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ALTERNATIVE CHARACTERIZATIONS OF WEAK INFINITE-DIMENSIONALITY

AND THEIR RELATION TO A PROBLEM OF ALEXANDROFF’S

[. INTRODUCTION AND MATHEMATICAL PRELIMINARIES

The classical dimension theories of Menger-Urysohn and Lebesgue
assign an integer, called the dimension, to topological spaces in a manner
which extends the notions of dimension for manifolds and polyhedra. These
classical dimension theories, large inductive dimension and covering
dimension, may be thought of as inductively defined generalizations of the
topological properties of normality and paracompactness. Thus, although
quite difficult to show, it is not surprising that the two dimension theories

are equivalent for the category of metric spaces.

A description of these theories is given in section 1.1, along with
some elementary properties of those two theories. In addition, two
important theorems are given. The first, called the decomposition theorem,
gives a characterization of large inductive dimension in terms of unions of
zero-dimensional subspaces. The second, due to Eilenberg and Otto, gives a
characterization of large inductive dimension in terms of families of pairs of
disjoint closed subsets of the space, now known as essential families. The
section ends with a discussion of a result, due to Morita, concerning the
equivalence of the two dimension theories when considered for the category

of metric spaces.



On the other hand, the classification of infinite-dimensional spaces,
first proposed for study by Hurewicz in 1928, is not as well understood.
Although the classical dimension theories are equivalent on metric spaces,
their infinite-dimensional analogues may differ, even for compact metric
spaces. It appears to be very difficult to identify exactly what makes a
given space have infinite dimension. As an example, there even exists an
infinite-dimensional compact metric space which contains no positive-
dimensional subspace [ Walsh (1978)]. Since many important theorems of
topology require finite-dimensionality as part of the hypothesis, infinite-

dimensional dimension theories are of research interest.

In section 1.2, infinite-dimensional analogues of the finite-dimensional
theories given in 1.1 are defined. The first such analogue, countable-
dimensionality, was defined by Hurewicz as a generalization of the
decomposition theorem. Variations of the original definitions are discussed,
along with some relationships between those variations. Of particular
interest is a theorem due to Nagata, which characterizes countable-

dimensionality in terms of essential families.

Section 1.2 continues with the introduction of a covering property
due to Haver known as property C. Property C was defined by Haver for
metric spaces, and later generalized by Addis and Gresham for general
topological spaces, in order to decide when certain infinite-dimensional
locally contactible spaces were absolute neighborhood retracts. A survey of
the results of Addis and Gresham which are pertinent to the rest of this
thesis is presented. In particular, property C determines a dimension theory

for paracompact strongly completely normal spaces.



The last infinite-dimensional dimension theory discussed in section 1.2
is known as weak infinite-dimensionality. Two versions, equivalent on
compacta, are compared; the first due to Alexandroff, and the second due to
Smirnov. Smirnov’s version will prove to be deficient as a dimension
theory, and will be discarded, for the most part, throughout the rest of this

thesis.

The final section, section 1.3, of this chapter concerns itself, in
detail, with a famous question posed by Alexandroff. Simply stated, this
question asks whether or not the properties of countable-dimensionality and
weak infinite-dimensionality are equivalent when considered on compact
metric spaces. This question was recently negatively answered by Roman
Pol [R. Pol (1981)]. However, as with most results in mathematics, this
answer generates even more questions. A discussion of the construction of
R. Pol’s example is given, along with the remarks needed to show that this

example is indeed an answer to the original Alexandroff question.

The section and this chapter is ended with a discussion of the
relationships between the™ various infinite-dimensional dimension theories
presented. Those relationships are combined with the questions raised by R.
Pol’'s example to form what is called “The Generalized Alexandroff
Question”. The collective emphasis of this thesis is to research and better

understand this problem.



1.1 Classical Dimension Theories

In this section, two classical dimension theories are given. The large
inductive dimension was first published by Cech [Cech (1931)], although it
might be related to earlier results of Brouwer, and is certainly related to
the earlier theories of Menger and Urysohn [Menger (1923), Urysohn (1922)].
For a more complete exposition on the theory of large inductive dimension,

the reader is referred to [Engelking, Ch. 2].

1.1.1 Definition. For every normal space X, the large inductive

dimension of X is an integer n€{—1,0,1,.---}, denoted by the Ind X =n,
or is said to. be infinite, denoted by the Ind X =o0, which is assigned
according to the following rules:
a) The Ind X = —1 if and only if the space X =U.
b) The Ind X <n, n={0,1, 2,---}, if for each closed set
ACX and every open set UCX with ACU there exists
an open set VCX such that ACVCVCU with the
Ind Frv<n-1.
c) The IndX=n if the Ind X <n and the IndX>n—1.

d) The Ind X=o if the Ind X >n for each ne{—-1,0,1,---}.

As can be seen from the definition, large inductive dimension is
basically an inductive version of nomality, and hence, is defined for any
normal space. To obtain the standard theorems of a dimension theory, a
stronger separation property, namely strong hereditary normality, must be

assumed for the spaces involved. Since the emphasis of this thesis will be



with metric spaces, and indeed since every metric space is strongly

hereditarily normal, this distinction need be of little concern to the reader.

1.1.2 The Decomposition Theorem. [Engelking, p. 259] Let X be a

non-empty metric space and let né&€{0,1, 2,---} be fixed. The Ind X <n
if and only if for each k&{l,.-., n+1} there exists a zero-dimensional

subset Z, CX such that X=U{Zk:k=1,---,n+1}.

Because of the important nature of the zero-dimensional subspace in
1.1.2, some elementary results of zero-dimensional spaces are combined to

give the following statement.

1.1.3  Results for Zero-Dimensional Spaces. [ Engelking, p. 33, 52,

and 53]. Every normal space with the Ind X =0 is totally disconnected.

Every compact totally disconnected normal space X has the Ind X =0.

However, there do exist totally disconnected separable metric spaces
of all dimensions which can be constructed in a very axiomatic manner
[Rubin, Schori, and Walsh (1979)]. The notation of the following theorem

may also be found in [Rubin, Schori, and Walsh (1979)].

Although Eilenberg and Otto originally proved the following theorem
only for the case where X was separable metric, the theorem remains true

without the separability condition [Engelking, p. 230, 254].



1.1.4 ({Eilenberg and Otto (1938)] A non-empty metric space X
satisfies the inequality Ind X <n if and only if every (n +1)-family of
pairs of disjoint closed subsets {(Ak, Bk):k =1,--,n+4+1} of X is
inessential, that is for each k €{1,---, n4+1} there exists a closed subset
Sk CX which separates the pair (Ak’ Bk) in X such that the

M{Sg:k=1,, n+1}=2.

The second classical dimension theory which will be presented, known
as covering dimension, has its roots in a very early paper by Lebesgue
[Lebesgue (1911)], and was formally defined by Cech [Cech (1933)]. To
avoid an extra hypothesis, covering dimension will be defined for the

category of paracompact spaces.

1.1.5 Definition. Let AU be a collection of subsets from a set X.

For any subset A CX the order of A in U will be the largest number n

of elements of U which contain some point x €A, and will be denoted by
will be denoted by the ordgx U =n. If no such largest integer exists, then
A will be said to have infinite order in U, and will be denoted by the
ordA‘U. =00, The order of U will be defined and denoted by the

ordU =sup {ordgy U:x €X}.

1.1.6 Definition. For every paracompact space X, the covering

dimension of X is an integer n&{—1,0,1,---}, denoted by the dim X =n

or is said to be infinite, denoted by the dim X =<, which is assigned



according to the following rules:
a) The dim X = —1 if and only if the space X =C.
b) The dimX <n, n€{0,1, 2,---}, if every open cover U of X
has an open refinement ¥°, with the ord ¥ <n-+1, which also
covers X.
¢) The dimX==n if the dimX <n and if the dimX >n—1.

d) The dim X =oc if the dimX>n for each n€{—1,0,1,---}.

In this form, the covering dimension is seen to be an inductive
version of paracompactness. Since every metric space is paracompact, it is
quite natural to suspect that the large inductive dimension and the covering

dimension agree on metric spaces.

1.1.7 The Coincidence Theorem. [Katétov (1952), Morita (1954)]

For any metric space X, the Ind X =dim X.

Thus, the choice of category for this thesis will be that of metric
spaces. For the remainder of this thesis, a space will always mean a metric
space, and because of 1.1.7, all future references to dimension will refer to

the covering dimension of Lebesgue with the notation dim X.



1.2 Infinite-Dimensional Dimension Theories

Hurewicz was the first person to propose giving infinite-dimensional
spaces their own dimension theory [Hurewicz (1928)]. In this section, three
such infinite-dimensional dimension theories are presented. Although the
classical dimension theories presented in the previous section are equivalent
for metric spaces, their infinite-dimensional analogues may differ, even for

compact metric spaces.

The first such theory, countable-dimensionality, was proposed by
Hurewicz [ Hurewicz (1928)] as a generalization of the decomposition theorem
1.1.2, and has been extensively discussed in the literature; [ Nagata, chapter

VI.1 and [E. Pol (1983)] are two very good sources.

1.2.1 Definitions. A space X is said to be countable-dimensional,

denoted by CD, if the space can be written as X=-U{'Zk:k €N} where
each subspace Zk C X is finite-dimensional. If, in addition, each Zk is a

closed subset of X, then X is said to be strongly countable-dimensional. A

space  which is not countable-dimensional is said to be uncountable-

dimensional .

It is clear from 1.1.2, that every finite-dimensional space is
countable-dimensional, and thus, that every uncountable-dimensional space is
infinite-dimensional. Many of the results in the literature concerning
countable-dimensional spaces are much easier to prove, or indeed, can be

shown to be true only for strongly countable-dimensional spaces. This is



unfortunate since Smirnov has given the following result.

1.2.2 [Smirnov (1962)] There exists a CD compact metric space

which is not strongly CD.

This discussion of countable-dimensional spaces is ended with the
presentation of a theorem due to Nagata which has been rewritten in the

language of essential families given in [Rubin, Schori, and Walsh (1979)].

1.2.3 [Nagata (1960)] A space X is countable-dimensional if and only
if for any countable collection of pairs of disjoint closed subsets,
henceforth called an w-family, {(A,, B, ):k€N} of X, there exists for
each k€N a closed set Sk C X which separates the pair (Ak’ Bk) in X

such that for each point x €X the ordy {Sk:kElN} <0,

The next infinite-dimensional dimension theory presented is a
covering property first defined by Haver [Haver (1973)] for metric spaces,
and later varied by Addis and Gresham [ Addis and Gresham (1978)] for
general topological spaces. The definition of property C given below in
1.2.4 is the one which was given by Addis and Gresham, and will be the only
such definition used in this thesis. Haver’s original definition is egquivalent
to 1.2.4 for compact metric spaces, however on non-compacta, the two

properties obtained may differ.



10

1.2.4 Definitions. A subspace A of a space X is said to have

property C in X, and is called a C-space, if for any sequence of covers
{Up:neN)} of A by open subsets of X, there exists refinements ¥ of
Up, for n€N, which satisfies the following:

a) For each n&€IN the elements of ¥, are open in X.

b) For each n€IN the elements of each ¥ are pairwise

disjoint.

c¢) The |J{¥yn:n€N} forms a cover of the subspace A.

Any refinement ¥ of a cover U, which satisfies the conditions a and b is

said to be a C-refinement of the cover Uy,.

In [ Addis and Gresham (1978)], results were presented to establish
property C as an acceptable dimension theory. In order to establish the
standard theorems of finite-dimensional dimension theories, Addis and
Gresham had to assume that the spaces involved were paracompact strongly
completely normal spaces, that is spaces where for each countable collection
of separated subsets there exists a family of pairwise disjoint open subsets
each of which contains exactly one of element of the collection of separated
sets. Since this is much to ungainly for the purposes of this thesis,
property C will only be considered for metric spaces. Of course, every
metric space is paracompact and strongly completely normal. In particular,

strong complete normality is needed to obtain the following basic result.

1.2.5 [Addis and Gresham (1978), p. 197] A subspace A of a metric

space X has property C in X if and only if A has property C in itself.
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In light of 1.2.5, and because all spaces considered in this thesis will
be metric spaces, a subspace will simply be said to have property C with no
mention of any ambient space. The results of [Addis and Gresham (1978)]

which will frequently be used in the rest of this paper are stated next.

1.2.6 The Sum Theorem for Property C. [ Addis and Gresham

(1978), p. 197] If for each n&€IN X, is a subspace which has property C

in a space X then the |J{Xp:n €N} also has property C.

1.2.7 The Subspace Theorem for Property C. [ Addis and Gresham

(1978), p. 197] If a space X has property C, then every closed subspace
A CX will also have property C. Thus, in light of 1.2.6, every ¥

subspace of X will also have property C.

Haver’s original definition of property C defined a property
hereditary to all subspaces of a metric space. As will be shown in the next
section, the definition of property C due to Addis and Gresham needs not
be hereditary to all subspaces, even when the ambient space is a compact

metric space.

Addis and Gresham also showed that property C was an infinite-
dimensional analogue of a finite-dimensional dimension theory equivalent to
covering dimension for paracompact strongly completely normal spaces, and
hence also for metric spaces. Thus, it is quite correct to say that property

C is an infinite-dimensional dimension theory.
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1.2.8 [Addis and Gresham (1978), p. 197] A space X has the
dim X <n if and only if for any sequence of covers {‘U.k:k=1,---, n<+1}
by open subsets of X there exists for each k&f{l,--,n+1} a C-

refinement ¥ of U, such that the U{‘V‘k:k=1,---, n+1} covers X.

