
AO
�
Revisited

Valentina Bayer Zubek �� Thomas G� Dietterich

School of Electrical Engineering and Computer Science� Oregon State University�

Corvallis� OR ���������	� USA

Abstract

This paper revisits the AO� algorithm introduced by Martelli and Montanari ��� and
made popular by Nilsson ���� The paper�s main contributions are� 	�
 proving that
the value of a node monotonically increases as the AO� search progresses� 	�
 proving
that selective updates of the value function in the AO� algorithm are correct� and 	�

providing guidance to researchers interested in the AO� implementation� 	�
 and 	�

are proven under the assumption that the heuristic used by AO� is consistent� The
paper also reviews the use of AO� for solving Markov Decision Processes 	MDPs

and Partially Observable Markov Decision Processes 	POMDPs
�

Key words
 Heuristic search� AO� implementation� AND
OR graph� admissible
heuristic� consistent heuristic� MDP� POMDP

� Introduction

The AO� algorithm introduced by Martelli and Montanari���� and presented
in more detail by Nilsson ���� is a well�known technique for solving AND�OR
graphs	 AO� has been widely applied to solve problems such as symbolic inte�
gration �
�� theorem proving ��� chapter ��� game analysis� learning diagnostic
policies ���	 This paper introduces a systematic framework for describing the
AO� algorithm� using notations inspired from the MDP framework	 We prove
that AO� converges to the optimal solution graph of the AND�OR graph� if
provided with an admissible heuristic	 The proof is not new� however� being

rst presented by Martelli and Montanari in ���	 That paper also observed
that given an additional assumption of consistency �or monotonicity� for the

� Corresponding author�
Email addresses
 bayer�cs�orst�edu 	Valentina Bayer Zubek
�

tgd�cs�orst�edu 	Thomas G� Dietterich
�

Preprint submitted to Elsevier Science �� June ����



heuristic� the value of each node in the graph increases with more iterations�
and the algorithm can perform more e�cient updates	 These claims �that also
appear in ��� and in all further papers about AO� implementation� were never
proved before� and this paper 
lls the gap by proving them	 This paper is also
aimed to guide researchers interested in an e�cient AO� implementation	

Section � introduces the de
nitions and notations for AND�OR graphs	 We
give an overview of the AO� algorithm in Section 
� and we de
ne the notions
of admissible and consistent heuristics� along with the properties they induce
on the value function in the graph	 We also detail the implementation of the
AO� algorithm	 Section � proves that AO� with an admissible heuristic con�
verges to the optimal solution graph� and that AO� with a consistent heuristic
also converges but performs more e�cient updates to the value function	 We
conclude by reviewing the AO� literature in Section �� including the applica�
tion of the AO� algorithm to solving MDPs and POMDPs with a given start
state	

� AND�OR Graphs

An AND�OR graph alternates between two types of nodes� OR nodes and
AND nodes	 We restrict our attention to acyclic graphs �in fact� DAGs�� where
a node is either an OR node or an AND node	 Each OR node has an arc �or
��connector� to each of its successor AND nodes	 Each AND node has a k�
connector to the set of its k successor OR nodes	 The names come from the fact
that an OR node solution requires the selection of only one of its successors�
while an AND node solution requires the solution of all of its successors	

��� Examples of AND�OR Graphs

AND�OR graphs were studied in the early ��s to represent the problem�
reduction approach to problem�solving� in applications such as symbolic in�
tegration� theorem proving� and game analysis	 In problem�reduction search�
the original problem is transformed into several subproblems	 A problem cor�
responding to an OR node is solved when at least one of its successor sub�
problems is solved	 A problem corresponding to an AND node is solved when
all of its successor subproblems are solved	 For example� to 
nd a counterfeit
coin from a set of � coins� in the corresponding OR node we could choose to
weigh either a pair of coins �one coin in each pan of the scale�� or all � coins
�two in each pan�	 To solve one of these two AND nodes we need to solve all 

OR nodes corresponding to the weighing outcomes� balance tips left� balance
tips right� and balance is steady	

�



A Markov Decision Process �MDP� is a mathematical model describing the
interaction of an agent with an environment	 An MDP is de
ned by a set of
states S� a set of �stochastic� actions A� the transition probabilities Ptr�s

�js� a�
of moving from state s to state s� after executing action a� and the costs
associated with these transitions	 An AND�OR graph for an MDP has OR
nodes corresponding to states s� and AND nodes corresponding to state�action
pairs �s� a�	

��� De�nitions and Notations

We will introduce notations and de
nitions for an arbitrary AND�OR graph
G	 The AO� algorithm constructs an AND�OR graph incrementally� starting
from the root node� this graph is called the explicit graph� and is a subgraph of
the entire search graph �the implicit graph�	 In other words� during the search
process AO� can 
nd the optimal solution without doing exhaustive search	
In the following� G is the entire graph �implicit graph�	

By de
nition� the �implicit� 
nite AND�OR graph G consists of a root OR
node �start node� and a successor function	 There are a total of N OR nodes	
The successor function for an OR node n is one AND node �n� a�� correspond�
ing to the arc ���connector� denoted by a	 We will refer to these arcs as actions	
The set of all actions is called A� and the set of actions valid in OR node n
is denoted A�n�	 If there are m actions in A�n�� then OR node n has m AND
node successors	 The successor function for an AND node �n� a� is given by a
k�connector which points to the set of k OR nodes n�	

Terminal nodes are OR nodes corresponding to goal nodes	 We assume there
is a predicate P �n� that returns true when node n is a goal node	 There are
no valid actions in a terminal node� so A�n� � �	

Figure � presents a simple example of an AND�OR graph	

During the AO� description� it will be useful to ignore AND nodes and view
the AND�OR graph as a DAG of OR nodes	 For this purpose� we will say
that OR node n� is a parent of OR node n� if n� can be reached from n� by
traversing exactly one AND node	 Abusing notation� we will also call n� a
successor of n�	 If at least one AND node must be traversed to get from n� to
n�� then n� is a descendant of n�� and n� is an ancestor of n�	

At the very beginning� the explicit graph consists of the root OR node and
its unexpanded AND nodes �that is� the successors of these AND nodes were
not yet generated�	 The explicit graph is grown by selecting one of these AND
nodes for expansion� and generating all its successors	 The k�connector and the
successor OR nodes �along with their unexpanded AND nodes� are added to






21 aa

76n3n n

4n n

a3

2n

1n

5

4a

Fig� �� A simple example of an AND
OR graph� OR nodes are enclosed in circles
	e�g�� n�� n�� � � � � n�
� AND nodes are marked by arcs 	e�g�� 	n�� a�
� 	n�� a�
� 	n�� a�


and specify the outcomes of actions� OR nodes and AND nodes succeed each others
in the graph� The terminal nodes are marked by solid squares� OR node n� can
be reached twice from the root n�� by following the path of AND nodes 	n�� a�
�
	n�� a�
� and also from the AND node 	n�� a�
�

the graph	 The implicit graph is generated after all AND nodes are expanded�
therefore its leaves are terminal OR nodes	

The OR node whose unexpanded AND node the AO� algorithm will select
for expansion is called a fringe node	 Note that an OR node may have both
expanded and unexpanded AND nodes	

Abusing the notation� we will sometimes say �expanding the action a in node
n� instead of �expanding AND node �n� a�� �which generates the successor
OR nodes of �n� a��	

As the graph grows� some of the successors OR nodes of AND nodes may
have been generated before� and therefore the corresponding branch of the k�
connector only needs to be pointed toward these existing nodes �see Figure ��	
This makes G a graph� instead of a tree	 For example� in the problem of
learning diagnostic policies �see Section �	
�� multiple paths from the root
lead to the same OR node by changing the order of the tests	

The AND�OR graph is acyclic� by de
nition� starting from any OR node�
there is no sequence of actions that leads back to the node	

