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ALTERNATIVE CHARACTERIZATIONS OF WEAK INFINITE-DIMENSIONALITY

AND THEIR RELATION TO A PROBLEM OF ALEXANDROFF'S

I. INTRODUCTION AND MATHEMATICAL PRELIMINARIES

The classical dimension theories of Menger-Urysohn and Lebesgue

assign an integer, called the dimension, to topological spaces in a manner

which extends the notions of dimension for manifolds and polyhedra. These

classical dimension theories, large inductive dimension and covering

dimension, may be thought of as inductively defined generalizations of the

topological properties of normality and paracompactness. Thus, although

quite difficult to show, it is not surprising that the two dimension theories

are equivalent for the category of metric spaces.

A description of these theories is given in section 1.1, along with

some elementary properties of those two theories. In addition, two

important theorems are given. The first, called the decomposition theorem,

gives a characterization of large inductive dimension in terms of unions of

zero-dimensional subspaces. The second, due to Eilenberg and Otto, gives a

characterization of large inductive dimension in terms of families of pairs of

disjoint closed subsets of the space, now known as essential families. The

section ends with a discussion of a result, due to Morita, concerning the

equivalence of the two dimension theories when considered for the category

of metric spaces.
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On the other hand, the classification of infinite-dimensional spaces,

first proposed for study by Hurewicz in 1928, is not as well understood.

Although the classical dimension theories are equivalent on metric spaces,

their infinite-dimensional analogues may differ, even for compact metric

spaces. It appears to be very difficult to identify exactly what makes a

given space have infinite dimension. As an example, there even exists an

infinite-dimensional compact metric space which contains no positive-

dimensional subspace [ Walsh (1978)]. Since many important theorems of

topology require finite-dimensionality as part of the hypothesis, infinite-

dimensional dimension theories are of research interest.

In section 1.2, infinite-dimensional analogues of the finite-dimensional

theories given in 1.1 are defined. The first such analogue, countable-

dimensionality, was defined by Hurewicz as a generalization of the

decomposition theorem. Variations of the original definitions are discussed,

along with some relationships between those variations. Of particular

interest is a theorem due to Nagata, which characterizes countable-

dimensionality in terms of essential families.

Section 1.2 continues with the introduction of a covering property

due to Haver known as property C. Property C was defined by Haver for

metric spaces, and later generalized by Addis and Gresham for general

topological spaces, in order to decide when certain infinite-dimensional

locally contactible spaces were absolute neighborhood retracts. A survey of

the results of Addis and Gresham which are pertinent to the rest of this

thesis is presented. In particular, property C determines a dimension theory

for paracompact strongly completely normal spaces.
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The last infinite-dimensional dimension theory discussed in section 1.2

is known as weak infinite-dimensionality. Two versions, equivalent on

compacta, are compared; the first due to Alexandroff, and the second due to

Smirnov. Smirnov's version will prove to be deficient as a dimension

theory, and will be discarded, for the most part, throughout the rest of this

thesis.

The final section, section 1.3, of this chapter concerns itself, in

detail, with a famous question posed by Alexandroff. Simply stated, this

question asks whether or not the properties of countable-dimensionality and

weak infinite-dimensionality are equivalent when considered on compact

metric spaces. This question was recently negatively answered by Roman

Pol [R. Pol (1981)I. However, as with most results in mathematics, this

answer generates even more questions. A discussion of the construction of

R. Pors example is given, along with the remarks needed to show that this

example is indeed an answer to the original Alexandroff question.

The section and this chapter is ended with a discussion of the

relationships between the various infinite-dimensional dimension theories

presented. Those relationships are combined with the questions raised by R.

Pol's example to form what is called "The Generalized Alexandroff

Question". The collective emphasis of this thesis is to research and better

understand this problem.



1.1 Classical Dimension Theories

In this section, two classical dimension theories are given. The large

inductive dimension was first published by seech f eech (1931)], although it

might be related to earlier results of Brouwer, and is certainly related to

the earlier theories of Menger and Urysohn [Menger (1923), Urysohn (1922)].

For a more complete exposition on the theory of large inductive dimension,

the reader is referred to E Engelking, Ch. 21.

1.1.1 Definition. For every normal space X, the large inductive

dimension of X is an integer n E{ 1, 0, 1,-}, denoted by the Ind X = n,

or is said to be infinite, denoted by the Ind X = co, which is assigned

according to the following rules :

The Ind X ---- 1 if and only if the space X =0.

The hid X n, n = (0, 1, 2,..), if for each closed set

A C X and every open set U C X with A C U there exists

an open set V C X such that A CV CV CU with the

Ind Fr V n 1.
The Ind X = n if the Ind X n and the Ind X > n 1.

The Ind X =oo if the Ind X > n for each n 1, 0, 1,-}.

As can be seen from the definition, large inductive dimension is

basically an inductive version of nomality, and hence, is defined for any

normal space. To obtain the standard theorems of a dimension theory, a

stronger separation property, namely strong hereditary normality, must be

assumed for the spaces involved. Since the emphasis of this thesis will be

4
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with metric spaces, and indeed since every metric space is strongly

hereditarily normal, this distinction need be of little concern to the reader.

1.1.2 The Decomposition Theorem. [ Engelking, p. 2591 Let X be a

non-empty metric space and let n E(0, 1, 2,--) be fixed. The Ind X < n

if and only if for each k E(1,--, n +1 ) there exists a zero-dimensional

subset Zk C X such that X Zk :k = 1, +1) .

Because of the important nature of the zero-dimensional subspace in

1.1.2, some elementary results of zero-dimensional spaces are combined to

give the following statement.

1.1.3 Results for Zero-Dimensional Spaces. [ Engelking, p. 33, 52,

and 53]. Every normal space with the Ind X = 0 is totally disconnected.

Every compact totally disconnected normal space X has the Ind X =0.

However, there do exist totally disconnected separable metric spaces

of all dimensions which can be constructed in a very axiomatic manner

[Rubin, Scion, and Walsh (1979)1. The notation of the following theorem

may also be found in [Rubin, Scion, and Walsh (1979)1.

Although Eilenberg and Otto originally proved the following theorem

only for the case where X was separable metric, the theorem remains true

without the separability condition [Engelking, p. 230, 2541.



1.1.4 (Eilenberg and Otto (1938)1 A non-empty metric space X

satisfies the inequality Ind X n if and only if every (11 + )-family of

pairs of disjoint closed subsets {( A<, Bk ) : k = 1, 1} of X is

inessential, that is for each k E 1, n +1 } there exists a closed subset

S C X which separates the pair (Ak, Bk) in X such that the

11{Sk:k n +1} ----0.

The second classical dimension theory which will be presented, known

as covering dimension, has its roots in a very early paper by Lebesgue

[Lebesgue (1911)], and was formally defined by ' -ech [ (1933)] . To

avoid an extra hypothesis, covering dimension will be defined for the

category of paracompact spaces.

1.1.5 Definition. Let 91 be a collection of subsets from a set X.

For any subset A C X the order of A in 'IL will be the largest number n

of elements of 'U. which contain some point x EA, and will be denoted by

the ordA n. If A = ( x ) for some x EX, then the order of x in IL

will be denoted by the ordx 'U. = n. If no such largest integer exists, then

A will be said to have infinite order in 'Li, and will be denoted by the

ord A 'IL = The order of 'U. will be defined and denoted by the

orett = sup (ordx : x E X ) .

1.1.6 Definition. For every paracompact space X, the covering

dimension of X is an integer n Et 1, 0, denoted by the dim X =n

or is said to be infinite, denoted by the dim X =00 which is assigned

6
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according to the following rules:

The dim X = 1 if and only if the space X =0.

The dim X n, n E {0, 1, 2, if every open cover 1.1, of X

has an open refinement r, with the ord ± 1, which also

covers X.

The dim X n if the dim X -<n and if the dim X > n 1 .

The dim X =00 if the dim X > n for each n E ( 1, 0, 1

In this form, the covering dimension is seen to be an inductive

version of paracompactness. Since every metric space is paracompact, it is

quite natural to suspect that the large inductive dimension and the covering

dimension agree on metric spaces.

1.1.7 The Coincidence Theorem. f Katetov (1952), Morita (1954)1

For any metric space X, the Ind X = dim X.

Thus, the choice of category for this thesis will be that of metric

spaces. For the remainder of this thesis, a space will always mean a metric

space, and because of 1.1.7, all future references to dimension will refer to

the covering dimension of Lebesgue with the notation dim X.



1.2 Infinite-Dimensional Dimension Theories

Hurewicz was the first person to propose giving infinite-dimensional

spaces their own dimension theory [ Hurewicz (1928)]. In this section, three

such infinite-dimensional dimension theories are presented. Although the

classical dimension theories presented in the previous section are equivalent

for metric spaces, their infinite-dimensional analogues may differ, even for

compact metric spaces.

The first such theory, countable-dimensionality, was proposed by

Hurewicz [Hurewicz (1928)1 as a generalization of the decomposition theorem

1.1.2, and has been extensively discussed in the literature; Nagata , chapter

VI.] and [E. Pot (1983)] are two very good sources.

1.2.1 Definitions. A space X is said to be countable-dimensional,

denoted by CD, if the space can be written as X ---1_1{7k:k E N } where

each subspace Zk C X is finite-dimensional. If, in addition, each Zk is a

closed subset of X, then X is said to be strongly countable-dimensional. A

space which is not countable-dimensional is said to be uncountable-

dimensional.

It is clear from 1.1.2, that every finite-dimensional space is

countable-dimensional, and thus, that every uncountable-dimensional space is

infinite-dimensional. Many of the results in the literature concerning

countable-dimensional spaces are much easier to prove, or indeed, can be

shown to be true only for strongly countable-dimensional spaces. This is

8



unfortunate since Smirnov has given the following result.

1.2.2 [Smirnov (1962)1 There exists a CD compact metric space

which is not strongly CD.

This discussion of countable-dimensional spaces is ended with the

presentation of a theorem due to Nagata which has been rewritten in the

language of essential families given in [Rubin, Schen, and Walsh (1979)].

1.2.3 [Negate (1960)1 A space X is countable-dimensional if and only

if for any countable collection of pairs of disjoint closed subsets,

henceforth called an co-family, ((Ak, Bk ):k EN) of X, there exists for

each kEN a closed set Sk C X which separates the pair ( Ak, Bk ) in X

such that for each point x E X the ordx {Sk : k E N } < co .

The next infinite-dimensional dimension theory presented is a

covering property first defined by Haver [Haver (1973)1 for metric spaces,

and later varied by Addis and Gresham [ Addis and Gresham (1978)] for

general topological spaces. The definition of property C given below in

1.2.4 is the one which was given by Addis and Gresham, and will be the only

such definition used in this thesis. Haver's original definition is equivalent

to 1.2.4 for compact metric spaces, however on non-compacta, the two

properties obtained may differ.

9



10

1.2.4 Definitions. A subspace A of a space X is said to have

property C in X, and is called a C-space, if for any sequence of covers

:n EN) of A by open subsets of X, there exists refinements Irn of

9.1.n, for n E N, which satisfies the following:

For each n E N the elements of len are open in X.

For each n E N the elements of each lrn are pairwise

disjoint.

The U(irn: n E N) forms a cover of the subspace A.

Any refinement ien of a cover 'lin which satisfies the conditions a and b is

said to be a C-refinement of the cover lin.

In [ Addis and Gresham (1978)), results were presented to establish

property C as an acceptable dimension theory. In order to establish the

standard theorems of finite-dimensional dimension theories, Addis and

Gresham had to assume that the spaces involved were paracompact strongly

completely normal spaces, that is spaces where for each countable collection

of separated subsets there exists a family of pairwise disjoint open subsets

each of which contains exactly one of element of the collection of separated

sets. Since this is much to ungainly for the purposes of this thesis,

property C will only be considered for metric spaces. Of course, every

metric space is paracompact and strongly completely normal. In particular,

strong complete normality is needed to obtain the following basic result.

1.2.5 [ Addis and Gresham (1978), p. 197] A subspace A of a metric

space X has property C in X if and only if A has property C in itself.
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In light of 1.2.5, and because all spaces considered in this thesis will

be metric spaces, a subspace will simply be said to have property C with no

mention of any ambient space. The results of [ Addis and Gresham (1978)1

which will frequently be used in the rest of this paper are stated next.

1.2.6 The Sum Theorem for Property C. [ Addis and Gresham

(1978), p. 197] If for each n EN Xn is a subspace which has property C

in a space X then the Li( Xn :n E N) also has property C.

1.2.7 The Subspace Theorem for Property C. [ Addis and Gresham

(1978), p. 197] If a space X has property C, then every closed subspace

A C X will also have property C. Thus, in light of 1.2.6, every Ta

subspace of X will also have property C.

Haver's original definition of property C defined a property

hereditary to all subspaces of a metric space. As will be shown in the next

section, the definition of property C due to Addis and Gresham needs not

be hereditary to all subspaces, even when the ambient space is a compact

metric space.

Addis and Gresham also showed that property C was an infinite-

dimensional analogue of a finite-dimensional dimension theory equivalent to

covering dimension for paracompact strongly completely normal spaces, and

hence also for metric spaces. Thus, it is quite correct to say that property

C is an infinite-dimensional dimension theory.
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1.2.8 (Addis and Gresham (1978), p. 1971 A space X has the

dim X n if and only if for any sequence of covers (`1.J.k :k =1, n +1)

by open subsets of X there exists for each k E {1, -, n +1} a C-

ref inement 'irk of %Lk such that the u(rk :k =1,, n +1) covers X.

