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Based upon the Pearson Type VIII distribution function,

a general retention function which relates the saturation to

the capillary pressure in disturbed soils has been dis-

covered. This simple and yet complete function has been

shown to describe precisely the imbibition as well as the

drainage branch of the retention curve. It is defined by

four readily assessed parameters that either have physical

significance themselves or may be used to determine some

hydraulic properties of the soil.

With the assumption that the Burdine integrals are

adequate, a relative permeability function has been derived

through the substitution of the retention function for the

integrands in the Burdine integrals. The permeability

function is expressed in terms of the incomplete Beta



function ratio whose value may be conveniently found in

some mathematical tables.

Further, a general pore-size distribution function of

soils has been obtained from the retention function. The

derivation of the pore-size distribution function enables

more rigorous examination and further exploration of the

theories concerning water movement in partially saturated

soils. In this respect, an explanation of the phenomenon of

air entrapment during imbibition has been offered through an

energy concept based upon the pore-size distribution function

along with the retention function.

Two criteria of affinity have been established for

porous media. Media are said to be affine if their

corresponding pore-size distribution parameters are identical.

The scaling factor for the external dimension of the model

has been chosen to be the capillary pressure head at the

inflection. point of the retnetion curve, whose value is

always finite.

The effect of the pore-size distribution parameters upon

the retention, permeability and diffusivity curves has been

analyzed. The analysis shows the parameter governing the

downward concavity of the retention curve is as important

as that governing the upward concavity when it comes to

computing the permeability values from the retention data.
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A new and simple apparatus and procedure for obtaining

the retention data of soil water in the laboratory have been

developed. The technique can expedite the acquisition of

the data for either the drainage or the imbibition branch

of the retention curve.
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HYDRAULIC FUNCTIONS OF SOILS FROM PHYSICAL

EXPERIMENTS AND THEIR APPLICATIONS

CHAPTER I

INTRODUCTION

Engineers dealing with watershed hydrology, land drain-

age, and irrigation are often confronted with difficulty of

accurately describing the complex soil-water system. Not

only is the soil-water system in nature complicated by the

variability of soil properties in space, but the chemical

and biological interactions on these properties as functions

of time defy description. In spite of the difficulty, much

can be gained by considering the soil-water system as one

in isothermal, stable and homogeneous conditions. But even

for this ideal soil-water system, it is still not a facile

task to describe water movement in soils, owing to the

strong nonlinearity among the variables that control the

storage and movement of water in the porous space.

With today's high-speed, large-capacity computers and

with the modeling technique presently available, it is not

impossible to investigate thoroughly the subsurface water

movement for a particular set of boundary conditions pro-

vided the properties of the soil-water system can be defined

in functional or tabular forms. But it will be difficult

to construct a generalized model and predict its performance
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for a wide range of soil properties when little is known

about the range that may be encountered in the field.

The functional forms of general relationships among

the variables governing water movement and storage in soils

are highly desirable, particularly if the functions involve

meaningful and measurable hydraulic properties of the soil.

One advantage of the functional relationships is that com-

putation time and computer storage space for the solutions

of flow problems are greatly reduced, and the input data

to the computer need only to consist of a few hydraulic

parameters of the soil. Furthermore, if the range of the

values of soil hydraulic parameters is known, one may deduce

a family of solutions that would approach what is obtainable

from analytical solutions.

In particular, the functional forms are needed in the

solutions of problems that employ Darcy's law for either

steady or unsteady flow. After Darcy (1856) first proposed

his empirical law governing the flow of water in saturated

sands, Buckingham (1907) suggested that Darcy's law would

be valid for partially saturated media as well. His sup-

position was later verified experimentally by Childs and

Collis-George (1950). Therefore, in partially saturated

media, the constant hydraulic conductivity needs to be

redefined as a function of soil-water content. The com-

bination of Darcy's law with the variable hydraulic con-
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ductivity and the equation of continuity brings about a

general partial differential equation for water movement in

partially saturated soils. The flow equation may be solved

analytically or numerically depending upon the complexity of

the system. For complex systems, analytical solutions are

not obtainable owing to the strong nonlinearity of the

equation.

Inasmuch as the relationship between hydraulic con-

ductivity and soil-water content is difficult to obtain

experimentally, many researchers have resorted to predictive

methods of evaluating this relation from the measured water

retention curve. Some of the methods have been experimentally

verified and seem to give reasonably good approximations.

Thus, if a general relationship is available for the water

retention curve, it follows that a general expression may

be obtained for the relation between hydraulic conductivity

and soil-water content, which includes the properties or

constants of the water retention curve.

Functions for both hydraulic conductivity and retention

of water have been proposed independently. In a few cases,

researchers have proposed dependent relationships only to

become either oversimplified approximations or highly com-

plex, exact expressions that lose their practicality. In the

latter case, too many constants make the relationships

difficult to assess by indirect methods, and it becomes



prohibitive to relate the constants to easily visualized

or measurable properties of the soil.

It is the first objective of this thesis to present

simple and yet complete functional relationships among

soil-water content, hydraulic conductivity and capillary

pressure. The relationships include meaningful properties or

parameters of the soil, which will be useful in characterizing

the soil hydraulically. The second objective is to develop a

new apparatus and procedure which will expedite the acquisi-

tion of the retention data in the laboratory.
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CHAPTER II

REVIEW OF LITERATURE

A. Water Retention Functions

Brooks and Corey (1964) appeared to be the first to

develop a convenient function that relates capillary pressure

to saturation for media with relatively wide ranges of

pore-size distribution. In their equation,

P
b

S
e P

= (-- for P > Pb

and S
e

= 1.0 for P < Pb (2-1)

where S
e

is the effective saturation defined as (S S
r
)/

(1 S
r

)
'

S
r

is the residual saturation, Pb is the bubbling

pressure related to the largest pore size forming a con-

tinuous network of flow channels within the medium, P is the

capillary pressure, and X is an index to the pore-size

distribution. The derivation of this function emanated from

a large number of experimental data of the drainage branch of

the retention curve. The two parameters of the function,

namely, Pb and X, have physical significance and have been

used as criteria of similitude. Since Equation (2-1) is a

step type function, it fails to describe the downward

concavity of the retention curve in the region of high

saturation. In general, the function can describe reasonably



well the experimental data in the portion of the curve

showing upward concavity. For the media with ill-defined

bubbling pressure, i.e., with a Pb being practically zero,

the use of P
b

as a characteristic length for scaling presents

difficulty.

King (1965) developed a complicated equation for

describing both the drainage and imbibition branch of the re-

tention curve. To enable the "plateau" of the retention

curve for small values of capillary pressure to be equally

well described, he managed to produce the hyperbolic

function,

S= cosh

cosh

(2-2)

where Q, 6, c, y and Po are parameters whose values depend

upon the properties of the water and the soil, and the

hysteresis. Each of these parameters is subject to a

certain constraint such that Po > 0, IS < 0, cosh c > y > 0,

1 > 6 > 0, and c > 0. Furthermore, as P approaches zero,

S approaches 6, and as P approaches infinity, S approaches

6(cosh c y)

cosh c + y

or lim S
6(cosh c y)

P -+
cosh c + y
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King pointed out that the lower limit of S should correspond

closely to the residual saturation defined by Brooks and

Corey (1964). Also, the function may be transformed so that

the capillary pressure becomes the dependent variable. The

transformation yields

P = Po

c}1

7
. (2-3)

To determine the parameters of Equation (2-2) or (2-3) is by

no means a simple task as King admitted. With its strong

nonlinearity and dealing with experimental data, even a

system of five simultaneous equations in terms of the five

unknown constants would be difficult to solve because of the

uncertainty of the five initial guesses and the possible

experimental errors in the data. A nonlinear regression

analysis would be even more difficult. The application of

Equations (2-2) and (2-3) is undoubtedly limited.

Upon examining several distribution laws available from

general probability theory such as the incomplete gamma dis-

tribution, the lognormal distribution, and the first asymp-

totic distribution for the largest values, Brutsaert (.1966)

concluded that although the use of a given probability law

might be justified on a theoretical basis, the preference of

one law to another in most cases rested upon purely heu-

ristic grounds. According to Brutsaert, from a practical



viewpoint, the selection of the probability law should

depend upon not only the porous medium but also the nature

of the problem. The mathematical manipulations of these

probability density functions, by and large, cannot be

easily performed. The problem in assessing the parameters

of those functions appears prohibitive. Thus, Brutsaert

proposed a simple empirical distribution function of his

own. He presented the relation:

a
S
e

a + (c/r)
b

8

(2-4)

where S
e

is the effective saturation, r is the pore radius,

and a, b, and c are constants. This function is somewhat

similar to that of Brooks and Corey (1964) if the variable

of pore radius is replaced by that of capillary pressure.

He claimed without giving substantial evidence that a much

better fit with experimental data could be obtained with

Equation (2-4) than those proposed by Brooks and Corey

(1964). It should be noted that no physical significance

was attached to the constants of the equation.

Laliberte (1969) presented a pore-volume probability

density function, se(r), which would yield some mathematical

expressions for the relation between capillary pressure

and saturation. He postulated that C(r), a transformation

of s
e
(r), was normally distributed such that
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se(r)dr 1

l'exp(-C2)dC

where F(r)
(rb/r) I

Or P) a
P. + y

13

(2-5)

(2-6)

and a, S, and y are constants depending upon the porous

material, r is the radius of pores, rb is the radius of

pores corresponding to the bubbling pressure, and P. is the

scaled capillary pressure with the bubbling pressure as

scaling factor. When the pore-size distribution function,

dS
e

dr
s
e
(r),

is combined with Equation (2-5), then

exp(-C2)dC exp(-C2)dC . (2-7)
o

The first term on the right-hand side is equal to 0.5

whereas the second term is one half the nonelementary

probability integral whose solution is the error function.

Since the error function is an even function, it is necessary

to rewrite Equation (2-7) as follows:

S
e

= 0.5(1 erf S
e

< 0.5



and S
e

= 0.5(1 erf S
e

0.5 . (2-8)

10

To find the corresponding values of capillary pressure and

saturation, Equation (2-8) together with Equation (2-6) is

used. With respect to the evaluation of the constants, a,

and y, Laliberte presumed a correlation between those

constants and A, the pore-size distribution index given by

Brooks and Corey (1964). Also, he assumed the retention

curves defined by his functions and by Brooks and Corey's

function would become merged for large values of capillary

pressure. It is not surprising that a better fit has been

found with Laliberte's function for sands since the values

of a, I, and y are based upon a well defined value of A,

the pore-size distribution index. However, for soils with

wide ranges of pore-size distribution, either the correlation

between the parameters and A breaks down, or A itself is not

sufficiently descriptive. At any rate, it seems that the

proposed probability density function should employ other

independent methods for evaluating its parameters in order

to determine its generality. Apparently, the evaluation

of the parameters is not a simple operation to perform.

To offer physical justification for the relation

between capillary pressure and saturation, White (1970)

introduced several physical models. lie partitioned the

drainage branch of the retention curve into four parts and

named them: (1) the boundary effect zone, (2) primary



transition zone, (3) secondary transition zone, and (4)

residual desaturation zone. For each of those four "zones"

a theory was set forth to interpret the desaturation mecha-

nism within it. He then formulated those theories in such a

way that the resultant equations represented the relation

between saturation and capillary pressure. A total of

thirteen parameters are required to define the entire

drainage branch of the retention curve. It is obvious that

his functions are of little practical value owing to the

large number of parameters to be determined. However, the

theoretical relations fitted experimental data quite well as

White pointed out. One may conclude the high contact

portions of the curve on either side of the inflection point

are inherent properties of the retention curve.

B. Computational Schemes for Determining

Partial Hydraulic Conductivity

To evade the difficulty of directly measuring hydraulic

conductivity as a function of saturation in the laboratory,

numerous attempts have been made to formulate some sort of

computational scheme so that the partial hydraulic con-

ductivity may be acquired through the knowledge of other

properties of a porous medium which are easier to measure.

Such properties should be representative of the geometry

of pores and their distribution in space. Since the micro-
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scopic structure of a porous medium is too complicated to

deal with in exact mathematical terms, simplifying assump-

tions on the disorder existing in the medium are necessary.

1. Statistical approach

Childs and Collis-George (1950) adopted an approach for

finding the relation between hydraulic conductivity and the

pore-size distribution of a porous medium by assuming that

pores of various sizes were randomly distributed in the

medium. Their approach was based upon the concept of a pore

sequence that was obtained by cutting the medium into two

sections and then rejoining the two sections at random.

They then proceeded to evaluate the contribution to the

hydraulic conductivity made by the pore sequence. Childs

and Collis-George considered the group of pores on one

section having an average size p and range of size Sr, and

the group of pores on the other section having a mean size

G. Then the area of the pores with average size p was given

by

A = F(p)6r

while the area of the pores on the other surface by

A = F(a)dr

where F(r) is a pore-size distribution function. Since the

two sections come together randomly, the area of the junction
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occupied by the pore sequence is simply the product of Ap

and A
a'

or

A
p--a

F(p)(3r F(p)Sr

It was further assumed that the resistance to flow increased

rapidly as the pore size decreased, the resistance of the

larger pore in the sequence could be neglected, and only the

contribution of the direct pore sequence to the hydraulic

conductivity should be considered. If one takes a to be

smaller than p in the sequence, the number of pore sequences

occupying the area A is proportional to Apia /o2. Accord-

inging to Poisueille's equation, the rate of flow through

each pore sequence with a as its controlling pore size is

proportional to e when the hydraulic gradient is taken as

unity. Consequently, the contribution of this controlling

pore size to the hydraulic conductivity is

SK = Ma2F(p)dr F(a)Sr

where M is a constant of proportionality to be determined

experimentally. Summing up the contribution of all possible

pore sequences whose controlling sizes cover the entire

spectrum of the pore-size distribution, one may obtain the

hydraulic conductivity function,



R, R,

K = M ), ), c2 F(p)(Sr F(a)(5r

p=0 a=0

11

(2-9)

where R is the largest pore size which remains full of

water in a partially saturated medium. The pore-size dis-

tribution function is determined from the retention curve

which is divided into a number of divisions of capillary

pressure values. The greater the number of divisions, the

more accurate the computed values of the conductivity should

be. In this case, the pore-size distribution was treated as

a discrete model although it could have been treated as a

continuous function. It should be noted that M in Equation

(2-9) is a matching factor obtained by matching the experi-

mental and theoretical curves at a given point.