The last infinite-dimensional dimension theory, weak infinite-
dimensionality, is an infinite-dimensional analogue of the characterization of
covering dimension which was given in 1.1.4. Two such analogues were
proposed in the literature; the first by Alexandroff and the second by
Smirnov. The best single source on weak infinite-dimensionality is found in
[ Alexandroff and Pasynkov (1973)], where the reader is referred to for

general information about the following statements.

1.2.9 Definitions. A space X is said to be weakly infinite-

dimensional in the sense of Alexandroff, which will be denoted by WID, if

every given w-family of pairs of disjoint closed subsets {(Ap, Bp):neN}
of X is inessential, that is for each n&IN there exists a closed set
Sy ©X  which separates the pair  (Ap, Bp) in X such that the
({Sp:n €N} =g . If, in addition, the separators may be chosen such that
for some finite integer N the (}{Sp:n=1,--, N} =g, then the space X is

said to be weakly infinite-dimensional in the sense of Smirnov, which will

be denoted by S-WID. If a space is not weakly infinite-dimensional, then

the space will be referred to as being strongly infinite-dimensional, which

will be denoted by SID.
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It is clear that every S-WID space is also a WID space. Moreover, it
is easy to show that the two versions of weak infinite-dimensionality are
equivalent on compacta. Because of this, and unless stated otherwise, weak
inifinite-dimensionality will always refer to weak infinite-dimensionality in

the sense of Alexandroff.

The following theorems state results concerning WID spaces which
will frequently be used in later sections of this thesis. The proofs follow
the same pattern as the proofs of the corresponding theorems for property

C, and are omitted.

1.2.10 The Sum Theorem for WID Spaces. If for each n&€N X is

a WID subspace of a space X, then the |J{Xp:n&N} will also be a WID

subspace of X.

The equivalent statement for S-WID spaces is false, even when each
subspace is closed in X. A simple counter-example may be constructed by
forming the nested union of n-cells where n ranges over all n&€N. The

resulting space, while clearly strongly countable-dimensional, is not S-WID.

1.2.11 The Subspace Theorem for WID Spaces. If a space X is WID

(S-WID), then every closed subspace of X is also WID (S-WID). Thus, in

light of 1.2.10, every ¥4 subspace of a WID space is also WID.

These results suggest that weak infinite-dimensionality in the sense



14

of Smirnov is not an appropriate choice for an infinite-dimensional dimension
theory. On the other hand, since weak infinite-dimensionality in the sense
of Alexandroff does possess extensions of the finite-dimensional subspace
and sum theorems, weak infinite-dimensionality in the sense of Alexandroff

should be thought of as an infinite-dimensional dimension theory.
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1.3 The Generalized Alexandroff Question

In the last section, three infinite-dimensional dimension theories were
presented. Comparing theorem 1.2.3 with the definition of weak infinite-

dimensionality given in 1.2.9 gives the following theorem.

1.3.1 Theorem. Every CD space is a WID space.

The converse of 1.3.1, first proposed by Alexandroff, remained an

open question until only recently.

1.3.2 he Alexandroff Question. Is every WID space a CD space?

Until recently, the only examples of uncountable-dimensional spaces
were strongly infinite-dimensional spaces such as the Hilbert cube. In 1981,
Roman Pol combined two known theorems to negatively answer 1.3.2 [R. Pol
(1981)]. Because of the importance of this example, and because the
structure of this example will be used in later sections, a detailed discussion

of its construction is given.

1.3.3 {R. Pol (1981)] There exists a WID compact metric space P

which contains a SID subspace. Thus, P cannot be CD.

Proof. There exists a SID separable metric space X which is totally

disconnected. Although this space was probably known previously, an
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explicit construction of such a space X as a subset of the Hilbert cube may
be found in [Rubin, Schori, and Walsh (1978)] as a special case of a more
general and powerful construction procedure. As R. Pol also mentions, the
construction of this space may be modified to ensure that the constructed
space X is topologically complete. A detailed proof may be found in [Garity
and Schori (1986)]. Thus, the space X can be constructed to be a Gs subset

of the Hilbert cube [ Dugundji, p. 307].

A classical compactification theorem [Lelek (1965)] states that such a
space admits a compactification P in the Hilbert cube with a CD remainder,
i.e. Z=P\X is CD. Since the compactum X contains the SID subspace X,
the theorem 1.3.1, together with the obvious hereditary nature of
countable-dimensionality, implies that P cannot be CD. On the other hand,
it is easy to show that P is WID. This will be obtained in a later section
as a result of a more general theorem. Thus, the compactum P is seen to be
a negative answer to the question of Alexandroff. This completes the

proof.

It should be mentioned that, as noticed by E. Pol, R. Pol's compactum
P also has property C. This will be obtained in a later section as a special

case of a more general theorem.

1.3.4 [Addis and Gresham (1978), p. 197 and p. 202} Every CD space

has property C. Every space with property C is WID.
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It has long been the opinion of many topologists working in this area,
that property C captures the essential nature of countable-dimensionality.
If this is indeed the case, then R. Pol’s compactum cannot truly be
considered to be an acceptable solution to the problem of Alexandroff, or
perhaps it would be better to say that Alexandroff simply asked the wrong
question. Therefore, in the remainder of this section, a generalized
Alexandroff question will be posed. Contained in this generalized question
are particular questions of importance, not only to dimension theory, but
also to larger areas of topology such as manifold decompositions, shape

theory and the study of dimension-raising maps.

It is obvious from the definition given in 1.2.1 that the property of
being countable-dimensional is hereditary to all subspaces of a countable
dimensional space. Haver’s original definition of property C was hereditary
to all subspaces of a metric C-space. On the other hand, R. Pol’s compactum
shows that property C, as defined by Addis and Gresham, and weak infinite-
dimensionality, while hereditary to closed subspaces, need not be hereditary
to all subspaces. Thus, the two versions of property C do differ. Because
of this observation of the lack of an hereditary nature for property C and
for weak infinite-dimensionality, it is quite natural to make the following

definitions.

1.3.5 Definitions. A space X is said to be hereditarily weakly

infinite-dimensional, denoted by HWID, if every subspace A CX is WID.

A space X is said to have property C hereditarily, denoted by H-property

C, if every subspace A C X has property C.
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1.3.6 Theorem. Metric spaces satisfy the following implications of

properties.
= HWID =
cpD 2 H-property C WID

= property C =2,

Proof. These implication are obvious from the results in 1.3.4.

Since the compactum P constructed in 1.3.3 is a C-space with an
HWID subspace, it is seen that the converses of the implications ¢ and d
are false. At the time of this writing, the converses to the remaining
implications of 1.3.6 are open questions. These reverse implications, those
of a, b, and e, together with the implication f of the following

statement compose the generalized question of Alexandroff.

1.3.7 The Generalized Question of Alexandroff. Does every metric

space always satisfy each of the following implications of properties?

CD <& H-property C <% HWID =~ property C <& WID

Since the implication e of 1.3.7 implies the implications b and f
of 1.3.7, it certainly seems that the question posed by e is of the most
interest. Also of interest is the question posed by the implications a and

b of 1.3.7 when taken together: Must every HWID space be CD?

Chapter two of this paper presents results which illustrate the

importance of, and difficulties in, answering these questions. In 1.2.3, a
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characterization of countable-dimensionality in terms of essential families
was given. However, at this time, no such characterization of property C in
terms of essential families is known. Chapter three of this paper will
explore the possibilities of such a characterization, as well as characterizing

weak infinite-dimensionality in terms of sequences of open covers.
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II. EXTENSIONS OF EXISTING RESULTS

In this chapter, extensions and generalizations of existing results will
be given. Section. 2.1 gives results concerning separations and
decompositions of weakly infinite-dimensional spaces. A result, theorem
2.1.6, is given which generalizes E. Pol’s proof of the fact that R. Pol’s
compactum has property C. The section ends with a question of importance

in answering the generalized Alexandroff question.

In section 2.2, results concerning products of weakly infinite-
dimensional spaces are presented. A brief review of known results is given,
followed by some results about products of R. Pol’'s compactum with various
WID spaces. A direct proof that the product of two compact C-spaces also
has property C is given in 2.2.17. The section ends with some questions for

further research.

The topic of section 2.3 is the preservation of weak infinite-
dimensionality and property C by open maps with finite fibers. A very
general theorem is given in 2.3.9, from which various results are obtained
including a new result concerning property C under open maps with finite
fibers. These results no longer follow if the condition on the fibers is
relaxed. Some questions related to these topics are asked at the end of the

section.

In section 2.4, a covering characterization of weak infinite-
dimensionality is given. This characterization, given in 2.4.2, is exploited

to generalize a result of Kato, by showing that refinable maps on compacta
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preserve property C. A slight variation in proof yields Kato’s original

result as well as a result due to Patten.

In the final section of this chapter, the major motivation for
studying the relationships between different types of infinite-dimensional
spaces is discussed; namely the cell-like dimension-raising map question.
Results due to Kozlowski and Ancel related to this question are discussed.
In particular, it is shown that approximately invertible maps, such as
hereditary shape equivalences, preserve weak infinite-dimensionality. By a
simple variation of proof, Kozlowski’s result that hereditary shape
equivalences preserve finite-dimensionality is obtained. The remainder of
the section raises questions related to the cell-like dimension-raising map

question.
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2.1 Decompositions of WID Spaces

In this section some easily obtained results concerning decompositions
of weakly infinite-dimensional spaces are presented. The emphasis is on the
similarities between property C and weak infinite-dimensionality, and not on

the results themselves.

2.1.1 [Addis and Gresham (1978), p. 200] A space X has property C
if and only if for any pair of disjoint closed subsets (A, B) of X there
exists a closed subset SCX having property C in X such that S separates

the pair (A, B) in X.

The following analogous result concerning the inductive nature of

weak infinite-dimensionality is obtained.

2.1.2 Theorem. A space X is WID if and only if for any pair of

disjoint closed subsets (A, B) of X there exists a closed WID subset

S CX such that S separates the pair (A, B) in X.

Proof. Suppose that X is WID and that S is any closed subset of X
which separates the given pair of disjoint closed sets (A, B) in X. Since

X is WID, and since S is closed in X, the separator S must be WID.

Suppose that the space X satisfies the hypothesis of the converse
and let an w-family of pairs of disjoint closed subsets {(Ap, Bp):n€N}

of X be given. By the hypothesis, a closed subset S1 C X which separates
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the pair (Al’ Bl) in X may be chosen such that the separator Sl is WID.

Since the collection {(AnNS;, BpNS,):n€N\{1}} is an w-family
of pairs of disjoint closed subsets of S;, for each n€&€N\(1} a closed set
Tn CSl which separates the pair (A, ﬂSl, Bn ﬂSl) in S; may be chosen
such that the [{Tp:n€N\{1}}=2. Each T, may then be enlarged to
obtain a closed set S, CX, with Sp ﬂSl CTn, which separates the pair

(Ap, Bp) in X [Engelking, p. 13].

Thus, separators of the pairs comprising the given w-family in X are
obtained such that the
(H{Sn:neN} ={{Sy ASy:n €IN\{1}}
CH{Tp:ne€N\{1}}

=,

Therefore the w-family {(Ap, Bp):n&€N} is inessential, and the

space X is shown to be WID. This completes the proof.

The previous theorem motivates the following theorem for spaces

which have property C.

2.1.3 Theorem. A space X has property C if and only if for any

given open cover U of X there exists a C-refinement ¥ of U such that the

complement X\|J{V:VE¥} has property C in X.

Proof. Suppose that the space X has property C and let U be a

given open cover of X. If ¥ is any C-refinement of 9, then the
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complement X\|J{V:VE€¥} is closed in X. Thus, since X has property C,

X\ V:VET)}, being closed in X, must also have property C in X.

Suppose that the space X satisfies the hypothesis of the converse,
and let {Up:n€N} be a given sequence of open covers of X. By the
hypothesis, a C-refinement ‘7/‘1 of ‘U.1 may be chosen such that the

complement X\|J{V:V E‘V‘l} has property C in X.

Finally, for each n&N\{1} a C-refinement ¥, of U, may be
chosen such that the [J{¥qn:n€IN\{1}} covers X\U{V:VE‘V‘I}. Thus,

the |{¥pn:n €N} covers all of X, which completes the proof.

Property C and weak infinite-dimensionality may also be related by
the following theorem. The technique used in the proof of that theorem
will also be used in a later section to characterize weak infinite-

dimensionality in terms of open covers.

2.1.4 Theorem. A space X is WID if and only if for any given open

cover U of X there exists a C-refinement ¥ of U such that the complement

X\HV:VET) is WID.

Proof. Suppose that the space X is WID and that ‘U is a given open
cover of X, If ¥ is any C-refinement of U, then the complement
X\ H{(V:VET}) is closed in X. Thus, since X is WID, X\ }{V:VeT}

being closed in X must also be WID.

Suppose that the space X satisfies the hypothesis of the converse.
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Theorem 2.1.2 will be used to show that X is WID. Let (A, B) be a given
pair of disjoint closed subsets of X, and use normality to choose open sets
U1 and U2 such that

ACUICUICX\B and BCX\UICU2C62CX\A.

Since the pair {Ul’ U2} is an open cover of X, the hypothesis may
be used to choose a C-refinement ¥ of {Ul, U2} such that the complement
X\ H{V:VET)} is WID. Define

V1=(X\U2)U(U{V:V €Y, VCU}
and
Vo =(X\TUIHV:VET, VN(X\U,) = 3}).
Clearly V1 and V2 are open subsets of X with
ACX\U2CV1 and BCX\UICVz.

