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ANALYSIS OF DICHOTOMOUS RESPONSE MODELS FOR LOW-DOSE
CARCINOGENIC RISK ESTIMATION

CHAPTER I

INTRODUCTION

Humans are exposed to environmental and occupational carcinogens

of varying degrees of tumorogenicity. Some occur naturally, some are

highly potent and can induce neoplastic growth at fractions of a part

per billion, while others are highly persistent and result in long-

term exposures.

Epidemeologic studies of humans exposed to already present car-

cinogenic agents are integral elements of risk estimation procedures.

Unfortunately, neoplastic developments are associated with long

periods of time. It may take months, years, or perhaps decades from

the first exposure before the tumor is clinically detected. Further-

more, epidemeologic approaches cannot predict risks associated with

potential carcinogenic chemicals yet to be introduced to the environ-

ment.

The traditional approach for assessment of risk to a population

has been to expose a relatively small group of laboratory animals

(rodents) to high doses of a given carcinogen and extrapolate the

results to low concentrations by means of the present mathematical

models of chemical carcinogenesis.

The high concentration levels applied to laboratory animals

seldom occur in environmentally stable conditions. However, in order
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to obtain statistically significant results within reasonable confi-

dence intervals, one could either attempt to monitor large groups of

animals for tumor incidence due to lose-dose exposures (e.g. mega

mouse study), or apply high doses of the pollutant to a small group.

The former has been proven an unmanageable and impractical situation

to be considered for thousands of potential carcinogenic substances.

The latter is associated with the problem that would arise from low-

dose extrapolations - namely, one would need to use high-dose data to

predict a dose at which cancer incidence would exceed the background

occurrence by maximum of a prespecified number, such as 10-6.

Dichotomous response models are applied to high-dose data to

estimate increases in risk (or cancer incidence) with incremental

increases in dose. Three dichotomous response models (one-hit,

multi-hit, and multistage models) of carcinogenesis are investigated.

In addition, the log-probit model (following a different rationale)

is included in the discussions. A pharmacokinetic example incorpo-

rating Michaelis-Menten kinetics is also discussed with regard to low

dose implications and presence of multiple pollutants.

One may note that conditions created in chemical carcinogenesis

experiments generally do not simulate those encountered by humans.

Clean laboratory animals of known strain and genetic characteristics

are exposed to high levels of a single pollutant. On the contrary,

humans are exposed to chronic levels of carcinogens of various struc-

ture, reactivity and potency. Experimental designs simulating human
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exposures are therefore required to provide more applicable results

in chemical carcinogenesis studies.

This study attempts to clarify the assumptions of the existing

dichotomous response models with respect to multiple carcinogens and

background concentrations. In addition, a conceptual experiment is

proposed to examine the effects of pollutant dispersal on a given

uniform population.
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CHAPTER II

DICHOTOMOUS RESPONSE MODELS

FOR CARCINOGENESIS

A number of statistical models have been developed to describe

carcinogenic processes leading to induction and detection of tumors.

At the present time, none of these models have gained general recog-

nition from the scientific community, principally because the exper-

iments performed on laboratory animals do not yield statistically

significant results to assist extrapolations of incidence rates to

low doses of carcinogens. For example, if 1000 animals were used for

assay at a single dose and no tumors were detected, then there would

exist a 95% confidence level for the true incidence to be less than

0.5%. This incidence rate, however, would represent approximately

one million people in the United States , which is clearly an un-

acceptable level of risk.

Detection of more realistic incidence rates of 10-8 - 10-5 would

require millions of rodents for obtaining statistically meaningful

results, considering the pool of present carcinogens. Experiments of

this nature are unlikely to be successful or economically possible.

Risk at low doses is, therefore, estimated by exposing a small

group of rodents to high doses of carcinogenic agents and extrapolat-

ing the results for low values of dose by means of existing mathe-

matical models.
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Problems also arise from extrapolating results of animal experi-

ments to humans. On the basis of epidemeologic studies, certain

chemicals (for example, A -naphtylamine) which are well known as

human carcinogens, do not appear to be carcinogenic in laboratory

animals (IARC, 1974). Generally, however, there exists a reasonable

correlation between results of animal carcinogenic experiments and

those of human tumor incidence rates.

A cautious review of the mathematical models of carcinogensis,

therefore, requires consideration of the problems associated with

risk evaluation at low doses, animal-to-man extrapolations, synergis-

tic (or antagonistic) effects of one pollutant in the presence of the

carcinogenic agents, and metabolic xanabilities within a population.

It is the purpose of this chapter to elucidate the assumptions

and investigate the implications regarding dichotomous models of

carcinogenesis.

2.1 One Hit Dose-response Model of Carcinogenesis

The one-hit, or linear model of carcinogenesis, is based on the

assumptions that the growth of a cancer tumor is initiated by a one-

step transition induced by a carcinogenic agent and occuring in a

single cell; and that the time-to-development of the transformed cell

is independent of initial dose.

Stochastic processes by which the transitions occur describe the

probabilities of tumor induction as functions of dose or exposure.

The actual carcinogenic process, however, involves biochemical and
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physiological mechanisms and reactions, a process which involves

repair and destruction as well as neoplastic growth.

Assumptions regarding the one-hit model are:

1. A cancer tumor originates from a single cell

2. A single dose of the specific carcinogen can induce the

growth of a cancer tumor (Crump et al., 1976), whose

development period is independent of dose.

In effect, the model assumes that the growth of a tumor is ini-

tiated when one molecule of carcinogen "hits" one critical site

within a single cell. The process by which these hits occur is as-

sumed to be a stochastic process following a Poisson approximation to

the binomial distribution.

Recall that the probability distribution of the Poisson ran-

dom variable X, representing the number of successes occuring in a

given time interval is given by:

-

P (x , =
x!

= 0, 1, 2, ... eq. 2-1

where r is the average number of successes occurring in the given

time interval.

For p = XD, where X D is the average number of hits at dose D,

the probability of exactly k hits is

e-XD(a)k
k = 0, 1, 2, ... eq. 2-2P (X = k; AD) =
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where A is an unknown constant representing the slope of the dose-re-

sponse curve at zero dose (or the risk of tumor induction per unit of

dose D).

Assumption 2 states that only one "hit" is sufficient to induce

the growth of a tumor, therefore for k > 1 (one hit or more),

2(D) = P(k > 1) = 1 - P (k < 1) = 1 - P (k=0) = 1 - X D eq. 2-3

:xpanding the exponential term in equation 2.3,

(XD) D
2

(X)
3

P (k > 1) = 1-e
-AD

=I - [1-AD + 27- 3!
...] eq. 2-4

For small AD, i.e. for small doses of carcinogen, the higher order

terms in equation 2-4 become negligible, thus

P (D) = A D eq. 2-5

The above result indicate that for low values of dose, the

slope of the dose-response curve is constant and no threshold occurs,

that is, the response is linearly proportional to dose. In effect,

at low dose regions, the model assumes that the number of hits is

proportional to the amount of carcinogen and the rate of tumor pro-

duction is proportional to the number of hits (see Figure 2.1).

Note that the abscissa of the curve in Figure 2.1 is the effec-

tive dose, D, which is the sum of the administered dose d, and a

background dose 6. The probability of response due to administered

dose is illustrated in Figure 2.2.

