/mi.	33,106/mi.	27,631/mi.
Average	--	114,708/mi.	101,875/mi.	50,906/mi.

14' Running Surface with Ditch

	Seg. \#	Fullbench \& Endhaul	Fullbench \& Sidecast	Balanced
High	18	\$298,540/mi.	\$272,754/mi.	\$123,679/mi.
Low	19	42,531/mi.	$37,828 / \mathrm{mi}$.	31,029/mi.
Average	--	140,285/mi.	124,700/mi.	59,573/mi.

NOTE: Both sections used the same data below:
Cutslope Angle - 1:1
Surfacing Depth - 6" (compacted)
0.4 miles to waste area
16.0 miles average haul to rock pit

Appendix 7 varies important road construction parameters and shows how total cost is changed. The following parameters are used.

Surfacing Depth - Varies from 0 to 12 inches
Distance to Waste Area - Varies from 0.2 to 1.0 miles
Distance to Rock Pit - Varies from 4 to 16 miles
Cutslope Angles - Varies from .75:1 to 1.5:1

ROAD STANDARDS FOR CABLE LOGGING
In order for cable logging to become a profitable activity in New England, truck roads will have to be built on the correct location with lower standards than recent new construction (Figure 31). Upgrading of old locations in brook bottoms should be considered only if they access tractor ground, or if they provide the opportunity for gaining elevation with additional road. Well constructed, minimum standard parallel truck roads seem to offer much better cable system access with much less impact on the brooks.

Truck Road Densities

-Sideslopes greater than 45\% - These steeper slopes should have road densities of from 4 to 5 miles per section. This is based on uphill cable yarding with road spacing of 800^{\prime} to 1200^{\prime} slope distance. The amount of intermediate supports needed will vary with topography. It is estimated that approximately 40% of the uphill cable settings greater than 600 feet will need intermediate supports.
-Sideslopes less than 45\% - These slopes present the opportunity to downhill cable log. In these areas, a combination of uphill and downhill cable logging will decrease the road density to 2.5 to 3.5 miles per section. This is based on uphill and downhill yarding to the same truck road.

Landings
Landing spacing and size will depend on the direction of yarding and silvicultural prescription. Clearcut prescriptions will need landings spaced 300^{\prime} to 400^{\prime} along the truck roads. This wide spacing is due to the fan-shaped settings possible in clearcuts. Any prescription which leaves residual trees will be logged using a slackpulling carriage with lateral yarding capability. In these areas, landings should be planned 140^{\prime} to 170^{\prime} apart.

On sideslopes less than 25%, the landed logs will be stable on the natural sideslope. In these areas, both uphill and downhill landings will require no additional excavation.

All downhill landings on slopes steeper than 25% will need room for the yarder, plus adequate "run out" distance for safety. See Figure 27 for diagram of safe and unsafe downhill landings.

Uphill landings on slopes exceeding 25% will also need an area where the logs can be safely chased. Figure 28 shows how the new Oregon State Safety Law treats minimum landing size.

Road Standards

-Road Width - Minimum of 12 ' running surface.
-Construction Type - Balanced if possible, single lane.

Figure 27. Safe and Unsafe Downhill Landings

YARDING, SWINGING AND LOADING
80-325 LANDING AREAS. (1) Unless otherwise specified, landing areas shall:
(a) Be large enough to heel and swing logs without striking standing timber, rigging, or other equipment or objects;
(b) Be large and level enough to land and deck logs so that they will not slide or roll in the direction of workers or equipment;
(c) Be large enough for safe movement of all machinery;
(d) Be kept chunked out and have an even surface; and
(e) Not have materials pushed, thrown or dumped over the edge in a manner or at a time that will endanger workers.
(Formerly 16-9-1. Amended 12-21-79 by WCD Admin. Order, Safety 11-1979; filed 12-24-79; effective 3-1-80.)
(2) Landing chutes shall be long and level enough so that at least $2 / 3$ of the longest bucked \log to be yarded shall rest on the ground.

EXCEPTION: This is not intended to restrict the yarding or loading of logs for poles piling, or an infrequent long break or tree length, provided the \log is secured before unhooking the choker.
(Adopted 12-21-79 by WCD Admin. Order, Safety 11-1979; filed 12-24-79; effective 3-1-80.)
(3) During uphill yarding, the landing chute shall be cleared of logs before the next turn of logs is landed.

EXCEPTION: This rule does not apply:
(a) If logs are fully contained in the landing chute, or
(b) If there is no possibility workers working below the landing may be struck by rolling objects coming off the landing.
(Adopted 12-21-79 by WCD Admin. Order, Safety 11-1979; filed 12-24-79; effective 3-1-80.)
(4) Roadside or "continuous" landings shall be large and wide enough to safely operate and maintain the yarding or loading equipment. Outrigger pads, tracks, or wheels shall be on firm, stable ground.
(Adopted 12-21-79 by WCD Admin. Order, Safety 11-1979; filed 12-24-79; effective 3-1-80.)
(5) In logging operations where the yarder is set up in the haul road and logs are landed on the slope below the road, the following shall apply:
(a) If the landing chute slope is 20% or less, logs may be landed and decked in the chute provided the logs can be left in a stable position;
(b) If the landing chute slope exceeds 20%, decking is not permitted in the chute if a chaser is required to unhook the rigging from the logs or if workers are working below the landing chute and are exposed to rolling or sliding logs;
(c) If logs are to be decked below the road, the logs shall be effectively secured from rolling or sliding down the hill; or

Figure 28. Oregon State Safety Rules Concerning Landings.
-Design Speed - This will depend on the amount of timber to be hauled over the road. Roads accessing small volumes should be designed with a slower speed. This reduces costs, increases safety, as well as decreasing the amount of total excavation, since the roads will tend to fit the natural lay of the land better. For most roads, the design speed should not exceed 10 M.P.H.
-Cutslope Angle - This will depend on the soil conditions. Steeper cut angles should be examined in terms of economics to determine if slide removal over time is less than the initial increase in construction costs.
-Ditches - Here again, this depends on the local conditions. It is very important to design for good drainage on truck roads.
-Surfacing - Surfacing is a very important item in truck road construction. Even though it is a very high cost item, it should not be sacrificed to save money. Engineering analysis based on the logging season, volume hauled and native soil types should be done on all roads to arrive at a reasonable surfacing depth. The forest might consider rock pit development within the study area to reduce surfacing costs.

Figure 29. Unfinished Subgrade on Boyden Brook Road.

FUEL CONSUMPTION OF ALTERNATIVE SYSTEMS

CABLE VS. TRACTOR
Todays shortage of petroleum warrants careful consideration of the fuel consumption of alternative logging systems. All activities involving the use of internal combustion engines should be considered. This analysis will consider the estimated total fuel consumption for harvesting two treatment areas in a section of land over a 50-year period. The example treatment areas each encompass 250 acres (Figure 30).

Figure 30. Example Section and Treatment Areas.

Accumulated fuel consumption will be computed for the following logging systems and their associated transportation networks.

1. Uphill Cable Yarding (900' average external yarding distance)
2. Downhill Cable Yarding (900' average external yarding distance)
3. Combination Uphill/Downhill Cable (900' average external yarding distance)
4. Tractor Downhill (1 mile average external yarding distance)

Based on the average external yarding distance of each system, the following truck road densities are assumed for the example section (Figure 31).

1. Uphill Cable Density/Section $=4.8$ miles
2. Downhill Cable Density/Section $=4.8$ miles
3. Uphill/Downhill Cable Combination/Section $=3.0$ miles
4. Tractor Density/Section $=0.8$ miles

Based on an average arch road spacing of 500 feet, tractor logging arch road density will be 10 miles/section.

Uphill Cable
(4.8 miles)

Uphill/Downhill Cable Combination (3.0 miles)

Downhill Cable (4.8 miles)

Tractor
(0.8 miles) \& (10 miles arch roads)

Truck Road
Arch Road
Cable Yarding Direction $\uparrow \uparrow$

Figure 31. Road Densities.

Production, fuel consumption and equipment types used for both yarding and road construction are shown on the following pages.
ROAD CONSTRUCTION:

EQUIPMENT	USE	PRODUCTION	REMARKS	FUEL CONSUMPTION		
				Load Factor	Gallons Per Hr.	M.P.G.
Tractor (Cat. D6D)	Clear \& Grub	28.8 hrs./acre		Med.	5.2	----
Tractor (Cat. D6D)	Excavation	$44 \mathrm{c} . \mathrm{y} . / \mathrm{hr}$.	$200 '$ Ave. Haul	Med.	5.2	----
Skidder (Cat. 518)	Clear \& Grub	$20.2 \mathrm{hrs} /$.		Med.	2.2	----
Grader (Cat. 130G)	Shape Subgrade	20\% of Dozer		Med.	4.8	----
Grader (Cat. 130G)	Maintenance	3 M.P.H.	3 Passes	Med.	4.8	----
Dump Truck	Haul Surfacing	14 c.y./trip		Med. to High	---	3-6
Lowboy	Move Construction Equip.	4 trips/job		Med. to High	--	3-6
Loader (Cat. 950)	Load Surfacing	. $15 \mathrm{hrs} . / \mathrm{load}$		Med. to High	---	3-6

NOTE: Production based on R-9 Road Cost Guide.
YARDING:

EQUIPMENT	USE	PRODUCTION	REMARKS	FUEL CONSUMPTION		
				Load Factor	Gallons Per Hr.	M.P.G.
Tractor (Cat. D3B)	Dowhill Skidding	12 M.B.F./day	Shel terwood	Med.	2.4	----
Skidder (Cat. 518)				Med.	2.2	----
Tractor (Cat. D3B)	Downhill Skidding	10 M.B.F./day	Overstory Removal	Med.	2.4	----
Skidder (Cat. 518)				Med.	2.2	----
Tractor (Cat. D3B)	Downhill Skidding	6 M.B.F./day	Thinning	Med.	2.4	----
Skidder (Cat. 518)				Med.	2.2	----
Ecologger II	Uphill Yarding	20 M.B.F./day	Shel terwood	Med.	2.6	----
Ecologger II	Uphill Yarding	16 M.B.F./day	Overstory Removal	Med.	2.6	----
Ecologger II	Downhill Yarding	17 M.B.F./day	Shelterwood	Low	2.3	----
Ecologger II	Downhill Yarding	13 M.B.F./day	Overstory Removal	Low	2.3	----
Smith Timbermaster	Uphill Yarding	6 M.B.F./day	Thinning	Med.	0.8	----
Smith Timbermaster	Downhill Yarding	5 M.B.F./day	Thinning	Low	0.6	----

See Page 83 for NOTES:

NOTES:

1) Yarding production rates are based on experienced data from the Green Mountain National Forest and the results of Stirler (15), 1980.
2) This analysis does not endorse any particular manufacturer. Equivalent machines may be substituted.
3) Cable yarding production reflects some use of intermediate supports.
4) Fuel consumption rates are based on experienced data and the Caterpillar Performance Handbook, Edition 10(3).

Truck and arch road construction are assumed to be built according to the following specifications:

Truck Roads
Construction Type - Balanced
Running Width - 12 feet
Ditch? - Yes
Compacted Surfacing Depth - 6 inches
Cutslope Angle - 1:1
Rock Haul Distance - 16 miles
Grade - 4\%

Arch Roads
Width - 10 feet
Maximum Grade - 25%

For comparative purposes, the example section is treated as a homogeneous unit. The following ground, stand and cut conditions apply to the entire section.

Ground Conditions
Average Sideslope - 40\%
Bedrock Depth - 4 feet
Clear \& Grub Difficulty - Medium

Stand Conditions
Mixed Hardwood @ 9-12 M.B.F./acre

Cutting Conditions

Shelterwood - Remove 6 M.B.F./acre
Overstory Removal - Remove 3 M.B.F./acre
Thinning - Remove 1.5 M.B.F./acre

The Road Cost Program was used to arrive at quantities per mile for truck roads. These quantities were then analyzed using the production and fuel consumption rates. The results are as follows:

Total Excavation - 8165 c.y.
Clearing \& Grubbing Area - 5.19 acres
Total Surfacing - 1717 c.y.

Truck Road Construction/Mile

Activity	Equipment	Total Gallons Consumed
Clear \& Grub	Tractor	777
	Skidder	231
Excavation	Tractor	967
	Grader	178
Surfacing	Dump Truck	1161
	Loader	113
Survey	Pick-up	19
	TOTAL:	
	Arch Road Construction/Mile	
Activity	Equipment	Total Gallons Consumed
Log R.O.W.	Skidder	11
Build Arch Road	Tractor	26
	TOTAL	

Logging Fuel Consumption

Activity	Equipment	Volume Removed M.B.F.	Total Gallons Consumed
Uphill Cable - Shelterwood	Ecologger II	1,500	1,560
Uphill Cable - O.S.R.	Ecologger II	800	1,040
Uphill Cable - Thinning	Smith Timbermaster	375	400
Downhill Cable - Shelterwood	Ecologger II	1,500	1,623
Downhill Cable - O.S.R.	Ecologger II	800	1,132
Downhill Cable - Thinning	Smith Timbermaster	375	360
Downhill Tractor - Shelterwood	Tractor/Skidder	1,500	4,600
Downhill Tractor - O.S.R.	Tractor/Skidder	800	2,944
Downhill Tractor - Thinning	Tractor/Skidder	375	2,300
Miscellaneous Activity Fuel Consumption			
Activity	Equipment Total Gallons Consumed		
Move in/out Tractor Logging Equip	Lowboys		15
Move in/out Cable Logging Equip.	Lowboys		8
Move in/out Const. Equip.	Lowboys		31
Waterbar Tractor Arch Roads	Tractor		20
Open Tractor Arch Roads \& Landing	gs Tractor		25
Build Tractor Landings	Tractor		10
Maintenance/yr./mile	Grader		4.8
Build Uphill Cable Landings	Tractor		60
Build Downhill Cable Landings	Tractor		20
Open Uphill Cable Landings	Tractor		30
Open Downhill Cable Landings	Tractor		40

Reshape \& Finish Truck rd./mi. Grader
10
Move in/out Landing Tractor Lowboy

The following timber harvest schedule is assumed for this analysis:

Year 0 - Treatment Area \#1 - S.H. - 1,500 M.B.F.
Year 5 - Treatment Area \#1 - O.S.R. - 800 M.B.F.
Year 20 - Treatment Area \#2 - S.H. - 1,500 M.B.F.
Year 25 - Treatment Area \#2 - O.S.R. - 800 M.B.F.
Year 30 - Treatment Area \#1 - Thin - 375 M.B.F.
Year 50 - Treatment Area \#2 - Thin - 375 M.B.F.