The last infinite-dimensional dimension theory, weak infinite-

dimensionality, is an infinite-dimensional analogue of the characterization of

covering dimension which was given in 1.1.4. Two such analogues were

proposed in the literature; the first by Alexandroff and the second by

Smirnov. The best single source on weak infinite-dimensionality is found in

[Alexandroff and Pasynkov (1973)], where the reader is referred to for

general information about the following statements.

1.2.9 Definitions. A space X is said to be weakly infinite-

dimensional in the sense of Alexandroff, , which will be denoted by WID, if

every given w-family of pairs of disjoint closed subsets (( An, Bn ):n E N)

of X is inessential, that is for each n E N there exists a closed set

Sk C X which separates the pair (An, Bn) in X such that the

n(Sn:n E N) =0. If, in addition, the separators may be chosen such that

for some finite integer N the n(Sn:n =1 , NI =0, then the space X is

said to be weakly infinite-dimensional in the sense of Smirnov, which will

be denoted by S-WID . If a space is not weakly infinite-dimensional, then

the space will be referred to as being strongly infinite-dimensional, which

will be denoted by SID.
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It is clear that every S-WID space is also a WID space. Moreover, it

is easy to show that the two versions of weak infinite-dimensionality are

equivalent on compacta. Because of this, and unless stated otherwise, weak

inifinite-dimensionality will always refer to weak infinite-dimensionality in

the sense of Alexandroff.

The following theorems state results concerning WID spaces which

will frequently be used in later sections of this thesis. The proofs follow

the same pattern as the proofs of the corresponding theorems for property

C, and are omitted.

1.2.10 The Sum Theorem for WID Spaces. If for each n EN Xn is

a WID subspace of a space X, then the Uf Xn :n EN) will also be a WID

subspace of X.

The equivalent statement for S-WID spaces is false, even when each

subspace is closed in X. A simple counter-example may be constructed by

forming the nested union of n-cells where n ranges over all n E N. The

resulting space, while clearly strongly countable-dimensional, is not S-WID .

1.2.11 The Subspace Theorem for WID Spaces. If a space X is WID

(S-WID), then every closed subspace of X is also WID (S-WID). Thus, in

light of 1.2.10, every fa. subspace of a WID space is also WID .

These results suggest that weak infinite-dimensionality in the sense
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of Smirnov is not an appropriate choice for an infinite-dimensional dimension

theory. On the other hand, since weak infinite-dimensionality in the sense

of Alexandroff does possess extensions of the finite-dimensional subspace

and sum theorems, weak infinite-dimensionality in the sense of Alexandroff

should be thought of as an infinite-dimensional dimension theory.



1.3 The Generalized Alexandroff Question

In the last section, three infinite-dimensional dimension theories were

presented. Comparing theorem 1.2.3 with the definition of weak infinite-

dimensionality given in 1.2.9 gives the following theorem.

1.3.1 Theorem. Every CD space is a WID space.

The converse of 1.3.1, first proposed by Alexandrof f, remained an

open question until only recently.

1.3.2 The Alexandroff Question. Is every WID space a CD space?

Until recently, the only examples of uncountable-dimensional spaces

were strongly infinite-dimensional spaces such as the Hilbert cube. In 1981,

Roman Pol combined two known theorems to negatively answer 1.3.2 (R. Pol

(1981)1. Because of the importance of this example, and because the

structure of this example will be used in later sections, a detailed discussion

of its construction is given.

1.3.3 ER. Pol (1981)] There exists a WID compact metric space P

which contains a SID subspace. Thus, P cannot be CD.

15

Proof. There exists a SID separable metric space X which is totally

disconnected. Although this space was probably known previously, an
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explicit construction of such a space X as a subset of the Hilbert cube may

be found in [Rubin, Schori, and Walsh (1978)1 as a special case of a more

general and powerful construction procedure. As R. Pol also mentions, the

construction of this space may be modified to ensure that the constructed

space X is topologically complete. A detailed proof may be found in [Garity

and Schori (1986)]. Thus, the space X can be constructed to be a g6 subset

of the Hilbert cube [Dugundji, p. 3071.

A classical compactification theorem [Lelek (1965)] states that such a

space admits a compactification P in the Hilbert cube with a CD remainder,

i.e. Z \ X is CD. Since the compactum X contains the SID subspace X,

the theorem 1.3.1, together with the obvious hereditary nature of

countable-dimensionality, implies that P cannot be CD. On the other hand,

it is easy to show that P is WID. This will be obtained in a later section

as a result of a more general theorem. Thus, the compactum P is seen to be

a negative answer to the question of Alexandroff. This completes the

proof.

It should be mentioned that, as noticed by E. Pol, R. Pol's compactum

P also has property C. This will be obtained in a later section as a special

case of a more general theorem.

1.3.4 [Addis and Gresham (1978), p. 197 and p. 2021 Every CD space

has property C. Every space with property C is WID.
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It has long been the opinion of many topologists working in this area,

that property C captures the essential nature of countable-dimensionality.

If this is indeed the case, then R. Pol's compactum cannot truly be

considered to be an acceptable solution to the problem of Alexandroff, or

perhaps it would be better to say that Alexandroff simply asked the wrong

question. Therefore, in the remainder of this section, a generalized

Alexandroff question will be posed. Contained in this generalized question

are particular questions of importance, not only to dimension theory, but

also to larger areas of topology such as manifold decompositions, shape

theory and the study of dimension-raising maps.

It is obvious from the definition given in 1.2.1 that the property of

being countable-dimensional is hereditary to all subspaces of a countable

dimensional space. Haver's original definition of property C was hereditary

to all subspaces of a metric C-space. On the other hand, R. Pol's compactum

shows that property C, as defined by Addis and Gresham, and weak infinite-

dimensionality, while hereditary to closed subspaces, need not be hereditary

to all subspaces. Thus, the two versions of property C do differ. Because

of this observation of the lack of an hereditary nature for property C and

for weak infinite-dimensionality, it is quite natural to make the following

definitions.

1.3.5 Definitions. A space X is said to be hereditarily weakly

infinite-dimensional, denoted by HWID, if every subspace A C X is WID.

A space X is said to have property C hereditarily, denoted by H-property

C, if every subspace A C X has property C.
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1.3.6 Theorem. Metric spaces satisfy the following implications of

properties.

HWID

CD H-property C WID

property C

Proof. These implication are obvious from the results in 1.3.4.

Since the compactum P constructed in 1.3.3 is a C-space with an

HWID subspace, it is seen that the converses of the implications c and d

are false. At the time of this writing, the converses to the remaining

implications of 1.3.6 are open questions. These reverse implications, those

of a, b, and e, together with the implication f of the following

statement compose the generalized question of Alexandroff.

1.3.7 The Generalized Question of Alexandroff. Does every metric

space always satisfy each of the following implications of properties?

CD H-property C /=) HWID property C Vv ID

Since the implication e of 1.3.7 implies the implications b and f

of 1.3.7, it certainly seems that the question posed by e is of the most

interest. Also of interest is the question posed by the implications a and

b of 1.3.7 when taken together: Must every HWID space be CD?

Chapter two of this paper presents results which illustrate the

importance of, and difficulties in, answering these questions. In 1.2.3, a
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characterization of countable-dimensionality in terms of essential families

was given. However, at this time, no such characterization of property C in

terms of essential families is known. Chapter three of this paper will

explore the possibilities of such a characterization, as well as characterizing

weak infinite-dimensionality in terms of sequences of open covers.



II. EXTENSIONS OF EXISTING RESULTS

In this chapter, extensions and generalizations of existing results will

be given. Section 2.1 gives results concerning separations and

decompositions of weakly infinite-dimensional spaces. A result, theorem

2.1.6, is given which generalizes E. Pot's proof of the fact that R. Pot's

compactum has property C. The section ends with a question of importance

in answering the generalized Alexandroff question.

In section 2.2, results concerning products of weakly infinite-

dimensional spaces are presented. A brief review of known results is given,

followed by some results about products of R. Pot's compactum with various

WID spaces. A direct proof that the product of two compact C-spaces also

has property C is given in 2.2.17. The section ends with some questions for

further research.

The topic of section 2.3 is the preservation of weak infinite-

dimensionality and property C by open maps with finite fibers. A very

general theorem is given in 2.3.9, from which various results are obtained

including a new result concerning property C under open maps with finite

fibers. These results no longer follow if the condition on the fibers is

relaxed. Some questions related to these topics are asked at the end of the

section.

In section 2.4, a covering characterization of weak infinite-

dimensionality is given. This characterization, given in 2.4.2, is exploited

to generalize a result of Kato, by showing that refinable maps on compacta

20
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preserve property C. A slight variation in proof yields Kato's original

result as well as a result due to Patten.

In the final section of this chapter, the major motivation for

studying the relationships between different types of infinite-dimensional

spaces is discussed; namely the cell-like dimension-raising map question.

Results due to Kozlowski and Ancel related to this question are discussed.

In particular, it is shown that approximately invertible maps, such as

hereditary shape equivalences, preserve weak infinite-dimensionality. By a

simple variation of proof, Kozlowski's result that hereditary shape

equivalences preserve finite-dimensionality is obtained. The remainder of

the section raises questions related to the cell-like dimension-raising map

question.



2.1 Decompositions of WID Spaces

In this section some easily obtained results concerning decompositions

of weakly infinite-dimensional spaces are presented. The emphasis is on the

similarities between property C and weak infinite-dimensionality, and not on

the results themselves.

2.1.1 [ Addis and Gresham (1978), p. 2001 A space X has property C

if and only if for any pair of disjoint closed subsets (A, B) of X there

exists a closed subset S C X having property C in X such that S separates

the pair (A, B) in X.

The following analogous result concerning the inductive nature of

weak infinite-dimensionality is obtained.

2.1.2 Theorem. A space X is WID if and only if for any pair of

disjoint closed subsets (A, B) of X there exists a closed WID subset

S C X such that S separates the pair (A, B) in X.

Proof. Suppose that X is WID and that S is any closed subset of X

which separates the given pair of disjoint closed sets (A, B) in X. Since

X is WID, and since S is closed in X, the separator S must be WID.

Suppose that the space X satisfies the hypothesis of the converse

and let an w-family of pairs of disjoint closed subsets ((An, Bn):n EN)

of X be given. By the hypothesis, a closed subset S1 C X which separates
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the pair (A1, ) in X may be chosen such that the separator S1 is WID.

Since the collection {( An 1-1 S1, Bn fl S1):n E IN \ (11) is an w-family

of pairs of disjoint closed subsets of S1, for each n EN \ (1) a closed set

Tn CS' which separates the pair (An nsp Bn nsi) in S1 may be chosen

such that the n{Tn n E IN \ {1 }) = . Each Tn may then be enlarged to

obtain a closed set Sn C X, with Sn f.) S1 C T,,, which separates the pair

(An, Bn) in X EEngelking, p. 131.

Thus, separators of the pairs comprising the given co-family in X are

obtained such that the

11{Sn:nEN}----n{SnilSi:nEN\(1)}

Cn{Tn:nEN\{1}}

=0.

Therefore the w-family {( An, Bn):n EN) is inessential, and the

space X is shown to be WID. This completes the proof.

The previous theorem motivates the following theorem for spaces

which have property C.

2.1.3 Theorem. A space X has property C if and only if for any

given open cover CU of X there exists a C-refinement r of CU such that the

complement X U{V:V Er} has property C in X.

Proof. Suppose that the space X has property C and let 9.1 be a

23

given open cover of X. If le- is any C-refinement of 'U., then the
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complement X \ U{V :V Er} is closed in X. Thus, since X has property C,

X \ U{V :V Er), being closed in X, must also have property C in X.

Suppose that the space X satisfies the hypothesis of the converse,

and let {`Iln:n EN) be a given sequence of open covers of X. By the

hypothesis, a C-refinement ri of U1 may be chosen such that the

complement X \ U{V :V En} has property C in X.

Finally, for each n E IN \{1} a C-refinement rn of 'Lln may be

chosen such that the U{rn:n EN\ ( 11) covers X \ U{ V : V E ri}. Thus,

the U{rn:n EN) covers all of X, which completes the proof.

Property C and weak infinite-dimensionality may also be related by

the following theorem. The technique used in the proof of that theorem

will also be used in a later section to characterize weak infinite-

dimensionality in terms of open covers.

2.1.4 Theorem. A space X is WID if and only if for any given open

cover 'U. of X there exists a C-refinement r of `11. such that the complement

X\U{V:VEr} is WID.

Proof. Suppose that the space X is WID and that IL is a given open

cover of X. if I( is any C-refinement of 'U., then the complement

X \U{V:V Er } is closed in X. Thus, since X is WID, X\w/o/ Er)
being closed in X must also be WID.

Suppose that the space X satisfies the hypothesis of the converse.
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Theorem 2.1.2 will be used to show that X is WID. Let (A, B) be a given

pair of disjoint closed subsets of X, and use normality to choose open sets

U1 and U2 such that

ACU1 ct-J-1 cx\B and BCX\U1CU2CU2CX\A.

