

Affinities of the Boletus chromapes group to Royoungia and the description of two new genera, Harrya and Australopilus

Journal:	Australian Systematic Botany
Manuscript ID:	SB12028.R1
Manuscript Type:	Research paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Halling, Roy; The New York Botanical Garden, Inst of Systematic Botany Nuhn, Mitchell; Clark University, Department of Biology Osmundson, Todd; University of California, Department of Environmental Science, Policy & Management Fechner, Nigel; Queensland Herbarium, Trappe, James; Oregon State University, Department of Forest Ecosystems and Society Soytong, Kasem; King Mongkut's Institute of Technology, Faculty of Agricultural Technology Arora, David; P.O. Box 672 Hibbett, David; Clark University, Department of Biology Binder, Manfred; Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), CBS-KNAW Fungal Biodiversity Centre, Evolutionary Phytopathology
Keyword:	Biogeography, Phylogeny, Fungi, Mycology
	·

SCHOLARONE[™] Manuscripts

http://mc.manuscriptcentral.com/csiro-sb

1	Affinities of the Boletus chromapes group to Royoungia and the description of two new genera,
2	Harrya and Australopilus
3	
4	Roy E. Halling, Institute of Systematic Botany, The New York Botanical Garden, Bronx, New
5	York 10458-5126, United States
6	rhalling@nybg.org
7	
8	Mitchell Nuhn, Department of Biology, Clark University, Worcester, Massachusetts 01610-1477
9	United States
10	mnuhn@clarku.edu
11	
12	Todd Osmundson, Department of Environmental Science, Policy & Management, University of
13	California, Berkeley, California 94720 United States
14	toddo@berkeley.edu
15	
16	Nigel Fechner, Queensland Herbarium, Mt Coot-tha Road, Toowong, Brisbane, Queensland
17	4066, Australia
18	nigel.fechner@dsitia.qld.gov.au
19	
20	James M. Trappe, Department of Forest Ecosystems and Society, Oregon State University,
21	Corvallis, Oregon 97331-5752 United States
22	trappej@onid.orst.edu
23	
24	Kasem Soytong, Faculty of Agricultural Technology, King Mongkut's Institute of Technology,
25	Ladkrabang, Bangkok, Thailand
26	ajkasem@gmail.com
27	
28	David Arora, P.O. Box 672, Gualala, California 95445
29	maxfun@cruzio.com
30	

31 David S. Hibbett, Department of Biology, Clark University, Worcester, Massachusetts 01610-

- 32 1477 United States
- 33 dhibbett@clarku.edu
- 34

35 Manfred Binder, CBS-KNAW Fungal Biodiversity Centre, Evolutionary Phytopathology,

36 Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584

- 37 CT, Utrecht, The Netherlands
- 38 m.binder@cbs.knaw.nl
- 39

40 Abstract: Harrya is described as a new genus of Boletaceae to accommodate Boletus chromapes, 41 a pink capped bolete with a finely scabrous stipe adorned with pink scabers, a chrome yellow 42 base, and a reddish brown spore deposit. Phylogenetic analyses of large subunit rDNA and 43 translation elongation factor 1α confirm *Harrya* as a unique generic lineage with two species, 44 one of which is newly described (*H. atriceps*). Some Chinese taxa were recently placed in a 45 separate genus, Zangia, supported by both morphology and molecular data. Multiple accessions 46 from Oueensland, Australia support the synonymy of at least three species in a separate 47 Australian clade in the new genus, *Australopilus*. The truffle-like *Royoungia* is also supported as 48 a separate lineage in this clade of boletes. Even though it lacks stipe characters, it possesses the 49 deep, bright yellow to orange pigments in the peridium. Additional collections from Zambia and 50 Thailand represent independent lineages of uncertain phylogenetic placement in the Chromapes 51 complex, but sampling is insufficient for formal description of new species. Specimens from 52 Java referable to *Tylopilus pernanus* appear to be a sister group of the *Harrya* lineage. 53 54 *Key words:* biogeography, Boletineae, boletes, evolution, phylogeny, ribosomal DNA, 55 translation elongation factor 1α 56 57 Boletus chromapes was described by Frost (1874) from Vermont, USA. Since then, this 58 distinctive bolete with pink colors on the pileus, pink scabers on the stipe surface and a chrome 59 yellow to cadmium yellow stipe base has been placed in *Ceriomyces* (Murrill 1909), 60 Krombholzia (Singer 1942), Leccinum (Singer 1947), and Tylopilus (Smith & Thiers 1968). As

61 Murrill's concept of *Ceriomyces* is a mixture of several modern genera, subsequent placement of

62 B. chromapes has been based primarily on either color of the spore deposit or the type of surface ornamentation of the stipe. Thus, Smith and Thiers (1968, 1971) were inclined to consider the 63 64 spore color (reddish brown) more nearly like that of a *Tylopilus* whereas Singer (1947, 1986) judged that the stipe ornamentation was of a scabrous nature as in a Leccinum. Furthermore, the 65 66 unique, striking morphology of *B. chromapes* elicited further distinction in a monotypic section 67 *Roseoscabra* in *Leccinum* (Singer 1947) or in a subgenus of *Tylopilus* (Smith & Thiers 1971). 68 69 To anchor the name to a specimen, Halling (1983) designated a lectotype from among original 70 Frost specimens in herbarium VT and noted that descriptions published by Snell and Dick (1970)

as a *Leccinum*, Smith and Thiers (1971) and Grund and Harrison (1976) as a *Tylopilus*,

adequately describe and illustrate the characters of the taxon. Treatments by Bessette et al.

73 (2000) and Roody (2003) as a *Tylopilus* provide color photographs and updated descriptions.

74

75 Wolfe and Bougher (1993) published a revision of *Tylopilus* subg. *Roseoscabra*, adding four

new species from Australia, one from Costa Rica, one from Japan, and three from China. They

77 noted that *T. chromapes* had been reported additionally from China (Zang & Chen 1990), Korea

78 (Lee & Hong 1985) and Japan (Hongo 1960, 1980). Also, hypotheses were offered for the origin

of the subgenus as well as direction of co-migration with mycorrhizal hosts and subsequent

80 divergence of populations. More recently, critical morphological and molecular analyses of

81 Chinese materials supported recognition of a new genus with six species, distinct from T.

82 *chromapes*, and supported the transfer of *T. chlorinosmus* Wolfe & Bougher to Zangia (Li et al

83 2011). Currently, Zangia is only known to occur in southern China.

84

85 The aim of our studies of multiple accessions morphologically assignable to *Tylopilus* subg. 86 Roseoscabra from the Americas, Australia, Indonesia, Thailand and Zambia, with support from 87 phylogenetic inference, was to investigate the limits of genera and species in the Boletus 88 chromapes group. Based on phenetic similarities, specimens identified as Tylopilus pernanus 89 (Pat. & C.F. Baker) Watling from Java, Indonesia and T. virens (W.F. Chiu) Hongo from Zambia 90 and Thailand were included. The morphological and molecular data published by Li et al (2011) 91 prompted the inclusion of Zangia, and analyses of Osmundson (2009) indicated that material of 92 Royoungia would be appropriate in our analyses as well.

93

94 Materials and Methods

95

96 Morphological datasets. - Macromorphological data were derived from fresh specimens. 97 General color terms are approximations, and the color codes (e.g., 7D8) are page, column, and 98 grid designations from Kornerup and Wanscher (1983); color names of the form "Cadmium 99 Yellow" (in quotation marks) are from Ridgway (1912). All microscopic structures were 100 observed with an Olympus BHS compound microscope equipped with Nomarski differential 101 interference contrast optics, and measured from dried material revived in 3% KOH. The letter 102 abbreviation *Q* refers to the mean length/width ratio and *x* refers to the mean length \times mean 103 width, derived from measurements of *n* basidiospores. Herbarium codes (Thiers 2012) are cited 104 for all collections from which morphological features were examined. 105 106 *Molecular datasets.* – Fifty-three sequences were newly generated from 30 collections (Table I) 107 that were identified as *Tylopilus chromapes* using morphology, or were closely related to *T*. 108 chromapes based on previous publications (Wolfe & Bougher 1993, Li et al. 2011). Sequences 109 include nuclear large subunit ribosomal DNA (nuc-lsu) and translation elongation factor 1a 110 (tef1). Twenty-two publically available nuc-lsu and tef1 sequences representing five species of 111 T. chromapes-like taxa were used as well. Eight nuc-lsu and eight tefl sequences from eight 112 collections (Table I) were generated from species identified as not being closely related to T. 113 chromapes. An additional 82 nuc-lsu and *tef1* sequences already available were used to 114 represent the major lineages of the Boletaceae (e.g. Boletus, Tylopilus, Leccinum, Xerocomus) 115 (Binder & Hibbett 2006, Binder et al. 2010, Halling et al. 2012, Li et al. 2011). The final dataset 116 consisted of 158 sequences from 82 taxa. Newly generated sequences were deposited in 117 GenBank (JX889643–JX889712, Table I). 118 119 DNA extraction, PCR amplification, sequencing, and alignments. – DNA was extracted from 120 herbarium specimens following Lee and Taylor (1990). Samples were inspected to avoid

