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Simulating dynein’s powerstroke using Brownian dynamics

by Elliott Capek

Dynein is a motor protein which transports cargo along tracks inside the cell. Like related
motor proteins kinesin and myosin, dynein uses cellular energy to take steps with its two foot
domains. Unlike kinesin or myosin, dynein’s stepping pattern is highly varied: it can take steps
between zero and 60nm in both the forwards and backwards directions. It is believed that dynein
takes such broad, stochastic steps because its large size and several elastic regions make it more
influenced by Brownian motion. To test this, we model the motor as a 2D system of elastic
hinges, then simulate this model using Brownian dynamics. Preliminary results indicate such
a model is capable of taking steps between zero and 25nm. These results give hope that, with
further tweaking, the model may be able to generate both larger steps and backwards steps.
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1 Introduction

An embryo in its spherical blastula stage has spherical symmetry [...]. But a system
which has spherical symmetry, and whose state is changing because of chemical
reactions and diffusion, will remain spherically symmetrical for ever [...]. It certainly
cannot result in an organism such as a horse, which is not spherically symmetrical.
Alan Turing, The Chemical Basis of Morphogenesis, 1952

Cells need to create asymmetric, heterogeneous structures inside themselves in order to func-
tion. However, diffusive processes cannot create this asymmetry. How then do cells create the
heterogeneous structures they need to exist? Motor proteins are part of the answer. Motor
proteins are structures which use energy to create directed motion in cells. In broad terms, they
are mechanical creators of asymmetry. This thesis explores a hypothesis about how one such
motor protein, dynein, generates directed motion.

1.1 Motivation
Motor proteins are cellular structures which use chemical energy to do work and generate

motion. Kinesin, myosin and dynein are the three main motor proteins in cells. Though these
proteins have significantly different ancestors [9], they all evolved into a single similar structure.
In biology when a structure is evolved three separate times, it is a sign that nature has found
an efficient way of solving a problem. How, then, do motor proteins work?

The basic process is simple. Kinesin, myosin and dynein each use two binding domains to
attach to a surface. These binding domains are connected via a linker domain. Each motor pro-
tein is an engine which undergoes cycles, where each cycle moves the motor across a surface. In
a single cycle a binding domain unbinds from a surface, tenses its foot to kick forward, rebinds,
then untenses its foot to pull the whole motor forward. This pattern is repeated by both feet to
generate motion [1, 28].

Although the three motor protein families operate using the same stepping cycle, their be-
haviors differ significantly. Kinesin and myosin are predictable motors which step in the forward
direction with a regular step size. In contrast, dynein’s stepping pattern varies in both size and
direction. The motor can take 64nm steps forward or 32nm steps backward, and often steps
sideways as well [16]. How can motors which implement the same release, lever, bind, lurch
stepping mechanism behave so differently?

One possibility is that dynein’s size and organization are responsible for the motor’s odd
stepping pattern. Dynein is much larger than kinesin or myosin, so its feet may need to move
significantly further during each cycle. Due to the random nature of Brownian motion from
water particle collisions, there may be significantly more variance in the path taken by dynein’s
feet compared to other motor feet. This could explain the large variance in step size. Another
contributing factor could be that dynein is so large that it can twist and contort during its step,
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allowing varying and even backwards steps, which a small motor would be too stiff to achieve.

This thesis describes an experiment which aims to test whether Brownian motion and flex-
ibility cause dynein’s unique stepping pattern. To do this, we construct a mathematical model
of the dynein motor which exhibits flexibility and feels Brownian forces. We then simulate the
model and compare its behavior to real dynein.

1.2 What is dynein?

1.2.1 Basics

Dynein is a cellular structure which converts chemical energy to mechanical energy. It does
so by reacting with adenosine triphosphate (ATP) to take steps along long cellular tracks known
as microtubules (MTs). Dynein’s mechanical energy is used for various cellular functions, in-
cluding to transport molecules around the cell, pull chromosomes during division, and move
cellular propellers known as cilia [5].

Dynein is a protein with many smaller domains. A depiction of the protein and its labeled
subdomains is shown in Figure (1.1). Each motor is a homodimer made up of two identical
monomer proteins. Each monomer has a binding domain which binds to the microtubule, a
motor domain which binds ATP, a tail domain which connects to the other monomer, a stalk
which connects the binding and motor domains, and a linker which connects the motor and tail
domains. The tail domain is also responsible for binding to cargo.

Figure 1.1: Artist’s rendition of dynein bound to a microtubule.
Two heavy chains (cyan and blue) and several tail proteins (pink) come together to form the
dynein motor complex. One monomer’s binding domain is bound to the microtubule (green),
and the other is diffusing. ATP hydrolysis sites are labeled glowing green. Figure modified.

Source: Lander Lab, The Scripps Research Institute [24].

Dynein is believed to move by using the energy of ATP to cycle through a sequence of
states, each with different spatial relations to the microtubule. By cycling forward through
this sequence, the molecule will end up in the same state it began, but moved forward a small
amount. This sequence of states is known as the mechanochemical cycle [5]. The goal of this
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project is to create a mathematical model of the mechanochemical cycle and verify that it can
reproduce experimental dynein stepping data. There are several types of dynein which all behave
slightly differently. This project will focus on cytoplasmic dynein-1, hereby referred to as dynein.

1.2.2 Why do cells need motor transport?

Cells are organized, heterogenous structures which respond quickly to their environments.
This means that cells require a mechanism for rapidly moving components to precise locations
within the cell. This can be a challenge, since cells are fairly large compared to the proteins
which compose them. A human fibroblast cell has a volume of roughly 2000 µm3[29], corre-
sponding to roughly 8µm in diameter. In comparison, human hemoglobin has a diameter of
roughly 5nm (PDB id 5ME2), a 103 factor decrease in size.

Diffusion, or random motion of molecules due to collisions with solvent (i.e. Brownian mo-
tion), is one possible process cells could use to transport biomolecules. Diffusion has two prob-
lems: it is slow and nondirected. The expected distance covered for one-dimensional Brownian
motion after time t was found by Einstein to be [6]:

⟨x⟩ =
√

2Dt (1.1)

where D is the diffusion constant describing the diffusability of the biomolecule. For a medium-
sized (140kD, 1D = weight of H atom) protein with a diffusion constant D = .2µm2/s [13], it
would take about a month to travel across a millimeter-sized cell. In contrast, it would take
dynein, which travels at roughly 100nm/s [16], a much more reasonable three hours to do the
same.

Another advantage of motor transport is that microtubules can be highly specific in their
location in the cell. During cell division chromosomes line up at the center of each cell in a
plane. Such a geometrically precise shape requires some sort of directed motion which a random
process could never provide.

1.2.3 What role does dynein play in the cell?

One of dynein’s primary jobs is to transport cellular cargos such as organelles, vesicles,
mRNA, cytoskeletal filaments and certain proteins from place to place in the cell. Dynein also
plays a role in positioning and breaking down the nucleus, cell death, spindle formation and the
placement of other important cellular structures [27].

Dynein walks along cellular tracks called microtubules (MTs). MTs are long polymers of
alternating α− and β− tubulin subunits. MTs are polar, meaning they have a distinct direc-
tionality based on the orientation of the tubulin proteins which comprise them. One pole, called
the minus end, is where they initiate formation, typically at a MTOC (microtubule organizing
center) around the center of the cell. The other pole, the plus end, is where they grow and
shrink from. Kinesin, another type of motor protein, typically walks towards the plus end of the
MT. Dynein is unique in that it walks towards the minus end, making it a minus end-directed
motor. This lends it to a particularly important function inside neurons known as retrograde
transport.

Neurons have cell bodies at their centers and axons which grow outwards. Axons are long,
narrow structures extending up to a meter in length in humans. Cell bodies contain nuclei
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and important organelles for synthesizing proteins, but growth of axon tips is vital for neuron
function. This means bidirectional motor transport between axon tips and cell bodies is very
important in neurons, since diffusion would not be quick enough. Retrograde transport is trans-
port from the axon tip to the cell body. Cargo includes vesicles full of proteins ready to be
broken down in the cell body and microtubule fragments to be returned from the axon tip [15].
Because microtubule minus ends are found in the cell body, dynein’s minus end-directed nature
makes it the only protein capable of retrograde transport. An interesting question is, if proteins
like dynein are synthesized in the cell body but needed at the axon tip to perform retrograde
transport, how do dynein get to the tip? The answer is shown in Figure (1.2): kinesin, a plus
end-directed motor, takes dynein to the tip from the cell body.

Figure 1.2: Dynein transport to neuron growth cones.
Dynein and kinesin collaborate to move cargo between the neuron body and axon tip. The
oppositely-directed motors take turns transporting each other, along with cargo for building

the axon growth cone. Image from [27].

1.2.4 Dynein structure

As shown in the crystal structure in Figure (1.3), a dynein motor is a fusion of two identical
subunits, or monomers, each with binding, stalk, motor and tail subdomains. Each of these
subunits has a unique purpose for the motor.