Since the pair (U1, U2) is an open cover of X, the hypothesis may

be used to choose a C-refinement r of {U1' U2) such that the complement

X \ U{V :V EY) is WID. Define

=-(X\IJ-2)U(U(V:V Er, V CUi})

and

v2-(nu1)u(u{v:vEr, vn(c\u1) 0})-

Clearly V1 and V2 are open subsets of X with

ACX\ti2CV1 and BCX\D1CV2.

Furthermore, since the U1 UU2 =X, the sets Vi and V2 are disjoint.

Thus, if S =X \ (ViU V2) is defined, then S is seen to be a

separator of the pair (A, B) in X. Since S is a closed subset of the WID

subspace X \U{V:V Er}, the separator S must also be WID, and then, by

2.1.2, the space X has been shown to be WID. This completes the proof.

The remainder of this section presents results on the decomposition

of spaces into unions of subspaces of which at least one is WID.

2.1.5 ( Leibo (1971)1 If A is a WID subspace of a SID space X, then

X contains a closed SID subspace Y such that Y fl A =0.



26

2.1.6 Theorem. If A is a subspace having property C in a space X

which does not have property C, then X contains a closed subspace Y which

does not have property C such that Y fl A =--- 0.

Proof. Since the space X is not a C-space, there exists a collection

of open covers {1.1.n:n E N) of X such that no C-refinements of the covers

forms a cover of X. However, since A does have property C, for each

m E N C-refinements 1r2m of each c1.1.,m may be chosen such that the

UPle2m m EN) forms an open cover of' A in X.

Set Y \U{V ir2m:m EN), then Y is a closed subset of X

which is disjoint from A. No C-refinements of the remaining covers `1,12m_i

where m E IN can provide a cover of Y, lest it also complete a cover of C-

refinements for X. Thus, Y cannot have property C, which completes the

proof.

From 2.1.6 the following corollary, the first of which was observed

by E. Pol, is obtained.

2.1.7 Corollary. R. Pol's compactum P has property C, and thus is

weakly infinite-dimensionality.

Proof. Recall that P =X UZ is a subcompactum of the Hilbert

cube where X is a totally disconnected SID space and Z is CD. If P did not

have property C, then since Z, being CD, does have property C, the

theorem 2.1.6 would imply the existence of a closed, hence compact,

subspace Y CP with Y fl Z =0 which did not have property C. Thus, the
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subspace Y C X would be a compact totally disconnected space, and hence,

by 1.1.3, would be zero-dimensional. But, this would contradict Y not

having property C. Therefore, P must have property C which completes

the proof of the corollary.

If property C is replaced by countable-dimensionality in 2.1.6, then

the statement is no longer true. Pol's example is not countable-dimensional,

and yet contains no closed uncountable-dimensional subspace missing Z.

2.1.8 [ Skijarenko (1959)1 Let X be a S-WID space, then X contains a

compact WID subspace K whose complement Z is CD.

Quite naturally, 2.1.8 raises questions of whether or not such

decompositions exist for WID spaces, or for spaces which have property C.

2.1.9 Question. If X is a WID space, then must X contain a compact

WID subspace whose complement is CD?

2.1.10 Question. If X is a space which has property C, then must X

contain a compact subspace having property C whose complement is CD?

These questions will be answered negatively in the next section. It

might be, assuming these answers, that 2.1.11 is the correct question to ask.



2.1.11 Question. If X is a WID space, then must X contain a

compact WID subspace whose complement has property C?

An affirmative answer to 2.1.11, and a simple use of the sum theorem,

would reduce the proof of implication e. of 1.3.7 to proving the implication

for compacta. This would be a major step in solving the generalized

Alexandroff question.
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2.2 Products of WID Spaces

Results concerning when products of WID spaces are WID are very

scarce amongst the literature of WID spaces. The answer to the following

question is not even known [R. Pol (1982)1.

2.2.1 Question. If X and Y are WID compacta, then must the

product space X X Y be WID?

However, some results are known for non-compact spaces. As a guide

to understanding the examples, some outline of proof is given.

2.2.2 [R. Pol (1982)] There exist two WID spaces whose product is

not a VvrID space.

Proof. Pol's example of 2.1.7 can be written as P=XUZ where

Z =13\ X is CD. Thus, it is possible to write Z B1 U132 where B1 and

B2 are disjoint Bernstein sets, i.e. all compact subsets of B1 or B2 have

countable cardinality [Kuratowski, p. 40].

It is then easy to show that the two spaces X U B1 and X U B2 are

WID non-compacta. However, the product (X U B1) X( X U132) contains the

SID space X X X as a closed subspace. Thus, the product space

(X U B1) X (X U B2) must be SID. This completes the proof.

29

This example also answers the related question about property C.



2.2.3 E Engelking and E. Pol (1983)] The subspaces X U B1 and

X U B, have property C. Thus, the product of two non-compact spaces,

both having property C, needs not have property C.

Finally, there is the following result, recently discovered by E. Pol.

2.2.4 [E. Pol (1986)] There exists a WID space X, having property

C, whose product with some subspace B of the irrationals is SID, and

therefore, cannot have property C.

Results concerning product spaces where at least one factor is

compact are even more scarce in the literature. The following theorem is

about all that is known.

2.2.5 [ Addis and Gresham (1978), p. 201] Let X and Y be two C-

spaces where Y is compact. If Y has a basis S of open sets such that for

all B E' the product X X Bdy (B) has property C, then the product

X X Y also has property C.

2.2.6 Corollary. If X has property C and Y is a a-compact

strongly-CD space, then X X Y has property C.
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Proof. Since the space Y is a-compact, Y can be written as

Y U{ Yn n EN) where each Yn is a compact space. Moreover, since Y is
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a strongly-CD space it is possible to write Y =Li{ zn,:m E N.} where each

Zm is a closed finite-dimensional subspace of Y. Thus, since each Yn can

be written as Yn = Uf Zm n Yn :m EN), it is seen that for each n E N

the compact subspace Yn is also strongly-CD. An inductive application of

2.2.5 then gives that for each n EN and every m EN the product

X X (Zm fl Yn) has property C. Applying the sum theorem to

X XYn=--UIX X(ZmnYn):mE EN} and X XY XYn:nEN)

gives the desired result that the product space X X Y has property C.

It is now possible to answer the questions raised in 2.1.9 and 2.1.10.

The following simple lemma is needed.

2.2.7 Lemma. Let P denote R. Pol's compactum and let E denote the

Euclidian line. The complement of any compact subspace K of P X E

cannot be CD.

Proof. Let K CP X E be a compact subset and let r :P X E-41E

be the projection mapping. Since ir(K) is compact, the complement

E Vr(K ) #0, and thus it is possible to choose y E F \ r (K). But, then

the product P X{y} =-- 7-1( y) C(P X E) \ K, and since P X {y} is not CD,

it is seen that the complement (P X 1E) K cannot be CD. This completes

the proof of the lemma.

2.2.8 Theorem. The product space P X E provides negative

answers to the questions raised in 2.1.9 and 2.1.10.



32

Proof. Applying 2.2.6, it is observed that the product P X E has

property C, and thus is WID. The lemma 2.2.7 then denies the existence of

a decomposition of P X E as called for in 2.1.9 or 2.1.10. This completes

the proof.

Smirnov's compact CD space which is not strongly-CD, mentioned in

1.2.2, prevents the proof of 2.2.6 from generalizing to arbitrary compact CD

spaces. Moreover, the proof of 2.2.5 depends heavily on the second factor

Y having all of the structure. In the remainder of this section, results are

presented which share this structure between the two factors. The case

where one of the factors is R. Pol's compactum will be of particular

interest.

The next theorem, while almost obvious, gives a necessary condition

for the product space to have property C.

2.2.9 Theorem. If X and Y are spaces such that the product X X Y

has property C, then both factors X and Y must also have the property C.

Proof. Fix a point (x, y) EX XY. Since the fibers X X {y} and

(x) X Y are closed subspaces of the product X X Y which has property C,

the fibers X X (y) and (x) X Y, as well as their homeomorphic copies X

and Y, must both have property C. This completes the proof.

Next, results are presented which concern product spaces where one

factor is R. Pol's compactum. The following lemmas are needed.
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2.2.10 [Morita (1956)] If f :X *Y is a closed mapping between

spaces X and Y such that for each y E Y the fiber has dim f-1(y)

then the dim X Y

2.2.11 Lemma. If X is a space such that for any zero-dimensional

space Z the product X X Z has property C, then for any CD space Y the

product X X Y will also have property C.

Proof. Since the space Y can be written as YU{Yn:nEN},
where for each n EN the dim Yn 0, the result follows from the

hypothesis and the sum theorem.

2.2.12 Theorem. If P is R. Pol's compactum and Y is any CD space,

then the product P X Y will have property C.

Proof. By the lemma 2.2.11, it is sufficient to show that the

product P X Y has property C where Y is any zero-dimensional space.

Suppose that Y is zero-dimensional and let 7r:P X Y+Y denote the

projection mapping. Recall that P ---- X U Z where X is a totally

disconnected SID space and Z is CD.

Let {lin :n EN) be a given sequence of open covers of P X Y.

Since the product Z X Y is clearly CD, Z X Y has property C, and thus,

for each n it is possible to choose a C-refinement "ten of 'lin such that

the U{grn:n 2) is an open cover of Z X Y in P X Y.

By setting K ( P )< Y ) \ (U{ V E rn : n > 2 ) ) a closed, but not
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necessarily compact, subspace of P X Y which is contained in X X Y is

obtained. Since P is compact, the projection 7 is a closed mapping, and thus

the restriction ir :K --Y to the closed subspace K remains a closed

mapping. Fix a point y EY, then 1--1(y) 11K is a closed, hence compact,

subspace of the compactum P X (y) contained in the totally disconnected

subspace X X {y}. Thus, by the remarks given in 1.1.3, it is seen that

the dim(w(1(y)C1K) 0.

Using these results, 2.2.10 can be applied to obtain that the

dim K <0, and thus by 1.2.8, a C-refinement iri of the remaining cover 111

may be chosen such that IC1 is an open cover of K in P X Y.

The collection {rn:n E N) is then a collection of C-refinements of

the original sequence {lin :n E N) such that the U{ 'Y' E N) covers all

of the product P X Y. Thus, P X Y is shown to have property C which

completes the proof.

2.2.13 Corollary. The product of R. Pol's compactum and the space

of irrationals has property C.

Proof. This is an obvious application of 2.2.12.

It should be noted that the result of 2.2.13 cannot be obtained from

2.2.5. Moreover, in light of E. Pot's result 2.2.4, the following question

ought to be raised.
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2.2.14 Question. Does there exist a compactum which has property

C and yet whose product with the space of irrationals (or any CD space for

that matter) does not have property C?

2.2.15 Theorem. If K is a compactum whose product with any zero-

dimensional space Y has property C, then the product of R. Pol's compactum

P with K also has property C.

Proof. As before write P=XUZ, then 2.2.11 implies that the

product Z X K has property C. Let {1.1.n :n E N} be a given sequence of

open covers of the product P X K, then for each n EN a C-refinement

rut of lin may be chosen such that the U{r 2n:n EN} forms an open

cover of Z X K in the product P X K.

Set Y ==(P XK)\(OV Er2n m END/ then Y is a closed, hence

compact, subspace of the compactum P X K contained in the subspace

X X K. Denote the projection mapping by /r:P X K--0P, then 7C Y) is a

subcompactum of P contained entirely within the totally disconnected space

X, and thus, by 1.1.3, the dim i(Y)<O.

Thus, Y is a closed subspace of the product r(Y)XK which, by the

hypothesis, has property C. Thus, Y itself must also have property C.

Therefore, using the remaining covers {CU2n-t" E N it is possible to

:choose C-refinements of each 1.1.2n4 such that the U{ r2_1n E N

forms an open cover of Y in the product P X K.

Therefore, the Uf ern :n E N} covers all of P X K, and thus the

product P X K is shown to have property C. This completes the proof.
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2.2.16 Corollary. Let P be R. Pol's compactum, then the product

X P has property C.

Proof. Let Z be any zero-dimensional space. By 2.2.12, the product

X Z has property C, and thus theorem 2.2.15 implies that the product

X P also has property C.

The theorem 2.2.15 motivates, and is made obsolete by, the following

theorem. This will complete the results about product spaces where both

factors are compact spaces which have property C.

2.2.17 Theorem. If X and Y are compact spaces, both of which have

property C, then their product X X Y also has property C.

Proof. Let a sequence of open covers of the product X X Y

given. Rewrite the sequence as a countable collection of sequences of open

covers, denoted by (CU% :n E N):m EN). Moreover, by compactness, it

may be assumed that each 1.1.11 is a finite cover of the product X X Y,

where without loss of generality, each 9.111 is of the form

114/11-----(Ak X Bk :k 111) with every Ak open in X and each Bk open in

the space Y.

Fix m EN, n EN, and let x EX be fixed but arbitrary. Choose a

finite subcover 1.1.11(x) of the product (x) X Y from 'Ll.1/ such that for

each element Ak X Bk E.:U.11(x) of the subcover the point, x E Ak . By

defining A( x) =-- n{ Ak Ak X Bk E94(x)), an open subset A( x) of X with

x E A( x) is obtained. Thus, by constructing A(x) for each x EX, and by



defining .A.141 A(x):x EX), an open cover ..Altin of X is constructed.