At this point, several remarks must be made regarding the

assumptions made in the derivation of the one-hit model.
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100

P( D), %
60_

effective dose, D

Figure 2.1. Probability of tumor as a function of
effective dose, D, using one-hit model
of carcinogenesis

100

P(d) %

administered dose ,d

Figure 2.2. Probability of response (percent of
population) as a function of admin-
istered dose,d, using one-hit (linear)
model of carcinogenesis
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Two observations support the one-cell origin of cancers (assump-

tion 1). First, in women heterozygous for electrophoretic variants

of X-linked glucose-6-phosphate dehydrogenase, neoplastic tissues are

distinctly of one phenotype or the other, whereas the normal tissue

consists of mixtures of cells representing either one of the two

phenotypes (Crump et al., 1976).

The second evidence in support of assumption 1 comes from

experimental studies of single transformed cells transplanted in ani-

mal tissues. These cells seem to be well able to give rise to neo-

plasms (Gartler, 1974).

The second assumption stating that induction time is independent

of dose is not a strong assumption in the sense that very high doses

could definitely result in decreased induction time. However, en-

vironmental doses of carcinogens are small enough to make this as-

sumption appropriate for low dose carcinogenic risk assessment.

2.2 Multi-hit Model

The multi-hit model of carcinogenesis assumes that at least k

number of transitions or "hits" are required in order to initiate

tumor growth. The one-hit model can be considered a special case of

this model for k = 1. The assumption of single-cell origin made in

discussion of the one-hit model also applies to the multi-hit model,

however the requirement of at least k hits would result in modifica-

tion of equation 2-1. In essence, the multi-hit model can be formu-

lated as follows (Danzer, 1934):
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The Dinzer Formulation

1. The cell has m critical sites

2. The cell will be transformed to a cancer cell if at

least k of these critical sites are "hit", each by k or

more quanta of carcinogenic agents.

3. The probability pi that a given quantum (effective unit)

of dose will hit the ith critical site is constant. The

probability pc, that a quantum of dose will miss the ith

critical site is also constant (the Bernoulli Postulate).

4. If nD is the total effective dose (where n = number of

effective dose units and D = dose), then the probability

that there would be exactly k hits on the ith critical

site is given by binomial distribution:

P (k) = (?) Pik qr.1D-k

nD (nD-1)
k!

P q
(nD-k+1) k (nD-k)

eq. 2-6
.

where k = 0, 1, 2, ..., nD i = 0, 1, 2, .... m

and qi = 1 - Pi

5. If nDp.iis of the order of 1, then the following estimate,

known as the Poisson Theorem, can be used (Papoulis, 1965).

(nD)! ,k nD-k
e-nDPi (nD

Pi)k

k! (nD-k)! qi k!
eq. 2-7
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for k of the order of nDpi. This result can be stated as a limit if

Then

nD op pi---* 0 AD

(nD)! k nD-k
k! (nD-k)! pi qi

e
- AD (AD)

k

Eq. 2-8

Equation 2-8 can be justified by using quantitative reasoning. Since

k is of the order of npiD and pi« 1, it can be concluded that k nD.

Therefore, in the numerator of 2-6 all factors can be approximated by

nD. Thus

nD (nD - 1).... (nD - k+1) nD . nD nD = (nD)k Eq. 2-9

Since pi << 1, and kpi« 1

oi = 1- p i= e-Pi
Eq. 2-10

(nD-k)
e
-(nD-k) p-

e
p.-nD =e 1

-X.D Eq. 2-11

Substituting the above approximations in equation 2-6, the result in

2-8 can be obtained.

6. Xi = A2 Ai = Am ( similar site postulate)

The requirement of at least k "hits" will result in the

following probability distribution:

P(D) = P (a > k) = 1-P (a < k)

k-1

(AD) i ea) Eq. 2-12
i!

i=0

Equation 2-12 is an expansion of the one-hit model and there-

fore, could be a better description of dose-response relationships.



For k = 1, equation 2-12 will become

P(D) = 1 - e-
AD

12

Eq. 2-13

where A = Al A 2 = = a m. The above result is consistent

with the one-hit model of carcinogenesis. Allowing k to be any real

number, equation 2-12 can be modified to (see Appendix A):

P(D)

where r(k)

Expanding
k-1

P(D) = 1 - I
i=0

= 1-e

For small AD

P(D) = 1-1 + V

AD

= 1
u(k-1)

CO

= ire -u dx = 1.

0

(AD)11

Eq. 2-14

Eq. 2-15

r(k)

e-u
dx

0

(k-1) (k-2)... r (1) and r (1)

equation 2-12:

k-1
-AD

(AD)1
e 1 e-XD [

i=0

v (XD)1 (AD)1l

J

i! 1!

i=0 i=k

(a)k (a)k+1
(XD)1

(k+1)!

i= k

For small values of AD, the above equation can be approximated as

follows:



P(D)
(;)k

(AD)
3

+ ]
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Eq. 2-16

Eq.2-17

Equation 2-15 can also be written as:

k-1

P(D) - 1 -
(AD)

i

El_AD (AD)
2

1! 2! 3!

1=0

The term in the brackets is the series expansion of e
-AD

For

k = 1, and small values of AD equation 2-17 can be approximated as

P(D) AD Eq. 2-18

which represents a linear response at low doses.

Going back to equation 2-16, for small values of AD,

AkDk
P(D) = vkDk Eq. 2-19

k

where vk = . Equation 2-19 implies that response increases

as a power of dose. The plots in Figure 2.3 represent the dose-re-

sponse relationships for k = 1 and k > 1.

2.3 Multistage Model

The criticism that the multi-hit model has encountered origi-

nates from the fact that cell's time-to-response has not been in-

cluded in the derivations of the model. Crump et al. (1976) stated

that if a cell has a time-to-respose, where response could mean death

due to cancer, then this time could be written as

where tr = time-to-response,

tr = ta + tg

ta = time-to-alteration



P(D)

14

dose, d dose ,d

Figure 2.3. Dose-response relationships according
to multi-hit model of carcinogenesis
(a), k=1; (b), k > 1.
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of a normal cell to a malignant cell, and tg = time from complete

alteration to death. to would presumably be dependent on dose D,

whereas the effect of D on t is assumed to be negligible. The

response can then be written as

Is(t,D) = f Ia (t-U,D) f(U) dU

0

Eq. 2-20

where Ia(t,D) is the incidence rate of alteration of one cell from

normal to malignant, f(t) is the density function for cancer growth

time, and Is(t,D) is the incidence rate of cancer response for a

single cell.

If a tissue is composed of N cells, the incidence rate of the

whole tissue responding to dose D, can be written as

Iw (t,D) = NIs (t,D) Eq. 2-21

since the time-to-response for the whole tissue would be the smallest

of the response times for N cells.

Armitage and Doll (1961) showed that the time rate of occurrence

of the ith event is ai + EifD (where a = spontaneous background

occurrence or response, Si = porportionality constant for the carci-

nogenic process induced by dose at each stage i, i = k, and

a i, Bi 0)

Ia (t,D), rate of occurance of k completed stages would then be given

as

Ia(t,D) = ktk-11 Fl (ai + SiD) = ktk-1 Qk(D)I

i=1

Eq. 2-22
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where 0k(D) is a kth degree polyndmial in'D. Equations 2-20, 2-21,

and 2-22 result in the following relation:

t

1 (t,D) = [Nk f(t-y) y
k-1

dy]
Qk

(D)
J

0

1((t) Qk(D)

Eq. 2-23

Taylor series expansion of Qk(D) would result in the following

expression

t

Pw(t,D) = [Nk f(t-U) Uk-1 dU] [a + bD + R(D)]
0

Eq. 2-24

where a and b are constants and R(D) is negligible. For low values

of dose D levels, therefore, the incident rate is given by:

tr

I
w
(t,D) = [Nk f(t-y) y

k-1
dy] [a + bD]

0

Eq. 2-25

which is linear in dose.