Dynein is a fusion of two identical proteins, referred to as monomers. A single monomer,
depicted in (1.3), is composed of a microtubule-binding domain (MTBD), a stalk, a buttress, a
motor domain, a linker and a tail. The MTBD is responsible for binding to the microtubule.
The stalk links the motor domain to the MTBD and carries information about the state of the
motor to the MTBD. The motor domain hydrolyses ATP and performs the main conformation
changes involved in the step [11]. The linker connects the tail to the motor and also changes
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conformation during the step. The tail is a binding site which interacts with several binding
partners, including the tail of a twin monomer.

Figure 1.3: Structure of a dynein monomer.
A cryo-electron microscopy-inspired image detailing the subcomponents of a single dynein
monomer. The microtubule-binding domain (MTBD) connects to the motor domain via a

coiled coil known as the stalk. The six AAA regions provide structure for the motor domain,
and AAA2 conducts the ATP hydrolysis. The linker is a flexible region which connects the

motor domain to the tail. One of the main roles of the tail is connecting a monomer to its twin
to form the dynein complex. Image from [7].

1.2.5 Why is dynein interesting?

Selective domain labeling indicates dynein’s stepping pattern is highly varied [17, 16]. These
studies show dynein’s stepping pattern to be stochastic and weakly forward-directed. As shown
in Figure (1.4), dynein takes many backwards steps, and also many steps with components per-
pendicular to the microtubule. This indicates the process dynein uses to generate motion has a
stochastic component to it. In contrast, kinesin is known to take very regular 8nm steps in the
absence of large forces [4]. For reference, the diameter of a microtubule is roughly 25nm.

Kinesin and dynein, although of very different evolutionary origin [9], have very similar step-
ping cycles. Both proteins bind bipedally to microtubules. Both proteins use ATP hydrolysis
to leverage against a linker domain, pushing the motor domain forward. Both proteins cou-
ple their nucleotide and MT-binding states [25]. How, given the large number of similarities
between these motors, does dynein achieve such a radically different stepping pattern than ki-
nesin? Elucidating how the structural differences between the motors give rise to the differences
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Figure 1.4: Experimental dynein stepping behavior histograms.
Left: Size of steps taken by dynein motor parallel to microtubule. Positive axis corresponds to
steps towards the microtubule minus-end. Right: Size of “off-axis” steps taken by the dynein

motor perpendicular to the microtubule. Figure modified from [16].

in dynamics would provide lots of important information on how the machines fine-tune their
stepping.

A major factor which could contribute to differences in stepping is each protein’s size. Ki-
nesin proteins are generally 100-200 kD in mass, whereas dynein is on the order of 1mD. As
shown in Figure (1.5), the dynein motor domain is much bigger than the kinesin motor do-
main. Another key difference is the separation between ATP hydrolysis sites on either protein.
Kinesin’s ATP hydrolysis site is inside the globular microtubule-binding domain. In contrast,
Dynein binds to the MT with its MTBD, colored yellow in Figure (1.5), and hydrolyses ATP
in its motor domain, which is colored cyan. This distance is close to 20nm in length - much
longer than kinesin. This large separation might act like a loose “leash,” allowing the binding
domain to diffuse freely around the microtubule. Kinesin has a much more rigid leash, as shown
in the bottom pane of (1.5). This more rigid leash may prevent diffusion from happening as much.
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Figure 1.5: Structural comparison of dynein and kinesin
Left: Comparison of crystal structures of the motor domains of dynein and kinesin bound to a
microtubule. Image from [26]. Right: Full motor complexes of dynein and kinesin inspired by

cryo-EM microscopy. The blue regions on the right image of either protein are the motor
domains, which are pictured in the left crystal structures. Not present in the left cyrstal
structures are the tail and intermediate chains of either protein. Right image from [8].

1.3 Dynein Stepping Background
Biophysicists and molecular biologists have conducted experiments over the past twenty

years which shed light on how the dynein motor might walk. The full mechanism is not known,
but several known behaviors of dynein can be taken together to construct a model for how the
motor walks.

1.3.1 ATP cycle influences conformational state

Dynein is known to occupy multiple discrete conformational states depending on its en-
vironment. In particular, the concentration of ATP and microtubules is known to alter the
shape dynein takes on. A FRET (fluorescence resonance energy transfer) study attached fluo-
rophores to dynein’s motor and tail and measured the average distance between the two [11]. It
was found that average distance increased or decreased depending on the nucleotide bound to
dynein, indicating the motor takes on different conformations for different bound nucleotides.
Dynein unbound to nucleotide, or frozen in ATP or ADP-bound states, had a similar tail-motor
distance. However, when the motor was stuck in an ADP-Pi state, with ATP hydrolyzed but
phosphate not yet released, the tail-motor distance was increased. This suggests that dynein
starts its cycle with no nucleotide, binds ATP, hydrolyzes ATP, enters the ADP-Pi state and
changes conformation to a far tail-motor distance, then releases phosphate, moves back to its
original close tail-motor conformation, then ejects ADP and starts over.

Studies suggest that near/far tail-motor conformation changes are not due to lengthening of
the stem linking the two domains, but rather a change in position of the head relative to the
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tail [11, 3]. Cryo-electron microscopy images of the dynein motor shown in Figure (1.6) demon-
strate the differences in conformation in the nucleotide-free and ADP-Pi state. The shifting
of the linker domain in the ADP state is known as the powerstroke, and is believed to be the
principle cause for dynein’s forward step.

Figure 1.6: Dynein conformation change during a step.
Top: Cryo-electron microscopy images of axonemal dynein in two different nucleotide states.
Top left: dynein frozen in ADP-Pi state. Top middle: dynein without nucleotide. Top right:

two states superimposed on one another. Figures from [3]. Bottom: X-ray diffraction-inspired
image of a motor in two nucleotide states. Bottom left: motor in ADP-Pi state. Bottom right:
Motor in ADP state. The linker undergoes an approximately 40 degree swing between these

two states known as the powerstroke. Figure from [2].

Crystal structures of cytoplasmic dynein-2, a relative of dynein, indicate that ATP-Pi bind-
ing to the motor domain induces a conformation change in the motor domain, which alters the
angle at which the motor binds to the tail [22]. Taken together, these results indicate that as the
motor binds and hydrolyzes ATP, it undergoes a conformation change which physically moves
the motor relative to the tail.

1.3.2 Microtubule and nucleotide states are coupled

Dynein is known to bind to the microtubule at a location known as the α-β polymerization
site [18]. This site occurs roughly every 8nm, indicating dynein is restricted to forward step
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sizes which are multiples of 8nm. The motor is also capable of stepping sideways [16], indicating
total displacements which are not multiples of 8nm.

The nucleotide state of the motor is not the only determiner of dynein conformation; micro-
tubule binding state has also been shown to influence conformation. A study on the MTBD-MT
complex indicates the stalk connecting the motor and MTBD can take on two major conforma-
tions, depending on whether the MTBD is bound to the MT or not [10]. The conformation of
the stalk has been shown to communicate information between the motor and MTBD. In the
presence of microtubules, the ATPase rate of the motor is increased 25-fold. This indicates the
stalk communicates MT-binding state of the MTBD to the motor, increasing its ATP hydrolysis
rate. The communication happens the other way, as well. Treating dynein with ATP causes
MT-binding rate to drop 15-fold, indicating ATP-binding at the motor decreases MT-binding
rate at the MTBD.

In addition to a bidirectional linking between ATPase rate and MT-binding, stalk state has
been shown to directly influence motor conformation [10]. When the stalk is allowed to freely
transition between bound and unbound states, the motor can also transition between near and
far tail/motor states. However, when the stalk is frozen in a particular conformation, the motor
loses its transitioning ability. This suggests that the conformations of the two systems are tightly
linked.

1.4 Cianfrocco model for dynein stepping
Data presented in the previous sections paints a picture of dynein as a collection of inter-

connected parts, each cycling through its own collection of states and influencing other parts.
Somehow the protein interacts with nucleotides and microtubules in a way that allows it to
reliably move through the cell. The Cianfrocco model presented below takes these facts and
string them together into cohesive cycles which might explain how dynein walks.

Cianfrocco et. al [5] propose dynein achieves motion via transitioning through the cycle of
states shown in Fig. (1.7). The model claims the primary events in the dynein step are as follows.
First, starting with both binding domains attached to the MT, ATP binds to the motor domain,
which causes it to change conformation. ATP hydrolysis to ADP-Pi causes further conformation
changes. These changes cause the binding domain to release the microtubule, meaning only one
binding domain is MT-bound. The free binding domain then undergoes another conformation
change known as the “priming stroke,” which changes the orientation of the binding domain with
respect to the MT. Finally the binding domain rebinds to the MT, causing a final conformation
change in the motor which returns it to the beginning of the cycle. The exact order of these
events is not precisely known.

1.5 Testing the Cianfrocco model
One of the main goals of studying dynein is establishing how the motor walks. This can be

a difficult task, since direct observation of the protein walking is not currently experimentally
possible. Given the experimental challenges, a computational approach seems promising. This
approach involves forming a hypothesis on how the motor walks, creating a model which behaves
according to this hypothesis, simulating that model, and comparing the simulation’s behavior to
experimental data. This process can be an efficient way to support hypotheses and guide future
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Figure 1.7: Cianfrocco mechanochemical cycle.
Cycle of states the dynein motor goes through during motion in the Cianfrocco model [5].

research.