This analysis assumes each logging system accomplishes the same silvicultural activities at the years specified above. The road construction schedule is as follows:

TRACTOR				
	Arch Roads	Truck Roads	Uphill/Downhill Comb. Truck Rds.	Uphill \& Downhill Truck Rds.
Year 0	5 mi .	0.8 mi .	1.5 mi.	2.4 mi
Year 5	----	----	--------	--------
Year 20	5 mi .	----	1.5 mi.	2.4 mi
Year 25	----	----	--------	--------
Year 30	----	----	--------	--------
Year 50	--	----	--------	--------

Maintenance is assumed on a yearly basis for all truck roads which exist. Reshape and finish is assumed on all existing truck
roads, when they reach an age of 25 years.
The results of this study show that initially, cable logging has a higher fuel consumption due to the extra amount of road construction. However, since actual yarding with cable is more fuel efficient, over the long run cable logging actually consumes less fuel. The total fuel consumption at the end of the 50 year harvest period by logging system is as follows:

Uphill Cable - 23,916 gallons (Figure 34)
Downhill Cable - 24,306 gallons (Figure 35)
Uphill/Downhill Combination Cable - 18,027 gallons (Figure 33)
Tractor - 23,402 gallons (Figure 32)

It appears that with this harvest schedule, cable logging surpasses tractor logging after the following years:

Uphill Cable - about 50 years
Downhill Cable - about 60 years
Uphill/Downhill Combination Cable - about 25 years

At first glance, the uphill/downhill combination is the best alternative. This is only feasible on slopes flatter than about 40%, due to the landing size needed for safe downhill yarding. On slopes over 40%, either tractor or uphill cable should be used. Also, on slopes greater than 40%, full suspension should be used on all downhill cable shows. This is because partial suspension, downhill logging results in erratic swinging and hopping of the log. This type of \log behavior results in excessive soil displacement, as
well as a safety hazard to the rigging crew. Based solely on fuel consumption, the following logging systems should be used.

Slopes greater than 40% - Uphill Cable
Slopes less than 40% - Uphill/Downhill Cable Combination

Of course, the final determination should include other considerations, such as: visual manägement, recreation, soil and water impact, etc.

Figure 32. Accumulated Fuel Consumption-Tractor

Figure 33. Accumulated Fuel Consumption-Uphill/Downhill

Figure 34. Accumulated Fuel Consumption-Uphill Cable

Figure 35. Accumulated Fuel Consumption-Downhill Cable

CONCLUSIONS

Cable logging appears to be a viable tool for accessing timber on steep slopes in New England. To make this type of logging a reality, significant changes in both attitude and engineering practices are necessary. First, the land manager, as well as the public, will have to accept the change in visual character of the landscape which is associated with cable logging transportation systems. Truck road systems with densities of 4 to 5 miles per section will dominate the landscape much more than tractor arch roads.

Second, the high costs associated with cable logging place much more emphasis on intensive engineering planning. Road cost minimization is a must, if economically viable cable sales are to be offered. Design speed and road standards should be carefully calculated and justified on a case by case basis, based on the estimated volume to be removed. Continued overdesign of higher standard roads than necessary will only result in deficit cable sale offerings. Break-even analysis coupled with (R.C.P.) could be used to arrive at an optimum road stand in terms of both resource protection and cost effectiveness.

SUGGESTIONS FOR FURTHER RESEARCH

There appears to be good opportunities for further research regarding both the Road Cost Program, as well as the impacts and costs of the cable logging transportation systems needed to harvest hardwood in New England.

The Road Cost Program should be rewritten to take advantage of increased memory of the H.P. 9845. (R.C.P.) on the 9845 would be much easier to digitize, and would be faster. With the increase in memory, several additions could be implemented. By adding the capability to enter tributary timber volumes by segment, coupled with a harvest schedule, break-even analysis could be run.

Due to the lack of data on parallel midslope road construction on the Green Mountain National Forest, potential resource impacts are currently based on professional speculation. The monitoring of actual construction projects for the first few cable sales should be considered. The resulting data would provide the land manager with more concrete information with which to base future long-term decisions. These trial projects would also be useful to arrive at the accuracy of the cost estimate of (R.C.P.).

BIBLIOGRAPHY

1. Blackwell, Jack. 1979. Personal Communications, District Ranger. U.S.D.A. Forest Service, Rochester Ranger District, Green Mountain National Forest.
2. Brinker, R. and Taylor, W. 1957. Elementary Surveying. International Text Book Company.
3. Caterpillar Performance Handbook, Edition 10. October, 1979.
4. Colbert, K.S. 1980. Cable Logging in Newfoundland. Unpublished report. Oregon State University Forestry Library, Corvallis, Oregon.
5. England, F. 1979. Personal Communications, Road Designer. U.S.D.A. Forest Service, Supervisor's Office, Colville National Forest, Colville, Washington.
6. Froehlich, H.A. 1979. Personal Communications, Professor of Forest Engineering and Hydrology, Oregon State University, Corvallis, Oregon.
7. Hewlett-Packard 9830-A Calculator Operating and Programming Manual, 1972.
8. Kingsley, W. 1979. Personal Communications, Assistant Timber Staff Officer. U.S.D.A. Forest Service, Supervisor's Office, Green Mountain National Forest, Rutland, Vermont.
9. Larsen, D.K. 1979. Personal Communications, Landscape Architect. U.S.D.A. Forest Service, Supervisor's Office, Green Mountain National Forest, Rutland, Vermont.
10. Leak, W.B., Solomon, D.S. and Filip, S.M. 1969. A Silvicultural Guide for Northern Hardwood in the Northeast. U.S.D.A. Forest Service Research Paper NE-143.
11. Lecklider, R.G. and Lund, J.W. 1976. Road Design Handbook, 3rd Edition, Klamath Falls, Oregon.
12. Putnam, F. 1979. Personal Communications, Soil Scientist. U.S.D.A. Forest Service, Supervisor's Office, Green Mountain National Forest, Rutland, Vermont.
13. Reid, B. 1979. Personal Communications, Assistant Ranger. U.S.D.A. Forest Service, Rochester Ranger District, Green Mountain National Forest, Rutland, Vermont.
14. Sessions, J. 1979. Personal Communications, Timber Management. U.S.D.A. Forest Service, W.O. U.S.D.A.
15. Stirler, D.J. 1980. Selection of a Cable System for Vermont. Unpublished Master's Paper. Oregon State University, Corvallis, Oregon.
16. U.S.D.A. Forest Service. 1977. Forest Plan - Green Mountain National Forest, Rutland, Vermont.
17. U.S.D.A. Forest Service. 1977. Timber Management Plan, Green Mountain National Forest, Rutland, Vermont.
18. U.S.D.A. Forest Service. 1974. Final Environmental Statement, Eastern Region - R-9, Milwakee, Wisconsin.
19. U.S.D.A. Forest Service. 1978. Road and Bridge Cost Estimating Guide, Eastern Region R-9, Milwakee, Wisconsin.
20. U.S.D.A. Forest Service. Transportation Engineering Handbook.
21. Wilson, R.L. 1972. Elementary Forest Surveying and Mapping. O.S.U. Bookstores, Inc., Corvallis, Oregon.

APPENDIX 1
AREA OF ALL RCFL BY TYPE AND PRODUCTIVITY CLASS

FOREST TYPES BY STAND CONDITION ON ALL REGULATED COMMERCIAL FOREST LAND GREEN MOUNTAIN NATIONAL FOREST STAND CONDITION										
Forest Type	Total Type Acres	NonStocked	$\begin{aligned} & \text { High } \\ & \text { Risk } \\ & \hline \end{aligned}$	Sparse	$\begin{gathered} \text { Low } \\ \text { Quality } \end{gathered}$	Mature	Immature	A11 Aged	Two Aged	In Process of Regeneration
Beech-Birch-Maple	187,314	--	222	26,439	37,675	11,630	93,453	207	--	17,688
Paper Birch	2,161	--	--	--	--	576	1,490	--	-	95
Oak Hickory	236	--	--	--	--	-	236	--	--	--
Spruce	13,961	--	4,130	1,506	1,105	1,295	5,632	--	--	293
Spruce-Fir	4,038	--	318	--	--	--	3,720	--	--	--
Other Softwoods	-1,045	--	--	--	--	--	1,045	--	--	--
Total	208,755	--	4,670	27,945	38,780	13,501	105,576	207	--	18,076
Percent	100.0\%	--	2.2\%	13.4\%	18.6\%	6.4\%	50.6\%	.1\%	--	8.7\%

$$
\text { Date as of } 6 / 30 / 75 \text {. }
$$

AREA OF FOREST TYPES BY SIZE CLASSES AND STOCKING

- Green mountain national forest

Forest Type	Total Type Acres	Size Class								Well
		Seedilings \& Saplings			Poletimber			Sawtimber		
		Poor	Medium	Wel1	Poor	Medium	Well	Poor	Medium	
Beech-Birch-Maple	187,314	3,893	10,481	9,199	2,182	8,825	39,282	21,847	42,386	49,219
Paper Birch	2,161	--	341	--	--	787	938	95	--	--
Oak Hickory	236	--	--	--	--	236	--	--	--	--
Spruce	13,961	293	392	1,565	119	657	1,895	2,702	4,554	1,784
Spruce-Fir	4,038	$\rightarrow-$	187	187	--	2,692	719	--	--	253
Other Softwoods	1,045	--	--	--	--	424	96	--	--	525
Total Stocked	208,755	4,186	11,401	10,951	2,301	13,621	42,930	24,644	46,940	51,781

> $\begin{array}{ll}\text { Lowland Brush } & 0 \\ \text { Upland Brush } & 0\end{array}$ Upland Brush
Open

> Total Regulated Comercial Forest Land: 208,758 acres as of 6/30/75.

APPENDIX 2

1. General Description of Soils on the Forest
a. Origin - Wisconsin Period glacial deposits. Approximately 10,000 to 12,000 years since deglaciation. The upper parts of the mountains, most ridges, and most first order watersheds, in general, were dominated by subglacial processes - subglacial scouring or deposition. Nearly impermeable basal (lodgment) tills are the common result of subglacial deposition. There are a few spots of aeolian deposits and a small amount of relic cryoplanation (frost churning). In the bottom of second, third, or fourth order watersheds, and on some of the gentler terrain on the Forest, superglacial deposition (ablation till), outwash, and fluvial deposits occasionally occur.
b. Textural Classification - According to an extensive engineering survey completed a number of years ago, soil substrata textures are predominantly SM or ML (unified System), A-2 or A-4 groups, particularly A-2-4 (AASHO) for unsorted glacial tills, especially in your study area. It is almost impossible to give typical textures for materials which have been sorted. They can fall anywhere between GW and SP (Unified) and $A-1, A-3$, or possibly even $A-4$ (AASHO) depending upon the amount of sorting. Clay contents seldom exceed 15% and typically are less than 10% by volume.
c. Strength - Our engineers normally test for P.I., but not for shear resistance or cohesion in pounds per square foot. However, I was able to obtain some typical values for soil classified as SM in the Unified System. These values are for remolded samples. I do not have any values for in-place materials. Cohesion - 1,050 pounds per square foot moist, 420 pounds per square foot saturated. Phi angle 34°.
d. Density for Surface Soils (Upper 6" to $8^{\prime \prime}$) 60 to 80 pounds per cubic foot (1.0 to 1.3 grams per cubic centimeter). Uncompacted subsoils and substrata - 90 to 110 pounds per cubic foot (1.4 to 1.7 grams per cubic centimeter). Basal till substrata if present - 120 to 135 pounds per cubic foot (1.9 to 2.2 grams per cubic centimeter).

2. Engineering Characteristics

a. Areas or Conditions Where No Roads Should Be Built - There are few soil related situations where roads should absolutely not be built. It is as important to recognize what is needed to avoid adversely altering the land over the long term; for example, allow for imperceptible drainage through an area where a road could become a dam or increase frequency of run-off structures at higher elevations, $2500^{\prime}+$, due to higher storm intensities, etc. There are two situations where we should, if at all possible, avoid building roads:
(1) Streambanks adjacent to deeply incised streams, especially if substratum is a basal till. Excavations here often
lead to mass failures in the form of rotational slips, or more commonly, small debris slides.
(2) Sideslopes in excess of 45% unless fully benched into bedrock. Road excavations on these steeper slopes result in long thin fills or high cuts which are hard to stabilize.
b. Range of Stable Cut Bank Angles -

1:1 If longitudinal height of cut is less than 3 feet.
1.5:1 If longitudinal height of cut is greater than 3 feet, but less than or equal to 8 feet.