Marshall (1958) also presented an equation for the

relation between permeability and the pore-size distribution

of a porous medium. He assumed that the necks connecting

the pores in the medium controlled the flow rate. Since

the alignments of pores were often imperfect, allowance

was made for a reduction in the cross-sectional area of the

necks. On a fractured section of the medium where A and B

are the two exposed surfaces, the area of A or B is regarded

as consisting of n sub-units of area 1 /n. Each sub-unit of

surface B is further subdivided into n sub-units of area

1/n2. Each of these sub-units has the same volumetric

water content, 0, and contains pores of the same radius.
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The magnitudes of the pore radii are arranged in descending

order, i.e., r1 > r2 > r3 > rn. The sub-unit of

surface A which has pores of radius r1 comes into contact

with one of the larger sub-units of surface B. On the

average, the cross-sectional area of the neck of the connect-

ing pores would be 0 times the area of the smaller pore.

Hence, the area of the neck for each of the smaller sub-

units of surface B in contact with the first sub-unit of

surface A would be, 071-12, 07r22, Our32, 07rn2.

Similarly, the second sub-unit of A containing pores of

radius r2 would give neck areas of 07r22, 0ilir22, 071.32,

e1Tr42, ...., 07r
n
2. The series continues in this way until

the nth sub-unit of surface A is counted. This last sub-

unit would provide a neck area of Orrurn2. The average

cross-sectional area of the necks for all the smaller

sub-units of surface B with area 1/n2 is

07[(112 r22 r32
n
2)

+ (r2 2 + r2 2 + r3 2 + r42 + rn 2 )

(r32 r32 r32 r42 r52 r2n )

2 2 2 2
+

2
+ rt, + 1'42 + rs + rs +

. + nr
n
21/n2

or 07n-2

+ rn2)

r12 ... 2 5r32r1 + 3r22 + 5r3 + (2n 1)rn21 .
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Equating the above series to Trrt2 and substituting for

rte in Poiseuille's equation, i.e.,

Or 2
t c14)

U
8n dl '

one obtains

U
e2n-2

8n
[r12+ 3r22+ 5r32+

According to Darcy's law,

U =
-k di
n dl

..+ (2n - 1)r 2]
.

(2-10)

Equating Equation (2-10) to Equation (2-11) yields

(2-11)

2
e

r1
2 + 3r2 2 + 5r3 2

+k . + (2n 1)riA (2-12)
-872-

where k is the permeability at a certain volumetric water

content, 0.

To develop further the model of pore sequence originated

by Childs and Collis-George, Millington and Quirk (1961)

arrived at a basic equation which could be used to describe

permeability as a function of porosity, water content, and

pore-size distribution. They envisaged a porous medium as

consisting of solid spheres which interpenetrated each other

and were separated by spherical pores which also inter-

penetrated. The solid and pore systems were therefore

symmetrical. Based upon this model, it was possible to
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derive a generalized relation between the porosity and the

cross-sectional area which controlled the flow rate of water

in the medium. They assumed that the area of pores on a

fractured section might be represented by porosity of an

isotropic porous medium, 0, and if an interaction model

was adopted to include the probability of continuity of

pores in space, the pore area resulting from interaction

would be between 0 and 02. They then proceeded to find the

interacting pore area. If the area from interaction is

02X, then 0 > 02x > 02. Since 0 < 1, 1 > x > 0.5. Further-

more, Ox might be regarded as a maximum pore area in space

whereas 02X a minimum. If 02X was obtained on a single

plane, it would be associated with a maximum solid area

which would be given by (1 0)x. Hence the minimum pore

area in the absence of interaction was given by 1 (1 0)x.

Both the minimum pore area obtained in the above way and the

minimum pore area obtained through interaction should be

identical. Therefore, 1 (1 0)x = 02x. For values of

0 between 0.1 and 0.6, the values of x lie between 0.6 and

0.7, and for the sake of simplicity x may be taken as 2/3.

Assuming there were m classes of pores in the porous medium

and each class occupied the same proportion of the total

porosity, the interacting areas of these classes on a plane

were denoted by al, a2, a3, ...., am and the radii of these

pore classes were r1 > r2 > r3 > > r
M

. For Poiseuille's
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flow, both pore area and radius interactions would contri-

bute to the flow. The resistance to flow in a pore sequence

was determined by the square of the smaller pore radius.

Thus the permeability was given by

alair12 aia2r22 aia3a3 2 aiam
r
m

2

a2a1r2 2
a2a21., 2

2 a2a3a3 2 a2amrm
2

k 1
a3a11-3 2 a3a213 2 a3a3a3 2 a3a

M
rM

2

a ar a a2r am a a r
m

i

m
2

M M
2

M M
2

M M M
2

Since a3 = a2 = a3 = a
m

= 02/3/m, then

k 1 = 0 43
2

m [r12+ 3r22+ 5r22+ .
.+ (2n 1)rml.

(2-13)

For the partial permeability, the value of 0 was replaced by

that of the volumetric water content, and the r2 series

began with the largest pore radius occupied by water.

Attempts by a number of investigators to evaluate the

success of the proposed computational schemes have been

made. Nielsen, et al. (1960) compared the values of partial

hydraulic conductivity calculated with Childs and Collis-

George's, and Marshall's procedures with measured values for

four field soils. They concluded that Childs and Collis-

George's method appeared superior to the others over a
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narrow range of capillary pressure. In contrast to that,

Jackson, et al. (1965) tested three individual methods and

found that the methods of Childs and Collis-George, and

Marshall did not predict the shapes of the hydraulic con-

ductivity curves, and that if a matching factor was used,

Millington and Quirk's method gave good results over a wide

range of saturation.

Kunze, et al. (1968) reported that Millington and

Quirk's method with a matching factor did not produce the

best fit with their experimental data. They claimed a

better fit could be obtained if the volumetric water content

in Equation (2-13) was not raised to 4/3 power but to 1.0

power. This change brought about a slightly higher hydraulic

conductivity at lower degree of saturation and required a

smaller matching factor. They stated, however, that the

change was only a step in the right direction, but was still

not sufficient to correct the discrepancy between measured

and calculated values of hydraulic conductivity at low

saturations.

In an evaluation of some predictive methods, Green

and Corey (1971) tested both Marshall's, and Millington and

Quirk's methods with matching factors which were the ratios

of measured total hydraulic conductivity to calculated total

hydraulic conductivity. They proposed a modified version of

Marshall's method, in which the values of 0 and n in Equation

(2-12) were held constant regardless of the degree of
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saturation. They discovered all three methods including the

one of their own gave reliable predictions of measured

hydraulic conductivity, and suggested they be used routinely

for field applications. They pointed out that to characterize

the variation in the water retention curves from many sites

in a field might be more important than to accurately

measure the K(0) values on a very limited number of cores or

field sites. They also investigated the hydraulic con-

ductivity computed from absorption branch of the retention

curve, and reported that the computed values of hydraulic

conductivity were always smaller than the measured values.

They thought this discrepancy was due to the inadequacy of

the absorptive branch for characterizing the pore-size

distribution of the porous medium. They felt the desorptive

branch was preferable in this respect.

Jackson (1972) reviewed the predictive methods of

Marshall, and Millington and Quirk with matching factors.

He demonstrated that the procedures of calculation for those

two methods were similar except for the exponent of the pore

interaction term. He reasoned that since both Marshall's,

and Millington and Quirk's derivations were based upon an

idealized model of the porous medium, the values of the ex-

ponent appeared arbitrary. He then tried to determine the

optimum value of the exponent with which the methods would

best predict experimental hydraulic conductivity. The
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would-be optimum value of the exponent obtained by method of

least squares for several media varied around unity. There-

fore, he suggested that a value of unity would be adequate.

2. Hydraulic radius theory

Based upon a simplified hypothesis, Purcell (1949)

derived an equation which related the retention curve and

the porosity to the permeability of a saturated porous

medium. He first considered the medium as a system composed

of a large number of parallel cylindrical capillaries of

equal length but random radii. The total rate of flow

through this system is equivalent to the sum of the con-

tributions made by each of the individual capillaries. He

then equated Darcy's law to Poiseuille's equation and

substituted the capillary pressure for the radius by use of

the Laplace's surface tension equation to produce an equation

for permeability, i.e.,

k = (a cos a) 2 (2-14)

where o is the coefficient of surface tension, a is the

contact angle, the porosity of the medium, Si the portion

of saturation in the capillary of radius ri and Pi the

capillary pressure. Purcell realized that Equation (2-14)
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was too idealistic because its derivation was based upon a

system consisting of non-interconnected capillaries of

circular cross-section and equal length. Certainly the

occurrence of such a system in porous medium is rarely

approached. Accordingly, he introduced a so-called lithology

factor, F, to account for difference between the flow in the

idealistic porous medium and that in naturally occurring

materials. Thus Equation (2-14) became

k = F(o cos a)2
i=1

AS.
1

P-2
1

(2-15)

The summation of AS./P.2 in Equation (2-15) might best be

evaluated through the retention curve. If integral form is

adopted, Equation (2-15) becomes

Sd
k = F(e cos a) 2 0 p2 (2-16)

Gates and Lietz (1950) suggested that Purcell's equation

be extended to the partially saturated media. It was noted

that at complete saturation the limits of integration in

Equation (2-16) were from zero to unity. They reasoned that

for any saturation other than unity the upper limit of inte-

gration in Equation (2-16) would be the saturation itself.

Although they recognized Purcell's lithology factor would
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not be the same at an intermediate saturation as at a

saturation of unity, they had no independent method of

estimating those factors.

Wyllie and Spangler (1952) combined Kozeny's funda-

mental postulates with the retention curve to obtain another

expression for the relative permeability of a partially

saturated porous medium. They proposed on the basis of a

dichotomy originally suggested by Carman that the Kozeny

constant for any porous medium with a random distribution of

pores was obtainable if the tortuosity of the porous medium

could be measured. That is to say, there exists a relation

between the Kozeny constant and tortuosity. Wyllie and

Spangler pointed out that Carman was responsible for writing

the following expression:

= co (Lc/L)2 (2-17)

where c is the Kozeny constant, co is the shape factor of

pores which generally falls within the range between 2.0

and 3.0, Le the actual length of sinuous path taken by a

fluid flowing through the porous medium, L the linear

external dimension, and (Le/L)2 is the tortuosity Te of the

porous medium at a certain saturation. They went on to

derive an equation for the relative permeability given by
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where T is the tortuosity at saturation equal to unity.

They further proposed to determine the ratios of tortuosity,

Te/T, from electrical resistivity measurements.

Recognizing the unsuccess in measuring the ratios of

tortuosity by electrical resistivity index analogy, Burdine

(1953) analyzed experimental data of permeability and found

that to a first approximation, (T/Te)V2 might be assumed as

a linear function of saturation. He wrote

V TTe 1 S
r

(2-19)

where S
r

is the residual saturation. Substituting Equation

(2-19) into Equation (2-18) yields

k
r

2

S Sr

1 Sr/

S

Po

dS

S

FY

(2-20)

which is known as Burdine's equation. A detailed description

of the theory leading to the Burdine equation has been given

by Brooks and Corey (1964). It is interesting that Wyllie

and Gardner (1958) developed a statistical model of porous
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media similar to that of Childs and Collis-George (1950),

and arrived at the same equation given by Burdine.

By substituting Equation (2-1), a simple retention

function of their own, into Equation (2-20) and changing the

lower limit of integration from zero to Sr, Brooks and Corey

(1964) were able to produce a simple expression for relative

permeability,

or

2+3A

kr =(Se)

P

k
r Pb

=( for P > Pb

(2-21)

(2-22)

where n = 2 + 3X. They expected this equation was valid

only for isotropic media and possibly only for drainage

cycle. However, they claimed it held true for any pore-size

distribution according to experimental evidences.

Brust, et al. (1968) compared Brooks and Corey's method

with that of Millington and Quirk, and concluded that the

former gave better results than the latter when compared

with hydraulic conductivity measured in the field. Nielsen,

et al. (1970) pointed out that in general, the computational

methods for obtaining the partial hydraulic conductivity or

permeability appeared most successful for soils with narrow
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ranges of pore-size distribution. In a highly aggregated

soil, a considerable portion of the total water content is

retained as relatively immobile water. Under such cir-

cumstances better results were obtained if the concept of

effective saturation as used in Equation (2-21) was adopted.

Bouwer and Jackson (1974) stated that although the computa-

tional procedure of Brooks and Corey's method was relatively

simple, care ought to be exercised to obtain the best value

of residual saturation. They concluded the calculated

hydraulic conductivity compared favorably with other methods

and with measured data.