1.5.1 Computational approach

This project seeks to create a dynamic model of dynein and use it to answer questions.
The Cianfrocco model provides a rough framework for the events that go on during the dynein
mechanochemical cycle. By augmenting this model with information about dynein’s structure
and conformation changes occuring during the cycle, a new dynamic model which takes into
account both temporal and spatial information can be constructed. This dynamic model can
then be simulated under cellular conditions to test how it behaves. Such a model would be ideal,
since it would make very precise predictions about how real dynein walks. This simulation would
act as an experiment testing the validity of the Cianfrocco model.

1.5.2 Questions to answer

The biggest question such a simulation would answer is: does the Cianfrocco model, when
applied to a dynein-sized motor with elastic hinges, produce dynein-like stepping? High similar-
ity between simulation behavior and experimental dynein behavior would be a strong positive
result supporting the Cianfrocco model. If confirmed to be dynein-like, the simulation could
then be used to answer many other questions.

Dynein has both angular and linear elasticity between its domains. Angular elasticity, or the
flexibility of protein domains relative to each other, may play a large role in dynein’s stepping. It
is possible that dynein requires its foot domain to diffuse to a high-energy conformation in order
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to take a step. It is postulated by Burgess et. al. [3] that changes in angular elasticity may be
important for dynein’s ability to step at key points in the mechanochemical cycle. Alternatively,
it is possible that elasticity is not required, and the angular changes caused by the powerstroke
are enough for stepping. By varying the angular elasticity of the model, this simulation could
determine the importance of angular elasticity for dynein’s step.

Another question this simulation could answer is how dynein localizes to its binding site.
Microtubules are regular tubulin polymers with MTBD binding sites roughly every 8nm. Dynein
can take steps at integer multiples of this length, but the 8nm step is its most favored. Why is
this? Does the MTBD drag along the microtubule until it hits a binding site? Or, does it diffuse
high above the microtubule, randomly descending until it finds a place to bind. This simulation
could answer that question by outputting MTBD positions over time.

Why does dynein step differently than kinesin? Kinesin follows a similar mechanochemical
cycle to dynein. By modifying the stepping cycle, shrinking inter-domain distance and changing
conformation angles of the dynein model, it may be possible to create a rough kinesin dynamic
model. This model could then be tested for similarity to experimental kinesin. If kinesin behav-
ior was replicable, then comparisons between the models could be readily made. Does kinesin
step like dynein when its size is increased? Does dynein step like kinesin when its conformation
angles are made rigid? By varying the spatial representation of the two models, it might be
possible to determine why the two motors step differently.

Kinesin and dynein generally travel in opposite directions along the microtubule. Why is
this? Both proteins bind to the same place on the microtubule [14], so the binding site can’t
determine directionality. It is possible that not the binding site, but the angle at which the
protein binds to the microtubule is what determines its stepping direction. If it turns out that
kinesin can be successfully modelled using the same dynamic model, then this question could
possibly be answered. If altering the microtubule binding angles of dynein and kinesin reverses
their directionality, it may be that binding angle is all it takes to determine motor directionality.
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2 Theory

2.1 Model overview
The model constructed in this thesis is meant to approximate how a protein with dynein’s

structure which underwent the conformational changes described in the Cianfrocco model (1.4)
would behave in a cell. In order to be compared to experiment, the model should output spatial
information about dynein’s rough conformation at all times during the simulation. Creating
such a model is a balance between accuracy and computational efficiency. The model must be
complex enough to correspond well to dynein, but not be so complex that it cannot be simulated
in a reasonable amount of time. Molecular dynamics, a technique which simulates the individ-
ual amino acids in a protein, would be highly accurate, but would be prohibitively expensive
to simulate a dynein step. Thus, many approximations are made about dynein to simplify the
simulation.

Figure 2.1: Spatial representation of the dynein dynamic model.
Dynein is simplified to two two-dimensional point-particle systems. The left “onebound”

system represents dynein when one MTBD is unbound, and the right “bothbound” system
represents dynein with both MTBDs bound. Five points in total represent the two MTBDs,

two motor domains and one tail domain. Each model’s orientation is defined by a set of angles,
four in the onebound case and two in the bothbound case. These points are connected by rigid

rods. Although approximated as points, each domain has a radius R associated with it used
for drag calculations.

2.1.1 Summary

The model is composed of two separate systems of five point particles, with each point rep-
resenting a domain of dynein: two binding domains, two motor domains and one tail domain.
Physical representations of these two systems are shown in Figure (2.1). The points are con-
nected together by rigid rods, and the sytems are defined by the angles the rods make at each
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point. These angles are free to swivel. Each point thus acts somewhat like a “hinge” which can
open or close. These two systems represent different modes dynein can be in. The Cianfrocco
model is simplified to two states: onebound, when one MTBD (Microtubule Binding Domain)
is diffusively searching for a binding site, and bothbound, where both MTBDs are MT-bound.
The model can be in one of these two states at any time, and can transition between them if
the right conditions are met. For example, if the model is in the onebound state but drifts such
that both of its MTBDs are near the microtubule, the model can “bind” the MT and transition
to the bothbound state.

The model is subject to two forces, each of which is meant to simulate the effects real dynein
domains feel. The first is a Brownian force which constantly changes. This force is meant to
mimic the force of water particles colliding with the domains and causing diffusion. The second
force is called a conformational force, and is meant to mimic the conformation and elasticity of
dynein. Each hinge is somewhat like a spring with an equilibrium resting angle. At this angle,
the domain feels no force. However, when the angle deviates from this equilibrium, a harmonic
restoring torque proportional to the displacement angle is applied to the involved domains to
push the angle back to equilibrium. Thus these two forces oppose each other during a simulation,
with Brownian forces pushing the model out of equilibrium and conformational forces trying to
restore equilibrium.

How this system is used to generate data is covered later in the section. In brief, this sys-
tem is then converted into a computer program. A technique known as Brownian dynamics,
described below, is used by the program to evolve the model through time. Models are started
in one state and evolved, occasionally transitioning from one state to another. The positions
of each domain in time are stored as data. Each time a model transitions from onebound to
bothbound, the model registers a “step” having occurred. Thus long simulations can be used to
find the stepping behavior of a model.

2.2 Model assumptions

2.2.1 Spherical domains connected by massless rods

A key feature of the model is that each domain of the protein (two feet, two motors and a
tail) is treated as a sphere. Each sphere is connected to one or two other spheres, as shown in
Figure (2.1). This simplification is made to make the math easier and allow a simple definition
of dynein’s conformation.

As shown in Figure (1.3), dynein’s motor and tail domains are fairly spherical. Though
the stalk and tail connecting these domains is definitely not massless, it is small enough that
approximating it as massless should be reasonable. Making the radii of the spherical domains
slightly larger should account for any drag caused by the rigid rods.

Each sphere has an associated drag factor γ, which describes the resistance it feels to motion.
This drag factor is calculated based on the radius R of the spheres, and is given by Stoke’s Law:

γ = 6πνR (2.1)

where this drag factor γ is used later to calculate the velocity of each domain.
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2.2.2 Rods connecting domains are rigid

The model assumes connected domains are rigidly attached to one another by rods. This
assumption makes the math easier. One study found that the standard deviation of stalk and
stem lengths in in vitro dynein was roughly 1nm [3]. However a contrasting piece of evidence
showed the coiled coil, a common protein structure which links the MTBD and motor domains
in dynein, can stretch in myosin, another motor protein, by 2.5x [23]. Another dynein simulation
done by Sarlah et. al. models the dynein stalk as an elastic rod [20].

In defense of rigid rods, the timescale of harmonic stalk oscillations is likely much quicker
than that of the mechanochemical cycle, so it is reasonable to model the stalk as a rigid rod
at the stalk’s average extension length. Either way, it is then an assumption of the model that
inter-domain elasticity is not necessary for stepping.

2.2.3 Angular springs

Each domain has a spring constant cb, cm or ct, for binding, motor or tail domains respec-
tively, which decides the energy associated with that domain angle. For example, the tail domain
energy is given by

∆Gt = 1
2

ct (θt − θeq
t )2 (2.2)

This energy represents the conformational energy of that particular domain. This energy can
be used to calculate a return force which pushes the domain back to equilibrium. A depiction
of this is shown in Figure (2.2).

Figure 2.2: Angular spring return force when out of equilibrium.
The θbb angle shown is greater than the equilibrium angle θeq

bb , and thus the bb domain has
conformational energy 1

2cb

(
θbb − θeq

bb

)2, and feels a force pulling the motor domain towards the
microtubule.

2.2.4 Two-state model

According to the Cianfrocco model, dynein takes on a total of eight states during a single
step. Many of these states are conformationally very similar, e.g. the ADP- vs apo-bound or
ATP- vs ADP-bound. Others involve quick transitions, e.g. from the just-MT-bound state to the
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post-powerstroke state. The transitions which take the most time according to reaction rate cal-
culations are MT-binding and MT-release [20]. Thus, these two states are taken to be the most
important, and the Cianfrocco model is approximated by transitioning between these two states.

