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Implementing Remote Laboratories for Control Engineering:
Foundations for Distance Learning

CHAPTER 1
SECOND BEST TO BEING THERE (SBBT)

Distance learning has been an exciting development over the last several years. It is

now commonplace to transmit a lecture on broadcast television, or over a computer

network. Distance learning is an effective way for people to learn new material without

travelling to a specific location. While the lecture format serves most disciplines, it does

not serve those that require laboratory work. Currently, there is little distance learning

support for classes with laboratory components.

Consider the situation of a control engineering student. Once a student designs and

writes control code to run on an experiment, she must test it on the actual experiment. If

she is on the same campus with the experiment, she can walk into the laboratory and turn

the experiment on. However, if she is not within easy commuting distance, she will need

software and hardware to provide for her remote lab experience. Due to the popularity of

computer games, virtual reality, animation, and remote control of toys and television,

many people are ready for the concept of working on equipment at a location different
from their own.

This work explores the implementation of remote laboratories. We defined a

paradigm for interaction with a remote laboratory based on experiences in existing labs.

As a multi-disciplinary team, we implemented a system that supports the paradigm with

new and existing software and hardware. We call our system Second Best to Being There

(SBBT), in recognition that while being there in person is best, learning from a remote

location is also a worthwhile experience. Our demonstrations from other cities in Oregon
and California show that SBBT is successful.
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1.1 Control Engineering and the Laboratory

Controlled
Environment

2

Control engineering is an applied discipline, encompassing dynamical modeling,

motion control, sensing, communications, and data acquisition. Generally there is a

process or object to control, and there is some mechanism to control it (Figure 1). A very

simple example is a thermostat. To heat a room, a person adjusts the thermostat dial to the

desired setting. Next, the setting is compared to the most recent temperature reading. If it

is too cold, the controller program sends a signal to the furnace to heat the room. In due

time, the temperature test will match the thermostat setting, and the controller signals the

furnace to turn off. This is an example of a control loop: Test the environment, compare

results to the goal, transmit orders to make changes if needed, and repeat (Figure 2).

Typical control engineering experiments in our lab are x-y positioning tables, DC motors,

and robot arms.

Control engineering is an appropriate discipline to introduce distance learning
laboratories. Many of the concepts needed to conduct a remote lab, such as controlling

distant equipment, are paradigms control engineers already understand. Distant control of

equipment is a concept that can now be applied to their learning environment, as well as to

what they are learning. See Figure 3 for an example with a robot.
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Figure 3. Internetwork context for SBBT.

1.2 The Internet: Infrastructure For SBBT

The Experiment

3

The Internet is a wildly successful experiment. It began as a project of the U.S.
Department of Defense called the ARPANET (Advanced Research Projects Agency
Network). Starting with four sites in December of 1969 [Tanenbaum, 1989], the Internet

now connects 9.5 million hosts. In 1993, the Clinton administration of the U.S.
government announced the National Information Infrastructure (NII), a new
internetworking vision [Cochrane, 1994]. On a local level, the State of Oregon has
received federal funds to develop the Network for Education and Research in Oregon
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(NERO), which expands and increases the performance of the Internet. The Internet
(Figure 4) provides the communications infrastructure for our work.
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1.2.1 National Information Infrastructure (NII)

At a recent technical forum, David D. Clark, Chief Protocol Architect for the
Internet from 1981 to 1989, observed that, while the U.S. government has the vision for a

gigabit network, it will not pay for it. Therefore, he concluded, the people who will do the

work will also define the Information Superhighway itself. We provide a realistic
application, not a benchmark, for evaluation of multimedia network traffic characteristics,

and definition of the new functionality we want in future applications.

1.2.2 Network for Education and Research in Oregon (NERO)

Our project supports all the development goals of NERO [NERO, 1993]:

Collaborative tools for instruction or research: SBBT is designed as a collaborative

tool and an instructional laboratory. In addition, collaboration is a specific component

of the application architecture.

Engineering and Computer Science Courses: SBBT may be used as part of the lab

component for control engineering classes.

Video Applications: SBBT uses video as an important part of the application
presentation. SBBT has a modular design and can easily accommodate advances in

network video technology.

Real-time equipment/process control: SBBT controls lab equipment in real time.

Access to resources (databases, supercomputer, telescope, etc): SBBT makes control

engineering lab facilities at OSU available to other universities and researchers.

ATM transport and other network issues: SBBT requires several kinds of network

traffic with varying degrees of end-to-end reliability. When existing software did not

meet our needs, new networking software was developed.
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1.3 Application Design Approach

To create an application for remote laboratory work, we identified our goals and then

shaped some strategies to guide us to a successful implementation. First, we wanted a

working prototype as soon as possible. Second, we knew that there would be opportunities

for follow-on work, so the system needed to have a solid base. Third, since different

students would work on system development, it needed to contain robust components. A

modular design would also make it easy to incorporate software and hardware
improvements with little disruption. Fourth, the SBBT system itself needed to be general

enough to be useful on a variety of equipment. Fifth, we recognized that student-to-

student communication needs explicit support. Finally, there were real concerns to
overcome from administrators as to whether a long-distance application that controls

moving parts was allowed in an educational setting. Keeping these needs in mind, we

shaped several strategies to guide our implementation choices. These strategies were:

striving for modularity, achieving transparency to the user, using existing hardware and

software whenever possible, encouraging collaboration, ensuring safety, and using real-

time computing. Establishing clear guidelines helped us build a working implementation

quickly.

1.3.1 Strategy 1: Striving for Modularity

Designing a modular system makes porting SBBT to other computer systems and

different experiments more manageable. SBBT must be flexible in new environments
since there are a wide variety of engineering experiments. Using modular components also

simplifies transitions to new software and hardware. We planned to use tools we already
had. They enabled us to build a flexible prototype quickly, knowing that we could upgrade

easily when we needed more performance or functionality. Modularity also makes it easier

to partition system development between people. By dividing up the development tasks,

we could implement the system in parallel.
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1.3.2 Strategy 2: Achieving Transparency to the User

So that the student could focus on her work, we kept the SBBT system as transparent

as possible. We used standard user-interface conventions from the PC and UNIX worlds to

keep the process predictable. For example, SBBT comes up on a UNIX workstation as a

series of windows to place; students already know how to place windows from other

applications. For user feedback from the PC controller, we used DOS-like responses. For

the user, there is virtually no manual needed.

1.3.3 Strategy 3: Using Existing Hardware and Software

As stated earlier, we used numerous existing tools in order to have a working
prototype on schedule. This strategy also benefits from modular design. As new and better

technology becomes available, we can take advantage of it by easily swapping in new

modules.

1.3.4 Strategy 4: Encouraging Collaboration

We made the controversial decision that scheduling the experiment resource should

involve a social interaction between students. Using a computer scheduling program
would serve the purpose, but not add to the lab experience. Remote learners are isolated

and have fewer opportunities to form collegial relationships. Providing a reason for
students to meet may lead to other conversations as well. Bradley et. al.[1993] observes

that:

While we concern ourselves with the impact of computerization on
`man-machine' or 'human-machine' communication, we must also
direct our attention towards the qualitative aspects of communica-
tion 'human to human.' Some researchers identified these aspects
as early as the 1960s, emphasizing their importance for well-being
at work, though it is only during the last 2 or 3 years that a well-
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functioning and good communication in this broader sense has been
recognized as an essential productivity factor.

The social aspects of working in a lab are also part of the training for future
professional communications.

1.3.5 Strategy 5: Ensuring Safety

In order to deploy an application that controls moving parts semi-autonomously, we

had to take safety very seriously. We conducted a high-level hazards analysis to reassure

administrators on a technical level that we would protect students and equipment in the

lab. Our safety approach is broad and makes sense for our lab.