2:1 If longitudinal height of cut is greater than 8 feet. Vertical if in bedrock.
3. Special Problem Areas in Study Area

ELT's 202d, 220d, and other ELT's with a "b" suffix will require quite a bit of rock excavation for truck roads. Soils are normally less than 3 feet deep to hard bedrock, but there are often few or nearly imperceptible outcrops, especially on 203b and 205b where the surface shape is often smooth and linear (vertical by horizontal). There is at least one 22ld on an upper tributary of Boyden Brook. This is a steep slope above a stream where we should not build roads.

SPECIFIC SOIL TYPE DESCRIPTIONS IN STUDY AREA

ELT 202b - Soils are fine sandy loams, well drained, consistently 1-1/2 feet to bedrock. This ELT is slightly convex to linear with a choppy or slightly hummocky surface appearance with numerous outcrops. Slope gradients are relatively steep, typically about 40%, but ranging from 30% to 50%. Coarse fragments (stones) approximately 2 feet in diameter comprise about 25% of the soil volume. With some exceptions, this ELT occurs around the median point of 2200 feet elevation. Present stands in this ELT may vary in condition, but as a result of preliminary analysis of current ELT field data, the following ecological tendencies predominate:

ELT 202d - Soils are highly organic, fine sandy loams, approximately 1 foot deep over bedrock. Slope gradients are typically steep (50\% or greater), typically centered around 2700 feet elevation on slightly convex to linear ridges with choppy appearance. Stones comprise a large portion (65\% of the soil volume). Ecological tendencies:

ELT 203b and 205b - The descriptions for these two ELT's have been combined since they are similar in nature. Soils in these ELT's are well drained, fine sandy loams with a discontinuous basal till between a 1.5 and 2.0 foot depth between gentle or inconspicuous outcrops or shallow spots. Depth to bedrock is uniformly about 3 feet
or less. The occurrence of surface fragments is very irregular ranging from nearly 0% coverage to over 50%. The elevation range within which this ELT occurs is very broad, but centers around 2000 to 2100 feet. Surface shapes are slightly convex to linear, often undulating or hummocky on mid-sideslopes. Seepage between hummocks and at bases of slopes is common. Ecological Tendencies:

ELT 014b - Soils are fine sandy loam textured, well drained, and average three feet to bedrock. Slopes are severe, averaging 50% with 3 foot deep entrenched intermittent streams approximately 400 feet apart. The topography is linear and smooth outcrops are widely scattered. Elevation ranges from 2100 to 4000 feet with the bulk of the unit above 3000 feet. Gravel, cobbles, and stones comprise approximately 25% of the soil volume, with surface stones averaging 2 feet in length and widely scattered. The dominant feature is the presence of numerous old landslides in this unit.

ELT 013b - Soils are fine sandy loam textured, well drained, averaging two foot depth to bedrock. A very discontinuous basal till (compacted) layer occurs at 1.5 foot depth. This is a high elevation ELT, range is 2100 to 3600 feet. Slopes are steep, averaging 45\%, and topography is slightly convex and smooth. Some subglacial scouring has occurred in the unit as evidenced by the scattered rounded outcrops and surface stones averaging two feet in length. Very shallow, intermittent streams are present. Seepage over bedrock at base of outcrops can occur. Gravel, stones and cobbles comprise an average of 30% of the subsoil volume.

ELT 014d - Fine sandy loam textured soils, averaging two feet to bedrock at highest elevations 3000 to 4000 feet.

ELT 203d - Soils are well drained or moderately well drained (seasonal wetness), fine sandy loams with a firm basal till at about a $25^{\prime \prime}$ depth. Surface seeps are scattered and primarily seasonal. Depth to bedrock is 5 feet or more. Slope gradients vary slightly, around 20%. This ELT occurs on long linear or gently convex, smooth, lower sideslopes (approximately 1700 feet). Ecological Tendencies:

ELT 205d - Soils are well drained to moderately well drained in swales with depth to bedrock greater than 10 feet. Depending upon the season, the water table varies between 3 and 10 feet from the surface. Small streams normally develop channels entrenched 4 to 5 feet below the surrounding ground surface. The terrain is overall convex, but variably smooth or abruptly hummocky near valley bottoms or margins at low elevations (1700 feet). Ecological Tendencies:

ELT 203a - Soils are somewhat poorly drained, fine sandy loams with a firm basal till at approximately a 20 inch depth from the surface. Surface seeps are frequent, normally occurring every 50 feet or less. This ELT occurs on lower elevation (1500 feet), smooth, broad, concave, swales with slope gradients typically $\leq 10 \%$.

ELT 210d - Soil substrata are sands and gravels excessively drained (droughty), usually greater than 20 feet deep to bedrock. Water table
is usually more than 10 feet from the surface. Deeply entrenched stream channels are typical. This ELT occurs at low elevations (1000 feet) along valley bottoms and margins, with gentle convex knolls and ridges. Ecological Tendencies: Insufficient data.

APPENDIX 3

Stand No.	Acres	Basal Area	D.B.H.	Remarks	$\begin{gathered} C \& G \\ \text { Difficulty } \end{gathered}$
1	54	45	6		
2	150	65	13		
3	84	57	6		
4	410	95	13		
5	316	70	12		
6	70	36	3		L
7	160	72	13	(TIZ) Steep	
COMPARTMENT \#77					
1	28	100	9	Rock Outcrops	
2	22	60	12		
3	21	100	10	Rock Outcrops	
4	9	90	13		
5	6	70	11		
6	6	50	12		
7	9	70	11		

COMPARTMENT \#78										
1	170	80	15							
2	46	98	12							
3	28	90	6							
4	80	87	12							
5	203	77	13	Grazing						
6	8	0	0							

COMPARTMENT \#79					
Stand No.	Acres	Basal Area	D.B.H.	Remarks	C\&G Difficulty
1	27	100	14		
2	51	70	10	(Piper Bk. Sale)	
3	207	100	17	(Piper Bk. Sale)	H
4	56	90	12	Unit \#7	
5	40	85	9	Unit \#6	
6	75	100	12		
7	80	77	16		
8	33	30	1	Unit \#8	L
9	15	0	0		N.C.
10	51	100	14		
11	17	100	14		
12	5	50	8		
13	56	30	2	Units \#2\&3	L
14	40	30	2	Unit \#1	L
15	10	30	16	Unit \#5	L
16	44	30	2	Unit \#4	L

COMPARTMENT \#80

1	105	70	9

2	91	40	1

3	16	80	12

4	38	130	5

5	170	40	0

$\begin{array}{llll}6 & 51 & 150 & 5\end{array}$
5

L

H
L
H

7
9
70
10

| COMPARTMENT \#80 | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| (CONT.) | | | C\&G
 Stand No. | $\frac{\text { Acres }}{\text { Difficulty }}$ |

COMPARTMENT \#81

1	31	92	10		
2	72	74	10	Rock Outcrops	
3	66	68	12		
4	21	70	11		
5	48	63	12	Shallow to Bed.	
6	26	0	3	Steep \& Rocky	N.C.
7	38	26	3		L
8	115	78	12		
9	43	72	14		
10	48	72	9		
11	21	62	11		
12	64	92	9		
13	11	70	12		
14	106	52	13		
15	40	38	4		L
16	26	30	2		L
17	104	57	7		
18	3	212	10		H
19	30	72	14		
20	15	70	12		

COMPARTMENT \#82					
Stand No.	Acres	Basal Area	D.B.H.	Remarks	C\&G Difficulty
1	1	215	10	(TIZ)	H
2	23	70	14	(TIZ)	
3	37	78	12		
4	23	37	7	Steep	
5	38	80	8	Steep-Shallow Soil	1 H
6	34	62	8		
7	31	65	12		
8	53	62	12		
9	123	53	11		
10	10	23	6		L
11	106	71	14		
12	11	110	13		
13	40	76	12		
14	23	70	12		
15	71	80	8		
COMPARTMENT \#83					
1	293	51	9		
2	61	60	7		
3	10	170	9		H
4	11	50	6		
5	81	66	13		
6	12	90	10		
7	20	86	9		
8	22	48	9		

COMPARTMENT \#83 (CONT.)					$\begin{gathered} \text { C\&G } \\ \text { Difficulty } \\ \hline \end{gathered}$
Stand No.	Acres	Basal Area	D.B.H.	Remarks	
9	19	50	8		
10	20	74	12		
11	14	62	14		
12	98	77	17		H
13	36	52	10		
14	37	77	17		H
COMPARTMENT \#84					
1	23	70	7		
2	32	0	4		N.C.
3	26	94	11		
4	15	35	5		L
5	16	43	11		
6	48	73	10		
7	44	50	5		
8	40	75	9		
9	11	56	9		
10	45	110	14		
11	68	70	11		
12	26	78	11		
13	48	95	11		
14	39	102	13		
15	20	93	10		
16	13	90	10	Rock Outcrops	
17	39	90	12	(TIZ)	

COMPARTMENT \#84 (CONT.)					C\&G Difficulty
Stand No.	Acres	Basal Area	D.B.H.	Remarks	
18	16	43	11		
19	16	43	11		
20	10	56	9		
21	20	110	14		
22	23	110	14		
23	17	78	11		
COMPARTMENT \#93					
1	117	66	15		
2	16	100	7		
3	53	70	6		
4	21	70	6		
5	67	90	16		
6	50	70	5		
7	50	60	13		
8	528	80	16		
9	56	90	5		
10	30	60	3		
11	30	60	3		
101	6	0	0	Beaver Ponds	N.C.

COMPARTMENT \#94

1	68	100	5	Shallow Soil
2	131	90	8	
3	70	100	10	

COMPARTMENT \#94 (CONT.)					
Stand No.	Acres	Basal Area	D.B.H.	Remarks	C\&G Difficulty
4	114	50	9		
5	10	90	12		
6	49	100	10		
7	9	50	9	(TIZ)	
8	73	50	9		
9	15	100	10		
10	20	50	9		
11	37	70	13		
12	17	70	13		

COMPARTMENT \#95

1	77	62	7		
2	38	77	10		
3	17	116	9		
4	24	65	12		
5	34	65	9		
6	43	66	8		
7	43	96	11		
8	10	73	11	70\% Slope	H
9	44	54	10		
10	20	72	12		
11	47	160	10		H
12	17	120	12		H
13	9	105	15		
14	25	90	14		

COMPARTMENT \#95 (CONT.)

17	11	0	2	L
18	57	138	10	H
19	23	122	13	H
20	12	125	11	H

21	43	95	8
22	10	97	8

23	26	125	10
24	46	87	11
25	11	80	9
26	10	110	7

27	40	155	12		H
28	7	140	7		H
29	7	235	12		H
30	13	96	8		
31	23	110	10		
32	12	80	10	(W IZ)	
33	2	86	11	(WIZ)	
34	1	110	10	(WIZ)	N.C.
$101-107$	18	0	0		

COMPARTMENT \#96					C\&G Difficulty
Stand No.	Acres	Basal Area	D.B.H.	Remarks	
1	46	90	8		
2	50	70	8	Shallow Soils	
3	141	20	1		L
4	133	80	7		
5	37	80	8		
6	73	110	6		
7	43	120	9		H
8	16	0	0		N.C.
9	23	120	9		H
10	130	100	10		
11	16	120	7	Exposed Bedrock	H
12	23	90	4		
13	69	0	0		N.C.
14	65	70	8	Shallow Soils	
15	3	90	8		
101	47	0	0		N.C.
102	1	0	0		N.C.
COMPARTMENT	\#97				
1	3	80	9		
2	3	123	7		H
3	5	113	8		
4	5	80	9		
5	6	100	8		
6	60	80	9		

COMPARTMENT \#97 (CONT.)					
Stand No.	Acres	Basal Area	D.B.H.	Remarks	$\begin{gathered} \text { C\&G } \\ \text { Difficulty } \end{gathered}$
7	7	83	7	Steep w/rock	H
8	10	126	7		H
9	50	0	1		L
10	63	0	3		L
11	22	106	12		
12	29	90	7		
13	9	133	10		H
14	5	163	11		H
15	16	65	8		
16	11	100	11		
17	9	106	9		
18	3	126	7		H
19	15	113	12		
20	17	0	1		L
101-103	26	0	0		W.C.
COMPARTMENT \#98					
1	8	60	11		
2	45	80	11		
3	23	80	9		
4	53	80	7	Steep	H
5	57	90	8		
6	57	70	8		
7	57	70	10		
8	78	90	8		

COMPARTMENT \#98 (CONT.)					
Stand No.	Acres	Basal Area	D.B.H.	Remarks	C\&G Difficulty
9	47	80	14		
10	15	140	12	Steep	H
11	9	90	8		
12	4	70	10		
21	23	80	10	Exposed Rock	
22	17	80	8		
23	72	100	9		
24	13	110	12		
25	50	90	14	Steep	H
26	26	90	8	Steep	H
27	31	70	8		
28	50	100	9		
29	49	80	16		
30	12	20	9		
31	41	140	9		H
32	5	80	14		
33	65	90	8		
34	5	90	8		
102	9	0	0		N.C.