121 contaminated or infected tissue, up to 20 mg of pileus context tissue was ground using liquid

- 122 nitrogen and the homogenized samples were resuspended in 3% SDA extraction buffer. The cell
- 123 lysate was cleaned after 45 minutes at 65 C by adding 0.6 mL phenol-chloroform (1:1), followed

124 by an isopropyl alcohol and 3 M sodium acetate precipitation and a wash set of 100% EtOH. 125 DNA samples were resuspended in 50 µL Tris-EDTA buffer. PCR and sequence methods follow 126 Halling et al. (2012), with the exception that *tef1* was sequenced using primers 983F, 1577F, 127 1567R, and 2218R (Rehner & Buckley 2005). The nuc-lsu and tefl nucleotide datasets were 128 aligned on the MAFFT server 6 (http://mafft.cbrc.jp/alignment/server) using the G-INS-i strategy 129 for nuc-lsu and I-INS-i for tef1. Both alignments were manually adjusted in MacClade 4.05 130 (Maddison & Maddison 2005) and concatenated into a single dataset. The alignments have been 131 deposited in TreeBASE (#13452, http://purl.org/phylo/treebase/phylows/study/TB2:S13452). 132 133 *Phylogenetic analyses.* – The individual nuc-lsu and *tef1* datasets were analyzed using maximum

134 likelihood methods with 100 replicates to estimate the bootstrap support values (BS) using the 135 RAxML blackbox server (http://phylobench.vital-it.ch/raxml-bb/) (Stamatakis et al. 2008). To 136 assess if there was strong conflict, we performed separate analyses of the two genes; finding 137 none, we combined the data. The combined datasets were split into a core dataset, in which every 138 taxon had both nuc-lsu and *tef1* sequences, and an extended dataset, which had six individuals 139 represented only by nuc-lsu (see Table I). Thus, the concatenated datasets are highly 140 homogeneous. The combined datasets were analyzed using maximum likelihood and the 141 bootstrap support values were estimated using RAxML 7.2.6 under the GTR model parameters 142 and 1000 rapid bootstrap inferences. Likelihood of the final tree was optimized using gamma 143 model parameters (Stamatakis, et al. 2005).

144

Posterior probability (PP) values for internodes in the combined datasets (core and extended) were estimated with Mr. Bayes version 3.2 under the GTR model with gamma distribution rate setting (Ronquist et al. 2012). The core and extended datasets were analyzed with two runs using four MCMC chains of 14 and 30 million generations respectively, with sampling every 100 generations and an approximate 30% burn-in. Convergence of Bayesian analysis for both the core and extended datasets was checked using Tracer v1.5 (Rambaut & Drummond 2009) and AWTY online (Wilgenbusch et al. 2004).

152

- 153 **Results**
- 154

155 *Phylogenetic analyses.*—The RAxML analysis of the core dataset had 1478 alignment patterns

156 with 33.82% of positions completely undetermined or gapped. The extended dataset had 1494

157 alignment patterns with 36.31% of positions completely undetermined or gapped. 290,026 trees

158 with a burn-in of 80,000 were used to estimate PP values for the core dataset. 613,940 trees with

a burn-in of 160,000 were used to estimate PP values for the extended dataset.

160

161 The Boletaceae is supported with 100% BS and 1.0 PP values in both the core (not shown) and

162 extended analyses (Fig 1). The clade containing *Buchwaldoboletus lignicola* and *Chalciporus*

163 *piperatus* receives 100% BS and 1.0 PP support in both core and extended analyses, and is

164 placed as the sister group to all other Boletaceae species with 100 BS and 1.0 PP support in both

analyses. This relationship has been noted previously (Binder & Hibbett 2006). The clade

166 containing Boletus chromapes and relatives (i.e. Zangia, Harrya, Australopilus, T. virens, T.

167 *pernanus*, and *Royoungia*; hereafter referred to as the "Chromapes group") has 100% BS support

and PP support of 1.0 in the core analysis and 88% BS and 0.99 PP in the extended analysis, and

169 does not form a close relationship with any other genus in the Boletaceae (e.g. Aureoboletus,

170 Austroboletus, Boletellus, Boletus, Leccinum, Sutorius, Tylopilus, Xerocomus).

171

172 A strong geographical pattern is recovered in the Chromapes group. In both the core and the 173 extended tree, Australian species are recovered as monophyletic. The Australian clade contains 174 typical epigeous boletoid "Tylopilus" palumanus, as well as the gasteroid Royoungia with 175 possibly more than one taxon. In the core analysis, *Royoungia* is paraphyletic, but in the 176 extended analysis *Royoungia* is a monophyletic sister group to the boletoid forms; there is no 177 strongly supported conflict between the core and extended analyses with respect to the 178 monophyly or paraphyly of Royoungia (Fig. 1). In the core and extended analyses, the sister 179 clade to the Australian clade contains taxa from Thailand with typical epigeous boletoid 180 basidiomata. The sister group relationship of the Thai and Australian clades is supported by 181 Bayesian extended analysis, but receives low ML bootstrap support (Fig 1). 182

183 The Harrya clade contains Tylopilus chromapes s.s. and includes specimens collected about 16

184 km from the type locality: Brattleboro, Vermont, USA (all MEN11-XXX collections). In

addition, the clade contains material from Sichuan, China (HKAS49416, Table I), Costa Rica,

186	and elsewhere in the USA. In both analyses, specimens from Costa Rica (determined as T.
187	cartagoensis based on geographic location, sensu Wolfe & Bougher 1993, plus the new species,
188	H. atriceps, described below), China, and the USA were not recovered in separate clades. In the
189	extended analysis, Tylopilus pernanus from Java, Indonesia is included and is the sister group to
190	the Harrya clade, though that placement receives weak support. The clade containing Harrya
191	and the Indonesian specimens is the sister group of the Australian clade.
192	
193	The sister group to the clade containing Australian, Harrya, and Indonesian specimens is a clade
194	containing three specimens from Zambia. This topology is supported by Bayesian analysis (PP
195	only) in the core analysis, and by both likelihood and Bayesian analyses in the extended analysis.
196	Zangia forms a strongly supported clade that is the sister group to all other Chromapes group
197	species in both the core and extended analyses (Fig. 1). Zangia is morphologically similar to H.
198	chromapes, but is separated based on differences in pileipellis structure (ixohyphoepithelium vs.
199	trichodermium) and molecular data (Li et al. 2011).
200	
201	Taxonomy
202	
203	Harrya Halling, Nuhn & T. Osmundson, gen. nov.
204	
205	Diagnosis: Basidiomata epigeous. Pileus rose pink to brownish pink to pinkish gray.
206	Hymenophore tubulose, white then vinaceous pink. Stipe white above, chrome yellow at base,
207	beset with fine pink scabers either isolated or rarely arranged on a raised reticulum. Spores
208	pinkish to reddish brown in deposit, smooth, dextrinoid in Melzer's reagent. Hymenial cystidia
209	present. Pseudocystidia absent. Pileipellis a trichodermium. Clamp connections absent.
210	
211	Typus: Boletus chromapes Frost, Bull. Buffalo Soc. Nat. Sci. 2: 105. 1874.
212	
213	Etymology: Harry + a (fem.) in honor of Harry D. Thiers, American boletologist, teacher, and
214	mentor.
215	
216	Mycobank number: MB 801434