1.3.6 Strategy 6: Using Real-Time Computing

When a student is working in a laboratory, everything happens in real time. Nearly

every aspect of our remote lab paradigm requires a real-time component. If equipment is

ordered to stop motion, that must happen as soon as possible. Real-time methodology

ensures that critical traffic is predictable.

1.4 Related Work

There are three areas of engineering research that have bearing on SBBT: simulation

systems, telerobotics, and large multi-location industrial applications. We were able to use

the experience in these fields to make SBBT more responsive to distance learners. We

examine projects in each of these areas and note how they influenced the design of SBBT.
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1.4.1 Simulation Systems

Simulation systems abstract and represent important aspects of actual systems.

Simulation is a cost-effective method to determine the characteristics for an optimal

physical system more flexibly than building and testing numerous prototypes. Simulation

can also be used to train operators on dangerous or unavailable equipment.

Lumelsky [1991], uses simulation systems to determine why human operators are

ineffective at motion planning for telerobotic applications. In telerobotics, a human

operator is part of the control loop. He proposes that there is a need for "effect of
presence" so that the operator can be more accurate in environments with obstacles. He

argues that people can be more effective if they have a better idea of the surroundings that

the remote robot is operating in. He used simulations to test the kind of information people

need to make more accurate movement with telerobots. We incorporated the idea of giving

the remote student information about the laboratory setting into our system.

In [Stark, et. al., 1987], simulation was used to discover the visual interactions

between the human operation and the manipulator system in an environment with
communications delay. The human operators used joysticks to manipulate a simulation of

a four Degree of Freedom (DoF) cylindrical-type robot arm. In their simulations they

found human response time, (200 ms) to be the major time delay. This timing data helped

us set our timing goals for SBBT system response.

Lee and Lee [1993], use simulation to monitor telerobotic force feedback and
validate their techniques. They found to stabilize actions, a goal of three seconds latency,

or delay, maintains fidelity of remote operations. This latency information was factored

into our system response calculations. Human response time captured from systems in use
provided a realistic starting point for SBBT.

Another important use of simulation is training. These types of simulation systems

are very application specific and often require elaborate user interfaces. Miner and

Stansfield [1994] describe a simulation system to train operators in retrieval of hazardous

waste in underground storage tanks, such as those located at Hanford, Washington. On-

the-job training is obviously undesired in this situation. In their training exercises, they
found that making task-level commands available to operators made them more efficient.
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Operators using their command set did not have to remember detailed sequences to do

routine tasks. This information helped us define commands for SBBT at the right level of

detail.

In [Woolf and Hall, 1995], several teaching simulation systems are reviewed and

evaluated. They describe an "active learning environment" consisting of three key
ingredients: 1) system parameters that the student may change, 2) enough domain
knowledge to understand the assignment, and 3) simulation system response to student

actions. We used these concepts in our design of SBBT.

Simulation systems are important, but do not take the place of working with actual

systems. Not only is it more exciting to use a real experiment, a simulation by necessity

will exclude some physical realities, and therefore consequences. Real experience is based

on working with real equipment. SBBT allows remote use of an actual system.

1.4.2 Telerobotics

Telerobotics is an industrial field "where a human must be part of the control and

decision-making loop...." [Lumelsky, 1991]. Bhatia and Uchiyama [1994] used a
telerobotic system to study the time-delay effects on motion planning. They found that

delays beyond one second make operators tentative. This timing information gave us
additional insight that helped us set our timing goals.

Chan and Dubey [1994] used a telerobotic system to fine tune the amount of effort,

or force, that the human operator must use. Their goal is to reduce the fatigue in the human

operator. This paper helped us realize that the system itself should not take too much effort

to understand and operate.

We know of two telerobotic applications on the World Wide Web. These
applications [Bekey, et. al., 1995] and [Taylor and Trevelyan, 1995] are very amusing, but
due to the nature of the web, there is no liveness. They use still pictures, which are
downloaded and displayed after each user-directed move. When an application is fun to
use, it can be a learning motivator.
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1.4.3 Large Multi-location Industrial Applications

Klein, Lehoczky, and Rajkumar [1994], focus on resource management, or
scheduling, in large distributed systems. These systems, which monitor manufacturing

facilities, vessel traffic systems (harbors and airports), medical equipment, weather and

seismic activity must be distributed but also must have tight controls. They use the divide

and conquer method to establish tasks and their end-to-end deadlines. Even though SBBT

is designed for one person to carry out an experiment entirely on their own, dividing tasks

into subtasks makes development and operation more manageable.

Graves, Ciscon, and Wise [1992] and Kondraske, et. al. [1993] describe a distributed

telerobotics operation spanning five sites in four cities. This testbed is being used to
prepare for space and lunar stations by evaluating different communication protocols and

control techniques. They require a modular environment in order to change operations

dynamically. The system itself is under constant scrutiny. We don't want the student to

even notice the SBBT system, but the flexibility due to modular components has proved to

be a useful method for hardware and software upgrades.

Large multi-location industrial applications are not generally available to students

for experimentation. SBBT is specifically designed for student use.

1.5 Outline of this Thesis

In the next chapter, we present a functional overview of the SBBT application.
Chapter 3, describes the implementation, focusing on the main contribution ofour work.

In Chapter 4, Software Engineering Strategies, we describe the engineering management
choices we made to implement SBBT. The final chapter concludes with a summary of our
approach and accomplishments.
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CHAPTER 2

FIVE-PART ARCHITECTURE: FUNCTIONAL OVERVIEW

To define a model of our remote lab, we remembered all of our lab experiences and

attempted to partition the experience and characterize what each component represents.

We identified the important aspects and imagined multiple computer-transmittable
facsimiles. After each iteration of establishing the design, we reviewed our ideas with

colleagues in as many fields as possible. This review process clarified what vocabulary

effectively describes the ideas. Furthermore, it confirmed that the design would be general

enough to support a variety of experiments. From this partitioning exercise, we defined a

five-part architecture, each part capturing a significant aspect of laboratory interaction.

The five parts are:

The Experiment: This is the conventional experiment that the students need to do their

work.

Lab Presence: This part gives the remote students the feeling that they are in the lab.

Lab Environment Control: This part replaces what local students do for themselves in

the lab, such as turning the experiment on.

Safety: This part protects the local students and equipment in the laboratory.

Collaboration: This part represents the social component of working in a laboratory.

2.1 The Control Engineering Experiment

In this section, we describe our process for selecting an experiment for a remote
laboratory. We base this description, with some modifications, on [Bohus, et. al. 1995].

The control engineering experiment is basically unchanged from its conventional
form. Criteria for an experiment for remote use include: economics, logistics, and
appearance. Current experiments in the OSU laboratory are x-y positioning tables, robot
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arms, DC motor control, inverted pendulums, and magnetic suspension systems. We will

evaluate these experiments against the criteria for illustration.

2.1.1 Economics

If substantial time, human, or financial resources are dedicated to design and build

an experiment, it is a worthy candidate for remote students. For example, most labs will

have an x-y positioning table, but a robot arm is usually more expensive. For the greatest

economic value, the cost of simply replicating an experiment should be compared against

the effort and expense of installing SBBT, keeping in mind that most SBBT costs occur

only once, while replication costs scale. If replicas cost more than SBBT, it makes sense to

use SBBT.

2.1.2 Logistics

The logistical considerations, which can be automatic or manual, are (1) remote

power control, (2) safety for people and property in the lab, (3) the ability to run without

human intervention, (4) a stable start position, (5) at least one reset position,1 and (6) the

ability to download control code. The importance of finding the proper solution to each of

these concerns should not be underestimated. To keep an experiment running, many

people play a role in the maintenance and upkeep of the equipment. Although time-

consuming, representational views from students, professors, and supporting technicians
are critical to a successful remote experiment. At each stage, from design to
implementation, all procedures and interfaces should be reviewed by a representative
group. These evaluations not only improve the overall design, but also provide informal

training.