Furthermore, since the Ul UU2 =X, the sets V1 and V2 are disjoint.

Thus, if - S -.—--X\(V1 UV2) is defined, then S is seen to be a
separator of the pair (A, B) in X. Since S is a closed subset of the WID
subspace X\|J{V:VET}, the separator S must also be WID, and then, by

2.1.2, the space X has been shown to be WID. This completes the proof.

The remainder of this section presents results on the decomposition

of spaces into unions of subspaces of which at least one is WID.

2.1.5 [Leibo (1971)] If A is a WID subspace of a SID space X, then

X contains a closed SID subspace Y such that YNA=g.
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2.1.6 Theorem. If A is a subspace having property C in a space X

which does not have property C, then X contains a closed subspace Y which

does not have property C such that YNA =J.

Proof. Since the space X is not a C-space, there exists a collection
of open covers {Up:n&N} of X such that no C-refinements of the covers
forms a cover of X. However, since A does have property C, for each
m€EN  C-refinements ¥, of each ‘U, may be chosen such that the

WH{¥,m:mEN)} forms an open cover of A in X.

Set Y=X\|{VEY,nu:mEN}, then Y is a closed subset of X
which is disjoint from A. No C-refinements of the remaining covers U,py-,
where m €N can provide a cover of Y, lest it also complete a cover of C-
refinements for X. Thus, Y cannot have property C, which completes the

proof.

From 2.1.6 the following corollary, the first of which was observed

by E. Pol, is obtained.

2.1.7 Corollary. R. Pol’'s compactum P has property C, and thus is

weakly infinite-dimensionality.

Proof. Recall that P=XUZ is a subcompactum of the Hilbert
cube where X is a totally disconnected SID space and Z is CD. If P did not
have property C, then since Z, being CD, does have property C, the
theorem 2.1.6 would imply the existence of a closed, hence compact,

subspace Y CP with YNZ = which did not have property C. Thus, the
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subspace Y CX would be a compact totally disconnected space, and hence,
by 1.1.3, would be =zero-dimensional. But, this would contradict Y not
having property C. Therefore, P must have property C which completes

the proof of the corollary.

If property C is replaced by countable-dimensionality in 2.1.6, then
the statement is no longer true. Pol’s example is not countable-dimensional,

and yet contains no closed uncountable-dimensional subspace missing Z.

2.1.8 [Skljarenko (1959)] Let X be a S-WID space, then X contains a

compact WID subspace K whose complement Z is CD.

Quite naturally, 2.1.8 raises questions of whether or not such

decompositions exist for WID spaces, or for spaces which have property C.

2.1.9 Question. If X is a WID space, then must X contain a compact

WID subspace whose complement is' CD?

- 2.1.10  Question. If X is a space which has property C, then must X

contain a compact subspace having property C whose complement is CD?

These questions will be answered negatively in the next section. It

might be, assuming these answers, that 2.1.11 is the correct question to ask.
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2.1.11 Question. If X is a WID space, then must X contain a

compact WID subspace whose complement has property C?

An affirmative answer to 2.1.11, and a simple use of the sum theorem,
would reduce the proof of implication e. of 1.3.7 to proving the implication
for compacta. This would be a major step in solving the generalized

Alexandroff guestion.
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2.2 Products of WID Spaces

Results concerning when products of WID spaces are WID are very
scarce amongst the literature of WID spaces. The answer to the following

guestion is not even known [R. Pol (1982)].

2.2.1 Question. If X and Y are WID compacta, then must the

product space X XY be WID?

However, some results are known for non-compact spaces. As a guide

to understanding the examples, some outline of proof is given.

2.2.2 [R. Pol (1982)] There exist two WID spaces whose product is

not a WID space.

Proof. Pol's example of 2.1.7 can be written as P =XUZ where
Z=P\X is CD. Thus, it is possible to write Z=B1 U82 where Bl and
82 are disjoint Bernstein sets, i.e. all compact subsets of B1 or 82 have

countable cardinality [Kuratowski, p. 40].

It is then easy to show that the two spaces X UB1 and X UB2 are
WID non-compacta. However, the product (XUBy) X (X UB,) contains the
SID space XXX -'as a closed subspace. Thus, the product space

(X UBl) X (X UB2) must be SID. This completes the proof.

This example also answers the related question about property C.
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2.2.3 [Engelking and E. Pol (1983)] The subspaces X UBl and
XUB, have property C. Thus, the product of two non-compact spaces,

both having property C, needs not have property C.

Finally, there is the following result, recently discovered by E. Pol.

2.2.4 [E. Pol (1986)] There exists a WID space X, having property

C, whose product with some subspace B of the irrationals is SID, and

therefore, cannot have property C.

Results concerning product spaces where at least one factor is
compact are even more scarce in the literature. The following theorem is

about all that is known.

2.2.5 [Addis and Gresham (1978), p. 201] Let X and Y be two C-

spaces where Y is compact. If Y has a basis B of open sets such that for
all B€® the product X XBdy(B) has property C, then the product

X XY also has property C.

2.2.6 Corollary. If X has property C and Y is a o-compact

strongly-CD space, then X XY has property C.

Proof. Since the space Y is o-compact, Y can be written as

Y =|H{Yy:n€N} where each Y, is a compact space. Moreover, since Y is
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a strongly-CD space it is possible to write Y =|{H{Zp:m €N} where each
Zm is a closed finite-dimensional subspace of Y. Thus, since each Yp can
be written as Yp=|H{ZmNYp:m&N}, it is seen that for each n€&€NN
the compact subspace Y, is also strongly-CD. An inductive application of
2.2.5 then gives that for each n&€N and every m€&EN the product
X X{ZmNYn) has property C. Applying the sum theorem to
XXYn=H{XX(ZpNYp)imeN} and X XY ={}{XXYp:neN}

gives the desired result that the product space X XY has property C.

It is now possible to answer the questions raised in 2.1.9 and 2.1.10.

The following simple lemma is needed.

2.2.7 Lemma. Let P denote R. Pol's compactum and let E denote the

Euclidian line. The complement of any compact subspace K of PXE

cannot be CD.

Proof. Let KCPXE be a compact subset and let 7:PXE—E
be the projection mapping. Since 7 (K) is compact, the complement
E\7(K) 2, and thus it is possible to choose y €E\7(K). But, then
the product P X{y}=7"'(y)C(PXE)\K, and since P X{y} is not CD,
it is seen that the complement (P XE)\K cannot be CD. This completes

the proof of the lemma.

2.2.8 Theorem. The product space P XE  provides negative

answers to the questions raised in 2.1.9 and 2.1.10.
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Proof. Applying 2.2.6, it is observed that the product P XE has
property C, and thus is WID. The lemma 2.2.7 then denies the existence of
a decomposition of P XE as called for in 2.1.9 or 2.1.10. This completes

the proof.

Smirnov’s compact CD space which is not strongly-CD, mentioned in
1.2.2, prevents the proof of 2.2.6 from generalizing to arbitrary compact CD
spaces., Moreover, the proof of 2.2.5 depends heavily on the second factor
Y having all of the structure. In the remainder of this section, results are
presented which share this structure between the two factors. The case
where one of the factors is R. Pol's compactum will be of particular

interest.

The next theorem, while almost obvious, gives a necessary condition

for the product space to have property C.

2.2.9 Theorem. If X and Y are spaces such that the product X XY

has property C, then both factors X and Y must also have the property C.

Proof. Fix a point (x, y)EX XY. Since the fibers X X{y} and
{x} XY are closed subspaces of the product X XY which has property C,
the fibers X X{y} and (x}XY, as well as their homeomorphic copies X

and Y, must both have property C. This completes the proof.

Next, results are presented which concern product spaces where one

factor is R. Pol’s compactum. The following lemmas are needed.
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2.2.10 [Morita (1956)] If f:X—Y is a closed mapping between

spaces X and Y such that for each y €Y the fiber has dimf '(y) <0,

then the dimX <dimY.

2.2.11 Lemma. If X is a space such that for any zero-dimensional

space Z the product X XZ has property C, then for any CD space Y the

product X XY will also have property C.

Proof. Since the space Y can be written as Y =|J{Ys:nEN},
where for each n€N the dimYp=0, the result follows from the

hypothesis and the sum theorem.

2.2.12 Theorem. If P is R. Pol’s compactum and Y is any CD space,

then the product P XY will have property C.

Proof. By the lemma 2.2.11, it is sufficient to show  that the

product P XY has property C where Y is any zero-dimensional space.

Suppose that Y is zero-dimensional and let #:PXY-—Y denote the
projection mapping. Recall that P=XUZ where X is a totally

disconnected SID space and Z is CD.

Let {Up:n€N} be a given sequence of open covers of P XY.
Since the product Z XY is clearly CD, Z XY has property C, and thus,
for each n>2 it is possible to choose a C-refinement ¥ of Uy, such that

the | J{¥p:n>2} is an open cover of ZXY in PXY.

By setting K=(PXYN({HVETq:n>2}) a closed, but not
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necessarily compact, subspace of P XY which is contained in X XY is
obtained. Since P is compact, the projection 7 is a closed mapping, and thus
the restriction 1:KoY to the closed subspace K remains a closed
mapping. Fix a point y €Y, then 7 '(y)NK is a closed, hence compact,
subspace of the compactum P X{y} contained in the totally disconnected
subspace X X{y}. Thus, by the remarks given in 1.1.3, it is seen that

the dim (x'(y)NK)<O0.

Using these results, 2.2.10 can be applied to obtain that the
dimK <0, and thus by 1.2.8, a C-refinement ‘7/‘1 of the remaining cover °LL1

may be chosen such that ‘V‘l is an open cover of K in P XY.

The collection {¥p:n&€N} is then a collection of C-refinements of
the original sequence {Up:n €N} such that the |J{¥p:nEN} covers all
of the product P XY. Thus, P XY is shown to have property C which

completes the proof.

2.2.13 Corollary. The product of R. Pol’s compactum and the space

of irrationals has property C.

Proof. This is an obvious application of 2.2.12.

It should be noted that the result of 2.2.13 cannot be obtained from
2.2.5. Moreover, in light of E. Pol’s result 2.2.4, the following question

ought to be raised.
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2.2.14 Question. Does there exist a compactum which has property

C and yet whose product with the space of irrationals (or any CD space for

that matter) does not have property C?

2.2.15 Theorem. If K is a compactum whose product with any zero-

dimensional space Y has property C, then the product of R. Pol’s compactum

P with K also has property C.

Proof. As before write P=XUZ, then 2.2.11 implies that the
product Z XK has property C. Let {Up:nE€IN} be a given sequence of
open covers of the product P XK, then for each n&EN a C-refinement
Yon of <U,n may be chosen such that the [[{¥,n:n€N} forms an open

cover of Z XK in the product P XK.

Set Y =(PXK)\({{VEY,;:n€N}), then Y is a closed, hence
compact, subspace of the compactum P XK contained in the subspace
X XK. Denote the projection mapping by: 7:PXK—P, then =x(Y) is a
subcompactum of P contained entirely within the totally disconnected space

X, and thus, by 1.1.3, the dim 7(Y) <0.

Thus, Y is a closed subspace of the product w{Y) XK which, by the
hypothesis, has property C. Thus, Y itself must also have property C.
Therefore, using the remaining covers {%U,u-,:n€N}, it is possible to
choose C-refinements Y ,p., of egch U, ,.1 such that the HY on-1:n EN}

forms an open cover of Y in the product P XK.

Therefore, the |J{¥n:nE€N)} covers all of P XK, and thus the

product P XK is shown to have property C. This completes the proof.
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2.2.16 Corollary. Let P be R. Pol’'s compactum, then the product

P X P has property C.

Proof. Let Z be any zero-dimensional space. By 2.2.12, the product
P XZ has property C, and thus theorem 2.2.15 implies that the product

P X P also has property C.

The theorem 2.2.15 motivates, and is made obsolete by, the following
theorem. This will complete the results about product spaces where both

factors are compact spaces which have property C.

2.2.17 Theorem. If X and Y are compact spaces, both of which have

property C, then their product X XY also has property C.

Proof. Let a sequence of open covers of the product X XY be
given. Rewrite the sequence as a countable collection of sequences of open
covers, denoted by {{‘U.&:nElN}:mElN}. Moreover, by compactness, it
may be assumed that each ‘U.,'}, is a finite cover of the product X XY,
where without loss of generality, each ‘U.% is of the form
‘U.,'}, ={Ak XBk:k =1, r,':,} with every Ak open in X and each Bk open in

the space Y.

Fix meN, nelN, and let x €X be fixed but arbitrary. Choosev a
finite subcover UM (x) of the product {x}XY from U® such that for
each element AkXBk E‘U.&(x) of the subcover the point, xEAk. By
defining A(x)=ﬂ{Ak:Ak X By EUR(x)}, an open subset A(x) of X with

X €EA(x) is obtained. Thus, by constructing A(x) for each x&€X, and by
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defining Ag ={A(x):x€X}, an open cover A& of X is constructed.

Keep meIN fixed, and construct such an open cover A& of X for
each neN. Since X has property C, C-refinements C& of each A?n may
then be chosen such that the |J{CL:n€N} covers X. For each n€N
and every CEC?n a single point x€X may be chosen such that
CCA(x)EA]L. For each such C and x define

Tm(C) ={CXBy:A, XB, EURK)} and ¥{=U(Ym(C):CeC}.