C. Methods of Obtaining Retention Data

in the Laboratory

There are many techniques for obtaining retention data

in the laboratory. Almost all techniques have been developed

to obtain the drainage branch of the retention curve.

According to Bear (1972), there are two general methods for

obtaining retention data: (1) displacement, and (2) dynamic

methods. Of these two groups, the displacement method is

the one most commonly used by agronomists and soil scientists.

It is suitable for fragile disturbed or undistrubed samples.

Basically, all the techniques pertaining to the displacement

group establish successive states of static equilibrium and

data are taken of the equilibrium water content and capil-
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lary pressure. The most common techniques of the displace-

ment group are: (1) increasing the pressure of the non-

wetting phase and holding the pressure of wetting phase

constant, and (2) decreasing the pressure of the wetting

phase and holding the pressure of the non-wetting phase

constant. Both techniques require the use of a saturated

capillary barrier that is permeable only to the wetting

phase. The capillary barrier must have a uniform pore-size

distribution and pores that will not allow the non-wetting

phase to penetrate the barrier. The capillary barrier is

initially saturated with the same fluid to be displaced in

the medium.

To obtain data by the first technique indicated above,

a pressure plate or pressure membrane equipment is used.

The sample is subjected to non-wetting phase pressure within

a pressure cooker or pressure cell that contains the capil-

lary barrier. An outflow tube is connected to one side of

the capillary barrier for measuring volume displaced and

detecting equilibrium condition at a particular pressure of

the non-wetting phase. Usually one soil sample is required

for each equilibrium pressure measurement. For example, if

one desires to obtain five data points, five samples are

required, and each of them is subject to a different non-

wetting phase pressure. When retention data are needed for

a large number of samples, the technique is valuable.
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However, the time required for equilibrium may be consider-

able, e.g., 10-40 days, depending upon the range of capil-

lary pressure desired.

The technique which lowers the pressure of the wetting

phase is limited to the low range of capillary pressure,

i.e., less than 1 bar. When one desires a retention curve

on only one or two soils over the range of 1 bar, this

technique appears superior to the pressure plate technique.

Nevertheless, it is time-consuming and tedious also. The

technique involves reducing the pressure of the wetting

phase in increments and measuring the displaced volume of

wetting fluid in equilibrium.

Other displacement methods include mercury injection

and centrifuge methods. The former is used by the petroleum

industry where consolidated samples are dealt with. Mercury

is used as the non-wetting phase and forced into pores of

the medium in an evacuated chamber. The centrifuge method

causes the wetting fluid to leave the sample by subjecting

it to normal accelerations in a centrifuge. This is equi-

valent to subjecting the sample to increased gravitational

force. Data may be obtained in a relatively short time,

but it is not particularly suitable for the low range of

capillary pressure.

Imbibition retention data may be acquired by methods

similar to the displacement type methods, in which fluid is
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allowed to imbibe through the capillary barrier as opposed

to drainage from the sample. However, no satisfactory

techniques have been established.
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CHAPTER III

THEORY

A. Retention Function

After reviewing the mathematical expressions in the

literature for soil-water retention curves, it was found that

the one originated by Brooks and Corey (1964) had the sim-

plest form and yet could approximate experimental data

reasonably well under certain circumstances. However, their

function fails to describe an inflection in the curve.

Precisely, it completely ignores the downward concavity of

the retention curve and assumes that retention data can be

approximated by a curve that is entirely concave upward. In

some cases, this over-simplification results in an unreal-

istic approximation especially for soils with ill-defined

bubbling pressures.

It was further discovered that when Brooks and Corey's

function underwent a simple mathematical manipulation, it

took the form of the Pearson Type VIII distribution function

(Pearson, 1916). It will be assumed herein that the capil-

lary pressure of the soil-water system is related to the

geometry of the interfaces between water and air within the

porous matrix by Laplace's surface tension equation

(Encyclopaedia Britannica, 1969),
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where P is the capillary pressure, a the surface tension

coefficient and r and r' are the radii of curvature of any

two normal sections of the interface at right angles to

each other. Therefore, one may consider the soil-water

retention curve as an indication of the pore-size distri-

bution of the porous medium. In other words, one can obtain

the probability density function of pores by taking the

derivative of saturation, which connotes percentage volume,

with respect to capillary pressure, or with respect to pore

size. In this connection, the Pearson Type VIII distri-

bution function suggests that there be no pores in the

medium, which have sizes larger than the one corresponding

to the bubbling pressure. Observations of experimental data

indicate this is not always the case and a more general

expression should be developed.

Upon close examination of numerous experimental data of

capillary pressure Versus. saturation, it became clear that

the plotting of the data generally exhibited three common

features. The data approach a vertical asymptote at both

residual saturation and saturation equal to unity, and
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between these two extremes of saturation there exists an

inflection point. If the pore-size distribution is assumed

to be of the same type on either side of the inflection

point, then by reversing the concavity of the curve at the

inflection point, perhaps a more suitable expression of

capillary pressure versus saturation may be obtained. With

this in mind, the Pearson Type VIII distribution function

was written for these two portions of the curve and then

matched at a fictitious inflection point. The resulting

expression is given by

bm

P = P
S- Sr )-m S) a

f a
(3-3)

where P is the capillary pressure, Pf is the capillary

pressure at the fictitious inflection point, S is the

saturation, Sr the residual saturation, m the shape factor

of the retention curve and therefore a pore-size distri-

bution parameter of the medium, and a and b are the domains

of saturation separated by the fictitious inflection point.

Figure 1(A) shows a typical soil-water retention curve and

gives the definitions of the symbols in Equation (3-3)

graphically. It can be seen from Figure 1(A) that the sum

of a, b and Sr must equal unity, i.e.,

a + b + Sr = 1.0 . (3-4)
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Figure 1. Definitive retention curves depicting the relationships of the
parameters in the theoretical retention function.
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Therefore, the only constants needed to define the soil-

water retention curve are a, b, m and Pf. Since the sum

of a and b is the domain of saturation that is of greatest

concern to engineers in the fields of irrigation, drainage

and hydrology, the theory will be confined to this domain.

It is worthwhile recalling the definition of effective

saturation, Se, given by Corey (1954), i.e.,

S - S
r

S
e 1 S

r

(3-5)

When S
r

is replaced by a and b by use of Equation (3-4),

one may transform Equation (3-5) into

S (1 a b)
Se a + b

(3-6)

and thus exclude the immobile water content from considera-

tion. This is expedient because the water content below

residual saturation is believed hydraulically insignificant.

By making use of Equation (3-4) and Equation (3-6), Equation

(3-3) becomes

P = Pf

bm
-m a

S
e

1
e

a

a + b
b

a + b

By using new notation defined as

P

S - S
r

= S = S
es P

f
'

S.
1 S

r
'

a.

(3-7)

and b.
a + b

ab
b '

(3-8)



Equation (3-7) becomes

Ps

with a. +

S.
-m

= 1.0.

1 - S.

b.m
a.

( a.

b.

b .

(3-9)
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Equation (3-9) may be transformed into an expression in

terms of the ratio of b. to a.

Hence

S. ( 1 + b
a.

-m
(1 - s.) (1 +

b.m
a.

. (3-10)

So far, the constants in Equation (3-3) or (3-10) do not

convey any physical significance. It should be emphasized

here that the fictitious inflection point which is used to

define a and b should not be mistaken for the true inflection

point of the retention curve. In Figure 1(B) the true

inflection point is defined along with the domains of

saturation associated with the inflection point. The "A"

domain of saturation corresponds to the upward concavity

while the "B" domain corresponds to the downward concavity

of the retention curve. To find the real inflection point,

Equation (3-10) must be differentiated twice and equated to

zero. The operation brings about a quadratic equation,

f(S.) = 0 or
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bm
- (1 + a ) S.

2
- 2(1 + m - am) S. + (1 + m) = 0 .

a

(3-11)

The solutions of Equation (3-11) are given by the quadratic

formula, i.e.,

S.

(1 + m 1-2-11) ± (1 + m bm)
a a (3-12)
ba) barn)

In light of the physical constraints, the roots cannot be

imaginary. This requires the discriminant of the quadratic

equation be positive or zero. Based upon experimental data,

the inflection point nearly always lies within the bounds

of saturation, 0 < S. < 1. The possibility that the dis-

criminant may be equal to zero can be eliminated. The most

important solution of Equation (3-11) is the one where the

roots are real and unequal. The following will further show

that there is only one appropriate solution to Equation

(3-11) .

According to the definitions of a and b, it is obvious

that t > 0. Since the discriminant of Equation (3-12)
a

should be greater than zero, it follows that (1 + m
ba

)>0.
a

Then,

)112.
(1 + m am) > 0 >

tam)
(1

+ Ill )
a a a



By adding (1 + m al) to the members of the above in-

equality, one has

(1 m
a
bm

Now, if (1 - >

bm
(1 + m - )

(1 -

Next, if (1
a

bm
(1 + m - )

0,

>

>

<

(1 12)(1
a

1.

0.

1

then

+ -m
a

1 -I-

bmm _)

(1

< 0,

+ m

then
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+ m -
a

).

(3-13)

(3-14)

The left-hand members of inequalities (3-13) and (3-14) are

one of the two roots of Equation (3-11), but their values

transgress the physical bounds of S.. Therefore, the only

valid solution having physical significance is

(1 + m
bfil

a
)

bm)
(1 + m -

S

(1
a)

(1 + in
bm

)
a

(3-15)

where. S . is the effective saturation at the true inflection
.1

point of the retention curve. To find the unscaled satura-
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tion at the inflection point, Equation (3-6) is used. Thus,

S.=(a + b)

bm) b b bm)
a a V a a

+ 1
(1 (1 + m 111-11-1.)

(3-16)

is the expression for the unscaled saturation at the in-

flection point. For the value of the capillary pressure

P. corresponding to Si, Equation (3-3) is recalled and

Si is substituted for the independent variable S. Thus,

where

-m
p. := p

f
(1 +

)
(1 - H)

bm

(1 + -) H a

H = V (1 m -a--) (1 m

bm

-a--)

bm

(I
)

(1 + - 12)
(3-17)

It is postulated from statistical standpoint that Si may be

the critical saturation beyond which the air phase becomes

discontinuous on the imbibition branch because the frequency

of pores is maximum at the inflection point of the retention

curve. In other words, it is quite possible that the air

phase may become blocked and isolated as the liquid phase

invadesamdfinsthoseporesreLatedtoP.,which possess

the most significant amount of pore volume in the porous
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medium. On the other hand, as the liquid phase leaves those

pores having greatest frequency, the air phase may first

become continuous and potentially mobile. This phenomenon

was in effect observed and pointed out by White (1968). The

verification of the above postulate of Pi and Si should be

of paramount importance to drainage engineers inasmuch as

aeration of soils may be defined in terms of soil proper-

ties.

Regarding the above presentation, it is noteworthy

that the constants in Equation (3-9) are hydraulic pro-

perties of the media and each of them is physically signi-

ficant. This complete retention function makes possible the

study of the retention of fluids in porous media for both

the imbibition and drainage branches of the retention curve.

B. Permeability Function

Based upon the review of functional forms suitable

for computing the permeability of porous media given in

Chapter II, the equation of Burdine [Equation (2-20)] was

found to have several advantages over the others. These

advantages include: (1) its demonstrated accuracy is at

least equal or better than other computational schemes,

and (2) relative permeability may be expressed by a simple

mathematical form. The latter advantage makes it possible

to arrive at an analytical expression for relative perme-
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ability, which is as accurate as the Burdine integrals,

provided an accurate retention function is available and

it can be integrated. Of course, if the retention function

does not represent the true retention relationship, the

permeability function will be in error accordingly. The

work of Brooks and Corey is an example of what has been

done in this regard. It will be assumed in this thesis

that the Burdine integrals are adequate and that if the re-

tention function accurately represents the retention of

water in soils during drainage, the permeability obtained

from the retention function will be as accurate as the

Burdine integrals themselves. The result of inserting the

retention function proposed herein, i.e., Equation (3-9),

into the Burdine integrals, Equation (2-20), to obtain the

ratio of partial hydraulic conductivity to the total

hydraulic conductivity (or relative permeability) is given

below.

Recalling Equation (2-20) and the definition of re-

sidual saturation, the Burdine integrals are transformed

into

o 1/(ps)2 dSe
k
r

= (Se) 2 1/(ps)2 dSe
(3-18)



41

The transformation to the definition of effective saturation

implies that the water in the soil at saturation less than

S
r

is immobile or that the permeability at S = S
r

is zero.