Harrya chromapes (Frost) Halling, Nuhn, T. Osmundson, & Manfr. Binder comb. nov. Figs.
2,3
Boletus chromapes Frost, Bull. Buffalo Soc. Nat. Sci. 2: 105. 1874.
Ceriomyces chromapes (Frost) Murrill, Mycologia 1: 145. 1909.
Krombholzia chromapes (Frost) Singer, Ann. Mycol. 40: 34. 1942.
Leccinum chromapes (Frost) Singer, Amer. Midl. Nat. 37: 124. 1947.
Tylopilus chromapes (Frost) A.H. Sm. & Thiers, Mycologia 60: 949. 1968.
Tylopilus cartagoensis Wolfe & Bougher, Austral. Syst. Bot. 6: 191. 1993.
Leccinum cartagoense (Wolfe & Bougher) Halling & G.M. Muell., Kew Bull. 54: 747. 1999.
Mycobank number: MB 801438
As noted above, <i>H. chromapes</i> has been sufficiently described and well-illustrated. Coker and
Beers (1943) noted that the pink scabers are sometimes distributed on a reticulum (see below
under A. palumanus and Fig 2). According to Wolfe and Bougher (1993), the holotype of T.
cartagoensis differed from H. chromapes (as Tylopilus) in the pigmentation of the pileus and
several microscopic features evaluated with numerical taxonomic methods. Originally described
from one collection on the western slope of Volcan Irazu, Halling and Mueller (2005) illustrated
and described <i>T. cartagoensis</i> (in <i>Leccinum</i>) as occurring routinely in the Cordillera Talamanca
and at Volcan Poas in Costa Rica, and noted that it was often smaller in stature, sometimes less
pink in the pileus but otherwise scarcely differed from <i>H. chromapes</i> . The fine pink scabers on
the stipe surface, the intense chrome yellow stipe base, and spore features are the same. In our
analyses, a specimen from Costa Rica originally determined as T. cartagoensis (TWO996) is
nested among several of <i>H. chromapes</i> , and that specimen fits the circumscription as outlined by
Wolfe and Bougher (1993), but pseudocystidia are never present. Thus, we accept <i>T</i> .
cartagoensis as a synonym of H. chromapes and as another example of clinal variation as noted
by Halling et al (2012) and in papers cited therein. Analogous results were observed with Costa
Rican materials of Sutorius eximius.

248 *Habit, habitat, distribution*: reported or observed among litter, on soil in forests associated with

249 conifers, Betulaceae, and *Quercus* in North America: eastern Canada south to Georgia, Alabama,

- 250 west to Michigan and Mississippi. In Costa Rica with *Quercus*, in the Cordillera Talamanca,
- 251 Poas and Irazu volcanoes.
- 252
- 253 Material examined: USA. [Three from among 81 specimens in NY] New York. Hamilton Co:
- 254 Raquette Lake, Long Point, 20 Jul 1983, *T.J. Baroni* (NY); North Carolina. Swain Co: Great
- 255 Smokey Mountains National Park, Indian Creek, 20 Aug 1992, *Halling 6912* (NY);
- 256 Massachusetts. Hampshire Co: Depot Road, between Whately and Williamsburg, 24 Jul 1977,
- 257 *R.E. Halling 2173* (NY).
- 258 COSTA RICA. [Four from among 19 specimens in NY, duplicated in USJ] San José Prov: Dota,
- 259 San Gerardo, Albergue de la Montaña, ±5 km SW of Cerro de la Muerte, 9°33′2″N, 83°48′27″W,
- 260 2350 m, 19 Oct 1994, Halling 7386 (NY, USJ); 15 Jun 2004, Osmundson 996 (NY, USJ);
- 261 Cartago Prov: El Guarco, Tapanti, Parque Nacional Tapanti, Macizo de la Muerte, Area de
- 262 Conservación La Amistad Pacifico, 9°41′6″N, 83°52′30″W, 2600 m, 6 Jul 2001, *Halling 8258*
- 263 (NY, USJ); Alajuela Prov: Grecia, Bosque del Niño, 10°9'4"N, 84°14'42"W, 1900 m, 31 May
- 264 1996, Halling 7592 (NY, USJ).
- 265
- *Commentary*: Based on the phylogram in Fig. 1, the *Harrya* clade is supported by molecular
 data but less so by geography. A distinct, second taxon from Costa Rica is also supported and
 described below.
- 269
- 270 Harrya atriceps Halling, G.M. Muell., & T. Osmundson sp. nov. Figs 4,5
- 271
- 272 Diagnosis: Basidiomata epigeous. Pileus dry, black. Hymenophore tubulose, becoming pinkish
- 273 vinaceous. Stipe white, finely scabrous with a chrome yellow base. Spores smooth, subfusoid.
- 274 Pileipellis a trichodermium. Clamp connections absent. Holotype: Costa Rica. San José Prov:
- 275 Dota, Jardín, ±3.5 km W of Interamerican Highway at Empalme, 9°42'52"N, 83°58'28"W, 2220
- 276 *m*, 1 Jul 1998, Halling 7797 (USJ; Isotype: NY).
- 277
- 278 Mycobank number: MB 801437

2	7	n
7	1	7

280 Pileus 2–5 (–6) cm broad, convex to plano-convex then plane, dry, subtomentose to tomentose, 281 black to dark gray to dark grayish brown, rarely with any hints of pink and if so only at the 282 margin. Flesh white, sometimes with violet red tint under pileus surface, unchanging, 5–10 mm 283 thick, with mild odor and taste. Tubes adnexed to depressed around stipe, 1 cm deep, white to 284 off-white, soon with pale pinkish flesh colors, with pores up to 1 mm broad, concolorous, 285 unchanging or staining pale brown. Stipe 5–9 cm long, 5–10 mm broad, subclavate, dry, straight 286 to curved, pinched at base, yellow overall or ±white overall and deep chrome to "Cadmium" 287 Yellow" at the base, obscurely longitudinally ridged; surface scabers pallid to dull pale yellow 288 (not pink or brown, even in age), confined to ridges, with interior white above, chrome yellow to 289 cadmium orange to orange at base and rarely with some isolated light blue green staining. 290 291 Basidiospores 9.1–11.9 × 4.2–6.3 μ m, (*n*=20, *x*=10.7 × 5.2 μ m, *Q*=2.03), smooth, fusoid to 292 subfusoid, pale melleous in KOH, dextrinoid in Melzer's reagent. Basidia $28-42 \times 10-12 \mu m$. 293 clavate, hyaline, four-sterigmate. Hymenial cystidia $35-48 \times 4-7 \mu m$, scattered and uncommon, 294 thin-walled, hyaline, broadly fusoid to subcylindric. Tube trama boletoid and divergent, with 295 melleous central strand; the lateral strata elements hyaline, 3.5–10 µm wide, subgelatinous with 296 age. Pileipellis hyphae forming a trichodermium, with elements 5–11 µm wide, inamyloid, often 297 containing a dark brown to black plasmatic pigment, rarely with external hyaline encrustations. 298 Pileus trama interwoven, hyaline, rarely with oleiferous elements, consisting of inamyloid, thin-299 walled hyphae 3–10 µm wide. Stipitipellis hyphae vertically oriented, parallel, giving rise to 300 clusters of caulocystidia and sometimes caulobasidia; caulocystidia subfusoid to clavate or short 301 subfusoid with elongated rostrum, often with melleous content, $23-67 \times 7-12$ µm. Stipe trama 302 hyphae parallel, cylindrical, hyaline, thin-walled, inamyloid, 5–11 µm wide. Clamp connections 303 absent.

304

Habit, habitat, and distribution: solitary to gregarious; Costa Rica, Cordillera Talamanca, under
 Quercus copeyensis, *Q. seemannii*.

307

Material examined: COSTA RICA. San José Prov: Dota, Jardín, ±3.5 km W of Interamerican
Highway at Empalme, 9°42′52″N, 83°58′28″W, 2220 m, 1 Jul 1998, *Halling 7797* (Holotype:

310	USJ, Isotype: NY); 12 km S of Copey on road to Providencia, 9°3519"N, 83°53'3"W, 2800 m, 20
311	Oct 1994, Halling 7403 (NY, USJ).
312	
313	Commentary: This is a rarely encountered taxon, having been found only twice over a period of
314	10 years of biannual collecting. Harrya atriceps was illustrated previously by Halling and
315	Mueller (2005) but not formally described. It is easily distinguished from the sympatric, more
316	routinely encountered <i>H. chromapes</i> by virtue of the black pileus and a lack of pink scabers.
317	Scabers are present, however, along with the chrome yellow to cadmium orange pigmentation in
318	the stipe base.
319	
320	Australopilus Halling and Fechner, gen. nov.
321	
322	Diagnosis: Basidiomata epigeous. Pileus gray to dark gray, sometimes pink to deep pink
323	pigments present. Hymenophore tubulose, white then vinaceous pink. Stipe white above, chrome
324	yellow at base, beset with either fine isolated pink scabers or these often arranged in a well-
325	defined or ill-defined raised reticulum, sometimes scattered on low longitudinal ridges. Spores
326	pinkish to reddish brown in deposit, smooth, fusoid. Pileipellis a trichodermium. Hymenial
327	cystidia present. Pseudocystidia absent. Clamp connections absent.
328	
329	Typus: Tylopilus palumanus Wolfe & Bougher, Austral. Syst. Bot. 6: 198. 1993.
330	
331	Etymology: <i>australo</i> – southern, <i>pilus</i> – cap (m.).
332	
333	Mycobank number: MB 801435
334	
335	Australopilus palumanus (Wolfe & Bougher) Halling & Fechner, comb. nov. Figs 6,7
336	
337	Tylopilus palumanus Wolfe and Bougher, Austral. Syst. Bot. 6: 198. 1993.
338	Tylopilus queenslandianus Wolfe and Bougher, Austral. Syst. Bot. 6: 200. 1993.
339	Tylopilus propriorichromapes Wolfe and Bougher, Austral. Syst. Bot. 6: 201. 1993.
340	?Tylopilus subchromapes Wolfe and Bougher, Austral. Syst. Bot. 6: 194. 1993.