The main difference between these two states is that onebound has one diffusing MTBD,
whereas bothbound has both its MTBDs MT-bound. Another key difference is equilibrium an-
gles of the motor domains. During powerstroke, according to the Cianfrocco model, the dynein
linker shifts, causing the tail-MTBD angle to shift. In this model, the conformation change
caused by ATP hydrolysis is modelled as shifting the bothbound equilibrium angle θbb,eq

xm to θob,eq
xm .

2.2.5 Transitioning between states

The model transitions between states with a probability dependent on both the conforma-
tional energy difference between the two states and the physical separation between the MT
and binding MTBD. This transition can be tricky. To unbind, or convert from a bothbound to
onebound model, a onebound structure can be constructed with the exact same domain posi-
tions, except the unbound MTBD is allowed to diffuse. To bind, or convert from a onebound to
bothbound model, the unbound MTBD must be projected onto the microtubule. This is because
the bothbound state is defined as having both MTBDs at y = 0. Once projected, a bothbound
model can be constructed with domains in the same places as the projected onebound model.

The rates of such transitions are based on the conformational energy change between the
new and old states. The energy difference between states A and B is given by:

∆GA→B =
B∑

i=0...NB

1
2

ci

(
θi − θB

i

)2
−

A∑
j=0...NA

1
2

cj

(
θj − ΘA

j

)2
(2.3)

where B is the transitioned version of state A. Transition energies are used to calculate tran-
sition rates, as given by the Arhennius equation k = Ae−β∆G, where β = (kBT )−1. In this
equation ∆G is the total energy of transition between states and A is a constant known as the
preexponential factor with units of s−1.

kb = Ae−β∆G = Ae−β∆Gconf e−β∆Gbind (2.4)

where ∆Gconf is the change in spring energy in going from bothbound to onebound and ∆Gbind is
the energy gained from binding to the microtubule. Because binding energy for the MT-MTBD
complex is hard to find, the following substitution is made:

kb = Ae
−∆G
kBT = Be

−∆Gconf
kBT (2.5)

Thus the transition rate is only dependent on the change in conformational energy of transi-
tioning and the preexponential factor B. To prevent binding events from happening when the
MTBD is high above the MT, the following step function correction is added to the rate equation:

kb = Be
−∆Gconf

kBT (1 − H (Xuby − 0.1)) (2.6)

where H is the Heaviside step function and Xuby is the y position of the unbound MTBD.
Thus the binding rate is zero when the unbound MTBD is over 0.1nm from the MT.
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2.2.6 Brownian dynamics

The Brownian dynamics equation describes the motion of high-drag objects which spend
most of their time at terminal velocity, and is given by:

ẋ = 1
γ

(Fnet + R) (2.7)

where γ is the drag constant of the object and R is a random Brownian force which describes
the effects of water particle collision. R is a Gaussian-sampled zero-centered force with variance
given by:

Rσ2 =

√
2kbTγ

δt
(2.8)

which is calculated from the Einstein relation.

2.2.7 Binding to microtubule

The model “steps” whenever an MTBD diffuses near the microtubule. in vivo, dynein binds
to a site on the α − β tubulin polymer microtubule which repeats roughly every 8nm. Thus,
all dynein steps should be multiples of 8nm. This model ignores this requirement and allows
stepping to occur at any length. The assumption is that in vivo dynein takes 8nm steps because
it is tuned to take 8nm steps, not because it drags along the microtubule searching for a binding
site. Thus the 8nm step length should be reproduced by the model even if stepping is allowed
anywhere.

2.2.8 2D model

The coordinate system for this model is two-dimensional. Thus interactions between the two
motors and MTBDs are ignored. This assumption is made to simplify the model. Other dynein
models, like the winch model [20], add in attractive and repulsive forces between the two motors
which act in three dimensions. This model ignores such effects.

2.3 Deriving motion equations
To simulate a protein’s passage through the above mechanochemical cycle, equations are

needed to describe the position of dynein at an arbitrary time. Using Euler’s method, a position
equation can be found given a velocity equation like so:

f(t + δt) = f(t) + f ′(t)δt (2.9)

Thus, if velocity equations can be found for the individual domains, then dynein’s dynamic
behavior can be solved for using numerical integration. The Brownian dynamics equation shown
in Section (2.2.6) provides velocity at time t from forces at time t. All that needs to be done is
to come up with expressions for the forces on each domain, which is done in the next two sections.

One complication arises from the choice of coordinate system. Angular coordinates are nice,
since they automatically enforce the rigid rod constraint. However, forces are more easily calcu-
lated in Cartesian coordinates. In addition, forces on the ith domain depend on domains i ± 1.
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Thus, solving for forces requires solving a large system of equations. Mathematica is used for
this purpose, as outlined below.

2.3.1 Prestroke onebound model

Prestroke dynein is referred to as onebound, since one motor domain is bound to the MT
in this state, and the other unbound. A spatial representation of onebound dynein is shown in
Figure (2.3).

bb

t

ub

bm
um

Figure 2.3: Spatial representation of the onebound dynein model.
The coordinate system used for derivation of onebound forces.

The coordinate system for this model is as follows. The bound MTBD is referred to as the
“bound binding domain” bb. Its coordinates take the form, for example, Xbb. The motor domain
adjacent to bb is the “bound motor” bm. Next is the tail t, then the “unbound motor” um and
finally ub.

The four angles θbb, θbm, θum and θub, corresponding to bound binding, bound motor, un-
bound motor and unbound binding angle, together describe any possible conformation the sys-
tem can take on. The domain of θbb has a restricted domain of [0, π] to prevent below-MT
conformations, but the other angles have domains of [0, 2π]. Each angle is defined relative to
the horizontal axis. The position of the bound binding domain Xbb and the four domain angles
are all that is needed to determine the position of the protein at any time.

Onebound velocity calculations

The following equations allow recursive calculation of the positions of each domain in Carte-
sian coordinates:

Xbm = Xbb + Ls cos(θbb) (2.10)
Xt = Xbm + Lt cos(θbm) (2.11)

Xfm = Xt − Lt cos(θfm) (2.12)
Xfb = Xfm − Ls cos(θfb) (2.13)

Ybb = 0 (2.14)
Ybm = Ybb + Ls sin(θbb) (2.15)

Yt = Ybm + Lt sin(θbm) (2.16)
Yfm = Yt − Lt sin(θfm) (2.17)
Yfb = Yfm − Ls sin(θfb) (2.18)
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Ls and Lt correspond to lengths of each interdomain rod, and the t subscripts refer to tail
domain coordinates.

The goal is to express angular velocities θ̇bb, θ̇bb, θ̇bb and θ̇bb in terms of known quantities.
To begin, the Cartesian velocities of each domain can be calculated from the above position
equations in a similar recursive manner. A subset of the equations are shown here:

Ẋbb = 0 (2.19)
Ẋbm = Ẋbb − Ls sin(θbb)θ̇bb (2.20)

Ẋt = Ẋbm − Lt sin(θbm)θ̇bm (2.21)

Ẏbb = 0 (2.22)
Ẏbm = Ẏbb + Ls cos(θbb)θ̇bb (2.23)

Ẏt = Ẏbm + Lt cos(θbm)θ̇bm (2.24)

Another way to express these Cartesian velocities is using the Brownian dynamics equation
Ẋ = 1

γ Fnet + R:

Ẋbm = 1
γm

(
Fxml + −λbs(Xbm − Xbb) + λbt(Xt − Xbm)

)
+ Rxml (2.25)

Ẋt = 1
γt

(
Fxt + −λbt(Xt − Xbm) + λft(Xfm − Xt)

)
+ Rxt (2.26)

where γn is a drag coefficient for the binding, motor or tail domain with units of mass per
second. Fxn is the x component of external force on each domain n due to various factors.
λ12 (X1 − X2) is the x component of internal force on domain 2 due to domain 1, where λ is a
tension coefficient with units of mass per second squared, also known as a Lagrange multiplier.
Rxn is the Brownian coefficient representing motion due to solvent collision, with units of velocity.