Substituting Equation (3-9) for Ps in the integrands

of Equation (3-18) gives

S
e

_2bm

Jo
1/(P

s
) 2 dS

e

e af (Se) )2m (1 - Se) dS
e

/1 1/ (Ps) 2 dS_ f -2bm

e 0 (Se) 2m (1 - Se) a dSe

. (3-19)

The denominator on the right-hand side of the equal sign

is a definite integral whose value is readily expressed in

terms of the Beta function, i.e.,

1 -2bm

(Se) 2m (1 - Se) a dSe = 3 (2(2m + 1,
-2bm

+ I)
a

(3-20)

The numerator can also be expressed in terms of the in-

complete Beta function, i.e.,

r
S
e

-2bm

(Se) 2m (1 - Se) a dSe
Jo

-2bm(2m + 1,
-

+
a

(3-21)
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The relative permeability as a function of effective

saturation is obtained by combining Equations (3-18) and

(3-19) with Equations (3-20) and (3-21), i.e.,

Since

(2m + 1,
-2bm

+ 1)
a

e
kr = (Se )2

2m + 1 + 1
- 2 1)111

. (3-22)

, a
)

-2bm(2m + 1, + 1)
/3S a

Irq (2m + 1,
-tam

+ 1) (3-23)
-2bm a

+ 1)p (2m + 1,
a

where IS is the incomplete Beta function ratio with its
e

arguments given in the parentheses (Abramowitz and Stegun,

1970), Equation (3-22) becomes

k
r = (Se) 2 IS (2m + 1 am-2

a
+ i)

e

(3-24)

Of course, if absolute rather than relative values of

permeability are desired, one may use the equation,

k = k1 (Se) 2 /S( 2m + 1
-2bm

+

e
a

(3-25)
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where k1 and k are respectively the total permeability and

partial permeability for any given saturation in the interval,

1 > S > S
r*

Similarly, for partial hydraulic conductivity,

one may substitute the partial hydraulic conductivity, K,

for partial permeability and the total hydraulic conduc-

tivity, K1, for the total permeability and Equation (3-25)

becomes

K = K1 (5e)2 IS (20, + 1,
-tam

a
+ 1)] (3-26)

e

C. Diffusivity Function

In a soil water-air system, it is generally acceptable

to regard the pressure of air everywhere in the porous

medium as a constant being equal to the atmospheric pressure.

It is also possible to ignore the flow of air because of

its relatively low resistance due to its low viscosity.

With these in mind, Darcy's law may be written in terms of

the pressure of water to describe the flow in partially

saturated media, i.e.,

(71
= -K V w

z
Y

(3 -27)
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where q is the volume flux, K is the partial hydraulic

conductivity, V is the vector differential operator, Pw

the pressure of the soil-water, y the specific weight of

water and z is the elevation above an arbitrary datum.

Combining Equation (3-27) with the equation of continuity,

yields

V -K V
Pw
(7 + z

(3-28)

(3-29)

where 0 is the porosity of the soil, S is the saturation

and t is the time. Equation (3-29) is called the Richards'

equation named after its originator (Richards, 1931). If

Pw
is a single-valued function of S, then

Irp

P
w

a
la

V(--
9

vs
S

and Equation (3-29) may he written as

V

P
-1D -H

as
9K m aS

VS
Bz at

(3-30)
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(3-31)

(3-32)

is known as the soil-water diffusivity (Klute, 1965) or

here to be designated as the diffusivity function, and

Equation (3-31) is called the diffusion equation for flow

in partially saturated media.

If the specific weight of water is removed from the

differential operator, the diffusivity function, Equation

(3-32), becomes

913
D =

K
, where P = -P

w

Differentiating Equation (3-3) with respect to S and sub-

stituting into the above produces

D = K
P
f m

- S
r

-y a a

s".4311 I

bm
' a

1 S a b
(3-33)S - S

r
1 - S

which when combined with Equation (3-26) becomes

D = K1 (Se)2

bm
S-S 1-m'

ISe (2m+ 1, 11 f m r 1-S+1)] ( a-21 ( a

r
+113-Sa Y a a S-S

(3-34)
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CHAPTER IV

CRITERIA OF AFFINITY FOR POROUS MEDIA

There are two recognized approaches to establishing

similitude criteria for flow fields. One approach, called

dimensional analysis, transforms the original variables into

a set of similarity numbers which are dimensionless. These

numbers are subsequently used to determine the size of the

model. The second approach which is called inspectional

analysis requires that the differential equation describing

the flow field be known. By transforming the differential

equation into one that is dimensionless or scaled, a set

of standard units of scaling is obtained. If the trans-

formation procedure is properly followed, the differential

equation will yield identical particular solutions for two

flow fields provided the initial and boundary conditions in

terms of scaled variables and the relationships among the

scaled variables are identical. Actually, any set of

standard units may be chosen; however, a set that is physi-

cally meaningful and measurable is highly desirable.

In the porous medium flow field, the second approach is

to be applied for establishing proper criteria. Two porous

media are said to be affine if the relationships among

scaled hydraulic variables, e.g., capillary pressure,

hydraulic conductivity, diffusivity and saturation are

identical. Furthermore, two flow fields are said to be
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similar if there is affinity between the porous media,

their initial and boundary conditions in terms of scaled

variables are identical, and there is similarity between the

size and orientation of the flow field.

The term affine is preferable to similar for describing

porous media since for affine media a transformation may

be used to produce identical scaled relationships among

the hydraulic variables even though the media may not, in

a physical sense, appear geometrically similar.

The requirements of affinity for porous media are

deduced in this section by scaling the relationships among

the hydraulic variables.

A. Scaled Hydraulic Functions

1. Scaled retention function

Since the water content related to saturation less

than the residual is assumed to be immobile, the saturation

may be normalized so that the immobile water is excluded

from consideration. This may be accomplished by using the

concept of effective saturation and residual saturation

introduced by Corey (1954), i.e.,

S S
r

S.
1 Sr

(4-1)
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where S
r

is the residual saturation and S. is the effective

saturation.

The two domains of saturation associated with the

fictitious inflection point have been denoted as a and

b where a = Sf Sr , b = 1 Sf , and S
f
is the saturation

at Pf. These two domains may be normalized to obtain their

scaled forms by way of the same normalization factor as

used for saturation, i.e.,

Sf Sr
a

a.
1 S

r
a + b

1 Sf
b

1 Sr a. + b

(4-2)

(4-3)

where a. and b. are the scaled domains of saturation as-

sociated with the fictitious inflection point.

Substituting Equations (4-1), (4-2), and (4-3) into

Equation (3-3), one obtains

or

--m
a.

P Pf
(. 1 S.

f b.

P = Pf (1 ÷ S.

-m
b.- m
a.

(1 + gt) (1 - S.) . (4-4)
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The P. at the actual inflection point of the retention

function appears more suitable as a standard scaling unit of

pressure than the pressure P
f
particularly when the function

is viewed in terms of a pore-size distribution function.

Therefore, the scaled retention function becomes

Since

P. =

P,
1

/7,7
c

P.

P.

b.
+ --)S.

a.'

b.
(1 + a.) (1 H)

m

-m

(1 + (1 - S . )

(1 + 112.-)H

-b.
-ma.

b.

-a7
m

(4-5)

(4-6)

where H is given by Equation (3-17), the scaled retention

function may be further simplified. Thus,

bm

S. -m 1 Sla
P. -(1 H) H

C4-7)

Equation (4-7) is completely defined in terms of m and

b/a. It is clear that any two porous media will be affine

provided they have the same values of m and the same ratios

of b. to a., or b to a. It is obvious from Equations (4-2)

and (4-3) that the scaled ratio of b./a. is identical to the

unsealed ratio of b/a.
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Apparently, only one additional affinity criterion is

required when the retention function is represented by a

continuous function beginning with P = 0, compared with that

specified by Brooks and Corey (1964) from their step type

function.

2. Relative permeability function

Inasmuch as the relative permeability function has

already been derived in Chapter III, it needs only to be

rewritten here in the dot notation. If k. is the ratio of

partial permeability to total permeability, then Equation

(3-25) can be rewritten as

_tamk. = (s.)2 (2mIS. 1,
-2a

+ 1) (4-8)

It can be seen from Equation (4-8) that any two soils with

the same values of m and the ratio b/a possess the same

relative permeability function. That is to say, any two

soils which fulfill the criteria of affinity set forth

previously from the retention function will behave similarly

also with respect to permeability or other dynamic rela-

tions.

3. Scaled diffusivity function

The definition of the diffusivity function is the

product of hydraulic conductivity and the slope of the

soil-water retention curve. The scaled form of the dif-
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fusivity function may be defined in the same manner as the

unscaled form except the definientia are now scaled variables.

Hence,

D. = -K.
DP
DS. (4-9)

where K. and P. are single-valued functions of S. By

differentiating Equation (4-7) with respect to S. and com-

bining the derivative with Equation (4-8), one obtains the

scaled diffusivity function

D. = (S.)2 -2bm
+ 3.)/s.(2m + 1,

a

m bm
a(1 S.)

b
-m

bm

( 1 - S. a

(4-10)

where H is given by Equation (3-17).

The scaling factor for the diffusivity may be deduced

from the scaled definientia in the scaled diffusivity

function. From Equation (4-9) and the definitions of K.,

P., and S., one has

D. =

d
P

K
P1 . (1(11)

)

K1 - Sr
K

dS

1 S
r

y (1 - Sr)

P.K1
1

(4-11)



Let the scaling factor for D be designated as Do. Then

and

Or

D.

Do

Do =

d( it)

-K
dS

P.K1
1

-y(1 - Sr)

P. K1

Y (1 Sr)

P.
1

K1

y (a + b)

B. Pore-Size Distribution Function

(4-12)

(4-13)

A generalized pore-size distribution function of the

porous medium can be derived from Equation (4-7). The

development begins with taking the first derivative of P.

with respect to S.. The result is

dP.
P

m a. b.

dS. a. 1 s. 1 - S. 1

(4-14)
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If it is assumed that a pore radius may be related to

capillary pressure by the relation
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P
20 cos a

r

where a is the coefficient of surface tension of the fluid,

a is the angle of contact between the fluid and solid

boundary and r is the radius of the pore, then

P. =
P. 2u cos a/r.
P

.2u cos a/r r
1

where ri is the radius of pores characterized by P.

Since

and

b.m
. P

P.

r
1 Pf (S.)-m (1 S a.

arP. .1 b. )

1

r

r.
1

b.m

Pf (S.) -m ( 1 - S.
a

)

P. .1
1

(4-15)

when Equation (4-6) is substituted into Equation (4-15),

one has

b.

a.m
1 r 1 - S.

r = ri(
H

(4-16)



Equation (4-16) may be scaled by dividing through by ri.

This produces

r.
H)-m( H )"

) 1 - S.)

where r. = r/r..

(4-17)
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Differentiating

yields

dr. m Cl HI

Equation (4-17)

b.

with respect

b.

to S.

(4-18)

of Equation

--m
-m

H )
a.

dS.

where H is

(a.
a. S. ) 1 S.) S.

(

given by Equation (3-17).

1 S.
)

The inverse

(4-18) in conjunction with Equation (4-17), is the gen-

eralized probability density function for pores. In other

words, the frequency of pores with a certain scaled radius

r. is represented by dS./dr.. It should be noted that the

probability density function of pores is completely defined

by a., b. and m. It is also evident that any two affine

media fulfilling the criteria set forth in the previous

section possess identical pore-size distribution functions.
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CHAPTER V

EXPERIMENTAL PROCEDURE

In general, it is time-consuming and tedious to obtain

retention curves by using techniques in which a pressure

difference is arbitrarily set across the capillary barrier

and the sample is allowed to equilibrate. This technique

is primarily used to obtain the drainage branch of the re-

tention curve. Furthermore, there are no well-established

techniques for acquiring the imbibition branch of the re-

tention curve. It is the second objective of this thesis

to develop a rapid technique for measuring both the drainage

and imbibition branch of the retention curve on disturbed

soil samples. Such measurement techniques will not only

permit the theories already presented to be tested but they

will be valuable to researchers interested in obtaining

the hydraulic properties of soils quickly.

The equipment pertaining to the procedure consists of

four parts: 1) the retention cell that includes a capillary

barrier, 2) a capillary tube-burette apparatus for deter-

mining equilibrium and the volume of liquid drained, 3) a

vacuum-pressure regulator, and 4) manometers for pressure

readings. A photograph of the equipment and its schematic

arrangement are shown in Exhibit 1 and Figure 2.
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Exhibit 1. Apparatus for obtaining retention data.
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Figure 2. Schematic of the apparatus for obtaining
the retention data.
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To avoid the so-called boundary effect, the retention

cell consists of the end of a ceramic candle that is in-

stalled in a recessed block of acrylic plastic. The

ceramic was completely sealed into position by epoxy. A

pressure tap was installed in the plastic block in order

to connect the wetting fluid to the capillary tube-burette

apparatus. After soil was packed uniformly into the ceramic

candle, the entire cell was vacuum-saturated to exclude air

from the soil pores as well as from the capillary barrier.

In some cases, the samples were brought to maximum satura-

tion by submerging the cell with soil sample into the wetting

fluid for several hours.

After saturating the soil and the capillary barrier

by either of the two procedures described above, the re-

tention cell was connected to the capillary tube-burette

apparatus through a semi-rigid tube that had been filled

with liquid while the vacuum-pressure regulator was set at

zero pressure (gage). By setting the top of the cell at the

same elevation as the zero volume mark on the burette, a

liquid-air interface was established in the burette and

capillary tube at that mark.

The elevation of the interface in the capillary tube

could be measured by the attached meter stick shown in

Exhibit 1. The capillarity of the tube was 1.0 cm. The

specific volume of the capillary tube was 0.0174 cm3 per
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cm of length. Both the burette and the capillary tube were

connected jointly to the vacuum-pressure regulator. Liquid

could be drained from the soil by increasing the pressure

difference across the interfaces in the burette and the

capillary tube. The volume drained at any particular

capillary pressure in equilibrium was equal to the volume

in the burette plus the product of the height of the inter-

face in the capillary tube above the zero datum and the

specific volume of the capillary tube.