Thus, for each CeCh, ¥N(C) is an open refinement of UR(x),
and hence also of U, such that ¥p(C) is an open cover of CXY.
Similarly, since the elements of each C{'“ are pairwise disjoint, each ‘T',‘n is an
open refinement of UM such that the collection {J¥H(C):CecCh) is a
collection of pairwise disjoint ‘“tubes” contained in the product X XY.
Finally, since  the U{C&:nEN} covers X, define the set

¥m={Yh:nEN} to obtain an open cover of all of X XY.

Suppose tﬁat for each m&IN an open cover ¥ of X XY has been
constructed in this manner. Fix me€EN, and let y€Y be fixed but
arbitrary. Since X X{y} is compact, a finite subcover ¥ p(y) of
X X{y} may be chosen from ¥ such that for each CXBy €¥p(y) the
point y €B, . As before, define B(y)=ﬂ{Bk:C XBy €¥m(y)} to obtain
an open subset B(y) of Y with y €B(y). Thus, by constructing B(y) for
each y €Y, and defining By ={B(y):y €Y}, an open cover By of Y is

obtained.

Suppose, in this manner, that for each m &N such an open cover

Bm has been constructed. Since Y has property C, for each m&eN a C-
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refinement 9, of each By may be chosen such that the [J{Dp:meEN}
forms an open cover of Y. For each m&N and every D€&Jp choose a
single point y €Y such that DCB(y)EBy. For each such D and y
define
Wm(D)={C XD:CXBkE“/'m(y)},
and then decompose Wpy(D) into
Wm(D)={WH(D):neN}
where for each n€IN
Wh(D)={CXD:CXB, €E¥n(y)N¥m}.
Thus, for each D&y, the set ‘W',},(D) is an open refinement of q/'",m‘, and

hence also of UY,, such that Wnp(D) covers the product X XD.

Finally, set Wh =[}{#h(D):D€EDy)} to obtain an open refinement
of ‘U.',}, . Furthermore, since each Wyp(D) covers X XD, where D€y,
and since the |}H{Dp:mEN} covers all of the space Y, the union

U{‘Wg,:m €N, n€N} is easily seen to cover all of the product X XY.

It only remains to show that for each m&IN and every n&€N the
elements of ‘W% are pairwise disjoint. This is fairly immediate since any
element of Wl has the form CXD where C€Cl and D€E9D,. Since Cp
and 9Dy are collections of pairwise disjoint open sets of X and Y

respectively, the elements of wh are clearly pairwise disjoint.
m

Thus, for each m €N and every n&€IN it has been shown that ‘W%
is a C-refinement of UM, such that the [J{Wh:mEN, neN} covers all of
the product X XY. Thus, the product X XY has been shown to have

property C which completes the proof of the theorem.
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2.2.18 Corollary. Let P denote R. Pol’s compactum and let n€N

be fixed. The n-fold product P" of P has property C.

Proof. This is obvious from the theorem 2.2.17.

It should be noted that the compactification procedure used to
construct P involves adding non-degenerate polyhedra to the totally

disconnected space X. Thus, P® is SID and cannot have property C.

This section is ended with some related questions for further

research. The following is related to the question asked in 2.2.14.

2.2.19 Question. If X and Y are spaces having property C where X

is compact, then must their product X XY always have property C?

2.2.20 Question. Let f:X—Y be a closed (open and closed)
mapping between spaces X and Y. If the space Y has property C, and if for
every y €Y the fiber f™'(y) has property C, then must the space X also

have property C?

An affirmative answer to 2.2.20, which was motivated by 2.2.10,
would also give an affirmative answer to 2.2.19. [t should also be noted
that if property C in 2.2.20 is replaced by countable-dimensionality, then

the answer is known to be no [R. Pol (1983)].
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2.3 Property C and Open Mappings with Finite Fibers

A classic question of finite-dimensional dimension theory considers
the existence of mappings which raise or lower dimension. One class of
maps which has been extensively studied with regard to these questions is
that of open mappings. In this section, results are obtained for the

analogous questions concerning infinite-dimensional spaces.

2.3.1 Definition. A mapping f:X—Y is called an open mapping if f

maps each open set A CX to an openset f(A)CY.

Standard examples of open mappings include the projections mappings

of product spaces onto their factor spaces.

2.3.2 [Hausdorff (1934)] Every separable metric space X is the

image of some subset Z of the irrationals by an open mapping f:Z—X.

Since 2.3.2 implies that the Hilbert cube can be written as the image
of a zero-dimensional space by an open mapping, it is seen that arbitrary
open mappings need not preserve countable-dimensionality, property C, or
weak infinite-dimensionality. The next statements show that even the
strong restriction to the class of open mappings which have countable fibers

fails to prevent those mappings from arbitrarily raising dimension.
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2.3.3 Definitions. A fiber of a mapping f:X—Y is the inverse

image f™'(y) of a point y €Y. If the cardinality of each fiber |f™'(y)]|

is countable, then f is said to have countable fibers. Similarly, if the

cardinality of each fiber |f™'(y)| of f is finite, then f is said to have

finite fibers.

2.3.4 [Roberts (1947)] If f:Z—9X is an open mapping between
separable metric spaces, then there exists a subset A CZ such that the

restriction f|, :A—X is an open mapping with countable fibers onto X.
A

Thus, 2.3.2 and 2.3.4, when taken together, imply that the Hilbert
cube may still be written as the image of a zero-dimensional space by an
open mapping with countable fibers. Although open mappings with countable
fibers defined on metric spaces may raise or lower dimension in an arbitrary
manner, it might be poséible to place enough structure on the spaces
involved to obtain preservation of dimension. The folloWing question is a

generalization of a result due to Alexandroff [ Alexandroff (1936)].

2.3.5 Question. If f:—Y is an open mapping with countable fibers

between locally compact metric spaces, then must X have property C if and

only if Y has property C?

Next, open mappings with finite fibers are considered. The following

lemma will be needed in the proof of the main theorem of the section.
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2.3.6 Lemma., [Nagami (1960)] Let f:X—Y be an open mapping

with finite fibers between spaces. For each j&€IN define
a) Y;={y€eY:|f"(y)|=j},
b) Xj=f"(Y;), and
c) fj=flxj:XJ--—»Yj.
Then:
1. For each n&€N the U{Yj:_j=1,---,n} is closed in Y.
2. For each j&N the mapping fj:xj_’Yj is a local

homeomorphism.

2.3.7 Definition. ‘A property P of metric spaces will be called

similar to property C if the property P satisfies:

1. The property P is hereditary to closed subspaces.

2. If X =} Xj:jEN}, where each Xj is a closed subset of X
that has the property P, then the space X also has the
property P.

3. If each point of a space X has a neighborhood which has the

property P, then the space X also has the property P.

This definition will be used to avoid redundancy of proofs. It should
be mentioned that if the space X of condition 3 is separable, then condition
3 follows from the first two conditions in the obvious manner. Although
condition 3 of 2.3.7 appears to be a very strong assumption, as the following

lemma shows, it is satisfied by many topological properties.
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2.3.8 Lemma. If P is a property of metric spaces which satisfies

the conditions 1 and 2 of 2.3.7, and which in addition, satisfies the condition
3’. For any discrete collection {Xg:x €T} of closed subspaces
of a space X where each Xy has the property P, the
U{Xq : ET} also has the property P,

then the property P is similar to property C.

Proof. Let P be a property as per the hypothesis of 2.3.8. It is

enough to show that the property P satisfies condition 3 of 2.3.7.

Suppose that U is an open cover of a space X by sets which have
the property P. Since X is metric, U has a o-discrete closed refinement
¥ = H{¥n:n€N} where each ¥ is a discrete collection of closed sets in

X, which also covers X.

Fix n€N, and let VEY,. Since there exists UEU with VCU
as a closed subset, condition 1 of 2.3.7 implies that V has the property P.
Condition 3’ then implies that the [J{V:VE¥Y,} has the property P.
Finally, condition 2 of 2.3.7 implies that X =|{V:VEY,, n€N} also has

the property P. This completes the proof.

2.3.9 Theorem. Let P be any property of metric spaces which is

similar to property C and let f:X—Y be an open mapping with finite
fibers between metric spaces. The space X has the property P if and only

if the space Y has the property P.

Proof. As in the lemma 2.3.6, for each JEN define

—_— R ) — ] - ! — R X
Yij={y€Y:If"(y)|=4}, X;=f7(Y;), and fj—flxj.XJ-—»YJ. Thus,
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the lemma 2.3.6 implies that for each n€&€IN the U{YJ-:J'=1,---, n} is
closed in Y, and thus that each YJ- is an ¥4 subset in Y. Therefore, each

XJ- is also an F4 set in X.

Furthermore, from 2.3.6, for each jEIN the map fj:Xj-—»Yj is a
local homeomorphism. Therefore, a cover {Ug:a EFJ-} of XJ- by open sets
of XJ- may be chosen such that for each o EFJ- the restriction
fJ-:Ua—-»fJ-(Ua) is a homeomorphism. Moreover, since XJ- =f'1(YJ-), each
fj remains an open mapping, and then for each OLEPJ- the image fJ‘(Uoc)

“will be an open subset in YJ-. Therefore, the collection {fJ-(Ua):a EI‘J-} is

a cover of YJ- by open subsets of YJ-.

Suppose that the space X has the property P, then from conditions 1
and 2 of 2.3.7 every ¥4 subset of X also has the property P. In particular,
for each jEN the subspace Xj has the property P. By the same

argument, for each aEl’J- Uq , being open in Xj, is an ¥4 subset of Xj,

and thus has the property P.

Since for each jEN and every « El‘j f(Ug) is homeomorphic to
Ug, the collection {fj(Ua):a EI‘j} is a cover of Y‘j by open subsets of
Yj, each of which has the property P. Thus, condition 3 of 2.3.7 implies
that each Yj has the property P. Finally, since Y =} Yj:jE}N},

condition 2 of 2.3.7 implies that the space Y also has the property P.

The proof of the converse is similar. Suppose that the space Y has
the property P, then since each Yj is an ¥4 subset of Y, each Y‘j also has
the property P. Thus, for each j€IN and every « EI‘j fj( Ug ), being an

open, and hence ¥, subset of Yj, also has the property P.
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Since for each j€IN and every aEFJ- fJ-(Ua) is homeomorphic to
Uqg s the collection {Ua:aEI‘J-} is a cover of Xj by open subsets of XJ-,
each of which has the property P, and thus condition 3 of 2.3.7 implies that
each Xj also has the property P. Finally, since X =K Xj:jGIN},
condition 2 of 2.3.7 implies that the space Y must also have the property P.

This completes the proof.

Corollaries. Let X and Y be as in 2.3.9 with f:X—Y being an open
mapping with finite fibers between X and Y.
2.3.10 [Nagami (1960)] The dim X <n if and only if

the dimY <n.

2.3.11  [Arhangel’skii (1966)] The space X is CD if and only if

the space Y is CD.
2.3.12 [Polkowski (1983)] The space X is WID if and only if the
space Y is WID.

2.3.13 The space X has property C if and only if the space Y

has property C.

Proofs. It is clear from the definitions involved and the results
presented in the introductory sections that all four properties of the
corollaries satisfy conditions 1 and 2 of 2.3.7. The local condition 3 is also
easily seen to be satisfied for all four properties by an application of 2.3.8.
Thus, all four properties are similar to property C, and the results follow

from the theorem 2.3.9. This completes the proofs.

The following related question remains open.
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2.3.14 Question. Let f:X—Y be an open mapping between spaces

so that each fiber is separable with no fiber dense in itseif. Is it the case
that the domain X must have property C if and only if the range Y has

property C?

This section is closed with a brief discussion concerning the
preservation of weak infinite-dimensionality in the sense of Smirnov by open

mappings with finite fibers.

2.3.15 Theorem. The property of weak infinite-dimensionality in

the sense of Smirnov is not similar to property C.

Proof. It is easy to see that the free union of n-cells 1"  where
n€N is not S-WID. Thus, weak infinite-dimensionality in the sense of
Smirnov does not satisfy conditions 2 or 3 of 2.3.7, and thus is not similar

to property C.

Theorem 2.3.15 is another example of the failure of weak infinite-
dimensionality in the sense of Smirnov to be an acceptable infinite-
dimensional dimension theory. Although the techniques of 2.3.9 do not

apply, a partial result is still known.

2.3.16 [Polkowski (1983)] Let f:X—Y be an open mapping with

finite fibers between spaces X and Y. If X is S-WID then Y is also S-WID.
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However, as the following example shows, the converse to 2.3.16 is
false. A similar example, in a different form, was also known to Polkowski

[Polkowski (1983), Remark 3.61.

2.3.17 Example. Consider the product induced metric topology on

the space
Rg)={(x1, Xo x3,---):xk €R, x, =0 for all but finitely many k eN}.
For each n&€N define subsets of IR({,‘) by
_ W, 2 2 2 Y
Apn={x€Ryg .(x1+2n——1) +x5 4+ +xp <1, xp =0 if k>n}
and
1

Bn={x €R¥:(x; —2+3)M2 +x+ - +xa <L), x, =0 if k>n).

Set X =|J{Ap:n€N} and Y =|}{By:n€N}U{(2,0,0,--)}. Since
Y is compact and CD, Y is S-WID. However, the space X, while also CD, is
easily seen to not be S-WID. Thus, since X is a closed subspace of X UY,

the union XUY cannot be S-WID.