These two sets of equations, Cartesian and Brownian, can be equated to get more interesting
equations. For example, Eq (2.20) and Eq (2.25) can be equated. This equating, combined with
expanding the recursive velocity definitions leads to new equations, some of which are shown
here:

− Ls sin(θbb)θ̇bb = 1
γm

Fxml + − 1
γm

λbs(Xbm − Xbb) + 1
γm

λbt(Xt − Xbm) + Rbmx (2.27)

− Ls sin(θbb)θ̇bb − Lt sin(θbm)θ̇bm = 1
γt

Fxt + − 1
γt

λbt(Xt − Xbm) + 1
γt

λft(Xum − Xt) + Rtx

(2.28)

A total of eight coupled differential equations are formed from this procedure. These eight
equations form a system of equations with eight unknowns: θ̇bb, θ̇bb, θ̇bb and θ̇bb, and the four
tension coefficients λbs, λbt, λum and λub. This system is more compactly represented as:



Ls sin θbb 0 0 0 −γm(Xbm − Xbb) γm(Xt − Xbm) 0 0
Ls sin(θbb) Lt sin(θbm) 0 0 0 −γt(Xt − Xbm) γt(Xum − Xt) 0
Ls sin(θbb) Lt sin(θbm) −Lt sin(θum) 0 0 0 −γm(Xum − Xt) γm(Xub − Xum)
Ls sin(θbb) Lt sin(θbm) −Lt sin(θum) −Ls sin(θub) 0 0 0 −γb(Xub − Xum)

−Ls cos(θbb) 0 0 0 −γm(Ybm − Ybb) γm(Yt − Ybm) 0 0
−Ls cos(θbb) −Lt cos(θbm) 0 0 0 −γt(Yt − Ybm) γt(Yum − Yt) 0
−Ls cos(θbb) −Lt cos(θbm) Lt cos(θum) 0 0 0 −γm(Yum − Yt) γm(Yub − Yum)
−Ls cos(θbb) −Lt cos(θbm) Lt cos(θum) Ls cos(θub) 0 0 0 −γb(Yub − Yum)





θ̇bb

θ̇bm

θ̇um

θ̇ub

λbs

λbt

λut

λus


=



−Fbmx + γmRbmx

−Ftx + γtRtx

−Fumx + γmRumx

−Fubx + γbRubx

−Fbmy + γmRbmy

−Fty + γtRty

−Fumy + γmRumy

−Fuby + γbRuby


This matrix is then solved using the Mathematica computer algebra system, resulting in a set

of motion equations which describe the model’s trajectory over time, e.g. ˙θbm(θbb, θbm, θum, θub).
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These motion equations are further described in Appendix (A).

2.3.2 Poststroke bothbound model

The main difference between the prestroke and poststroke mathematical models is that the
latter has a further constraint: both of its MTBDs are attached to the MT. This has the ef-
fect of diminishing the degrees of freedom of the system from four to two, assuming the motor
remains above the MT. A spatial representation of the bothbound model is shown in Figure (2.4).

nb

t

nm fm

fb

Figure 2.4: Spatial representation of the bothbound dynein model.
The coordinate system used for derivation of bothbound forces.

The main differences between onebound and bothbound are the naming scheme and spatial
constraints. Dimers can no longer be differentiated by being un/bound, so are now differentiated
by their z-position: being near or far from the “camera.” This is similar to labeling them as the
right or left dimer. Thus there is the near binding domain nb, near motor nm, tail t, far motor
fm and far binding domain fb. Both the near and far binding domains have their y-coordinate
fixed at zero. The system is described completely by two angles: θnm and θfm. Angles θt, θnb and
θfb are dependent on these two motor angles. Intermediate variables Ln and Lf are computed
to ease calculations. The second MTBD constraint adds another required piece of information
the model must track: the x position of the second MTBD. This position is described by L, the
displacement between the near and far binding domains.

Bothbound velocity calculations

The first step in calculating angular velocities is to define intermediate variables Ln and Lf

using the law of cosines:

Ln =
√

L2
s + L2

t − 2LsLt cos θnm (2.29)

Lf =
√

L2
s + L2

t − 2LsLt cos θfm (2.30)

These new artificial stalks are not physically relevant, but allow the definition of new angles
θn, θns, θf and θfs, which are useful for calculating the position of the motor domain. The
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treatment of the near and far versions of these angles is very similar, so only the near angles will
be dealt with here. The angles themselves are never dealt with, only their sines and cosines:

cos θn =
L2 + L2

n − L2
f

2LLn
(2.31)

sin θn =
√

1 − cos2 θn (2.32)

cos θns = L2
s + L2

n − L2
t

2LsLn
(2.33)

sin θns =
{

+
√

1 − cos2 θns θnm < π

−
√

1 − cos2 θns θnm > π
(2.34)

These values are arrived at through the Law of Cosines and a trigonometric identity. The
sign of sin (θn) is restricted to positive values due to the angle’s [0, π] domain. θns’s domain is
[−π, π], meaning its sign is not restricted. The partial derivatives of these values are used in
future calculations, and some are shown here:

∂ cos θn

∂Ln
= 1

L
−

L2 + L2
n − L2

f

2LL2
n

(2.35)

∂ cos θn

∂Lf
= − Lf

LLn
(2.36)

∂ sin θn

∂Ln
= − cos θn√

1 − cos2 θn

(
1
L

−
L2 + L2

n − L2
f

2LL2
n

)
(2.37)

The position of the motor and tail domains is calculated as follows, using the angle addition
trigonometric identity:

Xnm = Ls (cos θn cos θns − sin θn sin θns) (2.38)
Ynm = Ls (cos θn sin θns + sin θn cos θns) (2.39)

Xt = Ln cos θn (2.40)
Yt = Ln sin θn (2.41)

The partial derivatives of these values are used later. A selection are shown here:

dXnm

dLn
= Ls

(
cos θn

d cos θns

dLn
+ cos θns

d cos θn

dLn
− sin θn

d sin θns

dLn
− sin θns

d sin θn

dLn

)
(2.42)

dYnm

dLn
= Ls

(
cos θn

d sin θns

dLn
+ sin θns

d cos θn

dLn
+ sin θn

d cos θns

dLn
+ cos θns

d sin θn

dLn

)
(2.43)

dXnm

dLf
= Ls

(
cos θn

d cos θns

dLf
+ cos θns

d cos θn

dLf
− sin θn

d sin θns

dLf
− sin θns

d sin θn

dLf

)
(2.44)

These partial derivatives are then used in a system of equations very similar to that in Equations
(2.27-2.28), combining Brownian and coordinate system definitions of domain velocities:
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Ẋnm = 1
γ

(
Fxml − λns(Xbm − Xbb) + λnt(Xt − Xbm)

)
+ Rxml =∂Xnm

∂Ln
L̇n + ∂Xnm

∂Lf
L̇f (2.45)

Ẋt = 1
γ

(
Fxt − λnt(Xt − Xbm) + λft(Xfm − Xt)

)
+ Rxt =∂Xt

∂Ln
L̇n + ∂Xt

∂Lf
L̇f (2.46)

Ẋfm = 1
γ

(
Fxmr − λft(Xfm − Xt) + λfs(Xfb − Xfm)

)
+ Rxmr =∂Xfm

∂Ln
L̇n + ∂Xfm

∂Lf
L̇f (2.47)

Ẏnm = 1
γ

(
Fyml − λns(Ybm − Ybb) + λnt(Yt − Ybm)

)
+ Ryml = ∂Ynm

∂Ln
L̇n + ∂Ynm

∂Lf
L̇f

(2.48)

Ẏt = 1
γ

(
Fyt − λnt(Yt − Ybm) + λft(Yfm − Yt)

)
+ Ryt = ∂Yt

∂Ln
L̇n + ∂Yt

∂Lf
L̇f

(2.49)

Ẏfm = 1
γ

(
Fymr − λft(Yfm − Yt) + λfs(Yfb − Yfm)

)
+ Rymr = ∂Yfm

∂Ln
L̇n + ∂Yfm

∂Lf
L̇f

(2.50)

The matrix version of this system looks like:



−Xnm
Ln −Xnm

Lf −Xnm−Xnb
γ

Xt−Xnm
γ 0 0

− Xt
Ln − Xt

Lf 0 −Xt−Xnm
γ

Xfm−Xt

γ 0
−Xfm

Ln −Xfm

Lf 0 0 −Xfm−Xt

γ
Xfb−Xfm

γ

−Ynm
Ln −Ynm

Lf −Ynm−Ynb
γ

Yt−Ynm
γ 0 0

− Yt
Ln − Yt

Lf 0 −Yt−Ynm
γ

Yfm−Yt

γ 0
−Yfm

Ln −Yfm

Lf 0 0 −Yfm−Yt

γ
Yfb−Yfm

γ





L̇n

L̇f

λns

λnt

λft

λfs


=



− 1
γ Fnmx − Rnmx

− 1
γ Ftx − Rtx

− 1
γ Ffmx − Rfmx

− 1
γ Fnmy − Rnmy

− 1
γ Fty − Rty

− 1
γ Ffmy − Rfmy


This system of equations is then solved and used to calculate L̇n and L̇f , as shown in Appendix
(B). These intermediate velocities can then be used to calculate ˙θnm and ˙θfm.
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3 Methods

This section will go into detail on how the model was implemented in C++ and verified for
accuracy and physicality.

3.1 Simulation
To generate stepping data, the models were coded in C++ and time-evolved using Euler’s

method to generate reasonable dynamical behavior. When in a position deemed worthy of a
state transition, the model was converted to the respective other model, representing part of a
“step” through the mechanochemical cycle.

3.1.1 Time evolution

Euler’s method for solving differential equations was used to calculate domain positions
through time. Because each model is a set of multiple coupled differential equations, care was
taken to update each domain position at the same time, and not in a cascade. A code snippet is
shown in Figure (3.1) for the onebound updating scheme. This code calculates domain velocities
for onebound dynein and uses them to find position displacements. These values are stored in
temporary variables first, then updated all at once. The dt used to update was 10−11 seconds.

def s imulate (dyn_ob ) :
t = 0
while ( t < runtime ) :

double temp_bba = dyn_ob−>get_bba ( ) + dyn_ob−>get_d_bba ( ) ∗ dt
double temp_bma = dyn_ob−>get_bma ( ) + dyn_ob−>get_d_bma ( ) ∗ dt
double temp_uma = dyn_ob−>get_uma ( ) + dyn_ob−>get_d_uma ( ) ∗ dt
double temp_uba = dyn_ob−>get_uba ( ) + dyn_ob−>get_d_uba ( ) ∗ dt

dyn_ob−>set_bba ( temp_bba)
dyn_ob−>set_bma (temp_bma)
dyn_ob−>set_uma (temp_uma)
dyn_ob−>set_uba ( temp_uba)

t += dt

Figure 3.1: Domain time evolution via Euler’s method code snippet.