COMPARTMENT \#99

1	15	100	9
2	37	100	10
3	19	110	10
4	28	70	13

COMPARTMENT \#99 (CONT.)					
Stand No.	Acres	Basal Area	D.B.H.	Remarks	Difficulty
5	27	80	9		
6	40	80	9		
7	15	70	8		
8	40	80	9		
9	61	110	10		
10	21	100	11		
11	21	90	7		
12	55	90	11		
13	43	80	7		
14	35	120	10		H
15	22	90	12		
16	18	100	10		
17	26	120	12		H
18	29	120	10		H
19	12	90	12		
20	33	150	10		H
21	150	60	10		
22	63	80	7		
23	60	90	9		
24	23	120	11		H
25	67	120	12		H
26	34	100	10		
27	67	100	9		
28	32	70	14		
29	20	90	9		
30	82	80	10		

COMPARTMENT \#100					
Stand No.	Acres	Basal Area	D.B.H.	Remarks Di	$\begin{gathered} \text { C\&G } \\ \text { Difficulty } \end{gathered}$
1	46	80	10		
2	19	90	9	Steep/shallow Soils	H
3	6	180	10		H
4	53	120	7		H
5	8	150	9	Shallow soils	H
6	49	90	10		
7	20	73	10		
8	23	100	8		
9	36	73	10		
COMPARTMENT \#101					
NO DATA AVA	ILABLE.	ASSUME M	IUM C \&	DIFFICULTY.	
COMPARTMENT \#102					
1	38	120	10	Steep	H
2	33	110	11		
3	21	70	7		
4	21	140	8	Steep	H
5	10	0	0	Dwelling Site	N.C.
6	42	80	10	Steep/Rock Outcrop	H
COMPARTMENT \#103					
1	41	80	9		
2	40	60	4		
3	11	50	6		

COMPARTMENT \#103 (CONT.)

Stand No.	Acres	Basal Area	D.B.H.	Remarks	$\begin{gathered} \text { C\&G } \\ \text { Difficulty } \\ \hline \end{gathered}$
4	17	90	6		
5	20	80	11		
6	5	60	1		L
7	13	60	4		
8	52	78	10		
9	15	100	9		
10	12	83	10		
11	28	70	8		
12	18	110	9		
13	21	130	11		H
14	21	140	10		H
101-107	23	0	0		N.C.

COMPARTMENT \#104
NO DATA AVAILABLE. ASSUME MEDIUM C \& G DIFFICULTY.

COMPARTMENT \#105

1	87	83	12	
2	14	60	12	Steep/rocky
3	30	106	10	
4	80	96	12	
5	22	100	11	
6	20	86	8	
7	23	56	6	
8	107	83	8	

COMPARTMENT \#105 (CONT.)

Stand No.	Acres	Basal Area	D.B.H.	Remarks	$\begin{gathered} C \& G \\ \text { Difficulty } \end{gathered}$
9	22	137	14		H
10	18	72	14		
11	163	96	14		
12	11	70	5		
13	125	106	14		
14	32	110	16		
15	11	74	10		
16	18	100	12		
17	25	83	12		
18	19	96	14		
19	26	96	14		
20	55	96	14		
21	11	20	1		L
22	52	0	0		N.C.
23	40	96	14		
101	9	0	0	Rec. Site	N.C.

COMPARTMENT	$\# 106$		
	7		
2	13	80	6
3	11	65	7
4	25	92	9
5	12	60	14
6	124	128	8
7	29	90	11
			12

COMPARTMENT \#106 (CONT.)

Stand No.	Acres	Basal Area	D.B.H.	Remarks	C\&G Difficulty
8	25	72	11		
9	16	90	18		
10	247	78	9		
11	58	72	10		
12	25	70	12		
13	23	90	15		
14	77	75	9		
15	34	75	9		
16	12	70	12		
17	28	92	14		
18	25	72	11		

COMPARTMENT \#112

1	42	76	8
2	25	90	12
3	36	52	0
4	92	85	10
5	45	95	13
6	102	40	11
7	57	75	9
8	36	77	6
9	37	90	10
10	18	80	12
11	12	70	10

Stand No.	Acres	Basal Area	D.B.H.	Remarks	$\begin{gathered} \text { C\&G } \\ \text { Difficulty } \\ \hline \end{gathered}$
12	3	0	0	Powerline	N.C.
13	25	40	11		L
14	25	40	11		L
COMPARTMENT \#113					
1	8	70	10		
2	50	40	6	Steep	
3	6	60	4	(TIZ)	
4	18	30	6	Steep	L
5	41	90	14		
6	14	80	12		
7	49	82	8		
8	21	60	8		
9	29	66	7		
10	17	90	14		
.11	23	89	13	(TIZ)	
12	85	70	13		
13	54	80	12		
14	79	78	10		
15	53	0	0	Powerline	N.C.
101-102	14	0	0		N.C.

COMPARTMENT \#114					
Stand No.	Acres	Basal Area	D.B.H.	Remarks	C\&G Difficulty
1	10	80	11		
2	32	107	10		
3	26	40	8		L
4	30	100	9		
5	50	117	9		
6	27	100	9		
7	30	138	12		H
8	30	110	8		
9	40	70	8		
10	14	93	12		
11	32	80	7		
12	20	110	10		
13	11	193	14		H
14	17	103	11		
15	14	75	9		
16	20	50	9		
17	11	0	0		$N . C$.
20	25	80	13		
21	30	110	12		
22	35	80	9		
23	16	85	11		
24	8	70	6		
25	3	60	9		
26	46	80	13		
101-104	10	0	0		N.C.

COMPARTMENT \#115					
1	53	80	12		
2	90	120	11		H
3	48	120	10		H
4	21	20	1		L
5	5	30	1		L
6	100	90	10		
7	24	100	11	(TIZ)	
8	75	80	10		
9	7	120	10		H
10	20	80	7		
11	27	90	10		
12	26	90	11		
13	7	0	0		N.C.
14	9	80	9		
15	62	80	9		
16	23	90	10		
101-104	42	0	0		N.C.
COMPARTMENT \#142					
1	115	100	8		
2	19	20	2		L
3	85	90	7	Exposed Boulders	H
4	89	80	11	Exposed Boulders	
5	301	100	11		
6	23	130	10	Shallow Soils	H
7	26	150	10		H

COMPARTMEN	\#142				
Stand No.	Acres	Basal Area	D.B.H.	Remarks	C\&G Difficulty
8	13	130	8		H
9	48	140	10		H
10	15	140	10		H
11	51	90	10		
12	14	90	10		
13	8	90	10		
14	14	130	10		H
15	7	100	8		
16	22	100	8		
17	17	100	8		
18	6	100	8		
19	1	0	0		N.C.
20	2	0	0		$N . C$.
21	3	0	0		N.C.
101-102	21	0	0		N.C.
NOTE: (WIZ) = Water Influence Zone					
$(T I Z)=$ Travel Influence Zone					
$\mathrm{H}=\mathrm{High}$					
$\mathrm{L}=$ Low					
N.C. = Non-commercial					
If C \& G Difficulty has no designation, it is medium.					

APPENDIX 4
Road Cost Program (R.C.P.)-part a

－a DE
1F1NED 2

FQ FEIPT
EG FEINT TAECG＂1．\％FULL EEPCH FHD EIDEOAST．＂

120 IPFPUT 2
13日 if $2=6$ THEW 1E日
14E DIEF＂FILE NOMEER＂；
15 ET INFIT
1EG ITAD DATA \＃5，ロ
17日 BOTO 22
1S日 DIGF＂BO GF SEGMERTS IN RETGORK＂；
196 INFUT \because
$2 G 0$ DISF＂PETWORE NDMEEF＂；
$21 E$ INFUT MT
2 ED HEIRT

24 FFEIPT
250 It $2=1$ THEN 1060
2eg dom＂raf gefle feet Inch＂；
27 O INFUT E
EGE DISF＂EDMTOUF INTERYRL IN FEET＂；
9 E 1RFUT S1
$50 \mathrm{I}=19=6$
216 for $F=1$ TG $4+6$
Eed 1＝
$2 \mathrm{ET} 1-\mathrm{I}+1$
Z4G DTSF＂OTGITIZE EEG．＂I＂＂
256 WHIT 3016
EG OLSF＂＂
279 GOGUE E4G
EEGH［I］＝L
$30 \mathrm{M}-\mathrm{Ha+F[1]}$
AGE GISF＂POW FIND GUT．GFADE OF FD EEG．＂
410 WFIT 2040
42 DISF ＂FAUGRAELE＝1，HDWEFGE＝2．LEVEL＝3＂；
4EG INFUTT F1

$451012=12=0$
460 GnGue 1015
47 A if $\mathrm{Fa}=\mathrm{a}$ THEN 5 ELG

496 GOTO 520

510 GOTO FG
$5 \mathrm{ct} \mathrm{D} \mathrm{J}]=\mathrm{c}$
5 SE USF＂HOU FIND FUG SIDESLOFE RF SEG．＂
54 HAIT WGG


```
GGG WFIT EGGG
```



```
GG FPTEF &G,*)\1, 'T'1
GIU UFITE धG:%
```



```
GEOT'G='T'G+'家
G4CNECT %'%
```



```
GEG IL I=HTN&IG%
GTE WISF "DEFTH TG EEDFOLKG IP& FEET";
EGO INF|IT E[I]
GG LYSF "P|NEEF OF E& EFOSSTNGE IN EEG";
FEG IPFIIT H[I]
T10 IF H[ I ]=O THEN EGG
7-9 1=6
FEG FOF: F=1 1O H[I ]+E EME1
746 . }7=.T+
FEG GESUE 1680
FE0 1[1. T ]=7G
70 BOEBE 1%EG
7BG ILI,T]=S=
TG6 P|ET F
```



```
B10 IPNHIT ECII
EZG FEGT F
BEG MOTG 10SE
```



```
SGO WFIT SGUG
```



```
GOT UHIT EGGG
GEO EHEF &G:%M1,'1
```



```
G40 M1=%采
950%'1='r"
GEG GOTO G10
G7G HFITE &日,*%
GEG WHIT 1EH
Gツ6 组ITE &
1GGG FETUFP
1010 MISF "P|MEEF GF BRITDUFE EFOSEED";
15EG INFUT ME
1050 ME=M2+E1
1Q4G FETIUFW
1050 [GSF "ETGFE EEG OHTH IP& FILE PGG."
106G IPGFIT O
1.gTG GTOFE OHTH 标品
1GSW MISF "WFPT LIST IF STGFED DHTHEI OFG E";
19GG 1PFUTT G&
110G IF S4=0 THEP 1\SigmaEG
1110 I=0
11GO UFITE &1E, 5EG%
1120 Fi+t [=1 TG 4+0. EOQ1
1140 FTMEC E
```

```
156 1=丁+1
```



```
G1Q TF H[I ]=Q THEP 1EIE
1zGG FFTPT
```



```
1こ6 J=T+1
1二アG UF=TH4UTCI T TY+1GE
```



```
12GG HPTMT
120G FENT F
1EdG FENT \Gamma
AEO FFTNT
IEQ FTSFP O
T40 UETTE &15 1FEQ\
1-5G KFH[ E, ET, E4, ES, EE, ET, EG, EG, EG,EJ,GO, CZ
```



```
1,TQ UFTF 5GE, 19 E
15G T=E
```



```
#404 T=T+T
```



```
\二厶 GOTत A4FE
I44日 F1=玉合
A&EO SITI 14FO
146F6y=2-F0
14FE E[T T=FI
4AG PF,GT 「
AGGTGF "|⿴囗十| |fITT GMET LIETIPGGI GFEY";
15R4 INFIT TG
IEjG IF TS=F THEN ZETE
AEG GFTTF &15, 15SG
1SEO FDFINT B&":"
```



```
\GG% FFOT|
```



```
15G5 FRTMT
```



```
1FIG FETMT
```



```
1E4F FFINT
```



```
1EG FGTHT
&-TG MGTO 29|A
    A% OTSF "DTGTT EM"T"GFHEE"
1EGG BFTT EOGE
17G1 &NTEF &G, サ\, '
1,10 FRTFF &-4,%1,4
```

```
1FEG UFTTE &G,*)
```



```
1746 TG=HTP&5+51,TSO
1FSG FETUFP
```



```
1PG LPETT EOGE
1FG日 LIGF "OHLITISE AFEA"
1BGG UFIT ZGGG
1S1E ENTEF &
18G HHTEF & G +%91, '1
1ES FPTEF &G, +%Z 'TE
184日 IF ES=1 THEN 18SO
```



```
1BE IF FE&G QS THEN 1BEG
1EOG EE=1
```



```
1G00 H=F+FZ
1910 %1=%
1-2G '1='%
1BEG IF CE#1 THEP{ 1ESE
1G46 IF REOG G5 THEN 1ESG
1G%G 㫙TTE GG.t%
1GOG WHTT 1EG
1GTG WHTTE GG,*)
1GSG HOH:O-Z
19%6 气%=FESGH,4O5G9
ZQ4G FETUFF
200 LIHF 1.5056
```