The procedure that was followed to obtain the drainage

branch of the retention curve was to create a pressure dif-

ference across the interface in the burette by the vacuum-

pressure regulator. After a specified volume had drained

into the burette from the soil, the burette valve was closed

and the interface in the capillary tube was noted. The

pressure difference across the interface was then reduced

so that the interface remained stationary in the capillary

tube. If the pressure difference across the interfaces in

the soil pores were not in equilibrium with the pressure

difference across the interface in the capillary tube, flow

would occur either into or from the sample. Since the

specific volume of the capillary tube was small, equilibrium

conditions could be easily detected. Care was taken during

the experiment on the drainage branch to insure that the

wetting fluid always drained away from the soil into the
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burette or the capillary tube. Because the capillary

tube-burette apparatus was mounted in a vertical plane, the

pressure difference across the interface for non-equilibrium

condition which would cause liquid to move in the capillary

tube was automatically adjusted (decreased) by the rising

interface in the capillary tube. This combination of manual

and automatic adjustment of the pressure difference across

the interface of the small capillary tube greatly decreased

the time required to obtain the retention data.

After true equilibrium was reached, the elevation of

the interface in the capillary tube and the liquid volume

in the burette were noted. The capillary tube valve was

then closed and the pressure was decreased (or the pressure

difference increased) through the vacuum-pressure regulator

by an arbitrary amount. The burette valve was then opened

and followed by the opening of the capillary tube valve.

The procedure for equilibrium was repeated for each drainage

volume. Of course, the time required to determine true

equilibrium increases progressively after each increment of

drainage. Care must be exercised in allowing sufficient

time for determining the movement of the interface in the

capillary tube to be certain of equilibrium.

When the saturation of the soil sample had been reduced

to that corresponding to the steep portion of the drainage

curve, the imbibition branch of the retention curve was
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started. The burette was not used any longer. A given

volume of liquid was added to the soil surface by use of

micrometer pipette. After the liquid was added to the soil

surface, the air pressure in the capillary tube was in-

creased to prevent drainage from occurring, but not suf-

ficient enough to cause a large volume of liquid in the

capillary tube to retreat toward the soil. Pressure readings

in equilibrium were obtained in a manner similar to that for

the drainage branch. Flow under non-equilibrium conditions

always moved into the sample. Equilibrium conditions for

imbibition were always reached much more rapidly than for

drainage.

After the equilibrium at zero capillary pressure,

another drainage branch was started. Once one or more

branches of the retention curve have been obtained, the

sample was removed from the retention cell. To prevent any

flow from occuring during the removal of the sample, the

main valve for the capillary tube-burette apparatus was

closed. The soil was weighed, dried in the oven, and

weighed again in order to determine the total pore volume or

the apparent pore volume.
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CHAPTER VI

RESULTS AND DISCUSSION

In this section the retention function will be fitted

to the experimental data obtained by the procedure pre-

viously discussed as well as fitted to published data found

in the literature. These data include both the drainage and

imbibition branch of the retention curve.

The hydraulic properties of porous media for affinity

from the retention curve will be discussed and also their

effect upon permeability, diffusivity and pore-size dis-

tribution. The retention function will be used as a base

for the discussion on the mechanism pertaining to air en-

trapment during imbibition.

A. Determination of the Parameters of the

Retention Function from Retention Data

Regardless of how well a function may fit experimental

data, if the parameters in the function are difficult to

obtain, the function may well be only of academic interest

and probably will not be very useful. However, if the para-

meters are easy to assess and have physical meaning, the

function will have great utility.

In order to obtain the parameters for the retention

function developed in this thesis, a method was derived to
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force the function to go through four experimental data

points since four parameters are needed to define the

function, i.e., a, b, m, and Pf. Theoretically, the para-

meters may be found by solving a system of four simultaneous

equations formed by four pairs of P and S values. The

solutions of these equations depend upon not only the

accuracy of the experimental data but also upon the cri-

terion established for convergence in solving the system of

equations. Strictly speaking, the four-point forcing method

is not the best one to use because of the constraints

imposed. Of course, methods of nonlinear regression analysis

are superior to the forcing method since they can take more

data into account and obtain a best-fit through experimental

data. Unfortunately, no efficient method of nonlinear

regression analysis has been found. It is interesting to

note, however, that little or no difficulty has been ex-

perienced in finding the parameters by the forcing method

for all the retention data that have been analyzed. This is

regarded as a strong evidence of the exactness of the

retention function. The selection of the four pairs of P

and S values should be made in such a way that they cover a

wide range of saturation, and unreliable data are excluded

from consideration.

The derivation of the equation used to determine the

parameters by the forcing method is given in Appendix B.
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A Fortran program was written to solve the nonlinear

equation through the teletype time-sharing conmmunication

system with a CDC 3300 computer. The computer program and

an example of the teletype print-out are shown in Appendix

C. The criterion for convergence was set as 10 -10
in the

program.

The most efficient way of determining the four best

data points to be used in the program is to plot the data

and draw a best-fit-by-eye smooth curve through the data

points. Those points that fall precisely on the curve are

first choice. If the system fails to converge, one or more

other data pairs are substituted for those initially used.

In addition to selecting four pairs of data for use in

the forcing program, an initial guess of residual saturation

must be made. Convergence of the numerical scheme is re-

latively insensitive to the initial guess. If the raw data

are plotted and extend over the steep portion of a curve

passing through the data, the first guess of residual

saturation will be close to its final value.

B. Comparison of the Retention Function

with Experimental Data

In all cases, the fitness of the theoretical retention

curve to the experimental retention data was excellent no

matter whether the data were from experiments on the im-



bibition or drainage branch. The function also fits ex-

perimental data of either vacuum-saturated or apparently

saturated samples. The apparent saturation is defined as

volume of liquid in the pores divided by the total pore

volume less volume of air entrapped in the pores at zero

capillary pressure. In other words, the entrapped air is

treated as part of the solid matrix of the porous medium.

Thus,

Apparent saturation Volume of liquid

Total pore -

volume

65

Volume of entrapped air
at zero capillary

pressure

The definition of apparent saturation is probably a more

realistic one for field situations since the soil profile in

a field is not likely to be exclusively filled with liquid.

If the total pore volume of the medium is used as a base,

Equation (3-3) needs to be modified in order to describe the

imbibition branch which ends at a saturation less than

unity. The retention function should be written as

P =
pf

'S S
r

-m
bm

'S
m

a

(5-1)
a b

with Sr + a + b = S
m'

where S
m

is the maximum saturation at

which the capillary pressure is zero on the imbibition

branch. It should be noted that Equation (5-1) is essentially
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the same as Equation (3-3) except the domain of saturation

is changed from unity to a smaller value. Illustrations

comparing the theoretical or computed retention curve with

experimental data for the imbibition branch are given in

Figure 3, where the dots represent the experimental data

while the lines represent theoretical curves. Figures 3(A)

and 3(C) are for two sands, where capillary pressure head is

plotted against saturation. Figures 3(B) and 3(D) are for

the same sands but plotted as functions of apparent satura-

tion. It is noteworthy that the values of m, Pf and the

ratio of b/a are identical for both definitions of satura-

tion.

In Figure 4 the theoretical curves are compared with

experimental data obtained from samples that were initially

vacuum-saturated before drainage was started. After the

last data point was obtained for drainage, the imbibition

branch began. The wetting fluid used to obtain the data in

Figure 4(A) was water while that in Figure 4(B) was oil.

The theoretical curves are in excellent agreement with the

experimental data. The data for these figures and others

shown herein are tabulated in Appendix D along with the

parameters of the retention function. Figure 5 shows the

theoretical curves and experimental data for the imbibition

and drainage branch where maximum saturation is less than

unity. The agreement between theoretical curves and the

experimental data is also excellent.
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Figure 3. Comparison of the theoretical (or computed)
retention curves with retention data of two
media, where the dots represent measured values.
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C. Comparison of the Permeability

Function with Experimental Data

According to the derivation in Chapter III, perme-

ability may be calculated from the pore-size distribution

parameters obtained from the retention function. No attempt

has been made to measure permeability for the purpose of

verifying the Burdine integrals. However, the theoretical

relative permeability computed from Equation (3-24) has been

compared with published experimental data in which capillary

pressure retention curves are available.

A comparison of theoretical and measured relative

permeabilities is shown in Figures 6 and 7 where relative

permeability is plotted as a function of saturation. The

measured data are presented as points while the computed

values are represented by a solid curve. The retention

curves are shown adjacent to the permeability curves. The

samples were obtained from consolidated petroleum reservoir

rocks. The retention data were acquired by the mercury

injection method commonly employed by petroleum reservoir

engineers. The agreement between measured and computed

permeability values is reasonably good. In the case of

core G-1, the permeability is underestimated while for

core G-4, the permeability is over-estimated, even though

the retention function fits the retention data almost

exactly.
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D. Physical Significance of the Parameters

of the Retention Curve

1. The inflection point

The fictitious matching point with the coordinates

(Pf, S
f

) should not be mistaken for the real inflection

point of the retention curve. The location of the inflection

point depends upon the values of a, b, and m. More pre-

cisely, the abscissa of the inflection point can be cal-

culated through Equation (3-16), and the ordinate through

Equation (3-17).

The capillary pressure, Pi, and the saturation at the

inflectionpoint,S.,are regarded as very significant

properties of the porous medium. Although the physical

significance of the saturation at the inflection point has

not been studied in this thesis, it may be the critical

saturation at which the non-wetting phase becomes continuous

or discontinuous. Based upon the work done by White (1968)

dealing with media having narrow pore-size distributions,

this postulate appears to be valid. The rationale for this

postulate may be developed through the consideration of the

poresizeassociatedwithP.bytherelationr-=WPi,

inwhichr.is the radius of the pores, and o is the surface

tension of the wetting fluid. The frequency of ri is the
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greatest of the entire spectrum of the pore-size distri-

bution. That is to say, the number of pores with the radius

ri is maximum. In view of the interconnectivity of pores,

one may infer that this group of pores possesses the greatest

potentiality of blocking the non-wetting phase on the im-

bibition barnch, because pores of this size are scattered to

the greatest extent throughout the medium. When the wetting

phase occupies these pores, the non-wetting phase becomes

discontinuous. On the other hand, when the wetting phase

drains from these pores, their interconnectivity provides

the first possible continuous path for the non-wetting

phase.

Figure 8 shows the scaled retention curves and the

scaled pore-size distribution curves for the drainage branch

of two different media. The inflection points of the

retention curves are located at P. = 1 where P. is the

capillary pressure scaled by the respective Pi. It is clear

from Figure 8(B) that the pore associated with P. = 1 is the

mode of the pore-size distribution.

Since P./i is the characteristic scaling length for

modeling, it is important to recognize that is is always

finite.
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Figure 8. Scaled saturation and scaled frequency of
pore sizes as functions of scaled capillary
pressure for two media with widely different
pore-size distributions.
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2. The boundary effect of the retention cell

For soils that have a very narrow range of pore sizes,

e.g., sands, as the capillary pressure is increased and the

capillarity of the boundary is broken, the fluid at the

boundary floods some of the interior pores that have already

drained and causes imbibition to occur. The phenomenon has

been explained in the recent work of Corey and Brooks

(1975). The boundary effect upon the "B" domain of satura-

tion or the downward concavity of the retention curve is to

make it steeper than it would be if the liquid at the

boundary drained in the same manner as the interior portions

of the soil. In other words, if the boundary effect was not

present, the slope of the retention curve would be less

steep and the downward concavity would be more pronounced.

Of course, the degree of the drainage retardation at the

boundary is proportional to the area of the non-porous

surface of the retention cell and inversely proportional to

the drainable porosity.

The effect of the boundary upon the parameters of the

retention function may be eliminated by simply ignoring

those data in the "B" domain of saturation. The parameters

of the retention function can be easily obtained by using

data solely from the "A" domain of saturation. The curves

computed for the data shown in Figure 9 were obtained



S

(B)

Crab Creek Sand

.2 .4 .6
S.

.8

Figure 9. Comparison of the theoretical (or computed) retention curves with retention
data on the first drainage branch, where the theoretical curves were deter-
mined by using the four data points indicated by solid circles.



78

in that manner. Under conditions in which apparent initial

saturation is involved, there is no boundary effect upon the

"B" domain of saturation.

In particular, the "B" domain of saturation is affected

by the type of retention cell used to obtain the data. A

cell in which the capillary barrier is located only at the

bottom of the sample may influence the "B" domain of satura-

tion if the soil sample is initially vacuum-saturated. The

effect is particularly pronounced on fine textured media,

and is due to the small space between the non-porous surface

of the cell and the soil. At the early stages of drainage,

liquid progressively drains from the soil surface as air

begins to intrude farther and farther into the interior of

the soil. During this period of drainage, the boundary

remains saturated as observed through the clear acrylic

plastic. This phenomonon leads one to believe that if the

liquid at the boundary is free from retardation at the early

stage, there should be more liquid drained away from the

sample.

E. Effect of the Pore-Size Distribution Parameters

Upon the Retention Function and the Probability

Density Function of Pores

The parameters m and b/a are designated as pore-size

distribution parameters. It is only when b/a = 0 that m may
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be referred to as a pore-size distribution index. When

b/a = 0, the retention function reduces to the step type

function proposed by Brooks and Corey (1964) and m is the

reciprocal of their index. However, when b/a is not zero,

the relationship between the Brooks-Corey pore-size dis-

tribution index and m is lost and the pore-size distribution

becomes a function of b/a and m. In other words, pore-size

distribution cannot be expressed in terms of a single

parameter since both b/a and m affect the distribution

frequency of pores.

The effect of these two pore-size distribution para

meters upon the retention function and the probability

density function of pores is shown in Figures 10 and 11.