3.1.2 Transitioning between states

Transition rate

Transitions from one state to another are accomplished by calculating the probability of a
transition t at a given timestep, given by Pt = ktδt. Each timestep a value in [0, 1] is sampled
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from a random number generator and, if the roll is lower than ktdt, the respective transition is
made. The following sections describe how transitions are done.

Onebound to bothbound transition calculation

When binding occurs, conversion between OB and BB models is done by creating a both-
bound dynein which is as similar in terms of domain position as possible to the onebound dynein.

Due to the nature of the simulation, binding attempts must occur above, but very close to,
the microtubule. This is because in vivo, electrostatic interactions between MTBD and MT
bring the two together when they are near. These electrostatic interactions are not present in
the model, and so are simulated by allowing binding attempts to occur when Yub ≤ 0.1nm above
the MT. When a binding attempt is successful, the unbound binding domain of the OB dynein
is “teleported” such that Yub = 0.0. This is to enforce the constraint that both binding domains
of the BB model are directly on the MT.

To create a BB model from OB, the following intermediate variables are first computed:

L2
n = (Xt − Xnb)2 + Y 2

t (3.1)
L2

f = (Xt − Xfb)2 + Y 2
t (3.2)

cos(θnm) = L2
s + L2

t − L2
n

2LsLt
(3.3)

cos(θfm) =
L2

s + L2
t − L2

f

2LsLt
(3.4)

Bothbound to onebound transition calculation

Similar to the binding transition, unbinding involves creating a new onebound dynein from
the old bothbound. To accomplish a transition to the farbound state, the following equations
are used:

θnew,bba = θold,nba (3.5)
θnew,bma = θold,nma + θold,nba − π (3.6)
θnew,uma = θold,fma + θold,fba − π (3.7)
θnew,uba = θold,fba (3.8)

To do a nearbound transition, the “f” and “n” subscripts in the above equations are swapped.

As shown in Section (4.1), the MT binding rate is much quicker than the unbinding rate.
This means that, when just unbound, the rate of rebinding is very high.

3.1.3 Calculating forces

Spring and Brownian forces are used to properly move the model through time. Appendices
(A-B) show angular velocities are functions of the x- and y-components of both spring forces
F and Brownian forces γR. Each Brownian force Rn,m on domain n in direction m is sampled
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from a Gaussian with standard deviation
√

2kBT γn

dt .

Spring forces are calculated by first finding the torque τ on each angle, then converting this
to a force. For example, the onebound near motor angle feels a force τnm = cm(θnm − θnm,eq),
where cn is the spring constant of the motor domain and θnm,eq the equilibrium angle. The
magnitude of force on the adjacent binding and tail domains is thus τ/Ls and τ/Lt, pointing in
the direction adjacent the Ls and Lt rods, respectively. The force on the motor domain is found
as the equal-and-opposite force to these two imposed forces. A sample calculation is shown in
Snippet (3.2). Torque is calculated the near motor’s angular displacement from equilibrium.
This is converted to force exerted on adjacent domains. Finally, the equal and opposite force is
exerted on the near motor domain.

de f set_onebound_restor ing_forces ( ) :
T = cm∗(nma − nma_eq ) ;
f 1 = T/Ls ;
f 2 = T/Lt ;
f1x = f1 ∗ s i n ( bba ) ;
f1y = f1 ∗ −cos ( bba ) ;
f2x = f2 ∗ s i n (bma ) ;
f2y = f2 ∗ −cos (bma ) ;
f . bbx += f1x ;
f . bby += f1y ;
f . tx += f2x ;
f . ty += f2y ;
f . bmx += −( f1x + f2x ) ; // equa l and oppo s i t e f o r c e s
f . bmy += −( f1y + f2y ) ;

Figure 3.2: Code snippet of restoring force calculation.

3.2 Verifying the model
The models were verified to follow physical laws by checking their behavior in various tests:

general conformational tests, energy conservation and obeying the equipartition theorem. The
purpose of these tests was to verify that equations had been entered properly (primarily the
conformational and energy conservation tests), and that the model obeyed the laws of physics
(all tests).

A series of conformational tests were done to test if the coordinate systems of either model
worked. These are listed in Appendix (C).

3.2.1 Energy conservation

To verify that the magnitudes of forces are calculated properly, a conservation of energy test
was performed. A very slight angular nudge was applied to either model. This nudge caused a
small change in energy. This change in energy was compared with the work the forces on each
domain caused over the nudge. For energy to be conserved, these values were required to be
very similar. Mathematically the test required the following:
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∑
n

1
2

(θnudge − θn − θn,eq) =
∑

n

F⃗n · r⃗n,nudge (3.9)

where θnudge was the angular nudge applied, Fn the net force on domain n and r⃗n,nudge

the Cartesian displacement of each domain n due to the nudge. This test is powerful since it
links the force-calculation system of either model to the energy calculation system. Energy is
calculated by looking at displacements of angles from equilibrium, whereas forces are calculated
using displacement of angles from equilibrium, but also orientation and position of each domain.
Having the force system and energy system calculate the same results indicates that they are
both likely correct.

3.2.2 Equipartition theorem

The equipartition theorem (ET) is a thermodynamic statement which says that all systems
with solely quadratic energy dependence on N degrees of freedom will have ⟨E⟩ = N

2 kbT . For
the dynein models to display ET behavior, they would have to both properly calculate forces and
properly calculate velocities from forces. Brownian forces are also required to properly explore
the different states of the system, but they need not be the correct magnitude for ET agreement.

To test if the models obey the ET, the total potential energy of each model was logged over
107 timesteps of simulation. Energies are reported as a running average over the simulation
from 0 to time t. As shown, both models have their average potential energy converge to the
expected amount, where the onebound model has four degrees of freedom and the bothbound
two.

This test verifies both force and velocity are calculated properly for either model. If ei-
ther force or velocity was wrong, then the model would not obey the Boltzmann hypothesis
P (s) = e−∆Gs/KBT , where s is a state of the system. The transition rate from s1 to s2 is
P (s1 → s2) = e−∆G2−∆G1/KBT . Wrong velocities are those that do not transition the system
from s1 to s2 at this rate. Another simulation feature this test verifies is that Brownian forces
are calculated properly.

3.3 Parameter fitting
There are 14 free variables in the dynein model: rigid rod lengths Ls and Lt, domain radii Rb,

Rm and Rt, spring constants cb, cm and ct, equilibrium angles θb,eq, θt,eq, θP re
m,eq, θP ost

m,eq, onebound
binding rate kb, and bothbound unbinding rate kub. Each of these values influences the step-
ping behavior of the model, and so must be chosen wisely. Some of these values are found
easily from literature or by looking at crystal structures of the motor protein, as shown in Table
(4.1). Others are more difficult to find. These values, including kb, kub and the three spring
constants, must be found via fitting the predictions of the model to experiment. This process
entails running simulations at various binding rates and spring constants, checking the output,
and optimizing the input parameters until physical stepping behavior is achieved. Fitting these
parameters to experiment is an active area of work on this project, but has shown tentative
positive results, as shown in the Results section.
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Winch (Sarlah) Lin PyMol 3VKH PyMol 4RH7 Leschziner [19] Kon Burgess
Ls 12nm 21.0nm 22.1nm
Lt 7nm 11.15nm
Rb 1.57nm 1.45nm
Rm 7nm 7.36nm 6.3nm
Rt 2.16nm
θP re

m 250◦ 171◦ 160
θP ost

m 330◦ 137.5◦ 136
θb 56◦ 63.5◦ 60
θt 0◦

kub 180s−1,a 90.2 ± 4.5
kb 460s−1,b

Figure 3.3: Literature values for dynein model parameters.
A table of values collected from various literature sources, other simulations and crystal

structures.

4 Results & Discussion

4.1 Model achieves processivity
When the simulation is run at the parameters shown in (4.1), the model exhibits stepping

behavior, as shown in Figure (4.2).

kb kub cb cm ct dt
1018s−1 1020s−1 2.0∆GAT P 2.0∆GAT P 1.0∆GAT P 10−10s

Figure 4.1: Parameters used in processive simulations.
These parameters cause processive stepping in the dynein model, as shown in Figures (4.2) and

(4.3).

Figures (4.2) and (4.2) demonstrate the model stepping five times, where a step constitutes
lifting a binding domain off the microtubule for any amount of time. This behavior indicates
that a springy hinge model with shifting equilibrium angles is capable of generating processive
stepping behavior. Now that the model has demonstrated stepping behavior, it must be seen if it
can generate steps at a size- and time-scale similar to that which real dynein takes in experiment.