341	?Tylopilus parachromapes TH. Li & Watling, Edinburgh J. Bot. 56: 147. 1999.
342	
343	Mycobank number: MB 801436
344	
345	Original descriptions of macro- and microscopic features are given in Wolfe and Bougher
346	(1993), but see Commentary below.
347	
348	Habit, habitat, and distribution: solitary to gregarious; Queensland, Australia, under Acacia,
349	Allocasuarina, Eucalyptus, Leptospermum, Melaleuca, Syncarpia, Xanthostemon.
350	
351	Material examined: AUSTRALIA. Queensland: Davies Creek National Park, Davies Creek Rd,
352	Campsites 5-6, 17°1'36"S, 145°35'23"E, 670 m, 19 Feb 1992, Halling 6826 (Holotype: Tylopilus
353	queenslandianus, BRI; Isotype: NY); 9 Feb 2006, Osmundson 1096 (BRI, NY); 14 Mar 2007
354	Halling 8918 (BRI, NY); near Paluma, 17 Feb 1992, Halling 6791 (Holotype: Tylopilus
355	palumanus, BRI; Isotype: NY); Cooloola (National Park), 26°2'S, 153°6'E, 10 May 1988, N.
356	Bougher (ACIAR E4026, Holotype: Tylopilus propriorichromapes, BRI), Freshwater Rd,
357	25°56'42.7"S, 153°5'5.4"E, 34 m, 20 Feb 2011, <i>Halling 9445</i> (BRI, NY); Fraser Island, track
358	from Central Station to Eurong, 25°29'29"S, 153°6'14"E, 133 m, 5 Jun 2009, Halling 9168 (BRI,
359	NY), ±4 km W of Valley of the Giants, 25°22′2″S, 153°6′10″E, 20 m, 6 Jun 2009, <i>Halling 9174</i>
360	(BRI, NY), Wanggoolba Creek Rd, 25°28'47.1"S, 153°2'45.5"E, 78 m, 24 Mar 2010, Halling
361	9258 (BRI, NY), 25°27'35"S, 153°1'11"E, 35 m, 29 Mar 2010, <i>Halling 9304</i> (BRI, NY),
362	25°28'16.3"S, 153°2'9.6"E, 24 m, 18 Feb 2011, <i>Halling 9433</i> (BRI, NY), road from Central
363	Station to Lake Birrabeen, 25°29'35"S, 153°3'9"E, 113 m, 25 Mar 2010, Halling 9275 (BRI,
364	NY), road from Central Station to Eurong, ±1 km W of Eurong, 25°29'S, 153°6'E, 26 Mar 2010,
365	Halling 9279 (BRI, NY), road from Eurong to Central Station, 25°29'59.4"S, 153°6'11.8"E, 90
366	m, 15 Feb 2011, Halling 9405 (BRI, NY), Kingfisher Bay, 25°23'35.7"S, 153°1'50.7"E, 8 m, 16
367	Feb 2011, Halling 9421 (BRI, NY).
368	
369	Commentary: In navigating the key to species offered by Wolfe and Bougher (1993) for
370	Tylopilus subg. Roseoscabra, we were confronted with two obstacles. First, the user needed to

371 ascertain if a specimen has a raised reticulum or not. A reticulum can manifest itself (see *A*.

372 *palumanus* Fig 6), but it may or may not be present in the same species in any given collection 373 (e.g., see *H. chromapes* Fig 2; also noted by Coker & Beers 1943) and therefore is not a reliable 374 feature for taxon distinction. Second, the presence or absence of pseudocystidia had to be 375 assessed. We have not been able to confirm the presence of pseudocystidia in any of the type 376 material or in any recent accessions from Queensland. T. Baroni (pers com) kindly examined the 377 isotypes of T. *queenslandianus* and T. *palumanus* and could not locate any of those diagnostic 378 sterile cells either. Pseudocystidia were reported to be present in *T. queenslandianus* and absent 379 in T. palumanus. Both are supposed to possess a raised reticulum (but see Fig 7, Osmundson 380 1096, from within 10 m of the collecting site of the holotype for T. queenslandianus). The 381 holotype specimen of *T. propriorichromapes* Wolfe & Bougher is mostly in bad condition and 382 this is not because of poor storage or curation. Rather, it appears to have been maggot-riddled 383 when dried. The scabers are clearly confined to a reticulum. A recent collection, *Halling 9445*, 384 from the type locality (Cooloola, Queensland) possesses pink scabers on a reticulum but also on 385 the stipe surface between the ridges of the reticulum. Considering the ambiguity in distinguishing 386 the three separate species as originally conceived, and based on the inconclusive distinction from 387 phylogenetic inference from multiple accessions including the types, we treat these taxa as a 388 single species. We have not seen the type of T. subchromapes Wolfe & Bougher and so mark it 389 with a "?" in the nomenclator above. Based on basidiome size, distribution of scabers on the 390 stipe, and statistical analyses from one specimen, we would suggest it is conspecific as well. 391 Watling and Li (1999a,b) have described one valid (*T. parachromapes*) and one provisional 392 species (T. viscidichromapes) in this consortium, and those descriptions fit our concept of A. *palumanus*. We place the valid name in the nomenclator with a "?" also. 393 394

395 *Royoungia boletoides* Castellano, Trappe, & Malajczuk, *Austral. Syst. Bot.* 5: 614. 1992. Figs 8–
396 10

397

398 Castellano et al (1992) described a new truffle-like fungus from Queensland, Australia based on 399 a single species from a single collection that they hypothesized to be a bolete. The authors stated 400 that affinities to *Gastroboletus* were suggested because of the shape and size of the spores, the 401 divergent trama, *Boletus*-like basidia, and a yellowish pigment leaching from the peridium. 402 Phylogenetic analyses by Osmundson (2009) showed the rather surprising result that *Royoungia* 403 is closely related to epigeous species in the Chromapes group. Our current results provide further 404 support for this phylogenetic hypothesis using an expanded taxon sample, refining our 405 understanding by showing Royoungia to be closely related to Australopilus. Based solely on nuc-406 lsu, Li et al. (2011) showed an accession (DQ534663 from Binder & Hibbett 2006) determined 407 by one of us (JMT) as *Royoungia boletoides*, to be sister to *Zangia*. This accession, AWC4137 408 (incorrectly labeled in GenBank as ACW4137) was based on a field number assigned by Andrew 409 W. Claridge from coastal sands in Victoria, Australia. Contrary to the protologue, AWC4137 410 and the other accessions cited here do not have rufescent columella tissue, including other 411 collections from the type locality (H4130, isotype in OSC; Cooloola, Queensland), nearby sand 412 habitats with comparable vegetation (Fraser Island), and southern Victoria (Figs 8–10). Not all 413 sequenced vouchers occur in sandy soils however.

414

415 Phylogenetic analyses (Fig. 1) suggest that the several accessions of *Royoungia* from different 416 regions of eastern Australia may represent more than one species. However, our goal here is not 417 to revise *Royoungia*, but rather to show that our molecular phylogeny indicates its position 418 among epigeous forms in Boletaceae. *Royoungia* is resolved as either monophyletic or 419 paraphyletic in analyses of the extended and core datasets, respectively, but neither topology is 420 strongly supported. Therefore, the results presented here do not reject monophyly of *Royoungia*. 421 Moreover, a paraphyletic *Royoungia* implies a very unparsimonious scenario for morphological 422 evolution, requiring several origins of the hypogeous/sequestrate habit (vs. only one) or an even 423 less plausible reversal to a boletoid form from a gasteroid ancestor.