By de
nition� a terminal OR node �one on which the goal predicate is true�
is solved	 We can recursively de
ne an AND node to be solved� when all its
successors OR nodes are solved	 A �nonterminal� OR node is solved if at least
one of its successor AND nodes is solved	

�



A solution graph of an AND�OR graph G is a subgraph of G� such that�
the root OR node of G belongs to the solution graph� each OR node in the
solution graph has only one of its successor AND nodes in the solution graph�
each AND node in the solution graph has all its successor OR nodes in the
solution graph	 For brevity of notation� we will call a solution graph a policy�
denoted �	 For an OR node n� the policy speci
es the action a to be taken�
��n� � a	 The policy is unde
ned in a terminal OR node	 For an AND node
�n� a�� the policy speci
es all its successors OR nodes	 A policy is 
nite� and
all its leaves are terminal OR nodes� such a policy is complete �all its AND
nodes are expanded�	 Before the AO� algorithm terminates� the policy may be
incomplete or partial� if it contains unexpanded AND nodes	 The leaves of an
incomplete policy are OR nodes n� some leaves may be terminal nodes� but
there is at least one non�terminal node� with unexpanded AND node �n� ��n��	
In general� a policy is a graph� not a tree	

A positive cost C�n� a� is associated with each AND node �n� a�� and a positive
weight w�n� a� n�� is associated with the branch of the connector from the
AND node to its successor OR node n�	 Special cases for the weights are�
all weights are ���� for problem�solving� i	e	 w�n� a� n�� � �� �n� a� n�� weights
correspond to transition probabilities for MDPs� i	e	� w�n� a� n�� � Ptr�s

�js� a��
with

P
s� Ptr�s

�js� a� � �� �s� a� where node n corresponds to MDP state s and
node n� corresponds to one of the resulting MDP states s� after executing
action a in state s	

We assume that the weights and costs are given	

Solving an AND�OR graph means 
nding the policy of minimum cost	 Using
notations inspired from MDPs� we call the minimum cost function of an OR
node n its value function V ��n�� and the minimum cost function of an AND
node �n� a� its Q�functionQ��n� a�	 These cost functions are recursively de
ned
as� V ��n� � mina�A�n�Q

��n� a�� Q��n� a� � C�n� a� �
P

n� w�n� a� n��� V ��n���
where n� are the successor OR nodes of AND node �n� a�	 If OR node n is
a terminal node� its value function is zero� V ��n� � �	 The minimum cost
function of the root node is also called the optimal value function V � of the
AND�OR graph	 There could be more than one policy whose cost is V �� such a
policy is called an optimal policy ��� in an OR node� an optimal policy selects
an action ���n� � argmina�A�n�Q

��n� a�	

�



n’

n
a

use  h 
to evaluate

C(n,a)

w(n,a,n’)

Fig� �� The admissible heuristic Q	n� a
 for unexpanded AND node 	n� a
 is com�
puted using one�step lookahead and admissible heuristic h to evaluate its successor
OR nodes n�� Q	n� a
 � C	n� a
 �

P
n� w	n� a� n�
 � h	n�
�

� AO� Algorithm

��� Overview of the AO� Algorithm

The AO� algorithm computes an optimal solution graph �policy� of an AND�OR
graph� given an admissible heuristic �����	 A heuristic is admissible if it never
over�estimates the optimal cost of getting from a node to terminal nodes	 If in
addition the heuristic satis
es the consistency �monotonicity� property� then
the algorithm becomes more e�cient in terms of the number of node updates	

During its search� AO� considers incomplete policies in which not all AND
nodes have been expanded	 The AO� algorithm repeats the following steps�
in the current policy �� it selects an AND node to expand� it expands it
�by generating its successor OR nodes�� and then it recomputes �bottom�up�
the optimal value function and policy of the revised graph	 The algorithm
terminates when all leaf OR nodes of the policy are terminal �so there are no
more unexpanded AND nodes in the policy�	 The complete policy computed
upon convergence is an optimal policy ��	

We now introduce the notion of admissible heuristic	

��� Admissible Heuristic

De�nition ��� Heuristic h is admissible if for any OR node n it under�
estimates the cost of the optimal policy under this node� i�e� h�n� � V ��n��

The admissible heuristic is positive� h�n� � �� and since terminal nodes have
V ��n� � �� it implies that the heuristic estimates for terminal nodes is also
zero� h�n� � �	

�



We can extend the admissible heuristic to provide an under�estimate� Q�n� a��
of the optimal cost of an unexpanded AND node �n� a�	 This extension is based
on a one�step lookahead �see Figure ��� and it computes Q�n� a� � C�n� a� �P

n� w�n� a� n�� � h�n��� where n� iterates over the successor OR nodes of AND
node �n� a�	 Because h�n�� � V ��n��� it follows that Q�n� a� � Q��n� a�� so the
heuristic for unexpanded AND nodes is admissible	 Because the weights w and
the admissible heuristic h are positive� we also have that Q�n� a� � C�n� a�	

The de
nition of the admissible heuristic Q�n� a� can be extended to apply to
all AND nodes as follows�

Q�n� a� �

���
��
C�n� a� �

P
n� w�n� a� n�� � h�n��� if �n� a� is unexpanded

C�n� a� �
P

n� w�n� a� n�� � V �n��� if �n� a� is expanded

where V �n�
def
� mina�A�n�Q�n� a� is the value function of OR node n� with

V �n� � � if n is terminal	 This de
nes value functions V �n� and Q�n� a��
based on the admissible heuristic h� for every OR node n and every AND
node �n� a� in the �explicit� graph	 We can also de
ne the policy whose value
function is V �n�� as ��n� � argmina�A�n�Q�n� a��

Theorem 
	� proves that Q and V form an admissible heuristic	 Their values
are less than the optimal value functions for all iterations of AO� �in the
following� we did not burden the notation with an index for iteration�	

Theorem ��� If h is an admissible heuristic� then for all nodes n and all
actions a � A�n�� Q�n� a� � Q��n� a�� and V �n� � V ��n��

Proof by induction�

Base case for Q�
If AND node �n� a� is unexpanded� then Q�n� a� � C�n� a� �

P
n� w�n� a� n�� �

h�n�� � C�n� a� �
P

n� w�n� a� n�� � V ��n�� � Q��n� a�� because h�n�� � V ��n��	

Base case for V �
For a terminal OR node� V �n� � V ��n� � ��

Let nu be any OR node all of whose AND nodes �nu� a� are unexpanded	 Then
V �nu� � V ��nu� follows from the base case of Q	

Any other OR node ne in the graph has at least one AND node �ne� a� previ�
ously expanded	 Let n� be any of the successor OR nodes of �ne� a�	

Induction hypothesis�
If V �n�� � V ��n��� �n�� then Q�ne� a� � Q��ne� a�� �a � A�ne�� and V �ne� �
V ��ne�	

�



We only need to consider the case of an expanded action a � A�ne�� because
the other situations are covered by the base case ofQ	 By de
nition�Q�ne� a� �
C�ne� a��

P
n� w�ne� a� n

�� �V �n��	 Because n� is one of the successor OR nodes
of �ne� a�� we can apply the induction hypothesis for n�� so V �n�� � V ��n���
hence Q�ne� a� � Q��ne� a�	 It follows that Q�ne� a� � Q��ne� a�� �a � A�ne��
and V �ne� � V ��ne�� Q�E�D�

We now introduce the notion of consistent heuristic	

��� Consistent Heuristic

De�nition ��� Heuristic h is consistent 	or monotonic
 if for any OR node
n and its successor OR node n��

h�n� � C�n� a� �
X
n�

w�n� a� n��� h�n��� �a � A�n�

Trivial examples of a consistent heuristic h�n� are the optimal value function
V ��n� �by de
nition� V ��n� � mina�A�n�C�n� a� �

P
n� w�n� a� n�� � V ��n����

and the zero heuristic� h�n� 	 �	

Theorem ��� If heuristic h is consistent� then for every OR node n in the
graph� h�n� � V �n�� where V �n� is the value of node n for an arbitrary itera�
tion of AO��

Proof by induction�

Base case�

If OR node n is terminal� h�n� � V �n� � �	

Induction hypothesis�
Let n� be any successor OR node of n	 If h�n�� � V �n��� then h�n� � V �n�	

Because h is consistent� h�n� � C�n� a��
P

n� w�n� a� n���h�n��� �a � A�n�	 We
can apply the induction hypothesis for nodes n�� so h�n�� � V �n��	 Therefore
h�n� � C�n� a� �

P
n� w�n� a� n��� h�n�� � C�n� a� �

P
n� w�n� a� n��� V �n�� �

Q�n� a�� �a � A�n�� which implies h�n� � Q�n� a�� �a � A�n�	 Finally� h�n� �
mina�A�n�Q�n� a� � V �n�� Q�E�D�

The following theorem establishes that a consistent heuristic is also admissible	

Theorem ��� If heuristic h is consistent� then it is admissible 	i�e�� for every
node n in the graph� h�n� � V ��n�
�

�



Proof� Similar to the proof of Theorem 
	�� replacing V with V �	

Corollary ��� If heuristic h is consistent� then for every node n in the graph�
h�n� � V �n� � V ��n��

Proof� Because h is consistent� Theorem 
	� provides that h�n� � V �n�	
Theorem 
	
 guarantees that a consistent heuristic is admissible� so we can
apply Theorem 
	� for h admissible which says that V �n� � V ��n�	 It follows
that h�n� � V �n� � V ��n�	 Q�E�D�

��� Pseudocode and Implementation Details for the AO� Algorithm

In our AO� implementation� we store more information than necessary� but
this makes the description and the implementation clearer	 We store Q� V � ��
though it would be enough to store just the Q function� because the policy �
and the V function can be computed from Q	

����� Data Structures

An OR node n stores


 the current policy� ��n�� and its value� V �n��

 a �ag that marks if this node is solved�

 a list of successor AND nodes �n� a�� for all actions a � A�n�

 a list of parent OR nodes� along with markers set to � if n is reached by
��parent�	

Because our graph is a DAG and we do not want to generate the same OR node
multiple times� the OR nodes are stored in a hash table	 Before generating a
new OR node� we double check that such an OR node does not exist already	
If it does� we only update the list of its parents	

An AND node �n� a� stores


 a �ag that marks this node as expanded or not

 the Q�value� Q�n� a��

 a list of its successor OR nodes n�� and one weight w�n� a� n�� for each
successor	

����� Pseudocode

Table � gives the pseudocode for the AO� algorithm	 We describe each step of
it	 Step ��� is described in Table �� step ��� in Table 
 and step ��� in Table �	

�



Table �
Pseudocode for the AO� algorithm�

function AO�
returns a complete policy�

iteration i � ��
create hash�table�
	�
 create�OR�node	root� 	OR Node
 �� hash�table
�
	�
 while 	root not solved
f



 iteration i� �
	�
 in current �� select fringe OR node n with

AND node 	n� a
 to expand 	�	n
 � a
�
	�
 expand AND node 	n� a
 by creating successor OR nodes n��
	�
 do bottom�up updates of Q�V� � for n and its ancestors�
i���
g
return last ��

Table �
Creating a new OR node� If n � root� there is no parent�

function create�OR�node	OR node n� OR node parent� hash�table
�
if n is terminal

set A	n
 � �� solved � �� V 	n
 � �� �	n
 to be unde�ned�
no need to store any parents of n� nor to store n in the hash table�
create OR node n�

else
for every action a � A	n


compute Q	n� a
 � C	n� a
 �
P

n� w	n� a� n�
 � h	n�

mark 	n� a
 as unexpanded
create AND node 	n� a


�	n
 � argmina�A�n�Q	n� a
� V 	n
 � mina�A�n�Q	n� a
�

solved � ��
if 	parent


add parent to the list of parents�
create OR node n�
store OR node n in the hash�table�

Step	�
� Creating a New OR Node

First we take care of the case when OR node n is terminal	 Otherwise� for every
action a � A�n� we compute Q�n� a� using the heuristic h in the successor
nodes n�� and we create the unexpanded AND node �n� a�	 Then we compute
the policy ��n� and value function V �n�	 The node n is not solved	

If the call to create�OR�node�� speci
es a parent� then we add this parent to
the list of parents of the new OR node	

��



We 
nally create the new OR node n with policy ��n�� value V �n�� solved�
list of successor AND nodes �if any�� and list of parents �if any�	

The root gets added to the hash�table as the 
rst OR node created	 For all
other nonterminal OR nodes� we 
rst check that they are not already in the
hash�table� before storing them	

Step	�
� OR Node Becomes Solved

In the following� we explain what it means for an OR node to be solved	 This
is a general concept� though in step ��� of Table � it is applied for the root
node	 An OR node becomes solved when all its successor OR nodes� reached
by �� are solved	 The base case for this recursive de
nition is a terminal node	

De�nition ��� An OR node is solved if it is a terminal OR node� or if it is
an internal OR node and all its successor OR nodes� reached by �� are solved�

Once an OR node n becomes solved� it stays solved� because its choice for
� will not be changed� as we see in the code for selecting the AND node
to expand	 The policy under a solved node is a complete policy �because its
leaves are terminal nodes�� the best one in the subgraph rooted at this OR
node	 With a proof similar to Theorem �	�� it can be shown by induction
that for a solved OR node n� V �n� � V ��n�� starting with the terminal nodes
whose value is zero	

Step	�
� Select AND Node to Expand

We traverse the current policy � �at iteration i � �� this is policy �i� until
we 
nd a suitable leaf OR node n� with unexpanded ��n�	 Node n is called
a fringe node	 For example� we could traverse the policy depth�
rst� keeping
track of the leaf OR node n with unexpanded ��n� having the largest value�
maxn V �n�� this is done in problem solving	 In MDPs� one may choose the node
with maxn V �n��P �n�� where P �n� is the probability of reaching node n from
the root	 This heuristic for node selection can be interpreted as expanding the
AND node �n� ��n�� with the largest impact on the root	

We can stop the search down a branch of � if we 
nd a solved OR node� because
the policy under that node is complete �all its leaf OR nodes are terminal��
therefore there are no unexpanded AND nodes in it	 This proves that once an
OR node becomes solved� it stays solved	 It also makes the implementation
more e�cient	

It is also possible to expand more AND nodes per iteration	

��



Table �
Expanding AND node 	n� a
 of fringe OR node n�

function expand�AND�node	fringe OR node n� hash�table
�
a � �	n
�
for every successor OR node n� of AND node 	n� a

if 	node n� is already in the hash�table

add n to the list of parent OR nodes of n��
if 	h is consistent

mark the link n� n� as being part of ��

else

create�OR�node	n�� n� hash�table
�
add OR node n� to the list of successors for AND node 	n� a
�

mark AND node 	n� a
 as expanded�

We are interested in the leaf OR node n� though we expand its AND node
�n� ��n��� the reason for this will become apparent in the description of the
next steps of the AO� algorithm	

Since the root is not solved at the current iteration� there must be at least one
unexpanded AND node in �� so the fringe node exists	

In general� note that an OR node n is a leaf with respect to a particular
policy �� in the sense that the AND node �n� ��n�� is unexpanded� though
in the graph G this OR node may have other successor AND nodes� already
expanded	

Step	�
� Expand AND Node

Table 
 shows the details for expanding an AND node �n� a�	 If the successor
OR node n� was already created� then it is stored in the hash�table� and its
parent fringe node is added to the list of parents for n�	 If the heuristic is
consistent� then we mark the connector from fringe to n� as being part of the
policy � �this is useful for future updates of values and policy�	 If n� was not
generated before� we need to create a new OR node n�	 In either case� the OR
node n� is added as a successor of the AND node �n� a�	 Finally we mark the
AND node as expanded	