Keep m EN fixed, and construct such an open cover.A.142 of X for

each n EN. Since X has property C, C-refinements Cr% of each .A.Trin may

then be chosen such that the U{e% :n E N) covers X. For each n E N

and every CE a single point x E X may be chosen such that

C A(x)E -4. For each such C and x define

(C ) { C X Bk : Ak X Bk E 9411(x ) } and ir frit 31111 (C ) :C E .

Thus, for each C E,rmll (C) is an open refinement of 9.1nm( x ),

and hence also of 9.1.141, such that rPri(C) is an open cover of C X Y.

Similarly, since the elements of each CInn are pairwise disjoint, each rITIrt is an

open refinement of clim such that the collection {Urfin(C):C EC%} is a

collection of pairwise disjoint "tubes" contained in the product X X Y.

Finally, since the U{ C :n EN) covers X, define the set

rm .tyrrl:n EN) to obtain an open cover of all of X X Y.

Suppose that for each m E N an open cover irm of X X Y has been

constructed in this manner. Fix m EN, and let y E Y be fixed but

arbitrary. Since X X(y) is compact, a finite subcover irm( y ) of

X X y } may be chosen from irm such that for each C X Bk E rm(y ) the

point y E Bk . As before, define B( y) = n{Bk :C X Bk E rm y)} to obtain

an open subset B(y) of Y with y EB(y). Thus, by constructing B(y) for

each y EY, and defining Sin ={B ( y ):y EY}, an open cover Sm of Y is

obtained.

Suppose, in this manner, that for each m E N such an open cover
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aim has been constructed. Since Y has property C, for each mEN a C-
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refinement $m of each 13m may be chosen such that the U{Tm:m EN}

forms an open cover of Y. For each m EN and every D E$m choose a

single point y EY such that D CB(y)EBm. For each such D and y

define

Wm(D)=--(CXD:CXBkErm(Y)),

and then decompose IV (D) into

Wm(D) =U{lifni (D):n EN)

where for each n

WITIn(D)----{CXD:CXBkErm(y)11q/1}.

Thus, for each D E$m the set W(D) is an open refinement of rill, and

hence also of 'Urn'', such that Wm(D) covers the product X X D.

Finally, set itqln =--U(Winn(D):D E Tin} to obtain an open refinement

of curt, Furthermore, since each Wm(D) covers X X D, where D E Tm,

and since the U{$m:m EN} covers all of the space Y, the union

U(141% :m EN, n E IN} is easily seen to cover all of the product X XY

It only remains to show that for each in EN and every n EN the

elements of WIrli are pairwise disjoint. This is fairly immediate since any

element of iVinn has the form C X D where C Eenli and D ETm. Since Cm

and $m are collections of pairwise disjoint open sets of X and Y

respectively, the elements of WTI are clearly pairwise disjoint.

Thus, for each in EN and every n EN it has been shown that WITIn

is a C-refinement of II% such that the Ufitlom EN, n EN) covers all of

the product X X Y. Thus, the product X XY has been shown to have

property C which completes the proof of the theorem.
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2.2.18 Corollary. Let P denote R. Pors compactum and let n E N

be fixed. The n-fold product Pn of P has property C.

Proof. This is obvious from the theorem 2.2.17.

It should be noted that the compactification procedure used to

construct P involves adding non-degenerate polyhedra to the totally

disconnected space X. Thus, P°° is SID and cannot have property C.

This section is ended with some related questions for further

research. The following is related to the question asked in 2.2.14.

2.2.19 Question. If X and Y are spaces having property C where X

is compact, then must their product X X Y always have property C?

2.2.20 Question. Let f be a closed (open and closed)

mapping between spaces X and Y. If the space Y has property C, and if for

every y E Y the fiber f-1(y) has property C, then must the space X also

have property C?

An affirmative answer to 2.2.20, which was motivated by 2.2.10,

would also give an affirmative answer to 2.2.19. It should also be noted

that if property C in 2.2.20 is replaced by countable-dimensionality, then

the answer is known to be no ER. Pol (1983)) .



2.3 Property C and Open Mappings with Finite Fibers

A classic question of finite-dimensional dimension theory considers

the existence of mappings which raise or lower dimension. One class of

maps which has been extensively studied with regard to these questions is

that of open mappings. In this section, results are obtained for the

analogous questions concerning infinite-dimensional spaces.

2.3.1 Definition. A mapping f :X--,Y is called an open mapping if f

maps each open set A C X to an open set f( A) C Y .

Standard examples of open mappings include the projections mappings

of product spaces onto their factor spaces.

2.3.2 [ Hausdorff (1934)1 Every separable metric space X is the

image of some subset Z of the irrationals by an open mapping f :Z+X .

Since 2.3.2 implies that the Hilbert cube can be written as the image

of a zero-dimensional space by an open mapping, it is seen that arbitrary

open mappings need not preserve countable-dimensionality, property C, or

weak infinite-dimensionality. The next statements show that even the

strong restriction to the class of open mappings which have countable fibers

fails to prevent those mappings from arbitrarily raising dimension.

40
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2.3.3 Definitions. A fiber of a mapping f :X --,Y is the inverse

image f-1(y) of a point y E Y. If the cardinality of each fiber I f-1(y) I

is countable, then f is said to have countable fibers. Similarly, if the

cardinality of each fiber)f(y) I of f is finite, then f is said to have

finite fibers.

2.3.4 [Roberts (1947)1 If f :Z+X is an open mapping between

separable metric spaces, then there exists a subset A C Z such that the

restriction f IA :A+X is an open mapping with countable fibers onto X.

Thus, 2.3.2 and 2.3.4, when taken together, imply that the Hilbert

cube may still be written as the image of a zero-dimensional space by an

open mapping with countable fibers. Although open mappings with countable

fibers defined on metric spaces may raise or lower dimension in an arbitrary

manner, it might be possible to place enough structure on the spaces

involved to obtain preservation of dimension. The following question is a

generalization of a result due to Alexandroff [Alexandroff (1936)1.

2.3.5 Question. If f:--Y is an open mapping with countable fibers

between locally compact metric spaces, then must X have property C if and

only if Y has property C?

Next, open mappings with finite fibers are considered. The following

lemma will be needed in the proof of the main theorem of the section.



2.3.6 Lemma. [Nagami (1960)] Let f be an open mapping

with finite fibers between spaces. For each jEN define

Y=--{yEY:lf-1(y)1=----il,

Xj =1-1(Y j), and

f =f I :X.+Y..33 3

Then:

For each n E N the n) is closed in Y.

For each jEN the mapping fj:X jo`lj is a local

homeomorphism.

2.3.7 Definition. A property P of metric spaces will be called

similar to property C if the property P satisfies:

The property P is hereditary to closed subspaces.

If X =--U(Xj:j EN), where each X j is a closed subset of X

that has the property P, then the space X also has the

property P.

If each point of a space X has a neighborhood which has the

property P, then the space X also has the property P.

This definition will be used to avoid redundancy of proofs. It should

be mentioned that if the space X of condition 3 is separable, then condition

3 follows from the first two conditions in the obvious manner. Although

condition 3 of 2.3.7 appears to be a very strong assumption, as the following

lemma shows, it is satisfied by many topological properties.
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2.3.8 Lemma. If P is a property of metric spaces which satisfies

the conditions 1 and 2 of 2.3.7, and which in addition, satisfies the condition

3'. For any discrete collection ()Ca :a. E r) of closed subspaces

of a space X where each Xa has the property P, the

U{Xa:a Er} also has the property P,

then the property P is similar to property C.

Proof. Let P be a property as per the hypothesis of 2.3.8. It is

enough to show that the property P satisfies condition 3 of 2.3.7.

Suppose that 1.1. is an open cover of a space X by sets which have

the property P. Since X is metric, %I. has a cr-discrete closed refinement

r = U{ rn :n E N) where each r1] is a discrete collection of closed sets in

X, which also covers X.

Fix n EN, and let V E 'irn . Since there exists U E 'U. with V CU

as a closed subset, condition 1 of 2.3.7 implies that V has the property P.

Condition 3' then implies that the U{V:V Ern} has the property P.

Finally, condition 2 of 2.3.7 implies that X =U{V : V Ern , n EN) also has

the property P. This completes the proof.

2.3.9 Theorem. Let P be any property of metric spaces which is

similar to property C and let f :X+Y be an open mapping with finite

fibers between metric spaces. The space X has the property P if and only

if the space Y has the property P.

Proof. As in the lemma 2.3.6, for each j EN define

Yi-,----{yEY:}f-i(y)1=j), Xi =f-'(Yi), and fi Thus,
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the lemma 2.3.6 implies that for each n EN the Yi :j = 1, n) is

closed in Y, and thus that eachis an To- subset in Y. Therefore, each
YJ

is also an Ta set in X.
XJ

Furthermore, from 2.3.6, for each j EN the map fj:Xj--*Yi is a

local homeomorphism. Therefore, a cover {Ua :a E rj) of X j by open sets

of may be chosen such that for eacha Er the restrictioni

fj:Ua --of i(Ua.) is a homeomorphism. Moreover, since Xi = f-1( Yj), each

f j remains an open mapping, and then for each a Erj the image fj(Ua)

will be an open subset in Y. Therefore, the collection fi( ):a Grp is

a cover of by open subsets of Y

Suppose that the space X has the property P, then from conditions 1

and 2 of 2.3.7 every subset of X also has the property P. In particular,

for each j E N the subspaceX has the property P. By the same
J

argument, for each a erj Ua, being open in X, is an fa subset of Xj,

and thus has the property P.

Since for each ,j EN and every a Eri f (Ua) is homeomorphic to

Um, the collection {ficuco:a. Eri} is a cover of Yj by open subsets of

YJ' each of which has the property P. Thus, condition 3 of 2.3.7 implies

that each has the property P. Finally, sinceYJ

condition 2 of 2.3.7 implies that the space Y also has the property P.

The proof of the converse is similar. Suppose that the space Y has

the property P, then since each Yj is an Tcr subset of Y, each Yj also has

the property P. Thus, for each j E N and every a. E rj fi(Ua.), being an

open, and hence 5" cy , subset of Yj, also has the property P.

Y=U{Yi:jeN),
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Since for each j E N and every cx. Erj fit ua) is homeomorphic to

Ua, the collection {Ua :cx Eri) is a cover of X j by open subsets of X,

each of which has the property P, and thus condition 3 of 2.3.7 implies that

eachX also has the property P. Finally, since X =U{ X j:j EN),
J

condition 2 of 2.3.7 implies that the space Y must also have the property P.

This completes the proof.

Corollaries. Let X and Y be as in 2.3.9 with f :X --oY being an open

mapping with finite fibers between X and Y.

2.3.10 [ Nagami (1960)1 The dim X if and only if

the dim Y .

2.3.11 [ Arhangerskil (1966) ] The space X is CD if and only if

the space Y is CD.

2.3.12 [ Polkowski (1983)] The space X is WID if and only if the

space Y is WID.

2.3.13 The space X has property C if and only if the space Y

has property C.

Proofs. It is clear from the definitions involved and the results

presented in the introductory sections that all four properties of the

corollaries satisfy conditions 1 and 2 of 2.3.7. The local condition 3 is also

easily seen to be satisfied for all four properties by an application of 2.3.8.

Thus, all four properties are similar to property C, and the results follow

from the theorem 2.3.9. This completes the proofs.

The following related question remains open.
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2.3.14 Question. Let f :X +Y be an open mapping between spaces

so that each fiber is separable with no fiber dense in itself. Is it the case

that the domain X must have property C if and only if the range Y has

property C?

This section is closed with a brief discussion concerning the

preservation of weak infinite-dimensionality in the sense of Smirnov by open

mappings with finite fibers.

2.3.15 Theorem. The property of weak infinite-dimensionality in

the sense of Smirnov is not similar to property C.

Proof. It is easy to see that the free union of n-cells In where

n E N is not S-WID. Thus, weak infinite-dimensionality in the sense of

Smirnov does not satisfy conditions 2 or 3 of 2.3.7, and thus is not similar

to property C.

Theorem 2.3.15 is another example of the failure of weak infinite-

dimensionality in the sense of Smirnov to be an acceptable infinite-

dimensional dimension theory. Although the techniques of 2.3.9 do not

apply, a partial result is still known.

2.3.16 [Polkowski (1983)] Let f : X +Y be an open mapping with

finite fibers between spaces X and Y. If X is S-WID then Y is also S-WID.
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However, as the following example shows, the converse to 2.3.16 is

false. A similar example, in a different form, was also known to Polkowski

[Polkowski (1983), Remark 3.61.

2.3.17 Example. Consider the product induced metric topology on

the space

RS") =((x1, x2, x3,):xk ER, xk =0 for all but finitely many k EN} .

For each n EIN define subsets of RS,'") by

An =--(x ERS`):(xl +2n 1)2 +4 xk =0 if k>n}

and

Bn={xER 2 1-3(2-111)2-1-x3-1-+x?1-1,--4)n, xk=0 if k>nl.