Define a function f:XUY—Y by

en(x) if x€A,, neN
f(x)={

X if xeyY

where for each n€N enp:Ap—Bp is the homeomorphism given by

n of DL
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It is easy to check that f is an open mapping with finite fibers.
Indeed, f is two-to-one except at the point (2, 0, 0,---) where f is one-to-
one. Thus, f is an open mapping with finite fibers onto a S-WID space

whose domain fails to be S-WID.
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2.4 Property C and Refinable Maps on Compacta

In this section, the dimension preserving nature of refinable maps is
investigated. The main result of this section shows that the image of a
refinable map defined on a compactum which has property C must also have
property C. In addition, a covering characterization of weak infinite-
dimensionality is given. Using this characterization, results of Patten and

Kato are also obtained.

2.4.1 Definition. Let U={Ug:a €T} be a collection of open

subsets of a space X. A collection ¥ ={V4:a €T} is a precise pairwise

disjoint open shrinkage of ‘U if ¥ satisfies:

1. For each V4, €Y the set V, is open in X.
2. Forany a €T and B €T with a =8, VaﬂVﬁ=Q.

3. For each a €T, Vo4 CV, CUg,.

2.4.2 Theorem. A space X is WID if and only if for any sequence
of binary open covers {Up:nE€N} of X there exists for each n€IN a
precise pairwise disjoint open shrinkage Y, of 9Up such that the

{¥pn:neEN} forms an open cover of X.

Proof. Suppose that X is WID, and for each n€IN let a binary
open cover ‘U.n=(U,1,, U%} of X be given. For each n€&€IN define
Ap =X\U121 and Bp =X\U}1. Thus, each (Ap, Bp) is a pair of disjoint
closed sets of X. Since the space X is WID, for each n€N a closed

subset S, CX which separates the pair (Ap, By) in X may be chosen
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such that the [{Sp:n€N}=g.

Thus, since for each n€IN S, separates the pair (Ap, Bp) in X,
there exist open sets V}] and V% of X such that 3Sp =X\(V}1 UV%),
vinv2—o, ApcVv) and By CVZ. Then, for each n €N the inclusions

vicvlcx\vicx\B,=Ul ana vZcVZicx\vicxia, =02

are obtained. Thus, ‘V‘n—-—-{V}], V%} is seen to be a precise pairwise

disjoint open shrinkage of U,.

Finally, the _
WVEUVZineN)y =x\(NXNVEUVE)ineN))
= X\[[{Sp:n€N}]
=X,

and thus the |J{¥p:n €N} has been shown to be an open cover of X.

Assume the hypothesis of the converse and let {(Ap, By):n€N}
be a given w-family of pairs of disjoint closed subsets of X. For each
n €N apply normality to choose open sets U}] and U% such that

ApculcTlcx\B, and ByCx\ULCu2cTUZcx\ay,
and thus, for each néN ‘U.n={U}1, U%} is seen to be a binary open
cover of X. Therefore, by the hypothesis, a precise pairwise disjoint open

shrinkage “{‘n-—={V},, V,zl} of each Up may be chosen such that the

U{‘V‘n:n €N} forms a cover of the space X.

For each ne€IN define
_ 1 =2 2 1
Sp =X\ {VaUX\UR)UVaU(X\Up)}.
It is clear that each S, is a closed subset of X which separates the pair

(Ap, Bp) in X. Finally, the
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({Sp:n €N} =UXM(VEUN\T2) UVEU\TY)}ine N}
cx\Jviuviinen)

=Q’

and thus the space X has been shown to be WID.

The following related results are obtained in a similar manner.

2.4.3 Theorem. Let X be a given space. The dimX<n if and

only if for any given collection {"U.k:k———l,---, n+l} of n+1 binary
open covers of X there exists for each ke€{l,---, n41} a precise pairwise
disjoint open shrinkage ‘Y'k of ‘U.k such that the U{‘U.k:k —1,--, n+1}

forms a cover of X.

Proof. The proof is an obvious modification of the proof of 2.4.2 as
applied to the characterization of dimension which was given in 1.1.4, and

thus will be omitted.

2.4.4 Theorem. A space X is CD if and only if for any given

sequence of binary open covers {Up:n&€N} of X there exists for each
nEN a precise pairwise disjoint open shrinkage ‘3"“={th1, V%} of
Unp ={U,1,, U%} such that for each point x €X the point xEV,l, UV% for

all but finitely many n&IN.

Proof. The proof is an obvious modification of the proof of 2.4.2 as
applied to the characterization of countable-dimensionality which was given

in 1.2.3, and thus will be omitted.
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Refinable maps were originally defined in [Ford and Rogers (1978)],
and their dimension preserving nature has been investigated in [Patten
(1982)] and [Kato (1983)]. The main result of this section states that
refinable maps between compacta preserve property C. The results of
Patten and Kato will also be obtained through a simple modification of proof

using theorems 2.4.2 and 2.4.3.

2.4.5 Notation. For any metric space Y the distance between two

points x and y of Y will be denoted by d(x,y). If ACY, then the
diameter of A is defined and denoted by the

diam A =sup {d(x, y):x€Y,y€Y}.
If f:X—Y and g:X-—Y are two maps between compacta, then the

distance between the two maps will mean the supremum metric which is

defined and denoted by

p(f, g)=sup {d(f(x), g(x)):x€X}.

2.4.6 Definition. Let €¢>0 be given. A map f:X—Y between

compacta is said to be an e-map if for each y €Y the diamf™'(y) <e.

2.4.7 Definition. A map r:X—Y between compacta is refinable if

for any €>0 there exists a surjective e-map r¢:X—Y, called an e-

refinement of r, such that the p(r, r.)<e.
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Some preliminary results concerning the limit supremum of a sequence

of closed sets in a compactum will be used in the proofs.

2.4.8 Definition. For each jeIN let Aj be a closed set in a

compactum X. The limit supremum of the sequence {Aj:j €N} is denoted

by the limsup {AJ-:J'GIN} and is defined to be the set of all x€X such
that any ‘open subset U of X with x€eUCX has U ﬂAJ-;éﬁ for infinitely
many JjE€N. The limit supremum may also be characterized in terms of
sequences by the

lim sup{AJ-:J EN}={x€X:VkeN 3 jy €N 2 xjkeAjk s.t. xjk—tx}.

2.4.9 Proposition. Let {Aj:j €N} be a sequence of closed sets in a
compactum X. If U is an open subset of X with the
lim sup {AJ-:J' €N} CU, then there exists an N &N such that for each

n>N theset A CU.

Proof. Suppose not, then for all N€&IN there exists an integer
n>N and a point xpn€Ap\U. For each NEIN, choose such a point xp,
and then, by compactness, extract a convergent subsequence x"k —x €X.,
From 2.4.8 and the hypothesis, the point x &lim sup {Aj:jGN}CU, but
then, by the convergence of the subsequence, for all sufficiently large k
xnkGU which is a contradiction. Therefore, there must exist an N&IN

such that A, CU for each n>N. This completes the proof.

The following technical lemma will also be needed in the proof of the
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main theorem of this section.

2.4.10 Lemma. [Loncar and Mardesic (1968)] Let f:X—A be a map

from a compactum X to an ANR A. Given any € >0 there existsa & >0
such that for any surjective §-map g:X—Y there exists a map h:Y —A

with the p(f, hg) <e.

2.4.11 Theorem. Let r:X—-Y be a refinable map between

compacta. If the compactum X has property C, then Y must also have

property C.

Proof. For each n&N let U, be a given open cover of Y. By
the compactness of Y, it may be assumed without loss of generality that
each U, is of the form ‘un={U‘,j,:j=1,---, mp} where each mp€INN.
Thus, for each ne€N r"(‘un)a{r"(U%):j;—l,---, mp)} defines an open

cover of X.

Since X has property C, and by the compactness of X, an integer N
and for each né&€{l,..., N} a collection of open sets ¥; of X may be
chosen such that:

1. For each n€{1,---, N} ¥, ={V%:j=1,»--, mp} is a
collection of open subsets of X with pairwise disjoint closures.

2. For each n€&{l,---, N} and every j€{l,---, mp}
vicvicriud).

3. The J{¥p:n=1,--, N} forms an open cover of X.

For each n&{l,--, N} let A, denote the wedge of mp intervals,
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wedged at a common endpoint, and label the remaining endpoints ay, " 8my -

j will always be referred to together with

the A, of which it is an endpoint. Each A, is of course an ANR.

To avoid ambiguity, an endpoint a

Indeed each A, is an AR, and thus, by the compactness of X, for
each ne€f{l,---, N} maps f,:X—A, may be chosen such that for any
JE{1l, -, mp}

fﬁl(aj)=r-1(Y\U{U§:k;£j})UV}j,.
Since f;,‘(aj)Cr'l(U}i,), each fn(r‘l(Y\U‘,j,)) is a closed subset of Ap

which is disjoint from a;.

For each n€{l,--, N} complete normality may be used for each
JE{l,--, mp} to choose open subsets M}j, and N}j, of Ap such that:
1. The point a;ENj.
2. For each n€{l,.---, N}, {N‘,j]:j=1,---, mp} is a collection of
pairwise disjoint sets.
3. The set fn{r{(Y\Ul)yCM.

4. The distance d(K/I—%, M%)ED%>0.

Fix keN and ne€f(l,---,N}. For each such n and k the lemma
2.4.10 guarantees the existence of a number 6nk>0 such that for any
surjective 6nk-map g:X—Y there exists a map h"k :Y —Apn such that

1
p(fn’ hnkg) <k .

In particular, set 6k=min {It-, 8n, :n=1,---, N}. By the refinability

'3
of r, a map rk:X—-bY may be chosen such that Ty is a 6k-refinement of
the map r. Since r, is then also a 6nk-refinement of r for each

ne{l,.-, N}, the lemma 2.4.10 may be applied to obtain maps hnk:Y-bAn
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such that the distance

1
p(fn, hnkrk) <E .

Thus, by doing this procedure for each k€&EN, two sequences of
maps are constructed. The sequence (rk:k €IN) is a sequence of llc-
refinements of the refinable map r, and for each ne€f{l,---, N} the
sequence (hnk:k €IN) is a sequence of maps from Y to A, where for each
k €N the distance

2(fn, hnkrk)<-112.

2.4.12 Claim. For each fixed ne€{l,.--, N} and j&{l,-, mq}

the

lim sup {(r7' (Y\UJ) 1k €N} Cr (YA UD) C 7 (M) .

Indeed, given any x €limsup {rL’(Y\U%) :keN}, by 2.4.8 there
exists a sequence of elements xkte rilt(Y\U':) where t €N such that

xkt—bx as t-—»o0. Thus, the.following inequalities are obtained;

dr(x), Y\UD) <d(ry oy ), Y\UD) Falry (e ), rlge ) (el ), 1(x)
1
o+L +d ), r(x)
< +kt+ (r(xkt r(x))
—0

ag t-—oo, kt—boo, and X K.
t

Thus, since Y\U‘,J] is closed in Y, the image r(x)EY\U}J‘. This
computation, together with condition 3 on the choice of M‘,J], gives the

claimed inclusions and completes the proof of the claim.
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It is now possible to choose m €N sufficiently large enough that
for each ne€{l,---, N} and every j€{l, -, my}
1. & <dlaj, An\ND),
2. %<D%, and
3. c(Y\UD) Crtomd).
Condition 3 may be satisfied by applying 2.4.9 and 2.4.12 for all values of n

and j.

Finally, for each n€{l,---, N} and every j€{l,..., mp} define

Wi =hi (N}) and Wp={(Wh:j=1,, mp}.

Since for each n€{l,-.--, N} the collection {N}j,:j=1,---, mp} is a
collection of pairwise disjoint open sets of A,, it is seen that each W, is
also a collection of pairwise disjoint open sets of Y. It remains to be shown
that for each neg{l,.--, N} the collection W, refines Uy, and that the

WH{®hin=1,--, N} covers Y.

Indeed, each W, is actually a shrinkage of U,. For suppose that
y EW}j,, but that vy EY\U}];. Since rpy is surjective, a point xE€rp(y)
may be chosen. If vy EY\U‘,j, then condition 3 on the choice of m gives
that fn(x) EM% . On the other hand, since W‘,j, --—h;,lm(N‘,j,) it is seen that
hng (W) CN3 . Thus,
By () =hng T (x) ENG -
But, then the
d(£n(x), hipy Tm(x)) >d(Mp, N3)
>D}
>,

which is a contradiction. Therefore, it must be that W}],CW}],CU}],, and
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hence, for each né&{l,..., N} the collection W, has been shown to be a

shrinkage of Uy,.

Let yEY be fixed but arbitrary, and choose a point xE€rp(y).
Then, since the |J{¥p:n=1,---, N} covers the compactum X, integers
ne{l,--, N} and j€{l, -, mqy} may be chosen such that the point
X EV% . However, from the computation

d(fn(x), hy, rm(x) =d(aj, hp,(v))
<L <dta;, Ap\ND),

it is seen that hp (vy) EN% . Thus, y Eh},‘m(N;],) =W% .

Since this shows that the |J{#p:n=1,..., N} forms an open cover °

of Y, the space Y is seen to have property C. This completes the proof.

Slight modifications of proof give the following theorems alluded to

at the beginning of the section.

2.4.13 Theorem. [Kato (1983)] Let r:X—Y be a refinable map

between compacta. If X is WID then Y is also WID.

Proof. The result is obtained by using binary open covers in the
proof of 2.4.11 as in the characterization of weak infinite-dimensionality

given in 2.4.2.

2.4.14 Theorem. [Patten (1982)] Let r:X-—Y be a refinable map

between compacta. If the dimX <n then the dimY <n.
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Proof. The result is obtained by using the characterization of

dimension given in 2.4.3 in the proof of 2.4.10.