The significance of the above results was discussed by Crump et

al. (1976). The multistage model of carcinogenesis developed by

Armitage and Doll (1954) would result in a similar expression as one

obtained in 2-24. The only difference between the multi-hit and

multistage processes is that the k "hits" must occur in a particular

time sequence in the multistage model. Their model can be expressed

as



where

P (D,t) = 1-e-T(t). e(D)

k

e (o) = fl (mi 4 30)

*1=1

e(T) is a function of exposure time, but is independent of

dose and D is the dose rate. This model is a more general form of

multi-hit model represented by equation 2-12. The implication of

cancer incidence rate increasing as a high power of time closely

approximates incidence of cancer in humans.

Hoel (1976) discussed the multi-stage models in their low-dose

regions and concluded that the extent of linearity would depend on

the background level of dose. This brings into attention the assump-

tion that the induced carcinogenic process due to administered dose d

is merely in sequence with the spontaneous process due to background

dose and not independent of it.

17

Eq.2-26

2.4 Loa - Probst Model

The log probit model for carcinogenesis follows a different ra-

tionale. It assumes that each member of the population has its own

threshold concentration above which, a tumor is produced by exposure

to the chemical. The distribution of the log-dose thresholds is

assumed to be Gaussian (normal). At low concentrations only a few

thresholds are exceeded and thus the tumor incidence is low. At

higher concentrations, additional thresholds are exceeded. At very

high concentrations only a few thresholds are not exceeded. Thus the
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dose-response curve displays a sigmoid shape with the most frequent

threshold levels found at the inflection point of the curve (see

Figure 2.4).

This model is mathematically expressed as

1
log D

P(D) =
N/TiF(log

-00

x- log D
1

]exp [-
log a

g) dx Eq. 2-27

where G is the geometric standard deviation and Dg is the geometric

mean (Altshuler, 1981).

This model was adopted by Cornfield (1977) to describe the

existence of a threshold or a safe dose for chemical carcinogens.

However, thresholds, if they exist, vary over time within an indivi-

dual due to such factors as age or concurrent diseases, as well as

among individuals in a given population. This variability is extrem-

ely important from a regulatory point of view since all individuals

must be protected at all times. Thus, even if log probit, model is

used, it is inappropriate to suggest that with respect to an entire

population a given carcinogen exhibits a threshold or zero-response

concentration level. This model, by no means, postulates the

existence of single population thresholds.

Although the log-probit model has been used in many experimental

situations, the second problem associated with the use of this model
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Response,
% popula-
tion

50
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50
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Figure 2.4. Dose-response relationship assuming
normally distributed log-thresholds.
ED50 represents the effective dose

which induces cancer in 50% of the
population exposed to the carcinogen.
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is that it provides a reasonable fit only in the middle region of the

normal curve.

For high doses, all of the models discussed, fit the experi-

mental data equally well. For very low levels of dose, however, the

use of different models could result in response levels several

orders of magnitude apart.
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CHAPTER III

PHARMACOKINETIC MODELS FOR

CARCINOGENIC RISK ASSESSMENT

It has been well known that many chemicals that induce cancer in

animal tissues are not carcinogenic themselves, but the products of

their enzymatic breakdowns, i.e., their metabolites, induce the

carcinogenic processes.

Some of these metabal ites may interact with DNA, RNA, and pro-

teins. It is, therefore, extremely important to study the effect of

interaction of these metabolites with cells macromolecules, especial-

ly DNA, which codes for transcription of RNAs which in turn, code for

translation of proteins.

The purpose of this chapter is to discuss some biological mech-

anisms of neoplastic formation, their implications in carcinogenic

risk assessment and their inclusion in mathematical models.

3.1 DNA-Aduct Formations in Carcinogenic Processes

A cell's genetic material, the DNA, is composed of covalently

and hydrogen bonded units that can react with many chemicals. Norm-

ally, those sections of DNA covalently bonded to carcinogenic

metabolites would either be removed or repaired by specific enzymatic

reactions known to take place frequently within cellular structures.

Occasionally, these altered sections of DNA remain attached to the
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DNA either due to biochemical nature of the carcinogen, or inability

of cell's enzymatic mechanisms to remove or recognize the mutation.

Russel et al. (1982) concluded that the nonlinear behavior of

the dose-response curve at low dose levels was a result of efficient

enzymatic removal of DNA aducts (sections of DNA bonded to the

carcinogen metabolite) and not a result of a decreased concentration

of chemical reaching the organ.

Several investigators have shown that induced frequencies of

mutations are linear functions of the DNA aducts concentration

(Newbard and Brooks, 1979; Fahl and Scarpelli, 1981). Certain com-

pounds are known to inhibit the carcinogenic process. In one

experiment performed on two strains of mice, benzo[a]pyrene diol

epoxide-DNA aduct formation was completely inhibited as a result of

treatments by TCDD (2, 3, 7, 8-tetrachloro dibenzo-p-dioxin) (Cohen

et al., 1979).

Hoel et al. (1983) suggested that it was, therefore, more mean-

ingful to relate the incidence of tumor to the concentration of DNA

aducts and not to the administered dose.

3.2 Model Derivations

Denoting the concentration of DNA aduct by d* and the admin-

istered dose by d, following relations are assumed to exist:

d* = f(d) Eq. 3-1

Pr = g(d*) Eq. 3-2

where Pr denotes the incidence rate. Although g may be obtained by
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various statistical models, determination of f would remain to be in-

vestigated by kinetics of the reactions leading to neoplastic induc-

tion.

In order to determine f, the mechanisms described by Figure 3.1

were used (Noel et al., 1983). [C], in the diagram, represents the

non activated chemical which would either be excreted and/or acti-

vated to form the reactive metabolite, RM. The concentration of the

excreted chemical is represented by[Ce]. The reactive metabolite

would either be detoxified by cell's enzymatic mechanism to form an

inactive metabolite IM, or it could bind covalenly either to nongene-

tic macromolecules of the cell (CBN), or to genetic materials of the

cell such as DNA (CBG). Note that all these reactions could take

place simultaneously. That is, while some molecules of the reactive

metabol ite are being detoxified, others are involved in reactions

resulting in formation of CBG or CBN.

If the metabolite-DNA aducts are formed, they may participate in

DNA replication processes during cell division and result in daughter

cells with genetically altered structures (RCBG). If, however, the

damage is repaired by enzymatic mechanisms, no mutation results. The

product of the repair reaction is symbolized by CBGR (repaired coval-

ently bound genetic material).

In this model, (VA, kA), (vg, Om), and (4, kg) represent

Michael is-Mentenl parameters for activation, detoxification, and

1
For description of Michaelis-Menten kinetics see Appendix B.
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Figure 3.1. Schematic of a simple pharmacokinetic example.

(from Hoel et al., 1983)
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and repair mechanisms. Other reactions are assumed to follow first

order kidetics with rate constants kF, kG, and kR as shown on the

diagram.

It is important to note that this is one of the simplest cases

that can be considered for carcinogenic processes. Nevertheless, it

deserves consideration since it contains a more fundamental descrip-

tion of neoplastic induction processes than the models previously

discussed.