Step	

� Bottom�up Updates of Values and Policy

Let Vi�n� be the value for OR node n at the end of iteration i	 All nodes n in
the graph whose values are not modi
ed in iteration i�� have Vi	��n� � Vi�n�	
The action set A�n� of valid actions in any node n does not change from one
iteration of AO� to another	

��



Table �
Updating V � Q and � at iteration i�� after the expansion of � in fringe OR node�

function update	OR node fringe
�
push fringe OR node onto the queue�
while 	queue not empty
f

pop OR node n from the queue�
recompute Q	n� a
 for all expanded AND nodes 	n� a
�
Qi	�	n� a
 �� C	n� a
 �

P
n� w	n� a� n�
 � Vi	�	n

�
�
for unexpanded AND nodes 	n� a
�
Qi	�	n� a
 �� Qi	n� a
�

�i	�	n
 �� argmina�A�n� Qi	�	n� a
� Vi	�	n
 �� mina�A�n�Qi	�	n� a
�

if 	AND node 	n� �i	�	n

 is expanded

if 	all successor OR nodes of 	n� �i	�	n

 are solved

label OR node n as solved�

if 	h is consistent

mark all its successor OR nodes as being reachable by �i	� from node n�

if 	�i	n

 �� �i	�	n



if 	h is consistent

mark all the successor OR nodes of 	n� �i	n

 as unreachable by �i	�

from node n�
if 	h is consistent

if 		OR node n solved
 or 	Vi	�	n
 � Vi	n



push onto the queue all marked parents of OR node n�

else 

 h is admissible but not consistent
if 		OR node n solved
 or 	Vi	�	n
 �� Vi	n



push onto the queue all parents of OR node n�

g

Table � details the updates of values and policies	 A change in the graph is
initiated by a change in the fringe node	 Starting with the fringe node� we
propagate changes in the values upward in the graph by pushing OR nodes�
which can be a�ected by these changes� onto a queue	 The changes propagate
from bottom�up� so when updating the value of node n we already computed
the value Vi	� of its successor OR nodes n�	 Because the graph is a DAG� there
are no loops in this bottom�up propagation	

Only the Q values for expanded AND nodes need to be updated� based on the
already computed V values of their successors OR nodes	 The Q values for
unexpanded AND nodes were already computed� based on h for their successor
OR nodes� and these Q values stay the same	 For every OR node in the queue�
it is necessary to perform the updates for all its expanded AND nodes� to take
into account changes in value in their successors	

After updating the Q values� we recompute � and V 	 The current OR node n
popped from the queue becomes solved when its successor OR nodes through

�




� are solved	

The next section will prove the correctness of AO� with selective updates�
provided that the heuristic h is consistent	 If h is admissible� but not consistent�
we do not need to mark links� and we will have to update all ancestors of
fringe node if the fringe became solved or if there is a change in its value	 The
following description �and also the markings between OR nodes in Tables 

and �� are assuming that h is consistent	

We 
rst mark the successor OR nodes of �n� ��n�� as being reachable by �	 If
the policy has changed� we need to mark the successor OR nodes of n through
the old policy � as being unreachable by the new �	 It is important to have a
marker between a successor OR node and its parent OR node� if the successor
is reached from the parent by following �	 These markers� which are similar to
reversed links� will be useful after successor OR nodes update their V values
and these changes need to be propagated to their marked parents� which will
be pushed onto the queue	

If an OR node becomes solved� or its V value changes �which for consistent
heuristic h can only be an increase in value� as proved in the next section�
Theorem �	��� then all its marked parents get pushed onto the queue	 The
connectors to the parent OR nodes were marked as being part of � in previous
iterations of AO�	 These parents� when their turn to be updated comes� will
push their marked parents onto the queue� and this continues until the queue
is empty	

A node can be pushed on the queue multiple times	 AO� without selec�
tive updates will push all ancestors of a fringe node on the queue	 Even
with selective updates� a node can appear multiple times on the queue	 Each
time a node n is removed from the queue� we do a full Belmann update
of its value function� that is� we recompute all Q�n� a�� �a � A�n�� and set
V �n� � mina�A�n�Q�n� a� � mina�A�n�C�n� a� �

P
n� w�n� a� n�� � V �n��	 If

node n appears k � � times on the queue� at iteration i � �� it is possible
that the lth update of its value function� with l � k� uses value Vi for some of
the successors n�� if nodes n� did not have their values Vi	� computed already
when node n is removed from the queue for the lth time	 However� at the end
of iteration i� �� the value of node n� Vi	��n�� will be correctly computed
using Vi	��n

��	

Figure 
 depicts a case where a node is pushed several times on the queue	 The

gure depicts the policy �i at iteration i � �	 Node n� was 
rst generated by
performing the action E in node n�� but later on� after performing action S in
node n�� n� was also one of the successors of n�	 Assume that at iteration i���
the node �n��W � was chosen for expansion	 Then after computing Vi	��n���
the fringe node n� pushes on the queue its marked parents n� and n�	 Node

��



W

4

S

n

n1

n n2 3

E

Fig� �� A policy in an AND
OR graph� which will cause node n� to appear twice
on the queue� The fringe node is n�� and the queue will hold nodes n�� n�� n�� n��

n� will also push node n� on the queue	 Therefore at iteration i�� the queue
will hold nodes n�� n�� n�� n�� in this order	 First time node n� is removed from
the queue� it will compute Qi	��n�� E� � C�n�� E� �w�n�� E� n�� � Vi	��n�� �
w�n�� E� n�� � Vi�n��� using the value function from iteration i for node n��
because the value of n� was not yet updated at iteration i � �	 The second
time n� is removed from the queue� node n� was already removed from the
queue and it had its value Vi	��n�� computed� so Qi	��n�� E� � C�n�� E� �
w�n�� E� n�� � Vi	��n�� � w�n�� E� n�� � Vi	��n��	

� Proofs

This section 
rst proves that AO� with an admissible heuristic converges to
the optimal policy �� of the AND�OR graph	 Next we show that AO� with a
consistent heuristic also converges to �� but performs more e�cient updates
of the value function	 In order to prove this result� we 
rst prove an invariant
�at the end of each iteration i of AO� with e�cient updates� every node n in
the graph has the correct value function Vi�n��� and we prove that the value
function of a node Vi�n� increases with future iterations	

Theorem ��� AO� with an admissible heuristic h converges to the optimal
policy ��� and V �n� � V ��n�� for every OR node n reached by the optimal
policy �� from the root�

In the worst case� AO� does exhaustive search in the implicit graph� which is
a 
nite DAG� until its policy � becomes a complete policy	 Because the leaves
of � are terminal OR nodes� which are solved� it results that all OR nodes
n reachable by � are also solved �from the de
nition of solved�� so the root
is also solved	 Therefore we exit the while loop in Table �� and the policy �

returned by AO� upon convergence is complete	

��



In the following� by V �n� we denote the values� when the algorithm terminates�
of the OR nodes n reachable by � from the root of the graph	

Proof by induction�

Base case

The leaf OR nodes n of � are terminal� so V �n� � V ��n� � �	

Induction hypothesis

Let n be any internal �non�terminal� OR node of �� such that all its successor
OR nodes n� through � have V �n�� � V ��n��	 Then V �n� � V ��n�	

Let ��n� � a� therefore V �n� � Q�n� a�	 Because n is an internal node of ��
the AND node �n� a� was expanded� and by de
nition Q�n� a� � C�n� a� �P

n� w�n� a� n�� � V �n��	 Because n� are the successor OR nodes of n through
�� we can apply the induction hypothesis for n�� so V �n�� � V ��n��� and we
have Q�n� a� � Q��n� a�	

Since V �n� � Q�n� a�� and V �n� � mina��A�n�Q�n� a
��� it results thatQ�n� a� �

Q�n� a��� �a� � A�n�� Because Q�n� a�� � Q��n� a��� �a� � A�n�� according to
Theorem 
	�� it follows that Q��n� a� � Q�n� a� � Q�n� a�� � Q��n� a��� �a� �
A�n�	 ThereforeQ��n� a� � Q��n� a��� �a� � A�n�� so V ��n� � mina��A�n�Q