424

425 Material examined: AUSTRALIA. Queensland: Davies Creek National Park, Davies Creek Rd, 426 17°1'31"S, 145°35'52"E, 720 m, 9 Feb 2006, Halling 8747, (BRI, NY); Mt. Baldy Rd, ±8 km 427 from Atherton-Herberton Highway, 17°18'32"S, 145° 23'53"E, 1000 m, 22 Feb 2006, Halling 428 8774 (BRI, NY); Wide Bay District, Great Sandy National Park, Fraser Island, ±4 km W of Valley of the Giants, 25°22'2"S, 153°6'10"E, 20 m, 6 Jun 2009, Halling 9173 (BRI, NY), road 429 430 from Eurong to Central Station, 25°30'1.2"S, 153°6'18.8"E, 51 m, 17 May 2011, Halling 9483 431 (BRI, NY), road from Central Station to Lake Birrabeen, 25°29'19.2"S, 153°4'11.4"E, 84 m, 19 432 May 2011, *Halling 9516* (BRI, NY), Bennet Rd, 25°26'39"S, 153°2'33"E, 43 m, 20 May 2011, 433 Halling 9524 (BRI, NY); Cooloola, Freshwater Road, 25°56'36.8"S, 153°7'24.2"E, 154 m, 23

- 434 May 2011, *Halling 9544* (BRI, NY), 25°57′4″S, 153°8′5.3″E, 150 m, 25 May 2011, *Halling 9558*
- 435 (BRI, NY). Victoria. East Gippsland, Cape Conran, ±20 km E of Marlo, 37°47'57"S,
- 436 148°44'26"E, 16 m, 2 Jul 2006, *Halling 8851* (MEL, NY).
- 437

438 Discussion: Inconclusive chemosystematical findings and convergent morphological evolution 439 have hampered a precise placement of *H. chromapes* and allies so far. Nevertheless, the major 440 secondary metabolites responsible for the conspicuous colorations in stipe and cap have been 441 identified and characterized. The chrome yellow base of the stipe mainly includes atromentic 442 acid, isoxerocomic acid, isoxerocomic acid methylester, and two acetophenone derivatives 443 (Gruber 2002 and references therein), and these components occur throughout the Boletales. The 444 pileipellis contains the prevalent variegatorubin, which is responsible for red colors, but its 445 precursor variegatic acid is not accumulated. This unusual finding indicates a rapid enzymatic 446 oxidation of variegatic acid (Gruber 2002) and explains the absence of blue discolorations when 447 fruiting bodies are bruised. The blue discoloration is present in many Zangia species (Li et al 448 2011) and it could therefore be another character that separates the genera. In addition, a pallid 449 yellow pigment called chromaped acid has been isolated from the pileipellis (Gruber 2002). The 450 oxidized product of chromaped acid described as 'derivative 85' has also been found in 451 Aspergillus nidulans and is thought to stimulate the root growth of certain trees (Gruber 2002). 452 Further studies are required to determine if chromaped acid and its derivatives are useful markers 453 for the whole Chromapes group.

454

455 The taxa treated in this study are one of two species groups originally described in *Boletus* that 456 have been placed in either *Tylopilus* or *Leccinum* by different authors, but do not fit comfortably 457 in either genus. One of these, the Sutorius clade (= Leccinum eximium s.l., Tylopilus eximius s.l.), 458 was recently treated by Halling et al. (2012). Similarly, alternative classifications have been 459 proposed for the Chromapes group (i.e., Zangia, Harrya and Australopilus, but excluding 460 *Royoungia*), depending upon character weighting judgments by different authors: *Tylopilus* 461 based on the pink-tinted hymenophore and pinkish spore deposits (Smith & Thiers 1968, 1971), 462 and Leccinum based on the presence of scabers on the stipe surface (Singer 1947, 1986). As in 463 Sutorius, molecular phylogenetic analyses show that the Chromapes group exhibits phylogenetic 464 affinity to neither *Tylopilus* nor *Leccinum*, but represents a distinct phylogenetic lineage

465 warranting formal description. One entity in this group, Zangia — composed of Boletus 466 *chromapes*-like taxa from southern China — was previously recognized as a distinct lineage (Li 467 et al., 2011); our results show that accessions from Australia, North America and China, 468 Thailand, and Zambia are phylogenetically distinct. Here, we formally recognize two well-469 supported clades, composed of Australian, and American and Chinese taxa, as Australopilus and 470 *Harrya*, respectively. Although the two genera are morphologically similar, the close 471 relationship of *Australopilus* and the hypogeous *Royoungia* provides justification for separate 472 recognition of the two epigeous lineages.

473

474 Molecular data, combined with a reassessment of morphological characters, elucidate the 475 species-level taxonomy of the Chromapes group. In the case of the species placed in synonymy 476 (*T. cartagoensis* etc.), our data suggest that previously-described, distinguishing features either 477 represent phenotypic variants that are not congruent with species-level entities, or are unreliable 478 when assessed via additional examination of the type specimens and additional collections. In the 479 case of *Harrya atriceps*, our results support the recognition of a species formerly considered to 480 be a morphological variant of *H. chromapes*; in this case, the morphological distinguishing 481 features are congruent with molecular phylogenetic results. *Harrya atriceps* appears to be a rare 482 taxon, observed only twice over a period of 10 years; formal recognition of this taxon therefore 483 has implications for the biogeography and potential conservation importance of this species. Our 484 results confirm the relationship of the Australian Chromapes group clade (Australopilus) to the 485 gasteroid genus *Royoungia*. Although differing in overall morphology, the bright yellow to 486 bright orange pigments in the peridium of *Royoungia* and the stipe base of the epigeous taxa may 487 represent a homologous character, though chemical evidence for homology is presently lacking. 488

Three additional clades in the Chromapes group have been identified with strong or maximum support values. The accessions from Thailand appear in a clade sister to the Australian clade (*Australopilus* and *Royoungia*) in our analyses; however, this placement receives low bootstrap support and one accession is lacking *tef1*. Lacking strong phylogenetic evidence for the position of this clade and lacking additional specimens, we conclude that it would be premature to formally recognize this clade. Similarly, the positions of the Zambian and Indonesian clades are not well-supported by phylogenetic results (three accessions lack *tef1* data) and few collections Page 17 of 37

Australian Systematic Botany

496 are available for each of these lineages, so we do not provide formal taxonomic recognition of

497 these clades at present. The Zambian and Thai clades include morphological entities identified

498 as, or recalling *Tylopilus virens*. Originally described from China (Chiu 1948), *T. virens* was not

499 included by Li et al (2011) in their analyses, and while we were able to generate some data, more

- 500 collections and molecular analyses are needed.
- 501

502 Acknowledgements

503

504 The senior author is grateful to The National Science Foundation (USA) for funding under grants

505 DEB #9972018, DEB #0414665, and DEB #1020421 (the latter awarded to REH, DSH and

506 MB), and to the National Geographic Society Committee for Research and Exploration in grants

507 #7341-02, #8457-08. The Queensland Herbarium (BRI; Dr. G. Guymer, Director) provided

solution assistance and support to REH for herbarium and field studies while in Queensland.

509 Collaboration of Dr. J. Carranza at Universidad de Costa Rica in support of the Macrofungi of

510 Costa Rica project with REH and G. Mueller is very much appreciated. S. Morath and S.

511 Mandava kindly helped with extractions and PCR in the L.B. & D. Cullman Laboratory at The

512 New York Botanical Garden. Rachael Martin, an undergraduate at Clark University, helped with

513 DNA extractions, PCR, sequencing reactions, sequence assembly and editing. D. Desjardin

514 (NSF grant DEB #9705083) provided REH with a field opportunity in Indonesia. The

515 Queensland Parks and Wildlife Service offered accommodation and orientation on Fraser Island.

- 516 The contribution of KS and King Mongkut's Institute of Technology in providing REH and E.
- 517 Vellinga with Material Transfer Agreements to study Thai macrofungi specimens is gratefully

appreciated. D. Desjardin and E. Vellinga are thanked for providing specimens allowing broader

coverage for our investigation. Two anonymous reviewers provided constructive suggestions forwhich we are grateful.