Kinetics of the process described by Figure 3.1 would vary for

different carcinogenic metabolites. Therefore, f has to be deter-

mined for each chemical administered. This model was developed on

the basis of exposure to a single chemical carcinogen. In addition,

steady state conditions were assumed in the derivations of f. A spe-

cial characteristic of this model is that for constant administered

dose, the concentration at each stage of the diagram in Figure 3.1

may be determined by using simple mass balance equations. For ex-

ample, at equilibrium conditions, assuming Michaelis-Menten kinetics

for enzyme catalyzed reactions of activation, detoxification, and

repair, and first order kinetics for other reaction, the following

equalities hold:

Rate of formation of CBG = rate of removal of CBG

R

VM [CBG]
kG [RM] = D + k

R
[CBG]

41+ [CBG]

where the terms in brackets denote concentrations.

Eq. 3-3



Also, at equilibrium

A

Vim
[C] [RM]

kF [RM] + kc [RM] +
kN + [C] km+ [RM]

26

Eq. 3-4

The concentration of RCBG is given by:

[RCBG] = kR [CBG] Eq. 3-5

Since [RCBG] is proportional to [CBG], d* is chosen to be equal

to [CBG]. Special attention must be paid to the concentration of C,

which may or may not be proportional to the applied dose d. [C] is

thought to be proportional to d when the chemical structure of the

administered agent is such that it can easily diffuse through the

cell membrane. When [C] is not proportional to d, then the relation-

ship must be obtained experimentally.

Substituting the parametric values for k's and V's in equation

3-3 and 3-4, and solving the two equations for the two unknowns [RM]

and [CBG], for given values of [C], one can obtain relationships

between the applied dose d and the effective dose d*. Figure 3.2

illustrates this relationshp for vinyl chloride (Noel et al., 1983).

Once d* (or effective dose, [CBG]) is determined, the probabili-

ty of response can be obtained from a multi-stage model of carcino-

genesis. It is interesting to note that at low doses, the relation-

ship between [C] and [CBG] is approximately linear. However,

changing some of the parameters in equations 3-3 and 3-4 can have a

dramatic effect on this apparent linearity. For example, decreasing
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Figure 3.2. (a) Relation between concentration of carcinogen [C]
and the concentration of the metabolite covalently
bonded to genetic material [CBG] for vinyl chloride
kinetic example (from Hoel et al., 1983). The curve
is a result of equations 3.3 and 3.4 with parameters
given in Table 3.1. (b) Relation between [C] and
[CBG] after the detoxification system is overwhelmed
by changing kg from 10 to 0.1.
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Table 3.1

Estimated Parameter Values for Vinyl Chloride

V
A

(maximum velocity of activation)

k
A

(Michelis-Menten constant for
activation)

5706 g/4 hours

860 g/lit

V
D

M
(maximum velocity of detoxifi-
cation)

k
D

(Michaelis-Menten constant for
detoxification)

1000 g/4 hours

10 g/0.25 kg

V
R

(maximum velocity of repair)

k
R

(Michaelis-Menten constant for
repair)

100 g/4 hours

70 g/0.25 kg

Reaction rate constants (as shown in Figure 3.1)

k
F

50 lit/4 hours

k
G

5 lit/4 hours

k
R

100 lit/4 hours

From: Anderson et al., (1980). These are the parameters employed by
Hoel et al. (1983) to produce the results in Figure 3.2.
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the value of kg by 100 fold and keeping the other parameters con-

stant, would result in increased rate of detoxification at low doses.

This is illustrated by curve 2 in Figure 3.3. Note how this one

parameter change significantly increased the detoxification rate at

low doses. With this increase of detoxification at low concentration

level s, the model shifts from a near-1 inear relationship (Figure

3.2(a)) to a nonlinear relationship (Figure 3.2(b)). A lower detoxi-

fication rate at low doses may be expected when the enzymatic system

for detoxification is overwhelmed by other carcinogen metabolites.

The present pharmacokinetic models do not include such inter-

actions. However, this model (Hoel et al., 1983) does suggest that

if the saturation of detoxification by other background carcinogen

metabolites occurs, then, the relationship might shift toward a

linear relationship as shown in Figure 3.2(a). That is, the rate of

detoxification of the additional metabolites would be reduced due to

engagement of the enzyme molecules in ongoing detoxification

processes. Thereafter, the cell's ability to detoxify the additional

metabolite would be decreased because of the presence of background

metabolite concentrations. This would result in a more linear curve

(such as one in Figure 3.2(a)) at low doses.

The pharmacokinetic model , as described by Hoel et al. (1983),

failed to address the question of multiple pollutants and marginal

risks. Nevertheless, the results are valuable in the sense that they

indicate the absence of any "threshold" doses for the vinyl chloride
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example. In each case examined, there were no positive doses at

which the probability of cancer incidence could be zero.

Cornfield (1977) developed a model for carcinogenesis resulting

in a single threshold. His single exposure, steady state model re-

quired complete deactivation of carcinogen at the critical target on

DNA. The assumptions were based upon the existence of at least one

completely irreversible deactivation reaction. Such an assumption of

irreversibility cannot be made in many biological reactions. For

example, in the case of hydrocyanic acid-Thiosulfate cytochrome oxi-

dase system, a reverse deactivation reaction exists.

Biochemical deactivation reactions take time to reach equili-

brium. Under Cornfield's assumption that dose and response incidence

are proportional, therefore, such thresholds cannot exist, since even

one activated molecule would be sufficient to initiate the

carcinogenic process. Cornfield's model would result in low dose

linearity in such cases (Crump, 1978).

The assumption of a single exposure in Cornfield's model is also

quite unrealistic, since exposure to environmental pollutants as well

as production and degradation of deactivator, is a continuous pro-

cess. If carcinogen Y is applied continuously to his model, the

amount of Y-DNA complex will not be zero even under steady state con-

ditions, and thus the argument for an absolute threshold is not

supported.
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CHAPTER IV

IMPLICATIONS OF EXISTING DOSE-RESPONSE

MODELS ON ENVIRONMENTAL RISK ASSESSMENT FOR CARCENOGIES

The ongoing debate on dose-response relationships for carcino-

genic risk assessment has given rise to questions regarding linearity

of response at low doses, and marginal risk associated with intro-

duction of a new carcinogen to the present pool of carcinogens.

None of the five models cited, addressed the subject of exposure

to multiple pollutants. The dose-response relationships discussed,

were developed for a single carcinogen. Amore realistic model, how-

ever, would include the concept of exposure to a combination of

carcinogenic agents having additive, synergistic, or antagonistic

effects on one another. Humans are exposed simultaneously to more

than one pollutant, some are encountered repeatedly, while the others

are highly persistent and reside in biological tissues for long

periods of time before they are degraded.

In this chapter, some of the important factors in quantitative

carcinogenic risk assessment are discussed.

4.1. Review of the Models for Carcinogenic Risk Assessment

The concept of additivity of carcinogens is not included in any

of the models discussed herein. The significance of this issue may

severely undermine the foundations of the existing models'

assumptions.
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In general, all of the models discussed (except for the log-

probit model) assume that neoplastic growth is a result of a single

cell being altered at some critical target sites by one or more

transitions.

The multi-hit and multistage models assume that the development

period of the tumor is independent of the initial dose. This assump-

tion may hold true in low-dose regions. However, for sufficiently

large values of dose, the applicability of this assumption is highly

questionable.