��n� a�� �
Q��n� a�� But V �n� � Q�n� a� � Q��n� a� � V ��n�� therefore V �n� � V ��n��

We proved that for all nodes n reached by the complete policy � when AO�

terminates� V �n� � V ��n�� Therefore this policy is an optimal policy ��	
Q�E�D�

Let i be the current iteration of the AO� algorithm	 Gi is the explicit graph
at the end of iteration i	 Vi and �i are the value function and policy at the
end of iteration i	 Note that A�n� does not change with the iteration	 The
fringe node is the OR node whose policy �i is expanded at iteration i��	 We
de
ne the Q value function for an expanded AND node �n� a� to be Qi�n� a� �
C�n� a��

P
n� w�n� a� n�� �Vi�n��� that is� it is based on one�step lookahead and

it uses Vi for its successors	 Theorem �	
 will prove that at the end of AO�

iteration i� every OR node n in the graph Gi has the correct Vi�n� and �i�n�	
However� the Q values stored in the graph may not be the most recent ones�
but since the V values are the correct ones� when the Q values are needed�
a one�step lookahead will compute their most up�to�date values	 That is why
we de
ne Qi�n� a� to be the updated Q value based on Vi� and not the actual
Q value stored in the AND node	

The following theorem establishes that the AO� algorithm� provided with a
consistent heuristic� converges to the optimal policy even if we only update

��



the values of the marked ancestors of the fringe node �we call this selective
updates�� instead of updating the values of all ancestors of the fringe node	

Theorem ��� AO� with a consistent heuristic and with selective updates of
the value function converges to the optimal policy ���

In order to prove this theorem� we will 
rst prove the following invariant�

Theorem ��� Invariant� At the end of every iteration i of AO� with a con�
sistent heuristic and selective updates� every OR node n in the graph Gi has
the correct Vi�n� and �i�n��

Proof of Theorem ���� After we prove the invariant� we only need to replace
i with the iteration final at which AO� with selective updates converges� and
because the policy �final is complete� we can employ a proof similar to Theo�
rem �	��s to show that Vfinal � V � and �final � ��� which proves Theorem �	�	

Proof of Theorem ��� 	the Invariant
� by induction over iteration i�

Base case �before the while loop in Table ���

If i � �� the graph G
 consists only of the root node	 Let us assume that the
root node is not terminal	 Then all its actions a � A�root� are unexpanded�
therefore Q
�root� a� � C�root� a� �

P
n� w�root� a� n�� � h�n��	 So V
�root� �

mina�A�root�Q
�root� a� and �
�root� � argmina�A�root� Q
�root� a� are correct	

Induction hypothesis�
If Gi �at the end of iteration i of AO� with a consistent heuristic and selective
updates� has the correct Vi and �i� then graph Gi	� has the correct Vi	� and
�i	�	

To prove this induction hypothesis� we need to consider several cases for an
arbitrary node n in the graph Gi	�	

Case �a�� Node n belongs to Gi	� but not to Gi	
That means that node n was generated at iteration i��� by expanding the pol�
icy �i of the fringe node	 If n is a terminal node� Vi	��n� � � and �i	��n� is not
de
ned� which is correct	 Otherwise� since n was not previously generated� all
its actions a � A�n� are unexpanded� so Qi	��n� a� � C�n� a��

P
n� w�n� a� n�� �

h�n��	 So Vi	��n� � mina�A�n�Qi	��n� a� and �i	��n� � argmina�A�n�Qi	��n� a�
are correct	 Note that Vi�n� and �i�n� are not de
ned	

Case �b�� Node n is a successor of the fringe node� and n belongs to Gi	
That means that n was generated before iteration i � �	 Because the graph
is a DAG� n is not an ancestor of the fringe� so its value and policy do not
change at iteration i � �� Vi	��n� � Vi�n�� and �i	��n� � �i�n��

��



Case �c�� Node n is the fringe node whose policy �i�n� � a was expanded at
iteration i� �	
Then each successor n� through a is either of type �a� or �b�� that is� n� is either
terminal� newly generated� or generated before �in graph Gi�� and it has the
correct value Vi	��n

��	 It follows that Qi	��n� a� is correctly updated based on
Vi	��n

��	 Any other action a� in the fringe node n is either� ��� unexpanded�
so its Qi	� � Qi value is computed based on h of its successors� and therefore
does not need to be updated� or ��� was expanded before� but its value does
not change Qi	��n� a

�� � Qi�n� a
��� because its successors n� do not change

their value function Vi	��n
�� � Vi�n

��� as shown in case �b�	 Therefore the
value Vi	��n� and policy �i	��n� of the fringe node are updated correctly	

Note that in case ��� we need to update Qi	��n� a
�� � C�n� a���

P
n� w�n� a� n���

Vi	��n
��� because it is possible that Qi�n� a

�� was not computed at iteration i�
so we cannot use the stored Q value of �n� a��	

We show next that the value of node n is nondecreasing	 Because �n� a� was un�
expanded at the end of iteration i� Qi�n� a� � C�n� a� �

P
n� w�n� a� n�� � h�n��	

After expansion at iteration i � �� Qi	��n� a� � C�n� a� �
P

n� w�n� a� n�� �
Vi	��n

��	 Since h is consistent� we can apply Theorem 
	� for iteration i � �
and nodes n�� so h�n�� � Vi	��n

��� therefore Qi�n� a� � Qi	��n� a�	 Since
Qi�n� a

�� � Qi	��n� a
�� for any other action a� �� a� it follows that Vi�n� �

mina�A�n�Qi�n� a� � mina�A�n�Qi	��n� a� � Vi	��n�� therefore Vi�n� � Vi	��n�	

The fringe node becomes solved at iteration i�� if all its successor OR nodes
through �i	��n� are solved �they are either terminal� or were marked solved in
the graph Gi�	 A solved node will always stay solved� and its value is in fact
the optimal value V �	

The fringe node n was the 
rst node to be pushed on the queue in iteration
i � �	 If either Vi�n� � Vi	��n� or n becomes solved� the fringe node triggers
a change in the graph� and this needs to be propagated to its ancestors �we
will actually prove that only the marked ancestors of n will be a�ected�	
End of Case �c�	

In the remaining cases� node n belongs to both graphs Gi and Gi	�	

Recall that� by de
nition� OR node n is an ancestor of fringe node if there is
a directed path of AND nodes that can be followed from n to the fringe node
�base case� any parent of fringe is an ancestor of fringe� any OR node who has
at least one successor OR node which is an ancestor of fringe is an ancestor
of fringe�	

There are three remaining cases for node n� at the end of iteration i�

��



Case �d�� Node n is not an ancestor of the fringe node	
By de
nition� there is no directed path of AND nodes in Gi that can be
followed from n to the fringe node �base case� n is not a parent of fringe� none
of the successors of n is an ancestor of fringe�	 Case �b�� where n is a successor
of the fringe node� is a special case of �d�� that is why we called the path of
AND nodes �directed�	

Case �e�� Node n is a marked ancestor of the fringe node	
Recursive de
nition� any parent n of the fringe node that reaches the fringe
node through �i�n� is a marked ancestor of fringe	 Any other ancestor of the
fringe node in Gi is marked if it has at least one successor through �i�n� that
is a marked ancestor of fringe	 Note that not all marked ancestors of fringe
may be reached by �i from the root	

Case �f�� Node n is an unmarked ancestor of the fringe node	
Recursive de
nition� any parent n of the fringe node that reaches the fringe
node through an action a �� �i�n� is an unmarked ancestor of fringe	 Any other
ancestor of the fringe node in Gi is unmarked if at least one of its successors
n� is an ancestor of fringe� with the restriction that if n� is reached through
�i�n�� then n� must be unmarked	