Road Cost Proaram (R.C.P.)--part b

```
JG OISF "FD GEDH GFME FIF FLL GEGSU1,G%"
    IPFIIT TP
Z01F TP=0 THEP PE
```



```
EG INFUIT TE
GE IF TE=E THEP 1QE
```



```
BG TAFUIT Z1
G0, %=1
```



```
1こ0 FMF|NAT FE":*"
1EE FFIPNT
146 IF TP=E THEP 1EG
156 TMGUE 4%6
IEE GOU|E E-FE
1FE IF TE=F THEN EGE
1EF 1F 21=こ OFF 21=\Xi THEP \Xi60
1G0, MFGIE SEGE
```



```
#0 T=I +1
```



```
E-E 1F TF=1. THEPA ESE
z40 FMEUE 4GE
```



```
GE MTEIE Q4|E
    \ 1F TE=F THEH -4E
```



```
EG TH T!=1 THEN EAE
OG 1F H[T ]=E THEN EEE
\1E GTGl|E S4EF
20 rinTH E4E
```



```
ड5E NEOT H
EFE FFTNT
```



```
SG% FFETPDT
```



```
4E FF'lVTT
4% RO=F=956
```



```
44F FCTPT
```



```
AEF FFTVT
4F% LfTTF :E, 1.E:
4%F-NO
```



```
SEO TNFUIT kT
Ej& %TGF "CHTGLIFE FAOTGF धHTFTZ TF wFFT","
FOG TPFUIT KF
\therefore स EmFTPG1,&E%
G4F !GF "TG THFFE A OTTEH &1 OF F%";
F5, TPdF|IT K4
```



```
STG THFUIT FE
```



```
596 THFUIT ET
GE% ITSF "PNO MTLES TO WFGTE FFEF";
ETE IPFIIT F:G
EO IF K4=1 THEPS ESG
```



```
F4E GITA 6EA
```



```
FEF FETIIF:W
```



```
600 WN=6-61
```



```
T10 WE=|N+TOGOG[T])
FOFFOG5-KE+F[I]
```



```
70% H1:0!山T+R[ I 19,Z
F7E HE=l!4+E[ T ]
```



```
日g0 HF:=HF=-6
B+M iF K4=1 THEP BEE
EEG FOTG E4E
O-5 Ha4=H4+%
O4% H5-H+HO+HE
BCF RMTE G50
```



```
G7G H&-1Eの-&5
EEF H\because=&5-5\Gamma IT
```



```
G50 if F4=1 THEN GSQ
G4. limTM -5%
9%% H5=H5+%
```



```
950% F-GH4+F[ T 13, 27
```



```
101E GOTA 10EE
1000 F%=1
19EF TF FE=F THEN 1EOE
```



```
1050 TF F4=1 THEP 1@FE
1FEF GOTR 11EG
```



```
IGEQ FINTA 11FE
10G% F:C=6
1106 1F HE T T=O THEP& 11ZG
11AG FTElF 1E4E
1126 GME| &15, 
115% 1&=Fこ+F%
```

```
114[1, F}=\textrm{FO}+\textrm{FF4
1150 1:=F=,4:+:%
11FF | G=F-SFFTI I
    F0 1-9=+1+53
11S0 IF H[T ]=6 THEN 1E1E
1196 [E=FF+4Z
1EGO GITG +2%0
1215 05=0%=4-5
```



```
1こ70 与G=5%-ए%
12EE DE=F1+F2
1290 NG=6F10By+1EG
1560 4%=4%+5%
1210 W9=69+5
1-20 %E=Q8+QE
12EE FEETIIFP.'d
1249 T=, S=07=0
1250 FOF F=1 TQ H[I ]+G EGE1
156 ,
1二7日 I= T+1
```



```
1350 TF ध1, FF THE& 15E0
```



```
I+SE if w
```



```
1470 TF &
```



```
150% %F 4, %= F4 1 FHE ,M ES F THEN 1GES
```



```
1556 1F 4- }=1\textrm{F
\E6 [[.T]=1.5
157% '「T ]=19 F
1FFO M10TO 200%
150% F% T 7-玉
180% 'ए T T=6
1F10 GiTM -ब#%
1F%% \because T]=\sigma 5
1FCE T[ T ]=Y 4Z
TE4E Fi|TR GGG%
1F5G Z[T]=Z
1E5 ''T T ]=3' 6
\F% जGTत चबलg
    4 ए丁 T=5.5
10日0 '4 T T=5% -5
```


1F16 $\mathrm{Cr} \mathrm{T} 7=a$
1724 Tr T T＝5 49
1756 BOTO 2096
$174 \%\left[\begin{array}{c}T \\ \hline\end{array}\right]=4$
$1756+57=92.42$
1FED GOTO ENGO
1FアE Tr T T＝5
1PEE TH T J＝162 69
1790 gnta 2004

18डE＇TC T＝11E

$\left.15 \operatorname{coc}^{2} \mathrm{~T}\right]=5$ ． EG

1E5月 BITM 69 A
1EFM 「T7＝5．78

1－En mata 0 gen

1914 Bitn 000

1950 T T T $271, ~ E$
1946 nOTO 2006

1 еб6 ч т т $7=2 \mathrm{e}$ ．
AGFG BaTQ EGQE
19 EA 2T T］ T a 4

Eena gita egeg
2514 世T T＝9 1
2世玉世 Tr T T＝54 4
20TE GOTO CEOE
204 Tr T］THE
2月G日 DTGF＂FETME LEATITH TR FEET＂：
EREM TPFUT 2［．T］

Eene mitn elea
$20 \mathrm{ar} \pi=4+2[\mathrm{~T}]$
216 GOE E 2 ar

QTE HEMT F
214 FETIFEd
2150 IF KA＝THEN 2e5s
21E TF OT T 1×4 THEP $21 E S$
2．TA rinta 206
2160 K $9=8=$
24F FITTO 24

224 MOTM 2eem
25e K1＝a
29FA EFTIFP
－नी

```
2ZG日 F-*=丁\GammaT, T]
```



```
    AF "%=%F-F%
2-2日 तF=9E+F=
こご呩=1EF-5F ST-ロF
2S40 万f=1FF-5& -1-65
```



```
##'回 \ T ]=F:5
24FF FrFTIFP
```



```
244F ト'=90-ド5+5\GammaT]
```



```
Z5-5 FF=F+T\+E=
254F FG=2+Lj+F%
```



```
    FG H=FE-F\
GFF FMOFHO-6Ey+CESy
ESB TF E゙&=1 THEN ZEFG
254 RITM FE|E
```



```
2EOG TF TCT1 THEN EBCO
2-5 TO=T-TH
```



```
2EFF FE=CTO-%FO
2FF F-=F-M, B
*FG F4=F4FG
2ESE TF K4=1 THEN ETEN
```



```
2FEN FF=FF+F
2TE H!=FF4+!1]
```



```
ご4F+r=u%b-T , - ) +E|
```



```
2GFG H=OZG-F1%
2FFF
#F% k=6W-%%t-EI
2BF it &゙4=1. THEH 2G60
```



```
#-5F 万4=FF
#4% IF K4=1. THEPN OGEG
```



```
2G6- -9=29+2
```



```
SES FE=G5%EE
FF4.6 HCF
EECF FT=「4%FA4
```



```
FOTG FG=1FF%FTT]
SFGF GO=FF+FP+FB+FG+LE+[G+[F+[OG+FF+FF
50%% 19%=54+5:5
```



```
210 %00=0
Z120 BOTO - -%G
1-6 40=64,0%%+100
Z4, MTTM O-FE
#WG 50=5%
\M TS=F:
\\E F4=F:1
\1E0 GE=FE
\1G4 BF=Fd
ZO1H FF=LF
\becauseNEFF=1_
O-G FO=1B
20% FG=1 G
2-4@ FG=0%
-50 0-5=0
ZE| R0=NE
\boxed{3N}
206 人0=00+0
ZOG F:ETIFW
EEE IF TF=F THFN EEEQ
Z10 FFTMT
玉- HfTTE &T5, 1-E%
ZEE FFIT|T
Z4C FCTMT
```



```
-2G% FPT|T
```



```
-4㓪 HFETPT
```

```
\Xi4%G FFFTHT TAFE"P|D GF MTLES TO GMFFGOTPG FIT="FF""
E4EG FFTTPT
COEFTIFR
_-ECFFTPGT
E4EOT=E
```



```
#GG FOF F=1 TO H[ T ]+G FGE1
EEFT-T=T+%
EETF OF 'T'T 7-EF% THEP EEEF
```



```
EETE FHTHT
E54F जITM F5F-
```



```
EEF NEYT F
EETG FFGTMT,
SEF blfTTF &15, j%G%
EEGG FETllFH
FFE% wTTTF &t5, 1-0%
```



```
EE4F CE7llem
```



```
FE-5 if TF=1. THEN YTGG
ZFFH FFTPT
EEGG 50GIF O-EN
FE% IF TF=9 THEP ETIE
```



```
YTE UFTTE &J5, 1EE%
\varthetaF% F:FTl|F|
FTR F'RTNT
TaN BODIE EEFO
```



```
ETG FFTMNT
```



```
TTEE FETPT
```



```
Q+E TF TP=1 THF& SESE
```



```
SEE if Od=% THEN EESE
EG4 L|FTTF &15, 12G%
OFWF FFTIMPS
EEF THE|E YTA
ESTG FGTNT
```



```
EBGF 卜-6T目T
```



```
OGFTHFTPT
GG0 FFETPIT
```



```
4FIG FFTPT
```



```
4FuF FFTP|T
```



```
414F FFTNT
415% FETIIPQ
```

APPENDIX 5
 DATA GEE COMFUTED FRE DIEFLATED FOE THE FGLLOLIG GOHET PETHODE

1. 9 FULL EEPICH FRD EIDEEAST.
2. 3 FILL EENEH AND ENDHALIL.
Z. EFLANGED GOMETFULTIUA.

FO RETHOFK 1. GU HAS GF. 日e EEGMERTE

SET	LERGTH	GFACES	SIDESLDFES	EED-DEFTH	C ARAE
1	1697	-	13	7	2
	EK NI		EF GFACES	FFEEA DEAINE	ACO
	1		19	94	
SEG	LENGTH	GFADEC)	SIDESLDFE\%	EED-DEFTH	$\triangle \mathrm{AHO}$
2	7 P	-5	18	12	3
	CK H		CK GFADEC)	FEEA DFAINE	AC)
	1		9	420	
GES	LENITH	GEADEC\%	EIDESLDFE\%	EED-DEFTH	EARO i
z	1465	-5	12	$\stackrel{7}{7}$	2
SETj	LEEMGTH	GPADEC\%	SIDESLAFEC\%	EED-DEFTH	$\triangle \mathrm{ANE}$ I
4	1578	1	25	2	2
SET	LENAITH	GEACEC\%	SIDESLDFEC	EED-DEFTH	C. AND İ
5	2631	\square	46	1	2
SES	LEESITH	GEACEG	SIDESLDFE\%	EED-DEFTH	$\square \mathrm{FPD}$
E	2476	-5	31	1	2
SEC	LEPMTH	GEACEG	EIDESLOFES	EED-DEFPTH	E. Fdo is
7	293	-E	22	2	2
	EK NU		CF GFACEC\%	AFEF DFATME	ACO
SE	$\begin{array}{r} 1 \\ \text { LEFITH } \end{array}$	GFADEC\%	$\begin{gathered} 34 \\ \text { ETDELOFEC } \end{gathered}$	$\begin{gathered} 19 E \\ \text { EEC-DETH } \end{gathered}$	E FPdC Ij
8	1102 e	1	25	12	2
	EK MU		EF GFADEC	FFEF DFAINE	FO
	1		21	193	
	2		14	495	
	3		$1 E$	163	
SEG	LEEATTH	IFACDE\%	SIDESLIFEC	EES-DEFTH	[- ARS
9	2593	2	27	2	2
EET	LEFHGTH	GFPDEC\%	SIDESLIFEQ	EED-DEFTH	C FHET
16	456	-2	1	7	2
SET	LEHETH	GEADE ${ }^{\text {P }}$	STDESLDPE\%	EED-DEFTH	C. Fide
11	$\frac{355}{2 E}=$		$\begin{gathered} 29 \\ \hline \end{gathered}$	$\text { HREA } \frac{2}{\text { DRAIMEDCHO }}$	
	1			925	

SEG	LEFATH	GEADE \%	SICESLIFES\%	EED-OEFTH	C ARM	
12	625	θ	16	z	\geq	
EEG	LEFIGTH	GRADE ${ }^{\text {a }}$	SIDESLOFEQ	EED-DEFTH	C. Abtio	
12	28е7	-5	49	z	\pm	
SEG	LEBGTH	GEACE\%	SIDESLDFE\%	EED-DEFTH	E ARSE I	
14	TEST		13	HREA ${ }^{\overrightarrow{7}}$ DFATMEDCAE ${ }^{\text {a }}$		
			CF GRADEC)			
1			16	$\begin{gathered} E Q \\ E E[-[E F T H \end{gathered}$	C. ANTC	
EEG	LEPGTH	GEACEC	SIDESLOFEC			
15	6515	2	49	$\frac{1}{\mathrm{EEE}:-\mathrm{EPFTH}}$	C. ARAC io	
SEG	LEPISTH	TEACES	SIDESLDFE\%			
16	427	E	16	$\frac{\bar{z}}{\mathrm{EED}-\mathrm{DEF} \cdot \mathrm{TH}}$	[FRACT	
EEG	LEPIGTH	GRADE\%	GIDESLFEQ			
17	1527	-3	25	$\frac{\underset{\text { EEDP }}{2} \mathrm{DEF} \cdot \mathrm{TH}}{}$	$\bar{E} \operatorname{BP}^{2}$	
SEG	LEMITH	GEACE\%	SIDESLOFE\%			
15	6125	5	47	$\frac{1}{\mathrm{EED} \cdot-\mathrm{DEF} \cdot \mathrm{TH}}$	$\stackrel{3}{\square}$	
SEG	Lemigith	GEACEA	SIDESLOFEC			
19	1256	-	11	12	2	
EEG	LEIdGTH	GEACEM	SIDESLOFE\%	EED-DEFTH	C ARNE G	
29	$\begin{aligned} & 14967 \\ & 6 \mathrm{HD} \text { REEF } \end{aligned}$		1	AREA DEATPECMHD		
			C6 GFPCECO			
	1		9	443		
EEG	LEEFITH	GFACEC	SIDESLDFE\%	EED-DEFTH	E APACT	
21	$629 \quad 4$CK		29	FFEF EFHINEDCAC)		
			EK GFADES			
	123		19	209		
			5	84		
			14	EEL-EEFTH	E Fider	
SEG	LEEATH	GEACECS	SIDESLOFES			
22	LEM19TH	GFACEC)	13	$\stackrel{1}{\text { EEQ-DEFTH }}$	$\frac{\square}{\square} \mathrm{F}$	
EES			SIDESLOFEO			
23	$\frac{1811}{\text { LEPGTH }}$	-2	21	$\begin{gathered} \underset{\text { EED-DEFTH }}{ } \end{gathered}$	E Fidor	
EEG		GFADEC)	SIDESLOFEP			
24	7 CL	$\stackrel{1}{\text { GFADE }}$	19	$\frac{\vec{r}}{\operatorname{EED} \cdot[\mathrm{EF} T H}$	$\frac{2}{\mathrm{E}} \mathrm{~A}$	
EET	LEEIGTH		SIDESLDFES			
25	4575	-2	47	$\frac{\mathrm{I}}{\mathrm{EED}-\mathrm{EEFTH}}$	$\underset{\square}{2}$	
EEG	LEPIGTH	GEADE ${ }^{\text {a }}$	SIDESLQFE\%			
2	1568	\square	29	2	2	