521

522 Literature Cited

523

524 Bessette, AE, Roody WC, Bessette AR. 2000. North American Boletes: A Color Guide to the

525 Fleshy Pored Mushrooms. Syracuse University Press. 396 p.

526

527	Binder M, Hibbett DS. 2006. Molecular systematics and biological diversification of Boletales.
528	Mycologia 98: 971–981.
529	
530	—, Larsson K-H, Matheny PB, Hibbett DS. 2010. Amylocorticiales ord. nov. and Jaapiales
531	ord. nov.: early-diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia
532	102: 865–880.
533	
534	Castellano MA, Trappe JM, Malajczuk N. 1992. Australasian Truffle-like Fungi. III. Royoungia
535	gen. nov. and Mycoamaranthus gen. nov. (Basidiomycotina). Australian Systematic Botany 5:
536	613-616.
537	
538	Chiu WF. 1948. The boletes of Yunnan. Mycologia 40: 199–231.
539	
540	Coker WC, Beers AH. 1943. The Boletaceae of North Carolina. University of North Carolina
541	Press, Chapel Hill. 96 p.
542	
543	Frost CC. 1874. Catalogue of boleti of New England, with descriptions of new species. Bulletin
544	Buffalo Society of Natural Science 2:100–105.
545	
546	Gruber G. 2002. Isolierung und Strukturaufklärung von chemotaxonomisch relevanten
547	Sekundärmetaboliten aus höheren Pilzen, insbesondere aus der Ordnung der Boletales.
548	Dissertation, Ludwig-Maximilians-Universität München, Munich, Germany.
549	
550	Grund DW, Harrison KA. 1976. Nova Scotian boletes. Bibliotheca Mycologica 47:1–283.
551	
552	Halling, RE. 1983. Boletes described by Charles C. Frost. Mycologia 75:70–92.
553	
554	——, Mueller GM. 2005. Common Mushrooms of the Talamanca Mountains, Costa Rica. The
555	New York Botanical Garden Press, Bronx. 195 p.
556	

557	——, Nuhn M, Fechner NA, Osmundson TW, Soytong K, Arora D, Hibbett DS, Binder M.
558	2012. Sutorius: A new genus for Boletus eximius. Mycologia 104:951-961.
559	
560	Hongo, T. 1960. The Agaricales of Japan I-2. Rhodophyllaceae, Paxillaceae, Gomphidiaceae,
561	Boletaceae and Strobilomycetaceae. Acta Phytotaxonomica et Geobotanica 18:97-112.
562	
563	———. 1980. <i>Tylopilus</i> of western Japan. Memoirs Shiga University 30:63–67.
564	
565	Kornerup A, Wanscher JH.1983. Methuen handbook of colour. Ed. 3. Eyre Methuen, Ltd.,
566	London.
567	
568	Lee J-Y, Hong S-W. 1985. Illustrated flora and fauna of Korea. Vol. 28 Mushrooms. Ministry of
569	Education, Seoul. 962 p.
570	
571	Lee SB, Taylor JW. 1990. Isolation of DNA from fungal mycelia and single cells. In: Innis MA,
572	Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols, a guide to methods and applications. San
573	Diego, USA: Academic Press. p 282–287.
574	
575	Li Y-C, Feng B, Yang Z-L. 2011. Zangia, a new genus of Boletaceae supported by molecular
576	and morphological evidence. Fungal Diversity 49:125–143.
577	
578	Maddison DR, Maddison WP. 2005. MacClade 4: Analysis of Phylogeny and Character
579	Evolution. Sinauer Associates, Sunderland, Massachusetts.
580	
581	Murrill WA. 1909. The Boletaceae of North America – II. Mycologia 1:140–158.
582	
583	Osmundson TW. 2009. Systematic, biogeographical, and ecological perspectives on the diversity
584	and conservation of microbial obligate symbionts, using mycorrhizal boletes (Fungi) as exemplar
585	taxa. Ph.D. Dissertation, Columbia University, New York, NY.
586	

587	Rambaut A, Drummond AJ. 2009. Tracer v1.5. Available from
588	http://tree.bio.ed.ac.uk/software/tracer
589	
590	Rehner SA, Buckley EP. 2005. Cryptic diversification in Beauveria bassiana inferred from
591	nuclear its and ef1- alpha phylogenies. Mycologia 97:84–98.
592	
593	Ridgway R. 1912. Color standards and color nomenclature. Published by the author, Washington
594	DC. 43 p, 53 pl.
595	
596	Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, S. Höhna S, B. Larget B, Liu L,
597	Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference
598	and model choice across a large model space. Systematic Biology 61(3): 539-542
599	
600	Roody WC. 2003. Mushrooms of West Virginia and the Central Appalachians. University Press
601	of Kentucky, Lexington. 520 p.
602	
603	Singer R. 1942. Das System der Agaricales. II. Annales Mycologici 40: 1–132.
604	
605	——. 1947. The Boletoideae of Florida. The Boletineae of Florida with notes on extralimital
005	
606	species III. American Midland Naturalist 37:1–135.
606	
606 607	species III. American Midland Naturalist 37:1–135.
606 607 608	 species III. American Midland Naturalist 37:1–135. ———. 1986. The Agaricales in Modern Taxonomy. Koeltz Scientific Books, Koenigstein,
606 607 608 609	 species III. American Midland Naturalist 37:1–135. ———. 1986. The Agaricales in Modern Taxonomy. Koeltz Scientific Books, Koenigstein,
606 607 608 609 610	species III. American Midland Naturalist 37:1–135. ———. 1986. The Agaricales in Modern Taxonomy. Koeltz Scientific Books, Koenigstein, Germany. 981 p.
606 607 608 609 610 611	 species III. American Midland Naturalist 37:1–135. ——. 1986. The Agaricales in Modern Taxonomy. Koeltz Scientific Books, Koenigstein, Germany. 981 p. Smith AH, Thiers HD. 1968. Notes on boletes—I 1. The generic position of <i>Boletus</i>
606 607 608 609 610 611 612	 species III. American Midland Naturalist 37:1–135. ——. 1986. The Agaricales in Modern Taxonomy. Koeltz Scientific Books, Koenigstein, Germany. 981 p. Smith AH, Thiers HD. 1968. Notes on boletes—I 1. The generic position of <i>Boletus</i> subglabripes and <i>Boletus chromapes</i> 2. A comparison of four species of <i>Tylopilus</i>. Mycologia
606 607 608 609 610 611 612 613	 species III. American Midland Naturalist 37:1–135. ——. 1986. The Agaricales in Modern Taxonomy. Koeltz Scientific Books, Koenigstein, Germany. 981 p. Smith AH, Thiers HD. 1968. Notes on boletes—I 1. The generic position of <i>Boletus</i> subglabripes and <i>Boletus chromapes</i> 2. A comparison of four species of <i>Tylopilus</i>. Mycologia
606 607 608 609 610 611 612 613 614	 species III. American Midland Naturalist 37:1–135. ———. 1986. The Agaricales in Modern Taxonomy. Koeltz Scientific Books, Koenigstein, Germany. 981 p. Smith AH, Thiers HD. 1968. Notes on boletes—I 1. The generic position of <i>Boletus subglabripes</i> and <i>Boletus chromapes</i> 2. A comparison of four species of <i>Tylopilus</i>. Mycologia 60:943–954.

618	Snell WH, Dick EA. 1970. The Boleti of Northeastern North America. Cramer, Lehre. 115 p.
619	
620	Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web
621	servers. Systematic Biology 57:758–758.
622	
623	——, Ludwig T, Meier H. 2005. RAxML-III: a fast program for maximum likelihood-based
624	inference of large phylogenetic trees. Bioinformatics 21:456–456.
625	
626	Thiers BM. 2012. [27 June 2012]. Index Herbariorum: A global directory of public herbaria and
627	associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/.
628	
629	Watling R, Li T-H. 1999a. New taxa and combinations of Australian boletes. Edinburgh Journal
630	of Botany 56:143–148.
631	
632	, 1999b. Australian boletes: a preliminary survey. Royal Botanic Garden,
633	Edinburgh. 71 p.
634	
635	Wilgenbusch JC, Warren DL, Swofford DL. 2004. AWTY: A system for graphical exploration
636	of MCMC convergence in Bayesian phylogenetic inference. http://ceb.csit.fsu.edu/awty.
637	
638	Wolfe CB Jr, Bougher NL. 1993. Systematics, mycogeography, and evolutionary history of
639	Tylopilus subg. Roseoscabra in Australia elucidated by comparison with Asian and American
640	species. Australian Systematic Botany 6:187–213.
641	
642	Zang M, Chen KK. 1990. Ectomycorrhizal fungi associated with alpine conifers from
643	southwestern China. Acta Mycologica Sinica 9:128–136.
644	