In Figure 10(A) scaled saturation is plotted as a function

of scaled capillary pressure while in Figure 10CB) the

derivatives of the curves in Figure 10(A), i.e., dS./dP.,

are plotted as functions of scaled capillary pressure. The

derivative of S. with respect to P. is not precisely the

probability density function of pores defined in Chapter IV,

but is related to dS./dr. by the relation dS./dr. =

P.2 IdS./dP.I. The magnitudes of either derivative is not

particularly meaningful except they are indications to the

frequency of pore sizes and the area under the curves

of dS./dr. vs r., and dS./dP. vs P. are equal to unity. The

derivative dS./dP. is more useful when plotted on the same
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abscissa as that for the scaled retention curve shown in

Figures 10 and 11. The utility of this type of probability

density function will become apparent in subsequent dis-

cussions. Figure 12 shows the relative position of the

curves of dS./dr. vs r., and dS./dP. vs P. with the same

values of m and b/a.

In Figure 10(A), b/a = 0.25 is held constant while m

varies from 0.5 to 2.0. Obviously the value of m greatly

affects the shape of the retention curve. In Figure 10(B),

for m = 0.5, the maximum frequency of pore sizes (dS./dP. =

max.) at P. = 1.0 is far greater than that for m = 2.0.

Since the areas under the pore size frequency curves must be

equal to each other and to unity, it follows that the curve

for m = 2.0 must extend over a far greater range of values

of P. than that for m = 0.5. Hence, the curve for m = 2.0

covers a wider range of pore sizes than that for m = 0.5.

It is clear that when b/a is constant, m is a measure of the

distribution of ,pore sizes. When m is large, the distri-

bution of pores covers a wide range, while for small values

of m the distribution of pores covers a narrow range. The

greatest frequency of pore always occurs at P. = 1.0.

Figure 11 shows the effect of the other pore-size dis-

tribution parameter, b/a, upon the retention curve and upon

the frequency of pores. In Figure 11(A) where scaled satura-

tion is plotted as a function of scaled capillary pressure,
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m = 0.5 is held constant and b/a varies from 0 to 0,75.

Since m is the same for all curves, the shapes of the

retention curves are nearly alike. The downward concavity

of the curves increases as b/a increased while the upward

concavity decreases as b/a increases.

In Figure 11(B), the maximum frequency of pores is

greatly reduced as b/a increases from 0 to 0.75. The family

of curves in Figure 11(B) is similar to the family of curves

in Figure 10(B). Apparently this pore-size distribution

parameter, b/a exerts a similar effect upon the maximum

frequency of pore sizes as does m. Yet, it does not seem

to be very apparent from the cursory observation of the

retention curves. If one compares the retention curve with

b/a = 0 and b/a = 0.25 in Figure 11(A), these curves seem

to become nearly coincident at scaled saturation of 0.55.

If one assumes that the curve with b/a = 0 (step type

function of Brooks and Corey (1964)) approximates the curve

with b/a = 0.25, the permeability of the media would be

greatly overestimated by the approximate function according

to the maximum frequencies of pore sizes shown in Figure

11(B).

F. Effect of the Pore-Size Distribution

Parameters Upon Permeability and Diffusivity

The effect of m and b/a upon permeability and diffusivity
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is shown in Figures 13-16. In Figure 13 relative perme-

ability is plotted as a function of scaled saturation for

b/a = 0.25 and m varies from 0 to 1.5. The envelope curve

in this figure is the one with m = 0 which reduces the

permeability function to k. = (S.)3. As m increases in

value, there is a precipitous change in the relative perme-

ability.

A similar change in permeability occurs when the other

pore-size distribution parameter, b/a, increases as shown in

Figure 14. Here, the envelope curve is the one with b/a = 0

which reduces the permeability function to the Brooks-Corey

2m+3
permeability function given by k. = (S.) . As b/a in-

creases from zero to 0.75, the permeability is greatly re-

duced at high saturation.

In Figures 15 and 16, scaled diffusivity is plotted

as a function of scaled saturation. In Figure 15, b/a = 0.25

is held constant as m varies from 0.5 to 2.0, while in

Figure 16, m = 0.5 is held constant as b/a varies from zero

to 075.

Figure 15 shows the smaller the value of m, the more

steep the slope of the diffusivity curve becomes for all

values of S. The diffusivity is finite for all values of S.

when b/a = 0; however, when b/a = 0.05, the scaled dif-

fusivity becomes infinite as S. approaches unity as shown in

Figure 16.
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Due to the fact that the retention function takes into

account the downward concavity of the retention data, the

derivative of P. with respect to S. becomes infinite as S.

approaches unity. When b/a and m are small, the value of

diffusivity may be very large near unit saturation. This

has been an insurmountable difficulty in the solution of

boundary value problems by numerical schemes that have been

written in terms of diffusivity and the theoretical functions

proposed herein.

G. Hysteresis and Air Entrapment

The hysteresis envelopes for two soils are shown in

Figures 17 and 18 where scaled saturation is plotted as a

function of scaled capillary pressure. The drainage branches

were obtained from soils at apparent initial saturation,

i.e., the air entrapped at zero capillary pressure is

regarded as part of the solid matrix of the porous media.

The capillary pressures for both branches of the retention

curvewerescaledbytheP.of the drainage branch of the

respective soil.

Directly below the retention curves, based on the same

capillary pressure scale for the abscissa, the frequency of

pore sizes is plotted for both branches of the retention

curves. Since the total areas under each of the pore-size

frequency curves must be identical, the area CDE must be
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Figure 17. (A) Theoretical scaled retention curves
forming the hysteresis envelope and

(B) the scaled frequency of pore sizes
as a function of scaled capillary
pressure for the hysteresis enve-
lope shown in (A).
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equal to the area ABC in Figures 17(B) and 18(B). The area

CDE represents the total volume of air entrapped as the

medium undergoes imbibition down to the particular capillary

pressure related to the point C. In other words, the

maximum air entrapment occurs at the capillary pressure

related to the intersection of the two pore-size frequency

curves. At that capillary pressure indicated by point C,

the entrapped air begins to move out of the medium. Con-

sequently, the amount of the remaining entrapped air in the

medium is reduced until the value of P. equal to zero is

reached. The value of P. at the intersection C is always

lessthantheP.of the drainage branch and greater than the

P. of the imbibition branch.
1

H. The Concept of Energy

The area under the retention curve may be used to re-

present the energy stored in the liquid phase at a certain

degree of saturation. Assuming the pressure of the air

phase is zero, one can regard the capillary pressure as the

pressure of the liquid phase. The dimension of pressure is

(Force)/(Length)2 and the definition of saturation is

(Volume of liquid)/(Total pore volume). Therefore, the

product of pressure and saturation has dimensions of

(Energy)/(Total pore volume). Thus, energy stored in the

liquid phase at a certain saturation is
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E = V
S.

P.(S.)dS.,

where V
t
is the total pore volume. Similarly, if the de-

pendent and the independent variables are interchanged, the

area under the new S.-P. curve still represents energy per

total pore volume. Hence, energy stored in the liquid

occupying pores smaller than a given size is

E = V JIP. S.(P.)dP.

It is postulated from an energy viewpoint that as

liquid leaves the pores from an initial saturation of unity,

the energy of the liquid decreases. The energy of the

liquid is near its minimum value as residual saturation is

approached. If some liquid is added to the pores, the

energy of the liquid in the pores is increased.

In Figure 18(A), as liquid is added to the pores to

increase the pressure to a point denoted by G, (point of

maximum air entrapment), the volume of liquid in the pores

is less than it was for the same pressure on the drainage

branch. The difference in saturation is given by FG and

must be due to the presence of entrapped air. The entrapped

air will be at a pressure greater than zero and possesses

energy. Therefore, the air obtained its energy from im-

bibition. Consequently, when energy is added to the medium
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by adding liquid, part of the energy is utilized to trap

air and part goes into the liquid itself. The difference in

area under the drainage and imbibition branches of the

retention curve, i.e., area EFG in Figure 18(A), represents

the energy required to entrap the maximum volume of air.

As additional liquid is imbibed into the media, the volume

of air entrapped decreases. This implies that air is being

expelled. As air is expelled into the atmosphere, energy

is returned to the liquid. The liquid increases its energy

until it reaches the same energy level as it possesses

on the drainage branch at P. = 0. Therefore, the area AFG

must be equal to the area EFG as the energy released from

expulsion of air is exactly equal to that required for air

entrapment based on law of conservation of energy.

The area EDC in Figure 18(B) represents the volume of

air entrapped as the capillary pressure is decreased while

area ABC represents the volume of air expelled from the

medium after the maximum air entrapment occurs at C.

The retention function and the probability density

function of pore sizes have made it possible to explain

the phenomenon of air entrapment during imbibition. It

now appears possible to explain the field method of

measuring "Air Entry Value" proposed by Bouwer (1966),

in which imbibition is allowed to occur under a completely

sealed circular infiltrometer. The pressure is measured
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when the first air bubbles enter the sealed chamber above

the soil surface. This pressure may indeed be the pressure

at maximum air entrapment, which is less than the capillary

pressure at the inflection point of the drainage branch of

the retention curve.



97

CHAPTER VII

CONCLUSIONS

A. Summary

Based upon the Pearson Type VIII distribution function,

a retention function which describes the retention of fluids

in porous media has been developed. The function was

verified experimentally and could accurately relate capillary

pressure to saturation on the drainage branch for porous

media either initially vacuum-saturated or apparently

saturated. In the latter case, the pores of the media are

filled with entrapped air as well as liquid as they are

found under normal field conditions at zero capillary

pressure. The function was also proved to precisely define

the imbibition curves for media with an initial saturation

near residual saturation or field capacity. However, no

attempt has been made to interrelate the two branches of

the retention curve, i.e., drainage and imbibition, except

the same descriptive terms are used for both.

The Burdine integrals are assumed valid for computing

the permeability of the porous medium from retention data

obtained in the laboratory. Since the retention function

developed herein precisely fits experimental data, the

permeability calculated from the permeability function based
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upon the Burdine integrals should fit the experimental data

precisely also. From the differentiable retention function

and the permeability function, a pore-size distribution and

a diffusivity function were further obtained.

An experimental apparatus and procedure have been

developed for expediting the acquisition of the retention

data on both drainage and imbibition branches in the

laboratory. The equipment is simple, and the procedure

is easy to follow and consumes less time than the con-

ventional methods.

The retention function possesses parameters which have

physical significance, and may be easily assessed from re-

tention data by the numerical method devised in this thesis.

The domain of saturation, A, from the saturation at the in-

flection point to the residual saturation is the one where

the retention curve is concave upward. In the domain, B,

from the saturation at the inflection point to the unit

saturation, the retention curve is concave downward. The

ratio of b/a and the value of m were demonstrated to be

pore-size distribution parameters. The quantity m is the

dominant factor governing the shape of the retention curve.

It is postulated that the saturation at the inflection

point, Si, is the critical point at which the non-wetting

phase becomes continuous on the drainage branch and dis-

continuous on the imbibition branch. From a statistical
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viewpoint, the critical saturation should correspond to

the mode of the pore-size distribution of the soil. Equa-

tions in terms of the hydraulic properties, a, b, m, and

Pf of the soil were derived to determine the values of the

critical saturation and its corresponding capillary pressure.

The criteria set forth for affinity between porous

media are similar to those previously established by Brooks

and Corey (1964) except the new criteria includes one

additional parameter. Two media are said to be affine if

the b/a ratios and the values of m are identical. The

standard scaling length for the external dimension of the

model was chosen to be the capillary pressure head at the

inflection point of the retention curve, i.e., Pi/y.

The effect of the downward concavity of the retention

curve upon the values of permeability and diffusivity was

demonstrated in this thesis. It appears that if the pore-

size distribution parameter b/a is ignored, the solutions

of boundary value problems involving imbibition may be

erroneous, particularly if the soil has a wide range of

pore sizes.

The use of the scaled retention and pore-size distri-

bution functions enables one to more rigorously examine and

further explore theories and hypotheses regarding water

movement in partially saturated media. For example, this

thesis presents a discussion on the phenomenon of air
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entrapment in porous media during imbibition through an

energy concept based upon the scaled retention and pore-size

distribution curves.

To the hydrologist, the major application of the

theories presented herein is the use of the hydraulic

functions of retentivity, permeability and diffusivity in

the general flow equation governing the movement and dis-

tribution of water in the subsurface of the watershed. With

these functions at hand, theoretical understanding of the

soil-water system in the watershed may be enlarged. However,

a paradox exists in which problems formulated in terms of

diffusivity cannot be solved by numerical schemes presently

available. Obviously, the difficulty arises from the fact

that the diffusivity becomes infinite as the saturation

approaches unity. Some problems of infiltration may be

solved by resorting to the step type function proposed by

Brooks and Corey (1964), which completely ignores the

downward concavity of the retention data and always has a

finite value of diffusivity. It should be noted, though,

that the solution therefrom may be greatly in error if the

downward concavity of the retention data is pronounced.

Secondly, the pore-size distribution parameters, m and b/a,

defined herein may be employed by hydrologists to charac-

terize hydrologically the soil types in the watershed.
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Thus, the parameters will become very helpful when it comes

to exploring the possibility of transferring an existing

lumped-parameter hydrological model from one watershed to

another.

B. Significant Findings

1. A simple and yet complete retention function has

been discovered. This function is completely adaptable to

any kind of disturbed porous materials, and its parameters

are easy to assess.

2. Based upon the exact retention function and the

Burdine integrals, a permeability function in terms of the

incomplete Beta function ratio is derived. If tables of the

incomplete Beta function ratios are made available, the

computation of exact permeability values from measured

retention data becomes a very simple operation.

3. From the retention function, a general probability

density function of pores for porous media is obtained.