Another important determination from Figure (4.2) is the average position of the unbound
foot is about 30nm above the microtubule. This is a preliminary finding which may not repre-
sent how the model will behave once fit to stepping behavior, so drawing conclusive conclusions
from it is impossible. However, it does initially suggest how dynein searches for the microtubule.
Instead of hovering near the microtubule looking for a binding site, the motor pulls its foot away
from the microtubule, diffusing until pushed downward far enough to bind. This behavior could
explain why dynein’s stepping pattern is so large: diffusing downward from 30nm would allow
significant x-diffusion along the microtubule. This could be contrasted with kinesin, which is
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Figure 4.2: Dynein simulation displays processive stepping.
Near and far binding domain x and y projections over the course of several microseconds of

simulation. The blue foot corresponds to the “near” dimer closer to the viewer, and the red to
the far dimer. Top: x-projection of binding domains over time. The motor steps roughly 50nm
in 10 µs. Middle: cartoon depictions of the model during simulation. In the cartoons the blue
foot’s position on the x-axis corresponds to the time axis on the top and bottom plots. That
is, the first cartoon corresponds to dynein at roughly 1 µs. The first cartoon corresponds to a

bothbound model, and the second cartoon corresponds to a onebound model. Bottom:
y-projection of binding domains over time. Notice that only one binding domain is above 0nm

at any time.

smaller and could not move its foot so high off the microtubule.

Importantly, the parameters causing processive motion are physically reasonable. The spring
constants are roughly the same size as the energy of hydrolysis of ATP, which is reasonable. By
a very rough argument, the dynein must move its tail angle by roughly one radian to diffuse
enough for a step. This would correspond to a ∆Gspring = 1

2ct∆θt ≈ ∆GAT P , which is very
reasonable. In addition, the tail spring constant is less than the motor and binding spring con-
stants, which is in line with the notion that the tail is much more elastic than the motor or
binding domains.

4.2 Model step size is highly variant
Figure (4.3) shows the stepping pattern of the model at the parameters shown in Table (4.1).

This simulation was run over a much longer time period than that shown in Figure (4.2), and
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hence shows much more significant information on the model’s stepping behavior.
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Figure 4.3: Stepping distribution of processive model and experimental dynein.
Left: step sizes generated by model. Note the model can generate 25nm steps, but has a high
preference for <5nm steps. Also note that few backward steps are generated by the model.
Simulation run at conditions in (4.1). Right: Experimental stepping distribution of dynein,

from [16].

Figure (4.3) shows the model has a strong preference for < 5nm steps, but is capable of
generating steps up to 25nm in length, with a fairly even distribution of step frequency between
5 and 25nm. This is a very important result, since it indicates that the model is capable of
taking a varied step size. This behavior is characteristic of dynein, and hence very important to
reproduce.

The preference for < 5nm steps is very un-dynein-like. One explanation is that steps may
be defined differently between experimental and modeled dynein. In the simulation, every state
transition where the motor unbinds from the microtubule is considered a step and plotted on
the stepping histogram. This may not be how the experiment in (4.3) records steps. Another
possibility is that the binding rate used for these simulations is far too high, and thus, immediate
rebinding is very likely. A solution may thus be to lower the microtubule binding rate and see
if the stepping histogram would level out.

The ability of the model to generate near-experiment stepping behavior is imperative if the
model is to be considered a proper explanation of dynein’s stepping. In the case that changing
the binding rate does not remove the small-step preference of the model, it may be necessary
to change how the model works. For example, using the total spring-energy-of-binding change
to calculate the binding probability may be invalid, or perhaps the entire two-state model will
need to be thrown out. The inability of either of these assumptions to predict dynein’s behavior
would themselves be important findings.

Another issue with the simulated histogram is that it shows no steps over 30nm. This is a
problem, since taking 40+nm steps is characteristic of dynein. Ideally, tuning the parameters
of dynein would increase the step size. However, in the case that it can’t, this might be an
important result. The current model assumes connections between domains are rigid. This may
not be a valid assumption, since coiled coils are generally elastic [23]. Thus it may be necessary
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to add in elasticity to the model to reproduce long steps.

Comparing the simulation results in (4.3) with the experimental results in (4.3), it is clear
that the model is still far from experimental dynein. However, this is not indicative of a failure of
the model, since the simulation parameters have not yet been tuned to dynein. It is very possible
that changing the binding rate, unbinding rate and spring constants will change the stepping
behavior of the model dramatically. Lowering the binding rate may even out the histogram and
prevent instant rebinding. It may also allow the model to diffuse along the microtubule longer,
generating longer steps than 25nm. Another issue is the lack of backwards steps, which may
also be solved by reducing the spring constants or lowering binding rate.
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5 Conclusion

5.1 Findings
The most important findings of this work are that a springy hinge model of dynein can take

steps of a similar size to real dynein. What’s more, it is likely further tweaking of the model
will improve the model’s behavior to the point of generating backwards and large steps. This
would be a very important result which would strongly support the linker-swing/diffusive-step
model of dynein stepping and guide further research.

Many studies have been done on dynein, resulting in a large body of literature about the
motor’s behavior and features. Sifting through this information to find what is important for
the motor’s step is a difficult task. Mutational studies can remove traits of the motor, deducing
what traits are necessary for stepping. However, this process is slow, and it can be difficult
to remove large traits of the motor while keeping the engineered dynein representative of the
natural motor. This is where simulations come in. Minimal features can be put into a physical
model, which can then be tested for behavior similar to real dynein. In this study, we created a
mathematical model which simplifies the motor to a rigid hinge structure with harmonic spring
energies between the hinges. The equilibrium angles change dynamically to reflect structural
changes during dynein’s mechanochemical cycle. The model was then subjected to Brownian
forces and evolved. If the model generates a stepping pattern similar to real dynein, this would
demonstrate that dynein can be thought of as a rigid hinged structure. This would mean that
many other traits of dynein may not be vital for stepping, such as stalk elasticity [20], motor-
motor interaction [20], nucleotide state [5], nucleotide state of non-AAA1 nuclease sites [5], and
changing stiffness of the foot domain [3]. Thus future research may want to focus more on linker
swing and binding interactions, and less on these other traits.

Other findings cast doubt on some aspects of the model. The vast preference of the model for
< 5nm steps suggests that the model may handle binding events unlike real dynein. When bind-
ing, the total spring energy of the transition from a onebound to a bothbound state is calculated,
then used to calculate the likelihood of transition via a Boltzmann factor. This approach may
be overly simple, or take into account the wrong information. It may be that it is necessary to
expand the two-state model into a three-state model with a low-microtubule-affinity onebound
state immediately after unbinding, to prevent instant rebinding. This state would eventually
transition to the high-microtubule-affinity state after some time. If this proves to be necessary
to decrease small steps, this would be an interesting result showing that the motor might rely
on its low-microtubule-affinity ADP-Pi state to prevent early binding.

5.2 Further work
The goal of studying dynein’s mechanochemical cycle is to find an explanation for how it

work. That is, to find the necessary and sufficient properties of dynein that cause the cycle
to happen. Simulations are only part of the recipe for creating a scientific theory. Simulations
are easy to implement and can study phenomena which are difficult to design experiments for.
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However, when experimental data is available, it is generally more reliable than a simulation of
the same system. This is because a simulation is only as good as the strength of correspondence
between the mathematical model and the system it represents. With dynein, this correspon-
dence can be hard to achieve because the protein is complicated. The model predicts, according
to the laws of physics for small objects, how a small machine composed of springy hinges would
behave in an aqueous environment. This machine can be made the same size and general shape
as dynein, and its conformational angles can be made the same as dynein’s, and its state tran-
sitions can happen in the same way dynein’s do. However, it is never possible to say that this
machine “is” dynein or represents how dynein actually behaves. Thus, it is only possible to
say that the simulation provides sufficient criteria for dynein stepping, not necessary criteria.
The simulation shows that the linker-swing/diffusive-step model is sufficient for motion, but it
cannot show that this is needed for dynein’s walk.

5.2.1 Experimental validation

To more strongly support the linker-swing/diffusive step model of dynein motion, more ex-
periments should be done. Demonstrating that dynein requires flexible domain connections in
order to take such broad steps would be one powerful experiment. Mutating the foot and tail
domains to be more rigid, then examining stepping behavior would be one way to see if rigidity
is necessary for random steps. Another experiment could use FRET (Forster Resonance En-
ergy Transfer) and fluorophores on the microtubule and foot domain to track how the distance
between the two regions evolves with time. This could provide information about the average
distance between the MTBD and MT, which would validate this work’s finding that the MTBD
mostly hovers. More importantly, FRET data could be fit to models to predict the amount
of diffusion the foot domain undergoes over the course of a step. Significant diffusion would
indicate that diffusion may be very important for the step. Experiments with both feet labeled
could get similarly good information.

5.2.2 Further questions

If the model were validated by FRET and rigidity mutation studies, there are many other
interesting things which could be found from it. First, the amount of work done by the motor
could be found by inducing an artificial drag force pulling the protein’s motor domains against
its direction of travel. This force could be integrated over dynein’s trajectory to find the work
the model exerted on its artificial cargo. This could be used to estimate the efficiency of the
motor. Another interesting study would be to add binding sites to the model, only allowing
it to bind at α − β tubulin dimerization sites, like real dynein. This would mandate re-fitting
the binding constants to the new environment. It would be interesting to know if this model
behaves more, or less dynein-like than the original. This would help answer the question of
whether dynein searches for a binding site on the microtubule, or if it is naturally tuned to bind
at the right site.