This section is ended with a related open problem. In light of 2.4.11
and 2.4.12, the characterization of countable-dimensionality which was given

in 2.4.4 might possibly be used to provide an answer.

2.4.13 Question. Let r:X—Y be a refinable map between

compacta. [f the domain X is CD, then must the range Y also be CD?
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2.5 Hereditary Shape Equivalences on WID Spaces

In this section, the relationships between possible images of a cell-like
map which raises dimension and the classification of infinite-dimensional
spaces are investigated. The work of Kozlowski and Ancel is discussed. A
result of Ancel is extended and related questions important to the subject

are asked.

2.5.1 Definition. A map f:X—Y between spaces is called cell-like

if it is proper, and if for every y €Y, f '(y) has the shape of the point
{y}, i.e. for any ANR Z the induced function on the homotopy classes
t*:1(y}, Z1ol17(y), Z]

is a bijection.

The following is one of the major unsolved problems of topology.
Answering it, either positively or negatively, would give important resuits in
manifold decomposition theory, shape theory, ANR theory, as well as in

dimension theory.

2.5.2 Question. Does there exist a cell-like map f:X—3Y between

spaces such that the dim Y >dim X?

A more complete discussion of this cell-like dimension-raising map
question may be found in [Schori (1980)]. In particular, it is known that

the image of a cell-like dimension-raising map must be infinite-dimensional.
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Thus, it becomes important to determine what type of infinite-dimensional

space could be such a possible image.

2.5.3 Definition. A map f:X—Y between spaces is called a shape

equivalence if for every ANR Z, the induced function on homotopy classes
t*.1v, z1-IX, Z]
is a bijection. A map f:X—Y Dbetween spaces is called an hereditary

shape equivalence if for every closed set ACY, the restriction

f) :f"'(A)—»A is a shape equivalence.

£ (A)

[t is obvious from the definitions that any proper hereditary shape
equivalence is a cell-like map. Indeed, Kozlowski defined the hereditary
shape equivalence as a generalization of the cell-like map to obtain the

following theorem.

2.54 [Kozlowski, (to appear)] Let f:X—9Y be a cell-like map
between spaces where the dim X <o. The dimY >dim X if and only if f

is not an hereditary shape equivalence.

Ancel has extensively studied the dimension preserving properties of
cell-like maps and hereditary shape equivalences, as well as those of related

maps such as fine homotopy equivalences.
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2.5.5 Definition. A map f:X—Y between spaces is said to be

approximately invertible if for some closed embedding e:X—Z of X into a

space Z (and thus, for any closed embedding into an ANR) the embedding
satisfies the following condition. Given any collection W of open sets of Z
which is refined by the collection {e(f'(y):y €Y}, there exists a map
g:Y —Z such that the composition gf:X—Z is W-close to the map e, i.e.

for each x €X there exists a set WEW such that e(x)Ugf(x)CW.

2.5.6 [Ancel (1985a)] Every proper hereditary shape equivalence is

approximately invertible.

Using this Ancel proved the following theorem.

2.5.7 [Ancel (1985b)] Let f:X—Y be an approximately invertible
map between spaces such that for each y€Y the fiber 7 (y) is
compact. If the domain X has property C, then the image Y also has

property C.

Ancel combined 2.5.6 with 2.5.7 and used another theorem from [ Ancel

(1985a)] to obtain the following result.

2.5.8 [Ancel (1985b)] Let f:X—Y ©be a cell-like map between
spaces where the domain X has property C. The image Y has property C if

and only if f is an hereditary shape equivalence.
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2.5.9 Corollary. The image of a cell-like dimension-raising map

cannot have property C.

Proof. This is immediate from 2.5.8 and 2.5.4.

The main result of this section is an application of 2.4.2 which

extends 2.5.7.

2.5.10 Theorem. Let f:X—Y be an approximately invertible map

between spaces such that for each y €Y the fiber f '(y) is compact in

the space X. If the domain X is WID then the image Y is also WID.

Proof. For each nelN let ‘U.n={U%1, U%} be a binary open
cover of the space Y. Define f'l(Un)=(f'1(U}1), f"(U%)}, then for each
nelN f'(U,) is a binary open cover of X. Since X is WID, 2.4.2 can be
applied to obtain a precise pairwise disjoint open shrinkage %p ={V,11, V,z,}
of each U, where n €N such that the ¥ ={}{¥n:n €N} is an open cover

of X.

Moreover, it may be assumed that ¥ is locally finite since ¥ may be
replaced by a precise locally finite refinement which also covers X. Thus,
given any y€Y and any x€f'(y) an open set Ogx CX may be chosen
with x €0x and with the .

ordox‘V‘=l(Vf]E“f:V}j,ﬂO‘x <O} <.

Fix y €Y, then the collection {Oyx:x €f '(y)} is an open cover of

the non-empty compact fiber f'(y). Thus, it is possible to extract a finite
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subcover {Oxj:j=1,---,ry} of f(y) from ({Ox:x€f'(y)}. Define
Oy“—"U{Oxj=i=1:""ry}s then Oy CX is open in X with f'l(y)COy,

and with the ordo Y <oo.
Y

Claim. Since the ordoy?' < oo an open set WyCOy may be
chosen such that f™'(y)CWy, the ordwy‘V‘ <oo and such that if

V3 EYy with VANWy %@ then Wy Cf(Up).

Indeed, define Np={n€EN:3IVREYn, VANOy %B}. If n€Ny is

fixed, then there are two possibilities to consider.

If yeULlnu2, then r(y)Cr(uUd)ne*(U2). In this case set
Wn =0y N UK NEHUR).
Then, Wp is an open subset of X with
£ (y)CWq and WpCE(UD)

for both j={1, 2}.

Since U, covers the space Y, the only other case is where the point
y is in only one element of U, say yEU%]\U% . Since f'l(y)Cf'l(U%),
and since V%Cf’l(U%), the f’l(y)ﬂ\—/%=Q. Thus, normality may be
used to choose an open set PpCX with f'(y)CP,n and Py ﬂV%=Q.
For this case, define
Wy =0y NPy N (UR).
Then, W, is opén subset of X with

T y) C Wy, VENW,=2, and W, Cr(Ub).

To finish the proof of the claim, define Wy, =({Wp:n ENy}. Since

the lNyl<oo, the intersection Wy is an open subset of X, and clearly
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Wy COy  with f'(y)CWy. Since the ordoy‘V' < o, this construction
insures that the ordwy‘V' <00, Suppose that V‘,J1 €E¥n with the
Vf] AWy =J, then ng Ny such that Wy CWp. The choice of Wp

assures that Wp Cf'l(U}’]), which then completes the proof of the claim.

The remainder of the proof follows Ancel’s proof of 2.5.7. For each
Yy €Y construct Wy as above. The collection {Wy:y €Y} can be used to
form a collection of open sets W as in the definition of approximate
invertibility such that W will be related to the original open covers

{Up:neN} of Y.

For simplicity consider X as a closed subspace of Z as per the
approximate invertibility of f. Let e:X—Z denote inclusion. This
inclusion map e will usually be omitted in statements if the context is clear.

The metric on Z will be denoted by d.

For any subset SCX let S CZ be the subset defined by
S={zeZ:d(z, S)<d(z, X\S)}.
The following propositions are clear from the definition, and thus given

without proof.

1. Since the d(z, @)=, T=0.
2. For any S CX, S is open in Z.
3. If S is open in X, then SNX=S.
4. If SCTCX, then SCTCZ.

5. 1f SCX and TCX, then SNT=SAT.
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Let R =U{V%:V% €Y}, then R is an open subset of Z such that
RNX = {¥nx:v]er)
=(vi:vier)

=X.

Let W ={Wy NR:y €Y}, then W is a collection of open sets of Z.
Moreover, since the space X CR, it is also seen that for any given y €Y
the image

ef ' (y) Ce(Wy)
=Wy NX
CWy NR
EW.

Thus, the set {ef '(y):y €Y} refines W.

Then, by the approximate invertibility of f, there exists a map
g:Y—Z such that the composition gf:X—Z is W-close to e. In
particular for any y €Y and any x€&f '(y) there exists a point y' €Y
such that e(x)Ugf(x)CW_,NR. Thus, gf(x)=g(y)ER such that

g(Y)CR.

For each n €N the pair {V%,, V%} is a disjoint pair of open sets
in X. The propositions then imply that the pair {V,l-,, V%} is a pair of
disjoint open sets in Z, and thus {g‘l(\‘/},), g'l({’%)} will also be a pair of
disjoint open sets in Y. Moreover the

U VR eV =g (TR Vi ey
=g '(R)
=Y.

Thus, the collection {g'l({’f,):Vf—, €Y} is an open cover of Y.
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It only remains to be shown that for each n&IN the collection
{g'l((’}‘), g'l({/%)} is a shrinkage of Up. Using the normality of the space
Y, it is enough to show that g"(Vf,)CU% for each n&€N and both

j€{1, 2} [Nagata, p. 2].

Let yEg'l(V%) be given, and choose any x€&f '(y). Since gf is
W-close to the embedding e, there exists a point y’€Y such that e(x)
and ef(x)=g(y) are both in Wy, NR. Thus,

g(Y) VAN, =ViAW,,,
and since V‘,’:, ﬂWy, # & it is seen that Wy’ Cf'l(Ug,). Finally, since the
point X EWy, NX = Wy, s it is seen that X er“(u{,) . Thus,
f(x)=yE€ U{] , which shows that g'l(\./g]) CU}j, .  The characterization

2.4.2 then gives that Y is WID which completes the proof of the theorem.

As an easy application of 2.4.3, one implication of Kozlowski’s

theorem 2.5.4 is obtained.

2.5.11 Theorem. Let f:X—Y be an hereditary shape equivalence

between spaces X and Y. If the dim X <n then the dimY <n.

Proof. The result follows immediately by using the characterization

of dimension given in 2.4.3 in the proof of 2.5.10 and thus is omitted.

Ancel’s result 2.5.8 suggests the following important questions.
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2.5.12 Question. Let f:X—Y be a cell-like map from a WID space

X onto Y. If the space Y is also WID, then must f be an hereditary shape

equivalence?

2.5.13 Question. Let f:X—Y be an approximately invertible map

from a CD space X onto a space Y. Must the space Y be CD?

It is possible that the characterization of countable dimensionality
which was given in 2.4.4 combined with the techniques used in the proof of
2.5.10 might provide a solution to 2.5.13. A positive answer to 2.5.12, or
for that matter showing implication e of the generalized Alexandroff
question 1.3.7, would then imply that the image of a cell-like dimension-
raising map must be SID. A space which was a counter-example to the
implication e of 1.3.7 would be a prime candidate for the image of a cell-

like dimension-raising map.
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III. ALTERNATIVE CHARACTERIZATIONS OF WEAK

INFINITE-DIMENSIONALITY

In Chapter II.,, theorem 2.4.2, an alternative characterization of weak
infinite-dimensionality was introduced. This characterization was exploited
to obtain a number of results. In particular, this new characterization in
terms of binary open covers bears a striking resemblance to the definition
of property C. The ultimate goal of this chapter is to investigate possible
solutions of the generalized Alexandroff question by determining a

characterization of property C in terms of essential families.

A generalization of 2.4.2 is given in section 3.1, along with a fairly
obvious new definition of essential family, each yielding new properties of
infinite-dimensional spaces. These new properties are presented in 3.1,
together with theorems relating them back to the original infinite-

dimensional dimension theories.

Basic internal relationships of the new properties are presented in the
next section. These results of 3.2 are, for the most part, immediate from
the definitions of 3.1, however some technical work must be done if the
spaces involved are not compact. With the additional assumption of
compactness, most technical difficulties disappear. A brief discussion of the
properties upon compacta is given in 3.1 which provides the initial hint to
essential differences between property C and weak infinite-dimensionality.

These differences will be discussed at greater length in later sections.

Sections 3.3 through 3.5 contain results relating the new properties to
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each other, and constitute the major work of this chapter. The results are
given in order of discovery, and thus direct proofs of some earlier theorems
will be given even though those same theorems may be proven indirectly by
theorems presented in later sections. This author holds the opinion that
the order of discovery, as well as the means of discovery, are often of

greater importance than the discovery itself.

In the final section of this chapter, a summary of the essential
differences between property C and weak infinite-dimensionality will be
given. That section and the thesis concludes with a discussion of how a

WID space which does not have property C might be constructed.
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3.1 Definitions of the New Characterizations

In 2.4.2, a cheracterization of weak infinite-dimensionality was given
in terms of open covers. This property is generalized by the following

definitions.

3.1.1 Definitions. Let re€{2, 3,4,---}. A space X will be said to

have the property Cp if every countable sequence {?Up:n€IN} of open
covers of X, where for each n €IN the |Up|<r, has for each n€EN a
precise pairwise disjoint open shrinkage ¥ of 9Up such that the
U{¥n:n €N} forms an open cover of X. If a space X has property C; for
every r€({2, 3, 4,---}, then X will be said to have the property C__. A
space X will be saici to have the property C,, if every countable sequence
{UWUp:n €N} of open covers of X has for each n€IN a precise pairwise
disjoint open shrinkage ¥ of Up such that the [J{Up:n€N} forms an

open cover of X.

3.1.2 Proposition. A space X has property C2 if and only if the

space X is WID.

Proof. The property C2 was precisely the characterization of weak

infinite-dimensionality which was given in 2.4.2.

The following lemma will be used to avoid technical difficulties in

later proofs of this section.