1. The reset position may be the same as the start position.
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2.1.3 Appearance

If video capabilities are available, any experiment that moves is a candidate for

remote lab use. Another appearance criterion, mostly for demonstration purposes, is
whether the equipment is unique or interesting to watch. From watching the experiment,

the visual information should give the student a good grasp of the overall behavior. For a

robot experiment the visual qualities are obvious; however, in the case of a DC motor,

alterations such as notches on the rotor could give additional information. Although there

are textual and graphical techniques to represent a live experiment, we find that video

transmissions are effective invitations to use long-distance experimentation.

2.1.4 Our Choice of Experiments

We had several candidate experiments available to test the feasibility of SBBT: an

inverted pendulum, an x-y table, and a robot arm. In all cases, the control code could be

downloaded to each of the experiments, a mandatory logistical criterion. The pendulum

experiment was ruled out because it required modifications to support the reset operation

(a separate set of arms that close and set the pendulum upright). The x-y table was in

active use by other students. The 3-DoF robot arm was the remaining choice. It was a

good first choice because it contained no loose pieces, it was easily reset, and it would

allow visually interesting demonstrations.

2.2 Lab Presence

In a real (local) lab, a student feels himself present when he opens the lab door and

walks in. He sees the equipment, hears the voices of colleagues, and gets a general sense

of the activity in the lab, just by opening the door. We wanted to find ways to replicate the

laboratory presence for the remote student. SBBT provides audio and video, computer-

transmittable facsimiles satisfying the senses of sight and sound.
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We used vic [McCanne and Jacobson, 1994] and vat [Jacobson and McCanne, 1994]

from Lawrence Berkeley Laboratories (LBL) for video and audio, respectively. We chose

these applications because they were freely available via FTP in the beta release phase.

We knew that video and audio applications require a large amount of network bandwidth,

but both vic and vat provide an interface for network resource tuning. Due to the
bandwidth concerns, we built modularly and could easily install less demanding presence

applications such as straight-line drawings, or text-only feedback. However, bandwidth

was not an insurmountable problem, and we found through our demonstrations that video

and audio in particular invite interest.

2.3 Lab Environment Control

Since the remote student is not in the lab, he cannot manually turn on the power to

the experiment, among other actions required while testing control code. The Lab
Environment Control component enables remote use of the equipment. We determined a

minimal set of commands by surveying students and professors in control engineering,

electrical engineering, mechanical engineering, and computer science. See Appendix A

for the survey results. The Lab Environment Control commands are very basic and all

experiments need them (Table 1). Our demonstrations show that this minimal command

set is sufficient to conduct long-distance experiments.

Table 1. Lab Environment Control Commands [Bohus, et. al., 1995]

Main Functions Explanation
gosbbt Start up the application for a work session.
quit Release all SBBT resources.
stop Immediate shutdown of controller motors.
reset Put the experiment in a predefined, stable state.
download Transfer control code or data to the target controller.
reboot Turn off power to PC for several seconds, forcing a reboot.
compile Compile and link the control code on the target machine.
run Execute the most recently compiled control code.
getdata Transfer experiment output data to the user.
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2.4 Safety

Safety issues arise when building a system to control machines and processes from a

remote location. First, SBBT must guarantee the safety of the people who are working

locally in the lab. Second, SBBT must confirm that the network is up, and that the distant

student is in timely contact with the equipment. Third, since this is a learning situation, the

student needs tools to stop machines when he sees a mistake occur. We provide a
mechanism for each of these situations.

We have implemented three different levels of safety for the most comprehensive

coverage possible. There is a trade-off between guaranteeing each safety mechanism

through redundancy, or developing a broader set of safety mechanisms. Redundancy is

often considered a good strategy, but in this context it adds complexity. Additional
complexity adds more modes of failure to the overall system [Leveson, 1984]. Our
mechanical, software-controlled, and student-controlled safety features provide a

responsible model for remote laboratories.

2.4.1 Safety Mats: Mechanical and Automatic

Since the remote student cannot be seen, some way of alerting and protecting

students working locally is mandatory. Our technician, Steve Wilcox, reported that, in
industry, a warning buzzer sounds when power to an apparatus is turned on. While the

remote student is working, new local students may wander into the local lab. These
students may be unaware of the remote student, because they were absent when the
experiment power was engaged and the buzzer sounded. To protect the local students from

sudden movement of an experiment, we placed a pressure-sensitive mat in front of the

moving parts of the experiment. The mat is connected to the experiment power supply. If

any weight is detected on the floor mat, the motors to the experiment are automatically

turned off. The distant student must go through a reinitialization sequence to continue
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working. The only way to foil this mechanism is to cut the wires. This safety feature is

mechanical and automatic.

2.4.2 Network Heartbeats: Software Controlled and Automatic

Networks have latencies (time delays) and limited bandwidth. Furthermore, they

sometimes go down. Initially, administrators were concerned about students working on

moving systems from a remote location, since no one would be in the room to prevent any

mishaps. We designed a heartbeat signal that constantly checks the network, to ensure that

it is up, and that delays can be tolerated. If heartbeats are missing because delays are too

long, or the network is unreliable, the power to the experiment motors is automatically

turned off and SBBT sends an explanatory message to the student. The heartbeats are

software controlled and automatic.

2.4.3 Panic Stop Button: Student Controlled and Manual

Assuming the student is actively using the experiment, and going through the normal

routines to test his control code, he will be the first to react to many problems. In the local

situation, if a student sees something undesired about to happen, he lunges for the power

button, or some other trigger to stop the action. We provide the STOP button on the screen

(Figure 5), for the remote users, which can be clicked on using the mouse. When the
remote student clicks on the STOP, SBBT sends a message across the network to cut
power to the motor, stopping it; this preserves the situation for student analysis. The STOP

button is under manual student control.
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2.5 Collaboration

Distance learners are potentially isolated collegially as well as physically. If
computer-mediated distance learning is to minimize the effect of collegial isolation, SBBT

must explicitly address theses issues. Straus and McGrath, [1994] emphasize the need for

human considerations when designing computer-mediated experiences:

There is a substantial lag between development and implementation
of technological systems, on the one hand, and systematic research
on the social and behavioral consequences of using such systems,
on the other. Research in a variety of work contexts has shown the
negative effects of designing technical systems without regard for
the social systems in which they are embedded (e.g. Foushee, 1984;
Trist & Bamforth, 1951).

SBBT supports social interactions with tools that make communication convenient

and social protocols that encourage communication.

There are many network conference tools available for students to use to
communicate with one another. We chose wb [Jacobson and McCanne, 1994], a shared
whiteboard application developed at LBL. A student can draw or type on a portion of the

computer screen, and everyone who is connected to that session sees the drawings and

text. There are other wb application features to take advantage of, such as saving the
communication sessions to review later. If latency, limited bandwidth, or software
unavailability prevents students from using an audio tool, then the shared whiteboard, the

UNIX utility talk, or even the telephone can be used to discuss homework problems or
negotiate experiment use.

As often happens in a lab, there may be more demand for equipment than is
available. Labs at universities handle this situation in various ways, such as using time
limits and sign-up reservations systems. We chose the less formal negotiation approach to
allocate resources. A social protocol provides a reason for students to communicate, that
is, to negotiate the use of an experiment. This introduction may inspire continued
technical discussion. SBBT provides the tools to compensate for the lack of traditional lab
communications.
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2.6 A Typical Scenario

The remote student needs an xterminal or workstation (Figure 5). The remote
student starts the system by typing "gosbbt" on the command line. The system puts up all

the applications (wb, vic, vat, Lab Environment Control) one after the other, as the student

places the windows. While these window placements occur, the SBBT system checks to

see if the experiment is currently in use. If the experiment is already in use, the remote

student will get an abbreviated Lab Environment Control window. He can negotiate access

to the equipment, or click on the QUIT button of the Lab Environment Control window

and check again later. This is analogous to a student coming into the lab and, upon finding

the experiment occupied, either discussing when he may use the experiment, or just
looking and moving on.

