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INTEGER PROGRAMMING FOR OPTIMIZED FACILITY LOCATION 

INTRODUCTION 

The location problem formulated in this paper is concerned 

with determining the optimum placement of discrete facilities over a 

finite number of possible locations. The optimization is accomplished 

when either (1) the various costs to the system are minimized or, 

(2) the profit gained from the overall operation of the system is max- 

imized. 

A. discussion and definition of location problems in general is 

presented followed by a mathematical development for this class of 

problems. A fixed charge is introduced for the cost incurred in con- 

structing a facility at some feasible location. These costs are com- 

bined with various transportation costs and the location problem for- 

mulated as an integer linear program with fixed charges. Through 

the use of a control variable, the objective function is expressed as a 

quadratic function of either continuous and integer variables or all 

integer variables. The objective function as presented involves terms 
of second degree but a conversion to linear form is effected. 

Later an example of this type of optimization problem is found 

in the placement of waste disposal incinerators and /or power plants 

throughout the Medford area of the Bear Creek Valley in Oregon. This 

example involves the determination of optimum sizes, locations and 
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combinations of these facilities to be installed for wood waste dispos- 

al. It is noted that the fixed charges and other transportation costs 

have become more complex due to the many possibilities which must 

be considered. 

Further applications and considerations of the location prob- 

lem for optimized facility location are presented followed by a brief 

summary of the mathematical model and some concluding remarks on 

the Medford study. 
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THE LOCATION PROBLEM 

General Description 

The topic for this study developed while considering the loca- 

tion of wood waste disposal plants in the Medford area of the Bear 

Creek Valley of Oregon during the summer of 1964. While consider- 

ation was given to this specific example, it was decided the under- 

lying structure of this fixed charge location problem was basic to a 

wide class of problems requiring integer solutions for some subset 

of the variables. 

Optimizing a function of several variables subject to linear 

and /or non -linear constraints is not always accomplished by the de- 

termination of a maxima or minima by classical methods such as dif- 

ferential calculus. Furthermore, restriction to integer -valued solu- 

tions compounds the difficulty and alternative methods or approxima- 

tions are necessary. Many remedies to this situation have been de- 

veloped including linear, non -linear, and dynamic programming. An 

extensive discussion of such methods may be found in (11, 12). Vari- 

ous alternatives were investigated in an attempt to arrive at a suit- 

able solution to the location problem. The method decided upon may 

be classified as non - linear programming. 

Underlying the general heading of non - linear programming 
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are a wide variety of techniques available for the solution of optimi- 

zation problems. The particular method to be discussed on the fol- 

lowing pages is generally known as integer linear programming with 

fixed charges. Following the development of the simplex method by 

Dantzig in 1947, interest and research continued in an attempt to ar- 

rive at a method of optimizing linear programs with the added re- 

straint that some or all of the variables be restricted to integer val- 

ues. Later in 1954, a paper by Dantzig, Fulkerson, and Johnson was 

published which considered integer solutions to the traveling sales- 

man problem (8). In the four years following work continued to ob- 

tain a computational technique which could be guaranteed to converge 

to a solution in a finite number of steps. Finally in 1958 Gomory de- 

veloped a method for the all integer case and two years later in 1960 

he published the algorithm for the mixed integer- continuous variable 

problem (9, 10). 

In the location problem one is concerned with the placement 

of items so as to optimize the overall operation of the system. The 

general problem may be formulated in the following way: 

Distribute a combination of various facilities through- 
out a local area in such a way as to minimize the ex- 
pected cost of construction and expenses incurred in 
transporting resources to these facilities from prede- 
termined source points. 

Mathematical Development 

The general integer linear programming problem may be 



formulated as follows: 

Given a system of m equalities or inequalities in n 

variables, 

al lxl + a12x2 + + alnxn {<, =,> } b1 

+ 
a22x2 

+ {<, =,> }b2 

ma l x1 +a 
2x2 + 

. {<,_,? } bm 

determine the maximum value of the objective function 

Z = c 1x1 + c2x2 + c x . n n 

5 

The solution to the above may be restricted by various other 

constraints. With integer linear programming one is concerned with 

the following: 

(1) x. > 0 for j = 1, 2, , n; 3- 

(2) some or all of the x. be integers. 
3 

The values of a.. and b. in the system of equations above are 

known constants. The constants c. in the objective function are 

also determined from prior considerations and usually are in the 

form of cost or profit on a per unit basis. 

As in the transportation problem (7, p. 299 -313), in the 

a21x1 + a2nxn 

+ánnxn , 

1J 

. .. . 
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location problem the constants a.. are assigned the values 0 or 1 and 

the bi are either in the form of (1) capacities or demand at a 

particular location for a facility; or (2) supply or availability of re- 

sources at the predetermined source points. The cost factors are 

the costs of shipping one unit of resource from one point to another. 

In the location problem a fixed charge is made to account for the ex- 

pense of constructing a facility at any location. The following vari- 

ables and constants define the parameters of the location problem: 

Let 

S = the number of predetermined locations 
from which the resources are to be 
shipped, 

L = 

x.. = 

c.. = 

the number of possible locations for the 
facilities, 

the amount to be shipped from source 
point i to the facility at location j, 
where i= 1,2,,S; j = 1,2, ,L, 
the cost incurred during shipment of one 

13 unit from source point i to facility j, 
where i = 1, 2, ,S; j = 1, 2, ,L 
(The units of measurement of xij and 
cij may be given in any convenient basis), 

CB 
j 

= the cost of building a facility at location j, 
where j = 1,2,,L. 

The cost CB. is known as a fixed charge. For example, 

regardless of the quantity of resources shipped from source point i 

to the facility at location j there is a constant cost charged to the 

iJ 

iJ 

J 
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system. The cost CB 
J 

is positive and will in general change from 

location to location. 