GEr	LEMSTH	GEFDEC)	SIDESLOFES	EED-DEFTH	[. FHE G		
37	11284	3	34	E	$\underline{3}$		
	CK MIDEEF:		CK GRADECS	GEEF DEFIPED	HC)		
1			13	163			
EET	LEWGTH	GEACES	SIDESLOFEQ	EED-DEFTH	C Ardo io		
3	10488	2	3	2	1		
SEG	LENISTH	GEAOES	EIDEELQFECS	EED-DEFTH	C. Ande ic		
39	$\begin{gathered} 11474 \text { ERMEEF: }^{-1} \end{gathered}$		46				
			CE TEADEE				
	1		47	71			
	2		23	146			
EEG	LENGTH	GFADEC\%	SIDEELOFEC\%	EED-DEFTH	IE FRE E		
$\begin{array}{r} 49 \\ E E G \end{array}$	7936 LEEATTH	GEFEO	$\begin{gathered} 3 E \\ \text { STDELOFECO } \end{gathered}$	$\frac{2}{\mathrm{EED}-\mathrm{DEFTH}}$	$\stackrel{z}{\mathrm{E}} \mathrm{~F}$		
$\begin{array}{r} 41 \\ E E G i \end{array}$	391 LEMGTH	$\overline{3}$	$\frac{3 E}{S I D E S L D E O}$	$\frac{\underset{z}{E}}{E E D-D E F T H}$	$\stackrel{E}{E}$		
42	${\underset{C K}{2112}}_{2+3}$		E CK TEACECO				
	2			P29			
EETi	LEFMTH	GEADEC)	GIDEELDFEC	$\frac{557}{\text { EED-DEFTH }} \text { Q ARO } G$			
43	9571		$\frac{\mathrm{QE}}{\mathrm{GPOPE}}$	HEEA ERATMEDCHO			
	3		47	E 2			
			120				
	-			31	65		
SEG	LENISTH	GEACES	SIDESLEFEC\%	EED-DEFTH	E FNE I		
44			C6 GRAEESO	FREF ${ }^{5}$ DFAINEDGMO			
EEG	1		12	52			
	LERHTH	GFACEC	SIDEELOFE\%)	EED-DEFTH	C FND İ		
45	$\frac{5849}{\text { CR NHEEF: }}$		34 CK GEADES	FFEF DFAIAEDCHC) ${ }^{\text {a }}$			
EEIT	1.		42	$\frac{57}{\mathrm{EED}-\mathrm{SEFTH}}$	\square FWE Ti		
	LENSTH	GEHOE ${ }^{\text {a }}$	EIDESLDFEQ				
46	$\begin{aligned} & \text { TQ4E } \\ & \text { Ot HEEF } \end{aligned}$		$\begin{gathered} 2 z \\ \text { CK GROC } \end{gathered}$	HREF DEHINEDCHC)			
	1		\square	961			

SEG	LEAGTH	GEACECO	$\triangle I D E S L O P E \%$	EEP-DEFTH	E FHC E	
47	3434	-2	19	7	2	
	CF MMEEF		EF GEACES	FIFEA DRAINECMAG)		
	1		9	191		
	z		14	62		
SEG	LENGTH	GEACEO	$\Xi I D E E L G F E S$	EED-DEFTH	[. FNO IT	
49	12 E	-5	47	2	2	
SEG	LENGTH	GRFDE《	EIDESLOFE\%	EED-DEFTH	C. FND İ	
49	SER		35			
			CF GRACDES			
	1		18	178		
SET	LENSTH	GEADE \%	EIDESLOFES	EED-DEFTH	C. FNO	
5	$\frac{\sec }{\mathrm{EE}} \mathrm{~m} \text { MEEF: }$		$1 E$	AREA ERHIPNEDCAO ${ }^{\text {a }}$		
			CK GRADECO			
	1		9	244		
SEG	LENGTH	GRADEC	EIDEGLOFES	EED-DEFTH	C Andi ib	
51	416 -3		S	HREA ${ }^{5}$ OFATAEDCAC) ${ }^{\text {a }}$		
	CK MUPAEER		CF゙ GFACDEC\%			
	1		34	99		
SEG	LEAGTH	GEACES\%	GICESLOFEO	EEO-DEFTH	C. AND	
5	$\frac{11821}{6 E \mathrm{ALHEEF}}$		23			
			EF TREACEO			
	1		7	25		
	2		19	Es		
SEG	LENGTH	GEACDECS	SIDESLOFEC3	EED-CEFTH	C: Fide ic	
53	5.51	E	27	Σ	z	
SEG	LENITTH	GEACECS	SIDESLOFEC\%	EED-DEFTH	$\square \mathrm{FHP}$	
54	ES PUMEER:		38	AREA OFAIMECMAC)		
			DK TF:ADEC\%			
	1		31	53		
EEG	LENGTH GFEADEC\%		SIDESLOFEC\%	EEO-DEFTH	C. FAPM	
55			z	1	2	
5 EG	LENIITH	GFACDES	SIDESLOFE\%	EED-DEFTH	$\square \mathrm{FHP}$	
56	$\begin{gathered} 274 \\ \text { LEMCTH } \end{gathered}$	-2	31	EEC-DEFTH	$\frac{2}{\mathrm{E}} \mathrm{ARO}$	
EEC		GEACE ${ }^{\text {a }}$	GIDESUQFEC			
5	$\text { ER PHPEE }^{-1}$		21	FREF ORHIPEDGAO		
			EK GFACES			
	1		14	45		

SETi	LENGTH	GFEADES	EIDESLOFEQ	EED-DEFTH	C: Abdo io	
58	28ア5	8	46	1	z	
$5 E G$	LEFSIGTH	FFPDEC\%	SIDESLOFE\%	EED-CEFTH	C Fnde io	
59	2ess	-9	36	2	2	
SEG	LENIGTH	GFPADEC\%	SIDESLOFECS	EED-DEFTH	C Fincir	
60	678	E	25	5	2	
EEG	LENJITH	GFALEEC	SIDESLOFE\%	EEET-DEFTH	C ARA İ	
$E 1$	こ1E	-2	23	$\underline{2}$	z	
EEG	LEMIGTH	GEACEC\%	SIDESLOFEQ	EES-DEFTH	C. ARE G	
62	185	\square	22	1	2	
EEG	LENGTH	TFAREE	$\Xi I D E C D F E \%$	EED-CEFTH	C. FWP 5	
Es	TEE4	\square	34	2	$\underline{2}$	
SEj	LEMMTH	GFALECO	$\triangle I D E S L D E Q$	EEE-CEFTH	C. AWM	
64	5 ES	E	42	z	z	
EEG	LERAGTH	GFACDEC	SICESLOFEC\%	EED-DEFTH	C ARAE G	
65	456	-	27	2	z	
EEG	LENGTH	GFAFDEC	SIDESLOFEC\%	EED-DEFTH	C FAD E	
E	eras	-2	27	12	2	
	CK		CK GFADECO	FREF OEFIMED	CHO)	
	1		14	165		
	2		16	85		
	<		19	151		
SEG	LERAGTH	GFARES	SIDESLOFEQ	EED-DEFTH	C Fide io	
67	T4E9	E	29	12	1	
	LK Pll		CK GFACECO	FFEF OFHTPE	CBC	
	1		25	47		
	2		19	95		
	3		16	155		
	4		21	92		
	5		14	Pe		
SEG	LESTGTH	GFADES\%	SIDESLOFE\%	EED-DEFTH	E ANE E	
Es	Erse	E	29	12	3	
	EKN		CK EARDE ${ }^{\text {a }}$	FPEA DEAIPIE	CFO	
	1		23	197		
EEG	LENGTH	-GEADEC\%	SIDESLDFE\%	EED-DEFTH	$\square \mathrm{Cap}$ G	
69	$\frac{554}{\text { EK M PEEE }}$		CK GEFDEC	16	\geq	
			FEEA DFHINED	CHO		
	$\underline{1}$			14	129	
			16	122		

EEG	IENGTH	GEADE\%	SIDESLAFES	EED-DEFTH	C ARO B
79	9964	5	16	2	z
EG	LEFIGTH	GEHCE\%	SICESLGFES	EED-DEFTH	E FROE
71	2149	-5	19	2	2
EEG	LEMGTH	GEACOEC)	EICESLRFEC)	EED-CEF'TH	C: Fide is
72	$\begin{aligned} & 4169 \\ & \text { ER HUNEER: } \end{aligned}$		25	12	2
			CK GEADES	FEEF DEAIPNE	HO
	1		12	157	
	2		23	195	
	3		15	46	
	LEWGTH	GFFDEC\%	SIDESLOFEC)	EEED-DEFTH	E: FPA E
73	1865	\square	46	2	z
SEG	LEPASTH	GEADES	SIDESLIFEC)	EES-DEPTH	$\square \mathrm{EPR} \mathrm{C}$
74	689 CK PHMEEF		19	12	2
			GE GFADEQ	FREA DRFIPAE	HO
	1		11	251	
	z		12	39	
EEG	LEPGTH	BEADEQ	$\triangle 10 E S L P E \%$	EED-DEFTH	
75	EPLE RUMEEF		21	z	2
			CK GFPDEC\%	HREA OEAIPE	HCO
	1		42	Fer	
EEG	LEMGTH	BRADES	SIDESLOPE\%	EES-EEFTH	C. Ande
$7 E$	651 CK MUMEER:		22	z	Ξ
			CK GFACEES	AFEA DEATAE	
	1		27	34	
SEG	LEFIGTH	GREDEC	SIDESLDFE\%	EED-DEFTH	E FNO I
FT	4697		25	2	2
SET	LEPHTH ERADEC\%		EIDESLDFE\%	EED-DEFTH	E RME IS
$7 E$	1356	$\stackrel{9}{\mathrm{GEPE}}$	13	2	2
EET	LEAGTH		SIDESLDFEC)	EED-DEPTH	E HND G
79	$\frac{257}{C N G T H}$	$\frac{2}{\text { GRFEC }}$	51	2	2
SET			SIDESLIFE\%	EEC-DEFTH	I Prac ij
E9			25	1	2
SES	258 LEATGTH	$\stackrel{4}{G \mathrm{GHE}}$	EIDESLOFEQ	EED-DEFTH	C FiNE is
81	dage	$\frac{2}{\mathrm{ZFPEO}}$	31	7	2
SEC			SIDESLOPEC\%	EED-DEFTH	E AnO 1
92	TgSE LENGTH	$\frac{\mathrm{g}}{\mathrm{gemec}}$	2	2	2
ET			EIDESLDE \%	EED-DEFTH	[APACM
ez	4681	3	34	2	1