If the experiment is not in use, the remote student has the full-functionality Lab

Environment Control window. All other users will be locked out of control, so the
integrity of the system is maintained. The network heartbeats have started, to ensure that

the network is delivering an adequate level of service.

R(s)
G(s)

H(s)e1/(s+3)
What do you think of this?
Do you have a better coef.?

H(s)

Y(s)

D aktangiexii.ENGFLORS

161. V}sovd Ao4o Tool v3.4

xedit stdble.c&
> gcc -g -0 -Wall -c stdfile.c

Keep Audio

Menu Help :Veit

Figure 5. The Remote Lab User Interface for SBBT. [Bohus, et. al., 1995]
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To start working, the student brings a model for the experiment he is working with,

and a developed control program to try. He downloads his code to the experiment, where it

is compiled and linked. The experiment apparatus is at an initial, stable starting position.

At this point, the student has control of the experiment, his code is ready to run, the

experiment is in a starting position, and the power is on. The student runs his code by

clicking on RUN in the Lab Environment Control window and watches the experiment go

through its paces.

Another student, in the lab or elsewhere, may observe the experiment and chat with

the remote student via the communication tools. They may exchange ideas for ways to

improve the performance of the controller. The remote student can consider these ideas,

change his code accordingly, and go through another round of experimentation.

Finally, when satisfied that the control code is his best effort, or when receiving

enough pressure from peers to relinquish control of the experiment, he can sign off. The

experiment is put in a safe, neutral position, the motor is turned off, and all the remote lab

software exits. The experiment becomes available to another student, remote or local, to

use.

2.7 The SBBT Approach

Using the five-part architecture to design a remote laboratory offers numerous

benefits. The architecture provides a conceptual foundation for developing remote
laboratories. For example, a complete experience requires that each of the five parts must

have some representation. However, each component can be provided in multiple ways,

according to costs and needs. The lab facility can offer a selection of tools for each
component. This way, students can chose tools they are comfortable with. If there is a

problem with any particular software or hardware piece, students can temporarily move to

another tool. New tools can be added, yet not displace existing applications. Flexibility

allows students to develop their own environment. The SBBT approach accommodates

diverse experiments and connectivity, allowing versatile hardware and software
investments.
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CHAPTER 3

ARCHITECTURE IMPLEMENTATION: LAB ENVIRONMENT
CONTROL

To get our application working as soon as possible, we used existing software and

hardware wherever there was a reasonable fit. We found ready-made solutions for each

piece of the architecture except the Lab Environment Control. That component takes the

place of the student in the lab. It has the specific constraints of safety, reliability and speed

to maintain confidence in the SBBT system.

We conducted a safety survey of professors, technicians, graduate students, and a

class of undergraduate control engineers (see Appendix A for the survey and results). With

our safety requirements and the surveys, we identified a safety definition for our project,

and safety mechanisms to enforce our policy.

In section 3.1, we define safety for our project. In section 3.2, we explain how real-

time computing supports safety in our application. The hardware configuration is
described in section 3.3; my colleagues Burcin Aktan and Steve Wilcox are responsible

for the accomplishments in this section. Following this background information, we

present a detailed description of the Lab Environment Control component. The last
section of this chapter presents our timing results.

3.1 Safety

Ironically, software is inherently safe; it cannot affect people directly. It is the
hardware that software controls that may pose hazards. Safety is a system-level concern

[Leveson, 1986]. SBBT is a system with which students will learn the fundamentals, and

they need to make mistakes in order to learn. We have the opposing goals of making a

system flexible enough so students can learn, yet eliminating any dangers.
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In a laboratory where students work on moving systems, many events are
unanticipated. It is impossible to perform an exhaustive hazard analysis, since all the

possible events cannot be known in advance. Even if we could list all hazards and find

mechanisms to avoid them, research shows that trying to eliminate all risks usually just

displaces them [Leveson, 1986]. Therefore, the first line of responsibility is in the
student's hands, as if she were in the lab supervising the equipment in person. People are

better than machines at judging what to do in an emergency. As part of the training a lab

experience offers, we want students to learn good safety techniques and consider safety at

all times.

Our definition of safety for this project is to protect the students working in the local

lab from physical injury, protect equipment from damage, and prevent any uncontrolled

periods. However, to encourage the natural learning process we allowed harmless
mistakes.

All of our safety features, when activated, go to a fail-safe mode. From our high-

level hazard analysis, we found that when power is cut to the robot motor, there is very

little drift due to momentum. Also there is no locking break; if the robot arm presses

against something, it relaxes when power is turned off. In all safety events, SBBT turns off

the power, which puts the equipment in a safe, neutral state. The apparatus is left as is, so

the student can analyze the situation.

3.2 Real-Time Computing

Real-time computing provides the methodology for ensuring safety. Real-time
computing is predictable computing, not necessarily fast computing [Shin and
Ramanathan, 1994]. However, since most computers are optimized for the general case,

special policies must be defined to satisfy real-time demands. General computers try to

give fast overall service to all of the jobs currently running. Fast service for all jobs cannot

be guaranteed, because demand on computing resources cannot be predicted. In our case,

the goal is to assure the distant user that she has tight control of the distant experiment by

continually checking the network. The real-time strategy we relied on was round-trip
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network signals called heartbeats which complete a circuit between the lab and remote

student at regular intervals. The amount of time a heartbeat requires to traverse the circuit

measures the network latency. The device that supplies power to the experiment expects

regular heartbeats assuring system integrity. SBBT will verify that the network latency is

adequate, or it will turn the experiment off.

A safety scenario might involve a student watching the experiment via video,
running her control code and witnessing the experiment going through its paces. Upon

seeing an actual or potential mishap, she can click on the STOP button of the Lab
Environment Control window (Figure 5). The Lab Environment Control window and the

video window are separate applications. Nevertheless, if the student clicks on the STOP

button, she needs to see the experiment stop in the video window. The relationship
between the heartbeats and the critical panic STOP order verifies that the student, seeing

trouble, can stop the experiment within the specified timing constraint.

To determine the heartbeat rate, we timed actions in the lab and examined answers

from a survey of control engineering students. Appendix A contains the survey and
responses. An initial goal was a 3-4 second latency or less. We measured the time required

locally to click on the STOP button and hear the motor stop. This action averaged roughly

0.5 seconds. During SBBT demonstrations in different cities, the response time seemed

instantaneous.

The critical time slice to monitor our network is four seconds. Dividing this interval

in half for the heartbeat periods lets one heartbeat fail and still leaves time to execute

another heartbeat check within the critical time slice. For data transport, we chose User

Data Protocol (UDP), a connectionless, best-effort transport level protocol. Recall that

networks can be volatile. Dividing the critical time slice in half ignores some of the
characteristics of our network infrastructure. We decided to divide the critical time-slice

into thirds, thus allowing for one lost UDP packet due to the best-effort network transport,

one actual lost packet, and still providing time to get one legitimate heartbeat through

before passing the threshold and shutting SBBT down (Figure 6). The lost heartbeat

threshold and the heartbeat interval are software adjustable (at compilation time), to

accommodate characteristics of any network or experiment.
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Figure 6. SBBT Timeline Schematic.