Set X =U{An:nEN} and Y J(Bn:nEN}U{(2, 0, 0,)}. Since

Y is compact and CD, Y is S-WID. However, the space X, while also CD, is

easily seen to not be S-WID. Thus, since X is a closed subspace of X UY,

the union X UY cannot be S-WID.

Define a function f :X UY--+Y by

f ( x
1e(x) if xEAn, nEIN

x if x EY

where for each n EN en:An-013n is the homeomorphism given by

xj. 2n +2 x2enfx) xni
2n
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It is easy to check that f is an open mapping with finite fibers.

Indeed, f is two-to-one except at the point (2, 0, 0,) where f is one-to-

one. Thus, f is an open mapping with finite fibers onto a S-WID space

whose domain fails to be S-WID.



2.4 Property C and Refinable Maps on Compacta

In this section, the dimension preserving nature of refinable maps is

investigated. The main result of this section shows that the image of a

refinable map defined on a compactum which has property C must also have

property C. In addition, a covering characterization of weak infinite-

dimensionality is given. Using this characterization, results of Patten and

Kato are also obtained.

2.4.1 Definition. Let `11.--{Uct:a Er) be a collection of open

subsets of a space X. A collection it.. 0/cc:a E1') is a precise pairwise

disjoint open shrinkage of 11 if qr satisfies:

For each Va. E ir the set Vet is open in X.

For any a E r and 3 E r with a V a n V 0 0.
For each a E r, .va c C U.

2.4.2 Theorem. A space X is WID if and only if for any sequence

of binary open covers {`Un :n E N) of X there exists for each nEN a

precise pairwise disjoint open shrinkage rn of un such that the

Li{ rn:n EN) forms an open cover of X.

Proof. Suppose that X is WID, and for each n EN let a binary
1 2open cover `Lin =(Un, Un) of X be given. For each n EN define

An \ U?, and % =X Thus, each (An, Bn) is a pair of disjoint

closed sets of X. Since the space X is WID, for each n E IN a closed

subset Sn C X which separates the pair (An, Bn) in X may be chosen
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such that the n(Sn:n EN) =0.

Thus, since for each n EN Sn separates the pair (An, Bn) in X,

there exist open sets \Tin

,T1 72 tx ACV IllYr' Min =.14/ !An vn an.A

2VIICVliCX\q/CX\Bn=t111 and VnCVn

are obtained. Thus, rn is seen

disjoint open shrinkage of
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2 1 2and Vn of X such that Sn X \ (Vn UV),

Bn C V. Then, for each n EIN the inclusions

CX\N4ICX\An-.----11?-1

to be a precise pairwise

Finally, the

U{VliUqonEN =X\M{X\(VinUV/21):nEN}]

=X\M{ S: nEN)1

=X,

and thus the U{irn:n EN) has been shown to be an open cover of X.

Assume the hypothesis of the converse and let {(An, B5):n EN)

be a given w-family of pairs of disjoint closed subsets of X. For each

n EN apply normality to choose open sets 1J1:, and Lqi such that

AnCUliCtlinCX\Bn and BnCX\UinClitiCUICX\An,

and thus, for each n EN 1..1.5={Uln, Ig) is seen to be a binary open

cover of X. Therefore, by the hypothesis, a precise pairwise disjoint open

shrinkage rn V?1} of each 9.1n may be chosen such that the

U( :n EN) forms a cover of the space X.

For each n E N define

2Sn=X\V/InU(X\UOUVnU(X\Un)}

It is clear that each Sn is a closed subset of X which separates the pair

(An, Bn) in X. Finally, the



msn:n EN} --.41(x\o4uoc\o0UV/21U(X\r1)}:n EN}

CX\U(Vill UV/21:n EN)

=0,
and thus the space X has been shown to be WID.

The following related results are obtained in a similar manner.

2.4.3 Theorem. Let X be a given space. The dim X n if and

only if for any given collection VIII :k n +1) of n +1 binary

open covers of X there exists for each k E{1,-.., n +1} a precise pairwise

disjoint open shrinkage 'irk of %Lk such that the L{`Uk:k n+1)

forms a cover of X.

Proof. The proof is an obvious modification of the proof of 2.4.2 as

applied to the characterization of dimension which was given in 1.1.4, and

thus will be omitted.

2.4.4 Theorem. A space X is CD if and only if for any given

sequence of binary open covers (CU.,, :n EN) of X there exists for each

n EN a precise pairwise disjoint open shrinkage irr,----{14, q,} of

1.in --Will, U/21) such that for each point x EX the point x E Vj Uqi for

all but finitely many n EN.

Proof. The proof is an obvious modification of the proof of 2.4.2 as

applied to the characterization of countable-dimensionality which was given

in 1.2.3, and thus will be omitted.
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Refinable maps were originally defined in [Ford and Rogers (1978)1,

and their dimension preserving nature has been investigated in [Patten

(1982)] and [Kato (1983)]. The main result of this section states that

ref inable maps between compacta preserve property C. The results of

Patten and Kato will also be obtained through a simple modification of proof

using theorems 2.4.2 and 2.4.3.

2.4.5 Notation. For any metric space Y the distance between two

points x and y of Y will be denoted by d(x, y). If A C Y, then the

diameter of A is defined and denoted by the

diam A sup {d(x, y):x EY, y EY).

If f :X.-0Y and g:X-4Y are two maps between compacta, then the

distance between the two maps will mean the supremum metric which is

defined and denoted by

p(f, g)sup {d(f(x), g(x)):x EX).

2.4.6 Definition. Let E > 0 be given. A map f :X +Y between

compacta is said to be an E-map if for each y EY the diam I-1(y) <e.

2.4.7 Definition. A map r:X---0Y between compacta is refinable if

for any E >0 there exists a surjective E-map re :X --oY, called an E. -

refinement of r, such that the p(r , re) <E.
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Some preliminary results concerning the limit supremum of a sequence

of closed sets in a compactum will be used in the proofs.

2.4.8 Definition. For each j E N let A j be a closed set in a

compactum X. The limit supremum of the sequence { Aj:j EN) is denoted

by the lim sup {AJ:j EN) and is defined to be the set of all x E X such

that any open subset U of X with x E U C X has U = 0 for infinitely
AJ

many j E N. The limit supremum may also be characterized in terms of

sequences by the

lim sup { Ai :j EN) = {x EX: V k EN 3 jk ENxik E Aik s.t. xik *x}.

2.4.9 Proposition. Let {Ai :j E N } be a sequence of closed sets in a

compactum X. If U is an open subset of X with the

lim sup { Ai:jEN) CU, then there exists an N E N such that for each

n N the set A C U .

Proof. Suppose not, then for all N E N there exists an integer

n N and a point xn E An \ U. For each N E N, choose such a point X,

and then, by compactness, extract a convergent subsequence xnk ox E X.

From 2.4.8 and the hypothesis, the point x E lim sup { Ai :j EN) CU, but

then, by the convergence of the subsequence, for all sufficiently large k

xnk
E U which is a contradiction. Therefore, there must exist an N E

such that An CU for each n N. This completes the proof.

The following technical lemma will also be needed in the proof of the



main theorem of this section.

2.4.10 Lemma. [ Loncar and MardeiiC (1968)] Let f :X -+A be a map

from a compactum X to an ANR A. Given any e >0 there exists a 6 > 0

such that for any surjective 6-map g:X-+Y there exists a map h:Y-+A

with the p ( f , hg) <e .

2.4.11 Theorem. Let r:X-+Y be a refinable map between

compacta. If the compactum X has property C, then Y must also have

property C.

Proof. For each n EN let %In be a given open cover of Y. By

the compactness of Y, it may be assumed without loss of generality that

each clin is of the form 9..1.n = (U4:j =1,, mn) where each mn EN N.

Thus, for each n EN r-l( 'tn)--7.---{r-1(01):j---1,-, mn} defines an open

cover of X.

Since X has property C, and by the compactness of X, an integer N

and for each n E{1,, N) a collection of open sets `rn of X may be

chosen such that:

For each n E{1,-, N} Y= {114 :j=1,, mn} is a

collection of open subsets of X with pairwise disjoint closures.

For each n E{1,-, N) and every j E{1,--, inn)
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3. The U{"rn:n =1,, N) forms an open cover of X.

For each n E N) let An denote the wedge of mn intervals,
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wedged at a common endpoint, and label the remaining endpoints a1,, am n.

To avoid ambiguity, an endpoint ai will always be referred to together with

the An of which it is an endpoint. Each An is of course an ANR.

Indeed each An is an AR, and thus, by the compactness of X, for

each n E (1 , NI maps fn X +An may be chosen such that for any

jE(1,-, mnl

j})UVP4.

Since fill(aj)Cr-1(141), each fn(r-1(Y \IA)) is a closed subset of An

which is disjoint from aj.

For each n E (1 , N } complete normality may be used for each

jE(1,, mn) to choose open subsets INA1:1 and Nil' of An such that:

The point ajE N.

For each n E{1,, N}, mn} is a collection of

pairwise disjoint sets.

The set fn(r-1(Y\IJiii))CM.

The distance Mi)=---Dii; >O.

Fix k EN and n E(1,-, N). For each such n and k the lemma

2.4.10 guarantees the existence of a number 5nk >0 such that for any

surjective
5nk-map

g:X+Y there exists a map hnk:Y---0An such that

p(fn, hnkg) <11 .

In particular, set 5k = min 5nk:n =1,, N). By the refinability

of r, a map rk:X--+Y may be chosen such that rk is a 5k-refinement of

the map r. Since rk is then also a 5nk-refinement of r for each

n E(1,, NI, the lemma 2.4.10 may be applied to obtain maps hnk:Y--0An



such that the distance

1P(rn, hn r )<- .k k k

Thus, by doing this procedure for each k EN, two sequences of

maps are constructed. The sequence (rk:k EN) is a sequence of 1-

refinements of the ref inable map r, and for each n E ( 1 , NI the

sequence ( hnk :k E N) is a sequence of maps from Y to An where for each

k EN the distance

P(in, hn r <k-1.

2.4.12 Claim. For each fixed n E ( 1 , N) and j E 1 mn}

the

lim sup {r-ki(Y \ EN} C (Y \ U) C rni (M) .

Indeed, given any x Elim sup {ril(Y \ EN}, by 2.42 there

exists a sequence of elementsErT,1 (Y \ ) where t EN such that't 't
xkt -4x as toco. Thus, the. following inequalities are obtained;

d(r(x), Y\U11:1) d(rkt(xkt), Y\tr4)+d(rkt(xkt), r(xkt))-I-d(r(xkt), r(x))

< 0 + kit +d(r(xk ), r(x))

+0

as t kt , and
xkt-4x.

Thus, since Y \ IY4 is closed in Y, the image r(x) EY\141. This

computation, together with condition 3 on the choice of M, gives the

claimed inclusions and completes the proof of the claim.
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which is a contradiction. Therefore, it must be that JWnCWnCUn,
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It is now possible to choose m EN sufficiently large enough that

for each n E{1,-, NI and every jE{1,--, inn}

1<d(ai, An\4),
1hi <Dn, and

r(Y \ C f-n1( M13.1)

Condition 3 may be satisfied by applying 2.4.9 and 2.4.12 for all values of n

and j.

Finally, for each n E { 1 , N } and every j E ( 1 , mn) define

Wn ==hnm(Nn) and ninl

Since for each n E(1,, N) the collection (4:j =1,.--, mn} is a

collection of pairwise disjoint open sets of An, it is seen that each Wn is

also a collection of pairwise disjoint open sets of Y. It remains to be shown

that for each n N) the collection Wn refines 1.1.n, and that the

Li{ WTI :n r=- 1 i***, N} covers Y.

Indeed, each Wn is actually a shrinkage of gin. For suppose that

y W, but that y EY U. Since rm is surjective, a point x ErVi(y)

may be chosen. If y EY \IA then condition 3 on the choice of m gives

that fn(x)EM'4 . On the other hand, since W 11-nlm(4) it is seen that

hnm (W'iiI)C Thus,

hnm(y)--hnmrm(x)Ek .

But, then the

d(fn(x), hnmrm(x)) d(IAn,

rJ

1>i,
and
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hence, for each nEfl N) the collection Wn has been shown to be a

shrinkage of

Let y EY be fixed but arbitrary, and choose a point x e r;11(y).

Then, since the Uf rn n =1,, N) covers the compactum X, integers

n E{1,-, N} and j E(1,, inn) may be chosen such that the point

x E V. However, from the computation

d(fn(x), hnmrm(x) hnin(Y))

1<in <d(aj, An\Nn),

it is seen that h55(y)Elis4 . Thus, y .

Since this shows that the U{'Wn:n =1,, N} forms an open cover

of Y, the space Y is seen to have property C. This completes the proof.

Slight modifications of proof give the following theorems alluded to

at the beginning of the section.

2.4.13 Theorem. [Kato (1983)] Let r :X--)Y be a refinable map

between compacta. If X is WID then Y is also WID.

Proof. The result is obtained by using binary open covers in the

proof of 2.4.11 as in the characterization of weak infinite-dimensionality

given in 2.4.2.

2.4.14 Theorem. [ Patten (1982)] Let r : X ---PY be a ref inable map

between compacta. If the dim X <n then the dim Y <n.
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Proof. The result is obtained by using the characterization of

dimension given in 2.4.3 in the proof of 2.4.10.