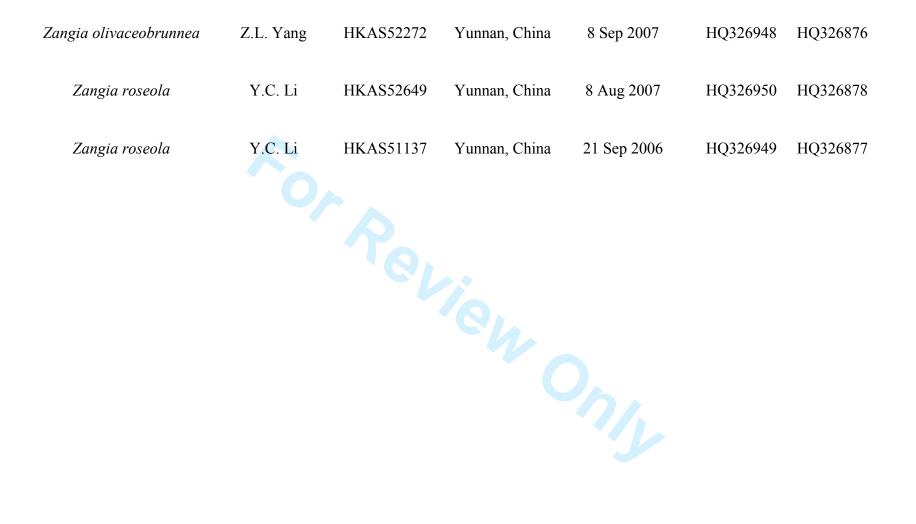
- Table 1. Voucher information and GenBank accession numbers (new submissions in boldface)for the specimens studied.
- 647
- 648 Figure 1. Phylogenetic relationships and placement of the Chromapes group within the
- Boletaceae inferred from the combined nuc-lsu+tef1 "extended" dataset (3112 bp) using RAxML
- and Mr. Bayes. The tree topology corresponds to the optimal maximum likelihood tree. Support
- values \geq 70% BS are shown, PP values \geq 0.95 are depicted as bold branches on the phylogeny.
- The node labeled with a pound sign (#) collapses in the optimal tree obtained in the ML analysis
- 653 of the "core" dataset. Individuals that lack *tef1* sequences are indicated by an asterisk (*).
- 654
- 655 Figures 2–3. *Harrya chromapes*. Habit. 2. *Halling 2173* ×1. 3. *Halling 8254* ×1.
- 656
- 657 Figure 4. *Harrya atriceps*. Habit. *Halling* 7797 ×1.
- 658
- 659 Figure 5. Microscopic features of *Harrya atriceps*. a. pileipellis elements. b. basidiospores. c.
- hymenial cystidia. d. caulocystidial elements (*Halling* 7797, holotype).
- 661
- 662 Figures. 6–7 Australopilus palumanus. Habits. 6. Halling 9275 ×1. 7. Osmundson 1096 ×1.
- 663

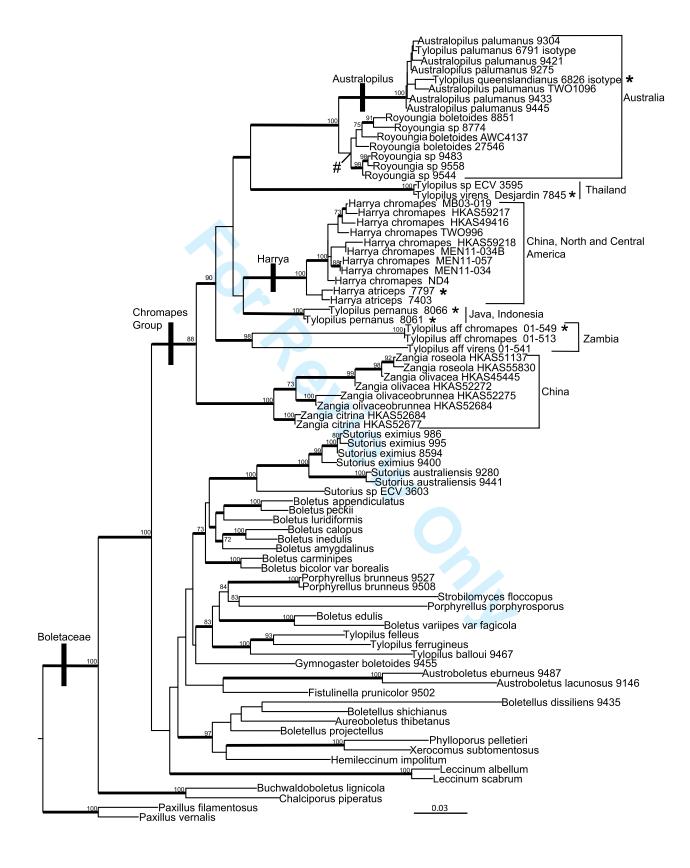
664 Figures 8–10. *Royoungia* sp. Habits. 8. *Halling 9544* ×10. 9. *Halling 8851* × 3. 10. *Halling 9483*665 × 3.

	Table I. Voucher in	formation and	GenBank accession r	numbers (new acce	essions in boldfa	ce)
Species	Collector	Isolate ID	Location	Date	nuc-lsu	tefl
Royoungia boletoides	R. Halling	8851 NY	Victoria, Australia	2 Jul 2006	JX889678	JX88971
Royoungia boletoides	J. Trappe	27546 OSC	New South Wales, Australia	23 Oct 1999	JX889655	JX88969
Royoungia boletoides	T. Lebel et al.	AWC4137 OSC	Victoria, Australia	28 May 2001	DQ534663	JX88970
<i>Royoungia</i> sp.	R. Halling	8774 NY	Atherton, Queensland, Australia	22 Feb 2006	JX889660	JX88970
<i>Royoungia</i> sp.	R. Halling	9483 NY	Fraser Island, Queensland, Australia	17 May 2011	JX889656	JX88969
<i>Royoungia</i> sp.	R. Halling	9544 NY	Cooloola, Queensland, Australia	23 May 2011	JX889658	JX88969
<i>Royoungia</i> sp.	R. Halling	9558 NY	Cooloola, Queensland, Australia	25 May 2011	JX889657	JX88969
Harrya chromapes	T. Osmundson	TWO996 NY	San Gerardo, Costa Rica	15 Jun 2004	JX889680	JX88971
Harrya chromapes	M. Binder	MB 03-019 CUW	Rutland, Massachusetts, USA	17 Jul 2003	JX889665	JX88970

Harrya chromapes	M.E. Nuhn	MEN11-034 CUW	Chesterfield, New Hampshire, USA	11 Aug 2011	JX889663	JX889703
Harrya chromapes	M.E. Nuhn	MEN11-034B CUW	Chesterfield, New Hampshire, USA	11 Aug 2011	JX889666	JX889706
Harrya chromapes	M.E. Nuhn	MEN11-057 CUW	Chesterfield, New Hampshire, USA	3 Sept 2011	JX889667	JX889707
Harrya chromapes	N. Davoodian	ND 4 NY	N. Carolina, USA	23 Jun 2011	JX889664	JX889704
Harrya chromapes	Z.W. Ge	HKAS49416	Sichuan, China		HQ326930	HQ326863
Harrya chromapes	Z.W. Ge	HKAS59217	Vermont, USA		HQ326931	HQ326864
Harrya chromapes	Z.W. Ge	HKAS59218	New Hampshire, USA		HQ326932	HQ326865
Tylopilus aff. chromapes	D. Arora	01-513	Mutinondo, Zambia	Jan 2001	JX889672	JX889682
Tylopilus aff. chromapes	D. Arora	01-549	Mutinondo, Zambia	Jan 2001	JX889671	
Harrya atriceps	R. Halling	7403 NY	Copey Costa Rica	20 Oct 1994	JX889662	JX889702

Harrya atriceps Isotype	R. Halling	7797 NY	Jardín, Costa Rica	1 Jul 1998	JX889661	
<i>Tylopilus palumanus</i> Isotype	R. Halling	6791 NY	Queensland, Australia	17 Feb 1992	JX889650	JX889691
<i>Tylopilus queenslandianus</i> Isotype	R. Halling	6826 NY	Queensland, Australia	19 Feb 1992	JX889649	
Australopilus palumanus	T. Osmundson	TWO1096 NY	Davies Creek, Queensland, Australia	9 Feb 2006	JX889679	JX889711
Australopilus palumanus	R. Halling	9275 NY	Fraser Island, Queensland, Australia	25 Mar 2010	JX889654	JX889695
Australopilus palumanus	R. Halling	9304 NY	Fraser Island, Queensland, Australia	29 Mar 2010	JX889653	JX889694
Australopilus palumanus	R. Halling	9421 NY	Fraser Island, Queensland, Australia	16 Feb 2011	JX889675	JX889685
Australopilus palumanus	R. Halling	9433 NY	Fraser Island, Queensland, Australia	18 Feb 2010	JX889651	JX889692
Australopilus palumanus	R. Halling	9445 NY	Cooloola, Queensland, Australia	20 Feb 2011	JX889652	JX889693
Tylopilus pernanus	R. Halling	8061 NY	Java, Indonesia	14 Jan 2001	JX889644	