Time

25

SBBT uses local enforcement of timing constraints to tolerate unpredictable network

delays safely. The network delay must be within the established threshold to ensure that

the remote student is indeed in control. The remote student has complete responsibility for

the equipment, as long as the network latency is acceptable.

3.3 Hardware Configuration

The hardware configuration directly supports the five-part user interface

specification. Two important hardware functions, besides the control experiment itself, are

network connectivity and basic power access (Figure 7). We discuss the hardware
requirements and describe the hardware configuration in this section.

ATM

Camera

Ethernet

Microphone

Sun SPARC 5

(jedi)

-4
386 PC
(vector)

MCI

I Robot Ann
(eric)

Safety Mat

Figure 7. SBBT Hardware Configuration. [Bohus, et. al. 1995]
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3.3.1 Hardware Requirements

As we specified the functionality for the remote student, we could identify our
hardware requirements:

construction of the control engineering experiment

availability of the experiment 24 hours a day

ability to download/upload code/data independent of local help

support for audio, video, and collaboration applications

support for safety at every phase of the experiment

3.3.2 Hardware Description

The control engineering experiment we used to demonstrate SBBT is a 3-DoF

(Degrees of Freedom) robot arm, named eric (Figure 5). It has a 4.8 ampere stepping

motor for movement. Eric also has a disabled pneumatic (vacuum) system to manipulate

objects. Control signals to the robot come from the PC, and power is supplied via the

Motion Control Interface (MCI).

The PC is an 80386 machine, running DOS 6.1, named vector. It receives signals

from the workstation via a serial cable and a full duplex null modem connector. Control

programs are loaded from the workstation to the PC through a keyboard emulator.
Feedback from the experiment transmits back to the student over the same line. The PC

receives power via the MCI. By using the MCI to power the PC, we enable the long
distance learner to reboot the PC easily. My colleague, Burcin Aktan, completed the
cabling between the workstation and PC, and wrote the routines for program, data, and

command transfer.

The MCI was custom built by Steve Wilcox to provide basic power control. It routes

power to the experiment, the safety mat, and the PC. It receives signals from the
workstation, and from the pressure-sensitive safety mat, placed in front of the
experiment's moving parts. The MCI makes the experiment available 24 hours a day since

the remote student can turn the experiment on independently. The MCI sounds a warning
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buzzer when powered on. It features a manual stop button and sensor light indicators
which indicate state (Figure 8). The MCI supports all the safety features through basic
power access.

Figure 8. Motion Control Interface.

The workstation is a Sun Sparc 5 running Solaris 2.4, named jedi. It provides the

hardware support to digitize and transmit video camera and audio microphone data. The

audio and video require add-on boards plugged into the workstation chassis. The
workstation is dual ported for ATM (Asynchronous Transfer Mode) and ethernet for

network communications. The OSU NERO staff performed the network connection

cabling for the workstation. To use the LBL conference tools (wb, vic, and vat) for group

dialog, some multicast mechanism must be enabled for the network. The workstation

connects to the MCI (RS232/RS485) and the PC (RS232) with serial cable. The
workstation provides connectivity, audio, and video of the lab to the remote student.

3.4 Lab Environment Control

Abstracting the experiment into a resource reveals the client/server paradigm as a

natural fit. The client/server paradigm is defined by Comer [1988] as a "pattern of
interaction among cooperative applications." Lab Environment Control is a set of client

programs, and a set of server programs. A server program runs continuously on the local

laboratory machine, waiting for requests to service. The client program runs at remote
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sites only when invoked by students who want to use SBBT. We produced two releases of

software: the first, an iterative server handling only sequential requests; the second, a

concurrent server that handles multiple requests and the network heartbeats. By going

through two development phases, we demonstrated SBBT earlier and incorporated more

user-directed improvements in the second release.

In this section, we detail our main software contribution. First, we describe both of

the client/server architectures. Next, we explain our communications protocol. In
subsection 3.4.4, we describe how we award access to the experiment. The remaining

subsections present the logic for each piece of the client/server architecture using finite

state machines.

3.4.1 Early Prototype: Iterative Client/Server

The first SBBT prototype was implemented as a connectionless iterative

client/server (Figure 9). The client program runs at the remote location. It executes only

when the student clicks on a command in the Lab Environment Control window. When a

student clicks on a command request, the client program is invoked with parameters to

indicate the service desired. The client program sends a requeSt packet out on the Internet

addressed to the server. The client then waits for a reply from the server. It returns the

reply information to the user and then exits. The client program only runs when it has a

control command request.

The iterative server fulfills one request at a time. Most operating systems queue a

small number of requests for iterative servers, which saves programming effort. The

iterative server continuously listens for requests, it performs the requested action, sends

the results back to the requester, and returns to listening.

This type of server is good for short requests that arrive sporadically. It worked well

to implement a prototype quickly. But, ultimately, it was not appropriate for SBBT, which

issues command requests that can take some time to complete. An iterative server was not
an adequate long-term solution.
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Figure 9. Iterative Client/Server.

3.4.2 Concurrent Client/Server

4. Server replies with results.

29

In the first SBBT release, the client was activated only to issue a request and wait for

the response. Now, we needed a client that was continuously active to receive and answer

heartbeats and forward Lab Environment Control commands. We renamed the iterative

client the Pony Express (PE). It is activated when the student clicks any selection in the

Lab Environment Control window. The PE carries the student request to the new SBBT

client, which is always running while the student is using the experiment. The new, more

complex concurrent client must forward requests to the server, relay feedback to the
student, and answer network heartbeats (Figure 10).

When requests take a long time to fill, using a concurrent server is a better strategy

than using an iterative server. In a concurrent server configuration, there is a parent server,

which is also called the listening server. The parent server in SBBT is the SBBT Lab

Manager. The Lab Manager tracks the state of the experiment resource, that is, whether it

is in use or not. When a parent server detects a request that will take some time to service,

the parent creates a child server. The child server assumes responsibility for completing

the service, freeing the parent server to listen for more requests. The child server acts as

the SBBT Session Manager. Once a student receives control of the experiment, the
Session Manager handles all further requests, and monitors the safety heartbeats.
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Figure 10. Concurrent Server.
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Once the client/server design decision is made, the next step is to define the protocol

for communication between the programs. The communication tasks are to: convey user

directives, relay back the results, manage the heartbeat signals, and update the parent/child

server states. These tasks exhibit different communication characteristics. For example,

user requests cannot be predicted; they are sporadic. The heartbeat signals, however are

generated at regular intervals; they are periodic. The protocol needs to accommodate a

variety of communication services.

We chose User Data Protocol (UDP) for several connectivity benefits. UDP is best

described as a connectionless, best-effort, transport-level protocol. It is a low-level
protocol consuming little processing overhead. The communication traffic for the Lab

Environment Control is critical and benefits from little overhead processing. Our network
is also quite reliable, and the end-to-end reliability of stream-oriented transport was not
necessary. After a year of demonstrations, we believe there has only been one lost
communications packet. Also, we designed SBBT requests to fit in one UDP packet and
thus they are not stream-oriented data. Stream-oriented transport is designed to transmit
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multiple data packets. Finally, we have an Asynchronous Transfer Mode (ATM) network

available to us, and UDP packet characteristics compare similarly to ATM cells. Current

ethernet-based networks transmit data at 10 mbps (megabits per second). New
experimental protocols, such as ATM, coupled with faster and more reliable media like

optical fiber, can push transmission rates to 155 mbps.

We considered a release of SBBT that ran directly over ATM, as opposed to
indirectly on top of the Internet Protocol (IP). An initial evaluation reveals that running

directly on raw ATM will not increase performance commensurate with the programming

effort. Since we use the NERO network, which is based on ATM and fiber, we already

benefit indirectly. In keeping with our development strategies, we remain compatible with

possible ATM development.