The multistage models of carcinogenesis such as the one de-

veloped by Armitage and Doll (1961) appear to be more realistic

theoretical developments. In particular, the observation that cancer

incidence rates dramatically increase with age (for human cancer),

would support the general form of the age-specific incidence rate

given by:

where

k

I (t,D) = kt
(k-t)

1 I

T-1-

(ai + Bi D)

i=1

Eq. 4-1

t = exposure time (equal to age for a constant dose rate)

D = dose rate

k = number of stages

The log-probit model discussed in Section 2.3 is based upon

several assumptions not shared by the hit-theory models.
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The log-probit model assumes the existence of a threshold for

each individual in a given population. Furthermore, it assumes that

the distribution of log-dose thresholds is normal. However, exis-

tence of individual thresholds is a matter that has not been

supported either by the stochastic models or by recent pharmaco-

kinetic models. The log-probit model is generally used for experi-

mental curve fitting of biological data and only the central region

of the distribution of the distribution provides a reasonable fit.

At this point in the discussion, one would realize the signifi-

cance of biological mechanisms in derivations of these models. The

stochastic models do not include any assumptions regarding the kine-

tics of mechanisms leading to genetic alterations, tumor induction,

and neoplastic growth. Nevertheless, the requirement of a minimum

number of "hits" on a cell's traget sites appears to be applicable to

many biological situations.

The pharmacokinetic model developed by Hoel et al. (1983) incor-

porates some of the biochemical mechanisms that the previous models

failed to address. This model may open an interdisciplinary dialogue

between toxicologists, epidemeologists, mathematicians, and environ-

mental scientists and engineers. The nature of such dialogues are

essential to the success of research of this nature.

An important result obtained from the discussion of a pharmaco-

kinetic model is the observation that increased enzymatic activity

during the detoxification process (due to the presence of other

carcinogenic compounds), would result in a nearly linear curve. This
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curve represents the steady state concentration of the carcinogen

metabolite as a function of the concentration of carcinogen.

Furthermore, these relationships appear to be similar to the shape of

the dose-response curves obtained by stochastic models. One, there-

fore, may investigate the probability of response as a function of

the carcinogen metabolite-DNA concentration.

The one-hit model results in linear dose-response relationships

for low doses. The multi-hit and multistage models in linear dose-

response curves for k=1, but nonlinear relationships for k> 1.

Unfortunately, experimental results provide no conclusive evidence

for supporting any of these models in favor of the others. In addi-

tion, for very low concentrations, statistically significant results

cannot be obtained from animal experiments.

The general practice regarding animal experiments is to expose

fewer number of animals to higher (than environmentally occurring)

concentration levels, and extrapolate the results to low concentra-

tions using the models discussed in previous chapters.

Because these models do not support the hypothesis of "thres-

holds", one therefore may not assume the existence of no-effect dose

levels for chemical carcinogens.

A review of 151 dose-response curves for chemical carcinigenesis

in laboratory animals provided no clear indication of a threshold for

any carcinogen tested (Lepkowski, 1978), with either the one-hit or

the log-probit (nonlinear) models used for low-dose extrapolations.
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Fall (1978) discussed the concept of "thresholds" and concluded:

The issue is not thresholds or no thresholds; it is one
of the adding a new carcinigen to a pool of present
carcinogens. I would suggest, therefore, that there
may well be thresholds with carcinigenic substances
when given to a very clean animal in an environmentally
controlled situation, that is, when there are few or no
other carcinogens present; this is what the experiment-
al oncologist tries to create in the standard labora-
tory animal test system - a clean animal of known and
homogeneous genetic background with a well character-
ized diet and no known carcinigens living in sterile
filtered air. The human population is different, how-
ever: the mouse doesn't smoke or breath hydrocarbons
or sulfur oxides from fossil fuels, doesn't drink,
doesn't take medicine, doesn't eat bacon or smoked
salmon, but man does.

Jones et al. (1976) suggested the concept of "practical

thresholds". He observed that the latent period for neoplastic

development was dependent on initial dose for most carcinogens rang-

ing from cyclic hydrocarbons to low level radiation. He then sug-

gested that the following time-dose relationship existed for car-

cinogenic processes beyond the transformation stage:

te = t1 (1)1/De)
1/n

where

Eq. 4-2

te = latent period associated with De

ti = latent period associated with Di

D1 = initial dose

n - 3

He then concluded that for low enough values of De, time-to-

tumor could exceed human lifespans. In effect, "practical thres-

holds" would exist. Additive or synergistic interactions of a
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variety of carcinogens each having its "practical threshold", were

not addressed by his study. In addition, one may question the ethical

justifications regarding "practical thresholds". The argument might

then center over the possible transmission of altered DNA (or perhaps

RNA) to future generations resulting in higher susceptibility to

cancerns of various kinds.

4.2. Some Characteristics of Carginogens

The mechanisms for synergistic effects of pollutants and drugs

are not fully understood (Marking, 1977). Proposed theories regard-

ing synergistic effects include formation of carcinogenic metabolites

and/or inhibition of detoxification reactions. The evidence exists

that methylenedioxyphenyl compounds are metabolized by a multiple

function oxidase system which also participates in oxidation of xeno-

biotics (Knudson, 1973).

The chemical EPN has synergistic effects on the pesticide

malathion in such a way it inhibits the nonspecific enzyme carboxy

esterase that detoxifies malathion (DuBois, 1978). Strong evidence

exists in support of interactions between a polynuclear hydrocarbon

carcinogen such as benzo [a] pyrene and croton oil. An agent in

croton oil known to be phorbol myri state acetate (PMA) acts as the

activator for benzo [a] pyrene resulting in increased incidence of

cancer tumors (Berenblum, 1941).

Many investigators now believe in a two-stage mechanism of car-

cinigenesis- namely, initiation stage and promotion stage. The first
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stage, requiring an initiator to alter DNA structure has been

addressed in almost all of the models discussed. The mechanisms of

the second stage which requires an agent - a promoter - is not fully

understood, but several authors have pointed to the possibility of

action during cell division (Sivak, 1972), cyclic AMP (Belman and

Troll, 1973) or intracellular protease release (Trail et al., 1970).

The reality of carcinogenic interactions is not well recognized in

the present models.

Crump et al., (1976) showed that if carcinogenic processes in-

duced by a new pollutant act additively with any ongoing processes,

then under almost all models developed, the response would be linear

for low doses. In particular, their results indicate that extra (or

marginal) response due to extra dose above the background level in-

creases quite linearlly throughout the dose range (see equation 4-11)

A second consideration regarding Crump's work is that of "spon-

taneous" vs. "induced" carcinogenesis. He concluded that if carcino-

genic processes are considered to be initiated by mutational changes

in DNA structure, then induced carcinogenesis would simply follow a

similar pathway as that of spontaneous carcinogenesis.

4.3. Additive Effects of Carcinogiens

To understand additive effects, consider dose d of a particular

(primary) carcinogen. Assume that the totality of background

carcinogens can be divided into two groups (Crump et al., 1976).