This section is ended with a related open problem. In light of 2.4.11

and 2.4.12, the characterization of countable-dimensionality which was given

in 2.4.4 might possibly be used to provide an answer.

2.4.13 Question. Let r : X oY be a ref inable map between

compacta. If the domain X is CD, then must the range Y also be CD?



2.5 Hereditary Shape Equivalences on WID Spaces

In this section, the relationships between possible images of a cell-like

map which raises dimension and the classification of infinite-dimensional

spaces are investigated. The work of Kozlowski and Ancel is discussed. A

result of Ancel is extended and related questions important to the subject

are asked.

2.5.1 Definition. A map f :X *Y between spaces is called cell-like

if it is proper, and if for every y E Y, ri(y) has the shape of the point

{ y }, i.e. for any ANR Z the induced function on the homotopy classes

f#:I{Y), Z1---off-1(y), Z1

is a bijection.

The following is one of the major unsolved problems of topology.

Answering it, either positively or negatively, would give important results in

manifold decomposition theory, shape theory, ANR theory, as well as in

dimension theory.

2.5.2 Question. Does there exist a cell-like map f : X --+Y between

spaces such that the dim Y >dim X?

A more complete discussion of this cell-like dimension-raising map

question may be found in [ Schori (1980)1. In particular, it is known that

the image of a cell-like dimension-raising map must be infinite-dimensional.
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Thus, it becomes important to determine what type of infinite-dimensional

space could be such a possible image.

2.5.3 Definition. A map f : X +Y between spaces is called a shape

equivalence if for every ANR Z, the induced function on homotopy classes

is a bijection. A map f :X --+Y between spaces is called an hereditary

shape equivalence if for every closed set A C Y, the restriction

fl _ :f-1( A)---+A is a shape equivalence.f 1(A)

It is obvious from the definitions that any proper hereditary shape

equivalence is a cell-like map. Indeed, Kozlowski defined the hereditary

shape equivalence as a generalization of the cell-like map to obtain the

following theorem.

2.54 [Kozlowski, (to appear)) Let f :X )Y be a cell-like map

between spaces where the dim X <00 . The dim Y > dim X if and only if f

is not an hereditary shape equivalence.

Ancel has extensively studied the dimension preserving properties of

cell-like maps and hereditary shape equivalences, as well as those of related

maps such as fine homotopy equivalences.



2.5.5 Definition. A map f :X--0,Y between spaces is said to be

approximately invertible if for some closed embedding e:X--+Z of X into a

space Z (and thus, for any closed embedding into an ANR) the embedding

satisfies the following condition. Given any collection IV of open sets of Z

which is refined by the collection {e(f-'(y):y E Y1, there exists a map

g:Y+Z such that the composition gf :X.--0Z is W-close to the map e, i.e.

for each x E X there exists a set W E141 such that e(x)Ugf(x)C W.

2.5.6 [Ancel (1985a)1 Every proper hereditary shape equivalence is

approximately invertible.

Using this Ancel proved the following theorem.

2.5.7 [Ancel (1985b)] Let f :X-4Y be an approximately invertible

map between spaces such that for each y E Y the fiber y) is

compact. If the domain X has property C, then the image Y also has

property C.

Ancel combined 2.5.6 with 2.5.7 and used another theorem from [Ancel

(1985a)] to obtain the following result.

2.5.8 (Aricel (1985b)1 Let f :X--0Y be a cell-like map between

spaces where the domain X has property C. The image Y has property C if

and only if f is an hereditary shape equivalence.
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2.5.9 Corollary. The image of a cell-like dimension-raising map

cannot have property C.

Proof. This is immediate from 2.5.8 and 2.5.4.

The main result of this section is an application of 2.4.2 which

extends 2.5.7.

2.5.10 Theorem. Let f be an approximately invertible map

between spaces such that for each y E Y the fiber f-1(y) is compact in

the space X. If the domain X is WID then the image Y is also WID.

Proof. For each n EN let 1.1.n ={1111, U?i} be a binary open

cover of the space Y. Define f-1(Un)=----{f-1(1111), f-1(I.g)}, then for each

n EN f1(U) is a binary open cover of X. Since X is WID, 2.4.2 can be

applied to obtain. a precise pairwise disjoint open shrinkage crn

of each Un where n EN such that the r =U{Irn:n EN} is an open cover

of X.

Moreover, it may be assumed that le is locally finite since r may be

replaced by a precise locally finite refinement which also covers X. Thus,

given any y EY and any x Ef-1( y) an open set Ox C X may be chosen

with x E Ox and with the .

ordOx = I (V'?; E :Nr4 n Ox 0) < co .
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Fix y EY, then the collection {Ox: x E f ( y)} is an open cover of

the non-empty compact fiber f-1(y). Thus, it is possible to extract a finite



64

subcover (Oxj:j=1,, ry) of f-1(y) from {0x:xEf-1(y)). Define

0 y ,---- : jU{0 . =1,, ry), then Oy C X is open in X with
xJ

ri(y) COy,

and with the ord r <co.Oy

Claim. Since the leord, < 00 an open set W COY Y may be
'Y

chosen such that f -1 ( y ) C Wy, the ordwyr <co and such that if

Nr4 E qrn with Vij1 n WY 0 then Wy C ri (U11:1)

Indeed, define Nn = (n EN : 3 141 Elrn, \P4fl Oy 01. If n ENy is

fixed, then there are two possibilities to consider.

If yEUflti, then f-1(y)Cf-1(01)11f-1(U/21). In this case set

Wn =oy nrituonf-t(u,i).

Then, Wn is an open subset of X with

f-1(y)CWn and WnCri(IA)

for both j={1, 2}.

Since 1.111 covers the space Y, the only other case is where the point

1 2y is in only one element of %L, say y EUn\Un Since f-1(y)Cf-1(q1),

and since -17?, c f'( U), the f-1( y ) fl-17? ----- 0 . Thus, normality may be

used to choose an open set Pn C X with f-1(y) C Pn and Pnfl V =0.

For this case, define

iwn =oy npn

Then, Wn is open subset of X with

ri(y)CWn, qinWn=0, and WnCf-1(01).

To finish the proof of the claim, define Wy (1{ Wn n E Ny ) . Since

the IN I <00, the intersection Wy is an open subset of X, and clearly
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Wy COy with 1-1(y)c Wy. Since the
ord,-,u

<00, this construction
Y

insures that the ordW <00. Suppose that T/ji E rn with the

Vn (1Wy 0, then n E Ny such that WY C W. The choice of Wn

assures that Wn Cri(U'l;), which then completes the proof of the claim.

The remainder of the proof follows Ancel's proof of 2.5.7. For each

y EY construct Wy as above. The collection {Wy:y EY} can be used to

form a collection of open sets 14,7 as in the definition of approximate

invertibility such that IV will be related to the original open covers

{cU.n:n EN} of Y.

For simplicity consider X as a closed subspace of Z as per the

approximate invertibility of 1. Let e:X---Z denote inclusion. This

inclusion map e will usually be omitted in statements if the context is clear.

The metric on Z will be denoted by d.

For any subset S CX let §CZ be the subset defined by

§=--{zEZ:d(z,S)<d(z, X\S)).

The following propositions are clear from the definition, and thus given

without proof.

Since the d(z, 0 ) = ex) , 0=0.

For any S CX, § is open in Z.

If S is open in X, then §nxs.
If SCTCX, then §C-I'CZ.

If S CX and T CX, then



Let R Er), then R is an open subset of Z such that

Rnx .--.-u{qnx:v4Er)

Er)
=X.

Let W fIR:y EY}, then W is a collection of open sets of Z.

Moreover, since the space X CR, it is also seen that for any given y E Y

the image

ef-1(y) Ce(Wy)

=1Tiy nx

clkynR

EW.

Thus, the set {ef-1(y):y EY} refines W.

Then, by the approximate invertibility of f, there exists a map

g :Y ---oZ such that the composition gf : X --Z is W-close to e. In

particular for any y E Y and any x ( y ) there exists a point y'EY

such that e(x)Ugf(x)CIXTy,11R. Thus, gf ( ) g(y ) ER such that

g(Y)CR.

For each n EN the pair qi} is a disjoint pair of open sets

in X. The propositions then imply that the pair {Cd-i, CT?i} is a pair of

disjoint open sets in Z, and thus lel(CTiri), g-1(C.i)) will also be a pair of

disjoint open sets in Y. Moreover the

Wel( ): E ir) g-1(U{ :1/4 Er))
=g-i(R)

=Y.

Thus, the collection {CI():V E } is an open cover of Y.
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It only remains to be shown that for each n EN the collection

(g-i(q), g-1(qi)} is a shrinkage of cU.n. Using the normality of the space

Y, it is enough to show that g-1( ) C1.4.1 for each n EN and both

jE{1, 2) INagata, p.21.

Let y Eel( -141) be given, and choose any x Ef-1(y). Since gf is

W-close to the embedding e, there exists a point y' EY such that e(x)

and gf(x)=g(y) are both in ANy, nR. Thus,

g(y)Eqn .17;/y, =14/ nWy

and since VII;fl WY, 0 it is seen that Wy, C f-'(Un). Finally, since the

point x E 'Sky, 11X =Wy, , it is seen that x E f-1( 01) . Thus,

f(x) y E Uj, which shows that el( C Uj. The characterization

2.4.2 then gives that Y is WID which completes the proof of the theorem.

As an easy application of 2.4.3, one implication of Kozlowski's

theorem 2.5.4 is obtained.

2.5.11 Theorem. Let f :X-41! be an hereditary shape equivalence

between spaces X and Y. If the dim X < n then the dim Y <n.

Proof. The result follows immediately by using the characterization

of dimension given in 2.4.3 in the proof of 2.5.10 and thus is omitted.

Ancel's result 2.5.8 suggests the following important questions.
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2.5.12 Question. Let f :X +Y be a cell-like map from a WID space

X onto Y. If the space Y is also WID, then must f be an hereditary shape

equivalence?

2.5.13 Question. Let f :X +Y be an approximately invertible map

from a CD space X onto a space Y. Must the space Y be CD?

It is possible that the characterization of countable dimensionality

which was given in 2.4.4 combined with the techniques used in the proof of

2.5.10 might provide a solution to 2.5.13. A positive answer to 2.5.12, or

for that matter showing implication e of the generalized Alexandroff

question 1.3.7, would then imply that the image of a cell-like dimension-

raising map must be SID. A space which was a counter-example to the

implication e of 1.3.7 would be a prime candidate for the image of a cell-

like dimension-raising map.



III. ALTERNATIVE CHARACTERIZATIONS OF WEAK

INFINITE-DIMENSIONALITY

In Chapter II., theorem 2.4.2, an alternative characterization of weak

infinite-dimensionality was introduced. This characterization was exploited

to obtain a number of results. In particular, this new characterization in

terms of binary open covers bears a striking resemblance to the definition

of property C. The ultimate goal of this chapter is to investigate possible

solutions of the generalized Alexandroff question by determining a

characterization of property C in terms of essential families.

A generalization of 2.4.2 is given in section 3.1, along with a fairly

obvious new definition of essential family, each yielding new properties of

infinite-dimensional spaces. These new properties are presented in 3.1,

together with theorems relating them back to the original infinite-

dimensional dimension theories.

Basic internal relationships of the new properties are presented in the

next section. These results of 3.2 are, for the most part, immediate from

the definitions of 3.1, however some technical work must be done if the

spaces involved are not compact. With the additional assumption of

compactness, most technical difficulties disappear. A brief discussion of the

properties upon compacta is given in 3.1 which provides the initial hint to

essential differences between property C and weak infinite-dimensionality.

These differences will be discussed at greater length in later sections.
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Sections 3.3 through 3.5 contain results relating the new properties to



70

each other, and constitute the major work of this chapter. The results are

given in order of discovery, and thus direct proofs of some earlier theorems

will be given even though those same theorems may be proven indirectly by

theorems presented in later, sections. This author holds the opinion that

the order of discovery, as well as the means of discovery, are often of

greater importance than the discovery itself.

In the final section of this chapter, a summary of the essential

differences between property C and weak infinite-dimensionality will be

given. That section and the thesis concludes with a discussion of how a

WID space which does not have property C might be constructed.



3.1 Definitions of the New Characterizations

In 2.4.2, a characterization of weak infinite-dimensionality was given

in terms of open covers. This property is generalized by the following

definitions.

3.1.1 Definitions. Let r E(2, 3, 4,-). A space X will be said to

have the property Cr if every countable sequence (1.1.ri:n E N) of open

covers of X, where for each n EN the I has for each nEN a

precise pairwise disjoint open shrinkage irn of Ur, such that the

Ut rn
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: n E N) forms an open cover of X. If a space X has property Cr for

every r E(2, 3, then X will be said to have the property C. A

space X will be said to have the property Co) if every countable sequence

E IN) of open covers of X has for each nEN a precise pairwise

disjoint open shrinkage r of ain such that the U{CUTI:n E N} forms an

open cover of X.

3.1.2 Proposition. A space X has property C2 if and only if the

space X is WID.

Proof. The property C2 was precisely the characterization of weak

infinite-dimensionality which was given in 2.4.2.

The following lemma will be used to avoid technical difficulties in

later proofs of this section.