All the client/server communications complete a circuit. In the case of control
commands (see Figure 11(a)), the student initiates a command by clicking on an item in

the Lab Environment Control window. This invokes the PE with a parameter indicating

the student's choice. The PE forwards this request to the client and waits for reply
information. The client sends the request to the server, but does not wait for a reply.

Instead, the continuously-running client waits for any traffic to process. When the server

completes the request, it formats and sends a reply to the client. The client forwards this

information to the waiting PE. The PE completes the circuit by handing the results to the

user interface, where it is displayed for the student.

Simultaneous with any control command sequence, the server initiates the network

heartbeats to verify the network is up (see Figure 11(b)). This circuit runs between the

client and server only. This is the long-distance link more likely to experience delays or

downtime. During each critical interval, three heartbeats are sent. The critical time interval

can be adjusted to suit the characteristics of any network.
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3. Client forwards request to server.

2. Pony Express tells client.
1. User makes request. 4. Server performs

task

7. Pony Express reports
results to student 6. Client forwards response.

5. Server reports results.

Figure 11(a) Communications for Lab Environment Control Commands.

2. Heartbeat Response.

1. Heartbeat Query.

Figure 11(b). Simultaneous Communications for Lab Environment Heartbeat.

3.4.4 Who Gets SBBT Control?

Naturally in a lab, one person controls an experiment at a time. We copy the physical
laboratory model by bringing up SBBT for anyone who invokes it, just as anyone walking

into the lab stands in the room whether the experiment they want is occupiedor not. In our

current implementation, the remote student has audio, video, and shared whiteboard

connections to communicate with others, whether they receive control of the experiment
or not.
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For safety and security, we want only one student to control the experiment resource.

This policy requires two different Lab Environment Control user interfaces. My colleague

Burcin Aktan wrote the graphical user interfaces. One user interface has all the facilities

listed in Table 1. This is depicted in Figure 5. The other Lab Environment Control
interface has only a QUIT button. SBBT users do not know whether they will receive

control until they see which window comes up. All SBBT sessions for the same
experiment are connected via video, audio, and whiteboard, providing an introduction

among students.

3.4.5 Finite State Machine (FSM) Descriptions for Concurrent Client/Server

A finite state machine is a formal diagram showing the logic and possible states of a

program. The states are depicted as spheres, and the arrows show what input causes a

transition, which changes the state of the program [Hoperoft and Ullman, 1979]. In the

following subsections we present a finite state machine for the Lab Manager, the Session

Manager, and the SBBT Client.

3.4.5.1 Lab Manager FSM Description

The Lab Manager has two states: Unallocated (the start state), when no control is

allocated to any user, and Control Allocated, when a single user does receive control
(Figure 12). A request for the experiment moves the Lab Manager from the Unallocated

state to the Control Allocated state. All subsequent requests for the experiment are denied
and the Lab Manager remains in the Control Allocated State. When the student indicates

she is ready to release the experiment, the Lab Manager acknowledges this request and
returns to the Unallocated state.
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[Receive session request from client]
1. Fork Session Manager.
2. Admowledge Client Request
3. Grant Conn

[Receive release request]
1. Send Acknowledgment

[Receive session request from new client]
1. Acknowledge Client Request.
2. Deny control.

Figure 12. Finite State Machine for SBBT Lab Manager.

3.4.5.2 Session Manager FSM Description

The Session Manager fulfills all of the remote users' requests. Most time is spent in

the Manage and Await states (Figure 13). Once control is allocated to a distant learner, the

state changes to Manage. In the Manage State, special signals remind the Session Manager

to send a network heartbeat to the client, verifying the connection. Once a heartbeat is

sent, the state changes to Await, until the return heartbeat is received. Each heartbeat

sequence cycles through the Manage and Await states. Lab Control Environment requests

are accepted and serviced only in the Manage and Await states. The finite state machine

shows that tracking the heartbeat sequence is the driving force.

If too many heartbeats are missed (the network malfunctions), the session manager,

by policy, forces a shutdown of the experiment and a release of the experiment. This

moves the Session Manager to the Wait to Die State. Once it receives exit confirmation

from the Lab Manager, the Session Manager exits. SBBT attempts to inform the distant
student. However, it does not wait for an acknowledgment since we have indications that
the network is down or clogged.
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[epsilon]
1. Fork from Lab Manager.
2. Set heartbeat reminder.

[Get Heartbeat Reminder]
1. Send Heartbeat.
2. Su Heartbeat Alarm.

[Receive Control Command]
1. Perform command.
2. Send reply.

Manage

[Heartbeat Reply]
1. Cancel Heartbeat Alarm. OR

[Receive Control Command] 2. Set Heartbeat Reminder. [Heartbeat Alarm]
1. Perform command. 1. Count >- Heartbeat Threshold.
2. Send reply. Wait to

Die
2. Send release request to Lab Manger.

[Die Alarm] 3. Send release to diem.
1. Resend release to Lab Mang 4. Set Die Alarm.
2. Set Die Alarm.

[Heartbeat Alarm]
1. Test if Count < Heartbeat Threshold.
2. Set Heartbeat Alarm_

[Die Admowledgement]

Figure 13. Finite State Machine for SBBT Session Manager.

3.4.5.3 Client FSM Description

Two independent paths lead through the Client finite state machine (Figure 14). As

soon as the student invokes SBBT, the SBBT client requests control of the experiment

resource from the Lab Manager. Experiment Control is awarded or denied, according to

whether the experiment is already in use or not. In either case, the SBBT system
automatically starts all of the constituent applications and connects to the SBBT session

for that particular experiment.

If the resource request is denied, the student will be an observer. Since the SBBT

system does not track observers, when the Quit is sent by the observing student, all the

components simply exit. If the experiment is available, the remote student's request is

granted, and the client spends most time in two states: Conduct Experiment, and Process

Heartbeat. When the student who has control is ready to leave, clicking the mouse button

on Quit makes the client ask the Session Manager for release confirmation. Upon receipt,

the client forwards the information to the PE and exits. Once the PE presents the
information, it also exits.
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Figure 14. Finite State Machine for SBBT Client.

3.5 Timing Results

We timed the Lab Environment Control communications exclusively on Sun Sparc

5s, running Solaris Operating System 4.0. The Sun workstations are all connected to the

NERO network. Our tests were conducted on one night, during light network traffic hours.

We used the high resolution real-time clock and time routines (gethrtime()). The graphical

user interface processing was bypassed for these time trials.

The term latency indicates the time it takes for a communications packet to traverse

the network. We used round-trip times, which includes operating system processing time

as well as the time on the network. The machine configurations we used for timing were

host-to-self, host-to-host at the same site, and host-to-host at different sites. Table 2

reports our timing data. Note that it takes longer for a host-to-self time than for two-host

traffic at the same site. This reflects that, for the host-to-self communications, the same
processor handles both sending and receiving processing overhead. In the two-host
communications, each host completes half of the processing. To get a rough idea of the
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network latency, we subtract the host-to-host (same site) from the host-to-host (different

sites) and find that a Lab Environment Control packet takes about 47 milliseconds for a

round trip between Corvallis, Oregon and Portland, Oregon. Network latency of the Lab

Environment Control is not a serious concern for SBBT.

Table 2. Timing results for Lab Environment Control communica-
tions reported in nanoseconds.

Configuration Average Time Longest Time Shortest Time Difference
Host to Self
(jedi.engr.orst.edu)

3,241,650 ns 4,121,500 ns 3,127,500 ns 994,000 ns

Host to Host
(jedi.engr.orst.edu)

(zero.engr.orstedu)

3,053,050 ns 3,070,000 ns 3,034,500 ns 35,500 ns

Host to Host
(jedi.engr.orst.edu)
(sampo.cs.pdx.edu)

50,454,800 ns 418,278,000 ns 8,968,000 ns 409,310,000 ns
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CHAPTER 4

ENGINEERING STRATEGIES

The SBBT project was a multi-disciplinary effort. That is, the people involved range

over academic departments, ranks, universities, and levels of investment. When different

disciplines gather, they must allow time to establish common definitions. Such projects are

ambitious due to the complex human factors involved.