72

3.1.3 Lemma. If an open cover U ={Ug:a €T} of a space X is

given, then there exists a precise open shrinkage ¥ ={Vg:a €T} of U,

that is for each o €' the set V4 CVy CUg, which also covers X.

Proof. The cover U may be assumed to be locally finite, for if not
U can be replaced with a precise locally finite open refinement which still
covers the space X [Dugundji, p. 162]. If U is locally finite then normality

can be used to choose the desired shrinkage [Nagata, p. 2].

3.1.4 Proposition. The word “shrinkage” in the definitions of

3.1.1 may be replaced by the word “refinement” without altering the

properties.

Proof. Apply 3.1.3 to the union of the refinements.

As in 2.4.2, the use of shrinkages yields true separators rather than
the continuum-wise separators which would result from the use of
refinements. Thus, the word “shrinkage” will be continued to be used in
the statements of theorems, but in proofs often only refinements will be

constructed, with the reader then referred to 3.1.3 or 3.1.4.

3.1.5 Theorem. Let {Up:n€N} be a given sequence of open

covers of a space X. If for each nEIN ¥ is a C-refinement of Up such
that the |J{¥n:n€N} covers X, then for each nEN there exists a
precise pairwise disjoint open shrinkage W, of 9Up such that the

HWnh:n €N} still covers X.
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Proof. Let the open covers {Up:nE€N} be given. Using ordinal
numbers faithfully index each Up by Up={US:c €ETp} where each Iy is

a well-ordered set of indices.

Similarly, given the C-refinements {¥p:n€N} such that the
{¥n:n €N} covers the space X, use the ordinals to faithfully index each
Y'n by ‘V‘n-——-{V}B,:BEAn} where each Ap is also a well-ordered set of

indices.

For each fixed n€N define a function fpn:Ap—Tp by setting
fn{B)=min{a EI‘n:VECU%}. Since for each n&€N Up is refined by

Y'n, it is clearly seen that each fp is a well-defined function on Ap.

For each a €T, define Wa=U{VEE‘T“:ﬁ €fp{a)}. For each
n €N, by the definition of f, and since ¥'p is a C-refinement of Up, each
‘Wn={W%:0L €Th} is then a precise pairwise disjoint open refinement of

Up.

Suppose that for each n €N such a W, has been constructed. For
any arbitrary x€X choose an n€IN and a B€An such that x EVE.
But, then for a =fn(B) the point x EWS, and thus the (J{Wp:n€EN}

covers X. Applying 3.1.3 to the |J{Wp:nEN} completes the proof.

3.1.6 Corollary. A space X has property C if and only if the space

X has property C,.

Proof. If the space X has property C, then the space X is seen to

have property C, by a direct application of 3.1.5. Since any precise
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pairwise disjoint open shrinkage is clearly a C-refinement, it is obvious that

if the space X has the property C,,, then X will also have the property C.

The corollary 3.1.6 formalizes the resemblance between the
definitions given in 3.11 and the definition of property C. The definitions
in 3.1.1 were motivated by a characterization of weak infinite-dimensionality
which had the same form as the definition of property C. In an attempt to
answer the implication e. of 1.1.7, the problem can also be attacked from the
reverse direction by finding a characterization of property C in terms of

essential families.

Recall that a family of closed sets is discrete in a space if and only
if the family is pairwise disjoint and locally finite in the space. In
particular, the union of a discrete collection of closed sets is closed. Thus,
every point of the space has a neighborhood which intersects at most one

element of a discrete collection of closed sets.

A fairly obvious generalization of the definition of weak infinite-

dimensionality is contained in the following definitions.

3.1.7 Definitions. A closed subset S CX of a space X will be said

to be a separator of a discrete collection of closed subsets (A%:a€l)
contained in the space X if S CX separates the collection (A%:a €T) in
X; that is the complement X\S ={U%*:a €T} where {(U*: €T} is a
collection of pairwise disjoint open subsets of X such that for each a €Tl

the closed set A% CU%*. An w-family of discrete collections of closed
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subsets {(AS:x €lp):inEN} of a space X will be called inessential if for
each nelN there exists a closed set Sp CX which separates
(A¥:a €Tp) in X such that the [W{Sp:n€EN}=0J. Let ref{2, 3,4, -1,

then a space X will be said to be weakly infinite-dimensional with respect to

r-tuples, and denoted by __\YI_Dr: if any w-family of r-tuples of pairwise
disjoint closed subsets {(A%:J =1,2,-,r)in€N} of X is inessential. If
the space X is WID, for every r€{2, 3, 4,---}, then the space X will be
said to be _\Y_ID_OQ If every w-family of discrete collections of closed
subsets {(A%:a €Tp):n€N} of a space X is inessential, then the space X

will be said to be WIDw.

3.1.8 Proposition. A space X is WID2 if and only if X is WID.

Proof. This is obvious from the definitions.

The very general, but ungainly, definition of WID,, simplifies when

separability is assumed.

3.1.9 Proposition. A separable metric space X is WID,, if and only

if every w-family of discrete sequences of closed subsets

{(A%:k €N):n €N} of X is inessential.

Proof. It is enough to realize that a discrete collection {(A%:a €T}
in a separable space X has A% =@ for all but countably many A%,
Indeed, let X have a countable base of open sets and choose a point

XOLEAOL from each A% =@. By the discreteness of the collection, there
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exists a basic open set Uy CX for each a €l with xq €A% such that
the point

xgq EUg CX\HAP :BET\(a}}.
Since the space has a countable base, there can be only a countable number
of such Uy, and consequently only countably many non-empty A%, With
this restriction, the definition of WID, in 3.1.7 reduces to the statement of

the proposition.
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3.2 Basic Internal Relationships of the New Properties

In this section, basic relationships between the properties which were
defined in the last section are given. Most of the relationships are

immediate from the definitions.

3.2.1 Theorem. Let re€{2,3,4,--}. A space X satisfies the

following four implications of properties:
1. If a space X has property Cr +10 then X has property Cr.
2. If a space X has property Coo, then X has property C; for
each re(2, 3, 4,---}.
3. If a space X has property C,, then X has property Coo.

4. A space X has property C if and only if X has property C.

Proofs.

1. This follows immediately from the definitions by regarding any
cover Up =-{U}i1:j =1,--, r} with cardinality r as a cover
Un --——{U% tj=1,--, r+1} with cardinality r+1 by setting
uttliog.

2. This is the definition of property Coo as given at the end of
3.1.1.

3. This follows in the same manner as the proof of implication 1.

4. This was proven in corollary 3.1.6 of the last section.

The following analogous results are obtained in a similar manner.
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3.2.2 Theorem. Let re€{2,3,4,-}. A space X satisfies the

following four implications of properties:
1. A space X is WID if and only if X is WID2.
2. If a space X is WIDr +17 then X is WID¢r.
3. If a space X is WIDw, then X is WID; for each
ref{2, 3, 4,---).

4. If a space X is WID,, then X is WID .

Proofs.
1. This was done in the proposition 3.1.8.
2. This follows immediately from the definitions by regarding any

r-tuple (A%,---, AL) as an (r +1)-tuple (A%],---, AT, Af,+1)

by setting A; +1

=,
3. This is the definition of WID°° as given at the end of 3.1.7.

4. This follows in the same manner as the proof of implication 2.

This section is ended with some superfluous, but illustrative, results
concerning the properties C,, and WID,, for the category of compacta. The

first such result is an obvious characterization of property C for compacta,

3.2.3 Theorem. A compactum X has property C if and only if every
countable collection of finite open covers {Up:n&€N} of X has precise
pairwise disjoint open shrinkages V' of U, for each n€&€IN such that the

¥ n:n€N} forms a cover of X.

Proof. The theorem follows immediately from the corollary 3.1.7 by
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choosing finite subcovers of each given countable cover.

Although of little importance, theorem 3.2.3 does suggest a similar

theorem of more interest concerning compacta which are WID,.

3.2.4 Theorem. A compactum X is WID,, if and only if every w-
family of discrete rp-tuples of closed subsets {(Alé: =1, rp)inE€N}

of X, where each rp €N, is inessential.

Proof. Since compacta are separable, 3.1.9 applies such that only w-
families of discrete sequences of closed sets {(A%:k €En):n €N} of X need
be considered. Given such an w-family, since X is compact, for each n€N

an tp €N may be chosen such that for each k >rp the set A% =g,

Indeed, if A% # @ for infinitely many k € N, then for each such k a
point Xy EA% may be chosen. Since X is compact, the sequence
(xk:Alé #= @) of such Xy has a convergent subsequence, say xkj—-bx eX.
Thus, any open set with x €U has Xy €U for infinitely many Xy - But,
then A% NU # O for infinitely many A%, which contradicts the

discreteness of (A% :keN).

Thus, the hypothesis implies that the w-family {( A% tkeN)ineN}

is inessential, and X has been shown to be WID, which completes the proof.

Theorems 3.2.3 and 3.2.4 are contrasted with the following theorems

which concern the properties C_ and WID .
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3.2.5 Theorem. A space X has property C_ if and only if every

countable collection of finite open covers {Up:neN}, with the
cardinality |[Up!=rp and the sup{rp:n&€N} <o, has for each neNN
a precise pairwise disjoint open shrinkage ¥, of 9Up such that the

WH{¥p:neN} forms a cover of X.

Proof. This follows immediately from the definition of C°° given at

the end of 3.1.1.

Notice that the compactness assumption is not needed in 3.2.5, as well

as in the following theorem.

3.2.6 Theorem. A space X is WIDOQ if and only if every w-family

of rp-tuples of closed subsets {A%:k=1,---, rp):n €N} of X, such that

the sup{rp:n €N} <o, is inessential.

Proof. This follows immediately from the definition of WID_ given

at the end of 3.1.7.
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3.3 Relationships Between the Two Properties

In this section a result is given which relates the covering properties
to the separation properties. Although the main result of this section is
also proven indirectly in the next section a direct proof is included in this
section. It is hoped that this will familiarize the reader with the dual
nature of the new properties and that it will emphasize their connection to
the motivating characterization in theorem 2.4.2. The following technical

lemma will be needed.

3.3.1 Lemma. Let {A%:a €T} be a discrete collection of closed

sets in a space X. There exists a collection of open subsets {(U*:a €T}
of X such that:

1. The collection {U%:cac €T} is locally finite in X.

2. For each a €T A* CU*CU% CX\U{AB:B ET, B=al.

3. The collection {U%*:a €T} covers X.

Proof. Fix a single element YET and let o €T\{Y} be fixed but
arbitrary. Since the collection {Aﬁ:ﬁ eT} is discrete in X, the
U{Aﬁzﬁ €T, B#a)} is closed in X. Thus, by normality, an open set v
may be chosen such that

A% CVE T cx\(aP:Ber, B 7).

Thus, since the subset V& C X\ A‘Y, it is also seen that A‘Y CX\V%,

Thus, if such a V% is constructed for each o« €T\{7Y}, then
AT CUXAV* i €T, o %7}

=X\ JH{V*:a €T, a £v}.
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On the other hand, since for each o €r'\{?Y} the set A CVE, it
is also seen that the
A% :a €T, a #Y} CIUHV*:ia €T, a =V},
and thus, that the complement satisfies
X\ H(VE:ia el, a =Y} CX\J{A%:a €T, a %7V}
As before, normality then permits the choice of a final open set V‘y with

AT XAV ia €T, a =7} CVI CV CX\HA%:a €T, a %Y},

At this point, an open cover {V¥:a €T} of X has been constructed
such that for each o €T
A% CVE CTE CX\J(AP:BeT, B=a).
Then by paracompactness [Dugundji, p. 162], a precise locally finite open
refinement {U%:a €T} of {V*:a €T} which also covers X may be

chosen such that for each o €T the set U* C V%,

Thus, for each a €T it is seen that the set
U* CT* CVECx\J(aP:8¢er, Ba).

Therefore, it only remains show that for each o €I the set A% Cu*.

Fix o €T, and let x€A® be fixed but arbitrary. Then, for some
B €T the point xEUﬂCVﬁ. {t must be shown that B =a. If B,
then the set
v ocx\UaT iy er, ¥ <8y CX\ A%

which contradicts x € A% NVA. Thus, B=a, xc€U%, and A% CU%,

Therefore, it has been shown that for each a €T
A*CU*CT*Cx\(J(aP:8¢er, B=al,

which completes the proof.
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With the aid of 3.3.1, it now possible to prove the major resuit of

this section.

3.3.2 Theorem. Let re{2,3,4, - }U{w}. If a space X has the

property Cr then the space X is WID,.

Proof. Suppose that the space X has the property C,, and let
{‘(A%:a €Tp):n€N} be a given w-family of discrete collections, r-tuples
if re{2, 3, 4,---}, of closed sets of X. Fix n€N, and use the lemma
3.3.1 to choose a locally finite open cover Up={UJ:x €Ty} of X such
that for each a €T

AS CUS CTE CX\J(AD:ery, B=a).

Suppose that for each n €N such an open cover ‘Up has been
constructed. Since the space X has property Cp, for each n&€N a precise
pairwise disjoint open shrinkage Y ={V%:a €Tlp} of Up may be chosen

such that the |J{¥p:n €N} forms a cover of X.

Next, for any fixed n€IN and for each a €T define
WS =V U(X\MHT 8Ty, B=a)).
Since the collection {U%:a €Tn} is locally finite in the space X, each
collection (ﬁE:B €Tp, Ba} is also locally finite in X. Therefore, the

U(ﬁe :BETy, Bs<a)} is closed in X, and thus, each W% CX is open.