Group 1 contains all those carcinogens that induce neoplastic growth
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in ways that are completely independent of the way the primary carci-

nogen induces cancer. Group 2 contains all those carcinogens (along

with spontaneous biochemical incidents) that in some way act in

conjunction with the primary carcinogen. Assume

I= I 1 + 1 2 Eq. 4-3

in which I equals the total incidence of cancer, Il equals the inci-

dence due to group 1 and 12 is the incidence due to group 2. Let

IM(d) = I(d) - I(o) Eq. 4-4

in which IM is the marginal incidence of dose d (the primary carcino-

gen), I(d) is the total incidence with dose d and I(o) is the total

incidence without dose d. Let

12 = H(D)

and

Eq. 4-5

M

D=L
0 z.-., P. dj Eq. 4-6

j=1
J

in which, Do is the total effective dose in group 2 in the absence of

the primary carcinogen, D is the total effective dose in group 2 when

the primary carcinogen is present, dj is the dose level of carcinogen

j in group 2, M is the total number of carcinogens in group 2, and pi

is an unknown constant. Note that if synergistic or antagonistic

reactions occur, a more complex relationship would apply.

Assuming an additive effect for the primary carcinogen in group

2, one obtains the following:
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D =
o

+ pd Eq. 4-7

where Pis a constant of proportionality.

Combining equations 4-3, 4-4, 4-5, and 4-7 results in the

following expression:

IM(d) = [Ii + H (Do + pd)] - + H (Do)]
Eq. 4-8

= [H (Do + pd)] - H (Do)

Using a Taylor series expansion of 4-6 one obtains:

or

IM (d) = [H (Do) + HI(Do)pd + Hu(D0)
( p,,a)2

+ ....] - H(D0)

H" (D0) (pd)
2

IM (d) = H' (do) Pd +
2

Eq. 4-9

Eq. 4-10

If IL < H(D0) < Iu, where IL and Iu are incidence quantities shown

on Figure 4.1, then H(D0) falls within the near linear portion of the

Incidence-dose curve and the higher order terms can be neglected.

Equation 4-8 reduces to

IM(d) = pHI(Do)d Eq. 4-11

Thus, the marginal (extra) incidence is a linear function of dose d.

We can say that d has a response (incidence) additive effect

with group 1 carcinogens and a dose (concentration) additive effect

with group 2 carcinogens. If dose d has other than an additive

effect within group 2, equation 4-5 should be modified to

D = Do + pd + h (d1, d2, .... dm, d) Eq. 4-12

in which h is the non-additive increase in the effective dose, D.
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DO,L Do A j

Dose Do

Figure 4.1. Diagram of a Nonlinear Dose-Response Relation-
ship. An incremental increase of dose, A, in
excess of background results in a linear increase
in response.
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If h has a positive value, then d is said to have a

synergistic effect. If he has a negative value, d is said to have an

antagonistic effect.

Humans show a significant level of spontaneous response (approx-

imately 20% death rate) due to already existing carcinogenic agents.

The total incidence rate including undetected cancers is higher than

the death rate due to cancer. The incidence rate of any

mpechanistically related group of cancers is, obviously, less than

the total cancer incidence rate. Thus, the assumption of a back-

ground incidence rate and the presence of congruent carcinogens must

be considered. As previously discussed, such considerations may

support a linear dose-response relationship for the addition of a

carcinogen even when nonlinear models are employed (see Figure 4-1.)

4.4. Relationships Between Dispersal and Total
Population Incidence

Most of the debate over the linearity on nonlinearity of the

dose-response relationship is concerned with the extrapolation of

risk estimation to low doses. The nonlinear models generally yield

substantially lower risks at a low concentration than does the linear

model. Similarly, nonlinear models allow for higher doses (concen-

trations) for a given level of risk than do linear models. There is,

however, an equally important issue, hereafter called the dispersal

issue, that the literature has not addressed.

For the purpose of this discussion, dispersal will refer to the

degree to which a given mass of a carcinogen is distributed through-
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out a population. A high dispersal means that the mass is evenly

distributed and each person receives a relatively equal dose. A low

dispersal means that the mass is concentrated within the population

and thus a few individuals receive a high dose while the majority

receive a much lower dose. The dispersal issue concerns the total

response of the entire population as a function of dispersal.

If one assumes a nonlinear dose-response relationship for a car-

cinogen, the total response in the entire population can be reduced,

by maximizing dispersal(2) (See Appendix C). However, given the

linear assumption, the total risk is equal if a large population

receives a low dose or if a small population receives a high dose

(all else being equal).

If the effects of synergistic interactions are greater than

antagonistic interactions, higher levels of dispersal may lead to

higher levels of total response. High levels of dispersal may then

be undesirable. Note that dispersal must not be confused with trans-

port. If pollutants are transported to areas where population

density is very low, then the risk of cancer would be decreased by

less exposure (or contact).

The effect of dispersal upon the total incidence of cancer in a

population thus depends upon the linearity or nonlinearity of the

marginal dose-response relationships and the relative degree of

synergism and antagonism. Higher levels of dispersal may be either

(2) This statement assumes no synergistic or antagonistic inter-
actions. Such interactions are included later in the Discus-
sion.
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beneficial or harmful. Thus, debates over dose-response

relationships and background interactions should involve more than

the issue of low dose extrapolation. An additional issue is the harm

or benefit associated with dispersal.

The paradigms of environmental science, engineering and manage-

ment are in general based upon the implicit assumption that dispersal

is desirable. This assumption is most obvious in the technological

efforts to increase dispersal (i.e. ocean outfalls, di fusers, smoke

stacks, etc.) Less obvious, but probably more significant, is the

practice of relating environmental risk to the concentration of

pollutants (usually mass per unit volume). It is commonly assumed

that acceptable risk may be attained by keeping the concentrations of

pollutants below some stated level. Under this assumption, a problem

is identified when a concentration exceeds some prescribed level.

Risks are managed by defining standards for maximum permissible con-

centrations. All of these notions implicitly assume that high

dispersal is good because it leads to a reduction of maximum concen-

trations. Debate then centers over the appropriate levels of maximum

permissible concentrations. The desirability of dispersal itself is

seldom addressed. Dispersal is presumed to be desirable.

In effect the presumed desirability of dispersal assumes a non-

linear dose-response relationship. The notion of a threshold

concentration (a special case of nonl inearity) below which risk is

essentially zero is often presumed. Under such an assumption, dis-

persal is desirable, particularly if maximum concentrations are
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reduced to below threshold levels. For example, if concentration is

normally distributed over a population of No. Individuals with

individual i receiving the maximum concentration. Then assuming the

existence of a threshold for carcinogenic risk evaluations, one would

want to decrease Cmax to a prescribed level, CT (see Figure 4.3).

The implication of the linear carcinogenic model, however, would be

to minimize the average concentration that a person encounters over

time, that is, to minimize

C
1

+ C
2

+ + CN0

Cavg .
N
o

Eq. 4-11

where Cl, C2,., CN are concentrations encountered by individuals

1, 2, ..., No, per unit time. In the case of carcinogens, however,

the scientific community has not accepted the nonlinear marginal

dose-response relationship as the universal norm. A linear relation-

ship appears to be accepted by many toxicologists, particularly where

a background level of cancer is found and multiple carcinogens are

likely to be present. The literature does not support a universal

assumption of nonlinear dose-responses or thresholds under such con-

ditions. Thus, by presuming dispersal to be desirable, broad areas

of environmental science, engineering, and management are implicitly

assuming a relationship (nonlinear dose-response) that has not been

accepted within the disciplines of science that deal with this

relationship. The debates over dose-response relationships appear to

involve more than the toxicological literature indicates. There
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appears to be a serious interdisciplinary dysfunction and thus there

is a grave need for a higher level of interdisciplinary dialogue.

4.5 A Proposed Experiment for Multiple
Pollutant Risk Assessment

Dispersing pollutants would result in more carcinogens being in

contact with each other within any given environment, whereas low

dispersal (or concentrating a pollutant in a particular area) would

prevent many synergistic or additive reactions (which are due to

presence of other pollutants) to take place.