Another very interesting simulation which could be run could help answer the open ques-
tion of why kinesin and dynein, though using similar mechanisms, produce such different steps.
Kinesin, unlike dynein, conducts all of its chemistry directly on its foot. This translates to effec-
tively having two fewer joints than dynein. Kinesin’s stroke is believed to involves a similar foot
unbinding, kicking forward, rebinding, then lurching the motor forward mechanism. The dynein
model could be used to construct a very rough model of kinesin by shrinking the tail linkers and
increasing the motor domain spring constant cm high enough to simulate a rigid hinge. This
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model could then be reduced to the size of kinesin, given the proper equilibrium angles, and
simulated with Brownian dynamics. If this new model even roughly manages to mimic experi-
mental kinesin stepping, that would be fascinating. This result would show that the differences
between kinesin and dynein can be explained exclusively through the values of spring constants
ct, cm, cb, lengths Ls and Lt, equilibrium angles and un/binding constants. This would mean the
differences between the two motors are primarily due to the conformational angles the motors
take with the microtubule and between their own domains, not because of differences in their
mechanism.

5.2.3 The future of dynein research

The motor protein field has come a long way over the past two decades. Theoretical papers
in the 90s, such as Bhaba et. al. [2], opened up many questions about how cells can use proteins
and simple chemical reactions to generate directed, finely-controlled motion. Following these
papers came low-resolution structures and experiments testing the stepping behavior, direction-
ality, conformation changes and chemical affinities of these motors. As structural technology got
better, resolution got better, until eventually amino-acid resolution structures were found [21].
These structures allowed more informed hypotheses to integrate experimental data and struc-
tures into well-advised theories on motor motility, such as Andreasson et. al. for kinesin [1] and
Cianfrocco et. al. for dynein [5]. These theories are now being tested using state of the art
methods. For example, a lab at Penn State is currently exploring kinesin dynamics using gold
nanoparticles, and is capable of getting 2nm spatial resolution and 1ms temporal resolution [12].
This level of detail would provide intra-step information about the kinesin mechanochemical
cycle, confirming or rejecting hypotheses about how the motor steps. If such technology were
applied to dynein, the accuracy of the Cianfrocco model and the role of diffusion would be
definitively determined. However, such experiments take time to design and implement. In the
meantime, modelling projects like the one in this thesis can be used to provide rough windows
into the nanoscale world, guiding future experimental work. They sanity-check theories and help
scientists form new questions, such as if dynein drags along the microtubule or diffuses above it.
It is uncertain what direction the field will go over the coming decade, but it is clear that now
is a very exciting time for dynein research.

A Onebound equations

The following is a continuation of the derivation for the full motion equations used to time
evolve the onebound model:

AA = Ls sin θbb LL = −Ls cos(θbb)
BB = Lt sin(θbm) MM = −Lt cos(θbm)
CC = −Lt sin(θum) NN = Lt cos(θum)
DD = −Ls sin(θub) OO = Ls cos(θub)

EE = −γm(Xbm − Xbb) PP = −γm(Ybm − Ybb)
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FF = γm(Xt − Xbm) QQ = γm(Yt − Ybm)
GG = −γt(Xt − Xbm) RR = −γt(Yt − Ybm)
HH = γt(Xum − Xt) SS = γt(Yum − Yt)

II = −γm(Xum − Xt) TT = −γm(Yum − Yt)
JJ = γm(Xub − Xum) UU = γm(Yub − Yum)

KK = −γb(Xub − Xum) V V = −γb(Yub − Yum)



AA 0 0 0 EE FF 0 0
AA BB 0 0 0 GG HH 0
AA BB CC 0 0 0 II JJ
AA BB CC DD 0 0 0 KK
LL 0 0 0 PP QQ 0 0
LL MM 0 0 0 RR SS 0
LL MM NN 0 0 0 TT UU
LL MM NN OO 0 0 0 V V





θ̇bb

θ̇bm

θ̇um

θ̇ub

λbs

λbt

λut

λus


=



−Fbmx + γmRbmx

−Ftx + γtRtx

−Fumx + γmRumx

−Fubx + γbRubx

−Fbmy + γmRbmy

−Fty + γtRty

−Fumy + γmRumy

−Fuby + γbRuby


Solving the above system for θ̇bb, θ̇bm, θ̇um and θ̇ub gives the desired velocities. Solution was

done via Mathematica.

B Bothbound equations

The following are the full motion equations used to time evolve the bothbound model:

a = −dXnm

dLn

b = −dXnm

dLf

c = −(xnm − xnb)/γm

d = (xt − xnm)/γm

e = −dXt

dLn

f = −dXt

dLf

g = −(xt − xnm)/γt

h = (xfm − xt)/γt

i = −dXfm

dLn

j = −dXfm

dLf

k = −(xfm − xt)/γm

l = (xfb − xfm)/γm

m = −dY nm

dLn

n = −dY nm

dLf

p = −(ynm − ynb)/γm

q = (yt − ynm)/γm

r = −dY t

dLn

s = −dY t

dLf

t = −(yt − ynm)/γt

u = (yfm − yt)/γt

v = −dY fm

dLn

w = −dY fm

dLf

x = −(yfm − yt)/γm

y = (yfb − yfm)/γm
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

a b c d 0 0
e f 0 g h 0
i j 0 0 k l
m n p q 0 0
r s 0 t u 0
v w 0 0 x y





L̇n

L̇f

λns

λnt

λft

λfs


=



− 1
γ Fnmx − Rnmx

− 1
γ Ftx − Rtx

− 1
γ Ffmx − Rfmx

− 1
γ Fnmy − Rnmy

− 1
γ Fty − Rty

− 1
γ Ffmy − Rfmy


Solving the above system for θ̇nm and θ̇fm gives the desired velocities. Solution was done

via Mathematica.

C Conformational tests

The models were tested in the following different conformations to verify they behaved as
expected:

Onebound tests

• Onebound: Upwards line conformation with no forces. Check that all domain x-values
are zero∗ and all y-values are the proper addition of Ls and Lt lengths. Also checks that
all angular velocities are zero. This test verifies that the angle scheme is defined properly,
that the model can handle straight lines without generating NaNs and that there are no
velocities (angular or Cartesian) without forces.

• Onebound: Horizontal line conformation with no forces. Check that all domain y-values
are zero and all x-values are the proper addition of Ls and Lt lengths. Also check that
all velocities are zero. This test double-verifies that the coordinate system behaves as
expected and that velocities are zero in the absence of forces.

• Onebound: Upwards line conformation with +x forces Check that Cartesian x-velocities
are positive and y-velocities are zero. Verifies that the Cartesian velocities have the ex-
pected sign.

• Onebound: Upwards line conformation with +y forces Check that all Cartesian velocities
are zero. Verifies that upwards forces in an already-vertical stalk have no effect on velocity.

• Onebound: Prepowerstroke opposing internal/brownian forces Check that, for two onebound
models, one with +x spring forces and no Brownian forces and the other with -x Brownian
forces and no spring forces, that the velocities of each unbound domain are equal and
opposite. Verifies that equal Brownian and internal forces have the same magnitude and
direction of effect on velocities.

These checks for equality are within a margin of error of ϵ = 1e−5.

These tests together verify that the onebound model’s internal coordinate system’s directions
match the XY coordinate system directions, that the angular directions in the model properly
align with the ±x and ±y directions of the XY coordinate system, that velocities have the proper
magnitude at zero force and proper sign at nonzero force, and that Brownian and internal forces
are in the same unit system. There are still errors which could exist in the model pertaining to
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magnitude of velocity, which will be tested for in the energy conservation section.

Bothbound tests

• Bothbound: Upwards line conformation with no Brownian forces. Both MTB domains
are very close together (L = 10−25) and motor domains nearly vertical (θn/f = π ±10−15).
Equilibrium angles set to have a vertical line as the lowest energy point. Checks that
domain x-values are zero∗, domain y-values are the correct combination of Ls and Lt

lengths, all angles are at equilibrium and all forces are zero. Verifies that the domains are
properly oriented by the angles, the angles are defined properly and forces are calculated
from angles properly.

• Bothbound: Equilateral house conformation with outward x-forces. The model forms the
shape of a square with an equilateral triangle on top, with the tail domain as the triangle.
Checks if all domains are at the desired locations and the derivatives are the proper sign
and are equal and opposite to their counterparts on the opposing side of the house. This
test verifies that the angular system behaves as expected and forces are symmetric about
the two dimers.

• Bothbound: Two table conformations with near/far domains flipped. Two models are
put in the same table-like conformation, but the near/far domains are flipped. Checks
if opposite domains have the same positions and forces. Re-verifies that the model is
symmetric in position and force between the two dimers.

These tests verify the bothbound model’s angle system behaves as expected, forces are zero
when expected and have the proper signs, and that the whole system is symmetric with either
dimer.
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