Uf WTI :n EN) still covers X.
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3.1.3 Lemma. If an open cover 1.1 :a Er) of a space X is

given, then there exists a precise open shrinkage r = { V a E I') of 11,

that is for each a ET the set Va C-Va CUct, which also covers X.

Proof. The cover '1.1. may be assumed to be locally finite, for if not

`11 can be replaced with a precise locally finite open refinement which still

covers the space X [Dugundji, p. 162]. If cll. is locally finite then normality

can be used to choose the desired shrinkage [Nagata, p. 2].

3.1.4 Proposition. The word "shrinkage" in the definitions of

3.1.1 may be replaced by the word "refinement" without altering the

properties.

Proof. Apply 3.1.3 to the union of the refinements.

As in 2.4.2, the use of shrinkages yields true separators rather than

the continuum-wise separators which would result from the use of

refinements. Thus, the word "shrinkage" will be continued to be used in

the statements of theorems, but in proofs often only refinements will be

constructed, with the reader then referred to 3.1.3 or 3.1.4.

3.1.5 Theorem. Let {cti.n:n EN) be a given sequence of open

covers of a space X. If for each n E N rn is a C-refinement of '11.n such

that the U{ 'r EN) covers X, then for each it EN there exists a

precise pairwise disjoint open shrinkage Wn of `1.1.11 such that the
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Proof. Let the open covers Vtln:n EN) be given. Using ordinal

numbers faithfully index each Rin by 9.1n ---{14:ocErn} where each rn is

a well-ordered set of indices.

Similarly, given the C-refinements {rn:n EN} such that the

Ufrn:n EN) covers the space X, use the ordinals to faithfully index each

rn by rn = {Vg :0 EA} where each An is also a well-ordered set of

indices.

For each fixed n EN define a function fn:An---orn by setting

(a.Ern:vg cucrt). Since for each n EN clin is refined by

rn, it is clearly seen that each fn is a well-defined function on An.

For each a E rn define Vilt.---U(Vi3leirn:0 E rni(a)). For each

n EN, by the definition of fn and since rn is a C-refinement of 9.1.n, each

{wcnt :a Ern} is then a precise pairwise disjoint open refinement of

cl-tn

Suppose that for each n EN such a 447'n has been constructed. For

any arbitrary x EX choose an n EN and a (3 E An such that x E V.

But, then for a fn ( 0) the point x E \vg-, and thus the U{ W : n E N}

covers X. Applying 3.1.3 to the U{Wn:n EN} completes the proof.

3.1.6 Corollary. A space X has property C if and only if the space

X has property C.

Proof. If the space X has property C, then the space X is seen to

have property Cw by a direct application of 3.1.5. Since any precise
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pairwise disjoint open shrinkage is clearly a C-refinement, it is obvious that

if the space X has the property Cw, then X will also have the property C.

The corollary 3.1.6 formalizes the resemblance between the

definitions given in 3.11 and the definition of property C. The definitions

in 3.1.1 were motivated by a characterization of weak infinite-dimensionality

which had the same form as the definition of property C. In an attempt to

answer the implication e. of 1.1.7, the problem can also be attacked from the

reverse direction by finding a characterization of property C in terms of

essential families.

Recall that a family of closed sets is discrete in a space if and only

if the family is pairwise disjoint and locally finite in the space. In

particular, the union of a discrete collection of closed sets is closed. Thus,

every point of the space has a neighborhood which intersects at most one

element of a discrete collection of closed sets.

A fairly obvious generalization of the definition of weak infinite-

dimensionality is contained in the following definitions.

3.1.7 Definitions. A closed subset S C X of a space X will be said

to be a separator of a discrete collection of closed subsets (Act :aE

contained in the space X if S C X separates the collection (Act :a E r) in

X; that is the complement X \ S = (Uct :a E where {Ucc :a Er} is a

collection of pairwise disjoint open subsets of X such that for each a Er

the closed set Act* C Uct. An co-family of discrete collections of closed
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subsets ((Ag:a E rn):n EN) of a space X will be called inessential if for

each n EN there exists a closed set Srt C X which separates

(Ag- :cc Ern) in X such that the n(Sn:n E1N} =0. Let r E{2, 3, 4,},

then a space X will be said to be weakly infinite-dimensional with respect to

r-tuples, and denoted by WIDr, if any w-family of r-tuples of pairwise

disjoint closed subsets {(4/:9 .1, 2,.., r):n EN) of X is inessential. If

the space X is WIDr for every r E{2, 3, 4,...), then the space X will be

said to be WIDoo. If every w-family of discrete collections of closed

subsets {(Acg:a Ern):n EN} of a space X is inessential, then the space X

will be said to be WIDw.

3.1.8 Proposition. A space X is WID2 if and only if X is WID.

Proof. This is obvious from the definitions.

The very general, but ungainly, definition of WIDw simplifies when

separability is assumed.

3.1.9 Proposition. A separable metric space X is WIDw if and only

if every w-family of discrete sequences of closed subsets

{(AIT:k E N):n EN} of X is inessential.

Proof. It is enough to realize that a discrete collection {Act:a Er}

in a separable space X has Act =0 for all but countably many Act.

Indeed, let X have a countable base of open sets and choose a point

xa E Act from each Act 0. By the discreteness of the collection, there
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exists a basic open set Uct C X for each cc E r with xa E Aa such that

the point

EUa C X \ U{As :0 e r {a} }

Since the space has a countable base, there can be only a countable number

of such Uot, and consequently only countably many non-empty A. With

this restriction, the definition of WIDw in 3.1.7 reduces to the statement of

the proposition.



3.2 Basic Internal Relationships of the New Properties

In this section, basic relationships between the properties which were

defined in the last section are given. Most of the relationships are

immediate from the definitions.

3.2.1 Theorem. Let r E {2, 3, 4,...}. A space X satisfies the

following four implications of properties:

If a space X has property Cr +1' then X has property Cr. .

If a space X has property Coo, then X has property Cr for

each r E 2, 3, 4,..-1.

If a space X has property Cu), then X has property C.

A space X has property Co) if and only if X has property C.

Proofs.

This follows immediately from the definitions by regarding any

cover 9.1.n.{1.4 1:j r) with cardinality r as a cover

Un = 1 + 1 }

"r +1un 0.
This is the definition of property C given at the end of

3.1.1.

This follows in the same manner as the proof of implication 1.

This was proven in corollary 3.1.6 of the last section.
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with cardinality r +1 by setting

The following analogous results are obtained in a similar manner.



3.2.2 Theorem. Let r E (2, 3, 4,..). A space X satisfies the

following four implications of properties:

A space X is WID if and only if X is WID2.

If a space X is WIDr +1, then X is WIDr.

If a space X is WIDo , then X is WIDr for eachc

r E(2, 3,

If a space X is WID(0 then X is WIDoo.

Proofs.

This was done in the proposition 3.1.8.

This follows immediately from the definitions by regarding any

r-tuple (4,..., Arn) as an (r +1)-tuple (4,.., A, Arn +1)
r+1by setting An = 0 .

This is the definition of WIDoo as given at the end of 3.1.7.

This follows in the same manner as the proof of implication 2.

This section is ended with some superfluous, but illustrative, results

concerning the properties Cw and WIDu) for the category of compacta. The

first such result is an obvious characterization of property C for compacta.

3.2.3 Theorem. A compactum X has property C if and only if every

countable collection of finite open covers -(elin:n E N) of X has precise

pairwise disjoint open shrinkages grn of Un for each n EN such that the

U{rn:a E forms a cover of X.
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Proof. The theorem follows immediately from the corollary 3.1.7 by



choosing finite subcovers of each given countable cover.

Although of little importance, theorem 3.2.3 does suggest a similar

theorem of more interest concerning compacta which are WIDw.

3.2.4 Theorem. A compactum X is WIDui if and only if every w-

family of discrete rn-tuples of closed subsets {(AT1:k =1,, rn):n EN)

of X, where each rn E N, is inessential.

Proof. Since compacta are separable, 3.1.9 applies such that only co-

families of discrete sequences of closed sets {(A.11:k E n):n EN) of X need

be considered. Given such an co-family, since X is compact, for each n E

an rn EN may be chosen such that for each k >rn the set An =0.

Indeed, if A 0 for infinitely many k EN, then for each such k a

point xk EAk may be chosen. Since X is compact, the sequence
n

(xk :An 0) of such xk has a convergent subsequence, say xk j-4x E X.

Thus, any open set with x EU has xk E U for infinitely many xk . But,

then An 11 U #0 for infinitely many An, which contradicts the

discreteness of ( :k E N)

Thus, the hypothesis implies that the co-family {( Alfc2 :lc EN):n EN)

is inessential, and X has been shown to be WID0) which completes the proof.

Theorems 3.2.3 and 3.2.4 are contrasted with the following theorems

which concern the properties C WID .co
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3.2.5 Theorem. A space X has property Cco if and only if every

countable collection of finite open covers {9.1.n:n EN), with the

cardinality 11.1.n1=rn and the sup {rn:n E NI <00, has for each n EN

a precise pairwise disjoint open shrinkage rn of `111, such that the

U{ 'r EN) forms a cover of X.

Proof. This follows immediately from the definition of C00 given at

the end of 3.1.1.

Notice that the compactness assumption is not needed in 3.2.5, as well

as in the following theorem.

3.2.6 Theorem. A space X is WID00 if and only if every to-family

of rn-tuples of closed subsets {Airci tk =1,, rn)tn EN) of X, such that

the sup { rn :n E N) <00, is inessential.

Proof. This follows immediately from the definition of WID00 given

at the end of 3.1.7.
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3.3 Relationships Between the Two Properties

In this section a result is given which relates the covering properties

to the separation properties. Although the main result of this section is

also proven indirectly in the next section a direct proof is included in this

section. It is hoped that this will familiarize the reader with the dual

nature of the new properties and that it will emphasize their connection to

the motivating characterization in theorem 2.4.2. The following technical

lemma will be needed.

3.3.1 Lemma. Let {Aa:cc r} be a discrete collection of closed

sets in a space X. There exists a collection of open subsets (Ua :a. E r)

of X such that:

The collection {Ua:a. Ell is locally finite in X.

For each ccEr AaCUaCriaCX\U{A13:0Er, f3 a).

The collection {Ua:a Er} covers X.

Proof. Fix a single element "Y E I' and let a E r \{-y} be fixed but

arbitrary. Since the collection {A :0Erl is discrete in X, the

U{ A° /3 Er, a.) is closed in X. Thus, by normality, an open set Va

may be chosen such that

Aa C Va' C CX\U{AS:i3Er, /3

Thus, since the subset Va CX\ A[Y, it is also seen that A X \Va.

Thus, if such a Va is constructed for each cc Er\{-0, then

Cn{X\Va:a Er, c(. 1}

.----x\u{va:cc Er, a"f).
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On the other hand, since for each a E \ (7) the set Aa C Vcc, it

is also seen that the

U{A a. 1} cu{va:a. Er,

and thus, that the complement satisfies

X \ Uf Va :a E r, a cx\u{Acc:a. Er, cy. -y).

As before, normality then permits the choice of a final open set Vel with

A/CX\U{VaiaEr,a'7}C1/1 c cx ufAa:« r,

At this point, an open cover {Va:a Er) of X has been constructed

such that for each a.Er

c va c VaCX\U{A13:)3 Er , /3 a} .

Then by paracompactness [Dugundji, p. 162], a precise locally finite open

refinement (Ua:a Er} of {Va:a FT} which also covers X may be

chosen such that for each a Er the set Ua C V.

Thus, for each a Er it is seen that the set

UaCtlaCVaCX\U{A:0ET,Oa}.
Therefore, it only remains show that for each a Er the set Aa C Ua.

Fix a Er, and let x EAa be fixed but arbitrary. Then, for some

/3 E r the point x E C V. It must be shown that f3 = a. If 13 = a,

then the set

vgl cx\U{A1 er, cx\ Acc

which contradicts x E Aa fl V. Thus, fl =-- a, x Elia, and Aa CUct

Therefore, it has been shown that for each a Er

Aa CUa C cx\u{A:e Er, $a},
which completes the proof.
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With the aid of 3.3.1, it now possible to prove the major result of

this section.

3.3.2 Theorem. Let r E{2, 3, 4,...) U{}. If a space X has the

property Cr then the space X is WIDr.

Proof. Suppose that the space X has the property Cr, and let

{(Ag :a. Ern):n ENI be a given w-family of discrete collections, r-tuples

if r E (2, 3, 4,-.), of closed sets of X. Fix n EN, and use the lemma

3.3.1 to choose a locally finite open cover clln Ern} of X such

that for each a Ern

Ack CUg C 174 CX\U{Af1:0Ern,

Suppose that for each n EN such an open cover ciln has been

constructed. Since the space X has property Cr, for each n E N a precise

pairwise disjoint open shrinkage len {qt :a. Ern} of clin may be chosen

such that the ti{len:n EN) forms a cover of X.

Next, for any fixed n EN and for each a. E rn define

Wff U(X\U{Uil3-1:P Ern, 0 a.)).

Since the collection {Ucrt:a. Ern} is locally finite in the space X, each
--0collection {tin :0 Ern, P a.). is also locally finite in X. Therefore, the

U{t-43 :0 erns $El 'a} is closed in X, and thus, each Wg C X is open.