SES	LEAGTH	GFFDECO	SIDESLDFECS	EED-CEFTH	$\square \mathrm{FHND}$
84	2085	-4	$\underline{7}$	2	1
SEC	LEPGTH	GEADEC\%	SIDESLOFEC\%	EED-DEFTH	$\square \mathrm{CHP}$
85	E2e4	3	2	z	z
	Ct M MEEF		CK GRADE ${ }^{\text {a }}$	FEEA CPAINEDCAE	
	1		$\begin{gathered} 2 \exists \\ \text { EIDESLOPEO } \end{gathered}$	$\frac{51}{\mathrm{SED}-\mathrm{DEFTH}}$	C FACO
	Lermith granere				
86	1650	$\underline{\square}$	EIDESLOEEO		$\overline{\mathrm{F}} \mathrm{E}$
SEG	LENGTH	GEACES			
ET	5913 LENGTH	$\frac{\mathrm{E}}{\mathrm{EPO}}$	$\frac{2 \mathrm{E}}{\operatorname{SIDELOFEO}}$	$\frac{1}{\text { EED-DEFTH }}$	$\frac{z}{E} \operatorname{Fid} \mathrm{E}$
55					
88	9711 LENGTH	$\stackrel{3}{\text { GEADECO }}$	34 EIDEELDFEOS	$\frac{2}{\text { EED:- }}$	C: FNTE I
SEG					
89	4492 LENGTH	GEADE	SIDESLIFEO\%	$\frac{2}{\text { EED-DEFTH }}$	C FWM E
EEG					
9 O	95 LEAGTH	$\begin{gathered} 8 \\ \text { GEAOECS } \end{gathered}$	EIDESLOFECS	$\frac{1}{\text { EECDEFTH }}$	$\frac{2}{G}$
SEO					
91	4726 LENGTH	$\begin{gathered} E \\ G \mathrm{GHE} \% \end{gathered}$	$\stackrel{32}{\operatorname{SIDESOFEC}}$	$\frac{1}{\text { EED-DEFTH }}$	C Fide
SEG					
92	1996 LENGTH	$\frac{\mathrm{Q}}{\mathrm{BEADEO}}$	$\frac{2 T}{\text { SIDESLQFES }}$	$\frac{1}{\mathrm{EED}-\mathrm{DEFTH}}$	C Fide E
SEG					
93	556 LEVGTH	$\stackrel{1}{\text { GRADE }}$	$\frac{2 巳}{S I D E S L O F E O}$	$\stackrel{\underset{z}{E}}{\text { EED-ETH }}$	$\underset{\mathrm{E}}{\mathrm{~F} \cdot \mathrm{E} \mathrm{E}}$
SEG					
94	69 LENGTH	$\stackrel{9}{G}$	SIDESLOFECS	$\frac{1}{\mathrm{EED}-\mathrm{DEFTH}}$	$\frac{2}{c} \operatorname{AND}$
EEG					
95	$5: 4$ LERGTH	$\begin{aligned} & \mathrm{G} \\ & \mathrm{GEDEO} \end{aligned}$	$\begin{gathered} 56 \\ S I D E S L O F C \% \end{gathered}$	$\frac{z}{\mathrm{E} E \mathrm{E}-\mathrm{EDFTH}}$	¢ Fidc
SEG					
95	$\frac{212}{\text { LEWITH }}$	$\begin{gathered} \mathrm{G} \\ \mathrm{GEPDCO} \end{gathered}$	EIDEELOFEC	$\frac{2}{\mathrm{EED}-\mathrm{DEFTH}}$	C. FND is
EES					
97	E4	12	Se	2	1

Sucgeter HIETH	FUPWIIEG WIDTH	GITELIFE FPrile	GURFAGIME DEFTH	DITCH＇
21． 60	14． 09	45． 51	日．50	1． 1 E1
40.	DF MILEE TG	AFEEA $=$ E． 48		
	OF MILES TO	AISHEIT $=16$		
＋：＋\％\％\％\％\％＊：\％\％＊：＋				
		FILLEENICH	Filleemich \＆	EFLFALEED
SEG．\＃		Erdohella	SIDEEAST	SEETION
1． 04	TOTHL EGET	ま 2134931	\＄18556 54	\＃13568． 47
2． 6	TOTHL EGST	\＃13914．90	\＄120re 5	中 1046Es
2． 64	TGTHL EOET	\％12081．5	± 11144	中 ETEG
4． 40	TOTHL ELET		¢ 2925 b4	中 1317\％61
5． 0.0	TOTAL ELET	\＄13534 22	t 12sess 64	\％516e9 3
6． 64	TGTHL COET	ま Eceus 5	\pm rees 24	韦 31647．93
7.810	TOTHL EOET	\＄103501． 85	\＄92000 59	\＄ 89965
9． 46	TOTHL EGST	\＃166131． 84	\＄13964．53	\＄97341．12
981	TOTAL EGET	\＃594ez 51	\＄53105 89	
16． 80	TOTAL EOET	中 アアOT4，4E	中 ESET． 5	
11． 0^{101}	TOTHL EGET	\＃168esa 32	\＄94245．54	± 48681.48
12．80	TOTHL EGET	¢ TEGE S4	F Fece 16	F 4485
－ 8 We	TGTFL COET	\＄146532 29	\＄122059 04	＊Eterce 11
C08	TOTHL EOET	＊85ses 10		
15．E9	TOTAL EOST	ま 3serre 21	\＃35－606 56	\＆16， 1573
1E． Ea	TOTFL EOET	\＃52－11． 21	\＄ 47418 ES	t 1591.12
17． 96	TOTFL GUET	\＃31865 15	t 2844241	a 128ce ma
13． 64	TOTAL EOST		＊316819 0	＊148659 91
1960	TGTAL EQET	\＃10974 47	\％9602． 10	＋ 7 Tre
29.60	TGTEL EQST	＊409e9z 5	\＄26ET4，55	F 159432．6E
21． 81	TOTHL EIET	F 115460 9	＊106TE5 E\％	中 F 13 SE
2．E0	TOTAL EOST	＊ 21324	t 19491． Fe	\＄9454 91
22．09	TOTHL EOET	\＃2696e 11	\＆2rcez 5e	\＄14152． 27
24． 60	TUTAL EOST	\＃E42es 89	$\pm 7142 \mathrm{Ec}$	中 514E\％Es
2c． 0	TGTHL EOET	ま 259541． 20	¢ 25spe 61	中 109682 26
2E． 64	tiatel gies	± 3961.76	ま こ55日を	丰 14953 E4
27．00	TGTFL EGET	\％25ede ec	¢ 296e4s 16	\＄ 1315547
28．${ }^{\text {a }}$	TOTHL ETET	ま 591561．69	\＄531396 45	\＄2176062
2 C 90	TOTHL EGST	中 192Ee 20	\＆103723 94	t Es5ct Pb
26． 6	TOTAL EGET	中 181235 4E	\＄1506et 21	＋101802． 19
31． 6	TOTAL CIET	ま－59998 25	\＄255841．56	\＄1006Ed． 15
22． 80	TOTFL EOET	中 219861．67	\＄29e9e4． 98	\＄126E5T． 12
23． 6	tGThl giget	＋43723 90	韦 3644E Es	
34.60	TOTAL EIST	\％e9ege 13	± 261465	\＄21515 3
Ese 0	TUTEL EOST	$\pm 17 \mathrm{FEST} 11$	4 16954．59	\pm P0¢5 48
EE 60	TOTHL EOET	＊2442e 11	中 21976ece	\＄92017． $\mathrm{P}^{\text {P }}$
39．00	TOTAL EQET	± 294262.80	中 185ect 94	中 16901．アE
Ee 09	TUTEL CIST	\pm Ee5der 44	\％34599\％ 05	\＄139610． 0^{5}
818	TITPL EGET	$\pm 459784 \mathrm{ES}$	442558	\＄171942 60
－ 6.10	TOTPL EGET	\＄293439．91	＊2eses 97	中 167E99， 3

41． 96	TGTFL ETS	± 14669		中 51ボアデ
42.00	TGTFLL EGET	\＄20904a	ま ごE4dE Ed	中 15065 5
4 E 96	TGTFL EGET	\＃2544E 57	安 204851	中 149731． 81
44.8	TGTHL ERET	± 1297205	业 1109\％5	拜 F645\％ 8
45． 6 y	TOTHL EOET	\＄－5\％49．11		
46.06	TGTFL ETET	主 165世67．	表 8 O日G 64	中 ESES它
47 ，或	TITHL ESET	虫 44E玉を 7		
46．E4	TITFL EOET	\＃\％6z 46	\＄5cced Ee	ま ごごらも．51
49.6	TGTHL EGET	ま E\％TE E4		中 46191．11
56.60	TGTHL EGET			ま－\％
51.6	TITFL EGET	ま 11606		ま 4 ETこ 14
$55^{5} 6$	TGTHL EGET	\＄16\％6z． 9	＊1E6076 96	ま 9501\％
5玉． S_{6}	TGTHL ETET	\＃1880ct 4	中 1145\％E4	\＃5 ¢ ¢ 41
54.69	TOTHL CTET	\＄12マこ51．50	＊12゙心Tz	ま 5\％CT1 5\％
55	TGTHL EOET	\＄9\％564． 64	中 G4゙ご，ア6	ま こアご或
56． 6	TITHL EDET	\＃915cter	中 \％6®边	ま こ4EらG ア－
576	TETHL EOET	\％160\％	中 G\％G6	车 4TG\％\％G6
58.40	TGTHL GOET	\＃124E玉T， 4 F	$\ddagger 12 \mathrm{~F}$－ F^{7}	\＄54135．4E
59.60	TGTHL EOET	半 1玉玉ES4．5	\％11949 69	韦 4E\％デ2こ
E6．09	TOTHE EOST	韦 369\％40	\＄E1F1E 65	＊5心下19 玉
Et． 09	TGTHL GGE	丰 Edege	\＄5449641	
E\％Es	TOTHL EOET	中 ESEde 49	\＃61046．1．	米 2 ¢11玉 6
	TGTHL EIET	韦－4254．9		丰 8 96\％ 9
E4 E	TGTHL EEST	\＃ごこここ4．7E	韦－－	
Fcieg	TGTHL EIET		寺 96\％SG	\＄41719
Es． 0 g	TOTFL EDET	± 125085	\＄11玉z－ 96	志
ET E0	TETHL ETET	中 12丁46E P号	＊165G\％E	
Fig eg	TGTHL EOET			中 アGE6S
E9．09	TOTFL ELET	＊BGd日 SE	韦 FごE 家	卉 49885
FE．E0	TGTHL EUET	ま さ玉Gご菫	龺 124219．49	ま 7496
71.6	TETHL ELET	丰 2210484	中 ご96－	卉1622－11
72.010	TGTEL EOST	＊E5SE S0	卉 S5E\％－	
73	TOTHL COET	家 ア146E 59	卉 E4E1E 5	\＄26日t 49
7% E	TOTHL EIET	安 BGE1． 79	中 アEG94．	＊5F＇bly E6
75.6	TGTHL EGET		中 こ6751．\square^{7}	中 9 ¢9E G6
Ferg	TGTFL EGET	主 194982 9	中 174318 9	\＄72479．41
77.0	TETAL EGET	\＄962\％ 61	声 BTE日大，4E	
TE，6E	TGTAL EGST		\＄2－967	
F9．69	TOTHL EGET	ま 1296186	韦 11EFアアアた	
E6．00	TGTHL EOET	中 ETHE	＋E6GE G\％	中 25GE z
E1． 86	TGTFL EGET	\＄F4G\％SG	主 EGE11． E （1）	\＄ESEEM4
E2．09	TOTHL EOET	中	韦 21468	
E2．51\％	TETHL EIET	中 145684	\＄1207\％$\underbrace{6}$	中 5091．E5
84． 8	TOTEL EIET			主 18479 67
B5．	TGTHL EOST	寺 玉4E895 60	安－－	
E6．E9	TGTHL FIET		ま－74988－4	ま 114E80．E4
Er． 0	TGTHL EOET	丰	\＄135日大 日	\＄FGET6．
BE．	TGTHL EIGT			士 11456E4
E9．90	TGTHL EGET	\＃160］9 93	丰 143\％玉 56	\＄E1051． $\mathrm{F}^{\text {E }}$
96.010	TOTHL E！ET	寺 2496	\＄ T 120 E	中 12S58 81
9 F	TGTHL EOCT			\＃E6T14 F9
9 yc	TEITHL EGET		F 5\％1忈习	ま－1950 15
9 ESH	TGTFL EOET	\＄1696\％¢	\＄145テヲF 4	韦 E694． 14
9 ¢ E0	TGTHL EOET	ま ごビッ 1E	中 ごGE FE	\＃1508E ET
95． 0 为	TGTHL EMET	中 13971． 9		车 EGE E
96	TETHL EGET	\＄918こ	中 E\％24．E4	年 2 ご心．
GT．或哑	TITHL EQST	中 $2=89 \mathrm{ET}$	＋$三$ ¢ 5	主