For example, during review of the control commands for the Lab Environment

Control, we discovered very different definitions of the term crash. For computer
scientists, this term describes a program that has worked its way to a non-operative state;

it is stuck. For engineers who work in a more physical and applied world, a crash occurs

when two objects physically smash together, such as a robot arm hitting the wall. It took

several meetings to discover this important discrepancy. Communication among the team

participants building and using SBBT was crucial to the project's success. In this chapter,

we highlight three areas that require correct communications: 1) scheduling decisions, 2)

interface issues and 3) quality assurance.

4.1 Scheduling Decisions

In a large project, scheduling is crucial to speedy project completion. Some activities

can be planned ahead, but some scheduling is forced by outside influences. For instance,

delivery of the workstation and several parts for the MCI were delayed. That, in turn,
delayed communications cabling. Meanwhile, our meetings with administrators

emphasized the need to guarantee safety. We used the extra time to further develop the

specification and safety analysis.

To meet our project timeline, we accomplished our tasks as follows:

While we waited for the delivery of the workstation, we researched safety and
conducted a wider review of our specification.



39

Once we received the workstation, we could start on the communications cabling. We

wanted to test the communications quickly, so we used operating-system--level
utilities. This turned out to be a very flexible method, and became a key to ensuring

portability.

While we waited for the outside communications to be set up, we tested the
workstation to PC communications and cabling.

To test quickly, we used a very simple iterative server. We provided demonstrations

within just two months of receiving the workstation by keeping initial development

efforts simple.

We deliberately scheduled early demonstrations which provided an excellent way to

focus the team. It clearly fostered cross-departmental commitment and resources. The

emotional payback of doing demonstrations also gave the team a feeling of success.

During the first few demonstrations we masked the fact that the custom-built MCI was

not ready. We compensated by scheduling another student in the physical lab to turn

equipment on for demonstrations. The remote lab student was now joined by the local

lab assistant and they established a rapport. This highlighted the important
collaboration aspects, and we continued the practice.

Delays and roadblocks are inevitable in a multi-discipline project. We tried to adjust

the schedule to accommodate changes and use our time efficiently. We deferred all solved

problems and concentrated only on the unsolved ones. By giving early demonstrations, we

met many interested people and could use their observations to improve SBBT.

4.2 Interface Issues

Our interface issues fell into four categories: 1) LBL tool start-up, 2) graphical user-

interface and the Lab Environment Control coupling, 3) communication between the

client and server programs, and 4) the MCI and the Lab Environment Control commands.

We resolved these issues so that all interfaces worked smoothly. The following tactics

ensured this success:
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Conducting many interface reviews with the people responsible for each side of the

interface. Each review defined the interface more precisely.

Conducting reviews with many different kinds of people who were not directly
involved in implementation. Often others would point out something we had not
considered.

Conducting a careful safety analysis. Looking at the interfaces from another point of

view often revealed any misunderstandings.

Spending time together, and reviewing the various interface specifications gave us

the opportunity to clarify our understandings and avoid costly mistakes.

4.3 Quality Assurance

Since we often had the opportunity to do ad-hoc demonstrations, it was important

that our system be stable and working at all times. We required a solid quality assurance

process. The quality assurance plan specified the following steps: 1) integrate one new

feature at time 2) test it locally, and 3) test it from a remote location. This method
pinpointed problems very quickly. For instance, when we integrated the PE and new

client, we first tested them against the old server. The protocol was exactly the same and

so only the new part was unknown. Locally, the testing succeeded, but the next step,

testing from another location, failed. It took less than five minutes to find the invalid

program variable, correct it and recompile the whole system. Had we integrated the new

server, along with the PE and new client, many other bug-solving paths would have been

necessary to isolate the cause.

We also had the code developer turn over tested code to the integrator. The integrator

usually completed one testing session independently, followed by one testing session with

the developer. The integrator's testing provided both objective feedback and the
perspective of a student user. Using this quality assurance method, we were always ready
for demonstrations.
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CHAPTER 5

CONCLUSION

This thesis describes the process we used to produce our prototype for remote
laboratory access. We considered local laboratory use and distilled the lab experience into

five components: the experiment, lab environment control, lab presence, safety, and

collaboration. We produced a multimedia application, named Second Best to Being There

(SBBT), to test our distance learning paradigm for remote labs. We examined each
component and selected a computer transmittable facsimile in accordance with our
strategies, which were: striving for modularity, achieving transparency to the user, using

existing hardware and software, encouraging collaboration, ensuring safety, and using

real-time computing. Using the Internet for the communication infrastructure also allows

us to participate in defining how the National Information Infrastructure (NH) vision will

play out. We paid special attention to safety and computer-mediated communication. Our

prototype is a useful multimedia application for remote laboratory access.

5.1 Five Demonstrations of Success

We demonstrated SBBT at different locations throughout our development. Each

audience stimulated useful suggestions that we could incorporate into the next software

release. Our confidence in our application grew with each opportunity to exercise it. Each

of SBBT's demonstrations proved successful.

Modern Communications Center Dedication at La Sells Auditorium, OSU Campus,

Corvallis, Oregon, March 26, 1995. SBBT's debut proved that it worked between

buildings on the OSU campus.

Portland State University Electrical Engineering Colloquium, PSU Campus, Portland,

Oregon, April 14th, 1995. Part of the colloquium demonstrated SBBT from 85 miles

away.
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Software Engineering Resource Center (SERC), Industrial Advisory Board Meeting at

the University of Oregon Campus, in Eugene, Oregon, May 26, 1995. SERC
demonstrated SBBT in yet another city about 60 miles away.

Educomm Conference at the Portland Convention Center, Portland, Oregon, October

30, 1995 to November 2, 1995. Educomm exposed the educational worth of SBBT to

distance-learning experts.

Supercomputing 1995 Conference in San Diego, California, December 1-8, 1995.

Supercomputing 1995 confirmed that SBBT works over state lines and 800 miles.

5.2 Project Hindsight

The end of a project is a natural time to consider what could be done different. The

SBBT team has the satisfaction of contributing to a very successful project. However, it

was not without a minor headache or two.

One important observation is we had no notion of the enormous amount of time it

takes people to communicate. It is quite surprising to count the number of hours devoted

to specification review, for instance. We learned that it takes a substantial time budget for

all the ideas to surface.

Our guiding strategies can also be reviewed since the prototype effort is now

complete. These strategies helped us over the course of a year like a rudder on a ship.
Whenever a new feature, or problem, was discovered, having our strategies close by
focussed our discussions, and helped us make logically-supported decisions.

Finally, we do have one true regret. Our use of the Lawrence Berkeley Laboratories

(LBL) tools was a good one, but any ready-made application will never fit exactly. We
wish over the course of this project that we had built a relationship with the team at LBL.
Even if we ultimately could not encourage application changes to suit our needs, it would
have benefited both teams to know more about our common interface.
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5.3 Future Work

Since SBBT is a prototype, many ideas will surface with use. We note here
possibilities of product-level additions, more support for collaboration, additional
feedback data from the experiment, and using SBBT on more experiments. The product-

level development that seems appropriate now are installation routines, a guidebook for

lab assistants, and increased security. More collaboration support might include tracking

observers, more video cameras, an ability to re-position cameras, and establishing distance

collaboration etiquette. Additional feedback data would encompass more sensors on the

experiment, a way to organize the measurement data, and tools to visualize the data. As

SBBT is incorporated into different labs and experiments, the experiences of a class of

control engineers will give priority to enhancements.