Fix n€N and let a, BET, with a8 be given. Since each U,

covers the space X, it is seen that
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W NWR (V& UK\ T :Y €Tqy ¥ =a})IN
(VB U\U(T] v eln, ¥ =58))]
CX\HT] :yerp)

=,

Fix an integer n€N, and let o €T, be fixed but arbitrary. For
any B &€Tlp\{a} it is seen that
U8 CX\U(AQ:YETn, ¥ %8},
such that the
U088 €Tn, B o} CUK\U(AY :Y €Tq, ¥ %8}
~X\MWU(AQ :Y €T, @ %B}:B €T, B %0}
=X\A%.
Thus, it is also seen that
A% C X\ TP :8eTy, Ba}CWE.
Therefore, defining Sp=X\{J{W§:a €Ty} gives a closed set Sp,CX

which separates the collection (A% :a €Tp) in X.

Finally, if for each n €N the separator Sp has been defined, then
since the | {¥:nEN} covers X, it is obtained that the
({Sp:n EN} =YX\ J{W5:a ETp}:neN}
=X\ JH{WT:neN, a €Ty}
CX\UJ{VE:nEN, a €T}

=J.

Thus, it has been shown that the w-family {(A¥:a €Th):n €N} is
n n

inessential which completes the proof that the space X is WID¢.
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3.3.3 Corollary. If a space X has the property Cco, then the space

X is also WIDOO.

Proof. This is immediate from the theorem 3.3.2 and the definition

of WID°° given at the end of 3.1.7
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3.4 Equivalence of the Definitions of WIDy

Various results relating the definitions to each other have been given
in the previous sections. This section begins with a brief summary of those

results.

3.4.1 Summary. Let re€{2,3,4,-}). Metric spaces satisfy the

following implications of properties.

C2 = C; °=Cr+1 e C c=ch=== property C

! l ! M H

WID &= WID2=== WIDp &= WIDr+1== WID = WID,,

The equivalence of the property C2 with the property WID2 was

established in 2.4.2.

Since the ultimate goal is to answer the generalized Alexandroff
question posed in 1.3.7, it is seen that the reverse implications of 3.4.1 must
be shown. In this section, the reverse implications of the bottom row in
3.4.1 will be studied. The reverse implications of the top row will be

considered in the next section.

The first subject of investigation is the relationship between
elements and separators of w-families. One such relationship is given by
the following lemma, which will be used in the proof of the main theorem of

this section.



87

3.42 Lemma. Let re€{2, 3,4, )U{w) and let (A%:a€T) be a

discrete collection, an r-tuple when r €({2, 3, 4,---}, of closed subsets of a
space X. Let SCX be a closed subset of X which separates (A% :a€T)
in X. If TCX is a closed subset of X which separates the pair
(LK A%:o €T}, S) in X, then the closed subset T is also a separator of the

original collection (A%*:2€T) in X.

Proof. Llet (A%:0 €T) and S be given as stated in the hypothesis
for a space X. Since (A%:a €T) is discrete in X, the U{Aa:a €T} is
closed in X. Moreover, since S separates (A%:a €T) in X, there exists a
pairwise disjoint collection of open subsets {U%:a €T} of X such that
X\S=U{Ua:a €T} with thé closed set A* CU* for each o €. Thus,

the pair (|J{A®:a €T}, S) is a closed disjoint pair in X.

Let TCX be a closed subset of X which separates the pair
(U A%:2 €T}, S) in X. Thus, there exist disjoint open subsets V1 and V2
of X such that
X\T =V, UV, with (A% €ET}CVy and SCV,.
Fix YE€T and define W’Y=(U’70V1)UV2. For each a &T\{7Y} define
WE=y* ﬂVI. Then, for each o €T this gives

A Cu?nv, Cwe,

Since VlﬂV2=Q, for each o €T\{Y} the
wlAwE=((u? NV UV,INEENV))
= nvpnw*nvy)
—w nutynv,

=d.
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Similarly, for any a, BET\{Y} with a =3 the
wenwl—uxnvpnwfnvy

B

=(U* VU )NV,

=g,

Thus, the collection {W%:a €T} is a collection of pairwise disjoint
open sets of X such that the X\U{W%:a €T} is a closed subset of X

which separates the collection (A®:a €T) in X.

Finally, since SCV2, and since VICX\Vz C X\S such that
X\T=V,UV,

=[(X\S)NV{1UV,
=[({U*:a eTHNV,1UV,
=[{U* NV :a €T}IUY,
=[(U70V1)UV2]U[U{U°‘ﬂVlzael‘, a %Y}
=W UIHW® :a €T, o %Y}
= {W*:a €T},

it is seen that T =U{Wa:a €T}, which completes the proof.

This simple lemma is all that is needed to prove the main theorem of

this section.

3.4.3 Theorem. Let r€{2, 3,4, - }U{w}. If a space X is WID

then the space X is also WIDr.

Proof. Suppose that X is WID and let {(Af:a €Tp):nEN} -be a
rrool. n

given w-family of discrete collections, r-tuples when r€{2, 3, 4,---), of
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closed subsets of X.

Since X, being metric, is collectionwise normal, and since each
(A :a €Tp) is discrete in X, a closed subset Sy CX may be chosen for
each n€IN such that S; is a separator of the collection (A :a €Tp) in

the space X.

Construct an w-family of pairs of disjoint closed subsets
{(UH{AS:x €Ty}, Sp):n €N} from X as in the proof of the lemma 3.4.2.
Then, since X is WID, a closed subset TnCX may be chosen for each
neN which separates the pair (|J{A§:a €T}, Sy) in X such that the
M{Tp:n€N}=@2. By applying the lemma 3.4.2, it is seen that for each
nelN Ty is also a separator of (H{AS :a €T}, Sp). Thus, the w-family
{(AY:a €T):n €N} is inessential, and X has been shown to be WID¢

which completes the proof.

3.4.4 Corollary, If a space X is WIDp for one re{2, 3, 4,---},

then the space X is WID, for all re€({(2, 3, 4,---}, that is the space X is

WiD

oo

Proof. This is obvious from the definitions and results already

presented.

The remarkable aspect of 3.4.3, especially in light of 3.2.4 and 3.2.6,
is that the properties WIDO‘> and WID,, are seen to be equivalent. The
boundedness of the number of elements in the discrete collections of the w-

families, or lack thereof, fails to make any difference, even when the spaces
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are not compact! The answer to implication e of the generalized

Alexandroff question 1.3.7 has been reduced to a single implication which is

formally stated in the following question.

3.4.5 Question. If a space X is WID, than must X also have the

property C,,?
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3.5 Equivalence of the Definitions of Property C,

After including the results of the last section into 3.4.1, the

following summary is obtained.

3.5.1 Summary. Let re&{2,3,4,--}). Metric spaces satisfy the

following implications of properties.

[o o]

! | | I !

WID &= WID-Z == WDy = WIDr +1= WID o= WID,

C2 == C; =Cr+1 = C == C, = property C

In this section, the reverse implications of the top row of 3.5.1 are
investigated. The following simple lemma will be needed in the proof of the

main theorem of this section.

35,2 Lemma. Let r€{2,3, 4, --JU{w). If a space X has the

property Cp, then every closed (¥Fo) subspace YCX also has the

property Cp in X.

Proof. The result follows in the same manner as the proof of the

analogous statement about property C [Addis and Gresham, corollary 2.8].

3.5.3 Theorem. Let re&{2, 3, 4,.--}. If a space X has the property

Cr, then the space also has the property Cr +1°
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Proof. Suppose that X has property Cr and let a countable sequence
of open covers of X, each of cardinality r 41, be given. Rewrite the
sequence of open covers as a countable collection of countable sequences

{({Up,n:n€ENl:meN}
where each cover has the form

Up,n=(U%, nik=1,2,, r+1}.

Fix m€N, and set Ym—X\U{Ur+1 :tn€N)}. For each meNN
Y is a closed subspace of X which, by 3.5.2, has property Cr in X. Thus,
since for each n&€IN the collection {U%‘n,n:k=l,---, r} is a cover of Yn
by open subsets of X, for each n€IN a precise pairwise disjoint open
shrinkage {V,l;,n:k—sl,---, t} of {Uﬁ,n:k=1,---, r} may be chosen such

that the U{(Vﬁ,n:kal,---, r}:n €N} forms an open cover of Y.

Keeping m € N fixed, define the subsets V,lnCX and V?n CX by
Vm—--U{Ur-+_1 :n€N} and V,2n=U{Vﬁ,n:k.-=1,2,---,r,nEN}.

Clearly, the pair {V,ln, V,zn} is a binary open cover of the space X.

Doing this for each m€EN gives a countable sequence of such
binary open covers of X. Since X has property Cr, by 3.2.1 the space X
also has property C2. Thus, for each m €N a precise pairwise disjoint
open refinement {W}n, W?n} of each {V}n, V;zn) may be chosen such that

the collection {W‘,’n:j =1,2, mEN} forms a cover of the space X.

Next, for each mE€N, neN, and for each k€({l, 2,---, r} define
whtlwhnuh ! and Wk o =winvk 4,
and for each mEN and nEN set

Wa,n={Whk nik=1,-, r+1}.
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Fix meN and n€N, then for any ke&{l,..-, r} the
whtlnwk jcwhnwi -o.
Similarly, if j, k€{1,---, r} with jsk, then the
Wi aNWE L CVh aNVE n=2.

Clearly, the set W5 ol cuf !

, and for any k€{l,---, r} the set
Wm,nC\%,ncvﬁ n
Thus, for each m€EN and n€N the collection Wp,n is a precise

pairwise disjoint open refinement of Um n -

Let a point x€X be fixed but arbitrary, then since the collection
{W‘,in:jzl, 2, mEN} covers X, integers mEN and j&{l,2} may be
chosen such that xEW‘j . If the point xEW}n, then since

wh vl =puh il imeny,

for some n€N the point

xewh nuh Rl =wi L.
On the other hand, if the point x EW%-,, then since

xEV,zn CU{V%‘n,n:k::l,---, r,n €N},

for some k€{l,--,r} and n&€IN the point xEV&n,n . Thus, for this
case, the point

xeWZNvk [ =wk n
Since in either case the point X is in some Wﬁ,n, it has been shown that

the {Wm,n:mEN, nEN} covers the space X.

Finally, apply theorem 3.1.4 to obtain that the space X has the

property Cr +1° This completes the proof.
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3.5.4 Corollary. If for some r€{(2,3,4,-} a space X has

property Cr, then X has property Cp for every r€f{2, 3, 4,---}; that is

the space X has property C°° .

Proof. This is obvious from the theorems 3.5.3 and 3.2.1.

The theorem 3.5.3 gives further implications which are stated in the

following theorem. This will complete the generalization of 2.4.2.

35.5 Theorem. Let re{2,3,4,--}. If a space X is WIDy, then

the space X also has property Cr.

Proof. If the space X is WIDp, then by 3.2.2 the space X is WID;,.
Since X is WID2, the characterization 2.3.2 implies that X has property C2.

Thus, the corollary 3.5.4 then gives that the space X has property Cr.

3.5.6 Corollary. If a space X is WIDm, then the space X has

property C .

Proof. The proof is obvious from the definition of WIDGO, theorem

3.5.5 and the definition of C°° .
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3.6 Essential Differences Between the Properties

After including the results of the last section into 3.5.1, the

following summary is obtained.

3.6.1 Summary. Let r€{2, 3, 4,--}. A space X satisfies the

following implications of properties.

C2 = C; ¢-==Cr+1 §Cw = C, & property C

! ! l ! |

WID == WID2 == WIDp =»W1Dr+ 1= WID == WIDy,

As can be seen for 3.6.1, only two reverse implications, each implying
the other, remain unknown. Comparing theorems 3.2.3 and 3.2.5, it is also
seen that for compacta the essential difference between C . and C,, seems to
arise from the unboundedness of the cardinality of open covers involved.
However, no such difficulty presented itself in the proof of the

corresponding theorem 3.4.3, even without the assumption of compactness.

This suggests that theorem 3.5.3 might have a different type of
proof. The proof of 3.5.3 given in section 3.5 was inductive in nature. The
basic technique was to split a given cover into two subcollections, and then
to use a previously proven theorem on the resulting covers of smaller
cardinality. This technique no longer works if thé cardinality of the covers
is unbounded, for the resulting covers would then also have unbounded

cardinality.
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Thus, it would be very interesting to find a “generic proof” of 3.5.3,
that is a proof which directly shows the equivalence of the properties C2
and C; without using any of the intermediate properties. Such a proof was
given for theorem 3.4.3, and it seems likely that this is why that proof also

showed the equivalence of the properties WID_, and WID,.

Of course, it might simply be the case that the properties Coo and C,
are different. If that is the case, then the problem is to construct a
counter-example, that is a space X with property Coo which does not have
the property C,,. From 3.2.3, it is seen that a compact counter example
would have a sequence of open covers {Up:neN} with [Upl{— as

n—oe. This observation might be used to give a construction procedure.

The other remaining unknown implication of 3.6.1 is whether or not
every WID,, space must also have the property Cp - The major obstruction
of this implication, and indeed the major obstruction to a direct non-
inductive proof of the other related vertical implications of 3.6.1, is that a
separator of a discrete collection of pairwise disjoint closed subsets
(Ag‘:aEI‘) of a space X needs not form a precise pairwise disjoint open
shrinkage of the related open cover. It is this obstruction which prevents a

direct reversal of the argument used in lemma 3.3.1 and theorem 3.3.2.