Note� an ancestor of fringe may change its type between �e� and �f� depending
on the policy� which in turn depends on the AO� iteration i� that is why the
iteration i appears in the above de
nitions	 Also� a non�ancestor can become
an ancestor in future iterations �for example� in Figure 
� before expanding
�n�� S�� node n� is not an ancestor of n��	

A change in the fringe node �either an increase in its value function� or it
becoming solved� may potentially trigger a change in all of its ancestors	 The
following theorem proves that only marked ancestors of fringe need to be
considered for updates� while unmarked ancestors� and nodes that are not
ancestors of fringe� do not need to update their value function	

Theorem ��� Let n be any node in the graph Gi	�� If heuristic h is consistent�
and 	�
 if n is not an ancestor of fringe� then Vi�n� � Vi	��n� 	no update is
necessary
� 	�
 if n is the fringe node� or if n is a marked ancestor of fringe�
then Vi�n� � Vi	��n� 	an update is necessary
� 	�
 if n is an unmarked ancestor
of fringe� then Vi�n� � Vi	��n� 	no update is necessary
�

We explain the main idea using a scenario of a trainer having to select the
best performer from a team	 The players� performance can stay the same or
can worsen from day to day	 If the performance of the best player today�
called B� is the same tomorrow� then tomorrow the trainer does not need to
consider the other players� because their performance will not be better than
B�s	 But if the performance of B gets worse tomorrow� then the trainer needs to
compare his performance with the other players�	 The analogy is� the team is

��



the node n� the players are the actions A�n�� �today�is iteration i� �tomorrow�
is iteration �i���� B is �i�n� � a� performance of B today is Qi�n� a� � Vi�n��
performance of B tomorrow is Qi	��n� a�	 Let a

� be any another action from
A�n� �another player�	 The performance of a is best today� so Qi�n� a� �
Qi�n� a

��	 The performance of any player can stay the same or can get worse
�the costs increase� with each day �iteration�� so Qi�n� a� � Qi	��n� a�� and
Qi�n� a

�� � Qi	��n� a
��	 If Qi�n� a� � Qi	i�n� a� then Qi	��n� a� � Qi	��n� a

���
so Vi	��n� � Vi�n� � Qi	��n� a� and �i	��n� � a	 If Qi�n� a� � Qi	��n� a� then
it is possible that Vi	��n� � Qi	��n� a� and �i	��n� �� a	

Proof by induction�

The induction is done after the index of the node n in the graph G�

i	�	 This
graph has all the nodes from Gi	�� has fringe as root� and all its arcs are
the reversed of the arcs in Gi	�	 Because the graph G�

i	� is a DAG� we can
attach an index to each node n such that index�fringe� � � and index�n� �
index�n��� �n�� where n� is a successor of n in graph Gi	�	

Base case�

Node n is the fringe node� with index�n� � �	 Case �c� proved that Vi�n� �
Vi	��n� so an update in the value function of fringe is necessary	 We also need
to update all Q values of expanded AND nodes	

Induction hypothesis�
Let n be any node �di�erent from fringe� in the graph Gi	�� such that all
its successors n� have the correct Vi	��n

��� with Vi	��n
�� � Vi�n

�� if n� is not
an ancestor of fringe or if it is an unmarked ancestor of fringe� and Vi�n

�� �
Vi	��n

�� if n� is a marked ancestor of fringe	 Then node n will have the correct
Vi	��n�� needing no updates if n is not an ancestor of fringe or if it is an
unmarked ancestor of fringe� and needing an update if n is a marked ancestor
of fringe	

Node n is of type �d�� not an ancestor of fringe	

Since any successor n� of n is not an ancestor of fringe� we can apply the induc�
tion hypothesis for n� so Vi	��n

�� � Vi�n
��� thereforeQi	��n� a� � Qi�n� a�� �a �

A�n� and Vi	��n� � Vi�n�	 We do not need to update V �n�� nor Q�n� a�	

Intuitively� since there is no directed path of AND nodes that can be followed
from n to the fringe node� any change in the fringe node will not in�uence
node n	 Therefore Vi�n� � Vi	��n� and �i�n� � �i	��n�� and no updates are
necessary for node n in iteration i�� �so n will not be pushed on the queue�	
End of case �d�	

��



Node n is of type �e�� a marked ancestor of fringe	

By de
nition� at least one of the successors of n through �i�n� is a marked
ancestor of fringe� or is the fringe node	 Denote this successor by n�

m	 The
induction hypothesis guarantees that Vi�n

�

m� � Vi	��n
�

m�	 The other successors
n� of n �even through �i�n�� can be of type �d�� �e�� or �f�	 We need to perform
a full Bellman update for n� that is� we need to compute all Qi	��n� a�� �a �
A�n�� because Vi�n

�� � Vi	��n
�� if n� is of type �e�� or if it is the fringe node	

Recomputing all Qi	��n� a� takes the same time as it would take to check the
type of each successor node n�	 Applying the induction hypothesis for n�� we
obtain Qi�n� a� � Qi	��n� a� for all AND nodes �n� a� who have at least one
successor of type �e� or who have the fringe node as successor� and we know
there is at least one such AND node� �n� �i�n��� and Qi�n� a� � Qi	��n� a�
for all AND nodes �n� a� whose successors are of type �d� or �f�	 Therefore
Vi�n� � Vi	��n�	

Because all successors n� of n have the correct Vi	��n
�� values� node n will also

have the correct Vi	��n� value	

Node n was pushed on the queue by each of its successors n� of type �e� �or
by the fringe node� whose value strictly increased� Vi�n� � Vi	��n�� or which
has become solved	 Node n will push its marked parents� that were actually
marked in iterations previous to i � �� on the queue if Vi�n� � Vi	��n� or if
it became solved �node n becomes solved at iteration i � � if all its successor
OR nodes through �i	��n� are solved�	 In turn� if there are changes in these
parents� they will push all their marked parents on the queue� the next case �f�
completes the proof that the queue only contains marked ancestors of fringe	

Recall that a node n can be pushed several times on the queue� if the node
has more than one successor n� through �i�n� that was a marked ancestor of
fringe	 Before the last update of node n �when it is removed for the last time
from the queue�� it is possible that not all the successors n� have computed
their value Vi	��n

�� �instead� they still have the old value Vi�n
���	 However�

at the time of the last update of n� all successors n� have the correct Vi	��n
��

values� and node n will also update its value to the correct Vi	��n�	 The above
proof for case �e� is done considering that n is removed for the last time from
the queue	 End of case �e�	

Node n is of type �f�� an unmarked ancestor of fringe	

All successors n� of n through �i�n� are of type �d� or �f�� and none is the
fringe node or a marked ancestor of fringe	 According to the induction hy�
pothesis for nodes n� of type �d� or �f�� Vi	��n

�� � Vi�n
��� so Qi	��n� �i�n�� �

Qi�n� �i�n��	 The successors n
�� through action a �� �i�n� can be of type �d��

�e�� �f�� or fringe� so if we were to update Q�n� a�� its value may increase�
Qi�n� a� � Qi	��n� a� for AND nodes �n� a� that have successors of type �e�

��



or fringe	 However� we do not need to update Q�n� a� for a �� �i�n�� be�
cause Qi	��n� �i�n�� � Qi�n� �i�n�� � Qi�n� a� � Qi	��n� a�� �a � A�n��
so Qi	��n� �i�n�� � Qi	��n� a�� �a � A�n�� therefore Vi	��n� � Vi�n� and
�i	��n� � �i�n�	 In conclusion� no updates are necessary for node n which
is an unmarked ancestor of fringe� so n will not be pushed on the queue	
End of case �f�	

Q�E�D�

This completes the proof of Theorem �	�� which also completes the proof of the
Invariant�Theorem �	
�	 Accordingly� we can view AO� as performing updates
only in the subgraph of G�

i	� that has the fringe node as root and only contains
nodes that are marked ancestors of the fringe	