5.4 Future Applications

We believe our approach to defining a remote lab experience can be used on general

distance applications. By abstracting the essence of what we want, we can provide a
natural and comfortable setting for it. People are ready to experience more from home,

and the government is encouraging remote exploration. It is clear that the applications

developed now will define our future network experiences. We have shown that using the

computer need not be a sterile experience. By dividing the desired experience into
components and satisfying each component separately, we ensure each part has a
rewarding element. By using practical and theoretic strategies over all implementation

choices, we came very close to meeting all of our ideals.
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CONTROL ENGINEERING SURVEY AND RESULTS

Table A-1. Survey Results for Hazards in a Laboratory. [Bohus, et. al. 1995]

Hazard Possible Causes
Hazard due to students The software or controller (hence robot) may not do
learning what students think has been programmed.

Hardware setup incom-
plete or incorrect

The hardware or software initialization or calibration
may be off, resulting in unintended robot action.

The gains or controller may be inappropriate, resulting
in instability of the closed-loop system, hence undesir-
able robot behavior.

The hardware connection may be loose, missing, or
improperly prepared, resulting in incorrect or noisy sig-
nals from or to robot, resulting unintended controller or
robot action.

The robot may not be left in inoperable condition by the
on-site users, causing problems in the first hazard cate-
gory or rendering the robot inaccessible to distance
users.

Observers in the way A person or object my obstruct the robot in the lab,
resulting in an accident during normal robot action.

Environment hazards A person tripping over cables may pull down the
attached equipment.

Unsafe experiment start- Someone may turn on power before all switches and
up mechanical parts are on the safe power-on positions, dis-

rupting safe power-on sequence.



Table A-2. Safety Precautions [Bohus, et. al. 1995]

Electrical Mechanical
1. Check all switches for default posi- 1. Verify no person can obstruct any moving
tions before main power is turned on. parts.

2. Verify all electrical connections are
intact, including cards.

3. Verify that no electrical conducting
media (wires, people) are touch any live
wire.

4. Check power-on sequence.
5. Verify start-up transients do not dam-
age equipment.

2. Verify no wires or cables are in the way of
human or machine movement.
3. Verify no piece of equipment can obstruct
other equipment.

49



Here is a copy of the survey that was administered to a senior control engineering

class in the Electrical and Computer Engineering department at OSU in the Spring of

1994.

Working in a Control Engineering Lab

ANONYMOUS SURVEY

Good Day,

50

Spring Term 1994

Over the summer there will be an experiment to use the control engineering
lab from a remote location To make the remote lab experience useful for the
remote student, we need Lc, provide some of the things that come naturally from
working locally in a lab. Please answer the questions below about 'cur lab
experience which will help create a decent environment for future remote
students.

Questions
1. Do you generally acknowledge other people in the lab when you enter for the

first time?

2. In a typical hour in the lab, how much time do you spend talking to
classmates?

3. If using shared equipment, how do you schedule time on the machines between
groups and/or individuals?

4. How long is a typical lab work session?

5. What is the time range of a work session? (The longest, the shortest)

.6. How often do you use the lab during odd hours in a term?
(before 8am, after 6pm, weekends)

7. List safety measures you follow regularly.

8. List safety measures you know of, but don't do consistently.

9. For the experiment you're working on now, how many views angles do you use
to see whats going on? Please list the experiment, # of views, and a
general description of the view. (e.g., from both sides)

10. How many seconds does it take you to stop an experiment?
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Survey Results

There were 10 responses. We list the various replies to each question.

1. Do you generally acknowledge other people in the lab when you enter for the

first time?

Yes: 8 respondents. One respondent did not reply, and one respondent

acknowledges people if s/he knows them.

2. In a typical hour in the lab, how much time do you spend talking to
classmates?

"10 minutes"

"usually with lab partners, because other classmates are in the lab."

"At least 1/2 to 3/4 of the time we are talking and working together"

"10 minutes"

"Talking is constant as communication is vital during sessions."

"45 minutes"

"Plenty- we talk about how we are doing our lab."

"50%, discussion of possible solutions and trials."

"30"

3. If using shared equipment, how do you schedUle time on the machines
between groups and/or individuals?

"By writing names and time on the board."

"There are no problems in using shared equipment. We come whatever time in the

day."

"Sometimes we talk to each other in class to coordinate schedules. Sometimes we

make tentative schedules on the chalk board in lab."

"Through the TA ahead of time."

"This has never been a problem. 1) There are only a couple teams using the same

equipment. 2) If another team is present, we can share the equipment."

"Could sign up for a time before using lab."

"Never had that problem."

"Sign-up sheet."
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Question 3 continued.

"30-40 min. per group."

"For the first question: N/A, there is no fixed lab time."

4. How long is a typical lab work session?

"At least 3 hours."

"For our lab, it has been a term. For each day however about 3-4 hours."

"Anywhere from 1 to 5 hours at a time depending on what we're doing."

"2-3 hours."

"3 hours."

"90 minutes +"

"Who knows- they vary and we do not have set times."

"3-5 hours."

"3-4 hours."

5. What is the time range of a work session? (The longest, the shortest)

"Shortest = 3 hours, longest = 8 hours."

"About 3-4 hours."

"1 to 5 hours."

"6 hours 1/2 hr"

"30 min. - 6 hrs."

"15 min. - 2 hrs."

"5 min to 10 hours."

"5 min 10 hours."
"8 hours max 30 min. minimum."

6. How often do you use the lab during odd hours in a term?

"Always."

"Sometimes, when my group has an idea as how to do the lab. Come in prepared."

"Anywhere between 5-10 times a term depending on how large a project is."

"Very often."

"Often these are the best times."

"- Three times."

"All the time."
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Question 6 continued.

"Frequently if not always."

"Usually after 3pm- Late weeknights. As often as necessary. 2-3 nights/week."

"Often."

7. List the safety measures you follow regularly.

"Avoid burning the equipment."

"When changing a measurement- say from current to voltage- turn the power off"

"Don't touch hot wires. Keep fingers out of equipment while it is in operation."

"Check connections for proper polarity. Check conditions of wires. Monitor

equipment for heat."

"Careful of full line voltage connections that are not enclosed."

"Turn off power before touching wires."

"common sense."

"Turn off power before making changes in system (re: electronic components) Keep

drinks away from equipment."

8. List safety measures you know of, but don't do consistently.

"I know none."

"Never disregard safety measures if I know about."
'' ?If

"None."

"None."

"In case of emergency, pull the plug!"

9. For the experiment you're working on now, how many view angles do you use
to see what's going on?

"Magnetic levitation, 3 views."

"Our experiment right now is about moving the table. View is not necessary unless

there are something not working. Like why the table is not moving, is the supply on,

connections ok. we are controlling."

"We're controlling the position of a table in one dimension. We look at the top and

side views of the table. We also look at the outputs from various meters and scopes. So,

approximately 5-7 things are observed."
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Question 9 continued.

"Magnetic levitation system (3 views) top, front, side."

"all views- under equipt, even small gaps between equipt. As well as all 360 degrees
above the device."

"DC motor lab. Computer view motor and table view. (possibly) oscilloscope view."

"360 degrees."

"360 degrees. x-y table with computer controller. The rotation of the lead screw

needs to modeled."

"DC motor (oscilloscope) 2 views, top view/side vied of x-y table. 2 views, front

view of dc motor/ side view"

10. How many seconds does it take you to stop an experiment?

"5 minutes."

"About 10 seconds."

"2-5 seconds on average."

"Magnetic levitation system = 1 sec."

"Stopping our experiment is immediate since it is left assembled."

"-Five."

"3-5 sec."

"Up to 10 seconds."