Fix n EN and let a., 0 Ern with a 0 be given. Since each clin

covers the space X, it is seen that



WV1Wf;3=[NIU(X\U{Ei7i:7Ern,7a-})in

fveu(x\u{ri:7Ern, c3})]

C UM; : rn

=O.

Fix an integer n E IN, and let a. E rn be fixed but arbitrary. For

any a Ern \fa.) it is seen that
'7Un CX\U(An:^1 Ern, t3},

such that the

Ual :a er, y400cUkx\U{A1 Ern, -Y )(3}

a.)3 Er, cx-}

=X\A.
Thus, it is also seen that

Act;f C x\u(14:0 ern,j3a.}CW.

Therefore, defining ST1 = X \ U{ VT:f :a. G rn} gives a closed set Sn C X

which separates the collection (A(rxt :a. Ern) in X.

Finally, if for each n EN the separator ST) has been defined, then

since the U{Yn : n EN) covers X, it is obtained that the

n{S :neN)==r)(X\U{Wilt:aErn}:nEN}

x\U{wg:n EN, a Ern)
CX\U{V::nEIN, a Ern}

=0.

Thus, it has been shown that the w-family {(4 :a. Ern):n EN} is

inessential which completes the proof that the space X is WIDr.
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3.3.3 Corollary. If a space X has the property Coo, then the space

X is also WID .oo

Proof. This is immediate from the theorem 3.3.2 and the definition

of WID00 given at the end of 3.1.7



3.4 Equivalence of the Definitions of WIDr
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Various results relating the definitions to each other have been given

in the previous sections. This section begins with a brief summary of those

results.

3.4.1 Summary. Let r E {2, 3, 4,...}. Metric spaces satisfy the

following implications of properties.

C2 Cr = Cr +1C C <==> property C

11 11

WID WID2 WIDr = WIDr WIDco= WIDu)

The equivalence of the property C2 with the property WID2 was

established in 2.4.2.

Since the ultimate goal is to answer the generalized Alexandroff

question posed in 1.3.7, it is seen that the reverse implications of 3.4.1 must

be shown. In this section, the reverse implications of the bottom row in

3.4.1 will be studied. The reverse implications of the top row will be

considered in the next section.

The first subject of investigation is the relationship between

elements and separators of cd-families. One such relationship' is given by

the following lemma, which will be used in the proof of the main theorem of

this section.
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3.4.2 Lemma. Let r E(2, 3, 4,...) U{w) and let ( Act:a. Er) be a

discrete collection, an r-tuple when r E{2, 3, 4,...), of closed subsets of a

space X. Let S C X be a closed subset of X which separates (Act:a E

in X. If T C X is a closed subset of X which separates the pair

(UfAct:a Er), S) in X, then the closed subset T is also a separator of the

original collection (Aa:a Er) in X.

Proof. Let (Act:a Er) and S be given as stated in the hypothesis

for a space X. Since (Aa:a ET) is discrete in X, the U{Aa :a Er) is

closed in X. Moreover, since S separates (Act:a E F) in X, there exists a

pairwise disjoint collection of open subsets {ua:a Er} of X such that

X \ S =.U.( Uct a E with the closed set Act CI.Ja for each a e F. Thus,

the pair (U{Act:a Er), s) is a closed disjoint pair in X.

Let T C X be a closed subset of X which separates the pair

(U{ Aa:a Er), s) in X. Thus, there exist disjoint open subsets V1 and V2

of X such that

X \T UV2 with U{Act :a Er} cvi and S C V2.

Fix "I E and define VP .(1.1/ fl y1) V2. For each a Er \(y} define

Uct fl VI. Then, for each a Er this gives

Aa cu2 nvi cwa

Since vi nv2 =0, for each a ET \ (1) the

W.711174/ct RIP n u v21 n (ua n )

(Cinv )n(ua nvi)

nua)nvi.
= 0 .



Similarly, for any a, f3 Er \ {-y} with a 13 the

wanw13---(uctnv1)n(Onv1)

.(uccuu13)nvi

=0.

Thus, the collection {Wa :a is a collection of pairwise disjoint

open sets of X such that the X \ Er 1 is a closed subset of X

which separates the collection (Acx:a E r) in X.

Finally, since S C V , and since VI C X \ V2 C X \ S such that

X \ T= V1 U V2

=[(X\S)nvouv2
---[(U{uaicx Er)) nvii uv2

.-----EU{uanviict Ern uv2

.[(u-invouviluRyua nvi:a. Er, a1}1
=wAlu[U{wata.Er, a "*1}1

----Ufwa:a Er),

it is seen that T ---=U{Wa :a Er), which completes the proof.

This simple lemma is all that is needed to prove the main theorem of

this section.

3.4.3 Theorem. Let r E{2, 3, 4,} U{w } . If a space X is WID

then the space X is also WIDr.
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Proof. Suppose that X is WID and let {( Ern):n EN) be a

given w-family of discrete collections, r-tuples when r E(2, 3, 4,-), of



closed subsets of X.

Since X, being metric, is collectionwise normal, and since each

( Aft :a Era) is discrete in X, a closed subset Sn C X may be chosen for

each n E N such that Sn is a separator of the collection ( Ag. :a E rn) in

the space X.

Construct an w-family of pairs of disjoint closed subsets

{(U{ Ag :a E rn}, sn):n E N) from X as in the proof of the lemma 3.4.2.

Then, since X is WID, a closed subset Tn C X may be chosen for each

n EN which separates the pair (U{ .4 :a. Ern}, Sn) in X such that the

f){ Tn : n EN) =--- 0 . By applying the lemma 3.4.2, it is seen that for each

n E N Tn is also a separator of (U{ 4 :a. E rn), Sn ) . Thus, the w-family

{( Alct :a. E rn):n EN) is inessential, and X has been shown to be WIDr

which completes the proof.

3.4.4 Corollary. If a space X is WIDr for one r E (2, 3, 4 , ),

then the space X is WIDr for all r E (2, 3, 4,-1, that is the space X is

WID00

Proof. This is obvious from the definitions and results already

presented.

The remarkable aspect of 3.4.3, especially in light of 3.2.4 and 3.2.6,

is that the properties WIDco and WIDw are seen to be equivalent. The

boundedness of the number of elements in the discrete collections of the w-

families, or lack thereof, fails to make any difference, even when the spaces
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are not compact! The answer to implication e of the generalized

Alexandroff question 1.3.7 has been reduced to a single implication which is

formally stated in the following question.

3.4.5 Question. If a space X is WI% than must X also have the

property Cw?
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3.5 Equivalence of the Definitions of Property Cr

After including the results of the last section into 3.4.1, the

following summary is obtained.

3.5.1 Summary. Let r E { 2, 3, 4,---}. Metric spaces satisfy the

following implications of properties.

C2 = Cr = Cr + = Cco Cw 4==> property C

11 11

WID ==> WID2 WIDr WIDr +1 WIDco4=> WIDw

In this section, the reverse implications of the top row of 3.5.1 are

investigated. The following simple lemma will be needed in the proof of the

main theorem of this section.

3.5.2 Lemma. Let r E ( 2 , 3, 4,---} U w). If a space X has the

property Cr, then every closed (5c7) subspace Y C X also has the

property Cr in X.

Proof. The result follows in the same manner as the proof of the

analogous statement about property C [Addis and Gresham, corollary 2.81.
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3.5.3 Theorem. Let r E (2, 3, 4,-4. If a space X has the property

Cr, then the space also has the property Cr +1.
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Proof. Suppose that X has property Cr and let a countable sequence

of open covers of X, each of cardinality r +1, be given. Rewrite the

sequence of open covers as a countable collection of countable sequences

I{ CUm,n:nEN}:mEN)

where each cover has the form

cltmo{Ulcno:1=1,2,, r+1).

r +1
Fix m E N, and set Ym = X \U (Um :n EN). For each m EN

Ym is a closed subspace of X which, by 3.5.2, has property Cr in X. Thus,

since for each n EN the collection (U,n:k =1,, r) is a cover of Ym

by open subsets of X, for each n EN a precise pairwise disjoint open

shrinkage {V1101k=1,, r) of {1.11/(notk=1,, r} may be chosen such

that the U{{4 otk =1,, r}tnEN) forms an open cover of Y.

Keeping m EN fixed, define the subsets VIn C X and V C X by

1U r +1 2 kVm= {Umo :nENI and Vm=u{Vmo:k =1, r, nEN}.

Clearly, the pair V1) is a binary open cover of the space X.

Doing this for each m EN gives a countable sequence of such

binary open covers of X. Since X has property Cr, by 3.2.1 the space X

also has property C2. Thus, for each in EN a precise pairwise disjoint

1 2 1 2open refinement {Wm, Wm) of each {Vm, Vm) may be chosen such that

the collection {Wi:j =1, 2, m EN) forms a cover of the space X.

Next, for each m EN, nE N, and for each k E ( 1 , 2, , r) define

,r +1 + nil nr2 171(wmo =wmtiumo1 and ,vmo ymo,

and for each in EN and n E N set

117m0={Wilo:k=1,, r+1}.
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Fix m E N and n E N, then for any k E { 1, , r} the
wmr nw, c w,l, n =

Similarly, if j, k E(1,, r) with j p k, then the

Wm nwk cvj nvk =0.
r +1 r +1Clearly, the set Wm,n CUm,n , and for any k G 1,-, r) the set

/irk p-uk T Tk
vvm,n1/4__

Thus, for each m E N and n E N the collection Wm,n is a precise

pairwise disjoint open refinement of cilm,n .

Let a point x EX be fixed but arbitrary, then since the collection

(Wm tj .1, 2, m EIN) covers X, integers m EN and j E (1, 2) may be

1chosen such that x EWm W. If the point x EWm, then since

CVIn =U(Urm-,4-ni :n EN},

for some n EN the point
,_,1 ,"r +1 +1wmi ium,n = wmo

On the other hand, if the point x EWm, then since

xEV?nCU{Vicn,n:k=1,-,r,nEIN},

for some k E ( 1 , r) and n EN the point x EVm,n . Thus, for this

case, the point
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Since in either case the point x is in some Wm,n , it has been shown that

the U.(1Vm,n:m EN, n EN) covers the space X.

Finally, apply theorem 3.1.4 to obtain that the space X has the

property Cr +1. This completes the proof.
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3.5.4 Corollary. If for some r E (2, 3, 4,} a space X has

property Cr, then X has property Cr for every r E {2, 3, 4,-}; that is

the space X has property C.

Proof. This is obvious from the theorems 3.5.3 and 3.2.1.

The theorem 3.5.3 gives further implications which are stated in the

following theorem. This will complete the generalization of 2.4.2.

3.5.5 Theorem. Let r E{2, 3, 4,--}. If a space X is WIDr, then

the space X also has property Cr. .

Proof. If the space X is WIDr, then by 3.2.2 the space X is WID1.

Since X is WID2, the characterization 2.3.2 implies that X has property C2.

Thus, the corollary 3.5.4 then gives that the space X has property Cr.

3.5.6 Corollary. If a space X is WIDco, then the space X has

property C,.

Proof. The proof is obvious from the definition of WIDco, theorem

3.5.5 and the definition of Ceo .



3.6 Essential Differences Between the Properties

After including the results of the last section into 3.5.1, the

following summary is obtained.

3.6.1 Summary. Let r E (2, 3, 4,...}. A space X satisfies the

following implications of properties.

C2 4.4. Cr 4=2> Cr+1 <== C property C

WID WID2 WIDr WIDr +1<=:. WID004.* WIDw

As can be seen for 3.6.1, only two reverse implications, each implying

the other, remain unknown. Comparing theorems 3.2.3 and 3.2.5, it is also

seen that for compacta the essential difference between Coo and Cw seems to

arise from the unboundedness of the cardinality of open covers involved.

However, no such difficulty presented itself in the proof of the

corresponding theorem 3.4.3, even without the assumption of compactness.

This suggests that theorem 3.5.3 might have a different type of

proof. The proof of 3.5.3 given in section 3.5 was inductive in nature. The

basic technique was to split a given cover into two subcollections, and then

to use a previously proven theorem on the resulting covers of smaller

cardinality. This technique no longer works if the cardinality of the covers

is unbounded, for the resulting covers would then also have unbounded

cardinality.
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Thus, it would be very interesting to find a "generic proof" of 3.5.3,

that is a proof which directly shows the equivalence of the properties C2

and Cr without using any of the intermediate properties. Such a proof was

given for theorem 3.4.3, and it seems likely that this is why that proof also

showed the equivalence of the properties WIDoo and WIDw

Of course, it might simply be the case that the properties Coo and Cw

are different. If that is the case, then the problem is to construct a

counter-example, that is a space X with property Coo which does not have

the property C. From 3.2.3, it is seen that a compact counter example

would have a sequence of open covers {9.1.n:n E NI with III.n1--000 as

n-400. This observation might be used to give a construction procedure.

The other remaining unknown implication of 3.6.1 is whether or not

every WIDw space must also have the property C. The major obstruction

of this implication, and indeed the major obstruction to a direct non-

inductive proof of the other related vertical implications of 3.6.1, is that a

separator of a discrete collection of pairwise disjoint closed subsets

(Aft:a E r) of a space X needs not form a precise pairwise disjoint open

shrinkage of the related open cover. It is this obstruction which prevents a

direct reversal of the argument used in lemma 3.3.1 and theorem 3.3.2.