TGTHL NETHGEX LENGTH＝GG．ZE MILES

EEG．$\#$		FULLEERCH 8 EndHFUL	$\begin{gathered} \text { FULLEEPGH } \\ \text { ETDEGAET } \end{gathered}$	EFLLFADED EECTIORA
1． Ea	TGTHL EDET	丰 1E454．	\＄1598，	井 11980 SE
z 06	TOTAL EIST	＋124E6，91	朿 11449 E8	本 95\％
2． $\mathrm{Cl}^{\text {a }}$	TITAL EOET	\＄1099\％ご	5 9717 16	韦 TE11．ET
4.00	TITAL EOST	韦 2E4BE ES	ま こち日も 4	丰 11415．45
5． 61	TITHL EDET	丰 104FE6E	＋1098玉r－	丰 4 E54．50
E．Em	TGTHL EQET	安 ErBE	去 E1FEE E1	本 こED里を
F Eब	TGTGL EOET	中 GごG日	韦 ア5®を	中 玉こE2．10
E． 90	TOTHL EGET		\＃1F＠rア2 49	韦 E654E SE
9 m	TMTHL EMET	本 4794E 4E	韦	丰 19969，EE
18．40	TOTHL EGET	ま 6596を 54	生 5－5 E ¢	＊2429E．96
11．mat	TGTAL MEET	F SE6ET 11	丰 アア4を	丰 42995．50
1－20	TITHL EIET	韦 E54． 95	＋5842 19	丰 460957
12． 10	TITFL EOET	\＄118118	韦 168こET	安482975
14． 4	TOTHL EQST	中 72005	生 ETEG EG	中 48912．51
15 Em	TGTHL EIST	丰 318895 B6	\＄ 2906	＊12SEz7 ご
1F．UE	TOTHL ETET		\＄5－4， 98	韦 2日03\％5\％
17 F	TOTHL EOET		中 29155	韦 1119\％．日大
18． A	TOTAL EOST		ま 2584614	丰119526 11
19 AE	TGTHL EAET	者 9464	丰 E4E4 F	韦 アEE4． 92
20． E	TGTAL EDET	丰 SEE4．95	¢ 29611.2	中 124984． 12
21 AT	TGTFL EDET	車 1 ¢	韦 ETEF4 E4	韦 E4E日6 E6
E\％Ex	TGTFI EOET	丰 1－554 19	2 16 E 4 E	丰 ECQ7．
2－ma	TGTEA EIET		\＄2985 95	井 12SE 11
24．बान	TQTFL GOET	丰 7216	中 E1EEE1	
E5．	TOTFL EIST		生 191FEr 4E	丰 S596
EAP	TGIFE EOET	丰 ड18日 69	\＄ 2 ESE 4 S	丰 127ご ET
\％ब	TOTFL．EOET		本 245968	中 112454．49
2日． 60	TOTHL EOET	车 4 PEE4 49	中 4\％ES5 05	丰 186GES 1E
25.0	TETHL EGET	2 159429	5 $12 \boldsymbol{2} \mathrm{z}$	丰 TSESE FE
29． 19	TITRL EDST	立 15458	＋ $19 \boldsymbol{y c}$	本 S9854．St
21．010	TUTHL EIET	\＄21－9\％ 9	车 195094． 7	丰 8485． 2
2 me	TGTHL EOET		2 2－EEA 2	
E－m	TOTHL EIET	中 こTE日1 22	士 T－GE TE	ま 265＠S 15
－4． 19	TGTFL EIST	中 玉Sアアた	玉－TVE	车 19EES44
ES．mb	TITHL EOET	丰 145602 00	半 189\％可	\＃59\％こ以
－G ש	TITFL Enet	中 1975E 97	士 1FPGET	\＄ 7696
二小	TOTFL ETET	韦－＋1ESEアE		$\pm 95 \% 56$
EQ ma	TOTGL EOET	中 21044．5． 5	＊27－6\％01	本 115日大，49
－9	TMTFL FOET	中 3F69679	土－®Gge	中 14500 96
49.95	TOTHI MOT	\＄－6\％ 5		中 日974E E1

THTGI PETLIFY I FRGTH= GG ES MILEG

APPENGIX 7

HLOIM ヨว
HLOIM ヨコヨ Iunc gninnna

APPENDIX 8

USER'S GUIDE: ROAD COST PROGRAM (RCP)

PROCEDURE

The road cost program is a tool to quickly analyze paper plan road networks. Up to 110 segments may be analyzed on a single network. Due to memory limitations of the H.P. 9830, the program is divided into two parts connected by a link statement. The first program gathers and stores pertinent road data from the map using the H.P. 9864 digitizer. The second program analyzes the network based on road parameters supplied interactively by the user. Three output modes (short, medium and long) are available, depending on the amount of information wanted. The program evaluates each road segment using three construction methods.

1. Full Bench and Sidecast
2. Full Bench and Endhaul
3. Balanced Section

An example network evaluation using the RCP program is attached.

MATERIALS NEEDED

The following materials are needed to successfully run the RCP program.

1. Program tape
2. Data tape with files marked to a length of 2000 words
3. Contour map with road network and drainage areas shown
4. The following itemized information for each road segment
a. depth to bedrock
b. surfacing depth
c. running surface width
d. cutslope angle
e. ditch (yes or no)
f. distance to rock source
g. distance to waste area
h. clearing and grubbing difficulty

OPERATING NOTES

1. The length of each segment is very important. Segments should reflect similar conditions. To facilitate accurate evaluation, the following conditions should be relatively constant for each segment.
a. road grade
b. sideslope
c. clear and grud difficulty
d. depth to bedrock

Significant changes in these four parameters within a segment will result in poor data, due to averaging. Of course, if the segments are too short, evaluation time will increase.
2. Since the RCP program can only evaluate 5 creeks per segment, segments should be broken up accordingly.
3. The decision concerning which of the 3 output modes to use depends on the needs of the user. The following is a description
of each mode.
-SHORT OUTPUT-
A. Total cost by construction type for each segment.
B. Accumulated total costs by construction type.
C. Accumulated total excavation by construction type.
D. Total network length.
-MEDIUM OUTPUT-
A. All data in short output.
B. Percent rock by construction type for each segment.
C. Total excavation by construction type for each segment.
D. Road cost per mile by construction type for each segment.
-LONG OUTPUT-
A. All data in medium output.
B. Itemized costs by construction type for each segment.
C. Itemized engineering data by construction type for each segment.
D. Miscellaneous internal variables used by construction type for each segment. These variables are useful as a check. They are defined at the end of the user's guide.
4. Additional output is available following the execution of the first program. The user interactively decides if the following two outputs are needed.

Stored Data Listing:
The stored data list shows the user all the parameter stored on tape for each segment. The following data for each segment is printed.
a. segment number
b. segment length in feet
c. segment grade in percent
d. sideslope in percent
e. bedrock depth in feet
f. clear and grub difficulty (low=1, medium=2, high=3)
g. creek number
h. creek grade in percent
i. area drained in acres

Unit Cost Listing:
The unit cost listing shows the user the following unit costs used in program number 2. These costs cannot be changed interactively by the user. They must be changed by altering the data statements in lines and in the first program.
a. clear and grub cost/acre (low, medium, high)
b. seeding cost/acre
c. mobilization cost/mile
d. excavation cost/c.y. (common and rock)
e. riprap cost/c.y.
f. fences and gate cost
g. purchase surfacing cost/c.y.
h. haul surfacing cost/c.y.
i. load and apply surfacing cost/c.y.
j. outlet pipe cost/l.f.
k. haul endhaul cost/c.y.

1. load endhaul cost/c.y.
2. RCP uses the code
$\emptyset=$ no
1 = yes

EXAMPLE ROAD NETWORK

The following short road network of 1 segment is carried through the user's guide as an example.

Given: 1. The network on the map below
2. C \& G difficulty - low
3. Bedrock depth - 4 feet
4. Running surface 14 feet with a ditch
5. Cutslope angle - 1:1
6. Surfacing depth (compacted) - . 5 feet
7. Distance to rock pit - 18 miles
8. Waste area - . 8 miles
9. Map scale - $1320^{\prime}=1$ inch
10. Contour interval - 40'
11. Adverse grade
12. 3 creek crossings
13. Store in file \#4
14. Road geometry is same

LOADING THE PROGRAM

1. Turn on H.P. 9830, H.P. 9865A peripheral cassette, H.P. 9864A digitizer and printer.
2. Press SCRATCH A, EXECUTE
3. Insert data tape into peripheral cassette and rewind.
4. Insert program tape in H.P. 9830 and rewind.
5. Press LOAD \emptyset, EXECUTE, then wait for "lazy tee" on display.
6. Press RUN, EXECUTE
7. Follow Visual Promptors on display.

The following program execution explanation uses the previously described example road network.

VISUAL DISPLAY	KEYBOARD INPUT	DESCRIPTION
1) Seg. data already stored (1 or 0)	0	Press 1 if the data to be analyzed has already been digitized. If 0 is pressed, go to visual display number 3 . If 1 is pressed, go to display \#2.
2) File number	N.A.	Press the number of the file where the data is stored. •Program jumps to visual display \#21.
3) No. of Segments in Network	3	Press total \# of segments in network
4) Map scale Feet/Inch	1320	
5) Contour interval in Feet	40	
6) Digitize segment "	None	Prompts the user that the program is ready to digitize.
7) Press S on cursor at end of segment	None	Follow display.
8) Now digitize the road in C mode	None	Digitize the road and stop when "beep" is heard. Press C again.
9) Now find average grade of road segment	None	Prompts the user that the program is ready to input road grade.
10) Favorable-1, Adverse=2, Level=3	2	Follow display.

VISUAL DISPLAY	KEYBOARD INPUT	DESCRIPTION
11) Number of contours crossed		Follow display.
12) Now find average sideslope of segment	None	Prompts the user that the program is ready to input sideslope.
13) Digitize contour above/below	None	Shown as "X's" on example problem Digitize with S on cursor. A contour above and below road segment. Contours must be 200' apart. Repeat 5 times/ segment.
14) Depth to bedrock in feet	4	Follow Display.
15) Number of creek crossings in segment	3	Follow display. If this number is 0 , then go to display number.
16) Digit CK"j" grade	None	Shown as "O's" on example map. Prompts the user to digitize along the creek a contour above and below the road 200' apart on CK"j".
17) Set origin at point on drain area	None	Prompts the user to press 0 and S at a point on perimeter of drain area on creek "j".
18) Digitize area	None	Prompts the user to go around perimeter in C mode. Stop at "beep." Press C to stop.

VISUAL DISPLAY	KEYBOARD INPUT	DESCRIPTION
19) C \& G difficulty (low=1, medium=2, high=3)	1	Follow display.

20) Store segment in		
file no.	4	Follow display - this refers to file \# on peripheral cassette.

21) Want list of stored $1 \quad$| Press 1 if you want |
| :--- |
| data (1 or 0$)$ |
22) Want unit cost listing (1 or 0)

1 Press 1 if you want listing.

PROGRAM NOW LINKS TO PART b. (TAPE WILL ADVANCE.)

1) Road geometry same for all segments (1 or 0)	1	If 0 is pressed, go to display number 3.
2) Want segment data output (1/0)	1	If 0 is pressed, go to display \#4.

3) Output (short=1,

2 Follow display. Output medium=2, long=3)
4) Running surface width (ft.) 14 Follow display.
5) Cutslope factor (horizontal $1 \quad$ Follow display.
to vertical)
6) Is there a ditch (1 or 0)

1
Follow display 1 -Yes 0=No.
7) No. of miles to

18
Follow display. surfacing pit
8) No. of miles to 8 Follow display. waste area

VISUAL DISPLAY	KEYBOARD INPUT	DESCRIPTION
9) Bridge length in feet	If a bridge is needed, this display will appear.	

If the road geometry is different for each segment, display 4 to 9 will be repeated for each segment. If the road geometry is the same for the entire network, display numbers 4 to 9 will be displayed only once. The road geometry input will then be used for the entire road network. The following output was obtained for the example segment.

2. FUL EENGH ARC EIOEGHE

FO. HETLOFE 1. WG HGS 1. GG SEGTERTS

(R.C.P.)-Short Output Example


```
TGTHL HETHIFK} LEAGTH= E.GE MTLES
```


$\begin{gathered} \text { EUETBGDE } \\ \text { WIMH } \end{gathered}$	$\begin{gathered} \text { EUANGDTI } \\ \text { WIDTH } \end{gathered}$	$\begin{gathered} \text { QUSEGGE } \\ \text { HPSE } \end{gathered}$	$\frac{\text { SUFAEING }}{\text { OEFTH }}$	CITEH：
21.66	14．61	456	98	1． 24

ND．DP MILES TE GBGGGTHGPIT＝IG．EO

EE圌	FILLEEAEH EMDHEHL	$\begin{gathered} \text { FULEEAEH } \\ \text { GIDECHET } \end{gathered}$	EALFASED SECTION
1．E0 TGTHL EOET	主 16757\％ 41	\＃E1950 42	$\begin{aligned} & =5694.69 \\ & 4592.54 \\ & =0662617 \end{aligned}$
TOTAL ESE CGT	151284	15123.24	
FEFEEPT FIUGK	0.068	9． 69%	
FuE．Gotmmle	＊5921． 71	F 48529． 51	
ITEMIEED ENGIAECEING DATA			
COMMOA E\％C CT\％	1512624	15123.24	4593.54
FOCK ESECO	6． 649	6． 8.1	6． 0.0
H0FFS C \＆	F． 46	7． 96	7． 27
FCEFG EEEDIHE	E． 5	6． 5	E． 44
GUFEAEIATCOT	Teetes	766	Tese
TuFNiuT\＃	19．64	18．80	10．09
DUTLET FIFECLF	288 8	295 85	293
FIFEHFGE＇t	3 E	3． 09	2． 61

ITEMIZED GOGT

Eommot Ex：	9 42971． 96	F $4 \mathrm{se7} 1.9$	F 12221． 27
FOCE ESG：	± 80		\＆E16
SEES 1 m	\％Ent． 6	¢ 56\％ 67	± 261.5
18	\＄13992 94	$\cdots 1299284$	¢ 1452． 22
DUTLFT FIFESiE	车 5cti Ec		\％5c5i 92
FIPrif	\＃150．60	生 189	ま 160100
MOE11 I2GTIGR	\＄16ecel		F 102e 21
ENOHFILI	\％ 25596	\％ 9.10	¢ EtE
GurfMEIPI	＋ 30929	玉 7 coc 4 C	\＃7629．47
	ま 1015 29	＊1016 28	F 1615 28
Lfotif Pipe	\％15959	f 12res Se	F 13752 96

migeclarmene Fill egnoh variagleg

41＝ater	W2＝ate	$4 \mathrm{ta}=080$	$44=818$	$4 E=96$
46＝－2e 46	$47=343$	$F Q=0.0$	$41=906$	$H=90$
$H E=08$	$\mathrm{H} 4=6 \mathrm{c}$	$H E=S \mathrm{SE}$	$H E=2500$	


```
                                    185
```



```
    ITTFL NETGOFF LEHUTH= Z ES MILEG
```