Since the most important hydraulic variables of porous

media, e.g., permeability, are closely related to the

pore-size distribution, the realization of this general

prohabili.ty density function will enable meaningful and

constructive examinations of existing theories regarding

those variables in the event of their inadequacy.
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4. The established criteria of affinity between porous

media will refine the procedure of physical modeling,

especially the selection of proper material for use in

models.

5. Although the effect of the value of b/a upon the

shape of the retention curve does not appear as influential

as that of the value of m, its effect upon the permeability

is as pronounced as that of m. This leads one to believe

that the downward concavity is an important property of the

retention curve, which cannot be arbitrarily neglected when

it comes to computing the permeability from retention data.

The value of b/a is the dominant factor governing the down-

ward concavity.

6. The importance of the boundary effect of the

retention cell on the downward concavity of the retention

curve is proportional to the non-porous surface of the

retention cell and inversely to the drainable porosity of

the soil. Care should be exercised when obtaining retention

data of soils having high residual water content in the

laboratory.

7. The acquisition of the retention data on the

imbibition branch is less time-consuming than that on the

drainage branch. Equilibrium of the pressure difference

across the air-liquid interface in the porous medium is

readily reached during imbibition.
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C. Needs of Future Research

Hopefully the exact expressions developed herein will

stimulate the mathematician and the others engaging in the

modeling of flow systems in porous media to develop the

capability of handling these expressions in the solutions

of flow problems. In addition, the findings have opened up

the possibility of dealing with the hysteresis in porous

media in mathematical terms. For example, it now seems

likely to relate the drainage branch to the imbibition

branch of the hysteresis envelope. With this, the scanning

loops may also be explained physically and mathematically.

Since both of the pore-size distribution parameters,

b/a and m, relate to the shape of the retention curve, a

single pore-size distribution index may be derived through

the finding of a relationship between b/a and m.

Finally, the postulate that the critical saturation

at the inflection point of the retention curve is the

saturation at which the non-wetting phase becomes continuous

or discontinuous needs to be experimentally verified. Such

a finding would be important to agricultural engineers

dealing with drainage problems. According to observations

made by White (1968) on media with narrow ranges of pore

sizes, the postulate is valid. Therefore, a wide range of

different types of media needs to be studied, i.e., media

that have widely varying dissimilar properties.
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APPENDIX A

NOMENCLATURE



Symbol

a

a.

b

b.

Nomenclature

Description

a parameter of the retention
curve

111

Dimension

none

scaled domain of saturation none
defined by Equation (4-2)

a parameter of the retention none
curve

scaled domain of saturation none
defined by Equation (4-3)

Beta function with (p,q) as its none
arguments

incomplete Beta function none

D diffusivity L2T-1

D. scaled diffusivity none

Do scaling factor for D defined L2T-1
by Equation (4-13)

H a quantity defined by none
Equation (3-17)

incomplete Beta function ratio none

K LT
-1

partial hydraulic conductivity

K. scaled hydraulic conductivity, none
K/K1

K1 total hydraulic conductivity LT
-1

relative hydraulic conductivity, none
K.

k partial permeability L2

k. scaled permeability, k /k1 none
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Symbol Description Dimension

k1 total permeability L2

k
r

relative permeability, k /k1 none

m a pore-size distribution none
parameter, also a parameter
of the retention curve

P capillary pressure FL-2

P. scaled capillary pressure, none
P/P.

P

P.

P

P
w

r

r.

r.
1

capillary pressure associated
with the fictitious inflection
point of the retention curve,
also a parameter of the curve

capillary pressure at the real
inflection point of the re-
tention curve

FL-2

FL-2

scaled capillary pressure, none
P/P

f

pressure of soil-water FL
-2

volume flux LT
-1

radius of pore

scaled radius of pore, r /r1 none

radius of pore related to Pi

S saturation none

S. scaled saturation, (S-Sr)/(1-Sr) none

S
e

effective saturation, S. none

Sf saturation at the fictitious
inflection point of the
retention curve

none



Symbol

S
r

a

V

a

0
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Description Dimension

residual saturation, 1-a-b none

contact angle between the radian
fluid and solid boundary

specific weight of the fluid FL-3

vector differential operator L
-1

coefficient of surface tension FL
-1

porosity of the porous medium none
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APPENDIX B

STEPS

TO REDUCE THE SYSTEM OF FOUR EQUATIONS

TO A SINGLE NONLINEAR EQUATION WITH Sr AS THE UNKNOWN
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Let P1 and S1, P2 and S2, P3 and S3, and P4 and S4 be four

pairs of experimental data. Substituting those values into

the equation

P = P

bm

( S- Sr )-11-1 S - S )a
m r

a

where S
m

is the maximum saturation with S
m

< 1.0, and taking

the logarithms of the equations, one has a system of four

simultaneous equations

In P1 =

ln P2 =

In P3 =

In Pi+ =

ln P
f

m ln

ln Pf - m ln

S1 bm
Sm - S

a a b

S2 S mr bm
+

Ina a

Sr
ln P

f
- m ln

a

bm
a

S

In( m

'

In P
f

- m ln
S4 S bm

ln
S

a a

b

b

S3

Subtracting Equation (2) from Equation (1) yields

in .135.11 = MP2)=

Similarly,

S
r bm

Sm - SI'
ln ln

SI S
r

a S - S2

ink+P3

m ln
r4 o3 Sr

bm
a

S

in
S
m

-

S3

S4

(1)

(2)

(3)

(4)

(5)

(6)



From Equation (5), one may obtain

m
ln(111)P2

In
S2 Sm - S

Si - Sr a
ln

Sm S2

Similarly from Equation (6),

m

In
S4 -

S3 - Sr
In

m

Equating Equations (7) and (8), one has

ln(1,41-1
r2

S
S

r) b m
ln + In

S1 Sr a Sm S2

116

(7)

(8)

(S4 Sr) b (Sm S3)
ln + In

S3 S a S
m S4

or expressed in terms of b/a one has

b
ln(E1P4 (

n
Si

a
lniRlln m(s

S
r ln(-1)1n

P2

S4

(S3

S

S
r

S

S3
lni

133
)1n

P4

( S
m

- Si
(9)

S4 Sm 52
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Similarly, from the system of Equations (2) , (3) , (4) and (1) ,

S1 - Sr

b P1 ( S2 Sr) P3 (4 - S
ln (--) In In (P2) In

S

P4
S3 S

r

ln (-P-2-) ln
S
m

P3

S

M S1
ln( N In( sm

S - S2

m
s3

a

Combining

ln

Equations

S2 - S

in

(9) and (10)

- In

, one has

Si+ - S
r

ln(
P2

Sr 53 - Sr

In

111(111P2

in[P4)

)

- ln
-

in(aP4 )

P2
111(p7;)

Sm - S4 S - S2

ln

in(a) ln(
P
EL)

P3
S S

m
-

In m - In
S
m SI m - S3

S
T

(Si
- In

- S

S2 S S4 S

or,

(10)
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In

S2 S r
in(R1

in

S3

Si - S r S2

S4 Sr

Pi

Si
r2

S3 - S
r

S4

In

S - S3

p1

In

S
M

Sm S4 S
m

\S
m

Si

ln(1123734)

Sm

S S2 S
m

- Sr

S
r

inP4l()
Pi

1nP)3

Sr

"0'21
0)3j

- S4

- Si

ln(pP 43_

S2

S 3

That may be

A = In

simplified

Sm S4

by

111(1A)

letting

B In

Sm
S3

1n( P1)
P2

I
S

11-1

Si S
m

S4

Sm S2

ln(pP4i)

Sm Si
nm)I ,

Sm S3 S S2
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Then,

Al = A ln(P;) , A2 = A ln(14-21-) ,

B1 = B lniP4) and B2 = B
1.'11 r3

Al
S2 - Sr

Si - S
r

B1
S3 - S

S2 - Sri

A2 B2
S4 - Sri BSI - Sr

S3 - Sr S4 - S
r

This is a nonlinear equation with Sr as the only unknown.
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APPENDIX C

COMPUTER PROGRAM

FOR DETERMINING THE PARAMETERS OF THE RETENTION FUNCTION



03001:C NOTE: THE FIRST SET OF INPUT DATA I S THE
0:30021 C IN I T I AL GUESTS 01 THE REST. nat. SATURATION.
000031C SD(=X ( ) ), AND THE MAXIMDM SATURATION,
03004:C WHIC;1, 41.4 0 EE. TAKEN IN BY THE INPUT
00005:C UvIT SPECIFIED IN THE STATEMENTS:
000061C PEA Dt I ) X

00007s C 99 FOINPT( 2( IX, F5. 3) )
00008 I C THE SF.COND SET OF INPUT DATA IS THE COR-
000091 C PESPON D1'4r; VALITS 0 F CAPILLAY'Y PRESSURE, P.
0001020 AVE SATU:4A7-10;1, 5, WHICH ARE TO DE TAKEN IN
000111C BY THE INPUT U.411 SPEC! TIE!) tEl THE STATEMENTS:
000121C READ( 2, I I )P1, P 2, P3, P SI, 52, S3, S4
0001 3: C 11 FORMAT( 4( IX, F6. 2), 4( IX, F5. 3))
00014:C
00015: PROGPM FP
00016: DIMEISION X(1)
00017: COMMON Ai, A2, 81,132, 51152, S3,114,01,03
130018: REA 1, 99 /X( 1 ),
000191 99 FOITIAT( 2( IX, F5. n)
00020: READ( 2, I I )P1.132,P3, F4. SI, 52, 53, S4
00021:11 FOFMAT( 4( IX, F6. 2) 4( 1X F5.3) )
00022: WRITE(61,97)
00023197 FORMAT( IX, INPUT DATA FOR THE RUN FOLLOW: 'W)
00024: WRITE( 61, 98)X( 1 ), 51
00025:93 F01111AT( 0'7, 'INITIAL APPROXIMATION OF SR = .1 F5.3, 5X,
00026: 1 'MAXIMUM SATURATION =',F5.3//)
00027: via TEC 61, 13)
00028113 FORMAT( 3X, eP ', 5X, S )
00029: WRITE( 61,33)PI,SI
00030: WRITE( 61, 33)P2. S2
00031: WRITE( 61, 33)P3, S3
00032: WRITE( 61..33 >P4, S4
00033133 FORMAT( IX, E6. 2, IX, ES. 3)
00034: A=ALOG( ( (SM-S4)/(511-31))**(ALOG(P2/P3)))
000358 I-ALOG( ( ( SM-S2)/ ( 511- S3) )*.(t(ALOG(P4/ P1)))

. 00136: 8=A1.0G(C(SM-S3)/(SN-S4))**(ALOG(PI/P2)))
003371 I-ALOGWSM-S1)/(511-52>)**(ALOG(P3/P4)))
00038: 131=B*ALOG(P4/P1 )
00039: 82=8*ALO CC P2/P3)
00040: AI=A*ALCC(23/P4)
000AI: A2=A*ALO G(PI / P2)
00542: CALL NuilL 1, 8, 55, I , X, I E-10 )
^f704?: S11=1.1( I )
00048: C.( (ALOG(P3/P4))*ALOG(611 )-(ALOG(PI/P2))*ALOG((13))
00045: I/ ( (A10 G(PI/P2) )*ALO 0( ( SM-53)/ ( SPI-S4))-(ALOG(P3/
00046s 2P4))*ALOG( (SM-SI ),* ( SM-S2)))
00047: XM=CALOG(PI/P2))/(ALOG(01)+C*ALCMSM-S1)/(SM-S2)))
00048: A= ( SM-SR)/(1.+C)
00049: 13= SM-SR-A
000508 1)=ALOG(P) )4XM*ALOG( ( SI-SR)/A)-B*XM/A*ALOG( ( SM-5 I )/B)
000511 PF= EXP ( 0)
00052: WrITE(61,77)
00053:77 rormAT(.////1X, 'PARAMETERS OF THE RETENTION CURVE FOLLOW:')
00054: WRITE( 61, 19) SR,A, B, PF
00055:19 FO FI.LAT ( / / X SR= ' F5. 3, 4X, 'A= F5. 3, 4X '8= F5. 4X,
00056: I '1,1= ", F5. 3, 4X, *PE= F7.3)
00057: END
030582 susn UTVi E AUXFW (X, YO( )
30059: DIMENSION X( I )
00060: COMMON B1, E42, SI , S2, S3, S4,01,03
00061: T=X(1)
00062s 01=(52-T)/(SI-T)
00063: 02 =( 5I-T)/ (54-T)
00064: 03=( S4-T)/(S3-T)
00065: 04=(53-7)/ (S2-7)
000062 r.(01**41 )*(O2*(=D2)-(03**A2)*(04**131)
00067: RETU32J
00068; EJD
00069: SUBi-X1UTINE NONLP: 1,140'1 SIC), MAXIT. IPRINT,X, EPS)
00070: REAL X(30), PART( 20 ) ( 30), COE( 30, 31 ), RO-CON
0807!: I FACTO r. L 1), H, Fll-US, T EST
00072: DIMENSION :SUN 30), LOOKU:'(30,
0007.S: DEL TA= E- 7
00078: RELCON= 10. E+0**(-NU11510)
00075$ JTEST= I
08076/ IF( IPRIN T. Eq. I )PRINT 48
130077:48 F3 FOIAT(I 1.1 I )
000701 10 700 11=1,M4X1T
000791 IOU! T=0
00080e