Corollary ��� If heuristic h is consistent� then for any node n in the graph
Gi� subsequent iterations of AO� with selective updates increase its value�
Vi�n� � Vi	��n��

Proof� It follows from the proof of the Invariant �Theorem �	
�	 We could
extend the corollary to apply to all nodes n� even those that were not generated
in Gi� by de
ning Vi�n� � h�n�	

Corollary ��
 If heuristic h is consistent� then for any AND node �n� a� in
the graph Gi� subsequent iterations of AO

� with selective updates increase its
value� Qi�n� a� � Qi	��n� a��

Proof� It follows from the proof of the Invariant �Theorem �	
�	

If the heuristic h is admissible but not consistent� it is possible that the value
of a node n decreases in future iterations� Vi	��n� � Vi�n�	 If this happens for
the fringe node �or any of its ancestors�� then all its ancestors must be pushed
on the queue� and no selective updates in AO� are possible	 The reason is
that a decrease in value function in a node causes a decrease in the Q value
function in an ancestor� even for an action that was not the best policy� but
that may now become the best policy	

� Review of AO� Literature

The AO� algorithm has been studied extensively both in the Arti
cial In�
telligence and the Operations Research communities	 Horowitz and Sahni ���
pages �
���
�� proved the NP completeness of the AND�OR decision problem
�does graph G have a solution of cost at most k� for given k�� by reduction
from CNF�satis
ability	

��




�� AO� Notations� Implementations� and Relation with Branch�and�Bound

Our de
nitions of AND and OR nodes are similar to those of Martelli and
Montanari ���� Chakrabarti et al	 ���� Pattipati and Alexandridis ���� Qi ���
and Hansen ���	 An OR node speci
es the choice of an action	 It is called an
OR node because its solution involves the selection of only one of its successor
AND nodes	 An AND node speci
es the outcomes of an action	 It is called an
AND node because in order to solve it� all its successor OR nodes must be
solved	 These de
nitions are the reverse of Nilsson�s ��� in which the type of a
node is determined by the relation to its parent	

There are several implementations of AO�� two by Martelli and Montanari �������
one by Nilsson ���� and one by Mahanti and Bagchi ����	 The 
rst three im�
plementations are practically identical	 Martelli and Montanari are the 
rst
to recognize that dynamic programming techniques that discover common
subproblems can be applied to search AND�OR graphs and to compute the
optimal solution	 Martelli and Montanari ��� show that the AO� algorithm
with an admissible heuristic converges to an optimal policy ��	

Our implementation follows the framework of Nilsson�s	 Our analysis is more
complex than his� because he does not explicitly di�erentiate between AND
nodes and OR nodes when describing the AO� algorithm for graphs� though he
makes the distinction between the two nodes when discussing AND�OR trees	
He calls AND�OR graphs hypergraphs� and their hyperarcs�hyperlinks con�
nectors� so instead of arcs�links connecting pairs of nodes in ordinary graphs�
connectors connect a parent node with a set of successor nodes	 The complete
solution �no longer a path� but a hyperpath�� is represented by an AND�OR
subgraph� called a solution graph �with our notation� this is a policy�	 These
connectors require a new algorithm� AO�� for the AND�OR graphs� instead of
the A� algorithm for ordinary graphs	

Nilsson does not refer to the nodes of an AND�OR graph as being AND nodes
or OR nodes� because in general a node can be seen as both an OR node and
an AND node	 Pearl ���� notes as well that an AND link and an OR link can
point to the same node	 Nevertheless� in this paper we separate the two types
of nodes� so a node is either a pure AND node or a pure OR node	

AND�OR graph search algorithms have been studied by many authors	 At

rst� the algorithms worked on an implicit graph �the entire graph that can
be generated�� which was assumed to be acyclic �����������	 An explicit graph
is the part of the graph generated during the search process	 Graphs with
cycles were usually solved by unfolding the cycles	 For a recent review of
AO� algorithms for searching both explicit and implicit AND�OR graphs with
cycles see ��
�	

�




Branch�and�bound algorithms use lower and upper bounds to prune non�
optimal branches� without generating and evaluating the entire AND�OR
graph	 Kumar and Kanal ���� explain the relationship between branch�and�
bound algorithms from Operations Research and heuristic search algorithms
from Arti
cial Intelligence �including alpha�beta ����� AO�� B� ����� and SSS�

�����	 Other relevant articles� which outline AO� as a branch�and�bound pro�
cedure are �������	 They show that AO� is a special case of a general branch�
and�bound formulation	


�� Theoretical Results on AO�


���� Memory�bounded AO�

AO� may require memory exponential in the size of the optimal policy	 Chakrabarti
et al	 ���� propose running AO� in restricted memory by pruning unmarked
nodes �that are not part of some policy �i� when the available memory is
reached	 This method still computes the optimal value function� trading�o�
space for time �if the pruned nodes are needed again� they must be generated
again�	


���� Inadmissible Heuristics

If the heuristic h is inadmissible� but within � of the optimal value function V ��
then it is straightforward to compute a bound on the value of the suboptimal
policy learned with h	 Indeed� if h�n��V ��n� � �� �n� then the maximal error
of the policy � computed by AO� with heuristic h is �� V � � V � � � �see ���
and ���� page 
��	

Chakrabarti et al	 ��� showed that the optimal policy can be computed with
an inadmissible heuristic if if its weight is shrunk	 If the heuristic function can
be decomposed into f � g�h� where g is the cost incurred so far� and h is the
heuristic estimating the remaining cost� then AO� with the weighted heuristic
���w� � g�w �h� where � � w � �� compute an optimal policy �� even for an
overestimating �inadmissible� heuristic h	 The weight w is such that w � �

�	�
�

where � is the maximum distance between the inadmissible heuristic h and
V �	


���� In�uence of Heuristic on Nodes Expanded

Chakrabarti et al	 ��� show that a more accurate admissible heuristic in AO�

has a smaller worst�case set of nodes expanded	 That is� if heuristic h� is closer
to the optimal value function than h�� h� � h� � V �� then the largest set of

��



nodes expanded by AO� with the h� heuristic is a subset of the largest set of
nodes expanded by AO� with the h� heuristic	


�� MDPs

A diagnostic policy speci
es what test to perform next� based on the results of
previous tests� and when to stop and make a diagnosis	 An optimal diagnostic
policy minimizes the expected total cost of tests and incorrect diagnoses	 We
formulated the problem of learning diagnostic policies as an MDP� and showed
how to apply the AO� algorithm to learn the optimal policy �����
���	 The
MDP states correspond to all possible combinations of test results	 Unlike
other work on diagnosis which assumes a Bayesian network from which the
MDP probabilities are inferred� we learn the MDP probabilities from data� as
needed by the AO� search	

The test sequencing problem is a simpler version of learning diagnostic policies	
The goal is to deterministically identify faulty states of an electronic system
while minimizing expected test costs	 Since the system states can be identi
ed
unambiguously� there are no misdiagnosis costs	 Pattipati and Alexandridis ���
observe that the test sequencing problem is an MDP whose solution is an
optimal AND�OR decision tree	 An MDP state is a set of system states	 To
compute the optimal solution to the test sequencing problem� Pattipati and
Alexandridis employ AO� with two admissible heuristics� one derived from
Hu�man coding and the other being based on the entropy of system states	
These two heuristics require equal test costs in order to be admissible	