From the definitions developed so far, one can now consider 

the total cost incurred in shipping various quantities of resources 

x, from the several source points i to a given prospective loca- 

tion v for a facility. This total cost CTv may be written: 

C = CTv 
i=1 

c ivxiv + 
C By 

This relationship may be interpreted graphically as in 

Figure I. 

CBv 

y x uy 
Figure I. Fixed Charge Cost of Construction . 

Here it is assumed that x. is positive for i = u only. 
iv 

That is, this relationship reflects only the shipment from one source 

C CTv 

point to this particular facility. As shipments from other source 

points are introduced, additional terms of the form c. x. would iv iv 

be added., where i = 1, 2,* ' ,S (i - u). The graphical representa- 

tion would become more complex in three dimensions and impossible 

v 

s 



in four and higher dimensions. However, although the total cost 

CTv would increase due to shipment from other source points, the 

fixed charge CBv would remain the same. 

There are several other variables requiring definitions: 

Let 
M. = the supply of resources available for 

distribution at source point i, 
i = 1, 2, , S, 

N. = the capacity of the facility at location 
j, j = 1,2,., L, 

S 

r0, if ) x.. =0 for j = 1,2,, L, 
13 

i=1 

1, if any x.. > 0 . 
13 

An important relationship exists between the cost CB and 
J 

the variable 5.. In the above definition there would be no shipment 
J S 

of resources to location j if 
L, 
) x.. = 0 and would imply the cor- 

8 

1J 
i=1 

responding cost C = 0. Now the product 5.0 may be used as Bj J Bj 
an expression for the fixed charge where ó. = 1 would correspond 
to constructing a facility at location j and 6. = 0 would imply a 

J 

facility is not to be built at location j. In this model, the sequence 
{S.} is a sequence of zeroes and ones describing a building pro- 
gram where 5. = 1 implies that a facility is to be built at location 

and S. = 0 implies that no such facility is to be built. The 
J 

sequence {x..} constitutes a shipping schedule where x.. is 13 13 

J, 

the amount shipped from source point i to facility location j. 

ó. _ 
J 

1. 

J 

J 
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Therefore, the objective function F( {x ..}, {6. }) may be expressed 
13 

as a function of the building program {6.} and shipping schedule 
J 

{xij} -- allowing the location problem to be formulated as follows: 

(1) The system of constraints for the supply at each source 

point i are: 
L 

x.. =M.; i= 1,2, ,S. 
13 1 

This set of equations says that all of the resources at each 

source point must be distributed among the various 

facilities. 

(2) The constraints for demand are as follows: 
S 

xij<Nj; j = 1,2,....,L. - 
i=1 

This set of inequalities says that the amount shipped to 

the facility at location j must not exceed N.. 

(3) The constraints on Sj, j = 1, 2, , L, are by defini- 

tion S 

S. _ 
J 

r- 
0, 

1, 

if 

if 

i=1 
S 

x..=0, iJ 

x..> 0. 
iJ 

i=1 

j 

ij 

j 

j=1 

/ 
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(4) The objective function to be optimized takes the form 

minimize F ({xij}, {ój}) 

{x..}, {5.J } 

L S 

_ ) ) ó.(c..x) + C ó, 
J 1J 13 Bj J 

j=1 i=1 j=1 

L 

with the minimization performed over choices of building 

programs {ö.} and shipping schedules {xij} . 

The objective function presented above is not in linear form 

since it involves the product of terms 6. with x. , however, 
J 1j 

this may be converted to linear form by the following proposition: 

PROPOSITION: 

F ({xij}, {S j}) 

L 

j=1 i=1 

PROOF: 

L 

F({xij}, {Sj}) _ 

S 

C.R. 
c x. + S -): ij lj j S 

S (c x. )+ 
j ij 13 

i=1 

L 

J= 
J 

S.0 
Bj ' 

Now if 6. = 0 then by definition x.. = 0 for all i. Then, 
3 13 

terms of the form 

b(c 
3 

+ + . . + 
c5jxSj) 

_ 

= cljxlJ + 
c23 x2J 

+ + 
cSjxSj 

= 0 

= 

2j 
x 

2j 
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since both 6. = 0 and x.. = O. Also, if S. = 1 then some 
J 1J J 

x.. > 0 or 
13 

S.J (c lj x lj + c 
2j 

x 
2j ++ c 

Sj 
x )> 

Sj 
0 

= c x +c x + lj lj 23 2j cSj xSj > 0 

provided c,. > O. Therefore, F( {xij }, {6. }) may be written 

L S 

j=1 

j=1 

j=1 

i=1 

i=1 

c..x. 
13 1) 

j=1 

L 

SjCBj 

CB C. 
c..x.. + SL ó. -- 

13 13 L J S 

j=1 

i=1 

CB 
c . . x. . + ó . ---- ) 

1J 1J J S 

This completes the proof of the proposition. 

Therefore, the objective function to be optimized may be 

written in the form: 

minimize F( {x, }, {6. }) _ 
{xij }.,. {6 } . 

13 J 

CB 
c x + b ---Z ) 

1j 1j j S 

The values of 6 may be restricted as required in the 

definition by introducing constraints to force 6. in the interval 

J 

L 

L 

S 

L S 

j=1 i=1 

) 
+ )` 

J Li L 

L . 



0<S.< - J- 

To guarantee that 6. assume only values in the above range con- 

sider the following discussion as extended from (12, p. 253). 

X= 

i=1 

Suppose there exists an upper bound for the variables 

x.. ; in this particular application an upper bound does exist, 
1J 

namely N., the capacity of the facility at location j. Clearly, 

or 

or 

S 

i=1 

i=1 

i=1 

x. <N j = 1,2,...., L 
1j - J 

x.. < S.N. j =`1,2,"", L 
1J- J J 

6 . N . j = 1, 2, ' , L . 

1J 3 J - 

From this last inequality it follows that x.. 
13 

i=1 

unless S. = 1. That is, if S. = 1 then 
J J 

S 

x. -N.<0 or 
1J J 

i=1 

x. 
j l 

< N. - J 

i=1 

cannot be positive 

12 

1. 

S 

S 

L 

S 

/xi. 
S 

S 



values 

Since N. is an upper bound for 

i=1 

X.. , the range of 
1J 

i=1 

13 

may assume is not restricted in any practical sense. 

If, on the other hand, 6. = 0 then the inequality reduces to 
S 

< 0 which means x = 0 (for i = 1, 2, ' ' 
. 

, S) since it is ij ij 
i=1 

assumed that x. > O. Also, if a solution is optimum the value of 
ZJ - 

S 

6. will not be 1 if x.. = 0 because the objective function 
J 1J 

i =1 

F That is, ( {xij }, {o }) would be reduced further by having 6. = 0. 

a fixed charge of the form CB 
J 

could be eliminated. 

Now the general mathematical model of location problems may 

be formulated as follows : 

minimize F ( {xij }, {6. }) 

{x..}, {6.} 

L S 

j=1 1=1 

Subject to: 

(1) X.. > 0 ; ij - 

c..x..+S 
J 

. =4'1-) , 
1J 1J S 

(2) 0 < S. < 1 , j = 1, 2, ' ' ' ' , L, 6. integers ; - J- 

J 

S 

3 

J 

x.. 

iJ 
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(3) 

(4) 

i=1 

L 

- S.N. < 0, j = 1, 2, . L; 
J J 

x = M., 
ij 

j=1 

i= 1,2, ,S; 

Thus, the location problem has been stated in terms of a 

mixed integer- continuous variable problem where the control vari- 

ables 8. are assigned integer values and x,. take on values in a 

bounded continuum. 

The number of variables and constraints may produce some 

difficulties as far as the computational aspects of such problems is 

concerned as both of these quantities increase at a rapid rate as the 

problem size increases. When dealing with inequalities, it is neces- 

sary to introduce slack variables to transform these inequalities to 

equalities. 

In this problem it will be necessary to introduce the following 

slack variables: 

(1) L slack variables in [xii - S.N. < 0 . 

i=1 

x.. 
1J 

S 

S 

[Y, - 

J iJ 

r 
I 
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(2) L slack variables in 8. < 1 . 
J - 

Therefore, the number of variables is : 

N = L(S +2) 

while the number of constraints is : 

M = S + 2L. 

Although algorithms for the solution of integer and mixed 

integer- continuous variable programs have been devised only recently 

(9, 10), computer programs do exist for the solution of such prob- 

lems (4). At the present time, attempts to obtain a program to be 

run on the computer at Oregon State University have been delayed; 

however, it is hoped these programs will be available in the near 

future. An example illustrating the algorithm for the solution of a 

mixed integer- continuous variable problem is given in Appendix A. 



APPLICATIONS 

The Medford Study 
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During recent years increased particulates emitted from wood 

waste burners in the Medford area have resulted in heavy contamina- 

tion of the atmosphere throughout the Bear Creek Valley of Oregon. 

To find a solution to this growing problem a research project was 

initiated by the Engineering Experiment Station at Oregon State Uni- 

versity on June 12, 1964 and a research proposal was submitted to 

the Forest Industries Air Quality Committee of the Oregon Associa- 

ted Industries at their request (3). The growing concern by state and 

local officials prompted group action and investigation into possible 

methods of improvement or alternative methods of solution to the air 

pollution problem in this area. 

The primary areas of investigation proposed for the original 

study are (3, p. 2): 

(1) The wood waste burner at each of the mills included 
in the study will be critically examined. A. report of 
findings will be prepared which will provide mill 
owners and the industry with information on how to 
reduce smoke and fly ash emissions as much as pos- 
sible with existing equipment. The findings of this 
phase of the study will be incorporated in the final 
report. 
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(2) Meteorological and air quality data will be collected. 
These data will be analyzed to obtain additional in- 
formation on air pollution factors in the Medford 
basin. From the collected data, an attempt will be 
made to predict pollution levels at times of the year 
other than the period when this study is conducted. 

(3) A preliminary study will be conducted to determine 
the feasibility of alternate methods of wood waste 
residue disposal. This study will utilize existing 
information and will require the cooperation of 
individual mill owners in the furnishing of data. 

By more efficient burning of wood waste in the area, possibly 

under some form of restricted burning, it was hoped that particulate 

contamination of the atmosphere could be considerably reduced. How- 

ever, if results from this phase of study indicated that the present 

level of air pollution could not be reduced to comply with Oregon State 

regulations, an alternative method of waste disposal might become 

mandatory. In anticipation of this possibility the following alterna- 
tives were suggested to improve existing conditions. 

(1) Disposal of Wood Waste by Incineration: 

By disposing of mill waste at much higher 
temperatures and controlled burning, 
atmospheric contamination would be reduced. 

(2) Disposal of Wood Waste Through the Generation 
of Electric Power: 

By burning waste material at high tempera- 
tures the possibility exists that electric 
power would be an efficient by- product of 
wood waste disposal. 



18 

In the event either of these proposals or a combination of the 

two were adopted, it is assumed that some form of mutual cooperation 

would exist among the respective mill owners so that incurred costs 

would be shared on an equal or proportionate basis. 

After briefly reviewing the background and nature of the Med- 

ford air pollution problem, this location problem may be formulated 

as follows: 

Distribute a combination of power plants and incine- 
rators throughout the Medford area of the Bear Creek 
Valley in such a way as to minimize the construction 
and operating costs of such facilities to respective 
mill owners. 

The problem, therefore, is one of locating a combination of 

these facilities so as to minimize an objective function similar to the 

one presented above. However, this type of fixed - charge location 

problem is much more difficult than the one presented in the previous 

model. Obvious questions arise when consideration is given to the 

economic tradeoff between the higher cost incurred in power plant 

construction and the financial benefits to be gained from the sale or 

use of electric power produced. 

Table I presents the relative costs of various sizes of power 

plants and incinerators(2, p. 31). 

The common unit of wood residue is defined as 200 cubic feet 

and weighs approximately 2, 000 pounds. The residue, consisting of 
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TABLE I. FIXED CHARGE COSTS OF CONSTRUCTION 

Installation Cost of Construction 

2 - 30 unit /hr Incinerators $ 1,310,000 

3 - 20 unit /hr Incinerators 1, 305, 000 

4 - 15 unit /hr Incinerators 1, 328, 000 

2 - 30 Megawatt Generating Stations 12, 708, 000 

3 - 20 Megawatt Generating Stations 13, 328, 000 

4 - 15 Megawatt Generating Stations 13, 350, 000 

sawdust, shavings, chips and bark, is weighed without packing in the 

containing vehicle of transportation at the mill. The table presents 

figures for power plants and incinerators designed to handle 15, 20 

and 30 units of fuel per hour. It can be seen from studying the table 

that as far as the initial cost of construction of a facility is concerned 

an incinerator would be less expensive in all of the 15, 20 and 30 unit 

sizes. 

In Table II are summarized the relative wood waste disposal 

costs per unit of fuel for the various sizes of power plants and inciner- 

ators(2, p. 30). 

Here it may be observed that the cost of operating a power 

plant is considerably less than that for a corresponding incinerator. 

The reason is that in the case of the power plant, the electric power 



20 

TABLE II. OPERATING COST PER INSTALLATION 

Installation Cost, $/Unit 

2 - 30 unit/hr Incinerators $ 2. 58 

3 - 20 unit /hr Incinerators 2. 83 

4 - 15 unit /hr Incinerators 3. 00 

2 - 30 Megawatt Generating Stations 1. 67 

3 - 20 Megawatt Generating Stations 2. 15 

4 - 15 Megawatt Generating Stations 2. 49 

produced by the installation is sold to reduce the operating costs in- 

curred. A. more extensive cost breakdown for the various proposals 

is given in (2, p. 54 -57). 

From this example it can be seen that as one deviates from 

the basic model presented above, the fixed charges and other cost 

considerations become increasingly more complex. The following 

discussion relates the Medford project to the location problem. 

Associated with the construction of a power plant of size h 

at location j is a fixed charge Cjph where h may assume the 

values 1, 2, and 3 to correspond respectively with the 15, 20 and 

30 unit plants. In a similar manner, a cost CjIh may be defined 

as the cost of erecting an incinerator of size h at location j. It 

is assumed that both of these costs are calculated on the unit basis 
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previously discussed. Now suppose the profit to be gained from the 

sale or use of electric power can be calculated for each of the various 

sizes of power plants under consideration. That is, let Kiph de- 

note the profit per unit of wood waste derived from the installation of 

a power plant of size h at location j. Since an incinerator would 

produce no electric power the "profit" K. E O. A new fixed 

charge may therefore be defined to incorporate this feature. That is, 

a pair of fixed charges II and II jlh are defined as follows: 

jPh CjPh - KjPh 

jIh JIh Kjlh = JIh 

The following variables and constants defining the parameters in the 

Medford location study are as follows: 

Let 

S = the number of sawmills or sources of 
wood waste in the Medford area, 

L = the number of feasible locations for 
power plants and /or incinerators in 
the area. 

Consider x.. which would normally denote the amount of 

waste material to be shipped from sawmill i to the incinerator or 

power plant at location j. As previously discussed the subscript 

i has the range i = 1, 2, , S; but special consideration must be 

1I = - 

1J 

- 
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given to the range of the subscript j. If no assumptions are made 

as to the relative merit of the various locations, (i. e. suppose for 

any m and n in the set of possible locations for a facility, it is 

equally possible for location m to receive a 15, 20 or 30 unit 

burner as it is for location n to receive the same installation - in 

a practical situation an analysis of the area might rule out the possi- 

bility of installing a 30 unit installation in an area which is far re- 

moved from the majority of sawmills), then for each construction 

site consideration must be taken for installing 2 -30 unit power 

plants; 2 -30 unit incinerators; 3 -20 unit power plants; 3 -20 unit in- 

cinerators; 4 -15 unit power plants and 4 -15 unit incinerators or a 

total of 18 distinct facilities. It follows therefore that subscripting 

of the variables x would be convenient. As a consequence, 
ij 

Let 

xi'kh = 
the amount of wood waste per 200 
cubic feet which is shipped from 
sawmill i to an installation of 
type k and size h at location 
j, where i = 1, 2, ' , S (sawmills), 
j = 1, 2, , 4L (sites for facilities), 
k = 1,2 (facility types) , 

h = 1,2,3 (facility sizes) . 

Increasing the range of the subscript j from L to 4L 

will allow for the possibility of having more than one installation at 

a certain location. The shipping costs and fixed charges associated 

with these "new locations" will necessarily include some duplication. 
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For convenience let the number 4L be denoted by the symbol L' . 

Therefore, the range of the subscript j is j = 1, 2, , L' . 

Let 

cijkh = the cost involved in shipping one unit 
J of fuel from sawmill i to the in- 

stallation of type k and size h 
at location j. The problem as 
formulated will have cijkh 
since the additional subscripts are 
only useful in determining what 
happens to the fuel once it reaches 
location j , 

jkh = the fixed charge associated with 
constructing a facility of type k 
and size h at location j. This 
combines into one quantity the two 
distinct charges n jph and Iiih 
by the additional subscript k 
where k = 1,2 for power plants 
and incinerators respectively. The 
range of the subscript j is ex- 
tended to L', 

Mi = the supply in 200 cubic feet per day 
of wood waste available at sawmill 

Njkh = the capacity of the facility of type 
k and size h located at point 

6jkh 

f 
10 , if 

, if 

s 

i=1 
s 

i=1 

xijkh = 0 , 

> 0 . 

- cij 

J, 

xi'J kh 

n 

J 



In the Medford study the sequence {Sjkh} 

zeroes and ones used to describe a building program where 
Sjkh = 1 

would imply that a facility of type k and size h is to be con- 

structed at location j, while 6 
jkh = 0 would imply that no such 

facility is to be built. In this way the product , 

jkh may be 

used as an expression for the fixed charge with Sikh = 1 or 0 

corresponding respectively to building or not building a particular 
facility. Similarly, the sequence 

{xijkh} constitutes a shipping 

schedule where xijkh is the amount shipped from source point i 
J 

to facility of type k and size h at location j. Therefore, 

the objective function F( 
xijkh}, {Sikh}) kh }) 

may be expressed as a 
J J 

function of the building program {Sjkh} and shipping schedule 

{xijkh} 
kh} as follows: 
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is a sequence of 

F({xijkh}, 
{Sjkh}) 

3 2 L' S 

Sjkh(cijkhxijkh) 
h=1 k=1 j=1 i=1 

3 2 L' 

3 2 L' S 

cijkhxijkh Sjkh S ) 
h=1 k=1 j=1 i=1 

jkh jkh 

By extension of the previous theory, assume that there exists 
S 

an upper bound for the variables 
i=1 

xijkh' A suitable upper bound 
J 

J 

h=1 k=1 j=1 
S 

Jkh 
+ 

Y Y + 

Y 



does exist namely Njkh, that is 

5 

xijkh < Njkh 
i=1 

or xi'kh 6. 
J j J 

i=1 

or 

i=1 

j = 1,2,"°',L'; k = 1,2; h = 1,2,3 

ijkh - SjkhNjkh < 0 . 

25 

S 

In the last inequality xijkh will not be positive unless 
J 

i =1 
S 

5jkh 1. For if Sjkh = 0 then xijkh = 
0 since the constraint 

i =1 

X. > 0 must simultaneously be satisfied. Therefore, this ine- 

quality represents a mathematical equation for the desired properties 

inherent in the definition of Sjkh 

From the above discussion the Medford project defined as a 

location problem may be expressed in terms of a mixed integer - 

continuous linear programming problem with fixed charges and de- 

fined in the following way: 

N. 

- 

= 
L 

S 

/ 
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minimize F({xi'kh}, {ö }) 

{xijkh}' 
{ó jkh} J J 

3 

h=1 k=1 i=1 

II_Lh 
cijkhxijkh 

+ ójkh 
r 

S ) 

Subject to the following constraints: 

(1) x1jkh > 0 ; 

(2) 0 < Sjkh < 1, Sjkh integers; 

S 

(3) x::, - s:,_ N: < 0 ; 

i=1 
3 2 

(4) 
1 / 

xi'J kh = Mi . 

h=1 k=1 

L' 

Thus, the Medford study formulated above illustrates the 

general model for location problems presented in the previous sec- 

tion in determining the optimum location of power plants and /or 

incinerators to be installed for the purpose of wood waste disposal. 

Although numerical results were not obtained for this particular 

problem, Appendix B presents an example similar to the Medford 

study where results were obtained by direct enumeration of the pos- 

sible cases. It is noted that direct enumeration would be computa- 

tionally unfeasible for the entire Medford study illustrating the appli- 

cation for the above model. 

2 L' 

-I 

- 

S 

j=1 

L 
j=1 
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Other Examples 

The model presented could be applied to a variety of other 

situations. The relative location of industrial plants would be one 

such example. Here the resources would correspond to the particular 

raw natural resources used by the plant and the source points to the 

sources of supply for such resources. A fixed charge similar to the 

one in the Medford study may be introduced for the initial cost of con- 

struction. In this example care must be used when defining the relative 

cost factor c..; for here consideration must be made not onlyfortrans- 

portation costs between the source points and the facility but also for the 

transportation costs between the facility and final destination of the product 

The relative location of warehouses could be described in a simi- 

lar way. Again, additional care must be taken when considering the costs 

involved in shipping the inventory from the source points to the ware- 

houses and shipping the inventory from the warehouses to the retail outlets. 

An application similar to the Medford study is the location of a 

refuse disposal plant. Here resources might include personal and in- 

dustrial refuse but need not be considered on an individual "house" 

basis. Rather, an orderly division of the area might be accomplished 

either by placing the region on a rectangular grid to give equal divi- 

sion of the area or by splitting the region into groups on the basis of 

the amount of refuse to be disposed of. 

i.) 
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These examples illustrate various applications of the location 

problem for the model developed. In considering any particular ex- 

ample, care must be used in defining the various parameters as 

illustrated in the Medford study. 
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SUMMARY 

The placement or distribution of discrete facilities over a 

discrete region is defined as a location problem. This problem does 

not lend itself to solution by linear methods and hence some nonlinear 

method or form of approximation must be used. The method of solu- 

tion discussed in this paper may be classified as integer linear pro- 

gramming with fixed charges. 

The main points in the integer model developed may be listed 

as follows: 

1. There exists a fixed charge CB which is incurred if a facility 
j 

is to be constructed at location j. This charge is independent 

of the amount of resources to be shipped to location j from the 

various source points, that is, once it is decided to build an in- 

stallation of size k at location j a constant cost is assessed 

to the system regardless if the installation is operating at full 

capacity in relation to the rest of the system. 

2, Through the definition of the control variable ó. , the objective 

function F( {xij }, {6. }) may be expressed as a quadratic function 

of the shipping schedule {xij} and the building program {ój} 

as follows: 

J 

J J 



L 

F({xi}; {âj}) = ó.(c..x..) + 
3 13 13 

L 

ój CT3j 

)=l 

Although the above expression is not in linear form it may be 

reduced to 

L 

F({xij},{ój}) = 

i=1 

C 

c..x.. + ó. 
J 

B-) 
13 1j S 
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3. Following the presentation of the general integer programming 

model, a location problem dealing with the distribution of power 

plants and /or incinerators in the Medford area of the Bear Creek 

Valley of Oregon was formulated as follows: 

minimize F( {x }, {ó }) 

{xijkh }' {ójkh} 

3 2 

h=1 k=1 j=1 i=1 

{xijkh jkh 

cijkhxijkh + ójkh[ 

Subject to the following constraints: 

(3) 

(1) xijkh > 0 ; 

(2) 0 < ójkh < 1, ójkh integers ; 

S 

xijkh - SjkhNjkh 0 ' 
i=1 

i=1 

/ n jkh 
S ] ) ' 

S 

j=1 

. 

S 

j=LLL1 

L' S 

[ 



3 2 L' 

(4) / 
h=1 k=1 j=1 

xi kh = Mi ; 

J 
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4. Various other examples were presented illustrating the applica- 

tion of the general integer programming model for the solution of 

location problems. 

It is intended the integer linear programming model developed 

on the preceding pages will be a useful approach to the solution of the 

problem of locating discrete facilities over a finite number of possi- 

ble locations. With advances in high speed computers and sophisti- 

cated algorithms just recently developed, the solution to the location 

problem as formulated above will be possible. 

y 
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APPENDIX A 

The following example illustrates Gomory's algorithm for the 

solution of a mixed integer -continuous variable problem (12, p. 290). 

Although this example is not a location problem the same procedure 

repeated in higher dimensions with additional constraints would be 

used to obtain a solution in the Medford study. Computation was per- 

formed by hand using the dual - simplex method after addition of the 

cutting plane constraints and the results checked on the IBM 1410 

Computer at Oregon State University. 

Problem: 

maximize z = 8x1 + 6x2 

Subject to: 

(1) xl x2>0,. 

(2) x1 an integer, 

(3) 3x1 + 5x2 11 

(4) 4x1 + x2. .<. 8 . 

The feasible set (without consideration of the integer con- 

straint) and objective function are presented in Figure II. It is 

clear geometrically that the maximum solution ignoring the integer 

constraint occurs at point C, whereas it will be shown the 

, < 



x2 
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Figure II. Feasible Set for the Mixed Integer- Continuous 
Variable Problem. 
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optimum solution for the system with x1 restricted to integer values 

will occur at point D. 

In attempting to maximize the function z = 8x1 + 6x2 subject 

to the given constraints, the following procedure will be carried out. 

First, a solution will be obtained using the simplex method and the 

basic set of variables will be examined. If the basic set has x1 an 

integer, the algorithm is terminated. However, if an integer solution 

has not been obtained a "cutting plane" constraint is then introduced 

to further restrict the feasible set and the problem is again solved 

using the simplex method. This procedure is repeated until all inte- 

ger restrictions have been met. The theory for determining the cut- 

ting plane is given in (12, p. 282 -285), along with a proof for the 

convergence of the algorithm. 

Upon completion of any of the linear programs not satisfying 

the integer restrictions, the inequality -d )x. <= f is intro- 
uj - ub 

BER 

duced as a cutting plane constraint and added to the set of "original" 

constraints . R is the set of non -basic variables, fub is the 

fractional part of the right hand side of the uth equation in a par- 

ticular basic set (u represents a variable in the basic set which 

must be an integer but is not an integer at the current stage) and 

) ( L 



d . 

uJ 
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a , if x. is nonbasic, is not required to be an integer 
uj J 

and a . > 0, 
uJ - 

fub 
1-fub 

= f 
uJ 

fub 

á . 

uJ 
if x. is nonbasic, is not required to be 

an integer and á < 0 , 
uj 

if x. is nonbasic, required to be an integer and 

fuj < fub ' 

1-f (1-f ), if xj is nonbasic, required to be an 
ub 

integer and fu 
> f ub ' j 

where f = á - 6 , and S is the largest integer less 
uj uj uj uj 

than or equal to á , 
uj 

fub bu Sub' and Sub is the largest integer less 

than or equal to bu , 

a ., is the entry in the uth equation for the 

.th 
J nonbasic variable in the simplex 

tableau, 

bu, is the right hand side of the uth equa- 

tion in the simplex tableau. 

Some motivation may be gained for the above procedure by 

., 

J 

J 



considering the line of reasoning presented in (12, p. 273). Any 

basic variable u not yet an integer and required to be an integer 

may be rewritten as 

x = bu 
u 

jER 

a .x. . 
uJ J 
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If a . = ó . + f and b = 6 + f then since b 
u 

is not an 
uJ uj u ub ub 

integer, fub > O. Now the above expression may be written 

or 

xu Sub 

jeR 
ô x.+f - f x. 

uj J ub 113 J 

jER 

x - óub + 6 x. = fub fu .x. . 

jJ jJ 
jER 

If a solution is to be an integer then xu - 
Sub 

an integer and hence fub 

) f x. L uj J 

jER 

fub 

jER 

jER 

jeR 
ó x. must be 

uj J 

f x. must be an integer. Since 
uj J 

jeR 
must be greater than or equal to zero and 0 < fub < 1, 

f x. < 0 or uj 3- 
jeR 

-fu.)x. <-fub, 
u 

Therefore a solution to 

the original integer program must now satisfy the constraint 

)x. < -f 
' uj 3- ub 

jeR 

u 

+ 

- 
LLL 

/ / 

L 

L 

- 
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In the mixed- integer case, the various possibilities must be 

examined separately producing the various alternative definitions for 

d .. 
U3 

The function to be maximized was solved using the simplex 

method and the solution is illustrated in the following tableau: 

xl x2 x3 x4 -z b 

4 3 20 x2 0 1 
17 17 0 17 

1 20 29 xl 1 0 
17 68 

0 
17 

-z 0 0 
16 22 

1 
352 

17 17 17 
. 

Although x1 and x2 are in the basic solution, x1 is not an 

integer and therefore a cutting plane constraint must be added. The 

non -basic variables are x3 and x4, neither of which is required 

to be an integer and hence by the above discussion 

12b 
12 

d23 1-f2b a23 85 

and 
20 

d24 a24 68 

Thus, the constraint for the cut is 

12 20 12 
85 x3 68 x4 17 
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This inequality may be combined with the previous tableau to 

produce 

xl x2 x3 x4 el -z b 

x2 0 1 
4 3 

Q 0 
20 

17 17 17 

xl 1 0 
1 20 

0 0 
29 
17 -17 - 

68 

el 0 0 
12 20 

1 0 

12 
-85 68 17 

-z 0 0 
16 22 352 
17 17 17 

The dual simplex method is now applied to obtain 

xl x2 x3 x4 el -z b 

0 
136 12 136 x2 1 425 0 20 

0 85 

xl 1 0 - 85 0 1 0 1 

x4 0 0 
204 

1 

68 
0 

12 
425 20 5 

-z 0 0 136 22 
l 

1496 
425 5 85 

whereuponthe final solution is: 

- , 

i - - - - - 

-- 
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xl = 1.0000 

x2 = 1.5999 

x3 = 0.0000 

x4 = 2.3998 

e 
1 

= 0. 0000 

max z = 17. 6002 

The effect of the cutting plane on the feasible set is illustrated 

in Figure III. It is noticed the feasible set is reduced and a corner 

is introduced at point D, allowing the final result to be obtained by 

the simplex method. The solution to the location problem presented 

in this thesis would proceed in a similar manner and be repeated 

until all control variables 6. assumed the integer values 

zero or one for choices of the various building programs. 
J 



x2 

42 

Cutting Plane 
1.599x1 + x2 = 3.20 

Original Feasible Set 

Feasible Set upon 
Addition of Cutting 
Plane Constraint 

Figure III. Effect of Cutting Plane Constraint on the 
Feasible Set. 
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APPENDIX B 

The following example is formulated as a location problem and 

an optimum solution involving integers is obtained by direct enumera- 

tion of the various possibilities. Although the data are hypothetical, 

the problem is intended to represent a subset of the Medford study 

previously discussed and involves the placement of incinerators over 

a finite number of possible locations. Consideration is given for two 

installations to be constructed at two of the three possible locations 

illustrating the possibility for the various multiple facility assign- 

ments in the Medford study. In considering the integer solutions for 

this particular example, distinct combinations of locations for facili- 

ties are examined taking three, four, and five locations at a time. 

A discussion of the number of cases involved in the entire 

Medford study follows and it is apparent that direct enumeration of 

the possibilities involved in this case is impractical; clearly illus- 

trating the application for the model developed in this thesis which 

systematically searches and determines an optimum solution if one 

exists and in a reasonable amount of time. 

Problem: 

Assume the region under investigation consists of five saw- 

mills or sources of wood waste and that a preliminary study of the 
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surrounding area revealed that three locations denoted by A, B 

and C are adequate for incinerator construction. Also, because 

of the proximity of two of the locations to the source of the fuel sup- 

ply, it seems feasible that an optimal solution might consist of two 

incinerators constructed at these two locations. Assuming the exist- 

ence of these possibilities, the following values determine the supply, 

capacity, transportation and fixed charge costs for the various situa- 

tions: 

SUPPLY (Units of fuel /day) 

= 15.376 

M2 = 9.155 

M3 = 10. 275 

M4 = 7. 215 

= 16. 429 

CAPACITY (Units of fuel /day) 

NA = 20. 

NA2 = 20. 

NB = 20. 

NB2 = 20. 

NC = 20. 

M1 

M5 

1 

1 
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TRANSPORTATION COSTS ($. 50 /unit of fuel /day) 

Al 

Incinerator No. 

A2 B1 B2 Cl 

1 8 8 16 16 48 

2 19 19 5 5 62 

Source 3 31 31 7 7 41 

No. 
4 29 29 25 25 32 

5 69 69 59 59 8 

FIXED CHARGE ($. 50 /unit of fuel /day) 

r"A.l 

1TA2 

TrB1 

TrB2 

C1 

= 

= 

= 

5281 

5281 

5524 

5524 

5775 

A diagram of the area showing the relative location of the 

sawmills to the sites for incinerator construction along with the 

various supplies, capacities, and relative costs are given in Figure 

IV. 

AMMO 

= 

= 
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Figure IV. Relative Location of Facilities. 



47 

Solution: 

One approach to the solution of this problem is to consider a 

linear programming formulation using the model developed and com- 

pare the values obtained with the optimal integer solution. The fol- 

lowing discussion characterizes the linear programming approach: 

minimize F( }, {xij {6. }) _ 

{xij }, {6,} 

Subject to : 

5 5 

j=1 i=1 

(1) x, > 0 , 

J - 
(2) 0 < S, < 1, - J - 

(3) 

(4) 

5 

j=1 

5 

= M,, for i 

Tr, 

c x. + S - ) . 
ij 13 j S 

1,2,,5, 

- 6.N. <0, for j =1,2, ,5. 
J J- 

It is to be noted that the above formulation is similar to the 

model presented in the thesis except that in this case no integer re- 

strictions have been placed on the variables S,. The purpose of 

considering this possibility is to compare the values of the control 

variables 6. obtained above to those obtained by restricting 6. 

1J J 

i=1 

i= 
xi 
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to integer values. This problem was run on the IBM 1410 Computer 

at Oregon State University and the following values were obtained for 

the control variables 5.: 
J 

óA1 

8A2 

5B1 

5B2 

óC1 

= 

= 

= 

= 

= 

0.7688 

0. 

0. 9715 

0. 

0.8125 

The flow of wood waste through the system for this possibility is 

presented in Figure V along with the optimal value of the objective 

function. 

The combinatorial nature of the example given is smaller in 

order of magnitude in comparison with the entire Medford study. If 

L denotes the number of locations for the incinerators and r de- 

notes a subset of these sites to be considered for the construction of 

a facilit L y then () will be the number of possibilities for L loca- 

tions taken r at a time. Since it is only necessary to install three 

incinerators to dispose of the wood waste from all sawmills, only 

5 (3) or 10 possibilities for locating facilities need be considered. 

However, it is of interest to consider the distribution of wood waste 

throughout the system with four and five installations and therefore 



16. 429 

7.215 

16. 429 

16. 429 
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10. 275 

F({xi}, {ó}) = 16657. 277 $. 50/unit of fuel/day 

Figure V. Linear Programming Solution. 



the total number of possibilities is increased to (3) +(4) +(5) 

50 

or 

16. Since the fixed charges and transportation costs are identical 

for the multiple facility installations the total number of cases may 

be reduced to the following nine possibilities (the value of the objec- 

tive function F({xij}, {6j}) is also given in $. 50 /unit of fuel /day): 

{A1,A2, Bl} - 17, 663. 868 

{Al, B1, B2} - 17, 731. 710 

{A1, B2, C1} - 17, 165. 166 

{A1,A2,C1} - 17,299.225 

{B1, B2, C1} - 17, 512. 684 

{A.1,A2,B1,B2} - 23, 012.708 

{A1,A2,B1,C1} - 22,440. 101 

{A1, B1, B2, Cl} - 22, 656. 519 

{A1,A2, - 27, 519 

The optimal solution to the various integer problems taking 

three, four, and five locations at a time is given in Figures VI VII 

and VIII respectively. A network describing the flow of wood waste 

through the system is presented along with the values of the objective 

function F({x..}, {6. }). Figure VI represents the optimum integer 
1J J 

solution and involves constructing incinerators at locations Al, B2, 
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16.429 16.429 

F ({x..}, {â.})= 17165. 166 $. 50/unit of fuel/day 
13 

Figure VI. Optimum Solution Involving Three Installations. 

J 

155 

9.155 



16.429 16.429 

16. 429 
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20. 000 

F( {x..}, {6.}) = 22440. 101 $. 50/unit of fuel/day 

Figure VII. Optimum Solution Involving Four Installations. 

13 J 



16. 429 16.429 

16. 429 

7. 215 10. 275 

10. 275 

20. 000 

7. 215 
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F({xi.}, {6.})= 27937. 519 $. 50/unit of fuel/day 

Figure VIII. Optimum Solution Involving Five Installations. 

, 

Try- 
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and Cl. The minimum value of the objective function is 

F({xij}, {bj}) = 17, 165.166 $. 50/unit of fuel/day. 

It is of interest to notice that rounding the values of 6, from the 

linear programming solution in this example results in an equivalent 

optimum integer solution. 

Determination of an optimum solution for the location of power 

plants and /or incinerators for the entire Medford study by this method 

would not be computationally feasible due to the increased number of 

cases which must be considered. Assuming 20 sources of wood 

waste in the Medford area of the Bear Creek Valley and seven possible 

locations for power plants and /or incinerators, consider the following 

discussion relevant to the total number of cases which must be con- 

sidered. 

The following possibilities for power plant and /or incinera- 

tor construction satisfy the constraint that 

L S 

/ NJ y, M. . i 
j=1 i=1 

Case 1: Construction of 2 -30 unit installations. 

Case 2: Construction of 3 -20 unit installations. 

Case 3: Construction of 4 -15 unit installations. 

Case 4: Construction of 1 -30 and 2 -15 unit installations. 

iJ J 

_ 
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If L denotes the total number of distinct locations for the 

facilities, r the number of locations included in a particular sub- 

set under consideration, Ni the number of ways of distributing the 

L facilities among the i locations where i = 1, 2, ° , r, then 

Case 1: (L = 7, r = 2) 

2 

T1 = Ni = (1)+ (2) = 28 . 

i=1 

Case 2: (L = 7, r = 3) 

3 

T2 = 

i=1 

Case 3: (L = 7, r = 4) 

4 

Ni = (i)+(1)(6)+(3) = 84. 

T3 = 
Ni = (1)+L(Z)+(1)(6)] +( 

1 
)( 

6 
(4) = 315 . 

i=1 

Case 4: (L = 7, r = 3) 

T4 

3 

i=1 

Ni = (1)+[( Z)+(?)] +( 3) = 84. 

If T denotes the total number of cases to be considered, then 

/ 

= 



T = 

4 

i=1 

= 1022. 

T 
i 
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Because of the increased size of the Medford study and the 

various possibilities which must be considered, it is clear that direct 

enumeration of the possible cases would be impractical. The model 

developed in this thesis is intended to solve this problem in a system- 

atic manner and in a reasonable amount of time. Estimates place 

the running time on the IBM 1410 Computer in excess of 50 hours 

after preparation of the input for direct enumeration of the cases 

(this figure is based on the fact that the nine integer solutions for the 

example computed in the appendix ran approximately 25 minutes). 

It is estimated a computer solution for the entire Medford study 

using integer programming with fixed charges could be found in less 

than four hours -- illustrating the application of the integer model 

in reducing a computationally unfeasible problem to a solution. 

2 