A conceptual experimental design is presented which might test

for a general relationship between dispersal and total population

incidence. Given

I. An equitoxic3 or equicarcinogenic dose, Do for each
of No different chemicals (carcinogens or suspected
carcinogens).

2. A No different environments (containers)containing
equal numbers of test organisms

3. Nn dose which induces cancer in the same percentage
of all laboratory animals exposed for different pol-
lutants.

Two test runs would be compared.

Test run 1: Each environment would receive a dose Do of
one and only one chemical.

Test run 2: Each environment would receive a dose Do/No of
each and every chemical

The total incidence of tumor would be measured for each test

run. If the total incidence of test run 1 was greater than test run

3A dose which indures cancer in the same percentage of all laboratory

animals exposed for different pollutants.



47

2, an inverse relationship between total incidence and dispersal

would be implied. Contrary results would imply a direct relationship

between total incidence and dispersal. As No is increased, the total

number of organisms would be kept constant (the number per separate

environment would decrease). At higher levels of No some tendencies

might emerge that would indicate a general relationship between total

incidence and dispersal. Dispersal would be given by N0-1 (the

number of equal volumes over which each chemical is dispersed).

Experiments of this nature were not cited in literature reviewed for

this study, and results, if exist, are not included in discussions.
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CHAPTER V

CONCLUSION

Several dichotomous response models for carcinogenesis were re-

viewed and their implications for low dose estimations were examined.

Such models are mathematical translations of fundamental concepts

held (explicitly or implicitly) by those employing them. This study

sought to examine these fundamental concepts with regard to problems

faced by environmental engineers, scientists, and regulatory agen-

cies. The following observations were made

1. None of the models reviewed, displayed an absolute threshold

(no response level), to a given population, however, all but the one

hit model could potentially display a nonlinear (concave up) dose-

response relationship at low dose regions. This nonlinearity may

lead to extremely low responses at low dose levels, therefore

providing an "effective threshold". Arguments for existence of

thresholds appear to be most applicable to natural carcinogens for

which detoxification and repair mechanisms have likely evolved. For

synthetic carcinogens, arguments for existence of no-effect dose

levels appear to be less compelling.

2. The issue of chronic exposures to multiple pol 1 utants was

typically excluded from formal developments of the models and discus-

sions of additive effects were often vague. Synergistic and antago-

nistic effects were even less frequently discussed.
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3. When a background of congruent (similarly acting) carcino-

gens is present, a "concentration additive" effect may occur with the

addition of a new carcinogen. Then, the marginal response for the

new carcinogen may approach a linear relationship with dose (or

concentration) even when nonlinear models are employed.

4. The debate over the linearity or nonlinearity of dichtomous

response relationships has been primarily concerned with extrapola-

tion of response or incidence data to low dose values. A separate

concern identified in this study, treats the effects of pollutant

dispersal upon total incidence of cancer within a population. It was

indicated that if a linear dose-response relationship occurs (at the

margin) for a given group of carcinogens, then, dispersal of

pollutants from this group for the purpose of decreasing maximum con-

centrations, is not likely to have beneficial effects on the overall

population. Dispersal, however, is presumed to be an effective means

of environmental quality control. This presumption may not be justi-

fied for an important class of carcinogens.

5. The dose-response models reviewed herein are not likely to

clarify the effect of dispersal upon the total incidence of cancer

within a population. Without revision of their basic assumptions,

they are not capable of treating the net effect of dispersal of mul-

tiple carcinogens. Furthermore, the standard animal carcinogenicity

experiments (which reflect similar assumptions) are not likely to

resolve the "linearity" vs. "nonlinearity" (threshold) debates, par-

ticularly in the presence of a background of multiple, low level
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carcinogens. As a result, these standard tests are not likely to

resolve the controversies concerning the estimation of risk to a

total population given multiple synthetic carcinogens.

6. An outline of an alternative experimental approach was pre-

sented from which the effect of dispersal upon the total tumor

incidence rate of a population exposed to multiple carcinogens might

be examined.



51

BIBLIOGRAPHY

Altshuler, B., "Modeling of Dose-response Relationships," Environ-
mental Health Perspectives, Vol. 42, pp. 23-27, 1981.

Armitage, P., and Doll, R., "The Age Distribution of Cancer and a
Multistage Theory of Carcinogenesis," British Journal of Cancer,
Vol. 8, 1954.

Armitage, P. and Doll, R., "Stochastic Models for Carcinogenesis,"
In: Proceedings of the Fourth Berkeley Symposium on Mathe-
matical Statistics and Probability, Vol. 4, pp. 19-23, 1961.

Bella, D. A., "An Impact Factor for Pollutant Assessment", report
submitted to the U.S. Environmental Protection Agency, Sept.
1979.

Belman, S. and Troll, W., "The Effect of 12-0-tetra decanoyl-phorbol-
13-acetate on Cyclic AMP Levels in Mouse Skin," In: Proceedings
of the 64th Annual Meeting Am. Assocs. Cancer Res. Vol. 14, pp.
21, 1973.

Berenblum, I., "The Carcinogenic Action of Croton Resin," Cancer Re-
search, Vol. 1, pp. 44, 1941.

Cohen, G. M., Bracken, W. M., Iyer, R. P., Berry, D. L., Selkirk, J.
K., and Slaga, T. J., "Anticarcinogenic Effects of 2, 3, 7, 8-
tetra chlorodibenzo-p-dioxin on Benzo a pyrene and 7, 12-dime-
thylbenz a anthracene tumor initiation and its relationship to
DNA binding," Cancer Research, Vol. 39, pp. 4027-4033, 1979.

Cornfield, J., "Carcinogenic Risk Assessment," Science, Vol. 198, pp.

693-699, 1977.

Crump, K. S., Hoel, D. G., Langley, C. H., and Peto, R., "Fundamental
Carcinogenic Processes and their Implications for Low Dose Risk
Assessment," Cancer Research, Vol. 36, pp. 2973-2979, 1976.

Crump, K. S., "Models for Carcinogenic Risk Assessment," Science,
Vol. 202, 1978.

Dinzer, H, "Ober Einige Wirkungen von Strahlen VII," Z. physik, Vol.
89, pp. 421, 1934.

DuBois, K. P. and Frawley, J. P., "Quantitative Measurements of Inhi-
bition of Aliesterases Acylamindase, and Cholinesterase by EPN
and Delnav," Toxicol. Appl. Pharmacol., Vol. 12, pp. 273, 1968.



52

Fahl, W. E., Scarpelli, D. G., and Gill, K., Cancer Research, Vol.

41, pp. 3400, 1981.

Gart ler, S. M., "Utilization of Mosaic System's in the Study of the

Origin and Progression of Tumors," In: J. German (ed.), Chro-
mosomones and Cancer, pp. 313-334, New York, Wiley, pp. 313-334,

1974.

Hodgson, E., Phi 1pot, R. M., Baker, R. C., and Mailman, R. B., The

American Society for Pharmacology and Experimental Therapeutics,

Vol. 1, pp. 392-400, 1973.

Hoel, D. G., "Statistical Extrapolation Methods for Estimating Risks

from Animal Data," Ann. N. Y. Acad. Sci., Vol. 271, pp. 418-420,

1976.