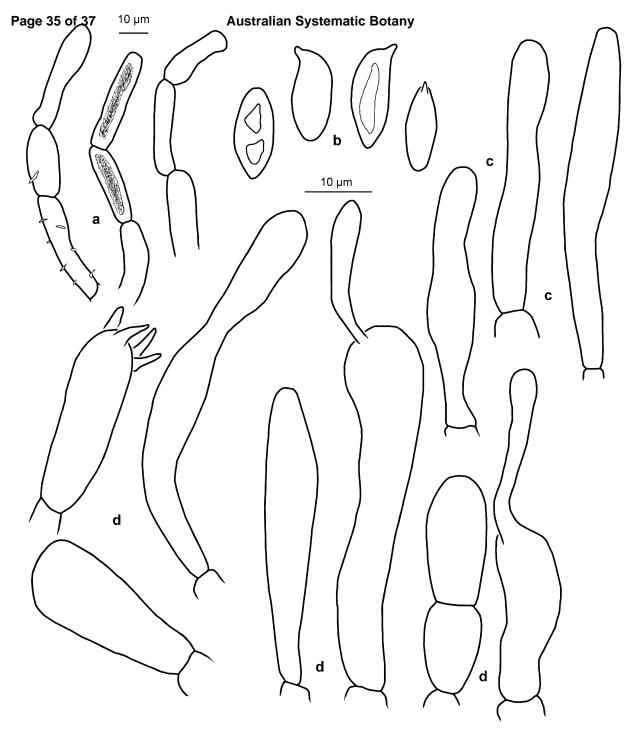

Tylopilus pernanus	R. Halling	8066 NY	Java, Indonesia	16 Jan 2001	JX889645	
<i>Tylopilus</i> sp.	E. Vellinga	ECV3595 UC, MFLU	Doi Suthep, Thailand	2 Jul 2007	JX889670	JX889681
Tylopilus aff. virens	D. Arora	01-541 CUW	Mutinondo, Zambia	Jan 2001	JX889677	JX889687
Tylopilus virens	D. Desjardin	7845 SFSU	Doi Suthep, Thailand	24 Jun 2005	JX889643	
Aureoboletus thibetanus	Z.L. Yang	AFTOL-450	Kunming, Yunnan, China		AY700189	DQ029199
Austroboletus eburneus	R. Halling	9487 NY	Fraser Island, Queensland, Australia	17 May 2011	JX889668	JX889708
Austroboletus lacunosus	R. Halling	9146 NY	Fraser Island, Queensland, Australia	4 Jun 2009	JX889669	JX889709
Boletellus dissiliens	R. Halling	9435 NY	Fraser Island, Queensland, Australia	18 Feb 2011	JX889674	JX889684
Boletellus projectellus	M. Binder	AFTOL-713	Cape Cod, MA, USA	14 Sept 2003	AY684158	AY879116
Boletellus shichianus	Z.L. Yang	AFTOL-532	Yunnan, China	2003	AY647211	DQ408145


Boletus amygdalinus	B. Neill	112605ba	Mendocino Co, CA, USA	26 Nov 2005	JQ327996	JQ327024
Boletus appendiculatus	J. Schreiner	Bap1	Bavaria, Germany	10 Aug 1995	AF456837	JQ327025
Boletus bicolor var. borealis	E. Both	2858	Erie Co, NY, USA		JQ326998	JQ327021
Boletus calopus	M. Binder	Bc1	Bavaria, Germany	7 Sept 1994	AF456833	JQ327019
Boletus carminipes	M. Binder	MB 06-061	Erie Co, NY, USA	4 Aug 2006	JQ327001	JQ327022
Boletus edulis	M. Binder	Be1	Bavaria, Germany	14 Sept 1994	AF050643	JQ327018
Boletus inedulis	M. Binder	MB 06-044	Erie Co, NY, USA	3 Aug 2006	JQ327013	JQ327020
Boletus luridiformis	A.F.S. Taylor	AT2001087	Berkshire, England, UK		JQ326995	JQ327023
Boletus peckii	A.R. Clark E. Both	3959	Erie Co, NY, USA	4 Aug 1995	JQ326999	JQ327026
Boletus variipes var. fagicola	A.H. Smith	4249	Cheboygan, Co, NY, USA	10 Aug 1968	JQ327014	JQ327017

Buchwaldoboletus lignicola	J. Schreiner	Pul1	Maindreieck, Germany	9 Sept 1995	JQ326997	JQ327040
Chalciporus piperatus	M. Binder	MB 04-001	Rutland, MA, USA	28 Sept 2004	DQ534648	GU187690
Fistulinella prunicolor	R. Halling	9502 NY	Fraser Island, Queensland, Australia	18 May 2011	JX889648	JX889690
Gymnogaster boletoides	R. Halling	9455 NY	SE Queensland, Australia	1 Mar 2011	JX889673	JX889683
Hemileccinum impolitum	J. Schreiner	Bim1	Bavaria, Germany	21 Sept 1995	AF139715	JQ327034
Leccinum albellum	M. Binder	MB 06-040	Erie Co, NY, USA	30 Jul 2006	JQ327007	JQ327038
Leccinum scabrum	M. Binder	Ls1	Austria	14 Sept 1995	AF139705	JQ327039
Paxillus filamentosus	H. Besl	Pfl	Bavaria, Germany	21 Aug 1995	AF167680	GU187736
Paxillus vernalis	W. Steglich	Pv2	Canada	31 Aug 1997	AY645059	DQ457629
Phylloporus pelletieri	M. Kronfeldner	Pp1	Bavaria, Germany	9 Sept 1996	AF456818	JQ327036

Porphyrellus brunneus	R. Halling	9508 NY	Fraser Island, Queensland, Australia	19 May 2011	JX889646	JX889688
Porphyrellus brunneus	R. Halling	9527 NY	Fraser Island, Queensland Australia	20 May 2011	JX889647	JX889689
Porphyrellus porphyrosporus	M. Binder	MB 97-023	Bavaria, Germany	9 Sept 1996	DQ534643	GU187734
Sutorius australiensis	R. Halling	9280	Fraser Island, Queensland, Australia	26 Mar 2011	JQ327005	JQ327031
Sutorius australiensis	R. Halling	9441	Cooloola, Queensland, Australia	20 Feb 2011	JQ327006	JQ327032
Sutorius eximius	T. Osmundson	TWO986	La Chonta, Costa Rica	14 Jun 2004	JQ327009	JQ327028
Sutorius eximius	T. Osmundson	TWO995	San Gerardo, Costa Rica	15 Jun 2004	JQ327010	JQ327030
Sutorius eximius	R. Halling	8594	Jardín, Costa Rica	5 Jun 2004	JQ327008	JQ327027
Sutorius eximius	R. Halling	9400	Ulster Co, NY, USA	24 Sept 2010	JQ327004	JQ327029
Sutorius sp	E. Vellinga	ECV3603	Bai Mae Sae, Thailand	4 Jul 2007	JQ327000	JQ327033

Strobilomyces floccopus	J. Enzmann	Sf1	Bavaria, Germany	12 Aug 1995	DQ534626	JQ327037
Tylopilus balloui s.l.	R. Halling	9467 NY	Fraser Island, Queensland, Australia	6 Mar 2011	JX889676	JX889686
Tylopilus felleus	A.F.S. Taylor	AT2001011	Stadsskogen, Uppsala, Sweden	17 Sept 2001	JQ326993	JQ327015
Tylopilus ferrugineus	M. Binder	MB 06-053	Erie Co, NY, USA	3 Aug 2006	JQ326994	JQ327016
Xerocomus subtomentosus	J. Enzmann, A. Bresinsky	Xs1	Bavaria, Germany	10 Aug 1995	AF139716	JQ327035
Zangia citrina	Y.C. Li	HKAS52677	Fujian, China	24 Aug 2007	HQ326940	HQ326871
Zangia citrina	Y.C. Li	HKAS52684	Fujian, China	24 Aug 2007	HQ326941	HQ326872
Zangia olivacea	Z.W. Ge	HKAS55830	Yunnan, China	26 Jul 2006	HQ326946	HQ326874
Zangia olivacea	Z.L. Yang	HKAS45445	Yunnan, China	6 Jul 2004	HQ326945	HQ326873
Zangia olivaceobrunnea	Z.L. Yang	HKAS52275	Yunnan, China	9 Sep 2007	HQ326947	HQ326875



Australian Systematic BoRage 34 of 37

anuscriptcentral.com/csiro sb