Zfl
09 05 2$ I F( IPRIM T .NE. I) GO TO 9

121



000833 PRINT 49,111, (XW.1=1,11 )
00084 :49 FORMAT( 15, 3E18. A/ (E23. 5, 2E18.6))
0008 53 9 tO 10 J=1,i4
00086:10 LOOKUP ( 1,J) =J
00087: to 5(0 K=1,11
00088: I F(K-1 )134,134.131
00089:131 KMIN=K-1
000901 CALL i3A ( KM IN,N ):, I sup, CO E,LOOKUP )
00091:134 CALL AUX:FON ( F, X )
000921 FT1AX=AMAX: ( EllAX, A RS( F))
00093: IF (APS( F) .CE. LPS) GO TO 1345
000941 IOUIT=IOULT+1
000953 IF(IOUIT .NE. N) CO TO 1345
000961 . GO TO 725
0009711345 FACTO 11=. 011 E+00
00098:135 I TALLY=C
000991 CO 200 I=K,N
00100: TEMP= LO 0 K UP (K, I )
001011 HOLD,.X(1TEMP)
00102t PREC= 5. F-6
00103: ETA:: FACTOR*ABSCHOLD)
00104: ( FMAX. ETA )
00105: IF(H .LT. PREC) H=PREC
00106: X( I TEMP)=HOL C4.1(
00107: IF(K-1) 161.161,151
001.0811 51 CALL BACK (KMIN,14,X, / SUB, CO E,LOOKUP)
00109:161 CALL AUXFC1 (X, FPLUS,10
001103 PART ( ITE1P)=( FPLUS-F)/H
00111: X( I TEMP)=HOLD
001.1.21 F(ARS(PAIIT( ITEMP) ).L T. DELTA) GO TO 190
00113: F(AES( F/PAPT( /TEMP) ). LE. 1. E+1 5) GO TO 200
001141190 I TALLY=1TALLY+1
00115 t 200 CONTINUE
00116: F( I TALLY. L EN -K ) GO TO 202'
001.173 FACTO P= FACTO R .10. 0E +00
00118: IF(FACTOR GT. 11.) G3 TO 775
001193 GO TO 135
00120:202 I F(K.I.T.1)) GO TO 203
00121: IF(ADS(PART( ITEMP)).LT. DU.TA) GO TO 775
001223 (YJF(K,N+1)=0. 0E+00
00123: KMAX= I TEMP
001 243 GO TO 500
001253 203 Kt1AX=LOOKUP(X,K)
001263 DERzikX= A PA ( AMAX ))
00127: KPLUS=K+1
001283 CO 210 I=KPLUS,01
00129: j51113=LOOKUP(}{, I )
00130: TEST=APS(PART(JSUB) )
00131: IF( TEST.LT. DERMAX) GO TO 209
001323 DERMAX= TEST
00133: LOOKUP(KPLUS, I )=KMAX
001343 KMAX=J SUE
001353 GO TO 210
00136:209 LOOKUP(KPLUS, I)=J SUB
00137:210 CONTINUE
00138: F(ADS:PART(KMAX) ) E0. 0.0) GO TO 775
00139: I SUB(K )=KMAX
00140: COE(K,1i +1)= 0.0E +00
001413 DO 220 J=KPLUS,N
00142: J SUB=LOOK UP ( KPLUS, J )
£0143: COE(K,JSUII)=-PART(JSUB)/PART(KMAX)
00144: COE<K,I1+ 1 COE(K,N4 I )+PART(J SUR)*X(J SUB)
00145:220 CONTINUE
001 461 500 COE(K,N+ 1 )= ( CO E(K,N )- F)/PART(KMAX)+X(KNIAX)
00147: X(KKAX). CO E(31.11+1)
001483 I F(N. E0. 1 ) CO TO 610
00149: CALL PACK(N- 1,11,X, 1S1.0.3, COE! LOOKUP)
00150: 610 I F(M-1 )650, 650, 625
00151:625 DO 636 I=1,N
001521 F(A135( TEMC'( I )-X(I) ) GT. ABS(X(I))*RELCON) GO TO 649
001531 630 WV TINUE
001543 JTEST.JTEST +1
60155: I FOTEST-3) 650, 725, 725
00156 :649 JTEST=1
001573 650 t7 660 :=1.N
0.0153: 000 TC:P(I)=X( 1)
00159:700 111TINUE
0116611 PRINT 1753
00361:17;3 FORxAT(/ NO CON VERGENCE. MAX/311114 341LIBER OF ITERATIONS
80162: 1 USED. )
00163: I ( I 1, P.1 N T 1; 1) 00 'VO 800
00164: PRINT 1.763

122



00165:1763 FORMAT( FIN C7 ION VALUE AT THE LAST APPROXIMATION FOLLO
00166: 1 'WS: */ )
00167: I FLAG.'
00168s GO TO 7777
00169:725 I F( .N E. 1) GO TO 800
00170:7777 DO 750 1(,-1.N
00171s CALL AUX 7- ( PATIT(K),K)
00172:750 CONTINUE
001731 I F( I FLAG .It E. 1) GO TO 8777
00174: PRINT 7788, ( PA RT(K ).1(.1,N )
00175:7788 FORMAT( 3E20. B)
00176: GO TO 800
00177:8777 POINT 751
001781751 FORMAT( //' CONVERGENCE HAS BEEN ACHIEVED. THE FUN CTION
00179: 1' VALUE')
00180: PRINT 7515, (FAPT(K)..K=1,N)
00181:7515 FORMAT( AT THE FINAL APPROXIMATION FOLLOWS: '// ( 3E20. 8 ) )
001821 GO TO 800
00183:775 PRINT 752
001841752 FORMAT(// MODIFIED JACOBIAN IS SINGULAR. TRY A DI FFEREN
001851 'T ' )
00186s PRINT 7525
00187:7525 FORMAT( ' SET OF DATA OR DIFFERENT INITIAL APPROXIMATION. ' )
00188:£300 MAXIT.M1+ 1
00189s RETURN
00190: EtlD
00191s SUBROUTINE BACK (KMIN.N.. X, I SUB. COE,LOOKUP)
00192: DIMENSION X(30), COE( 30, 31)
00193: DIMENSION I SUD( 30 ),LOOKUP( 30, 30)
001941 DO 200 KI(.1, KMIN
00195: KM.KM INKK+ 2
00196: KMAX. I SUP(KM-1 )
00197: X(KMAX).0. 0E+00
00198: . DO 100 ...f.KM,N
00199: JSUB.LOOKUP(XM.J)
002001 X(KMAX)=X(KMAX)+COE(KM-1,JSUB)*X(JSUE)
00201:100 CONTINUE
002021 X(KMAX)=X(KMAX)+COECKM-1,14+1)
00203: 200 CONTINUE
0020A: RETURN
00205: END

Example of Computer PrintOut

INPUT DATA FOR THE RUN FOLLOW:

INITIAL APPROXIMATION OF SR . .120 MAXIMUM SATURATION . .890

S

27.30 .262
22.10 .385
18.30 .507
10.80 .753

0 1.20000000E...01
1 1.23441716E-.11
2 1.23339566E..01
3 1.23339476E...01

CONVERGENCE HAS BEEN ACHIEVED. ME EDUCTION VALUE
AT THE FINAL. APPROXIMATION FOLLOWS:

2.91038305E -11

PARAMETERS OF THE RETENTION CURVE FOLLOW:

SR= .123 .236 R. .531 M. .188 PE. 23.014

123
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APPENDIX D

EXPERIMENTAL DATA

PERTAINING TO THE FIGURES
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GE2 Sand Imbibition

Figure 3(A) Figure 3(B)

m = .244 S
r
= .152 S

c
= .632

Pf
=36.9a=.476P.1 =36.7Pf=36.9a=.542P.1

m = .244 S
r
= .173 S

c
= .720

=36. 7

b = .250 b = .285

P (cm oil) S P (cm oil) S
a

97.7 .153 97.7 .174
77.8 .190 77.8 .216
62.5 .247 62.5 .281
52.3 .324 52.3 .369
47.3 .390 47.3 .444
42.6 .480 42.6 .547
37.9 .600 37.9 .683
34.3 .690 34.3 .786
32.1 .741 32.1 .844
30.2 .786 30.2 .895
27.2 .838 27.2 .954
24.4 .846 24.4 .964
22.4 .855 22.4 .974
17.2 .871 17.2 .992
12.2 .873 12.2 .994
7.2 .878 7.2 1.000
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GE3 Sand Imbibition

Figure 3(C) Figure 3(D)

m = .515 S
r
= .159 S

c
= .711

Pf =69' 0a=.591P.=73.6Pf=69.0a=.682P.=73.6
1

m = .515 S
r
= .184 S

c
= .821

1

b = .116 b = .134

P (cm oil) S P (cm oil) S
a

197.2 .266 197.2 .307
172.8 .300 172.8 .346
147.2 .342 147.2 .395
122.7 .412 122.7 .476
103.0 .496 103.0 .573
88.0 .595 88.0 .687
78.2 .675 78.2 .779
68.9 .756 68.9 .873
62.4 .803 62.4 .927
57.7 .829 57.7 .957
52.7 .845 52.7 .976
47.5 .853 47.5 .985
42.6 .859 42.6 .992
35.1 .866 35.1 1.000



127

Silty Clayey Sand (Figure 4(A))

Drainage Imbibition

m = .797 S
r
= .673 S

c
= .935 m = 1.42 S

r
= .637 S

c
= .873

Pf
=53.7a=.249P.1 =49.2 P

f
= 63.1 a = .164 P.1 = 10.6

b = .078 b = .089

P (cm H2O) S P (cm H2O)

8.8 .998 326.2 .712
18.6 .992 177.4 .741
28.4 .987 99.4 .771
38.1 .981 57.4 .801
60.3 .903 34.5 .833
72.5 .869 6.5 .880
84.9 .845 0.0 .890

100.9 .821
118.8 .797
145.0 .773
179.7 .757
326.2 .712

J 24 (Figure 4(B))

Drainage Imbibition

m = .567 S
r
= .354 S

c
= .841 m = .318 S

r
= .430 S

c
= .806

Pf
=22.4a=.384P1 .=.16.1 P

f
= 26.3 a = .178 P.1 = 12.3

b = .262 b = .352

P (cm oil) S P (cm oil) S

1.6 .995 39.6 .510
7.6 .958 29.7 .575

10.2 .937 23.5 .640
13.9 .870 18.7 .705
18.2 .806 14.3 .770
23.3 .737 10.1 .835
28.5 .676 6.5 .899
34.2 .603 0.2 .960
42.2 .539
49.3 .507
54.8 .469
67.3 .446
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J 17 (Figure 5(A))

Drainage Imbibition

m = .169 S
r
= .128 S

c
= .549 m = .188 S

r
= .123 S

c
= .562

Pf '27.4a=.260P-1 '22-3Pf=23.0.3-=.23613.1=16. 7

b = .502 b = .531

P (cm oil) S P (cm oil) S

13.0 .809 33.1 .203
15.1 .762 27.3 .262
16.9 .699 22.1 .385
23.3 .515 18.3 .507
29.6 .331 15.2 .630
37.3 .202 10.8 .753
53.7 .139 0.0 .885

J 50 (Figure 5(B))

Drainage Imbibition

m = .098 S
r
= .096 S

c
= .523 m = .156 S

r
= .112 S

c
= .537

P =
f

21.5
1 f i

15.2

b = .392 b = .440

P (cm oil) S P (cm oil) S

14.6 .853 23.3 .187
17.1 .809 19.5 .297
19.4 .717 17.3 .406
20.5 .668 15.5 .515
20.8 .555 13.9 .624
21.9 .429 0.2 .876
22.5 .316
29.7 .124
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G 1

Drainage (Figure 6 (A)) Rel. Permeability (Figure 6 (B))

m = .391 S
r
= .161 S

c
= .762 Total Permeability

P = 2.17a=.594P.1 =2.15 = 2.482 x 10
-8

cm2

b = .245

P (cm Hg) S K
r

S

0.804 .980 1.000 1.000

1.41 .915 .340 .900

1.71 .855 .167 .800

2.01 .800 .078 .700

2.21 .740 .035 .600

2.41 .680 .014 .500

2.71 .S80 .0045 .400

3.02 .515
3.22 .460
3.62 .395
4.72 .290
6.53 .210
8.04 .195

G - 4

Drainage (Figure 7 (A)) Rel. Permeability (Figure 7 (B))

m = .298 S
r
= .357 S

c
= .947 Total Permeability

P
f
= 3' 19a=.636P.=3. 28

1
= 0.207 x 10

-8
cm2

b = .007

P (cm H )

g
S K

r
S

3.03 .999 1.000 1.000
3.23 .970 .550 .900

3.33 .925 .271 .800

3.43 .870 .110 .700

3.59 .799 .033 .600

3.79 .734 .006 .500

3.99 .663
4.19 .618
4.60 .538
5.20 .487
6.01 .442
6.92 .407
8.23 .377



G-5 (Figure 9(A))
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Crab Creek Sand (Figure 9(B))

Drainage Drainage

m = .279 S
r
= .238 S

c
= .830 m = .354 S

r
= .173 S

c
= .818

P =
f

3.76
' 1 1

18.1

b = .089 b = .104

P (cm Hg) S P (cm oil) S

3.22 .995 12.0 .990

3.52 .950 13.5 .986

3.72 .915 14.5 .980

3.92 .854 15.5 .974
4.12 .789 16.0 .948

4.32 .724 17.0 .895
4.52 .653 17.2 .875

4.77 .583 21.0 .638

5.08 .523 24.8 .479

5.38 .462 36.9 .277
5.83 .407 67.7 .188
6.48 0362 136.6 .158

7014 .327
8.04 .291