Hoel, D. G., Kaplan, N. L., and Anderson, M. W., "Implication of Non-

linear Kinetics on Risk Estimation in Carcinogenesis," Science,

Vol. 219, pp. 1032-1037, 1983.

International Agency for Research on Cancer, IARC Monograph on the
Carcinogenic Risks of Chemicals to Humans, Lyon, France 4, Vol.

97 (1974).

Jones, H. B., Grendon, A., and White, M. R., "The Time Factor in

Dose-Effect Relationships," In: Biological and Environmental
Effects of Low-level Radiation. Vienna, IAEA, Vol. I, pp. 319-

324, 1976.

Jones, H. B., "Dose-Effect Relationships in Carcinogenesis and the

Matter of Threshold of Carcinogenesis," Environmental Health
Perspectives, Vol. 22, pp. 171-172, 1978.

Lepkowski, W., "Extrapolation of Carcinogenic Data", Environmental
Health Perspectives, Vol. 22, pp. 173-181, 1978.

Marking, L. L., "Methods for Assessing Additive Toxicity of Chemical

Mixtures," Aquatic Toxicity and Hazard Evaluation, ASTM STP 634,

F. L. Mayer and J. L. Hamelink, Eds., American Society for Test-

ing and Materials, pp. 99-108, 1977.

McCann, J. and Ames, B. N., "The Salmonella/microcosme Mutagenicity
Test: Predictive Value for Animal Carcinogenicity," In: Ori-

gins of Human Cancer, H. H. Hiatt, J. D. Watson and J. A.

Winsten, eds., Cold Spring Harbor Laboratory, New York, pp.
1431-1450, 1977.

Newbold, R. F., Brooks, P., and Harvey, R. G., Int. J. Cancer, Vol.

24, pp. 203, 1979.



53

Papoulis, A., Probability, Random Variables, and Stochastic Pro-
cesses, McGraw-Hill, 1969.

Rail, D. P., "Thresholds?," Environmental Health Perspectives, Vol.
22, pp. 163-165, 1978.

Snoeyink, V. L. and Jenkins, D., Water Chemistry, Wiley, 1980.

Swak, A., "Induction of Cell Division: Role of Cell Membrane Sites,"
Journal of Cell Physiology, Vol. 80, pp. 167, 1972.



54

APPENDICES



55

APPENDIX A

GAMMA PROBABILITY LAW
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Consider a Poisson process beginning at dose zero. Let Dk be

the dose corresponding to the kth event or "hit", where k > 1. If D

is any fixed positive number such that Dk > D, one may state that

there exists a random variable X, such that Dk > D is equivalent to

the event X < I-1, and X is the number of hits occurring in the dose

interval (0,D). The above statement is justified since the dose at

which tie kth hit occurs can exceed D only if there are no more than

k-1 events in the interval (0,D). X is the Poisson variable with

parameter r = xi°. One may write the following expressions

P(Dk > = P (X < k-1)

k-1

1.
.1

i=0

Eq. A-1

The distribution function for the dose of the kth hit, Dk is

FD (D) =P (Dk < D) = 1 - P (Dk > 0)

k-1

LAD) e- XD
1!

i=0

Eq. A-2

Dk is the Erlang random variable with parameters k and A. Rearrang-

ing Eq. A-2 and differentiating, one will obtain the following ex-

pression:
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Defining the gamma function

CO

r (n) =JrUn -1 e-U dU

0

and considering that

Eq. A-3

Eq. A-4

r (n) = (n-1)! for n = integer,

one may write the following expression by a change of variable U = Ax,

dU = Adx.

So that

00

f n
x
n-1

e
-Ax

dx

0

an x
n-1

e
-Ax

dx
r(n)

0



Therefore

A
n

x
n-1

f
x
(x) e- Ax

r(n)
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Eq. A-5

is a density function and defines the gamma probability law with par-

ameters n and A. Note that for n=k, a positive integer, this is

equivalent to the Erlang density function.
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APPENDIX B

MICHAELIS-MENTEN KINETICS
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Suppose that the enzyme E and the substrate S react in the fol-

lowing manner to yield the product P:

kk

S + E " ES
3

k

l

2
k
4

P + E Eq. B-1

where ES is the enzyme-substrate complex. This complex must form for

the reaction to take place. The k's in Eq. B-1 represent the reac-

tion rates. One can then state that the rate of overall reaction

must be related to the concentration of ES, because for the reaction

to occur, the complex ES must be formed. One, therefore, may wish to

determine the concentration of ES. At steady state:

Rate of formation of ES = Rate of removal of ES

Assuming that the reaction in Eq. B-1 is an elementary reaction,

kl [E] [S] + k4 [E] [P] = k2 [ES] + k3 [ES] Eq. B-2

Dividing by E and rearranging the results, the following is obtained:

[E]
(k

2
+ k

3
)

ES kl[S] + k4[P]
Eq. B-3

Assuming that k4 [P] « k1 [S] and defining the total amount of

enzyme as E t = E + ES , the following expression can be derived,



ES
(k2 + k3)/k1 + [S]

[E]t [S]
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Eq. B-4

If it is assumed that the rate of reaction, V, is proportional to

[ES], then the maximum rate of reaction, Vmax will occur when all of

the enzyme is present as [ES] = [E]t. Setting Km = (k2 + k3)/k1, one

can obtain the following:

Vmax [S]V-
Km + [Si

Eq. B-5

Plotting V versus S using the above equation, one can obtain a rec-

tangular hyperbola such as the graph in Figure B.1. Km is called the

Michaelis-Menten parameter and Eq. B-5 is the Michaelis-Menten equa-

tion.

Note that the graph in Figure B.1 is plotted for the sucrose

hydrolysis reaction:

C12H22011 + H2O C6H1206 + C6H1206

(See Snoeynik and Jenkins, 1976).
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Figure B-1. Rate of Sucrose Hydrolysis by Yeast Saccharase
as a Function of Substrate Concentration.

(from Snoeyink and Jenkins, 1980).
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APPENDIX C

AN ILLUSTRATIVE EXAMPLE OF

DISPERSAL EFFECT
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To illustrate the effect of pure dispersion with different dose-

response relationships a simple example is provided in Table C.1 and

Figure C.1 (Bella, 1979). In this simple example two dilution con-

ditions are examined: 1) a low dilution condition in which 3 mg/lit

of a pollutant are located in one unit volume and 2) a higher disper-

sion condition in which 1 mg/lit of a pollutant is located in 3 unit

volumes. Both conditions have the same total mass of the pollutant.

The second condition has a relative dispersal of 3 with respect to

the first condition. A relative indicator of the total environmental

incidence, ER, is provided in column 6 of Table Cl. This simple ex-

ample illustrates that dispersion decreases ER with a highly non-

linear relationship. Dispersion has no influence upon ER for the

linear relationship.

TABLE C.1 ILLUSTRATIVE EXAMPLE OF
DISPERSAL EFFECT

Figure
Relative
Dispersal

Dose/
unit
Area

Density of
Incidence

Area of
Pollutant
Field

Total (a)

Incidence

(ER)

C.1(a) low 4 3.5 1 3.5

C.1(a) high 1 0.1 4 0.4

C.2(b) low 4 5.0 1 5.0

C.2(b) high 1 1.25 4 5.0

(a) Total Incidence = (Incidence Density) x (Area of Pollution Field)
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(a) (b)

1 2 3 4 5 0 1 2 3 4 5

Dose per unit area

Figure C.1. Illustration of dispersal effect for two
different concentrations - incidence
density relationships. (See Table C.1

for explanation).