Hansen�s LAO� algorithm ���� is a generalization of AO� that solves MDPs
with cycles by using a dynamic programming method �either value iteration
or policy iteration� for the bottom�up update of the value function and policy	
This is necessary because in the general case of an MDP with cycles� we can
not perform a single sweep of value iteration through the state space from
the fringe node to the root node to update the value function	 Bonet and
Ge�ner ������� follow up with heuristic search algorithms for solving MDPs
with cycles� which converge faster than value iteration� RTDP or Hansen�s
LAO�	 RTDP ���� is a Real Time Dynamic Programming algorithm that by�
passes full dynamic programming updates in MDPs by only updating the
values of states reached from an initial state during repeated trials of exe�
cuting a greedy policy� a heuristic is used to initialize the value function	 If
the heuristic is admissible� then RTDP converges in the limit to the optimal
policy	 RTDP extends Korf�s Learning Real Time A� �LRTA�� algorithm ����
to asynchronous dynamic programming with stochastic actions	 LRTA� can
be seen as a real�time version of A�� and RTDP is the real�time version of
AO� and LAO�	 In terms of how they represent solutions� A� outputs a simple

��



path �a sequence of actions�� AO� outputs a directed acyclic graph� and LAO�

outputs a cyclic graph �a 
nite�state controller�	


�� POMDPs

Partially Observable MDPs �POMDPs� are MDPs in which the state of the
world is not known with certainty	 Instead� observations reveal information
about the state of the world	 The states of the POMDP are called belief or
information states	

Heuristic search methods �either branch�and�bound or AO�� have been applied
to approximately solve in
nite�horizon POMDPs from a single initial belief
state	 Satia and Lave ���� proposed a branch�and�bound algorithm for 
nding
optimal and ��optimal POMDP policies� Larsen and Dyer �
�� improve upon
this work	 Washington �
�� used the value function of the underlying MDP to
de
ne lower and upper bounds in AO�	 Hansen ��� developed a heuristic search
algorithm that combines AO� with policy iteration for approximately solving
in
nite�horizon POMDPs �from a given start state� by searching in the policy
space of 
nite�state controllers	 For a recent review of approximation methods
for solving POMDPs� which also includes a systematic presentation of lower
and upper bounds for POMDPs� see Hauskrecht �
��	


 Conclusions

This paper presents a mathematical framework to solve acyclic AND�OR
graphs using the AO� algorithm	 Several notations� such as value functions
and policy� are inspired from the MDP framework	 The paper details the
implementation of AO� using these notations� proves that AO� with an ad�
missible heuristic converges to the optimal solution graph of the AND�OR
graph� and 
lls a gap in the AO� literature by proving that� using a consistent
heuristic in AO�� the value function of a node increases monotonically and
more e�cient updates of the value function can be performed	

References

��� A� Martelli� U� Montanari� Additive AND
OR graphs� in� Proceedings of the
Third International Joint Conference on Arti�cial Intelligence� ����� pp� �����

��� N� Nilsson� Principles of Arti�cial Intelligence� Tioga Publishing Co�� Palo Alto�
CA� �����

��



��� J� R� Slagle� A heuristic program that solves symbolic integration problems in
freshman calculus� Journal of the Association for Computing Machinery ��	�

	����
 ��������

��� V� Bayer�Zubek� Learning diagnostic policies from examples by systematic
search� in� Proceedings of the Twentieth Conference on Uncertainty in Arti�cial
Intelligence 	in press
� Ban�� Canada� �����

��� E� Horowitz� S� Sahni� Fundamentals of Computer Algorithms� Computer
Science Press� Rockville� MD� �����

��� P� Chakrabarti� S� Ghose� S� DeSarkar� Admissibility of AO� when heuristics
overestimate� Arti�cial Intelligence �� 	����
 �������

��� K� R� Pattipati� M� G� Alexandridis� Application of heuristic search and
information theory to sequential fault diagnosis� IEEE Transactions on Systems�
Man and Cybernetics ��	�
 	����
 ��������

��� R� Qi� Decision graphs� Algorithms and applications to in�uence diagram
evaluation and high�level path planning under uncertainty� Ph�D� thesis�
University of British Columbia 	����
�

��� E� Hansen� Solving POMDPs by searching in policy space� in� Proceedings of the
Fourteenth International Conference on Uncertainty in Arti�cial Intelligence�
Morgan Kaufmann� San Francisco� ����� pp� ��������

���� A� Martelli� U� Montanari� Optimizing decision trees through heuristically
guided search� Communications of the ACM ��	��
 	����
 ����������

���� A� Mahanti� A� Bagchi� AND
OR graph heuristic search methods� Journal of
the ACM ��	�
 	����
 ������

���� J� Pearl� Heuristics� Intelligent Search Strategies for Computer Problem Solving�
Addison�Wesley Publishing Co�� Massachusetts� �����

���� P� Jimenez� C� Torras� An e�cient algorithm for searching implicit AND
OR
graphs with cycles� Arti�cial Intelligence ��� 	����
 �����

���� V� Kumar� L� N� Kanal� A general branch and bound formulation for
understanding and synthesizing AND
OR tree search procedures� Arti�cial
Intelligence �� 	����
 ��������

���� D� E� Knuth� R� W� Moore� An analysis of alpha�beta pruning� Arti�cial
Intelligence �	�
 	����
 ��������

���� H� Berliner� The B� tree search algorithm� a best��rst proof procedure� Arti�cial
Intelligence �� 	����
 ������

���� G� C� Stockman� A minimax algorithm better than alpha�beta�� Arti�cial
Intelligence �� 	����
 ��������

���� D� S� Nau� V� Kumar� L� N� Kanal� General branch and bound� and its relation
to A� and AO�� Arti�cial Intelligence ��	�
 	����
 ������

��



���� V� Kumar� L� N� Kanal� The CDP� A unifying formulation for heuristic search�
dynamic programming� and branch�and�bound� in� L� N� Kanal� V� Kumar
	Eds�
� Search in Arti�cial Intelligence� Springer�Verlag� Berlin� ����� pp� ��
���

���� V� Kumar� L� N� Kanal� A general branch�and�bound formulation for AND
OR
graph and game tree search� in� L� N� Kanal� V� Kumar 	Eds�
� Search in
Arti�cial Intelligence� Springer�Verlag� Berlin� ����� pp� �������

���� P� Chakrabarti� S� Ghose� A� Acharya� S� DeSarkar� Heuristic search in restricted
memory� Arti�cial Intelligence �� 	����
 ��������

���� V� Bayer�Zubek� T� Dietterich� Pruning improves heuristic search for cost�
sensitive learning� in� Proceedings of the Nineteenth International Conference
of Machine Learning� Morgan Kaufmann� Sydney� Australia� ����� pp� ������

���� V� Bayer�Zubek� Learning cost�sensitive diagnostic policies from data� Ph�D�
thesis� Department of Computer Science� Oregon State University� Corvallis�
http�

eecs�oregonstate�edu
library
�call�������� 	����
�

���� E� Hansen� S� Zilberstein� A heuristic search algorithm that �nds solutions with
loops� Arti�cial Intelligence ��� 	���
 	����
 ������

���� B� Bonet� H� Ge�ner� Labeled RTDP� Improving the convergence of real�time
dynamic programming� in� Proceedings of ICAPS���� �����

���� B� Bonet� H� Ge�ner� Faster heuristic search algorithms for planning with
uncertainty and full feedback� in� Proceedings of the Eighteenth International
Joint Conference on Arti�cial Intelligence� Morgan Kaufmann� San Francisco�
�����

���� A� Barto� S� Bradtke� S� Singh� Learning to act using real�time dynamic
programming� Arti�cial Intelligence ��	�
 	����
 �������

���� R� Korf� Real�time heuristic search� Arti�cial Intelligence �� 	����
 ��������

���� J� K� Satia� R� E� Lave� Markovian decision processes with probabilistic
observation of states� Management Science �� 	����
 �����

���� J� B� Larsen� J� S� Dyer� Using extensive form analysis to solve partially
observable Markov decision problems� Tech� rep�� ��
������� University of Texas
at Austin 	����
�

���� R� Washington� BI�POMDP� Bounded� incremental partially�observable
Markov�model planning� in� Proceedings of the Fourth European Conference
on Planning� �����

���� M� Hauskrecht� Value�function approximations for partially observable Markov
decision processes� Journal of Arti�cial Intelligence Research �� 	����
 ������

��


