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A conceptual model of the tidal flat system, emphasizing the

sulfur cycle was presented. Measurements were made of the verti-

cal distribution within tidal flat deposits of total aerobic and sulfate

reducing bacteria, total sulfides, redox potential, volatile solids,

and particle size. Variations in dissolved oxygen and free sulfides

in the water overlying tidal flat deposits were monitored during a

tidal cycle, and profiles within this overlying water obtained. An

in situ benthic respirometer was used to measure the rate of free

sulfide release to the overlying water.

Laboratory experiments were designed to investigate the

mechanism of sulfide production in tidal flat areas. Growth media

were prepared from extracts of sediment and algae collected from

tidal flats. Rates of sulfide production in these growth media by
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mixed cultures of anaerobic bacteria from the same areas were 

obtained. A mathematical model, based on the common Michaelis-

Menton equation, was used to simulate the experiments. A compari­

son of the simulated and experimental results was presented. 
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SOME ASPECTS OF THE SULFUR CYCLE IN
 
TIDAL FLAT AREAS, AND THEIR IMPACT
 

ON ESTUARINE WATER QUALITY
 

INTRODUCTION 

Objectives and Scope 

The primary objectives of this study were 

(1) to explore the general nature of the sulfur cycle within 

tidal flat sediments and its relationship to the general ecology of 

selected areas. 

(2) to determine the relationship of certain aspects of the 

sulfur cycle to oxygen uptake by tidal flat sediments. 

(3) to investigate the mechanisms of sulfide generation within 

estuarine deposits. 

These objectives required 'a study and analysis of many inter­

relationships and processes occurring within the tidal flat system. 

It was realized from the onset of the study that such an analysis would 

be very broad in scope, and could be approached from any number of 

levels of resolution. In selecting an appropriate level of resolution 

from which to model and study any system, it is necessary to trade 

between detail and perspective (6). Excessive attention to detail in­

creases the number of system components studied, and makes it dif­

ficult to define and analyze the relationships between them. To gain 
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perspective, however, leads to loss of detail and often some useful 

information. 

A conceptual model of the tidal flat system at the order of 

resolution dealt with in this study is shown in Figure 1 (7). The level 

of resolution represented was chosen to illustrate those components 

and processes felt to be particularly relevant to this study. Omis­

sion of factors from Figure 1 does not imply they are not important 

in the ecology of tidal flat areas. Nutrients such as nitrates and 

phosphates, extracellular metabolites including enzymes, detritus 

feeders, and fungi are among the many factors that may play signifi­

cant roles within the tidal flat ecosystem. Yet, for the sake of 

clarity, and to reasonably limit the scope of this investigation, these 

and other factors have not been separately included in Figure 1. 

Reasons For Studying Tidal Flats 

It has been recognized for some time that the tidal flat deposits 

of estuaries are areas of extreme complexity and activity (4, 79, 80). 

They serve as both sources and sinks of a nearly infinite variety of 

compounds and materials, produced by equally as many and varied 

processes. They are continually in a state of material and energy 

flux with the surrounding water and air. Consequently any approach 

to an understanding of them and their effects must involve a study of 

the biological, chemical and physical factors and processes 
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comprising the tidal flat ecosystem. 

A generalized cross section of a typical estuary is shown in 

Figure 2 and has been divided into eight zones for purposes of the 

following discussion. The portion to the left of the vertical line 

represents the main channel area composed of the main water body 

(A), a thin layer of water immediately above and in contact with the 

sediment (B), the aerobic zone of the sediment and its interstitial 

water (C), and the anaerobic zone and associated interstitial water 

(D). The portion to the right of the solid vertical line represents 

that portion of the estuary in which the sediments are periodically 

exposed by tidal fluctuations - the tidal flat area. 

Tidal flats are generally quite extensive and comprise a signi­

ficant fraction of the total deposit area of estuaries. Within Yaquina 

Estuary, for example, approximately 1590 acres of tidal flats are 

exposed at low water, representing more than two-thirds of the 

benthal deposits (77). In Coos Estuary nearly 7000 acres of tidal 

flat are similarly exposed (77). Since these regions are so extensive, 

they should receive appropriate attention. 

It has been noted that similar species within ecosystems com­

pete for similar resources such as food, space, and light (28, 33). 

Despite the tendency for the more efficient species to eliminate the 

less efficient ones (33), healthy ecosystems usually contain a great 

variety of species, and species diversity has been considered to be 
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Figure 2. A generalized cross section of a typical estuary. 
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of considerable importance in the maintenance of ecosystem stability 

(28). It has been suggested that natural variations in time and space 

prevent any one species from having an advantage over a wide enough 

area over a long enough time to displace its competitors (55). If eco­

system stability is desirable, then the variability of conditions which 

exist within estuaries, and tidal flats in particular, are important in 

the maintenance of stability. That the unique conditions in estuaries 

are essential to normal growth and development of many invertebrate 

species has been established (19). 

Within estuaries, the tidal flat deposits display conditions which 

are often uniquely different from those of deeper water sediments. 

In particular, they are periodically exposed to the air, and dessica­

tion is a condition with which organisms living upon or near the sedi­

ment surface must contend. Pollutant materials carried on the water 

surface may be deposited upon the tidal flats as the tide ebbs. 

There exists good evidence that the deposits of estuaries may 

have a major influence on the ecology of the whole estuary (78). For 

example, the build-up and release of undesirable gases from the 

sediments is a common occurrence and may significantly affect 

water quality (7, 77). In some cases hydrogen sulfide release from 

sediments may become so great that it escapes into the air becom­

ing a nuisance and producing property damage (59). An understand­

ing of the mechanisms leading to the production and release of gases 
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is essential to the prevention of such occurrences.
 

Tidal flat deposits are in general biologically very active and in 

some cases benthal respiration is a major factor affecting dissolved 

oxygen concentrations (DO) in the relatively shallow overlying water 

(20). Through biological degradation, settling,and adsorption to 

sediment particles organic matter is removed from overlying water. 

The oxygen utilization resulting from aerobic degradation of organics 

can significantly deplete the water of DO (20, 43, 62, 78). Reduced 

byproducts of microbial metabolism formed within anaerobic sedi­

ment may also exert a substantial oxygen demand following upward 

diffusion into aerobic regions (20). 

In addition to providing transfer of gases and reduced sub­

stances across the sediment-water interface, sediments are also im­

portant sites of release of nutrients such as nitrates and phosphates 

(23, 62). Their importance may increase when overlying waters be­

come nutrient deficient (23, 32, 55). 

Bacteria occurring within estuarine sediments have been shown 

to be of very great importance (79). Because of their high metabolic 

rates they are capable of rapid turnover of nutrients, and probably 

serve as vital pathways in the trophic web in the estuarine ecosys­

tem. Their ability to participate in a wide variety of chemical trans­

formations strongly implicates them in the control of the pH and 

redox potential of the sediment environment (4, 30, 80). They may 
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be of further importance in production of biologically essential trace 

compounds such as vitamin B12 (45). They are also known to be 

responsible for the production of toxic substances such as hydrogen 

sulfide, and possibly methylmercury, and may thus substantially 

alter the microecology of certain areas (30, 41). They may well be ithe 

major biological factors controlling the ecology of estuarine deposits, 

and hence the entire estuary (79 ). 

Despite their importance, estuaries, and tidal flats in parti­

cular, have been significantly affected by land filling, diking, dredg­

ing, and numerous forms of pollution. While estuarine systems have 

received considerable attention of late, the vast majority of studies 

or models have been concerned with region A (Figure 2). Further­

more, a review of the sampling procedures used by regulatory agen­

cies indicates that, with few exceptions, the quality of the interstitial 

and overlying waters of tidal flat sediments has been ignored. It is 

imperative that the ecology of these regions be understood in order 

that rational decisions may be made regarding the use and manage­

ment of estuaries. 

The Tidal Flat Area 

Physical Factors 

Consider a vertical slice of a typical tidal flat at high tide (see 
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Figure 2). There are two phase boundaries present in this system; 

the upper boundary (air-water interface), through which gases can 

pass by transfer processes, and the lower boundary (sediment-water 

interface), through which soluble compounds may enter and leave the 

sediment. In addition, two other less distinct boundaries can be de­

fined: the boundary between the upper well-mixed turbulent waters 

and less-mixed waters adjacent to the sediment surface, and the 

boundary between the aerobic and anaerobic regions of the bottom de­

posit. 

Within the water phase, energy may enter the system as light, 

organic, and inorganic compounds, to be used by photoautotrophs, 

heterotrophs, and chemoautotrophs respectively. Light cannot pene­

trate more than a few millimeters (mm) into the sediment, however, 

and thus photosynthesis probably does not occur below 5 mm (30, 75, 

80). Chemical energy in the form of organic matter, transported 

into the tidal flat area or produced through photosynthesis, is im­

ported to the sediments from above by settling to and mixing across 

the sediment-water interface (Figure 1). This energy may be used 

directly by detrital feeders, but increasing evidence suggests that 

bacterial and possibly fungal decomposition of this organic matter 

is first necessary for complete utilization by other organisms (30, 

53, 75).. 

Within the sediment there are two zones based upon the 
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availability of oxygen for energy yielding processes: the aerobic 

zone, and the anaerobic zone. The upper, or aerobic zone, receives 

dissolved oxygen from the overlying water by means of vertical mix­

ing (30), and the depth of this aerobic zone depends to a large extent 

on the extent of mixing within the sediment. Vertical mixing within 

the sediments in turn depends upon a variety of factors. Hydraulic 

factors, such as tidal variation in water depth, water velocities, 

wave action, and low tide drainage patterns all contribute to vertical 

mixing (11, 41). Burrowing and movement of organisms within sedi­

ments leads to greater vertical mixing, and studies have shown that 

the extent of such mixing can be considerable (25, 26, 66). On the 

other hand, the presence of fine particles within the sediments, as 

well as certain microorganisms within and upon the deposits, tends 

to reduce vertical mixing (11, 41). Electrical interaction between 

particles and interstitial water can lead to a reduction of molecular 

diffusion, and within biological slimes diffusion can be significantly 

less than through pure water (12, 24). Consequently vertical mixing 

can be expected to range from fairly large hydraulic exchanges to 

values less than that of molecular diffusion in pure water. 

Below the aerobic zone lies a region devoid of molecular oxy­

gen. Redox potentials (Eh) within this anaerobic zone are usually 

quite negative, and are largely determined by microbial processes 

(80). Although values as low as -500 millivolts (mv) have been 
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reported, such extremes are rare and probably due to the presence 

of molecular hydrogen (80), More commonly negative potentials fall 

between -100 and -250 my, and it is generally recognized that these 

are primarily due to the presence of free sulfides (4, 9, 16, 30). 

Oxygen 

Because of the many processes in which it participates, oxygen 

is probably among the more important factors affecting the structure 

and functioning of tidal flat ecosystems. All aerobic life is dependent 

upon the utilization of oxygen as a hydrogen acceptor, and the verti­

cal zonation of the bottom deposits is a result of the one-way supply 

of oxygen and light (30). 

In addition to DO imported by water movement, oxygen may be 

added to the overlying water by two principal processes: reaeration, 

and photosynthesis. Reaeration is a physical process resulting in 

the transport of oxygen across the air-water interface, and has been 

studied in detail by many investigators (22, 54, 55). In tidal flat 

regions, wind and wave action will have a major influence on the air-

water transfer of oxygen. This net movement of oxygen may occur 

either into or out of the water, depending upon the relative partial 

pressures of oxygen on each side of the interface. 

During daylight hours, oxygen is produced photosynthetically 

by planktonic and benthic green plants through photolysis of water. 
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The extent of photosynthesis depends upon light, nutrients, tempera­

ture, and algal biomass. During the night hours, photosynthesis 

ceases, but respiration continues, contributing to a nocturnal de­

crease of DO. Diel DO variations of over eight milligrams per liter 

have geen reported within tidal flat areas (20). 

The DO uptake of benthic deposits has been studied both in the 

field (20, 39, 47, 51, 55, 62), and in laboratory systems (5, 26, 29, 

46, 49, 57, 68). Uptake rates have been shown to be dependent on 

temperature, water velocity, and the presence and abundance of 

algae, bacteria, and macrofauna (20, 46). Some investigators be­

lieve the uptake to be due mainly to diffusion of oxygen into the sedi­

ments, to meet the respiratory requirements of organisms. Others 

believe it is primarily due to diffusion of oxygen demanding sub ­

stances out of the sediments (5). Studies employing poisoned systems 

have shown that one-half to one-third of the oxygen uptake can be 

non-respiratory (46). The diffusion of oxygen demanding materials 

(possibly a by-product of anaerobic metabolism) into the aerobic zone 

of the sediment or into the overlying water, and their subsequent 

oxidation, could account for the non-respiratory (chemical) oxygen 

demand (20). In situ studies on oxygen uptake by sediments of 

Yaquina Estuary have further indicated that such oxygen demanding 

Substances must have a rather high reactivity with DO in order to 

account for the measured oxygen uptake rates (20). 
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Because of their widespread abundance in anaerobic deposits, 

free sulfides have been implicated as a major factor responsible for 

chemical oxygen uptake (7, 30). The apparent high reactivity be­

tween free sulfides and DO in brackish water has contributed to the 

general assumption that free sulfides released from the anaerobic 

zone of the deposits will be essentially completely oxidized within the 

aerobic layer (7). Significant concentrations of free sulfides within 

waters containing moderate to high DO have generally been considered 

as a transient condition resulting from dredging, scour, or other 

similar major benthic disruptions. In general, the continued pres­

ence of free sulfides in waters containing DO has been considered 

improbable (7, 16). 

Sulfides 

The sulfur cycle has been described in nearly every textbook 

on ecology. Its importance in intertidal sediment ecosystems has 

been stressed (4, 30), yet it has received only superficial attention. 

Various sulfur compounds occur within the water column overlying 

tidal flat deposits. In most brackish water which is oxygenated, 

these are usually in an oxidized state, with sulfates being the most 

abundant form. Those sulfur species which are soluble may diffuse 

across the sediment-water interface and enter the sediments. With­

in the water and upper aerobic- layer of the deposits, inorganic
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sulfur compounds may be utilized by sulfur oxidizing bacteria, such
 

as those of the genus Thiobacillus, which produce sulfates. 

Hydrogen sulfide occurs in aqueous solution as part of the pH 

dependent system 

H "4- HS- '4 S= (1)
2S 

At a pH of approximately 7.0 free sulfides are equally divided be­

tween H and HS with S being negligible ( 59). In the following dis­
2S 

cussion, components of equation 1 will be referred to as 'free sul­

fide'. Free sulfide originates within the anaerobic zone of the sedi­

ment where it is produced primarily by heterotrophic sulfate reduc­

ing bacteria which utilize the sulfate ion as a terminal hydrogen ac 

ceptor (4). When adequate sulfate is available, as in marine and 

brackish waters, stabilization of organic material has been shown to 

occur via sulfate reduction rather than methane fermentation (31). 

Free sulfides may also be produced during anaerobic putrefication 

of sulfur-containing amino acids, but this process is felt to be of 

lesser importance in the marine environment (16, 30). 

The fate of the sulfides will depend upon the physical and chemi­

cal characteristics of the sediments. If sufficient amounts of metal 

ions, such as iron for example, are present, the sulfides will form 

insoluble precipitates. If removal of these insoluble sulfur com­

pounds does not take place, either by resolubilizing or through 
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transport out of the area, the concentration of total sulfides, includ­

ing free, soluble, and insoluble forms, may reach significant pro­

portions in the sediments (7, 30). 

If the aerobic layer of the sediment is thin enough to allow light 

to penetrate to the anaerobic zone, populations of photosynthetic 

purple and green sulfur bacteria may develop, utilizing the free sul­

fides as hydrogen donors, and producing free sulfur as a by-product 

(7). This often occurs below a carpet of blue-green algae, and is 

possibly due to the lower compensation point for bacterial photoreduc­

tion, and to the ability of the photosynthetic bacteria to utilize longer 

wavelengths of light than can the algae (30, 73). 

If the rate of free sulfide production exceeds the rate at which 

it can be converted to nondiffusible forms, such as ferrous sulfide 

or insoluble free sulfur, the sulfide may diffuse upward into the aero­

bic sediment or into the water column itself. Here it will be oxidized 

to sulfite, thiosulfate, sulfate, or free sulfur (15, 16, 61). 

The chemical reaction of free sulfides in aqueous solutions 

has been studied by many investigators (3, 15, 16, 18, 61, 70). 

Half lives of free sulfide, in aqueous solutions, ranging from 

15 minutes to 70 hours have been reported. Several studies 

have described the oxidation of free sulfides to occur via 

second order kinetics (15, 16, 59); however such a descrip­

tion is a simplification of an extremely complex chemical 
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system (15). These experiments have indicated that pH, temperature, 

and initial oxygen and sulfide concentrations are all factors affecting 

the rate of oxidation (15, 16). A recent study using distilled water 

reported a half life for sulfide of about 50 hours at an oxygen concen­

tration of 25.6 milligrams per liter (mg/1). This study noted that 

the oxidation is catalyzed by the presence of metallic ions, such as of 

Ni, Mn, Fe, Ca, and Mg, and is accelerated by some organic sub­

stances such as formaldehyde, phenols, and urea. These results 

suggest that oxidation of free sulfides in estuarine and marine water 

may be much more rapid than in distilled water due to the presence 

of catalysts. Within oxygenated sea water the half life of sulfide has 

been reported to vary from 10 minutes to several hours (8, 16, 61). 

Since HS predominates at the pH of sea water, it has been proposed 

that the oxidation proceeds by the following reaction (67): 

2HS + 202 = S203 + H2O (2) 

Following the above chemical oxidation, the thiosulfate ion is more 

slowly oxidized to sulfate, probably with the intermediate production 

of other oxidized forms. Sulfur oxidizing bacteria of the genus 

Thiobacillus appear to be important in this final oxidation step (40, 

71). 

The release of sulfides into overlying water can have undesir­

able effects on water quality. Not only do sulfides exert an oxygen 

demand, but they have also been shown to be quite toxic at low 
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concentrations to fish, crustaceans, polychetes, and a variety of 

benthic microinvertebrates (17, 21, 30, 37, 48, 70). In batch tests 

assaying for a given toxic effect, it has often been only the initial 

sulfide concentrations which have been reported as responsible for 

the effect. Due to the relatively rapid oxidation of sulfides, these 

reported toxic concentrations may be considerably higher than the 

average concentrations throughout the test period, and may conse­

quently underestimate the toxicity. One recent study has been made 

in which relatively constant hydrogen sulfide concentrations below 

0.075 mg/1 (pH 7.6-8.0) have been found to be significantly harmful 

to rainbow trout, sucker, and walleye, and particularly to the eggs 

and fry of these fish (17). 

Because of the relatively high toxicity of free sulfides, princi­

pally hydrogen sulfide, the presence of free sulfides might often be 

a more serious water quality problem than the lower DO values re­

sulting from the oxidation of the sulfides. 
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FIELD STUDIES 

Location of Field Work 

General Description 

The field portion of this research was conducted in the Yaquina 

and Coos estuaries located on the Oregon coast. Yaquina Estuary, 

the northern most of the two, is basically a drowned river valley 

extending approximately 23 miles inland to its head, and covering 

2700 acres at mean high water (75). The cities of Newport and 

Toledo contribute a population of about 5000 to this area. Coos 

Estuary which lies about 100 miles south, is the larger of the two. 

It is boarded by the cities of North Bend and Coos Bay, whose com­

bined population is approximately 25, 000. In addition to having a 

larger population located about it, Coos Estuary is more highly in­

dustralized. Wood processing mills are numerous here, and raw 

effluent is released directly into the estuary in several cases. 

Test Site Description 

Three primary test sites were chosen for the field studies. 

The two sites located within Yaquina Estuary are shown in Figure 3.. 

Site one was located on the south side of the estuary immediately to 

the east of the Oregon State University Marine Science Center. This 



19 

Pacific 

Ocea n 

Figure 3.	 Map of Yaquina Estuary showing the location of sites 
one and two. 
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Figure 4.	 Map of Coos Estuary showing the location of site three. 
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site lay within approximately one mile of the estuary mouth, and was 

strongly influenced by marine water. High salinities (33 - 35 parts 

per thousand), low temperatures ( 45 50° C), and high tidal current 

velocities (0. 6 - 0.8 feet per second) were characteristic here. This 

area appeared to be fairly remote from any major source of indust­

rial pollution, and no excessive domestic contamination was evident. 

The sediments here were heavily colonized between +4 and +6 feet 

above mean low low water (MLLW) by large populations of the mud 

shrimps Callinassa californiensis and Upogebia pugettensis. They 

were very active in burrowing and mixing of the sediments at this 

elevation. There was a distinct lack of attached vegetation in this 

range, but summer growth of the benthic alga Enteromorpha sp. and 

of Zostera sp. was extensive below +4 feet MLLW. At approximately 

+7 feet MLLW the sediment was covered by a thin, but very firm mat 

of unidentified algae. 

Site two was located about 14 miles upstream and 300 feet east 

of the Yaquina River bridge at Toledo. Unlike site one, this site lay 

in an industralized area characterized by extensive log rafting and 

wood processing operations. The effect of fresh water was reflected 

in the lower salinities (14-20 parts per thousand). Water tempera­

ture was higher than at site one, current velocities still fairly high, 

and the sediment covered by large quantities of bark chips. Burrow­

ing organisms and growths of benthic algae were lacking. This site 
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had been previously utilized for both in situ and laboratory studies 

of sediment oxygen uptake (20, 45). 

Site three was located on the south side of Isthmus Slough in 

Coos Estuary (Figure 4). This site was located on a mud flat which 

was relatively protected from the main channel currents by a dike and 

log storage area. Tidal velocities were low, temperatures compar­

able to those at site two, and salinities intermediate between those 

of sites one and two (28-30 parts per thousand). A number of Sul­

fite Process wood pulping mills were located nearby. Extensive algal 

mats primarily of a salt water species of Vaucheria were character­

istic here, but burrowing organisms were not evident. A general 

purplish coloration to the water was very noticeable. 

Materials and Methods 

Establishment of a Transect at Site One 

To investigate the variation of a number of parameters with 

tidal elevation, a transect was established from the high to low 

water marks at site one. Sampling stations were established and 

identified by driving painted steel fence posts of eight foot lengths 

into the sediment. The elevations chosen for the stations were 

based somewhat on tidal exposure data for the area, and were lo­

cated at 7.2, 6. 4, 5. 6, 4. 0, 3. 1, 1. 6, -0, 8, -2. 3 and -3, 6 feet 
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above (or below) mean low low water (MLLW). Four foot lengths of 

one-half inch wooden doweling were driven into the deposit two meters 

from each stake on a line perpendicular to the transect line. This 

doweling, flush with the deposit surface, served as the center of a 

two meter diameter circular sampling area from which duplicate 

cores were taken at random. This rather elaborate procedure, in 

addition to providing random samples from the sampling area, was 

used mainly in an effort to prevent disturbance to the sediment by 

clam diggers, who were apparently particularly attracted to the 

fence stakes. On several occasions they were seen attempting to 

pull the fence stakes from the sediment. No transects were estab­

lished at the other sites, and as these areas were free from human 

disturbance, samples were taken with considerably less effort. 

Obtaining Core Samples 

Plastic coring devices were constructed by sharpening one end 

of a 15 inch long by 2 inch diameter plexiglas cylinder. A rubber 

stopper for capping each cylinder was fitted with a glass= tube and 

attached rubber tubing which could be clamped off (Figure 5). Cores 

were collected by pushing the sharpened cylinder into the sediment. 

Water trapped within the coring device flowed out through the top; 

the rubber tubing was then clamped off and the core removed from 

the sediment by pulling the cylinder upward. Following extraction, 
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Figure 5. Plexiglas slicing trough and corer with apparatus for 
determining the Eh of the sediment. 

Figure 6. Apparatus for measuring total sulfides.
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the base of the coring device was stoppered. Cores appeared to
 

remain intact with little compaction evident. Some negligible distor­

tion was apparent at the boundary between the sides of the corer and 

the core. Early in the study, the plexiglas corers were modified 

by drilling small holes at appropriate intervals along their length. 

Covered during sampling by a strip of masking tape, these holes 

allowed insertion of a platinum wire for redox measurements at a 

variety of depths within the intact core. Following extraction of cores, 

they were immediately placed intact within the corers into a styro­

foam cooler and later taken to the laboratory for analysis. This was 

generally accomplished within one hour following extraction. 

Similar corers of aluminum were also built, but were found to 

cause considerably greater compaction than did the plexiglas ones. 

An additional advantage of the plexiglas was that their transparency 

allowed visual examination of the intact cores within the corer. 

Core Analysis Chemical 

It was decided that core analysis would be made at the following 

depths: 0-1 centimeters (cm), 2-3 cm, 4-5 cm, 7-8 cm, 11-12 cm, 

and 16-17 cm. In some cases longer cores allowed analysis of the 

22-23 and 29-30 cm sections. It generally was not possible to obtain 

good cores of this length, however. 

In the laboratory the cores were fixed in a vertical position, and 
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the cores allowed to slide out of the corers until the top hole in the 

side of the corer was one-half centimeter below the surface of the 

core (see Figure 5). Redox potentials were then determined by plac­

ing a reference electrode on the sediment surface, and inserting a 

one mm platinum wire into the core at the predetermined depths. 

The reference electrode used was a standard fiber junction pH refer­

ence electrode modified by attachment of a fine frit Gooch crucible 

about its tip, and filling the crucible with saturated potassium 

chloride solution (Figure 5). The large surface area offered by the 

fritted bottom of the crucible insured proper contact between the 

probe and sediment. Measurements of potential were made with a 

Beckman Expandamatic pH meter following prior standardization in 

a solution of 0.03 Molar (M) potassium ferric cyanide, 0.03 M 

potassium ferrous cyanide, and 0.1 M potassium chloride, and hav­

ing a redox potential of +430 my. 

Following measurement of redox potential, cores were extruded 

by means of a plunger into a specially constructed slicing trough 

(Figure 5 ). In this manner cores could be rapidly and easily sliced 

into the desired one centimeter sections for analysis. One half of 

each section was placed into dried and tared aluminum pans, 

reweighed, and dried at 105° C in an oven. Following this drying to 

a constant weight,samples were again weighed and then ashed at 

600° C in a muffle furnace. In this manner it was possible to 
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determine water and volatile solids content.
 

The remaining half-section was further divided into three por­

tions for total sulfide, particle size and free sulfide analysis. Par­

ticle size determination proceeded by placing one subsection into a 

20 milliliter (ml) screw-cap test tube containing five ml of 3.0 N 

hydrochloric acid. The acid dissolved chitinous and shell material 

which imis present and preserved the sample for future analysis. 

Samples were washed in distilled water, dispersed in 0.025 Calgon 

solution, and fine and sand fractions separated by passage through a 

74 micron sieve. 

Total sulfides (acid-soluble) were determined by a modification 

of the titrimetric method (2). A weighed subsection of sediment was 

placed into a 500 ml erlenmeyer flask containing about 200 ml of 

sparged distilled water, acidified with eight ml concentrated sulfuric 

acid, and the hydrogen sulfide evolved passed through two zinc 

acetate traps in a stream of nitrogen or carbon dioxide (Figure 6 ). 

Excess iodine was added to the zinc acetate solution and back­

titrated with sodium thiosulfate. 

Analytical difficulties were encountered with the determination 

of free sulfides, and this parameter was subsequently discarded. 

Core Analysis - Bacterial 

A number of cores, in addition to those taken for 
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chemical-physical analysis, were taken for bacterial analysis. 

Sampling was at the same depths in most cases as sampling for the 

other parameters. Inoculum consisted of one or two grams of sedi­

ment taken as aseptically as possible from the center of the core. 

Aerobic and anaerobic plate counts of bacteria were determined by 

culturing on marine agar 2216, and incubated at 25°C for five and 

seven days respectively. Numbers of sulfide producing bacteria 

were determined using the MPN technique on modified SIM or modi­

fied halophilic sulfate reducing media, with 16 day incubation at 25°C. 

Water Analysis 

Water directly above the sediment of the three sites was moni­

tored during a tidal cycle for free sulfides and DO. The sampling 

apparatus is shown in Figure 7. With the tide out, the vertical rod 

(A) was driven into the sediment, and the boom arm (B) adjusted so 

that the two stainless steel sampling tubes (C) were located approxi­

mately one cm above the bottom. Samples for free sulfide and DO 

were obtained by simultaneously drawing water into plastic syringes 

attached by small bore tubing to the stainless steel sampling tubes. 

DO was determined on 20 ml water samples within the syringes by a 

'micro-winkler' method (46). Free sulfides were determined by 

immediately fixing 20 ml of water sample inside the syringe with an 

equal volume of 50 percent antioxidant buffer solution. The standard 
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Figure 7.	 Diagram of apparatus for obtaining multiple samples 

of water above the sediment and for sampling during
a tidal exchange. 

Figure 8. Partly assembled respirometer at site two.
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solution, containing 320 grams (gm) of sodium salicylate, 72 gm 

ascorbic acid, 80 gm sodium hydroxide, and made up to one liter in 

distilled water, prevented further oxidation of free sulfide and fixed 

the free sulfide as essentially all free sulfide ion (59). Sulfide con­

tent was then obtained by measuring potential on a pH meter equipped 

with a sulfide selective membrane electrode, which responds to the 

activity of the free sulfide ion, and reading the free sulfide concen­

tration from a standard curve developed prior to each run (59). 

Profiles of free sulfide and DO immediately above the sediment 

were also occasionally obtained. Six stainless steel tubes were set 

horizontally at varying heights above the deposit (D - Figure 7), Six 

plastic syringes, mounted in a sampling head were attached by 

tygon tubing to the stainless steel tubes and samples drawn simul­

taneously by pulling on the sampling head. Free sulfides and DO 

were determined as previously described. 

Oxygen uptake and free sulfide release of the sediment at site 

three was measured using an in situ respirometer, developed by a 

previous investigator for measurement of in situ oxygen uptake by 

bottom deposits (20). The respirometer consists of a plexiglas half-

cylinder, sealed at both ends, with tubes leading to the surface for 

removal of samples. It is placed upon the deposit at low tide, and 

the edges pushed slightly into the sediment to hold it in place 

(Figure 8). 
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Results and Discussion
 

Transect Study - Site 1 

Results of measurements obtained along the transect at site 

one are shown in Figure 9.. Reported values of total sulfides and 

volatile solids are expressed in terms of wet sediment weight. 

Although the water content of the sediment varied between 19 and 36 

percent and showed some tendency to decrease with depth, the 

majority of cores contained 20 - 25 percent water. The choice of 

elevations for each station was based upon tidal exposure data for 

this area (76), since it was felt that tidal exposure might be one 

important factor influencing the measured parameters. The -0.8 

foot elevation is approximately at mean-low-low water (MLLW), 4.0 

feet at mean sea level (MSL), 7.2 feet at mean high water (MHW), 

and -2.3 feet exposed only briefly by the very lowest tides each year. 

Volatile solids were chosen as a general indicator of organic 

material present mainly because of the convenience of determination. 

It has been suggested that this measure of organic material is not 

as reliable as others. None of the methods, however, supply infor­

mation on the availability of the organics to the microorganisms, 

and this is probably one of the more important features of the 

organics, especially from an ecological standpoint (14). It was felt 
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Figure 9. Measurements obtained within the sediments along
the transect at site one. 
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that for a first approximation, the convenience of the volatile solids 

determination outweighed its disadvantages. The percent volatile 

solids at the various elevations and depths varied from 0.3 to 2.2. 

A general trend toward higher volatile solids with depth is apparent. 

If the organic material were largely associated with the solid phase 

of the sediment this might explain some of the increase with depth 

due to decreasing water content. The algae below the +4.0 foot 

station may contribute significantly to the input of organic material 

to the sediment, and the algal mat at the high station may have a 

similar effect. 

The value of Redox (Eh) measurements in naturally occurring 

aquatic systems has been questioned because of the lack of equilib­

rium conditions, and consequent departure from thermodynamically 

predictable values (50). The practical value of this parameter, 

however, as an indicator of the general conditions necessary to the 

growth of microorganisms, has made it a very useful tool for micro­

biologists (80). In a very general sense, aerobic environments 

usually display positive Eh and anaerobic environments negative 

ones (50). Furthermore, the importance of the Eh to sulfate reduc­

tion has been mentioned, as has the reciprocal influence of this 

process upon the Eh. 

At site one the Eh of the deposit was generally positive near 

the sediment surface, becoming rapidly negative with depth 
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(Figure 9).. The two interesting exceptions to this observation occur 

at elevations 7.2 and 5. 6 feet. At the high station Eh was negative 

at all depths, reaching a low of -210 my four to five centimeters 

below the surface. This low corresponds with the recorded high 

value for total sulfide. The combined occurrence of these two para­

meters probably reflects not only the active production of sulfide 

within this area, but also its retention within the deposit due to lack 

of mixing. It is known that the presence of certain biological organ­

igms may retard the passage of water through deposits and thus 

reduce hydraulic mising (7). Where the algal mat was evident 

it was observed that water collected and did not drain freely into the 

sediment. The permeability in the top 12 centimeters was only 

8 x 10-4 cm/min, whereas in other adjacent deposits lacking the 

algal mat, permeabilities of 3 4 x 10-2 cm/min have been measured 

(8). Thus sulfide appears to be produced and retained within the 

sediment here, further lowering the Eh, and hence augmenting the 

anaerobic conditions leading to its production. 

At 5.6 feet total sulfides dropped to only one percent of the 

values recorded at the high station, and no redox potentials below 

+150 my were recorded. Hydrological studies have revealed free 

drainage of water through the sediment at this elevation (8). 

Furthermore, this area was the site of extensive populations of 

burrowing organisms, and in particular Callianassa californiensis 
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and Upogebia pugettensis. Such mud shrimp actively mix the 

deposits, and a large exchange of water through their burrows, as 

indicated by dye studies, has been reported (20). It would appear 

from the observations at site one that production and accumulation 

of sulfides within such tidal flat deposits is probably closely related 

to the mixing processes occuring therein. 

Comparison of Sites 

As previously mentioned, vertical mixing within a tidal flat 

deposit depends upon a variety of factors. In particular the presence 

of fine particles tends to reduce vertical mixing. Because of its 

suspected importance, particle size distribution was determined at 

each of the sites (Table 1). It is readily noticed that there is a very 

significant difference in the general particle size among the sites. 

While site one averaged better than 90 percent sand, site two had a 

considerably smaller fraction of sand, and site three is primarily 

silt and clay. Based upon particle size alone, sites two and three 

would be expected to have reduced mixing within the deposits relative 

to site one. Lack of apparent large burrowing organisms at sites 

two and three would also contribute to a reduction of mixing within 

these sediments. Core analyses of the sediments reflect this 

reduction in vertical mixing (Table 2). Values reported at each depth 

for site one are __a average of those measurements at all tidal 



Table 1. Comparison of particle size at test sites. 

Depth 
(cm) 

Site 1 

Sand (a) 
Silt 

and clay (b) Sand 

Site 2 
Silt 

and clay Sand 

Site 3 
Silt 

and clay 

0 ­ 1 92.2 7. 8 15.8 84.2 2.9 97.1 

2 ­ 3 99.3 0.7 14.0 86.0 1. 3 98.7 

4 ­ 5 87.6 12.4 8.0 92. 0 0.6 99. 4 

7 8 93.1 6.9 9.7 90.3 2. 3 97.7 

11 - 12 95.3 4.7 11.9 88. 1 3.9 96. 1 

(a) Percent of particles larger than 63 microns.
(b) Percent of particles smaller than 63 microns. 



Table 2. Core analysis for total sulfides and volatile solids. 

Site 1 Site 2 Site 3 
Depth Total Volatile Total Volatile Total Volatile 
(cm) sulfides (a) solids (b) sulfides solids sulfides solids 

0 - 1 74 1.5 116 7.0 788 4.0 

2 - 3 90 0.9 330 5.3 1614 3.9 

4 - 5 222 1.0 1400 5.4 1947 4.2 

7 - 8 191 0.9 1200 6.8 870 5.8 

11 - 12 190 0.9 1120 7.4 1013 5.9 

(a) As mg sulfide per kg sediment. 
(b) Percent wet weight of sediment. 
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elevations. Volatile solids ranged from four to seven percent at sites 

two and three, approximately five times the values at site one. Total 

sulfides were significantly higher than at site one with the average 

values at site three nearly ten-fold greater. In one core taken from 

the sediment of site three, total sulfide approached 7000 mg/kg sed. 

Although not shown, redox potentials were quite negative at both 

sites two and three. Values below -200 my were recorded within 

the top 1/2 centimeter of sediment at site three, indicating highly 

anaerobic conditions, even within the surface layers of the deposit. 

As previously mentioned, site three was characterized by 

extensive growth of an algal mat composed primarily of Vaucheria 

sp. During the early summer, this algal mat became very extensive 

and continuous throughout the area. Later in the summer, the algal 

mat broke up and by the middle of September was very patchy. In 

addition to the algal mat, the water and deposit surface had a purplish 

coloration which appeared to be due to large numbers of photo­

synthetic purple sulfur bacteria. Enrichment cultures, and Wino­

gradsky columns inoculated with water from site three produced 

large colonies of both purple and green photosynthetic bacteria (63).. 

These bacteria were apparently not present at the other sites. 

The abundance of photosynthetic sulfur bacteria in this area 

suggested an available source of free sulfide. The low redox potentials 

of the sediments, presence of organic material, and large amounts of 
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total sulfide suggested that production of free sulfides was taking place 

Since the salinity of the water at this site reached 30 ppt it was reason­

able to suspect that sulfate reduction is actively occurring, and 

might be the major source of free sulfides. Counts of sulfate re­

ducing bacteria in the top centimeter layer here exceeded 105 per 

gram of wet sediment. This was approximately 102 - 10 3 times their 

numbers at site one (Table 3). While the mere presence of a micro­

organism in any given environment is not conclusive evidence of its 

activity, such high counts of sulfate reducers at site three, coupled 

with the other measured parameters, would strongly lend support to 

the belief that unusually high sulfate reduction was actively occurring 

there. 

Release of Sulfides to Overlying Waters 

A mathematical model has been developed which simulates the down­

ward diffusion of dissolved oxygen into the aerobic zone of the sedi­

ment, the upward diffusion of oxygen demanding material from the 

anaerobic zone, and their subsequent reaction via second order 

kinetics (7). From this model and one simulating free sulfide concen­

trations in the water column above the sediment it was found that the 

free sulfide concentration in the overlying water will vary according 

to the relationship 
1 1 

(3)s f( DO ' ) 



39 

Table 3. Bacterial counts per gram of wet sediment.
 

Location 

Site 1, 3.1 ft. 
MLLW 

Site 1, -2.3 ft. 
MLLW 

Site 2
 

Site 3
 

Depth 
(cm) 

0 - 1 (c) 

2 - 3 (c) 

4- 5 (c) 

10 - 11 (c) 

0- 1 (c)
 

2 3 (c)
 

4 5 (c)
 

0 - 1 (d) 

10 - 11 (d) 

20 - 21 (d) 

30 - 31 (e) 

0 - 1 (c)
 

2 3 (c)
 

4 - 5 (c)
 

7 - 8 (c)
 

11 - 12 (c)
 

Total Sulfate
 
plate count (a) Reducers (b)
 

6. 3 x 106 3. 6 x 10 z
 

4.7 x 105 7 .3 x 102
 

1.5 x 105 3.6 x 102
 

4.5 x 104 300
 

5.5 x 10
6 

4. 8 x 103
 

1.2 x 106 4.2 x 103
 

1.2 c 106 5.7 x 103
 

1
3.7 x 106 2 x 105
 

2.9 x 105 6.7 x 103
 

1.9 x 105 4.2 x 103
 

2.6x 105 8. 8 x 103
 

1.4 x 107 2.5 x 105
 

2.5 x 106 3.4 x 104
 

1.4 x 106 4.6 x 104
 

7.9 x 105 8.4 x 103
 

2.2 x 105 6.8 x 103
 

(a) On marine agar 2216 (numbers per gram of wet sediment). 
(b) MPN using modified SIM medium or a modified medium for 

halophilic sulfate reducing bacteria (36). (numbers per gram 
wet sediment). 

(c) Average of samples taken on one date.
(d) Average of samples taken on three dates, 
(e) Average of samples taken on four dates. 
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where D is the effective vertical mixing coefficient, DO is the dis­

solved oxygen concentration, and Z is the depth of the water above 

the sediment. Thus, those areas characterized by low DO in shallow 

waters overlying deposits in which there was reduced mixing would 

be prime regions in which to expect release of free sulfides to the 

overlying water to occur. 

Free sulfide and DO profiles measured in the water column 

during daylight hours at site three are shown in Figure 10. Due to 

the benthic photosynthetic oxygenation, DO values were highest near 

the sediment surface, and despite the super-saturated DO values, 

significant free sulfide concentrations were still measured. The 

shape of the sulfide gradient strongly suggests that the sulfide input 

is from the sediment, and not the overlying water, as might be the 

case in the vicinity of the effluent of a sulfite paper mill. 

Results from four sampling runs through tidal cycles at site 

three are shown in Figure 11. A sag in dissolved oxygen, at least 

partly due to the nighttime cessation of photosynthesis, is noted in 

1 lb and 11c. 

The lower DO values lead to higher free sulfide concentrations, 

as suggested by equation 3. 

Following an initial drop in DO, the free sulfide and DO concen­

trations shown in Figures llb and lid become relatively stable for 

approximately three hours, with DO concentrations remaining at 
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Figure 10.	 Profiles of DO and free sulfide above the sediment 
at site three. 
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water at site three. 
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approximately four and eight mg/1 respectively. 

No similar stability is found for the results shown in Figure 

11c. Free sulfide concentrations varied considerably, with highest 

concentrations occurring when DO values were lowest. 

The daytime results (Figure 11d) also display significant free 

sulfide concentrations, particularly during periods of shallow water 

depth. In fact,in general the results from site three show an 

increase in free sulfide concentrations as the tide ebbs, especially 

if DO is coincidently low. These results are also suggested by 

equation 3. Drainage from higher regions, from beneath the sur­

rounding algal mat, and drainage of some interstitial water may 

have contributed to this increase as well. 

A single respirometer run was conducted at site three using 

two opaque respirometers having a volume of 11.3 1 and enclosing 

a sediment area of 0.14 m2. The results of monitoring DO and 

free sulfide concentrations during the period in which the tide was 

covering the area are shown in Figure 12. The net rate of sulfide 

release shown is 1.6 gm/m2-day, and the oxygen uptake rate 

3.2 gm/m2-day. Assuming oxidation of the sulfide to proceed 

according to equation 2, and further assuming up to one ­

half of the oxygen uptake to be due to reaction with the free sulfide 

then 1.6 gm/m2 -day of the sulfide could be oxidized. Hence the 

gross rate of sulfide release could approach 3.2 gm/m2-day. 
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No detectable free sulfides were measured within the overlying 

waters of site one during the late summer-early fall sampling period. 

Lower oxygen uptake rates (as determined by respirometer studies), 

larger particle size, greater hydraulic flushing, lower organic 

content, and relatively high DO concentration (seldom below 6 mg/1) 

found at site one, are all conditions which would tend to lead to low 

free sulfide concentrations. 

At site two, fine silt and clay particles within the sediment and 

a relatively high organic content (wood chips from a nearby pulp mill 

and saw mill covered the sediments) provide conditions favorable to 

sulfide release. Water velocities here, however, were relatively 

high and the steep slope of the deposits prevented pools from forming 

at low tide. During the period of study, DO concentrations seldom 

fell below 5 mg/ 1. Total sulfides and organics within the sediments 

were relatively high at site two, however, a large fraction of the 

organic material was wood chips. Such material is largely lignin 

or other refractory organic, and may not have been available for 

assimilation by the bacteria. 

The presence of free sulfides within the water at site two was 

detected only during ebbing of the tide where the water intersected 

the flat as it moved out. The concentrations never exceeded two 

mg/1, and site two was possibly characterized by a periodic, rather 

than continual release. 
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LABORATORY INVESTIGATIONS 

General 

Purpose of Laboratory Studies 

The mathematical model of sulfide release mentioned previously 

assumes a source of free sulfide within the anaerobic deposits. These 

sulfide s diffuse upward from the sediment into the overlying water. 

The realism of this model depends upon the existence of such a 

source, and hence the magnitude and rate of replenishment of this 

'pool' of free sulfide is of fundamental importance to an understand­

ing of the phenomenon of sulfide release, and of the system described 

in Figure 1. It was the purpose of these laboratory studies to 

investigate the nature of this free sulfide source and the mechanisms 

leading to its generation. 

Studies of Sulfate Reduction 

As pointed out earlier the major producers of free sulfides in 

marine and brackish water appear to be sulfate reducing bacteria. 

These organisms, belonging chiefly to the genus Desulfovibrio, are 

ecologically quite versatile, and are ubiquitously distributed in 

nature (81). They occupy habitats embracing a wide range of pH, 

salinity, Eh, temperature, and osmotic and hydrostatic pressure. 
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In general they are regarded as strict anaerobes, requiring redox 

potentials in the range -100 to -250 my, and neutral and slightly 

alkaline pH (81). The relationship between pH and Eh is apparently 

a complex one. In environments more reducing than -150 my, sul­

fate reducers remain active up to pH 9.5, whereas at 0 my they 

can function at pH as acidic as 4.2 (64). Most cultures, however, 

appear to grow best between a pH of 6.2 and 7.9 and an Eh of -50 to 

-150 my (81). Sulfate reduction itself tends to lower Eh and raise 

pH of environments in which it occurs, the magnitude of such effect 

depending upon the buffering capacity of the medium, and the end-

products of the oxidation-reduction process (81). 

Based upon salinity tolerance there appear to be two general, 

although somewhat indistinct, physiological types. Those found 

within soil, sewage, and fresh water are most active in solutions of 

less than one percent sodium chloride, and become inhibited at 1,5 ­

3.0 percent concentrations. The other group, occurring in marine 

and brackish waters, appears to require sodium chloride solutions 

isotonic to sea water or sea water, itself (81). 

The trace mineral requirements of these organisms are but 

imperfectly known and probably quite variable. Ferrous iron is 

essential, due to the presence of a cytrochrome system in species of 

Desulfovibrio (64). 

Growth of sulfate reducers has been observed at temperatures 



48 

ranging from -11° to 104° C, but the majority occur in the ocean 

floor sediments at temperatures below 5° C. They seem to grow best 

at 15 - 40°C (81). 

Tolerance to hydrostatic pressure is great, and sulfate 

reducers have been found to actively function at a pressure of 1000 

atmospheres (81). As with the other factors, variability among 

species is great. 

In addition to the general physical and chemical conditions 

mentioned, sulfate reducers require an energy source and available 

hydrogen acceptors to perform their metabolic activities. These 

two important inputs are indicated in Figure 1. 

The abundance and activity of the sulfate reducers, and hence 

the production of free sulfide, will depend upon the availability of 

substances which can be oxidized as energy sources. While the 

variety of such substances is great, and the ability to utilize them 

varies among strains, the organic acids as a group (lactate, pyruvate, 

malate, citrate, proprionate) appear to be the most readily available 

and preferred energy source (81). In addition fatty acids, simple 

alcohols, and some mono and disaccahrides are suspect. Complex 

carbohydrates do not appear to be directly utilizable, but the impor­

tance of other microorganisms in the breakdown of these to utilizable 

forms has been noted (69). In addition to the heterotrophic forms, 

there are some autotrophs which can utilize molecular hydrogen, but 
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their abundance and activity is poorly known. 

Sulfate ions appear to be by far the most common hydrogen 

acceptor (64). They are usually in abundant supply in sea water, 

and there is good evidence that the process of sulfate reduction may 

have been dominant and had global implications during past eras (65). 

Within fresh water systems, however, sulfates may become limiting, 

and in some lakes free sulfide production is linearly dependent upon 

the sulfate concentration (81). 

There is some evidence suggesting that sulfate reduction is not 

limited until the sulfate concentration drops below 10 mg/1, but it 

is probable that halophilic strains become limited at much higher 

concentrations. In estuaries, sulfate reduction in bottom deposits 

is dependent on both a supply of sulfate and organic material within 

the interstitial and overlying waters, and sulfate may become limiting 

at the head, and organic material limiting at the mouth (36). 

In addition to sulfates, the use of sulfite, thiosulfate, hydro-

sulfide, and several other sulfur oxides, as hydrogen acceptors, has 

been demonstrated (81). These compounds, however, are not 

generally widely available in nature, and are considered to be of 

considerably less significance. Since more energy is derived from 

the more oxidized form (68), it is probable that it would be prefer 

entially utilized when available. 

The ability of sulfate reducers to utilize elemental sulfur is 
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questionable (64, 81).. Some autotrophic strains are apparently able 

to utilize carbon dioxide and the bicarbonate ion as a hydrogen 

acceptor (81). 

In addition to those compounds required by the organisms, and 

which may be considered to promote the conversion of sulfate to 

sulfide, there are also compounds which inhibit sulfate reduction. 

In view of the toxicity of hydrogen sulfide to many organisms, the 

majority of interest in this regard has centered around the inhibitory 

nature of the free sulfides themselves. The question of whether the 

activity of sulfate reducing bacteria in nature and in synthetic media 

is affected by the hydrogen sulfide (or other free sulfide) produced 

has been examined by several investigators (27, 64. 81). It appears 

that the levels of free sulfide which may be tolerated are critically 

dependent upon pH, available sulfate, the nature of the energy 

source, and the presence of cations which may form insoluble 

sulfides (81). 

Materials and Methods 

Growth Media Preparation 

Media containing organic material extracted from sediment or 

algae were prepared for growing mixed cultures of anaerobic 

bacteria collected from sites two and three. 
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Sediment extract media were prepared as follows from sedi­

ment collected from the upper five centimeters of deposit at each of 

the test sites. 

A. One liter of distilled water was added to one liter of sedi­

ment in a large erlenmeyer flask, thoroughly mixed, and the 

resulting slurry autoclaved for 45 minutes at 121°C. After 

removal from the autoclave, the slurry was allowed to cool and 

the sediment removed by centrifugation. The resulting clear 

extract was either utilized directly as growth media, or 

lyophilized to produce a powder. In some cases this powder 

was added to liquid medium to yield one of higher organic con­

centration. If desired, the sulfate concentration was increased 

by addition of sodium sulfate, or decreased by adding barium 

chloride. The pH was adjusted to near neutral by addition of 

sodium hydroxide. 

B. One liter of sea water was added to one liter of sediment 

and treated as with the addition of distilled water as described 

in method A. 

C. One liter of either three or ten percent hydrochloric acid 

was added to one liter of sediment and treated as with the 

addition of distilled water as described in method A. 

Algal Extract Media were prepared from the algal mat col­

lected at site three by the following methods: 
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D. Two liters of algae and its associated water were placed 

into a three liter erlenmeyer flask and autoclaved as with 

sediment media. Following cooling, the algal material was 

squeezed using a wooden fruit press, and the liquid collected 

and centrifuged. Sulfate concentrations and pH of the media 

were adjusted as previously described. 

E. Approximately 250 ml of 10 percent hydrochloric acid was 

added to 500 ml of algae and treated similar to that in method D. 

F. Small amounts of liquid were extracted from both sediment 

(collected from the upper five centimeters at the sites) and 

algae (site three) by using an hydraulic press and specially 

designed squeezing cylinder (Figure 13). In addition, approxi­

mately one liter of extract was prepared by squeezing by hand 

algae which had been freshly collected from site three. 

Experiment 1 - Addition of Organics 

A number of 250 ml bottles were filled with sparged sediment 

medium (prepared by method B), and inoculated with one ml of a 

mixed culture containing sulfate reducing bacteria. The culture was 

supplied from a previous experiment which involved utilization of 

organic material by mixed cultures of anaerobic bacteria from the 

sediment of site two (63). The tops of the bottles were closed 

tightly with a serum cap, and incubated at 25°C in the dark. At 
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Figure 13. Apparatus for squeezing the interstitial water from 
sediments and algae. 

Figure 14. Culture vessels used in studying the rates of sulfide 
production by mixed cultures of anaerobes. 
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various intervals during the experiment, lyophilized medium was 

added to the bottles to observe the effect of the added organic material 

upon sulfide production. Samples were removed at intervals and 

analyzed for total sulfide, sulfate, and soluble organic carbon. 

Experiment 2 - Rates of Sulfate Reduction 

Approximately 600 ml of algal extract medium (prepared 

according to method D) were placed into each of 12,500 ml erlenmeyer 

flasks, organic concentrations adjusted by dilution, and desired sul­

fate levels achieved as previously described. Sodium chloride was 

added where necessary to adjust the chlorinity of each culture to 

approximately 20 ppt. In addition, two cultures were similarly 

prepared using media prepared by hand squeezing algae from site 

three. Oxygen was initially removed by sparging for 15 minutes with 

carbon dioxide-free nitrogen. Following sparging, the pH was 

adjusted to 7.5 - 8.0 by addition of 3. 0 N sodium hydroxide, and Eh 

lowered to approximately -100 my by addition of a small quantity of 

sodium sulfide. Each flask was inoculated with two ml of mixed 

culture (obtained from active cultures of experiment one) and 

immediately capped by a rubber stopper fitted with a glass tube and 

serum cap. To prevent leakage, modeling clay was liberally applied 

around the edges, and the stopper further fastened down by masking 

tape (Figure 16). Each flask was shaken to disperse the inoculum, 
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and initial samples were taken for analysis. The flasks were then 

incubated in the dark at 20° C. 

A control was set up by filling several tubes with sterile 

extract, and capping tightly. At intervals, a tube was opened, the 

contents removed, and treated in a manner identical to that of the 

experimental samples. 

Sampling procedure 

Samples were withdrawn from the flasks at appropriate inter­

vals with a syringe which had been flushed and prefilled with nitrogen. 

By exchanging the gas for the sample, the flask was maintained 

anaerobic and development of a negative pressure due to extraction 

of the samples was avoided. Flasks were shaken thoroughly prior 

to sampling in order to produce a fairly homogeneous medium, 

giving a more representative sample. Analyses for sulfides, sul­

fates, and soluble organic carbon followed as soon as practical. 

In the event that storage was necessary, carbon samples were frozen 

in tightly stoppered screw-cap test tubes. Sulfate samples were 

similarly stored following removal of free sulfides. 

Analytical Procedures 

Free sulfide was determined on a 10 ml sample by the proce­

dure described previously. Total sulfide was measured by adding 
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10 ml of sample to a known volume of acidified 0.025 N iodine solu­

tion and back-titrating with 0.025 sodium thiosulfate. 

Sulfate was determined by a colorimetric procedure using 

barium chloranilate (10). Samples were passed through a Dowex 

50w-x8 20-50 mesh H+ cation exchange column to remove inter­

fering ions, diluted to 40 ml if necessary, and added to 50 ml 

of 95 percent ethanol and 10 ml potassium pthalate buffer. Approxi­

mately three grams of barium chloranilate were added to precipitate 

the sulfate. After shaking for ten minutes, the solution was filtered, 

and the optical density determined on the filtrate with a spectrophoto­

meter. Sulfate concentrations were read from a standard curve. 

Soluble organic carbon was used as a measure of the soluble 

organic material present. Five ml of centrifuged sample were 

placed into 20 ml screw cap test tubes in an ice bath, and carbonate 

carbon removed by acidifying to pH 2.0 - 3.0 with three percent 

phosphoric acid and sparging with carbon dioxide-free nitrogen for 

10 minutes. Determination of the remaining soluble organic mater­

ial was made using a Lira Infrared Analyzer Model 3000. 

Sugar and organic acid analyses of the media were made by 

gas chromatography,Eh measured with a platinum wire electrode, 

and pH with indicator paper. 
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Results and Discussion
 

Growth Media Preparation 

The results of preparing media by the various methods of 

organic extraction are summarized in Table 4. Early attempts at 

preparing media from sediment (methods A and B) inevitably resulted 

in media having fairly low organic carbon concentrations (100 ­

800 mg/1). Extraction methods with acid resulted in higher concen­

trations of organic carbon, but a large percentage of this organic 

carbon precipitated out upon adjustment of the pH with sodium 

hydroxide to neutral. Hence little was gained in the final media by 

using acid extraction. 

Of the extracts made without the use of acid, the algal extracts 

contained by far more organics than the others. This is not surpris­

ing, as the concentration of organics within the water squeezed from 

the algal mat were as high as 3000 mg/1, whereas the organic con­

tent of the interstitial water of the sediments of sites one, two, and 

three, were relatively low.. It appears that the algal mat may be a 

potential source of considerable organic material at site three. Con­

centrations of soluble organic carbon in the water overlying algae 

retained in a large plastic pan for several days in the warm labora­

tory rose from 150 mg/1 to over 3000 mg/ 1. These observations, 
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Table 4. Summary of soluble organic extract procedures.
 

Sample
material 

Extraction 
procedure 

Soluble organic (a) 

carbon (mg/1) 

Site 1 - A
(b) 150 ­ 250 

sediment 
C(b) 150 ­ 300 

F(b) 50 

Site 2 B 100 - 150 
sediment 

A 100 - 800 

C(b) 3200 

F(b) 60 - 110 

(b)Site 3 A 200 - 300 
sediment 

C(b) 1600 - 3400 

F(b) 140 - 310 

Site 3 - D 1500 - 3000 
algal mat 

E(b) 5400 

F(b) 2010 

F(hand squeezed) 1125 

(a) Approximate. 
(b) These extracts not used for media. 
(c) Not measured. 

Sulfate (a) 
(mg/1) 

nm.(c) 

nm. 

3200 

nm. 

10 - 300 

nm. 

100 

200 

1400 

1000 - 1500 

3400 - 4000 

nm. 

4800 

2150 
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while crude, would suggest that especially large quantities of organics 

may be released to the water overlying the sediments at site three as 

the algae decomposes. This release is not entirely surprising in 

light of other studies which indicate that 38 percent of the gross 

production of some benthic marine algae may be released directly 

into the water as soluble organic compounds during growth (43). 

This organic material would probably be available to sulfate reducing 

bacteria, and may account for the apparent high sulfide production 

at site three and under the algal mat at 7.2 ft (MLLW) at site one. 

Although attempts previously described failed to measure sulfide 

release at site one, these were made during the early summer. 

During the late summer and fall the Enteromorpha and Zostera 

present at site one begin to decompose (76). During this same period, 

redox potentials dropped dramatically in the upper few centimeters of 

the sediment, microinvertebrates were observed to migrate from the 

sediments into the overlying algal material, and the smell of hydro­

gen sulfide was very noticeable (76). It is likely that sulfide release 

may occur at site one during this period. 

Results of squeezing the water from the algal mat of site three 

show surprisingly high concentrations of sulfate (Table 4). The 

salinity of the water overlying the sediments at site three on one 

occasion was 19. 7 parts per thousand (ppt), whereas the salinity of 

water squeezed from the algal mat was 23. 2 ppt. Corresponding 
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values for sulfate were 1.2 ppt and 4.8 ppt. The enrichment of 

sulfate within the algal mat (3. 6 ppt) would entirely account for the 

higher salinity occurring there. From this data it appears possible 

that the algae are concentrating sulfate. Such an ability to concen­

trate sulfate, if it exists within fresh water algae, has implications 

concerning sulfate reduction in fresh water systems, where the 

average sulfate concentrations of the water may be limiting to sul­

fate reduction. 

The results of sugar and organic acid analyses of some of the 

media are shown in Figure 15. The pentoses (generally considered 

wood sugars) found in the sediment extract of site two, reflect the 

input of wood products to this area. Sediment extracts from site one 

show small amounts of both pentoses and hexoses suggesting 

that the organic material there may come from more diverse sources. 

The relatively lower levels at site one reflect the lower organic con­

centrations measured here. The sugar and organic acid analysis of 

site three algal extract is rather dramatic. Very large concentra­

tions of mannose and glucose, both hexoses, as well as high levels 

of proprionate, butyrate, and acetate are present. Although the 

absolute concentrations of the organic acids cannot be computed 

with reasonable accuracy (standards were not run), it is estimated 

that the sugars mannose and glucose account for approximately two-

thirds of the organic material in these extracts. 
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A Erythrose 
B Rhamnose 
C Fucose 
D Arabinose 
E Xylose 
F Mannose 
G Galactose 
H Glucose 
1 Ribose 
J Acetate 
K Proprionate 
L Butyrate 

a. Extracts from sediment method A 
b. Extracts from algae method F 

Figure 15. Results of gas chromatography analysis of some of 
the extracts for sugars and organic acids. 
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It was recognized from the onset that the extraction procedures 

would possibly affect the organic material present in the sediment or 

algae. While it was realized that treatment with either heat or acid 

might produce hydrolysis of some of the sugars, denaturation of some 

of the protein, and loss of some volatile compounds, this was the only 

method available of obtaining sufficient quantities of extract of high 

enough organic content to use for growth media. Whether this alter­

ation in the organic content would seriously affect the ability of the 

sulfate reducing bacteria to utilize it, and consequently lead to sul­

fide production rates which were not representative of those occurring 

in the field, could not be determined at this early date. 

Early Experimental Efforts 

In the early phase of the laboratory studies a preliminary 

experiment was conducted using methods-_and materials similar to 

those used in experiment two. While little quantitative information 

was derived due to some errors in experimental design, sampling, 

and frequent instrument malfunction, the results were valuable in 

the design of the subsequent experiments. Initial concentrations of 

soluble organic carbon in the media used in this early experiment 

(prepared by methods A and B) never exceeded 800 mg/1, and in the 

cultures having the higher sulfate levels, never exceeded 400 mg/l. 

The initial conditions in the cultures were characterized by slightly 
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acidic pH and Eh ranging from +100 to +200 my. In most cases, by 

the time suitable conditions of Eh and pH for the growth of the sulfate 

reducing bacteria were reached, the organic carbon concentrations 

had dropped to only half the initial values. It was assumed that other 

bacteria present in the inoculum, consisting of several grams of sedi­

ment from site two, had utilized this organic material. 

In the few cultures which eventually did show some sulfide 

production, the maximum rates of production were much lower than 

anticipated, and never exceeded 30 milligrams of sulfide per liter 

per day (mg/1-day). It was felt that organic deficiency was limiting 

production. Hence experiment one was developed to determine the 

effect of an input of organic material after proper conditions of pH 

and Eh existed. 

Results of Experiment 1 

Results of the organic addition studies are plotted in Figures 

16-21. Vertical dashed lines locate dates on which lyophilized 

medium was added to the cultures. Numbers along the curves indi­

cate the rates of sulfide production in milligrams per liter per day 

(mg/1-day) measured during the period(s) immediately following 

addition of the organic material. Data was not collected between 

approximately the 35th and 60th days of the experiment because of 

instrument failure. 

In general, the rates of sulfide production increased with 
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subsequent addition of organics through the experiment. It is possible 

that this could result from a gradual acclimatization of the organisms 

to their environment, or to a development of more optimal conditions 

for the production of sulfide as the runs progressed. It is doubtful, 

however, that such changes would take such a long time to occur, 

and it is more likely that the increased rates are the result of other 

factor s. 

In most cases, the larger the amount of organic material added, 

the greater the rate of sulfide production following such addition. 

This is clearly the case in cultures a, d, e and f. The final measure­

ments taken in d and f further suggest that a lag in sulfide production, 

following organic addition, took place. This would explain the con­

trary results in cultures b and c. If a lag time of one to two days 

were present following addition on the 64th day, then rates of 30 

mg/1-day are an underestimation of the actual rates. A larger lag-

time would be expected following this final addition, since the cul­

tures had been inactive (as indicated by lack of sulfide production) 

for 30 days prior to it. Rates are probably underestimated in all 

cases where sampling intervals exceed one day. 

Evidence from the literature suggests that the vast majority 

of sulfide produced when adequate quantities of sulfate are present, 

is a result of dissimilatory sulfate reduction (30, 80). While it is 

possible that some of the sulfide produced may be a result of 
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putrefication of bound organic sulfur, this is probably a minor frac­

tion. Consider, for example, culture 2, days 60to 63., and estimate 

that the organic material present contains one mg of bound sulfur for 

every 100 mg organic carbon. This is a realistic estimate based on 

studies of the mineral content of plants, phytoplankton, and benthic 

algae (1, 67, 72). If sulfide were released by putrefication as 

organic carbon were utilized, then the utilization of 450 mg/ 1 of 

organic carbon during days 60 to63 would correspond to a production 

of 4.5 mg/1 of sulfide. During this period, however, 190 mg/1 

of sulfide were produced, and thus little more than two percent 

may be attributable to putrefication. 

In sulfate reduction, three mg of sulfate is utilized in the 

production of one mg of sulfide. This relationship is independent of 

the energy source metabolized (41, 81). Production of 190 mg/1 of 

total sulfide should theoretically account for a utilization of 570 mg/1 

of sulfate. The 625 mg/1 decrease in sulfate during this interval is 

close to the theoretical amount utilized in sulfate reduction consider­

ing the errors inherent in this method of sulfate determination. 

In addition,proteolytic bacteria,were added to a sterile flask 

containing this growth medium, and no measurable sulfide was 

produced. This evidence further substantiates the assumption that 

sulfate reduction is the dominant mechanism leading to sulfide 

production in this experiment. 
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Examination of the relationship between only sulfate concentra­

tion and the rate of sulfide production implies that higher rates of pro­

duction occur at lower sulfate concentrations. In view of the 

evidence advanced suggesting that sulfate reduction is the main 

mechanism leading to sulfide production in this experiment, this 

inverse relationship is probably an artifact produced by the combined 

circumstances of gradually decreasing sulfate throughout the run, 

and higher inputs of organic material at successive additions. 

The highest rate of sulfide production measured (90 mg/1-day) 

occurred in culture e when the sulfate concentration was below 500 

mg/ 1. When the sulfate level dropped to 250 - 300 mg/1, however, 

the sulfide production was observed to drop off dramatically. Since 

an estimated 1200 - 1300 mg/1 of soluble organic carbon still 

remained on the 65th day (estimated by extrapolation of data), it is 

most probable that the sulfate, and not the organic, levels limited 

production. A similar situation probably occurred in culture d. A 

rate of 80 mg/1-day occurred here at organic carbon concentrations 

several hundred mg/1 lower than the maximum rate measured in 

culture e. Limitation by sulfate deficiency appeared to develop 

here as well. Although the exact concentration at which it occurred 

is uncertain, it appears to have been at about the same level as that 

in culture e. 

If only about 50 percent of the organic material added were 
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utilizable by the sulfate reducing bacteria, then the possibility does 

exist that organic limitation may have been responsible for the 

reduced rate of sulfide production at the termination of the experi­

ment. This is considered unlikely, however, since the percent util­

ization of added organic carbon in cultures A (32nd-35th day) and B 

(32nd-36th day) was considerably greater than 50 percent. 

Eh and pH were measured in the cultures at the termination 

of the experiment. In all cases the Eh was -180 to -220 my., and 

the pH 7. 5 8.2. These ranges are in agreement with the measured 

values of these parameters in sediments where active sulfide produc­

tion was occurring (Section II), and are characteristic of conditions 

necessary for and resulting from the growth of sulfate reducers 

(64, 80). 

Results of Experiment 2 

General. The results of experiment 2 are plotted in Figures 

22 through 35. Cultures 1 through 12 contained media prepared 

from autoclaved algae (method E), whereas cultures 13 and 14 con­

tained media prepared from squeezed unautoclaved algae (method F). 

In cultures 1 through 6 the initial concentrations of soluble organic 

carbon were at a uniformly high level, while the sulfate concentra­

tions were successively lower. In cultures 7 through 12 sulfate was 

initially high while soluble organic carbon was successively lower. 
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The medium in culture 14 was a 50 percent dilution of that in 13. 

The recording of data, as indicated by day 0 in figures, began 

after stability of pH and Eh was achieved. This occurred three to 

five days following inoculation. Although the initial conditions were 

adjusted so that pH was slightly alkaline and Eh negative, consider­

able difficulty in maintaining such conditions was experienced. The 

pH decreased in all cultures, dropping as low as 4 in several, 

accompanied by an increase in Eh to positive values. The reasons 

for this are not entirely clear, but it is possible that the high con­

centration of simple sugars in these media (Figure 15) may have 

provided for the rapid growth of organic acid producing bacteria. 

The organic acids resulting from such growth could account for the 

drop in the pH. This possibility seems reasonable since the lowest 

pH was achieved in those cultures having the highest organic carbon 

concentrations, and hence the highest sugar content. A concurrent 

decrease in soluble organic carbon was observed, probably due to 

incorporation of carbon into bacterial structure and conversion of 

some of the carbon to carbon dioxide and carbonates. Initial concen­

trations of sulfate dropped only slightly, butwere accompanied by no 

measurable increase in sulfide. 

To overcome this utilization of organic carbon, and to main­

tain conditions conducive to the growth of sulfate reducers, concen­

trated sodiumhydroxide was added to the cultures at frequent 
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intervals. After several days, stable conditions of pH and Eh were, 

achieved, further addition of base became unnecessary, and active 

sulfate reduction began to occur. 

A definite lag in sulfide production is evident in many of the 

cultures during day 0 to 1, and may reflect both acclimatization and 

growth of the sulfate reducing bacteria, as well as the growth of 

other bacteria. Experimental studies of the growth of sulfate 

reducers in both synthetic and organic extract media have indicated 

that in batch culture the populations of the bacteria reach a maximum 

of 107 - 108 cells per ml (27, 63). Since the generation time of 

halophilic strains of Desulfovibrio has been determined to be approx­

imately 2 lo 2 1/2 hours (27), it is estimated that the populations of 

sulfate reducing bacteria present in these cultures reached maximum 

stable levels no later than day 2. 

In all cultures in which high production of sulfide occurred, 

pH remained at initial values or increased to 8.0 - 8.5, and Eh 

dropped to -150 to -220 my (see Figures 22 through 35). These 

results are in general agreement with those of other studies, and 

are the result of sulfide production (27, 81). In cultures exhibiting 

lower production, the effect on pH and Eh was reduced, and where 

relatively little sulfide was produced (cultures 6 and 14), Eh re­

mained relatively stable and the pH decreased. It is again suggested 

that this drop in pH may have been due to production of carbon 
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dioxide and possibly some organic acids. 

No significant change in any of the parameters was measured 

in the control series. 

Relationship Between Sulfide, Sulfate, and Organic Carbon. 

Dissimilatory sulfate reduction requires an organic source for 

energy, and sulfate as a hydrogen acceptor (40, 64). The stoichio­

metric relationship for sulfate reduction is given as (40) 

SO4 + 2Cor S
= 

+ 2CO2 (4)ganic
 
-(12) -(3) +(4)
 

where the numbers below the chemical formulas indicate the reac­

tion on a weight basis. Thus during sulfate reduction, a production 

of 1.0 mg of sulfide will theoretically require 3.0 mg of sulfate and 

0.75 mg of organic carbon. These 'yield ratios' have been cal­

culated for the mixed cultures over the 14 days of experiment two, 

and are presented in Table 5 where 
mg/1 of sulfate consumedYsul (5)mg/1 of sulfide produced 

and 

mg/1 of soluble organic carbon consumed 
(6).soc mg/1 of sulfide produced 

It is important to recognize that these yield ratios reflect the 

activity of all the bacteria within the mixed cultures of experiment 
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Table 5.	 Summary of yield ratios and maximum rates of sulfide 
production for each culture from experiment two (a). 

Culture No. Ysul (b) Y (c) Vmax(d)soc 

1	 3.2 0.82 54 

3.0 0.89	 60 

3	 3.0 1.60 54 

4	 3.2 2.00 48 

5	 3.0 2.30 35 

6	 3.4 6.05 10 

7	 3.1 0.86 70 

8	 3.2 0.86 62 

9	 3.0 0.91 51 

10	 3.2 0.80 30 

11	 3.0 0.88 20 

12	 3.1 1.10 10 

13	 3.1 0.94 54 

14 2.9 0.84 34 

Theoretical 3.0 0.75 
(a)	 Yield ratios (Ysul and Y ) calculated over the 14 dayssoc
 

of the experiment.
 
(b)	 (mg/1 of sulfate utilized)/(mg/1 of sulfide produced). 
(c)	 (mg/1 of soluble organic carbon utilized)/(mg/1 of sulfide 

produced). 
(d)	 The maximum rate of sulfide production (mg/1-day) as

measured over three day intervals, during the 14 days of
the experiment. 
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two, and not only that of the sulfate reducers. As indicated by exper­

iment one, however, the only significant source of sulfide in such 

cultures is from the dissimilatory reduction of sulfate. 

Agreement between the theoretical value of Ysul for sulfate 

reduction and the values of Ysul determined from the experiment was 

very good. The average value for cultures 1 through 12 was 3.1, 

less than five percent in excess of the theoretical. This excess may 

be due in part to assimilatory reduction of sulfate during initial 

growth of all of the bacteria present in the cultures. 

was much more variable than Ysul and exceeded the 
soc 

theoretical value of 0.75 in every culture. Since these mixed cul­

tures contain bacteria other than sulfate reducers, which are capable 

of utilizing the organic carbon, this result is not surprising. That 

these other bacteria are capable of such utilization was apparent 

from the drop in soluble organic carbon in the absence of measurable 

sulfate reduction prior to day 0. In general, where sulfide produc­

tion became curtailed by deficiency of sulfate (this is evident in 

cultures 3 through 6), the value of Y increased well above the soc 

theoretical. In culture 6 sulfate limitation occurred early and Y soc 

became quite large. It is likely in this culture that much of the 

organic utilization was due to processes other than sulfate reduction. 
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Rates of Sulfate Reduction. The yield ratios for sulfate
 

calculated from the culture data indicate that sulfate reduction is 

responsible for the sulfide production measured. The maximum rate 

at which this sulfate reduction occurred (expressed as mg. of sul­

fide/1-day) in each culture of experiment two is shown (V ) inmax 

Table 5. Rates have been estimated over a three day interval in 

each culture in which the maximum rate appeared to be occurring. 

It was felt that smoothing over a three day interval would tend to 

eliminate erroneously high or low rates resulting from variation 

in sampling time from day to day. It can be readily seen from Table 

5 and Figures 22 through 35 that the lower the initial concentration 

of sulfate (cultures 1 through 6 or soluble organic carbon (cultures 

7 through 12), the lower the maximum rate of sulfate reduction. 

These results strongly suggest that the rate of sulfate reduction, at 

least under the conditions existing in experiment two, is directly 

dependent upon the transient concentrations of sulfate and organic 

carbon. 

Results obtained in cultures 9 and 10 correspond closely to 

those of culture 13 and 14 respectively. (see Figures 31, 32, 35, 

36, and Table 5), This close agreement indicates that the effect 

upon sulfide production of autoclaving the algae used in the prepara­

tion of cultures 1 through 12 was not significant. The media for 

cultures 13 and 14 were obtained by no more drastic a procedure 
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than hand squeezing the algal mat found in abundance at site three. 

It is suggested that the fundamental composition of the media was 

consequently the same as the soluble material released by these 

algae during growth and following death to the surface sediments and 

water at site three. Only the absolute concentrations of substances 

were altered during media preparation to obtain cultures having 

varying concentrations of sulfate and soluble organic carbon. 

The maximum rates of sulfate reduction measured during this 

study are compared to those reported by other investigators (Table 6). 

Maximum rates in the study by Edwards (27) were higher than those 

measured in this study. The higher incubation temperature (30° C), 

and use of sufficient lactate (a completely utilizable carbon source) 

to produce soluble organic concentrations well above those in the 

author's media would likely account for these higher rates. The 

maximum rates measured by Nakai and Jensen (51) were about half 

those reported here. The use of different procedures and experi­

mental design prevents further comparison. Measurements by Ivanov 

(40) and Sorokin (71) of sulfate reduction in lake muds using labled 

sodium sulfate (NA
2 

S3504) resulted in rates lower than those deter­

mined by the studies in this report. The difference in units used to 

report the rates makes comparison difficult. If, however, it is 

assumed that their mud samples were roughly 50 to 75 percent water, 

then the reported rates would range from about 15 to 40 mg sulfide 
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Table 6. Comparison of the rates of sulfide production measured 
in this study with those of previous investigators. 

Investigator 

Author 

Author 

Author 

Edwards (27) 

Edwards (27) 

Ivanov (40) 

Ivanov (40) 

Nakai and Jensen (51) 

Sorokin (71) 

Sorokin (71) 

Sulfide production
rates (a) 

b)3.2 ( 

I7-90 (c) 

10-70(c) 

200-250(c) 

100-150 (c) 

0.5 - 1.5 (d) 

12-19(d) 

10-45(c) 

0.1-0,2 (c) 

10-15(d) 

Comments 

In situ measurement of 
sulfide release, respiro­
meter 
Experiment 1 

Experiment 2 

In lab, pure batch cultures 
of D. desulfuricans on 
Mac Pherson' s medium, 
growing populations 

In lab, pure batch cultures
of D. desulfuricans on 
MacPherson's medium, 
stable populations 
Field measurements in 10 
cm mud cores from deep­
est part of lake, determined 
with S35 

Field measurements in 10 
cm mud cores from slope
of lake, determined with 
S35 

In lab, mixed cultures con­
taining sulfate reducing
bacteria, cultures consisted 
of 30 ml sea water and 65 
ml wet sediment 
Field measurements in 
lake water using S35 
Field measurements in 
muds collected from slope 
of lake near river mouth, 
S35 used 

(a) approxinite range (c) mg(S)/1-day 
(b) mg (S)/m - day (d) mg(S)/Kg wet sediment-day 
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per liter per day. In the study, 10 cm mud samples were utilized 

and the rates reported based on production of sulfide over this depth. 

If the production were ,occurring within only the top few cm, however, 

then the rates reported might underestimate the actual production 

occurring within this active upper region. Accounting for these 

factors would produce approximate agreement with the results of 

the author's studies. 

It is interesting to compare the maximum rates of sulfide 

production measured in the laboratory experiments with the esti­

mated rate of sulfide release obtained with the respirometer during 

the field studies. Experiment one indicated that rates of sulfide 

production of at least 90 mg/1-day are possible when the mixed 

cultures, containing sulfate reducing bacteria, were given an ade­

quate input of organic material. To obtain production of 3.2 gm/ 

m2-day of sulfide (rate of release measured at site three) would 

require production of 90 mg/1-day to occur within the sediments to 

a depth of three to four cm. This assumes that all of the sulfide 

produced is being released from the sediments as free sulfide. 

Measurements of sulfate concentration within the interstitial water 

of site three sediments obtained during July, 1971, indicated a 

rapid decrease within the top five centimeters (63). In one sample 

no measurable sulfate was detected below three to four centimeters. 

This data indicates that the maximum rates of sulfide production 
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measured in the laboratory in this study may approximate the rates 

of sulfide production that occur at site three. 

Mathematical Model 

General 

To further explain and analyze the results of experiment two, 

a mathematical model will be used which relates the production of 

sulfide to the utilization of sulfate and soluble organic carbon. 

Results of experiment two indicated that the sulfide production rate 

increased as the concentration of sulfate and/or organic carbon 

increased. This effect, however, was most pronounced at lower 

levels of sulfate and carbon, and became relatively small at higher 

concentrations. An equation which has been used to describe such 

a saturation effect at high substrate concentrations is the common 

Michaelis-Menton equation, which is most often used to describe 

enzyme catalyzed reactions (8). The basic form of the equation is 

dP
 
dT Rmax (Kn +N) (7)
 

where P is the concentration of the product, Rmax the maximum 

rate of product formation, N the substrate concentration, and Ks 

the substrate concentration at which dP/dT = 1/2 Rmax. 

At high concentrations of N the term in parenthesis approaches 1, 
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and dP/dT approaches Rmax, while at low concentrations of N, 

dP/dT approaches a linear variation with N. Modifications of this 

equation have been used commonly to simulate growth of microorgan­

ism populations, including the growth of halophilic sulfate reducing 

bacteria (27). 

With sulfate and soluble organic carbon serving as substrates, 

the rate of sulfide production may be expressed as 

dS SUL SOC 
dt max sul + SUL (K + SOC) (8) 

soc 

where SUL is the sulfate concentration, SOC the soluble organic car­

bon concentration, and Ksul and K the Michaelis coefficients for soc 

SUL and SOC respectively. Bacterial populations are assumed to be 

relatively high and stable, and the effect of multiple substrate limita­

tion is given by the product of their individual effects as described 

in equation 7. At high concentrations of the substrates, the rate of 

sulfide production approaches Rmax. If either SUL or SOC become 

low dS/dT is reduced, while at low concentrations of both, dS/dT 

becomes even smaller. 

Since sulfate and soluble organic carbon are being consumed in 

the production of sulfide, their rate of utilization may be expressed 

as 

d(SUL) dS (9)= -y
dt sul dT 
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and 

d(SOC) dS
-Y (10)dt soc( dt 

A system of equations similar to 8, 9, and 10 has been suggested for 

use in describing sulfate reduction in estuarine benthic deposits (8). 

It is important to realize that in the mixed cultures of experi­

ment two, the yield coefficients for sulfate and soluble organic car­

bon reflect utilization by the complete microbial system including 

sulfate reducers and other anaerobic bacteria. Hence their depar­

ture from the theoretically derived yield coefficients as previously 

described. 

Estimation of Parameters 

The value for ysul for use in the model was obtained by averag­

ing the measurements of this yield coefficient for cultures 1 through 

12 (Table 5). Ysoc was similarly obtained, but by weighting most 

heavily those values of Y from cultures which were not markedlysoc 

sulfate limited during the experiment. Measurements from cultures 

13 and 14 were not included in the average since these cultures were 

prepared with unautoclaved media. 

Initial comparison of experimental results with calculated 

results of equations 8, 9, and 10 demonstrated that production of 

sulfides responded more sharply to changes in sulfate concentrations 
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at low sulfate concentrations than is described by the traditional 

Michaelis-Menton equation. This sharper response could be 

expressed within the model by raising the sulfate concentration in 

equation 8 to higher powers (see Figure 36). Based on simulation of 

cultures 3 through 6, it was decided to raise the sulfate concentration 

to the 1.3 power, thus replacing equation 8 by 

1.3
dS ( SUL SOC

R (11)dt max 1.3 ) (Ksoc + SOC) 
sul + SUL 

Estimates of R Ksul and K were obtained using multi-max, soc 

ple non-linear regression analysis to fit the combined data of cultures 

1 through 12 to equation 11. Since the model assumes no lag in sul­

fide production, data for the first one to two days of those cultures 

in which an obvious lag occurred was not included in the analysis. 

The result of the regression indicated a maximum rate of sul­

fide production (Rmax) of 77 mg/1-day. The values of Ksul and K soc 

were 320 mg/1 and 650 mg/1 respectively. A value of 3.1 was used 

for ysul and 1. for Y . The resulting equations with the fittedsoc 

parameter estimates are shown below: 

1,3dS SUL SOC (12)dt 650 + SOC320 + SUL1.3 

d(SUL) dS 
= -3.1 (13)dt at 
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Figure 36. Resultant simulations of culture three obtained by

raising SUL to three different exponents. 
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d(SOC) dS-1.0 (14)dt dt 

Simulation of Experiment 2 

Approximations to the simultaneous solutions of equations 12, 

13, and 14 were obtained by digital computer using a fourth order 

Runge - Kutte finite difference method. The simulations of cultures 

1 through 12 are shown in Figures 37 through 48. Solid lines re­

present the values of sulfide, sulfate, and soluble organic carbon cal­

culated by the mathematical model. Circles are the data taken from 

the respective cultures of the experiment. The values of pH and Eh 

indicated are from the experiment. 

Agreement between simulated and measured results are 

especially good for those cultures in which the rates of sulfide pro­

duction were highest. Agreement was in general best for sulfide and 

sulfate, while the calculated concentrations of soluble organic carbon 

deviated more from the experimental measurements. The selection 

of a Y of 1.0 for the simulation model is reflected in these 
SOC 

results. This value produced higher rates of organic utilization than 

experimentally determined in all cultures except 3 through 6. In 

these cultures, the calculated results underestimated the organic 

carbon utilization. The accuracy of the simulation of sulfide produc­

tion was also reduced for those cases in which sulfate limitation 
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occurred, and for culture 12, the culture having the highest soluble 

organic carbon concentration. For cultures 1 and 2, and 7 through 

11, the simulation was generally within 10 percent of the experi­

mental results, and within five percent in a number of these. Part 

of the difference between the simulation and experimental results can 

be attributed to the lag period which occurred in many of the cultures 

from day zero to one. It will be recalled that the model assumes no 

such lag, and that data for this lag was not included in the regression 

analysis. Excluding the lag period from Figures 37 through 50 by 

considering day one the beginning of the experiment, would result in 

a much closer agreement of simulated with measured results in most 

cultures. This was the method used in plotting the experimental 

data in Figure 36. 

Equations 12, 13, and 14 were used to simulate production of 

sulfide and consumption of sulfate and soluble organic carbon in cul­

tures 13 and 14 (see Figures 49 and 50). Simulated sulfide produc­

tion was within 10 percent of the actual production, a projected re­

sult which lends justification to the use of this form of model for 

microbial systems such as those of experiment two. Soluble organic 

carbon consumption was underestimated as with simulations of all 

cultures having a Y less than 1.0. soc 
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Figure 37.	 Comparison of the simulation of culture 1 with the 
experimentally determined results. 
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experimentally determined results. 
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SUMMARY AND CONCLUSIONS
 

Studies have indicated that tidal flat areas may exert substan­

tial oxygen demand on the overlying water. The impact of the sulfur 

cycle on the oxygen demand was considered important. The distri­

bution in selected tidal flat deposits of total aerobic and sulfate 

reducing bacteria, total sulfides, redox potentials, volatile solids, 

and particle size was determined. The results of these measure­

ments indicated that in general the finer sediments had higher con­

centration of total sulfides, a higher percent of volatile solids, and 

lower redox potentials. There was also a trend toward larger num­

bers of sulfate reducing bacteria in the finer deposits. 

Measurements were made of the free sulfide concentrations in 

the water overlying tidal flat deposits having high concentrations of 

volatile solids, low redox potentials, and relatively large number of 

sulfate reducing bacteria. Free sulfide concentrations of approx­

imately one mg/1 were obtained, even in water containing four 

mg/1 or more of dissolved oxygen. The literature indicated that 

such free sulfide levels could be quite toxic to a wide variety of 

aquatic organisms. At lower DO concentrations, free sulfides 

reached 16 mg/1; approximately 50 percent was estimated to be in 

the form of hydrogen sulfide. 

Profiles of free sulfides immediately above these deposits 
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indicated higher concentrations near the sediment-water interface, 

suggesting production within and release of free sulfides from the 

sediments. 

Laboratory studies were undertaken to further investigate the 

mechanism (s) leading to the production of free sulfides within tidal 

flat deposits. Mixed cultures of anaerobic bacteria were obtained 

from tidal flat sediments, and grown in media prepared from 

extracts of sediment and algae obtained from tidal flat areas. 

Sulfide production rates as high as 90 mg(S)/1-day were mea­

sured following addition of lyophilized media to established liquid 

cultures of the anaerobic bacteria. The concentrations of sulfate 

and soluble organic carbon were observed to decrease in these cul­

tures. The results indicated that the activity of sulfate reducing 

bacteria present in the mixed cultures was responsible for the sul­

fide production. 

In media having varying initial concentrations of sulfate and 

soluble organic carbon, a maximum rate of 70 mgfS)/1-day was 

measured. This rate occurred at relatively high concentrations of 

both sulfate and soluble organic carbon, while at low concentrations 

of either, the rate was considerably reduced. The effect of changes 

in sulfate and soluble organic carbon concentrations upon the rate of 

sulfide production was much greater at low concentrations of either. 

To further analyze and explain these relationships, a 



120 

mathematical model, based on the common Michaelis-Menton equa­

tion was developed. Data from experimental runs was used to fit 

estimates of parameters to the mathematical model. The results of 

simulation of cultures in which sulfate deficiency was strongly limit­

ing sulfide production, indicated a sharper response of sulfide pro­

duction to changes in sulfate concentration than expressed by stan­

dard Michaelis-Menton kinetics. By further modifying the model, 

close agreement was obtained between the experimental and simu­

lated results of sulfide production, 

Agreement was best fot higher rates of sulfide production. The 

mathematical model results indicated a maximum attainable rate of 

sulfide production by stable populations of sulfate reducing bacteria 

growing in the mixed cultures of 77 mg(S) 1-day. 
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